WO2023151375A1 - 电源电路及电子设备 - Google Patents

电源电路及电子设备 Download PDF

Info

Publication number
WO2023151375A1
WO2023151375A1 PCT/CN2022/138687 CN2022138687W WO2023151375A1 WO 2023151375 A1 WO2023151375 A1 WO 2023151375A1 CN 2022138687 W CN2022138687 W CN 2022138687W WO 2023151375 A1 WO2023151375 A1 WO 2023151375A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit
battery
voltage conversion
control
Prior art date
Application number
PCT/CN2022/138687
Other languages
English (en)
French (fr)
Inventor
潘晓佳
张俊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023151375A1 publication Critical patent/WO2023151375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of power supply, in particular to a power supply circuit and electronic equipment.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent. Therefore, the first object of the present disclosure is to propose a power supply circuit, which can realize fast charging, pre-charging or constant-voltage charging through multiplexing of components, which reduces the use of components, layout area and cost.
  • a second object of the present disclosure is to provide an electronic device.
  • the embodiment of the first aspect of the present disclosure proposes a power supply circuit, including: a voltage conversion circuit, the input terminal of the voltage conversion circuit is connected to the power supply; a first gating circuit, one end of the first gating circuit is connected to The output end of the voltage conversion circuit is connected, the other end of the first gating circuit is connected with the battery; the second gating circuit, one end of the second gating circuit is connected with the output end of the voltage conversion circuit through an inductor, and the second gating circuit The other end is connected to the battery, and one end of the second gating circuit is also connected to the load; the control circuit is connected to the voltage conversion circuit, the first gating circuit and the second gating circuit respectively, and the control circuit is used for, when the first When the gating circuit is in the on state, control the power supply to quickly charge the battery through the voltage conversion circuit; when the second gating circuit is in the on state, control the power supply to precharge or constant voltage charge the battery through the voltage
  • the charge pump function and step-down charging function can be realized in the same circuit by sharing the voltage conversion circuit and through the cooperation of the first gating circuit and the second gating circuit, so that the components can be multiplexed It can realize fast charging, pre-charging or constant-voltage charging, which reduces the use of components, layout area and cost.
  • the embodiment of the second aspect of the present disclosure provides an electronic device, including the aforementioned power supply circuit.
  • the charge pump and step-down functions can be realized in the same circuit, thereby through
  • the multiplexing of components can realize fast charging, pre-charging or constant voltage charging, which reduces the use of components and reduces the layout area and cost.
  • FIG. 1 is a schematic structural diagram of a power supply circuit according to an embodiment of the present disclosure
  • FIG. 2 is a circuit diagram of a power supply circuit according to an embodiment of the present disclosure
  • FIG. 3 is a circuit diagram of a power circuit according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a power supply circuit according to an embodiment of the present disclosure.
  • the power supply circuit 100 includes: a voltage conversion circuit 110 , a first gating circuit 120 , a second gating circuit 130 and a control circuit 140 .
  • the input end of the voltage conversion circuit 110 is connected with the power supply; one end of the first gating circuit 120 is connected with the output end of the voltage conversion circuit 110, and the other end of the first gating circuit 120 is connected with the battery; the second gating circuit One end of the 130 is connected to the output end of the voltage conversion circuit 110 through the inductor L, the other end of the second gating circuit 130 is connected to the battery, and one end of the second gating circuit 130 is also connected to the load.
  • the control circuit 140 is connected to the voltage converting circuit 110, the first gating circuit 120 and the second gating circuit 130 respectively, and the control circuit 140 is used for controlling the power supply to pass the voltage conversion when the first gating circuit 120 is in a conducting state.
  • the circuit 110 quickly charges the battery; when the second gating circuit 130 is in the on state, it controls the power supply to pre-charge or constant-voltage charge the battery through the voltage conversion circuit 110, or controls the battery to supply power to the load.
  • the circuit shown in FIG. 1 may have a charge pump function, a step-down charging function and a discharging function.
  • the charge pump function refers to the use of capacitor energy storage for DC-DC voltage conversion
  • step-down charging function refers to the use of inductive energy storage for DC-DC voltage conversion and the output voltage is lower than the input voltage
  • discharge function refers to the battery external discharge.
