WO2023152879A1 - モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム - Google Patents

モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム Download PDF

Info

Publication number
WO2023152879A1
WO2023152879A1 PCT/JP2022/005390 JP2022005390W WO2023152879A1 WO 2023152879 A1 WO2023152879 A1 WO 2023152879A1 JP 2022005390 W JP2022005390 W JP 2022005390W WO 2023152879 A1 WO2023152879 A1 WO 2023152879A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
model
communication quality
communication device
communication
Prior art date
Application number
PCT/JP2022/005390
Other languages
English (en)
French (fr)
Inventor
尚志 永田
理一 工藤
馨子 高橋
智明 小川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/005390 priority Critical patent/WO2023152879A1/ja
Publication of WO2023152879A1 publication Critical patent/WO2023152879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters

Definitions

  • the present invention relates to a model setting device, a model setting system, a model setting method, and a model setting program for setting a prediction model used when predicting the communication quality of communication equipment.
  • the communication quality of the device changes as the environment changes due to the movement of nearby objects (various objects).
  • objects existing around the device may act as shields and degrade the quality of wireless communication.
  • Non-Patent Documents 1 and 2 describe prediction of changes in device communication quality. By predicting changes in communication quality, it becomes possible to take countermeasures before deterioration of service or deterioration of communication quality occurs.
  • Non-Patent Literatures 1 and 2 described above predict the communication quality when the wireless communication path for millimeter wave communication is blocked by the passage of an object, based on the information detected by the depth camera. For this reason, the prediction model is fixed and does not take into account surrounding environment information that accompanies fluctuations such as movement information of surrounding objects and people, and skeletal information. Therefore, there is a problem that the communication quality cannot be predicted with high accuracy according to the surrounding environment.
  • the present invention has been made in view of the above circumstances, and its object is to provide a model setting device, a model setting system, a model setting method, and a model setting program that enable highly accurate prediction of communication quality. to provide.
  • a model setting device is a model setting device that sets a prediction model for predicting communication quality of a communication device, and includes: communication device-related information related to the communication device; a generation unit that acquires at least one of surrounding environment information and generates a plurality of prediction models for predicting communication quality of the communication device based on the acquired information; and communication quality based on each prediction model generated by the generation unit.
  • a selection unit that selects a plurality of prediction models to be used for communication quality prediction based on the prediction result of; and a combining unit that sets a combining rule for combining the plurality of prediction models selected by the selection unit .
  • a model setting system is a model setting system comprising a communication device and a model setting device for setting a prediction model for predicting communication quality of the communication device, wherein the model setting device comprises the Acquiring at least one of communication device-related information about a communication device and surrounding environment information about a surrounding environment of the communication device, and generating a plurality of prediction models for predicting communication quality of the communication device based on the obtained information a selection unit that selects a plurality of prediction models to be used for predicting communication quality based on prediction results of communication quality by each prediction model generated by the generation unit; and a plurality of selected by the selection unit and a synthesizing unit that sets a synthesizing rule for synthesizing the prediction model.
  • a model setting method is a model setting method for setting a prediction model for predicting communication quality of a communication device, comprising: communication device related information about the communication device; and surrounding environment about the surrounding environment of the communication device. obtaining at least one of the information, generating a plurality of prediction models for predicting the communication quality of the communication device based on the obtained information; and based on the communication quality prediction result of each generated prediction model. , selecting a plurality of prediction models to be used for communication quality prediction, and setting a synthesis rule for synthesizing the selected plurality of prediction models.
  • One aspect of the present invention is a model setting program for causing a computer to function as the model setting device.
  • FIG. 1 is a block diagram showing the configuration of a model setting system according to an embodiment.
  • FIG. 2A is a graph showing the relationship between the prediction results of each prediction model and the R2 score.
  • FIG. 2B is a graph showing the relationship between prediction results by each prediction model and MAPE [%].
  • FIG. 3 is a flow chart showing the processing procedure of the model setting device according to the embodiment.
  • FIG. 4 is an explanatory diagram showing the flow of processing of the model setting device according to the embodiment.
  • FIG. 5 is an explanatory diagram showing the R2 score and priority of the prediction result by the prediction model for each category.
  • FIG. 6 is a graph showing the relationship between the absolute error [bps] between the communication quality predicted by the prediction model and the actual communication quality, and the cumulative distribution function (CDF).
  • FIG. 7 is a block diagram showing the hardware configuration of this embodiment.
  • a model setting system includes a model setting device 1 and a communication device 2 .
  • the model setting device 1 sets a plurality of prediction models for predicting the communication quality, and selects a plurality of prediction models with high prediction accuracy.
  • a synthesis rule for synthesizing a plurality of selected prediction models is determined.
  • the combination rule is determined so as to increase the prediction accuracy of communication quality.
  • FIG. 1 is a block diagram showing the configuration of the model setting system according to the embodiment.
  • an example in which one communication device 2 is connected to the model setting device 1 is shown, but a plurality of communication devices 2 may be connected to the model setting device 1 .
  • the model setting device 1 includes a communication unit 11, a plurality of information acquisition units 12-1 to 12-N (hereinafter collectively referred to as "information acquisition units 12"), and a storage unit. 13 , a generating unit 14 , a model using unit 15 , a selecting unit 16 and a synthesizing unit 17 .
  • the communication unit 11 performs wireless communication with the communication device 2 whose communication quality is to be predicted, and receives communication device-related information such as the current communication quality of the communication device 2 and GPS information indicating the current position of the communication device 2. get.
  • the communication device-related information is referred to as "auxiliary information”.
  • the information acquisition unit 12 acquires information collected by cameras, sensors, and information collection devices (all not shown) installed around the communication device 2 . Specifically, the information acquisition unit 12 acquires an image captured by a camera. The information acquisition unit 12 obtains information on the direction, movement, and rotation of the communication device detected by sensors such as an infrared sensor, an ultrasonic sensor, and a laser radar installed in or around the communication device 2, and information on the surroundings of the communication device 2. Get information on people and objects that exist in
  • the information gathering equipment is the location registration area number of a mobile terminal such as a mobile phone, the location registration area number necessary for determining whether location registration is necessary for a radio wave mobile terminal, neighboring cell information and radio wave quality for locating in that cell. and information for performing call regulation control.
