WO2023151599A1 - 光学组件、背光模组以及显示装置 - Google Patents

光学组件、背光模组以及显示装置 Download PDF

Info

Publication number
WO2023151599A1
WO2023151599A1 PCT/CN2023/075041 CN2023075041W WO2023151599A1 WO 2023151599 A1 WO2023151599 A1 WO 2023151599A1 CN 2023075041 W CN2023075041 W CN 2023075041W WO 2023151599 A1 WO2023151599 A1 WO 2023151599A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
guide plate
area
optical assembly
Prior art date
Application number
PCT/CN2023/075041
Other languages
English (en)
French (fr)
Inventor
朋朝明
朱寿天
邹文聪
陈伟雄
张辉
周辉
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Publication of WO2023151599A1 publication Critical patent/WO2023151599A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present application relates to the technical field of liquid crystal display, in particular to an optical component, a backlight module and a display device.
  • liquid crystal display devices are mainly divided into side-in type and direct-down type according to the position of the light source.
  • the picture is uniform, and the light source array of the direct-type display device is arranged at the bottom of the liquid crystal glass, so that the overall brightness of the direct-type display device can be improved.
  • the brightness of the corresponding position of the light source is inconsistent with the brightness of the position corresponding to the non-light source, resulting in uneven overall picture of the direct-lit display device.
  • the main purpose of the present application is to propose an optical component aimed at solving the problems of low overall brightness of a side-lit display device and uneven overall picture of a direct-lit display device.
  • an optical assembly proposed by the present application includes:
  • a light guide plate, the bottom of the light guide plate is provided with at least one avoidance hole penetrating to the top;
  • At least one first light source the first light source is arranged at the bottom of the light guide plate, and each of the first light sources is arranged opposite to one of the escape holes;
  • At least one second light source is provided at the side edge of the light guide plate, and the light emitting surface of the second light source is set toward the side edge of the light guide plate.
  • a light distribution structure is formed in the light guide plate.
  • the multiple light distribution structures are arranged at intervals.
  • the cross-sectional area of the avoidance hole is larger than the cross-sectional area of the first light source.
  • At least one light splitting structure is disposed on the top of the light guide plate, and each of the first light sources is disposed opposite to one of the light splitting structures.
  • the bottom of the light splitting structure has grooves, each of the grooves is arranged opposite to one of the avoidance holes, and the cross-sectional area of the grooves is smaller than the cross-sectional area of the avoidance holes.
  • the cross-sectional area is larger than the cross-sectional area of the first light source.
  • the top of the light splitting structure has an arc-shaped area recessed toward the direction of the first light source for reflecting the light emitted by the first light source.
  • the top of the light splitting structure has an arc-shaped area protruding away from the first light source for refracting the light emitted by the first light source.
  • This application also proposes a backlight module, including:
  • the middle frame is arranged around the backboard, and forms an installation groove surrounded by the backboard;
  • the optical component is arranged in the installation groove, and the light-emitting side of the optical component is arranged toward the notch of the installation groove;
  • the diffusion plate is arranged in the installation groove, and is located on the side of the optical component facing away from the bottom of the installation groove;
  • the optical components include:
  • a light guide plate, the bottom of the light guide plate is provided with at least one avoidance hole penetrating to the top;
  • At least one first light source the first light source is arranged at the bottom of the light guide plate, and each of the first light sources is arranged opposite to one of the escape holes;
  • At least one second light source is provided at the side edge of the light guide plate, and the light emitting surface of the second light source is set toward the side edge of the light guide plate.
  • At least one light splitting structure is provided on the top of the light guide plate, and each of the first light sources is arranged opposite to one of the light splitting structures;
  • the distance between the plates is L;
  • the top of the light splitting structure has an arc-shaped area concavely set toward the direction of the first light source for reflecting the light emitted by the first light source;
  • the top of the light splitting structure has an arc-shaped area protruding away from the first light source for refracting the light emitted by the first light source.
  • the present application also proposes a display device, which includes a display panel and the above-mentioned backlight module, and the display panel is arranged on a side of the diffusion plate facing away from the optical component.
  • At least one first light source and at least one second light source are respectively arranged on the bottom and side edges of the light guide plate; a corresponding number of first light sources can be arranged on the bottom of the light guide plate without being restricted by space. limit, so as to ensure the overall brightness of the optical components, thereby ensuring the overall brightness of the display device; at the same time, the light emitted by the second light source can enter the light guide plate through the side edge of the light guide plate, and the light enters the light guide plate and diffuses to various angles. Then, it is emitted from the top of the light guide plate, which can effectively ensure the uniformity of the light emitted by the optical components, thereby effectively ensuring the uniformity of the overall picture of the display device. Therefore, the technical solution of the present application solves the problems that the overall brightness of the side-lit display device is not high and the overall picture of the direct-lit display device is uneven.
  • Fig. 1 is an exploded view of an embodiment of the optical assembly of the present application
  • Fig. 2 is an exploded view of an embodiment of the optical assembly of the present application
  • Fig. 3 is a partial structural exploded view of an embodiment of the optical assembly of the present application.
  • FIG. 4 is a schematic structural view of a light guide plate in an embodiment of an optical component of the present application.
  • FIG. 5 is a schematic structural diagram of a light guide plate in an embodiment of an optical component of the present application.
  • FIG. 6 is an exploded view of an embodiment of the backlight module of the present application.
  • FIG. 7 is a cross-sectional view of an embodiment of the backlight module of the present application.
  • FIG. 8 is an exploded view of an embodiment of a display device of the present application.
  • label name label name 1000 display device 13 first light source 100
  • Backlight module 14 second light source 10 optical components 15
  • First light source circuit board 11 light guide plate 16
  • Second light source circuit board 111 Light distribution structure 17
  • Backplane 12 Light splitting structure 30
  • Middle frame 121 light emitting surface 40
  • Diffusion plate 1211 The first light area 50
  • the directional indication is only used to explain the relative positional relationship, movement conditions, etc. between the components in a specific posture. If the specific posture changes , then the directional indication changes accordingly.
  • the present application proposes an optical assembly 10 aimed at solving the problems of low overall brightness of the side-type display device 1000 and uneven overall picture of the direct-type display device 1000 .
  • optical assembly 10 The specific structure of the optical assembly 10 of the present application will be described below:
  • the optical assembly 10 includes a light guide plate 11, at least one first light source 13 and at least one second light source 14; the bottom of the light guide plate 11 There is at least one escape hole 112 through the top; the first light source 13 is arranged at the bottom of the light guide plate 11, and each of the first light sources 13 is arranged opposite to one of the avoidance holes 112; The second light source 14 is disposed on the side edge of the light guide plate 11 , and the light-emitting surface of the second light source 14 is disposed toward the side edge of the light guide plate 11 .