  • the charge pump function can be realized by the voltage converting circuit 110 and the first gating circuit 120 .
  • the control circuit 140 can control the first gating circuit 120 to be in the on state, and the second gating circuit 130 to be in the off state.
  • the voltage provided by the power supply is After the conversion by the voltage conversion circuit 110 , it directly enters the battery through the first gating circuit 120 to charge the battery, the loss of the entire charging circuit is reduced to the minimum, and the charging efficiency is high.
  • the step-down charging function can be realized by the voltage conversion circuit 110 , the inductor L and the second gating circuit 130 .
  • the control circuit 140 can control the second gating circuit 130 to be in the on state, and the first gating circuit 120 to be in the off state.
  • the power supply provided by the power supply The voltage is charged and discharged to the inductor L through the voltage conversion circuit 110 to realize voltage conversion, and then enters the battery through the second gating circuit 130 to charge the battery.
  • the inductor L is also connected to the load, it can also supply power to the load during the process of charging the battery.
  • the discharge function can be realized by the second gating circuit 130 .
  • the control circuit 140 can control the second gating circuit 130 to be in the on state, the first gating circuit 120 to be in the off state, and the voltage conversion circuit 150 to not work.
  • the voltage directly enters the load through the second gating circuit 130 without passing through the inductor L, which not only realizes the power supply from the battery to the load, but also reduces the circuit loss to a minimum, and has high discharge efficiency.
  • the charge pump function and the step-down charging function can be realized in the same circuit by sharing the voltage conversion circuit and through the cooperation of the first gate circuit and the second gate circuit, so that multiplexing of components can realize Fast charging and pre-charging or constant-voltage charging reduce the use of components, reduce the layout area and cost.
  • the voltage conversion circuit 110 includes: a first switch Q1, a second switch Q2, a third switch Q3, and a fourth switch Q4, wherein the first terminal of the first switch Q1 is connected to the voltage
  • the input end of the conversion circuit 110 is connected (that is, connected to the power supply), the control end of the first switch Q1 is connected to the control circuit 140; the first end of the second switch Q2 is connected to the second end of the first switch Q1, and the second The control end of the switch Q2 is connected to the control circuit 140; the first end of the third switch Q3 is connected to the second end of the second switch Q2 and then connected to the output end of the voltage conversion circuit 110 (that is, respectively connected to the first gating circuit 120 connected to the inductor L), the control terminal of the third switch Q3 is connected to the control circuit 140; the first terminal of the fourth switch Q4 is connected to the second terminal of the third switch Q3, the second terminal of the fourth switch Q4 is grounded to GND, and the second terminal of the fourth switch
  • the first end of the second switch Q2 is connected to the second end of the first switch Q1 and then connected to one end of the first capacitor C1, and the first end of the fourth switch Q4 is connected to the third end of the third switch Q4. After the second terminal of the switch Q3 is connected, it is also connected to the other terminal of the first capacitor C1.
  • first switch Q1, the second switch Q2, the third switch Q3 and the fourth switch Q4 may all be P-type MOS transistors, and when they are P-type MOS transistors, the first terminals of each switch are drain pole, the second end is the source, and the control end is the gate.
  • the first switch Q1 and the third switch Q3 are used as a group to realize synchronous on-off
  • the second switch Q2 and the fourth switch Q4 are used as a group to realize synchronous on-off
  • the two groups of switches are turned on complementary, and at the same time, the energy storage function of the first capacitor C1 is used to realize the charge pump function, and the battery is charged through the first gating circuit 120 .
  • the duty cycle of the switch is D
  • the first switch Q1 and the third switch Q3 are turned on, and the second switch Q3 is turned on.
  • the switch Q2 and the fourth switch Q4 are turned off, at this time the first capacitor C1 is charged to store energy, and the battery is charged through the first gating circuit 120; when D*T ⁇ t ⁇ T, the first switch Q1 and the second The third switch Q3 is turned off, and the second switch Q2 and the fourth switch Q4 are turned on.
  • the first capacitor C1 is discharged, and the battery is charged through the first gating circuit 120 .
  • the duty ratio D can be set to 50%, and at this time the ratio of the output voltage of the power circuit 100 to the voltage provided by the power supply is 1/2, realizing a ratio of 1/2 charge pump function.