  • the information about the communication device 2 acquired by the information acquisition unit 12 from the cameras, sensors, and information collection devices described above will be collectively referred to as "surrounding environment information”.
  • the storage unit 13 classifies the auxiliary information received by the communication unit 11 and the surrounding environment information acquired by each information acquisition unit 12 into a plurality of categories and stores them.
  • a “category” is a classification item used when generating a model for estimating the communication quality of the communication device 2 .
  • the categories are, for example, GPS information indicating the position of the communication device 2, communication quality, or position coordinates, bounding box coordinates, skeleton coordinates, etc. of an object or person existing around the communication device 2.
  • the surrounding environment information includes at least one of bounding box coordinates of objects existing around the communication device 2 and skeleton coordinates of a person existing around the communication device 2 .
  • the storage unit 13 classifies the surrounding environment information and the communication device-related information into a plurality of categories and stores them.
  • Skeletal coordinates are the position coordinates, velocity information, and acceleration information of parts of the human body such as the right wrist, left wrist, right knee, and left elbow.
  • the generation unit 14 generates a database to be input to the learning model based on the auxiliary information and surrounding environment information of each category stored in the storage unit 13.
  • the generation unit 14 performs machine learning based on the generated database, and generates a prediction model that models the relationship between each category and the communication quality of the communication device 2 . Also, when new surrounding environment information or auxiliary information is obtained, the prediction model is updated by performing machine learning again as necessary. That is, the generation unit 14 acquires at least one of the communication device-related information about the communication device 2 and the surrounding environment information about the surrounding environment of the communication device 2, and predicts the communication quality of the communication device 2 based on the obtained information. Generate multiple predictive models.
  • the model using unit 15 acquires the prediction model for each category generated by the generation unit 14, and predicts the communication quality of the communication device 2 by using each prediction model.
  • the model using unit 15 sets the priority of each prediction model based on the communication quality predicted by each prediction model.
  • Priority can be set based on the average absolute error and R2 score during learning. Alternatively, the priority can be set manually.
  • FIG. 5 is an explanatory diagram showing R2 scores and priorities when the prediction models are "position coordinates", “position coordinates + bounding box coordinates", and "bounding box coordinates". As shown in FIG. 5, the highest R2 score is obtained by using the prediction model with the category "location coordinates". Therefore, priority is set in the order of "position coordinates", “position coordinates + bounding box coordinates", and "bounding box coordinates". Note that the R2 score can be calculated by the formula (2) described later.
  • the selection unit 16 refers to the priority of the prediction models of each category set by the model utilization unit 15, and selects a plurality of prediction models with higher priority among the prediction models of each category. Information on the selected prediction model is output to the synthesizing unit 17 . That is, the selection unit 16 sets a priority order to the prediction models of each category based on the prediction result of communication quality by each prediction model generated by the generation unit 14, and selects a predetermined number of prediction models with higher priority. to select.
  • the synthesizing unit 17 refers to each prediction model selected by the selecting unit 16 and sets a synthesis rule for synthesizing a plurality of prediction models.
  • the reliability and communication quality prediction values of a plurality of prediction models selected by the selection unit 16 are acquired, and the communication quality prediction value of the prediction model with the highest reliability is adopted.
  • “Reliability” is an index indicating the reliability of a prediction model obtained by "R2 score” or "MAPE [%]", which will be described later.
  • the reliability of the prediction model in each category of "bounding box coordinates", "communication quality”, and "communication terminal GPS information” is set to R1, R2, and R3, respectively, and the predicted values of communication quality are set to P1, R3, and P1, respectively. Let them be P2 and P3.
  • the reliability R1 is the highest, the predicted value P1 based on the bounding box coordinate prediction model is output as the communication quality.
  • the synthesizing unit 17 acquires the reliability of a plurality of prediction models selected by the selecting unit 16, and sets a synthesis rule that uses the output of the prediction model that provides the prediction result with the highest reliability as the predicted value of the communication quality. set.
  • the reliability of the prediction model in each category of "bounding box coordinates", “communication quality”, and “communication terminal GPS information” is set to R1, R2, and R3, respectively, and the predicted values of communication quality are set to P1, R3, and P1, respectively. Let them be P2 and P3.
  • the weighted average of communication quality using the three prediction models can be expressed by the following formula (1).
  • Weighted average (R1*P1+R2*P2+R3*P3)/(R1+R2+R3) ...(1) Then, the weighted average numerical value calculated by the above equation (1) is output as the communication quality.
  • the synthesizing unit 17 acquires the reliability of a plurality of prediction models selected by the selection unit 16, calculates the weighted average of the communication quality prediction result and the reliability of each prediction model, and communicates this weighted average. Set a synthesis rule as a predictor of quality.
  • Figures 2A and 2B are graphs showing the results of generating models for predicting the wireless communication quality (throughput) of a robot when the robot is moving, and evaluating each model.
  • FIG. 2A shows a graph when evaluated by "R2 score”
  • FIG. 2B shows a graph when evaluated by MAPE [%].
  • the robot estimates its own position using the AMCL (Adaptive Monte Carlo Localization) algorithm. "Position coordinates (expressed as xy)” are obtained by estimating the self-position. In addition, the robot is photographed by one camera installed around the robot, and “bounding box coordinates (denoted as "cam0”)" are acquired.
  • AMCL Adaptive Monte Carlo Localization
  • FIG. 2A shows the R2 score of the prediction model generated by "location information”, “bounding box coordinates”, “location coordinates and bounding box coordinates (denoted as xycam0)", and “location coordinates” and “bounding box coordinates”. is a graph showing the result of evaluating the result of estimating the model by the aforementioned reliability selection and reliability weighted average with the R2 score.
  • the R2 score is calculated by the formula (2) below, and the closer it is to "1", the more accurate the estimation is.
  • FIG. 2B shows the MAPE [% ], and "positional coordinates" and “bounding box coordinates" models are estimated by the aforementioned reliability selection and reliability weighted average, and the results are evaluated by MAPE [%].
  • MAPE [%] is calculated by the following formula (3), and the smaller the number, the more accurate the estimation.
  • MAPE [%] of "reliability selection” and “reliability weighted average” compared with the numerical values of "x, y", “cam0”, and “xycam0” is a smaller numerical value, and it is understood that the estimation accuracy is high.
  • the communication quality can be estimated with high accuracy by adopting reliability selection and reliability weighted average.
  • the result of estimating with ⁇ xycam0'' which adds the information of ⁇ cam0'' to ⁇ xy'', is worse than the estimation result of ⁇ xy'' alone. Better results can be obtained simply by increasing the data. It turns out that this is not always the case.
  • the accuracy of communication quality estimation is increased by appropriately setting synthesis rules for a plurality of selected prediction models.
  • two synthesis rules based on "reliability selection” and “reliability weighted average” have been described, but the setting of the synthesis rule is not limited to these. may be adopted.