  • the optical assembly 10 of the present application at least one first light source 13 and at least one second light source 14 are respectively provided on the bottom and side edges of the light guide plate 11;
  • the first light source 13 is not limited by the space, so as to ensure the overall brightness of the optical assembly 10, thereby ensuring the overall brightness of the display device 1000;
  • the light emitted by the second light source 14 can enter the light guide plate 11 through the side edge In the light plate 11, the light enters the light guide plate 11 and diffuses to various angles, and then emits from the top of the light guide plate 11, which can effectively ensure the uniformity of the light emitted by the optical component 10, and thus effectively ensure the uniformity of the overall picture of the display device 1000 . Therefore, the technical solution of the present application solves the problems that the overall brightness of the side-type display device 1000 is not high and the overall picture of the direct-type display device 1000 is uneven.
  • each first light source 13 By setting the light-emitting surface of each first light source 13 toward an escape hole 112, it is ensured that most of the light emitted by each first light source 13 can pass through an avoidance hole 112, while other light rays By avoiding the hole wall of the hole 112 and entering the light guide plate 11 , the light energy of the first light source 13 can be fully utilized to reduce light energy loss.
  • At least one first light source 13 and at least one second light source 14 are respectively arranged on the bottom and side edges of the light guide plate 11 to form the optical assembly 10, so that the optical assembly 10 of the present application is equivalent to Combining the original side-type optical structure with the original direct-type optical structure overcomes the problems of low overall brightness of the side-type display device 1000 and uneven overall picture of the direct-type display device 1000 .
  • the preparation process of the light guide plate 11 is to use an optical-grade acrylic or polycarbonate sheet, and then use a high-tech material with a very high refractive index that does not absorb light. Grid engraving and UV screen printing technology to print light guide points.
  • the optical assembly 10 of the present application also includes a first light source circuit board 15 and a second light source circuit board 16.
  • the first light source circuit board 15 is arranged at the bottom of the light guide plate 11 and is electrically connected to the first light source 13.
  • the second light source circuit board 15 The circuit board 16 is disposed on a side of the second light source 14 facing away from the light guide plate 11 , and is electrically connected to the second light source 14 .
  • the optical assembly 10 also includes a heat sink 17, and the heat sink 17 is partially arranged on the side of the second light source circuit board 16 facing away from the second light source 14, so as to dissipate heat from the second light source 14 and the second light source circuit board 16, and dissipate heat Part 17 is provided on the side of the first light source circuit board 15 facing away from the light guide plate 11 to dissipate heat along with the first light source 13 and the first light source circuit board 15 .
  • the cross-sectional area of the avoidance hole 112 is larger than the cross-sectional area of the first light source 13; Among the light rays emitted by each first light source 13 , as much light as possible can be emitted directly through a avoidance hole 112 , so as to fully utilize the light energy of the first light source 13 and reduce light energy loss.
  • a light distribution structure 111 is formed in the light guide plate 11; in this way, part of the light entering the light guide plate 11 can avoid the light distribution structure 111. 111 directly pass through the light guide plate 11, and part of the light can be reflected or refracted on the critical surface between the light distribution structure 111 and the light guide plate 11, and can be reflected or refracted multiple times inside the light guide plate 11 before passing through the light guide plate 11.
  • Light is emitted from the top of the light plate 11 to redistribute the light, thereby increasing the light emission angle of the light guide plate 11 to further improve the light emission uniformity of the optical component 10 , thereby further improving the overall light emission uniformity of the display device 1000 .
  • the light guide plate 11 can use physical or chemical methods to form air bubbles in the injection molding process, thereby forming the light distribution structure 111 inside the light guide plate 11.
  • the light distribution structure 111 at this time, the light distribution structure 111 can be a hollow structure; of course, in other embodiments, the light distribution structure 111 can also be a structure such as ink black dots.
  • the multiple light distribution structures 111 are arranged at intervals; in this way, when light enters the light guide plate After 11, more light can be reflected or refracted through the critical surface between the light distribution structure 111 and the light guide plate 11, and the coefficient of light reflection or refraction in the light guide plate 11 can be increased, thereby improving the reflectivity and The refractive index is used to further increase the light exit angle of the light guide plate 11 .
  • the volume of the light distribution structure 111 accounts for 8% to 10% of the volume of the light guide plate 11; due to the volume of the light distribution structure 111 If the volume occupied by the light guide plate 11 is too small, it is impossible to ensure that most of the light entering the light guide plate 11 can pass through the critical surface of the light distribution structure 111 and the light guide plate 11 for secondary light splitting, so that the light output angle of the light guide plate 11 cannot be effectively increased; and When the volume of the light distribution structure 111 accounts for too much of the volume of the light guide plate 11, the self-supporting strength of the light guide plate 11 is insufficient, and it is easy to deform and affect the use effect; Setting it between 8% and 10% can effectively avoid the above problems.
  • the width of the light distribution structure 111 in the thickness direction of the light guide plate 11 is defined as M1, and the condition is satisfied: 0.05mm ⁇ M1 ⁇ 0.15mm; since the width of the light distribution structure 111 in the thickness direction of the light guide plate 11 is too small, on the one hand, it is not convenient to form the light distribution structure 111; on the other hand, most of the light entering the light guide plate 11 cannot be guaranteed Secondary light splitting can be performed through the critical surface between the light distribution structure 111 and the light guide plate 11; and when the width of the light distribution structure 111 in the thickness direction of the light guide plate 11 is too large, the light guide plate 11 is prone to deformation during transportation or use It may even break and affect the use effect; therefore, the above problems can be effectively avoided by setting the width of the light distribution structure 111 in the thickness direction of the light guide plate 11 between 0.05 mm and 0.15 mm.
  • the width of the light distribution structure 111 in the longitudinal direction of the light guide plate 11 is defined as M2, and the condition is satisfied: 0.1mm ⁇ M2 ⁇ Similarly, since the width of the light distribution structure 111 in the longitudinal direction of the light guide plate 11 is too small, on the one hand, it is not convenient to form the light distribution structure 111; on the other hand, it is impossible to ensure that most of the light entering the light guide plate 11 Secondary light splitting can be performed through the critical surface between the light distribution structure 111 and the light guide plate 11; and when the width of the light distribution structure 111 in the longitudinal direction of the light guide plate 11 is too large, the light guide plate 11 is prone to deformation during transportation or use It may even break and affect the use effect; therefore, by setting the width of the light distribution structure 111 in the length direction of the light guide plate 11 between 0.1mm ⁇ 0.3mm, the above problems can be effectively avoided.
  • the width of the light distribution structure 111 in the width direction of the light guide plate 11 is defined as M3, and the condition is satisfied: 0.1mm ⁇ M3 ⁇ Similarly, since the width of the light distribution structure 111 in the width direction of the light guide plate 11 is too small, on the one hand, it is not convenient to form the light distribution structure 111; on the other hand, it is impossible to ensure that most of the light entering the light guide plate 11 Secondary light splitting can be performed through the critical surface between the light distribution structure 111 and the light guide plate 11; and when the width of the light distribution structure 111 in the width direction of the light guide plate 11 is too large, the light guide plate 11 is prone to deformation during transportation or use It may even break and affect the use effect; therefore, by setting the width of the light distribution structure 111 in the width direction of the light guide plate 11 between 0.1mm ⁇ 0.3mm, the above problems can be effectively avoided.