  • the on-off control of the first switch Q1, the second switch Q2, the third switch Q3 and the fourth switch Q4 can be performed, and the battery can be controlled by the second gating circuit 130. Charge.
  • the first switch Q1 and the second switch Q2 can be used as a main switch, and the third switch Q3 and the fourth switch Q4 can be used as a synchronous switch (the function is the same as a diode), so as to realize two-level voltage output.
  • the duty cycle of the switch is D
  • the first switch Q1 and the second switch Q2 are turned on, and the third switch The switch Q3 and the fourth switch Q4 are turned off.
  • the inductance L is charged to store energy, and the battery is charged through the second gating circuit 130; when D*T ⁇ t ⁇ T, the first switch Q1 and the second switch Q2 is turned off, and the third switch Q3 and the fourth switch Q4 are turned on.
  • the inductor L discharges and charges the battery through the second gating circuit 120 .
  • the duty cycle D can be adjusted according to the charging requirement, so as to adjust the charging voltage and charging current of the battery.
  • the three-level voltage output may be realized by controlling the first switch Q1 , the second switch Q2 , the third switch Q3 and the fourth switch Q4 to be turned on alternately. It should be noted that when three-level output is performed, the ratio of the output voltage of the power supply circuit 100 to the voltage provided by the power supply needs to be judged. If the ratio is less than 1/2, the output voltage is kept at Vin by turning on and off the switch. /2 (Vin is the voltage provided by the power supply, that is, the input voltage of the power supply circuit 100) and 0, so as to realize the voltage output of 0-Vin/2; The output voltage is switched between Vin/2 and Vin to realize the voltage output of Vin/2-Vin.
  • the fourth switch Q4 is turned off, the first capacitor C1 and the inductor L are charged, and the battery is charged through the second gating circuit 130; if D*T ⁇ t ⁇ 0.5T, the first switch Q1 and the second switch Q2 are controlled to be turned off off, the third switch Q3 and the fourth switch Q4 are turned on, the first capacitor C1 does not form a loop and is not discharged, the inductor L is discharged, and the battery is charged through the second gating circuit 130; if 0.5T ⁇ t ⁇ D*T +0.5T, the first switch Q1 and the second switch Q3 are controlled to be turned off, the second switch Q2 and the fourth switch Q4 are turned on, at this time, the first capacitor C1 is discharged, the inductor L is charged, and passes through the second gating circuit 130 Charge the battery; if D*T+0.5T ⁇ t ⁇ T, control the first switch Q1 and the second switch Q2 to turn off, the third switch Q3 and the fourth switch Q4 to turn on, the first capacitor C1
  • the inductor L discharges and charges the battery through the second gating circuit 130 .
  • the input voltage is equal to the output voltage, and the rest Under normal conditions, the output voltage is half of the input voltage.
  • the duty ratio D the output voltage can be adjusted within the range from Vin/2 to Vin.
  • the charge pump function and the step-down charging function can be realized in the same circuit by sharing the voltage conversion circuit and through the cooperation of the first gate circuit and the second gate circuit, and the multiplexing rate of components is high, and the integrated High precision, low cost, and during fast charging, the battery can be charged directly through the first gating circuit, avoiding the loss of the inductance and the second gating circuit.
  • the first gating circuit 120 includes: a fifth switch Q5, the first end of the fifth switch Q5 is connected to the output end of the voltage conversion circuit 110, and the second end of the fifth switch Q5 The terminal is connected to the battery, and the control terminal of the fifth switch Q5 is connected to the control circuit 140 .
  • the fifth switch Q5 can be a P-type MOS transistor, and when it is a P-type MOS transistor, its first terminal is a drain, its second terminal is a source, and its control terminal is a gate.
  • the second gating circuit 130 includes: a sixth switch Q6, the first end of the sixth switch Q6 is connected to the output end of the voltage conversion circuit 110 through an inductor L, the second end of the sixth switch Q6 is connected to the battery, and the sixth switch Q6 The control terminal of is connected with the control circuit 140.
  • the sixth switch Q6 can be a P-type MOS transistor, and when it is a P-type MOS transistor, its first terminal is a drain, its second terminal is a source, and its control terminal is a gate.