  • the processing by the model setting device 1 according to the present embodiment includes the “preparation step” shown in steps S11 and S12 in FIG. 3, the “data acquisition step” shown in steps S13 and S14, and the “data processing step It is roughly divided into three stages.
  • step S11 of FIG. 3 the generation unit 14 generates a prediction model of future communication quality for each category.
  • the position and orientation of the communication device 2, the posture, speed, part state of the person operating the communication device 2, bounding box coordinate information, and skeleton coordinate information are acquired.
  • the communication unit 11 acquires the communication quality of the communication device 2 and GPS information.
  • machine learning is performed to predict communication quality for multiple categories such as skeletal models and GPS models. Generate a model.
  • step S12 of FIG. 3 the model using unit 15 calculates the reliability of the prediction models generated for each category by the generating unit 14, and sets the priority according to the reliability.
  • the selection unit 16 selects a predetermined number of prediction models with high priority and outputs them to the synthesis unit 17 .
  • the synthesizing unit 17 sets synthesis rules such as the above-described "method of selecting based on reliability" and "method of selecting based on weighted average of reliability" based on a plurality of selected prediction models.
  • the information acquisition unit 12 acquires the surrounding environment information of the communication device 2.
  • the surrounding environment information is, for example, bounding box coordinates, information on people and objects existing around the communication device 2, and the like.
  • step S ⁇ b>14 the communication unit 11 acquires auxiliary information through communication with the communication device 2 and stores it in the storage unit 13 .
  • the auxiliary information is the communication quality of the communication device 2, GPS information, and the like.
  • step S15 as data processing, the storage unit 13 classifies and stores the surrounding environment information acquired in the process of step S13 and the auxiliary information acquired in the process of step S14 for each category.
  • step S16 the model using unit 15 sets the priority of the prediction models generated by the generating unit 14 based on the surrounding environment information and auxiliary information classified by category. For example, as shown in FIG. 5, the R2 score is calculated for each prediction model for each category of "position coordinates", “position coordinates+bounding box coordinates", and "bounding box coordinates". When the R scores are 0.8959, 0.8952, and 0.8704, respectively, priority is given to "position coordinates,” “position coordinates + bounding box coordinates,” and "bounding box coordinates.” Set rank.
  • the selection unit 16 selects a predetermined number of prediction models with higher priority. Further, the synthesizing unit 17 sets a synthesizing rule by the method described above.
  • step S17 a prediction unit (not shown) predicts communication quality based on the synthesis rule generated by the synthesis unit 17. As indicated by C4 in FIG. 4, the prediction result is output to an external device.
  • FIG. 6 is a graph showing the relationship between the absolute error [bps] between the communication quality predicted by the prediction model and the actual communication quality, and the cumulative distribution function (CDF).
  • the horizontal axis indicates the absolute error [bps] and the vertical axis indicates the cumulative distribution function (CDF).
  • the point on the graph corresponding to 5,000,000 [bps] on the horizontal axis is approximately "0.75" on the vertical axis. This indicates that 75% of the estimation results have an estimation error of 5,000,000 [bps] or less. Therefore, the larger the value on the vertical axis for a given value on the horizontal axis, the more accurately the estimation is performed.
  • the curve Q1 shows “position/orientation/velocity information”
  • the curve Q2 shows “position/orientation/velocity + 5 cameras (bounding box coordinates for 5 cameras)”
  • the curve Q3 It is understood that the order of "five cameras (bounding box coordinates for five cameras)" shown in FIG.
  • the curve Q1 shows a higher numerical value than the curve Q2, even if the "bounding box coordinates for 5 vehicles" are added to the "position/orientation/speed information", the accuracy is not increased. That is, it can be said that accuracy does not necessarily increase as the number of input data increases.
  • a prediction model is generated for each category.
  • High-precision quality prediction is possible by selecting a plurality of prediction models with high priority from the generated prediction models and setting a synthesis rule using the selected prediction models. Also, there is an advantage that highly accurate quality prediction is possible even when much surrounding environment information and auxiliary information cannot be collected.
  • the model setting device 1 is a model setting device 1 that sets a prediction model for predicting the communication quality of the communication device 2, and includes communication device-related information regarding the communication device 2 and A generation unit 14 that acquires at least one of surrounding environment information about the surrounding environment and generates a plurality of prediction models for predicting the communication quality of the communication device 2 based on the acquired information, and each prediction generated by the generation unit 14
  • a selection unit 16 that selects a plurality of prediction models to be used for communication quality prediction based on a prediction result of communication quality by the model, and a synthesis that sets a synthesis rule for synthesizing the plurality of prediction models selected by the selection unit 16.
  • a section 17 is provided.
  • the prediction model and synthesis rule for predicting the communication quality of the communication device are set based on not only the position information and image information of the communication device 2, but also various types of surrounding environment information and auxiliary information. , it is possible to predict communication quality with high accuracy.
  • the optimal model can be selected from the prediction model corresponding to the limited surrounding environment information. By selecting , it becomes possible to predict future communication quality with higher accuracy.
  • the model utilization unit 15 sets a priority order for the prediction models of each category, and the selection unit 16 selects a predetermined number of prediction models with higher priority orders, so that the communication quality prediction accuracy can be further improved. can be done.
  • the synthesizing unit 17 acquires the reliability of the plurality of prediction models selected by the selecting unit 16, and sets a synthesis rule that uses the output of the prediction model that provides the prediction result with the highest reliability as the predicted value of the communication quality. Therefore, it is possible to further improve the prediction accuracy of communication quality.
  • the synthesizing unit 17 acquires the reliability of the plurality of prediction models selected by the selection unit 16, calculates a weighted average of the prediction result of communication quality by each prediction model and the reliability, and calculates the weighted average of the communication quality. Since the synthesis rule for the predicted value is set, the communication quality prediction accuracy can be further improved.
  • the information acquisition unit 12 adopts at least one of the bounding box coordinates of an object existing around the communication device 2 and the skeletal coordinates of a person existing around the communication device 2 as the surrounding environment information, the communication quality is improved. Prediction accuracy can be further improved.
  • the model setting device 1 of the present embodiment described above includes, for example, a CPU (Central Processing Unit, processor) 901, a memory 902, and a storage 903 (HDD: HardDisk Drive, SSD: Solid State Drive). , a communication device 904, an input device 905, and an output device 906.
  • a general-purpose computer system can be used.
  • Memory 902 and storage 903 are storage devices. In this computer system, each function of the model setting device 1 is realized by executing a predetermined program loaded on the memory 902 by the CPU 901 .
  • model setting device 1 may be implemented by one computer or may be implemented by a plurality of computers. Also, the model setting device 1 may be a virtual machine implemented on a computer.
  • the program for the model setting device 1 can be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), DVD (Digital Versatile Disc), or can be stored on a network. It can also be delivered via