  • the thickness of the light guide plate 11 is defined as H, and the condition is satisfied: 1mm ⁇ H ⁇ 3mm; since the thickness of the light guide plate 11 is too small, On the one hand, the light emitted by the second light source 14 cannot fully enter the light guide plate 11 from the side edge of the light guide plate 11; uniformity; and when the thickness of the light guide plate 11 is too large, the overall thickness of the optical assembly 10 is too large, which in turn causes the overall thickness of the display device 1000 to be too large, which is not conducive to miniaturization design; therefore, by making the light guide plate 11 The above problems can be effectively avoided by setting the thickness between 1 mm and 3 mm.
  • At least one light splitting structure 12 is provided on the top of the light guide plate 11 , and each of the first light sources 13 and one of the light splitting structures 12 relative settings.
  • the light emitted by the first light source 13 can enter the light splitting structure 12, and then reflect or refract the first light source through the light splitting structure 12
  • the light emitted by 13 splits the light twice through the light splitting structure 12, so as to expand the light emitting angle of the optical component 10, further ensure the uniformity of the light emitting from the optical component 10, and effectively improve the display effect of the display device 1000.
  • the light-splitting structure 12 is an optical lens capable of secondary light-splitting, and the material may be one of light-transmitting materials such as polyethylene terephthalate and polymethyl methacrylate.
  • the light splitting structure 12 can be integrally formed on the top of the light guide plate 11 , of course, it can also be glued on the top of the light guide plate 11 with optical glue.
  • the bottom of the light splitting structure has grooves, and each groove is arranged opposite to one of the avoidance holes, and the The cross-sectional area of the groove body is smaller than the cross-sectional area of the escape hole, and larger than the cross-sectional area of the first light source.
  • the light output angle of the structure 12 can further ensure the uniformity of the light output of the optical component 10 .
  • the top of the light splitting structure 12 has an arc-shaped area concaved toward the direction of the first light source 13 for reflecting the first light source 13 .
  • a light source 13 emits light.
  • the area of the light-splitting structure 12 is increased by making the top of the light-splitting structure 12 have a concave arc-shaped area facing the direction of the first light source 13, and the light emitted by the first light source 13 passes through the light-splitting structure.
  • the arc-shaped area on the top can be reflected in the arc-shaped area, so that the angle of the light emitted from this area can be increased, thereby further expanding the light-emitting angle of the optical assembly 10; in addition, the application of the optical assembly 10 of the present application In the backlight module 100, when the distance between the light guide plate 11 and the diffusion plate 40 is too small, it is easy to cause poor uniformity of light output from the backlight module 100, which in turn leads to poor uniformity of light output from the display device 1000.
  • the top has a concave arc-shaped area facing the direction of the first light source 13.
  • the quantity of the first light source 13 used can be reduced, thereby reducing the manufacturing cost.
  • the top of the light splitting structure has an arc-shaped area protruding away from the first light source for refracting the light emitted by the first light source. light.
  • the top of the light-splitting structure 12 similarly, compared with the planar arrangement, by making the top of the light-splitting structure 12 have an arc-shaped area protruding away from the first light source 13, the area of the light-splitting structure 12 is also increased, and the first light source 13 emits After the light passes through the arc-shaped area at the top of the light splitting structure 12, it can be refracted in the arc-shaped area, so that the angle of the light emitted from this area can be increased, thereby further expanding the light-emitting angle of the optical component 10; in addition, due to the second The light emitted by a light source 13 will be strong and concentrated on the front, and weak and scattered on the side, resulting in uneven light output from the optical component 10; based on this, by making the top of the light splitting structure 12 have a direction away from the first light source 13 A convex arc-shaped area, and the first light source 13 is opposite to the arc-shaped area.
  • the surface where the arc-shaped area is located may be a conical surface or a spherical surface and the like.
  • the top of the light-splitting structure 12 may also have a concave-convex arc-shaped area.
  • the top of the light-splitting structure 12 may also have a concave-convex arc-shaped area.
  • by making the top of the light-splitting structure 12 have an uneven arc-shaped area it will also increase The area of the light splitting structure 12 is limited. After the light emitted by the first light source 13 passes through the arc-shaped area at the top of the light-splitting structure 12, it can be reflected and refracted in the arc-shaped area, so that the angle of the light emitted from this area can be increased, and then The light output angle of the optical assembly 10 is further enlarged.
  • the light splitting structure 12 has a light exit surface 121, and the light exit surface 121 has a first light exit area 1211 and a second light exit area 1212 connected to each other, and the first light exit area 1211 surrounds the second light exit area 1212 is set and connected to the top of the light guide plate 11, the second light output area 1212 is an arc-shaped area, and the first light output area 1211 and the second light output area 1212 are both facing the side of the first light source 13
  • the light emitting surface is configured to receive and reflect or refract the light emitted by the first light source 13 .
  • the second light emitting area 1212 corresponds to a concave or convex arc-shaped area at the top of the light splitting structure.
  • the first light-emitting area 1211 includes a flat area and an arcuate area, the flat area is arranged around the second light-out area 1212 and connected to the second light-out area 1212, the arcuate area is arranged around the flat area, and is connected with the second light-out area 1212
  • the flat area is connected to the top of the light guide plate 11, so that among the light emitted by the first light source 13, the light reflected by the second light output area 1212 can directly pass through the flat area and reach the reflection sheet 50 at the bottom of the first light source 13, In order to reduce the energy consumption of light; and the light reaching the arc-shaped area can be refracted to ensure the brightness of the sides around the light splitting structure 12 , thereby effectively ensuring the uniformity of the light emitted by the optical component 10 .
  • the first light output area 1211 includes a flat area and an arc area
  • the arc area surrounds the second light output area 1212 and is connected to the second light output area 1212
  • the flat area surrounds the arc area
  • It is connected with the arc-shaped area and the top of the light guide plate 11, so that among the light emitted by the first light source 13, the light can pass through the flat area or the arc-shaped area of the first light-exiting area 1211 or the second light-exiting area 1212 to process the light. Diffuse well.
  • the orthographic projection of the second light output area 1212 on the preset projection plane covers the first light source 13 on the preset projection plane.
  • the preset projection plane is a plane where the bottom of the light guide plate 11 is located.
  • the orthographic projection of the second light-emitting area 1212 on the preset projection surface cover the orthographic projection of the first light source 13 on the preset projection surface, most of the light emitted by the first light source 13 The light reaches the second light exit area 1212 so as to effectively distribute the light through the second light exit area 1212 .
  • the present application also proposes a backlight module 100, which includes a backplane 20, a middle frame 30, a diffusion plate 40, an optical film, and the aforementioned optical assembly 10,
  • the specific structure of the optical assembly 10 is detailed in the foregoing embodiments. Since the backlight module 100 adopts all the technical solutions of the above-mentioned embodiments, it at least has all the beneficial effects brought by all the technical solutions of the above-mentioned embodiments, and will not be repeated here.
  • the middle frame 30 is arranged around the backplane 20, and forms an installation groove surrounded by the backplane 20;
  • the optical assembly 10 is arranged in the installation groove, and the light output of the optical assembly 10 The side is set toward the notch of the installation groove;
  • the diffuser plate 40 is arranged in the installation groove, and is located on the side of the optical assembly 10 facing away from the bottom of the installation groove.