  • the control circuit 140 can control the on-off of the fifth switch Q5 and the sixth switch Q6 according to the charging demand, and control the voltage conversion circuit 110 in the aforementioned manner, so as to realize fast charging, pre-charging, constant-voltage charging of the battery or supply power to the load .
  • the battery in the process of charging the battery by the power supply circuit 100, the battery can be precharged with a small current first, and at this time, the sixth switch Q6 can be controlled to be turned on, and the fifth switch Q5 can be turned off, so that the output of the voltage conversion circuit 110
  • the terminal is connected to the battery through the inductor L, and the voltage conversion circuit 110 is controlled by the aforementioned method to precharge the battery; after the precharge is completed, constant current charging can be performed, and at this time fast charging can be performed, and the fifth switch can be controlled Q5 is turned on, and the sixth switch Q6 is turned off, so that the output terminal of the voltage conversion circuit 100 is directly connected to the battery, and the voltage conversion circuit 110 is controlled by the aforementioned method to quickly charge the battery; when the battery voltage reaches a certain value At this time, the battery can be charged with a constant voltage.
  • the sixth switch Q6 can be controlled to be turned on, and the fifth switch Q5 can be turned off, so that the output terminal of the voltage conversion circuit 110 is connected to the battery through the inductance L, and the voltage is controlled by the aforementioned method.
  • the conversion circuit 110 is controlled to charge the battery at a constant voltage.
  • the sixth switch Q6 can be controlled to be turned on, and the fifth switch Q5 can be turned off, so that the battery is directly connected to the load, so that the battery can directly supply power to the load.
  • the second end of the fifth switch Q5 is also grounded to GND through the second capacitor C2, so as to filter and smooth the output voltage of the voltage conversion circuit 110 when fast charging the battery. , to improve the stability of battery charging.
  • the first end of the sixth switch Q6 is also grounded to GND through the third capacitor C3, so as to filter and smooth the output voltage when the battery is pre-charged or constant-voltage charged, so as to improve the stability of battery charging, and when the battery supplies the load When supplying power, improve the stability of battery power supply.
  • the power supply circuit 100 described above further includes: a seventh switch Q7, the first end of the seventh switch Q7 is connected to the power supply, and the second end of the seventh switch Q7 is connected to the voltage conversion
  • the input terminal of the circuit 110 is connected, and the control terminal of the seventh switch Q7 is connected with the control circuit 140 .
  • the seventh switch Q7 can be a P-type MOS transistor, and when it is a P-type MOS transistor, its first end is a drain, its second end is a source, and its control end is a gate.
  • the control circuit 140 controls the seventh switch Q7 to turn on; when the battery supplies power to the load, the control circuit 140 controls the seventh switch Q7 to turn off, ensuring that the voltage provided by the battery will not pass through
  • the first switch Q1 and the second switch Q2 pour into the power supply.
  • the first switch Q1 and the second switch Q2 are PMOS transistors with body diodes, it can be ensured that the voltage provided by the battery will not pass through the first switch Q1 and the second switch.
  • the body diode of the switch Q2 pours back into the power supply, so as to achieve the effect of protecting the safety of the equipment.
  • the control circuit 140 includes: a driver 141 and a controller 142, and the controller 142 communicates with the voltage conversion circuit 110, the first gate circuit 120, the second gate circuit 130 and the voltage conversion circuit 110 through the driver 141.
  • the seventh switch Q7 is connected.
  • the controller 142 writes the control logic of the power supply circuit 100 to realize fast charging, pre-charging or constant voltage charging of the battery, and the power supply of the battery to the load.
  • the driver 141 A boost circuit is integrated inside, which can boost the driving voltage enough to turn on the above-mentioned switches.
  • the driver 141 is of conventional design, and will not be described in detail here.
  • the above voltage conversion circuit 110, the first gate circuit 120, the second gate circuit 130, the control circuit 140 and the seventh switch Q7 can be integrated in the same chip 200, because The multiplexing of the voltage conversion circuit 110 makes the chip 200 highly integrated and has a high multiplexing rate of components, which can simultaneously realize the charge pump function, step-down charging function and discharging function, and is conducive to chip miniaturization and cost reduction.