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信機器(2)に関する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、通信機器(2)の通信品質を予測する複数の予測モデルを生成する生成部(14)と、生成部(14)で生成された各予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択する選択部(16)と、選択部(16)で選択された複数の予測モデルを合成する合成ルールを設定する合成部(17)とを備える。

Description

モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム
 本発明は、通信機器の通信品質を予測する際に用いる予測モデルを設定するモデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラムに関する。
 無線通信機能が搭載されたモバイル機器などのデバイスを使用する際には、周辺に存在するオブジェクト(各種の物体)の移動などによる環境変化に伴って、デバイスの通信品質が変化する。即ち、デバイスの周辺に存在するオブジェクトが遮蔽物となって、無線通信の品質を低下させることがある。このような場合には、デバイスによるサービス、デバイスの通信品質を満たせなくなる可能性がある。
 例えば、「IEEE802.11ad」及び「セルラー通信の5G」では、ミリ波を用いているため、無線通信を行う送受の間の遮蔽物によるブロッキングの影響で通信品質が低下する可能性がある。
 また、ミリ波以外の周波数の無線通信であっても、遮蔽物によるブロッキング及び反射物の動きによる伝搬環境の変化が通信品質に影響を及ぼすことがある。更には、反射物が動くことによって生じるドップラーシフトも通信に影響を与えることがある。
 非特許文献1、2には、デバイスの通信品質の変化を予測することが記載されている。通信品質の変化を予測することにより、サービスの低下、通信品質の低下が生じる前に対策を採ることが可能になる。
T. Nishio,H. Okamoto, K. Nakashima, Y. Koda, K. Yamamoto, M. Morikura, Y. Asai, and R. Miyatake, "Proactive Received Power Prediction Using Machine Learningand Depth Imagesfor mmWave Networks," IEEE Journal on Selected Areasin Communications, vol. 37, no. 11, pp. 2413-2427, Nov. 2019. doi: 10.1109/JSAC.2019.2933763. H. Okamotoet al., "Machine-learning-based throughput estimation using imagesfor mmWave communications," in Proc.,IEEE VTC 2017-spring, Jan. 2017.
 通信品質を予測するモデルを生成する際には、オブジェクトの位置や方向、モーション、骨格情報などの周辺環境情報とその正確性が予測精度に大きく影響する。しかし、上述した非特許文献1、2に開示された技術では、深度カメラで検出される情報によりオブジェクトの通過によるミリ波通信の無線通信路遮蔽時における通信品質を予測している。このため、予測モデルが固定的であり、周囲の物体や人物の移動情報、骨格情報などの変動を伴う周辺環境情報を考慮していない。このため、周辺環境に応じた高精度な通信品質の予測ができないという問題があった。
 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、高精度な通信品質の予測を可能とするモデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラムを提供することにある。
 本発明の一態様のモデル設定装置は、通信機器の通信品質を予測する予測モデルを設定するモデル設定装置であって、前記通信機器に関連する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、前記通信機器の通信品質を予測する複数の予測モデルを生成する生成部と、前記生成部で生成された各予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択する選択部と、前記選択部で選択された複数の予測モデルを合成する合成ルールを設定する合成部と、を備える。
 本発明の一態様のモデル設定システムは、通信機器と、前記通信機器の通信品質を予測する予測モデルを設定するモデル設定装置とを備えたモデル設定システムであって、前記モデル設定装置は、前記通信機器に関する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、前記通信機器の通信品質を予測する複数の予測モデルを生成する生成部と、前記生成部で生成された各予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択する選択部と、前記選択部で選択された複数の予測モデルを合成する合成ルールを設定する合成部と、を備える。
 本発明の一態様のモデル設定方法は、通信機器の通信品質を予測する予測モデルを設定するモデル設定方法であって、前記通信機器に関する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、前記通信機器の通信品質を予測する複数の予測モデルを生成するステップと、生成された各前記予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択するステップと、選択された複数の予測モデルを合成する合成ルールを設定するステップと、を備える。
 本発明の一態様は、上記モデル設定装置としてコンピュータを機能させるためのモデル設定プログラムである。
 本発明によれば、高精度な通信品質の予測が可能になる。
図1は、実施形態に係るモデル設定システムの構成を示すブロック図である。 図2Aは、各予測モデルによる予測結果と、R2スコアの関係を示すグラフである。 図2Bは、各予測モデルによる予測結果と、MAPE[%]の関係を示すグラフである。 図3は、実施形態に係るモデル設定装置の処理手順を示すフローチャートである。 図4は、実施形態に係るモデル設定装置の処理の流れを示す説明図である。 図5は、各カテゴリの予測モデルによる予測結果のR2スコア及び優先順位を示す説明図である。 図6は、予測モデルで予測した通信品質と実際の通信品質との絶対誤差[bps]と、累積分布関数(CDF)との関係を示すグラフである。 図7は、本実施形態のハードウェア構成を示すブロック図である。
 以下、図面を参照して実施形態について説明する。実施形態に係るモデル設定システムは、モデル設定装置1と通信機器2を含む。モデル設定装置1は、例えば携帯電話機などの通信機器2の通信品質を予測する際に、通信品質を予測するための予測モデルを複数設定し、これらのうち予測精度の高い予測モデルを複数選択する。更に、選択した複数の予測モデルを合成する際の合成ルールを決定する。合成ルールは、通信品質の予測精度がより高くなるように決定する。選択した予測モデル、及び合成ルールに従って通信機器の通信品質を予測することにより、高精度な通信品質の予測を可能にする。
 図1は、実施形態に係るモデル設定システムの構成を示すブロック図である。本実施形態では、モデル設定装置1に1つの通信機器2が接続される例について示すが、モデル設定装置1に接続される通信機器2は複数存在していてもよい。
 図1に示すように、モデル設定装置1は、通信部11と、複数の情報取得部12-1~12-N(以下、総称して「情報取得部12」と表記する)と、記憶部13と、生成部14と、モデル利用部15と、選択部16と、合成部17、を備えている。
 通信部11は、通信品質の予測対象となる通信機器2との間で無線通信を行い、通信機器2の現在の通信品質、通信機器2の現在位置を示すGPS情報などの通信機器関連情報を取得する。以下では、上記の通信機器関連情報を「補助情報」という。
 情報取得部12は、通信機器2の周辺に設置されたカメラ、センサ、及び情報収集機器(いずれも図示省略)などで収集された情報を取得する。具体的には、情報取得部12は、カメラで撮像された画像を取得する。情報取得部12は、通信機器2或いはその周辺に設置された赤外線センサ、超音波センサ、レーザレーダなどのセンサで検出される通信機器の方向、移動、回転に関する情報、及び、通信機器2の周囲に存在する人物、物体の情報を取得する。