  • the optical component 10 the diffusion plate 40 and the optical film can be installed in the installation groove formed by the back plate 20 and the middle frame 30, and the light emitted by the optical component 10 can be sequentially Through the diffuser plate 40 and the optical film.
  • the backlight module 100 of the present application also includes a reflective sheet 50, which is arranged at the bottom of the second light source 14, and part of the light that reaches the light guide plate 11 can be reflected to the reflective sheet 50, and then passes through the reflective sheet 50 for secondary reflection. reflection, so as to perform secondary light distribution on the part of the light, and part of the light that reaches the light splitting structure 12 can also be reflected to the reflective sheet 50, and then secondarily reflected by the reflective sheet 50, to perform secondary distribution on the part of the light.
  • the backlight module 100 also includes an optical film disposed in the installation groove and located on a side of the diffusion plate 40 facing away from the optical assembly 10 .
  • At least one light splitting structure 12 is provided on the top of the light guide plate 11 , and each of the first light sources 13 is arranged opposite to one of the light splitting structures 12 ;
  • the distance between the light guide plate 11 of the optical assembly 10 and the diffusion plate 40 as L; wherein, when L ⁇ 25mm, the top of the light splitting structure 12 has a concave direction toward the first light source 13
  • the arc-shaped area provided is used to reflect the light emitted by the first light source 13; when L>25mm, the top of the light-splitting structure 12 has an arc-shaped area protruding away from the first light source 13, used to refract the light emitted by the first light source 13 .
  • the distance between the light guide plate 11 of the optical assembly 10 and the diffuser plate 40 is less than or equal to 25 mm, it is easy to cause poor uniformity of light output from the backlight module 100, and thus poor uniformity of light output from the display device 1000.
  • the optical structure and Most of the light is reflected between the critical surfaces of the outside world to be reflected back to the bottom of the first light source 13, and then reflected by the reflective sheet 50 at the bottom of the first light source 13, and then reflected by the light guide plate 11 or other components of the light splitting structure 12.
  • the distance between the light guide plate 11 and the diffuser plate 40 of the optical component 10 is greater than 25 mm, most of the light passes through the critical surface between the optical structure and the outside world. The refraction is carried out to make the light diffuse to the side, so that the outgoing angle of the light is enlarged, and further the light outgoing angle of the optical component 10 is effectively enlarged.
  • the present application also proposes a display device 1000 , which includes a display panel 200 and the aforementioned backlight module 100 .
  • the specific structure of the backlight module 100 is detailed in the foregoing embodiments. Since the display device 1000 adopts all the technical solutions of the above-mentioned embodiments, it at least has all the beneficial effects brought by all the technical solutions of all the above-mentioned embodiments, which will not be repeated here.
  • the display panel 200 is disposed on a side of the diffusion plate 40 facing away from the optical component 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光学组件(10)、背光模组(100)以及显示装置(1000)。其中,光学组件(10)包括导光板(11)、至少一第一光源(13)以及至少一第二光源(14);导光板(11)的底部开设有贯穿至顶部的至少一避让孔(112);第一光源(13)设于导光板(11)的底部,且每一第一光源(13)与一避让孔(112)相对设置;第二光源(14)设于导光板(11)的侧边缘,且第二光源(14)的发光面朝向导光板(11)的侧边缘设置。