  • the charge pump function and the step-down charging function can be realized in the same circuit by sharing the voltage conversion circuit and through the cooperation of the first gating circuit and the second gating circuit, so that Fast charging and pre-charging or constant-voltage charging can be realized through multiplexing of components, which reduces the use of components and reduces the layout area and cost.
  • an electronic device which includes the aforementioned power supply circuit.
  • the charge pump and step-down functions can be realized in the same circuit, thereby through
  • the multiplexing of components can realize fast charging, pre-charging or constant voltage charging, which reduces the use of components and reduces the layout area and cost.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电源电路及电子设备,电源电路(100)包括:电压转换电路(110),其输入端与供电电源相连;第一选通电路(120),第一选通电路(120)的一端与电压转换电路(110)的输出端相连,第一选通电路(120)的另一端与电池相连;第二选通电路(130),第二选通电路(130)的一端通过电感(L)与电压转换电路(110)的输出端相连,第二选通电路(130)的另一端与电池相连,第二选通电路(130)的一端还与负载相连;控制电路(140),用于当第一选通电路(120)处于导通状态时,控制供电电源通过电压转换电路(110)给电池快充;当第二选通电路(130)处于导通状态时,控制供电电源通过电压转换电路(110)给电池预充或恒压充,或者控制电池给负载供电。

Description

电源电路及电子设备
相关申请的交叉引用
本公开要求于2022年02月11日提交的申请号为202220284858.5,名称为“电源电路及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电源技术领域,尤其涉及一种电源电路及电子设备。
背景技术
传统的快充方案中,考虑到充电效率的提高,通常使用电荷泵(Charge Pump)实现快充,但是电荷泵属于开环充电系统,无法完成电池充电过程中的预充和恒压充,因此需要额外增加一个降压充电芯片(Buck Charger)来完成这两个过程,这使得完整的电池充电过程需要两颗芯片才能实现,元器件多,布板面积大,成本高。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种电源电路,通过元器件复用可实现快充以及预充或恒压充,减少了元器件的使用,降低了布板面积和成本。
本公开的第二个目的在于提出一种电子设备。
为达到上述目的,本公开第一方面实施例提出了一种电源电路,包括:电压转换电路,电压转换电路的输入端与供电电源相连;第一选通电路,第一选通电路的一端与电压转换电路的输出端相连,第一选通电路的另一端与电池相连;第二选通电路,第二选通电路的一端通过电感与电压转换电路的输出端相连,第二选通电路的另一端与电池相连,第二选通电路的一端还与负载相连;控制电路,控制电路分别与电压转换电路、第一选通电路和第二选通电路相连,控制电路用于,当第一选通电路处于导通状态时,控制供电电源通过电压转换电路给电池快充;当第二选通电路处于导通状态时,控制供电电源通过电压转换电路给电池预充或恒压充,或者控制电池给负载供电。