 情報収集機器は、携帯電話機などの移動端末における位置登録エリア番号、電波移動端末における位置登録要否の判断に必要となる位置登録エリア番号、周辺セル情報とそのセルへ在圏するための電波品質などの情報、及び発信規制制御を行うための情報、などを収集する。
 以下では、情報取得部12が上記したカメラ、センサ、及び情報収集機器から取得した通信機器2に関する情報を総称して「周辺環境情報」という。
 記憶部13は、通信部11で受信された補助情報、及び、各情報取得部12で取得された周辺環境情報を、複数のカテゴリに分類して記憶する。「カテゴリ」とは、通信機器2の通信品質を推定するためのモデルを生成する際の分類項目である。カテゴリは、例えば通信機器2の位置を示すGPS情報、通信品質、或いは、通信機器2の周囲に存在する物体、人物の位置座標、バウンディングボックス座標、骨格座標などである。周辺環境情報は、通信機器2の周辺に存在する物体のバウンディングボックス座標、及び通信機器2の周辺に存在する人物の骨格座標の少なくとも一方を含んでいる。記憶部13は、周辺環境情報及び通信機器関連情報を複数のカテゴリに分類して記憶する。
 骨格座標とは、例えば右手首、左手首、右膝、左肘などの人体の部位の位置座標、速度情報、加速度情報である。
 生成部14は、記憶部13に記憶されている各カテゴリの補助情報及び周辺環境情報に基づいて、学習モデルに入力するデータベースを生成する。生成部14は、生成したデータベースに基づいて機械学習を実施し、各カテゴリの、通信機器2の通信品質との関係をモデル化した予測モデルを生成する。また、新規に周辺環境情報または補助情報が得られた際には、必要に応じて再度機械学習を実施することにより、予測モデルを更新する。即ち、生成部14は、通信機器2に関する通信機器関連情報、及び通信機器2の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、通信機器2の通信品質を予測する複数の予測モデルを生成する。
 モデル利用部15は、生成部14で生成された各カテゴリの予測モデルを取得し、各予測モデルを利用することにより、通信機器2の通信品質を予測する。モデル利用部15は、各予測モデルで予測した通信品質に基づいて、各予測モデルの優先順位を設定する。
 優先順位は、学習時の平均絶対誤差やR2スコアなどに基づいて設定することができる。或いは、手動により優先順位を設定することもできる。図5は、予測モデルを「位置座標」、「位置座標+バウンディングボックス座標」、「バウンディングボックス座標」としたときのR2スコア、及び優先順位を示す説明図である。図5に示すように、カテゴリが「位置座標」の予測モデルを使用することにより、R2スコアが最も高くなっている。従って、「位置座標」、「位置座標+バウンディングボックス座標」、「バウンディングボックス座標」の順に優先順位が設定される。なお、R2スコアは後述する(2)式により算出することができる。
 選択部16は、モデル利用部15で設定された各カテゴリの予測モデルの優先順位を参照し、各カテゴリの予測モデルのうち、優先順位が上位である複数の予測モデルを選択する。選択した予測モデルの情報を合成部17に出力する。即ち、選択部16は、生成部14で生成された各予測モデルによる通信品質の予測結果に基づいて、各カテゴリの予測モデルに優先順位を設定し、優先順位が上位である所定数の予測モデルを選択する。
 合成部17は、選択部16で選択された各予測モデルを参照し、複数の予測モデルを合成する合成ルールを設定する。
 以下、具体的な合成ルールの設定方法について説明する。周辺環境情報である「バウンディングボックス座標」と、補助情報である「通信品質」及び「通信端末のGPS情報」の3つのカテゴリについて設定されている予測モデルの合成ルールの例について説明する。具体的な合成ルールとして、以下に示す「信頼度により選択する方法」、「信頼度の加重平均により選択する方法」を採用することができる。
 (信頼度により選択する方法)
 この合成ルールでは、選択部16で選択された複数の予測モデルの信頼度、及び通信品質の予測値を取得し、信頼度が最も高い予測モデルにおける通信品質の予測値を採用する。「信頼度」とは、後述する「R2スコア」、或いは「MAPE[%]」で得られる予測モデルの信頼性を示す指標である。具体的には、「バウンディングボックス座標」、「通信品質」、「通信端末のGPS情報」の各カテゴリにおける予測モデルの信頼度をそれぞれR1、R2、R3とし、通信品質の予測値をそれぞれP1、P2、P3とする。信頼度R1が最も高い場合には、バウンディングボックス座標の予測モデルによる予測値P1を通信品質として出力する。
 即ち、合成部17は、選択部16で選択された複数の予測モデルの信頼度を取得し、最も信頼度の高い予測結果が得られる予測モデルの出力を通信品質の予測値とする合成ルールを設定する。
 (信頼度の加重平均により選択する方法)
 この合成ルールでは、選択部16で選択された複数の予測モデルの信頼度、及び通信品質の予測値を取得し、これらを用いて加重平均を算出する。算出した加重平均を通信品質として出力する。
 具体的には、「バウンディングボックス座標」、「通信品質」、「通信端末のGPS情報」の各カテゴリにおける予測モデルの信頼度をそれぞれR1、R2、R3とし、通信品質の予測値をそれぞれP1、P2、P3とする。
 3つの予測モデルを用いた通信品質の加重平均は、下記(1)式で示すことができる。
 加重平均=(R1*P1+R2*P2+R3*P3)/(R1+R2+R3)
                           …(1)
 そして、上記(1)式で算出される加重平均の数値を、通信品質として出力する。
 即ち、合成部17は、選択部16で選択された複数の予測モデルの信頼度を取得し、各予測モデルによる通信品質の予測結果と信頼度との加重平均を算出し、この加重平均を通信品質の予測値とする合成ルールを設定する。
 次に、上記した「信頼度により選択する方法」、「信頼度の加重平均により選択する方法」を採用した場合と、採用しない場合の、推定精度の比較について説明する。
 図2A、図2Bは、あるロボットが動いているときに、このロボットの無線通信品質(スループット)を予測するモデルを生成し、各モデルを評価した結果を示すグラフである。図2Aは、「R2スコア」で評価した場合、図2BはMAPE[%]で評価した場合のグラフを示している。
 ロボットは、AMCL(Adaptive MonteCarlo Localization)のアルゴリズムにより自己位置を推定している。自己位置の推定により「位置座標(xyと表記)」を取得している。また、ロボットの周囲に設置した1台のカメラから当該ロボットを撮影し、「バウンディングボックス座標(「cam0」と表記)」を取得している。
 図2Aは、「位置情報」、「バウンディングボックス座標」、「位置座標とバウンディングボックス座標(xycam0と表記)」により生成された予測モデルのR2スコア、及び、「位置座標」、「バウンディングボックス座標」のモデルを前述した信頼度選択、信頼度加重平均により推定した結果をR2スコアで評価した結果を示すグラフである。
 R2スコアは、下記(2)式で算出され、「1」に近いほど高精度に推定ができていることを示す。
 図2Aに示すグラフから理解されるように、「x,y」、「cam0」、「xycam0」の数値と対比して、「信頼度選択」、及び「信頼度加重平均」のR2スコアは、「1」に近づいており、推定精度が高いことが理解される。
 また、図2Bは、「位置情報(xyと表記)」、「バウンディングボックス座標(cam0と表記)」、「位置座標とバウンディングボックス座標(xycam0と表記)」により生成された予測モデルのMAPE[%]、及び、「位置座標」、「バウンディングボックス座標」のモデルを前述した信頼度選択、信頼度加重平均により推定した結果をMAPE[%]で評価した結果を示すグラフである。
 MAPE[%]は、下記(3)式で算出され、数値が小さいほど高精度に推定ができていることを示す。
 図2Bに示すグラフから理解されるように、「x,y」、「cam0」、「xycam0」の数値と対比して、「信頼度選択」、及び「信頼度加重平均」のMAPE[%]は、より小さい数値となっており、推定精度が高いことが理解される。
 即ち、各カテゴリの予測モデルのR2スコア及びMAPE[%]の結果から、信頼度選択、信頼度加重平均を採用することにより、通信品質を高精度に推定できることが判る。また、「xy」に「cam0」の情報を付与した「xycam0」で推定した結果は、「xy」のみの推定結果より悪いという結果が得られ、単純にデータを多くすればよい結果が得られるとは限らないことが判る。