Description

光学组件、背光模组以及显示装置
本申请要求于2022年2月9日申请的、申请号为202210122990.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及液晶显示技术领域,特别涉及一种光学组件、背光模组以及显示装置。
背景技术
目前液晶显示装置依据光源的位置主要分为侧入式和直下式,侧入式显示装置的光源设置在侧边缘,使用导光板将光源发出的光线导向光学膜片中,以使显示装置的整体画面均匀,而直下式显示装置的光源阵列排布在液晶玻璃的底部,便可提高直下式显示装置的整体亮度。
技术问题
受限于光源数量以及系统散热的限制,侧入式显示装置的整体亮度难以提高;光源对应位置的亮度与非光源对应位置的亮度不一致,导致直下式显示装置的整体画面不均匀。
解决方案
本申请的主要目的是提出一种光学组件,旨在解决侧入式显示装置的整体亮度不高、以及直下式显示装置的整体画面不均匀的问题。
为实现上述目的,本申请提出的一种光学组件,包括:
导光板,所述导光板的底部开设有贯穿至顶部的至少一避让孔;
至少一第一光源,所述第一光源设于所述导光板的底部,且每一所述第一光源与一所述避让孔相对设置;以及
至少一第二光源,所述第二光源设于所述导光板的侧边缘,且所述第二光源的发光面朝向所述导光板的侧边缘设置。
在本申请的一实施例中,导光板内形成有配光结构。
在本申请的一实施例中,所述配光结构设有多个,多个所述配光结构间隔设置。
在本申请的一实施例中,所述避让孔的横截面面积大于所述第一光源的横截面面积。
在本申请的一实施例中,所述导光板的顶部设有至少一分光结构,每一所述第一光源与一所述分光结构相对设置。
在本申请的一实施例中,所述分光结构的底部具有槽体,每一所述槽体与一所述避让孔相对设置,且所述槽体的横截面面积小于所述避让孔的横截面面积,并大于所述第一光源的横截面面积。
在本申请的一实施例中,所述分光结构的顶部具有朝向所述第一光源的方向凹设的弧形区域,用于反射所述第一光源发出的光线。
在本申请的一实施例中,所述分光结构的顶部具有朝远离所述第一光源的方向凸设的弧形区域,用于折射所述第一光源发出的光线。
本申请还提出一种背光模组,包括:
背板;
中框,所述中框环绕所述背板设置,并与所述背板围合形成有安装槽;
光学组件,所述光学组件设于所述安装槽内,且所述光学组件的出光侧朝向所述安装槽的槽口设置;以及
扩散板,所述扩散板设于所述安装槽内,并位于所述光学组件的背向所述安装槽槽底的一侧;
其中,光学组件包括:
导光板,所述导光板的底部开设有贯穿至顶部的至少一避让孔;
至少一第一光源,所述第一光源设于所述导光板的底部,且每一所述第一光源与一所述避让孔相对设置;以及
至少一第二光源,所述第二光源设于所述导光板的侧边缘,且所述第二光源的发光面朝向所述导光板的侧边缘设置。
在本申请的一实施例中,所述导光板的顶部设有至少一分光结构,每一所述第一光源与一所述分光结构相对设置;定义所述光学组件的导光板至所述扩散板之间的距离为L;
其中,当L≤25mm时,所述分光结构的的顶部具有朝向所述第一光源的方向凹设的弧形区域,用于反射所述第一光源发出的光线;
当L>25mm时,所述分光结构的的顶部具有朝远离所述第一光源的方向凸设的弧形区域,用于折射所述第一光源发出的光线。
本申请还提出一种显示装置,包括显示面板和如上所述的背光模组,所述显示面板设于所述扩散板的背向所述光学组件的一侧。
有益效果
本申请的光学组件,通过在导光板的底部和侧边缘分别设置有至少一第一光源和至少一第二光源;便可在导光板的底部设置相应数量的第一光源,而不受空间的限制,从而保证光学组件的整体亮度,进而保证显示装置的整体亮度;同时,第二光源发出的光线可通过导光板的侧边缘进入导光板中,光线入射到导光板中并往各个角度扩散,然后由导光板的顶部射出,便可有效保证光学组件的出光均匀性,进而有效保证显示装置的整体画面的均匀性。因此,本申请的技术方案便解决了侧入式显示装置的整体亮度不高、以及直下式显示装置的整体画面不均匀的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请光学组件一实施例的分解图;
图2为本申请光学组件一实施例的分解图;
图3为本申请光学组件一实施例的部分结构分解图;
图4为本申请光学组件一实施例中导光板的结构示意图;
图5为本申请光学组件一实施例中导光板的结构示意图;
图6为本申请背光模组一实施例的分解图;
图7为本申请背光模组一实施例的剖视图;
图8为本申请显示装置一实施例的分解图。
附图标号说明:
标号 名称 标号 名称
1000 显示装置 13 第一光源
100 背光模组 14 第二光源
10 光学组件 15 第一光源电路板
11 导光板 16 第二光源电路板
111 配光结构 17 散热件
112 避让孔 20 背板
12 分光结构 30 中框
121 出光面 40 扩散板
1211 第一出光区域 50 反射片
1212 第二出光区域 200 显示面板
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示,则该方向性指示仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种光学组件10,旨在解决侧入式显示装置1000的整体亮度不高、以及直下式显示装置1000的整体画面不均匀的问题。
以下将就本申请光学组件10的具体结构进行说明:
结合参阅图1至图3,在本申请光学组件10的一实施例中,该光学组件10包括导光板11、至少一第一光源13以及至少一第二光源14;所述导光板11的底部开设有贯穿至顶部的至少一避让孔112;所述第一光源13设于所述导光板11的底部,且每一所述第一光源13与一所述避让孔112相对设置;所述第二光源14设于所述导光板11的侧边缘,且所述第二光源14的发光面朝向所述导光板11的侧边缘设置。
可以理解的是,本申请的光学组件10,通过在导光板11的底部和侧边缘分别设置有至少一第一光源13和至少一第二光源14;便可在导光板11的底部设置相应数量的第一光源13,而不受空间的限制,从而保证光学组件10的整体亮度,进而保证显示装置1000的整体亮度;同时,第二光源14发出的光线可通过导光板11的侧边缘进入导光板11中,光线入射到导光板11中并往各个角度扩散,然后由导光板11的顶部射出,便可有效保证光学组件10的出光均匀性,进而有效保证显示装置1000的整体画面的均匀性。因此,本申请的技术方案便解决了侧入式显示装置1000的整体亮度不高、以及直下式显示装置1000的整体画面不均匀的问题。
另外,通过使每一个第一光源13的发光面朝向一个避让孔112设置,以保证每一个第一光源13发出的光线中,大部分光线可穿过一个避让孔112而射出,而其他光线则通过避让孔112的孔壁而进入导光板11中,便可充分利用第一光源13的光能,以减少光能损失。
需要说明的是,通过在导光板11的底部和侧边缘分别设置有至少一第一光源13和至少一第二光源14,以构成光学组件10,如此,本申请的光学组件10即相当于将原来的侧入式光学结构与原来的直下式光学结构进行结合,便克服了侧入式显示装置1000的整体亮度不高、以及直下式显示装置1000的整体画面不均匀的问题。
具体地,导光板11的制备过程是利用光学级的亚克力或聚碳酸酯板材,然后用具有极高折射率且不吸光的高科技材料,在光学级的板材底面用激光雕刻、V型十字网格雕刻、UV网版印刷技术印上导光点。
并且,本申请的光学组件10还包括第一光源电路板15和第二光源电路板16,第一光源电路板15设于导光板11的底部,并与第一光源13电连接,第二光源电路板16设于第二光源14的背向导光板11的一侧,并与第二光源14电连接。
光学组件10还包括散热件17,散热件17部分设于第二光源电路板16背向第二光源14的一侧,以对第二光源14和第二光源电路板16进行散热,并且,散热件17部分设于第一光源电路板15背向导光板11的一侧,以随第一光源13和第一光源电路板15进行散热。
进一步地,结合参阅图2和图3,在本申请光学组件10的一实施例中,所述避让孔112的横截面面积大于所述第一光源13的横截面面积;如此设置,便可保证每一个第一光源13发出的光线中,尽可能多的光线可直接穿过一个避让孔112而射出,以充分利用第一光源13的光能,从而减少光能损失。