根据本公开的电源电路,通过共用电压转换电路,并通过第一选通电路和第二选通电路的配合可在同一个电路中实现电荷泵功能和降压充电功能,从而通过元器件复用可实现快充以及预充或恒压充,减少了元器件的使用,降低了布板面积和成本。
为达到上述目的,本公开第二方面实施例提出了一种电子设备,包括前述的电源电路。
根据本公开的电子设备,通过前述的电源电路,通过共用电压转换电路,并通过第一选通电路和第二选通电路的配合可在同一个电路中实现电荷泵和降压功能,从而通过元器件复用可实现快充以及预充或恒压充,减少了元器件的使用,降低了布板面积和成本。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1为根据本公开一个实施例的电源电路的结构示意图;
图2为根据本公开一个实施例的电源电路的电路图;
图3为根据本公开另一个实施例的电源电路的电路图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例提出的电源电路及电子设备。
图1为根据本公开一个实施例的电源电路的结构示意图。参考图1所示,该电源电路100包括:电压转换电路110、第一选通电路120、第二选通电路130和控制电路140。
其中,电压转换电路110的输入端与供电电源相连;第一选通电路120的一端与电压转换电路110的输出端相连,第一选通电路120的另一端与电池相连;第二选通电路130的一端通过电感L与电压转换电路110的输出端相连,第二选通电路130的另一端与电池相连,第二选通电路130的一端还与负载相连。
控制电路140分别与电压转换电路110、第一选通电路120和第二选通电路130相连,控制电路140用于,当第一选通电路120处于导通状态时,控制供电电源通过电压转换电路110给电池快充;当第二选通电路130处于导通状态时,控制供电电源通过电压转换电路110给电池预充或恒压充,或者控制电池给负载供电。
具体来说,图1所示电路可具有电荷泵功能、降压充电功能和放电功能。其中,电荷泵功能是指利用电容储能进行直流-直流的电压变换;降压充电功能是指利用电感储能进行直流-直流的电压变换且输出电压低于输入电压;放电功能是指电池对外放电。
电荷泵功能可由电压转换电路110和第一选通电路120实现。基于充电需求,当需要对电池进行大功率快充时,控制电路140可控制第一选通电路120处于导通状态,第二选通电路130处于断开状态,此时供电电源提供的电压经电压转换电路110转换后,通过第一选通电路120直接进入电池,给电池充电,整个充电回路的损耗降低至最低,具有较高的充电效率。
降压充电功能可由电压转换电路110、电感L和第二选通电路130实现。基于充电需求,当需要对电池进行预充或恒压充时,控制电路140可控制第二选通电路130处于导通状态,第一选通电路120处于断开状态,此时供电电源提供的电压经电压转换电路110对电感L进行充放电以实现电压转换,再通过第二选通电路130进入电池,给电池充电。需要说明的是,由于电感L还与负载相连,因此在给电池充电过程中还可以给负载供电。
放电功能可由第二选通电路130实现。基于放电需求,当需要电池给负载供电时,控制电路140可控制第二选通电路130处于导通状态,第一选通电路120处于断开状态,电压转换电路150不工作,此时电池的电压通过第二选通电路130直接进入负载,且不会经过电感L,不仅实现了电池对负载的供电且电路损耗降低至最低,具有较高的放电效率。
上述实施例中,通过共用电压转换电路,并通过第一选通电路和第二选通电路的配合可在同一个电路中实现电荷泵功能和降压充电功能,从而通过元器件复用可实现快充以及预充或恒压充,减少了元器件的使用,降低了布板面积和成本。
在一些实施例中,参考图2所示,电压转换电路110包括:第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4,其中,第一开关Q1的第一端与电压转换电路110的输入端相连(也即与供电电源相连),第一开关Q1的控制端与控制电路140相连;第二开关Q2的第一端与第一开关Q1的第二端相连,第二开关Q2的控制端与控制电路140相连;第三开关Q3的第一端和第二开关Q2的第二端相连后与电压转换电路110的输出端相连(也即分别与第一选通电路120和电感L相连),第三开关Q3的控制端与控制电路140相连;第四开关Q4的第一端与第三开关Q3的第二端相连,第四开关Q4的第二端接地GND,第四开关Q4的控制端与控制电路140相连。
进一步的,继续参考图2所示,第二开关Q2的第一端和第一开关Q1的第二端相连后还与第一电容C1的一端相连,第四开关Q4的第一端和第三开关Q3的第二端相连后还与第一电容C1的另一端相连。