 本実施形態では、選択された複数の予測モデルに対して、適切に合成ルールを設定することにより、通信品質の推定精度を高める。なお、図2A、図2Bに示した例では、「信頼度選択」と「信頼度加重平均」による2つの合成ルールについて説明したが、合成ルールの設定はこれらに限定されるものではなく、その他の合成ルールを採用してもよい。
 次に、上記のように構成された本実施形態に係るモデル設定装置1の処理手順について、図3に示すフローチャート、及び図4に示すフロー図を参照して説明する。
 本実施形態に係るモデル設定装置1による処理は、図3のステップS11、S12に示す「準備工程」、ステップS13、S14に示す「データ取得工程」、及びステップS15~S17に示す「データ処理工程」の3段階に大別される。
 初めに準備工程として図3のステップS11において、生成部14は、各カテゴリの将来の通信品質の予測モデルを生成する。具体例として、図4のC1に示すように、通信機器2の位置、向き、通信機器2を操作する人物の姿勢、速度、パーツ状態、及びバウンディングボックス座標情報、骨格座標情報を取得する。また、図4のC2に示すように、通信部11により通信機器2の通信品質、GPS情報を取得する。図4のC3に示すように、C1で取得した周辺環境情報と、C2で取得した補助情報に基づいて、機械学習を実施して、骨格モデル、GPSモデルなどの複数のカテゴリに対する通信品質の予測モデルを生成する。
 図3のステップS12においてモデル利用部15は、生成部14でカテゴリごとに生成された予測モデルの信頼度を算出し、信頼度に応じて優先順位を設定する。選択部16は優先順位の高い所定数の予測モデルを選択して、合成部17に出力する。合成部17は、選択された複数の予測モデルに基づいて、前述した「信頼度により選択する方法」、「信頼度の加重平均により選択する方法」などの合成ルールを設定する。
 次に、データ取得行程として図3のステップS13において、情報取得部12は、通信機器2の周辺環境情報を取得する。前述したように、周辺環境情報は、例えば、バウンディングボックス座標、通信機器2の周囲に存在する人物、物体の情報などである。
 ステップS14において通信部11は、通信機器2との間での通信により補助情報を取得し、記憶部13に記憶する。前述したように、補助情報とは、通信機器2の通信品質、GPS情報などである。
 次に、データ処理としてステップS15において記憶部13は、ステップS13の処理で取得された周辺環境情報、及びステップS14の処理で取得された補助情報をカテゴリごとに分類し記憶する。
 ステップS16においてモデル利用部15は、カテゴリごとに分類された周辺環境情報及び補助情報に基づき、生成部14で生成された予測モデルの優先順位を設定する。例えば、図5にて示したように「位置座標」、「位置座標+バウンディングボックス座標」、「バウンディングボックス座標」、のそれぞれのカテゴリについての予測モデルに対してそれぞれR2スコアを算出する。R2スコアがそれぞれ「0.8959」、「0.8952」、「0.8704」、である場合には、「位置座標」、「位置座標+バウンディングボックス座標」、「バウンディングボックス座標」の順に優先順位を設定する。
 選択部16は、優先順位が上位の所定数の予測モデルを選択する。更に、合成部17は、前述した方法により合成ルールを設定する。
 ステップS17において、合成部17で生成された合成ルールに基づいて、予測部(図示省略)が通信品質を予測する。図4のC4に示すように、予測結果を外部機器に出力する。
 図6は、予測モデルで予測した通信品質と実際の通信品質の絶対誤差[bps]と、累積分布関数(CDF)との関係を示すグラフである。図6において、横軸は絶対誤差[bps]を示し、縦軸は累積分布関数(CDF)を示している。
 例えば、横軸で5,000,000[bps]に対応するグラフ上の点は、縦軸でおおよそ「0.75」である。これは推定結果の75%は5,000,000[bps]以下の推定誤差であることを示している。従って、横軸のある数値に対して、縦軸の値が大きいほど、精度よく推定できていることを示している。
 図6に示すグラフから、精度面では曲線Q1に示す「位置/向き/速度情報」、曲線Q2に示す「位置/向き/速度+カメラ5台(5台分のバウンディングボックス座標)」、曲線Q3に示す「カメラ5台(5台分のバウンディングボックス座標)」の順で精度が高いことが理解される。
 曲線Q1は曲線Q2よりも高い数値を示していることから、「位置/向き/速度情報」に、「5台分のバウンディングボックス座標」を追加しても精度は高くなっていない。即ち、入力データを増加させるほど精度が高くなるとは限らないといえる。
 そのため、通信部11で取得した補助情報、及び各情報取得部12で取得した周辺環境情報のすべてを用いて通信品質を予測するのではなく、カテゴリごとに予測モデルを生成する。生成した予測モデルから優先順位の高い複数の予測モデルを選択し、更に選択された予測モデルを用いて合成ルールを設定することにより、高精度な品質予測が可能になる。また、多くの周辺環境情報、補助情報を収集できない場合であっても高精度な品質予測が可能になるという利点がある。
 このように、本実施形態に係るモデル設定装置1は、通信機器2の通信品質を予測する予測モデルを設定するモデル設定装置1であって、通信機器2に関する通信機器関連情報、及び通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、通信機器2の通信品質を予測する複数の予測モデルを生成する生成部14と、生成部14で生成された各予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択する選択部16と、選択部16で選択された複数の予測モデルを合成する合成ルールを設定する合成部17を備える。
 本実施形態では、通信機器2の位置情報、画像情報のみならず、各種の周辺環境情報、及び補助情報に基づいて、通信機器の通信品質を予測するための予測モデル及び合成ルールを設定するので、高精度な通信品質の予測が可能になる。
 本実施形態では、環境変動などの要因により、一部の周辺環境情報の収集が困難、または不確かさが増大した場合であっても、限られた周辺環境情報に対応する予測モデルから最適なモデルを選択することで、将来の通信品質をより高精度に予測することが可能になる。
 モデル利用部15は、各カテゴリの予測モデルに対して優先順位を設定し、選択部16は、優先順位が上位である所定数の予測モデルを選択するので、通信品質の予測精度をより高めることができる。
 合成部17は、選択部16で選択された複数の予測モデルの信頼度を取得し、最も信頼度の高い予測結果が得られる予測モデルの出力を通信品質の予測値とする合成ルールを設定するので、通信品質の予測精度をより高めることができる。
 合成部17は、選択部16で選択された複数の予測モデルの信頼度を取得し、各予測モデルによる通信品質の予測結果と信頼度との加重平均を算出し、この加重平均を通信品質の予測値とする合成ルールを設定するので、通信品質の予測精度をより高めることができる。
 情報取得部12は、周辺環境情報として、通信機器2の周辺に存在する物体のバウンディングボックス座標、及び通信機器2の周辺に存在する人物の骨格座標、の少なくとも一方を採用するので、通信品質の予測精度をより高めることができる。
 上記説明した本実施形態のモデル設定装置1には、図7に示すように例えば、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:HardDisk Drive、SSD:SolidState Drive)と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムを用いることができる。メモリ902およびストレージ903は、記憶装置である。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、モデル設定装置1の各機能が実現される。
 なお、モデル設定装置1は、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また、モデル設定装置1は、コンピュータに実装される仮想マシンであっても良い。
 なお、モデル設定装置1用のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。
 なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 1 モデル設定装置
 2 通信機器
 11 通信部
 12(12-1~12-N) 情報取得部
 13 記憶部
 14 生成部
 15 モデル利用部
 16 選択部
 17 合成部