进一步地,结合参阅图4,在本申请光学组件10的一实施例中,导光板11内形成有配光结构111;如此设置,进入导光板11的光线中,有部分光线可避免配光结构111而直接穿过导光板11,而部分光线可在配光结构111与导光板11的临界面上发生反射或折射,并可在导光板11的内部发生多次反射或折射后,再通过导光板11的顶部出光,以对光线进行重新分配,从而增加导光板11的出光角度,以进一步提升光学组件10的出光均匀性,便可进一步提升显示装置1000的整体出光均匀性。
具体地,导光板11在注塑成型工艺中可采用物理或化学的方法形成气泡,从而在导光板11的内部形成配光结构111,例如,可通过双向拉伸工艺,致使导光板11的内部形成配光结构111,此时,配光结构111可为空洞结构;当然,在其他实施例中,配光结构111也可为油墨黑点等结构。
进一步地,结合参阅图4,在本申请光学组件10的一实施例中,所述配光结构111设有多个,多个所述配光结构111间隔设置;如此设置,当光线进入导光板11后,便可使更多的光线通过配光结构111与导光板11的临界面进行反射或折射,并可提高光线在导光板11中进行反射或折射的系数,从而提高光线的反射率和折射率,以进一步增加导光板11的出光角度。
进一步地,结合参阅图4,在本申请光学组件10的一实施例中,所述配光结构111的体积占所述导光板11的体积的8%~10%;由于配光结构111的体积占导光板11的体积过小时,无法保证进入导光板11中的大部分光线可通过配光结构111与导光板11的临界面进行二次分光,从而无法有效增加导光板11的出光角度;而当配光结构111的体积占导光板11的体积过大时,导光板11的自身支撑强度不足,容易发生形变而影响使用效果;因此,通过将配光结构111的体积占导光板11的体积设置在8%~10%之间,便可有效避免上述问题。
进一步地,结合参阅图4和图5,在本申请光学组件10的一实施例中,定义所述配光结构111在所述导光板11厚度方向上的宽度为M1,则满足条件:0.05mm≤M1≤0.15mm;由于配光结构111在导光板11厚度方向上的宽度过小时,一方面,不便于配光结构111的形成,另一方面,无法保证进入导光板11中的大部分光线可通过配光结构111与导光板11的临界面进行二次分光;而当配光结构111在导光板11厚度方向上的宽度过大时,在运输或使用过程中,导光板11容易发生形变甚至断裂而影响使用效果;因此,通过将配光结构111在导光板11厚度方向上的宽度设置在0.05mm~0.15mm之间,便可有效避免上述问题。
进一步地,结合参阅图4,在本申请光学组件10的一实施例中,定义所述配光结构111在所述导光板11长度方向上的宽度为M2,则满足条件:0.1mm≤M2≤0.3mm;同样的,由于配光结构111在导光板11长度方向上的宽度过小时,一方面,不便于配光结构111的形成,另一方面,无法保证进入导光板11中的大部分光线可通过配光结构111与导光板11的临界面进行二次分光;而当配光结构111在导光板11长度方向上的宽度过大时,在运输或使用过程中,导光板11容易发生形变甚至断裂而影响使用效果;因此,通过将配光结构111在导光板11长度方向上的宽度设置在0.1mm~0.3mm之间,便可有效避免上述问题。
同样地,结合参阅图5,在本申请光学组件10的一实施例中,定义所述配光结构111在所述导光板11宽度方向上的宽度为M3,则满足条件:0.1mm≤M3≤0.3mm;同样的,由于配光结构111在导光板11宽度方向上的宽度过小时,一方面,不便于配光结构111的形成,另一方面,无法保证进入导光板11中的大部分光线可通过配光结构111与导光板11的临界面进行二次分光;而当配光结构111在导光板11宽度方向上的宽度过大时,在运输或使用过程中,导光板11容易发生形变甚至断裂而影响使用效果;因此,通过将配光结构111在导光板11宽度方向上的宽度设置在0.1mm~0.3mm之间,便可有效避免上述问题。
结合参阅图4和图5,在本申请光学组件10的一实施例中,定义所述导光板11的厚度为H,则满足条件:1mm≤H≤3mm;由于导光板11的厚度过小时,一方面,第二光源14发出的光线无法充分由导光板11的侧边缘进入导光板11中,另一方面,无法对进入导光板11内部的光线进行充分扩散,进而无法保证光学组件10的出光均匀性;而当导光板11的厚度过大时,则导致光学组件10的整体厚度过大,进而导致显示装置1000的整体厚度过大,不利于小型化设计;因此,通过将导光板11的厚度设置在1mm~3mm之间,便可有效避免上述问题。
结合参阅图2和图3,在本申请光学组件10的一实施例中,所述导光板11的顶部设有至少一分光结构12,每一所述第一光源13与一所述分光结构12相对设置。
如此设置,通过在导光板11的顶部设置有与第一光源13相对设置的分光结构12,如此,第一光源13发出的光线可进入分光结构12,然后通过分光结构12反射或折射第一光源13发出的光线,以通过分光结构12对光线进行二次分光,便扩大了光学组件10的出光角度,进一步保证了光学组件10的出光均匀性,进而有效提升显示装置1000的显示效果。
分光结构12为可对光线进行二次分光的光学透镜,材质可为聚对苯二甲酸乙二酯、聚甲基丙烯酸甲酯等透光材料中的一种。
分光结构12可一体成型在导光板11的顶部,当然,也可使用光学胶粘接在导光板11的顶部。
进一步地,结合参阅图2和图3,在本申请光学组件10的一实施例中,所述分光结构的底部具有槽体,每一所述槽体与一所述避让孔相对设置,且所述槽体的横截面面积小于所述避让孔的横截面面积,并大于所述第一光源的横截面面积。
如此设置,第一光源13发出的光线中,便有大部分光线穿过避让孔112而射入分光结构12的槽体中,光线再通过槽体的槽壁进入分光结构12中,便增大了分光结构12的入光面的面积,使得光线在槽体槽壁处发生折射或反射,然后再通过分光结构12进行分光,如此,便扩大了分光结构12的入光角度,从而扩大了分光结构12的出光角度,进而可进一步保证光学组件10的出光均匀性。
进一步地,结合参阅图2,在本申请光学组件10的一实施例中,所述分光结构12的顶部具有朝向所述第一光源13的方向凹设的弧形区域,用于反射所述第一光源13发出的光线。
如此设置,相比于平面设置,通过使分光结构12的顶部具有朝向第一光源13的方向凹设的弧形区域,便增加了分光结构12的面积,第一光源13发出的光线经过分光结构12顶部的弧形区域后,便可在该弧形区域发生反射,使得由该区域出射的光线的角度得以增加,进而进一步扩大了光学组件10的出光角度;另外,本申请的光学组件10应用于背光模组100中,当导光板11与扩散板40之间的距离过小时,容易导致背光模组100的出光均匀性差,进而导致显示装置1000的出光均匀性差,如此,通过使分光结构的顶部具有朝向第一光源13的方向凹设的弧形区域,此时,第一光源13发出的光线到达弧形区域后,便有大部分光线在弧形区域与外界的临界面之间发生反射,以反射回第一光源13的底部,然后通过位于第一光源13底部处的反射片50进行反射后再由导光板11或分光结构12的其他区域出射,便可有效扩大光学组件10的出光角度,如此,便可在保证光学组件10整体亮度的同时,减少第一光源13的使用数量,进而降低制造成本。
结合参阅图3,在本申请光学组件10的一实施例中,所述分光结构的顶部具有朝远离所述第一光源的方向凸设的弧形区域,用于折射所述第一光源发出的光线。
如此设置,同样的,相比于平面设置,通过使分光结构12的顶部具有朝远离第一光源13的方向凸设的弧形区域,便同样增加了分光结构12的面积,第一光源13发出的光线经过分光结构12顶部的弧形区域后,便可在该弧形区域发生折射,使得由该区域出射的光线的角度得以增加,进而进一步扩大了光学组件10的出光角度;另外,由于第一光源13所出射的光线会呈现正面强而集中、侧面弱而分散的状态,从而导致光学组件10的出光不均匀;基于此,通过使分光结构12的顶部具有朝远离第一光源13的方向凸设的弧形区域,且第一光源13与该弧形区域相对,如此,第一光源13发出的光线中,正面强而集中的光线到达弧形区域后便有大部分光线在弧形区域处发生折射,以使光线向侧面扩散,便扩大了光线的出射角度,进而有效扩大光学组件10的出光角度,并且,还缓解了光线呈现正面强而集中、侧面弱而分散的状态。
示例性的,弧形区域所在的表面可为锥形面或球形面等等。
当然,在其他实施例中,分光结构12的顶部也可具有凹凸不平的弧形区域,同样的,相比于平面设置,通过使分光结构12的顶部具有凹凸不平的弧形区域,便同样增加了分光结构12的面积,第一光源13发出的光线经过分光结构12顶部的弧形区域后,便可在该弧形区域发生反射和折射,使得由该区域出射的光线的角度得以增加,进而进一步扩大了光学组件10的出光角度。