需要说明的是,第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4可均为P型MOS管,当其为P型MOS管时,各个开关的第一端均为漏极,第二端为源极,控制端为栅极。
参考图2所示,当需要对电池进行大功率快充时,第一开关Q1和第三开关Q3作为一组实现同步通断,第二开关Q2和第四开关Q4作为一组实现同步通断,两组开关互补导通,同时利用第一电容C1的储能功能实现电荷泵功能,并通过第一选通电路120对电池充电。
具体来说,设开关的占空比为D,在0<t<D*T(t为实时时间,T为开关的开关周期)时,第一开关Q1和第三开关Q3导通,第二开关Q2和第四开关Q4关断,此时第一电容C1充电以进行储能,并通过第一选通电路120给电池充电;在D*T<t<T时,第一开关Q1和第三开关Q3关断,第二开关Q2和第四开关Q4导通,此时第一电容C1放电,并通过第一选通电路120给电池充电。需要说明的是,为了获得最好的电荷转移效率,占空比D可设为50%,此时电源电路100的输出电压与供电电源提供的电压比值为1/2,实现了1/2的电荷泵功能。
当需要对电池进行预充或恒压充时,可通过对第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4进行通断控制,并通过第二选通电路130对电池充电。
作为一种示例,可将第一开关Q1和第二开关Q2作为一个主开关,将第三开关Q3和第四开关Q4作为同步开关(功能与二极管相同),以实现两电平电压输出。
具体来说,设开关的占空比为D,在0<t<D*T(t为实时时间,T为开关的开关周期)时,第一开关Q1和第二开关Q2导通,第三开关Q3和第四开关Q4关断,此时电感L充电以进行储能,并通过第二选通电路130给电池充电;在D*T<t<T时,第一开关Q1和第二开关Q2关断,第三开关Q3和第四开关Q4导通,此时电感L放电,并通过第二选通电路120给电池充电。需要说明的是,可根据充电需求调整占空比D的大小,以调整电池的充电电压和充电电流。
作为另一种示例,可通过控制第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4交错导通以实现三电平电压输出。需要说明的是,在进行三电平输出时,需要判断电源电路100的输出电压与供电电源提供的电压的比值,若比值小于1/2,则通过对开关的通断使其输出电压在Vin/2(Vin为供电电源提供的电压,也即电源电路100的输入电压)和0之间切换,以实现0-Vin/2的电压输出;若比值大于1/2,则通过对开关的通断使其输出电压在Vin/2和Vin之间切换,以实现Vin/2-Vin的电压输出。
具体来说,当开关的占空比D<0.5时,在一个开关周期T中,若0<t<D*T,则控制第一开关Q1和第三开关Q3导通,第二开关Q2和第四开关Q4关断,第一电容C1和电感L充电,并通过第二选通电路130给电池充电;若D*T<t<0.5T,则控制第一开关Q1和第二开关Q2关断,第三开关Q3和第四开关Q4导通,第一电容C1未构成回路, 未放电,电感L放电,并通过第二选通电路130给电池充电;若0.5T<t<D*T+0.5T,则控制第一开关Q1和第二开关Q3关断,第二开关Q2和第四开关Q4导通,此时第一电容C1放电,电感L充电,并通过第二选通电路130给电池充电;若D*T+0.5T<t<T,则控制第一开关Q1和第二开关Q2关断,第三开关Q3和第四开关Q4导通,第一电容C1未构成回路,未放电,电感L放电,并通过第二选通电路130给电池充电。需要说明的是,在上述第一电容C1充放电过程中,输出电压最高为输入电压的一半,通过调整占空比D,可以实现将输出电压在0至Vin/2的范围内调节。
当开关的占空比D为0.5≤D<1时,在一个开关周期T内,若0<t<D*T-0.5T,则控制第一开关Q1和第二开关Q2导通,第三开关Q3和第四开关Q4关断,第一电容C1未构成回路,电感L充电,并通过第二选通电路130给电池充电;若D*T-0.5T<t<0.5T,则控制第一开关Q1和第三开关Q3导通,第二开关Q2和第四开关Q4关断,第一电容C1充电以进行储能,电感L放电,并通过第二选通电路130个电池充电;若0.5T<t<D*T,则控制第一开关Q1和第二开关Q2导通,第三开关Q3和第四开关Q4关断,第一电容C1未构成回路,电感L充电,并通过第二选通电路130给电池充电;若D*T<t<T,则控制第一开关Q1和第三开关Q3关断,第二开关Q2和第四开关Q4导通,第一电容C1放电,电感L放电,并通过第二选通电路130给电池充电。在以上过程中,当0<t<D*T-0.5T或0.5T<t<D*T时,由于第一开关Q1和第二开关Q2均导通,输入电压与输出电压相等,在其余状况下,输出电压为输入电压的一半。通过调整占空比D,可以实现将输出电压在Vin/2至Vin的范围内调节。