Claims (8)

  1.  通信機器の通信品質を予測する予測モデルを設定するモデル設定装置であって、
     前記通信機器に関する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、前記通信機器の通信品質を予測する複数の予測モデルを生成する生成部と、
     前記生成部で生成された各予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択する選択部と、
     前記選択部で選択された複数の予測モデルを合成する合成ルールを設定する合成部と、
     を備えたモデル設定装置。
  2.  前記選択部は、前記生成部で生成された各予測モデルに設定されている優先順位に基づき、優先順位が上位である所定数の予測モデルを選択する
     請求項1に記載のモデル設定装置。
  3.  前記合成部は、前記選択部で選択された複数の予測モデルの信頼度を取得し、最も信頼度の高い予測結果が得られる予測モデルの出力を通信品質の予測値とする合成ルールを設定する請求項1または2に記載のモデル設定装置。
  4.  前記合成部は、前記選択部で選択された複数の予測モデルの信頼度を取得し、各予測モデルによる通信品質の予測結果と信頼度との加重平均を算出し、この加重平均を通信品質の予測値とする合成ルールを設定する請求項1または2に記載のモデル設定装置。
  5.  前記周辺環境情報は、前記通信機器の周辺に存在する物体のバウンディングボックス座標、及び前記通信機器の周辺に存在する人物の骨格座標、の少なくとも一方を含む
     請求項1~4のいずれか1項に記載のモデル設定装置。
  6.  通信機器と、前記通信機器の通信品質を予測する予測モデルを設定するモデル設定装置とを備えたモデル設定システムであって、
     前記モデル設定装置は、
     前記通信機器に関する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、前記通信機器の通信品質を予測する複数の予測モデルを生成する生成部と、
     前記生成部で生成された各予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択する選択部と、
     前記選択部で選択された複数の予測モデルを合成する合成ルールを設定する合成部と、
     を備えたモデル設定システム。
  7.  通信機器の通信品質を予測する予測モデルを設定するモデル設定方法であって、
     前記通信機器に関する通信機器関連情報、及び前記通信機器の周辺環境に関する周辺環境情報の少なくとも一方を取得し、取得した情報に基づいて、前記通信機器の通信品質を予測する複数の予測モデルを生成するステップと、
     生成された各前記予測モデルによる通信品質の予測結果に基づいて、通信品質の予測に使用する複数の予測モデルを選択するステップと、
     選択された複数の予測モデルを合成する合成ルールを設定するステップと、
     を備えたモデル設定方法。
  8.  請求項1に記載のモデル設定装置としてコンピュータを機能させるモデル設定プログラム。
PCT/JP2022/005390 2022-02-10 2022-02-10 モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム WO2023152879A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005390 WO2023152879A1 (ja) 2022-02-10 2022-02-10 モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005390 WO2023152879A1 (ja) 2022-02-10 2022-02-10 モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム

Publications (1)

Publication Number Publication Date
WO2023152879A1 true WO2023152879A1 (ja) 2023-08-17