需要说明的是,所述分光结构12具有出光面121,所述出光面121具有相连接的第一出光区域1211和第二出光区域1212,所述第一出光区域1211环绕所述第二出光区域1212设置,并连接所述导光板11的顶部,所述第二出光区域1212为弧形区域,且所述第一出光区域1211和所述第二出光区域1212均朝向所述第一光源13的发光面设置,用于接收并反射或折射所述第一光源13发出的光线。其中,第二出光区域1212对应的是分光结构顶部处凹设或凸设的弧形区域。
并且,结合图2所示,第一出光区域1211包括平坦区和弧形区,平坦区环绕第二出光区域1212设置,并与第二出光区域1212连接,弧形区环绕平坦区设置,并与平坦区和导光板11的顶部连接,如此,第一光源13发出的光线中,经过第二出光区域1212进行反射的光线可直接穿过平坦区而达到第一光源13底部的反射片50处,以减少光线的能耗;而到达弧形区的光线便可发生折射,以保证分光结构12四周侧面的亮度,进而有效保证光学组件10的出光均匀性。
或者,结合图3所示,第一出光区域1211包括平坦区和弧形区,弧形区环绕第二出光区域1212设置,并与第二出光区域1212连接,平坦区环绕弧形区设置,并与弧形区和导光板11的顶部连接,如此,第一光源13发出的光线中,光线便可经过第一出光区域1211的平坦区或弧形区或第二出光区域1212,以对光线进行充分扩散。
进一步地,结合参阅图2和图3,在本申请光学组件10的一实施例中,所述第二出光区域1212在预设投影面上的正投影覆盖所述第一光源13在所述预设投影面上的正投影,所述预设投影面为所述导光板11的底部所在的平面。
如此设置,通过使第二出光区域1212在预设投影面上的正投影覆盖第一光源13在预设投影面上的正投影,那么,第一光源13发出的光线中,便有大部分的光线到达第二出光区域1212,以通过第二出光区域1212对光线进行有效配光。
结合参阅图6和图7,本申请还提出一种背光模组100,该背光模组100包括背板20、中框30、扩散板40、光学膜片以及如前所述的光学组件10,该光学组件10的具体结构详见前述实施例。由于本背光模组100采用了前述所述实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。其中,所述中框30环绕所述背板20设置,并与所述背板20围合形成有安装槽;所述光学组件10设于所述安装槽内,且所述光学组件10的出光侧朝向所述安装槽的槽口设置;所述扩散板40设于所述安装槽内,并位于所述光学组件10的背向所述安装槽槽底的一侧。
本实施例中,在组装过程中,可将光学组件10、扩散板40以及光学膜片均安装至背板20与中框30围合形成的安装槽内,光学组件10出射的光线便可依次穿过扩散板40和光学膜片。
并且,本申请的背光模组100还包括反射片50,反射片50设于第二光源14的底部,到达导光板11的部分光线可反射至反射片50处,然后通过反射片50进行二次反射,以对该部分光线进行二次配光,并且,到达分光结构12的部分光线也可反射至反射片50处,然后通过反射片50进行二次反射,以对该部分光线进行二次配光。背光模组100还包括光学膜片设于安装槽内,并位于扩散板40的背向光学组件10的一侧。
结合参阅图7,在本申请背光模组100的一实施例中,所述导光板11的顶部设有至少一分光结构12,每一所述第一光源13与一所述分光结构12相对设置;定义所述光学组件10的导光板11至所述扩散板40之间的距离为L;其中,当L≤25mm时,所述分光结构12的顶部具有朝向所述第一光源13的方向凹设的弧形区域,用于反射所述第一光源13发出的光线;当L>25mm时,所述分光结构12的顶部具有朝远离所述第一光源13的方向凸设的弧形区域,用于折射所述第一光源13发出的光线。
由于光学组件10的导光板11至扩散板40之间的距离小于或等于25mm时,容易导致背光模组100的出光均匀性差,进而导致显示装置1000的出光均匀性差,如此,便通过光学结构与外界的临界面之间对大部分光线进行反射,以反射回第一光源13的底部,然后通过位于第一光源13底部处的反射片50进行反射后再由导光板11或分光结构12的其他区域出射,便可有效扩大光学组件10的出光角度;而当光学组件10的导光板11至扩散板40之间的距离大于25mm时,便通过光学结构与外界的临界面之间对大部分光线进行折射,以使光线向侧面扩散,便扩大了光线的出射角度,进而有效扩大光学组件10的出光角度。
结合参阅图8,本申请还提出一种显示装置1000,该显示装置1000包括显示面板200和如前所述的背光模组100,该背光模组100的具体结构详见前述实施例。由于本显示装置1000采用了前述所述实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。其中,所述显示面板200设于所述扩散板40的背向所述光学组件10的一侧。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (15)

  1. 一种光学组件,其中,所述光学组件包括:
    导光板,所述导光板的底部开设有贯穿至顶部的至少一避让孔;
    至少一第一光源,所述第一光源设于所述导光板的底部,且每一所述第一光源与一所述避让孔相对设置;以及
    至少一第二光源,所述第二光源设于所述导光板的侧边缘,且所述第二光源的发光面朝向所述导光板的侧边缘设置。
  2. 如权利要求1所述的光学组件,其中,所述光学组件还包括:第一光源电路板和第二光源电路板;
    所述第一光源电路板设于所述导光板的底部,并与所述第一光源电连接;
    所述第二光源电路板设于所述第二光源的背向所述导光板的一侧,并与所述第二光源电连接。
  3. 如权利要求1所述的光学组件,其中,所述光学组件还包括:散热件,所述散热件的第一部分设于所述第二光源电路板背向所述第二光源的一侧,所述散热件的第二部分设于所述第一光源电路板背向所述导光板的一侧。
  4. 如权利要求1所述的光学组件,其中,所述导光板内形成有配光结构。
  5. 如权利要求4所述的光学组件,其中,所述配光结构设有多个,多个所述配光结构间隔设置。
  6. 如权利要求1所述的光学组件,其中,所述避让孔的横截面面积大于所述第一光源的横截面面积。
  7. 如权利要求1所述的光学组件,其中,所述导光板的顶部设有至少一分光结构,每一所述第一光源与一所述分光结构相对设置。
  8. 如权利要求7所述的光学组件,其中,所述分光结构的底部具有槽体,每一所述槽体与一所述避让孔相对设置,且所述槽体的横截面面积小于所述避让孔的横截面面积,并大于所述第一光源的横截面面积。
  9. 如权利要求8所述的光学组件,其中,所述分光结构的顶部具有朝向所述第一光源的方向凹设的弧形区域,用于反射所述第一光源发出的光线;
    或者,所述分光结构的顶部具有朝远离所述第一光源的方向凸设的弧形区域,用于折射所述第一光源发出的光线。
  10. 如权利要求9所述的光学组件,其中,所述分光结构具有出光面,所述出光面具有相连接的第一出光区域和第二出光区域,所述第一出光区域环绕所述第二出光区域设置,并连接所述导光板的顶部,所述第二出光区域为弧形区域,且所述第一出光区域和所述第二出光区域均朝向所述第一光源的发光面设置。
  11. 如权利要求10所述的光学组件,其中,第一出光区域包括平坦区和弧形区,所述平坦区环绕所述第二出光区域设置,并与所述第二出光区域连接,所述弧形区环绕所述平坦区设置,并与所述平坦区和所述导光板的顶部连接;
    或者,所述弧形区环绕所述第二出光区域设置,并与所述第二出光区域连接,所述平坦区环绕所述弧形区设置,并与所述弧形区和所述导光板的顶部连接。
  12. 一种背光模组,其中,所述背光模组包括:
    背板;
    中框,所述中框环绕所述背板设置,并与所述背板围合形成有安装槽;
    如权利要求1至11中任一项所述的光学组件,所述光学组件设于所述安装槽内,且所述光学组件的出光侧朝向所述安装槽的槽口设置;以及
    扩散板,所述扩散板设于所述安装槽内,并位于所述光学组件的背向所述安装槽槽底的一侧。
  13. 如权利要求12所述的背光模组,其中,所述背光模组还包括反射片,所述反射片设于所述第二光源的底部。
  14. 如权利要求12所述的背光模组,其中,所述导光板的顶部设有至少一分光结构,每一所述第一光源与一所述分光结构相对设置;定义所述光学组件的导光板至所述扩散板之间的距离为L;
    其中,当L≤25mm时,所述分光结构的顶部具有朝向所述第一光源的方向凹设的弧形区域,用于反射所述第一光源发出的光线;
    当L>25mm时,所述分光结构的顶部具有朝远离所述第一光源的方向凸设的弧形区域,用于折射所述第一光源发出的光线。
  15. 一种显示装置,其中,所述显示装置包括显示面板和如权利要求12-14中任一项所述的背光模组,所述显示面板设于所述扩散板的背向所述光学组件的一侧。