Family

ID=87563852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005390 WO2023152879A1 (ja) 2022-02-10 2022-02-10 モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム

Country Status (1)

Country Link
WO (1) WO2023152879A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3667332B2 (ja) * 2002-11-21 2005-07-06 松下電器産業株式会社 標準モデル作成装置及び標準モデル作成方法
WO2016047118A1 (ja) * 2014-09-26 2016-03-31 日本電気株式会社 モデル評価装置、モデル評価方法、及び、プログラム記録媒体
US20190207672A1 (en) * 2017-12-29 2019-07-04 Hughes Network Systems, Llc Machine learning models for adjusting communication parameters
JP2021034056A (ja) * 2019-08-26 2021-03-01 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 医療データの自動化された検証
WO2021038961A1 (ja) * 2019-08-30 2021-03-04 ソニー株式会社 判定装置、判定方法および判定プログラム
JP2021067469A (ja) * 2019-10-17 2021-04-30 清水建設株式会社 距離推定装置および方法
JP2021077129A (ja) * 2019-11-11 2021-05-20 株式会社日立製作所 情報処理システム、モデルの制御方法及び記憶媒体
WO2021171341A1 (ja) * 2020-02-25 2021-09-02 日本電信電話株式会社 通信品質を予測するシステム、装置、方法及びプログラム
US20210297171A1 (en) * 2020-03-20 2021-09-23 Volkswagen Aktiengesellschaft Method, apparatus and computer program for predicting a future quality of service of a wireless communication link
JP2021149640A (ja) * 2020-03-19 2021-09-27 日産自動車株式会社 データ分類装置、データ分類方法、およびプログラム
WO2021205959A1 (ja) * 2020-04-10 2021-10-14 ソニーグループ株式会社 情報処理装置、サーバー、情報処理システム及び情報処理方法
JP2022003600A (ja) * 2020-06-23 2022-01-11 富士フイルム株式会社 信号処理装置、磁気テープカートリッジ、磁気テープ読取装置、信号処理装置の処理方法、磁気テープ読取装置の動作方法、及びプログラム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3667332B2 (ja) * 2002-11-21 2005-07-06 松下電器産業株式会社 標準モデル作成装置及び標準モデル作成方法
WO2016047118A1 (ja) * 2014-09-26 2016-03-31 日本電気株式会社 モデル評価装置、モデル評価方法、及び、プログラム記録媒体
US20190207672A1 (en) * 2017-12-29 2019-07-04 Hughes Network Systems, Llc Machine learning models for adjusting communication parameters
JP2021034056A (ja) * 2019-08-26 2021-03-01 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 医療データの自動化された検証
WO2021038961A1 (ja) * 2019-08-30 2021-03-04 ソニー株式会社 判定装置、判定方法および判定プログラム
JP2021067469A (ja) * 2019-10-17 2021-04-30 清水建設株式会社 距離推定装置および方法
JP2021077129A (ja) * 2019-11-11 2021-05-20 株式会社日立製作所 情報処理システム、モデルの制御方法及び記憶媒体
WO2021171341A1 (ja) * 2020-02-25 2021-09-02 日本電信電話株式会社 通信品質を予測するシステム、装置、方法及びプログラム
JP2021149640A (ja) * 2020-03-19 2021-09-27 日産自動車株式会社 データ分類装置、データ分類方法、およびプログラム
US20210297171A1 (en) * 2020-03-20 2021-09-23 Volkswagen Aktiengesellschaft Method, apparatus and computer program for predicting a future quality of service of a wireless communication link
WO2021205959A1 (ja) * 2020-04-10 2021-10-14 ソニーグループ株式会社 情報処理装置、サーバー、情報処理システム及び情報処理方法
JP2022003600A (ja) * 2020-06-23 2022-01-11 富士フイルム株式会社 信号処理装置、磁気テープカートリッジ、磁気テープ読取装置、信号処理装置の処理方法、磁気テープ読取装置の動作方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAYUKI NISHIO; HIRONAO OKAMOTO; KOTA NAKASHIMA; YUSUKE KODA; KOJI YAMAMOTO; MASAHIRO MORIKURA; YUSUKE ASAI; RYO MIYATAKE: "Proactive Received Power Prediction Using Machine Learning and Depth Images for mmWave Networks", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 26 March 2018 (2018-03-26), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081573737, DOI: 10.1109/JSAC.2019.2933763 *

Similar Documents

Publication Publication Date Title
Zhang et al. Wifi-based indoor robot positioning using deep fuzzy forests
Atia et al. Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks
Wu et al. Location estimation via support vector regression
US20220210622A1 (en) Communication system and base station
US20160035098A1 (en) State estimation apparatus, state estimation method, and integrated circuit
CN110149588B (zh) 确定无人机基站的位置的方法、装置、设备及存储介质
CN112749726A (zh) 目标检测模型的训练方法、装置、计算机设备和存储介质
WO2021262837A1 (en) Systems and methods for fine adjustment of roof models
US20090112517A1 (en) Method And Apparatus For Determining Accuracy Of The Estimated Location For A Target In A Wireless System
JP5906379B2 (ja) 移動体位置推定装置、移動体位置推定方法、及び、移動体位置推定プログラム
Evmorfos et al. Reinforcement learning for motion policies in mobile relaying networks
WO2023152879A1 (ja) モデル設定装置、モデル設定システム、モデル設定方法、及びモデル設定プログラム
Dunn et al. Parisian camera placement for vision metrology
WO2023152877A1 (ja) 通信品質予測装置、通信品質予測システム、通信品質予測方法、及び通信品質予測プログラム
JP2013197704A (ja) トラフィック量予測処理装置およびコンピュータプログラム
Morye et al. Optimized imaging and target tracking within a distributed camera network
JP7258732B2 (ja) 通信種別と対象種別との対応関係に基づき端末を同定する装置、プログラム及び方法
CN115104126A (zh) 图像处理方法、设备、装置和介质
CN111654808A (zh) 一种更新指纹数据库的方法及系统、wifi定位方法及系统
Oka et al. Spatial feature-based prioritization for transmission of point cloud data in 3D-image sensor networks
JP7238972B2 (ja) 位置推定装置、位置推定方法及びプログラム
JP2022039617A (ja) 時系列予測システム、時系列予測方法及びコンピュータプログラム
JP5618566B2 (ja) 追尾装置
Kamal et al. An overview of distributed tracking and control in camera networks
WO2020124091A1 (en) Automatic fine-grained radio map construction and adaptation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925900

Country of ref document: EP

Kind code of ref document: A1