PCT/CN2023/075041 2022-02-09 2023-02-08 光学组件、背光模组以及显示装置 WO2023151599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210122990.0A CN114217479B (zh) 2022-02-09 2022-02-09 光学组件、背光模组以及显示装置
CN202210122990.0 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023151599A1 true WO2023151599A1 (zh) 2023-08-17

Family

ID=80708817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075041 WO2023151599A1 (zh) 2022-02-09 2023-02-08 光学组件、背光模组以及显示装置

Country Status (2)

Country Link
CN (1) CN114217479B (zh)
WO (1) WO2023151599A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217479B (zh) * 2022-02-09 2024-05-07 深圳创维-Rgb电子有限公司 光学组件、背光模组以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295037A (zh) * 2007-04-27 2008-10-29 鸿富锦精密工业(深圳)有限公司 背光模组及其光学板
CN203249080U (zh) * 2013-03-18 2013-10-23 晶科电子(广州)有限公司 一种直下式背光模组
CN107003561A (zh) * 2014-12-11 2017-08-01 堺显示器制品株式会社 照明装置及显示装置
CN107656398A (zh) * 2017-10-13 2018-02-02 惠州市华星光电技术有限公司 液晶显示器及其背光模组
CN213240750U (zh) * 2020-09-16 2021-05-18 惠州视维新技术有限公司 一种背光模组及显示装置
CN214427709U (zh) * 2021-03-31 2021-10-19 深圳创维-Rgb电子有限公司 一种背光模组以及显示装置
CN114217479A (zh) * 2022-02-09 2022-03-22 深圳创维-Rgb电子有限公司 光学组件、背光模组以及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408463B (zh) * 2010-11-18 2013-09-11 Young Lighting Technology Corp 光源模組及照明裝置
CN102566139B (zh) * 2010-12-28 2014-12-24 歌尔声学股份有限公司 Led背光源显示设备
CN104251417A (zh) * 2013-06-28 2014-12-31 展晶科技(深圳)有限公司 光源模组
CN104748021A (zh) * 2013-12-31 2015-07-01 欧普照明股份有限公司 一种led照明装置
KR101578768B1 (ko) * 2014-02-06 2015-12-18 주식회사 루멘스 발광 소자 패키지 모듈과, 백라이트 유닛 및 조명 장치
CN105278160B (zh) * 2015-10-29 2019-01-15 深圳市华星光电技术有限公司 背光单元、背光模组及显示装置
CN106681052B (zh) * 2016-11-16 2019-11-15 京东方科技集团股份有限公司 一种背光模组和显示装置
CN106886106A (zh) * 2017-02-16 2017-06-23 广州毅昌科技股份有限公司 一种超薄背光模组
CN109118953B (zh) * 2018-07-25 2021-05-28 海信视像科技股份有限公司 一种直下式背光模组
CN209356814U (zh) * 2019-03-25 2019-09-06 深圳创维-Rgb电子有限公司 直下式背光模组、液晶模组及显示装置
CN210894931U (zh) * 2019-12-11 2020-06-30 合肥惠科金扬科技有限公司 一种背光模组及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295037A (zh) * 2007-04-27 2008-10-29 鸿富锦精密工业(深圳)有限公司 背光模组及其光学板
CN203249080U (zh) * 2013-03-18 2013-10-23 晶科电子(广州)有限公司 一种直下式背光模组
CN107003561A (zh) * 2014-12-11 2017-08-01 堺显示器制品株式会社 照明装置及显示装置
CN107656398A (zh) * 2017-10-13 2018-02-02 惠州市华星光电技术有限公司 液晶显示器及其背光模组
CN213240750U (zh) * 2020-09-16 2021-05-18 惠州视维新技术有限公司 一种背光模组及显示装置
CN214427709U (zh) * 2021-03-31 2021-10-19 深圳创维-Rgb电子有限公司 一种背光模组以及显示装置
CN114217479A (zh) * 2022-02-09 2022-03-22 深圳创维-Rgb电子有限公司 光学组件、背光模组以及显示装置

Also Published As

Publication number Publication date
CN114217479B (zh) 2024-05-07
CN114217479A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
JP5360172B2 (ja) 面状光源装置およびこれを用いた表示装置
KR101329413B1 (ko) 광학 렌즈, 이를 구비하는 광학 모듈 및 이를 구비하는백라이트 유닛
US7560745B2 (en) LED package and backlight assembly for LCD comprising the same
JP5509154B2 (ja) 発光装置および表示装置
EP2857890B1 (en) Surface light source device and edge backlight module
JP4607225B2 (ja) 光源モジュール、液晶表示装置および照明装置
US20040141104A1 (en) Surface lighting device and liquid crystal display using the same
WO2023151599A1 (zh) 光学组件、背光模组以及显示装置
JP2009176512A (ja) 面光源装置及び画像表示装置
TWI343489B (en) Optical plate and backlight module using the same
WO2023143536A1 (zh) 背光模组和显示装置
JP2006171665A (ja) バックライトモジュール
KR20010046581A (ko) 표시 장치용 백라이트 장치
JP2013037783A (ja) 照明装置および表示装置
WO2012133118A1 (ja) 照明装置および表示装置
TWI407162B (zh) 導光板及背光模組
WO2013088594A1 (ja) バックライト装置および液晶表示装置
JP4984512B2 (ja) 面発光装置及び液晶表示装置
TWI285286B (en) Light emitting device and light guiding plate thereof
WO2019187462A1 (ja) 面状照明装置
TW201520658A (zh) 背光模組
CN217385880U (zh) 一种导光板、背光模组及显示装置
CN215910676U (zh) 一种含入光孔结构的导光板
CN218917868U (zh) 光扩散板及背光模组
TWI383180B (zh) 液晶顯示裝置及其稜鏡片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752379

Country of ref document: EP

Kind code of ref document: A1