上述实施例中,通过共用电压转换电路,并通过第一选通电路和第二选通电路的配合可在同一个电路中实现电荷泵功能和降压充电功能,元器件复用率高,集成度高,成本低,并且在快充时,可直接通过第一选通电路给电池充电,避免了电感和第二选通电路的损耗。
在一些实施例中,参考图2所示,第一选通电路120包括:第五开关Q5,第五开关Q5的第一端与电压转换电路110的输出端相连,第五开关Q5的第二端与电池相连,第五开关Q5的控制端与控制电路140相连。需要说明的是,第五开关Q5可为P型MOS管,当其为P型MOS管时,其第一端为漏极,第二端为源极,控制端为栅极。
第二选通电路130包括:第六开关Q6,第六开关Q6的第一端通过电感L与电压转换电路110的输出端相连,第六开关Q6的第二端与电池相连,第六开关Q6的控制端与控制电路140相连。需要说明的是,第六开关Q6可为P型MOS管,当其为P型MOS管时,其第一端均为漏极,第二端为源极,控制端为栅极。
控制电路140可根据充电需求控制第五开关Q5和第六开关Q6的通断,并通过前述方式对电压转换电路110进行控制,以实现电池的快充、预充、恒压充或给负载供电。
具体来说,在电源电路100给电池充电过程中,可先对电池进行小电流预充,此时可控制第六开关Q6导通,第五开关Q5关断,以使电压转换电路110的输出端通过电感L与电池相连,并通过前述方式对电压转换电路110进行控制,以给电池预充;在预充结束后,可进行恒流充,此时可进行快充,可控制第五开关Q5导通,第六开关Q6关断,以使电压转换电路100的输出端与电池直接相连,并通过前述方式对电压转换电路110进行控制,以给电池进行快充;当电池电压达到一定值时,可对电池进行恒压充,此时可控制第六开关Q6导通,第五开关Q5关断,以使电压转换电路110的输出端通过电感L与电池相连,并通过前述方式对电压转换电路110进行控制,以给电池恒压充。
当需要给负载供电时,可控制第六开关Q6导通,第五开关Q5关断,以使电池直接与负载相连,以使电池直接给负载供电。
上述实施例中,通过根据充电需求控制第五开关Q5和第六开关Q6的通断,并通过前述方式对电压转换电路110进行控制,能够实现电池的快充、预充、恒压充,进而实现电池的整个充电流程,且电路元器件复用率高,电路集成度高,成本低,同时可给负载供电。
在一些实施例中,参考图3所示,第五开关Q5的第二端还通过第二电容C2接地GND,以在对电池快充时,对电压转换电路110的输出电压进行滤波和平滑处理,提升电池充电的稳定性。第六开关Q6的第一端还通过第三电容C3接地GND,以在对电池预充或恒压充时,对输出电压进行滤波和平滑处理,提升电池充电的稳定性,以及在电池给负载供电时,提升电池供电的稳定性。
在一些实施例中,继续参考图3所示,上述的电源电路100还包括:第七开关Q7,第七开关Q7的第一端与供电电源相连,第七开关Q7的第二端与电压转换电路110的输入端相连,第七开关Q7的控制端与控制电路140相连。
需要说明的是,第七开关Q7可为P型MOS管,当其为P型MOS管时,其第一端为漏极,第二端为源极,控制端为栅极。
当供电电源通过电源电路100给电池充电时,控制电路140控制第七开关Q7导通;当电池给负载供电时,控制电路140控制第七开关Q7关断,保证了电池提供的电压不会通过第一开关Q1和第二开关Q2倒灌入供电电源,例如当第一开关Q1和第二开关Q2为具有体二极管的PMOS管时,可以保证电池提供的电压不会通过第一开关Q1和第二开关Q2的体二极管倒灌入供电电源,从而达到保护设备安全的效果。
在一些实施例中,参考图3所示,控制电路140包括:驱动器141和控制器142,控制器142通过驱动器141与电压转换电路110、第一选通电路120、第二选通电路130和第七开关Q7相连。其中,控制器142写入了对电源电路100的控制逻辑,以实现对电池的快充、预充或恒压充,以及电池对负载的供电,具体参考前述,此处不再赘述;驱动器141内部集成了升压电路,能够将驱动电压升高到足以打开上述各开关,该驱动器141为常规设计,此处不做详细说明。
进一步的,继续参考图3所示,上述的电压转换电路110、第一选通电路120、第二选通电路130、控制电路140及第七开关Q7,可集成设置在同一芯片200中,由于电压转换电路110的复用,使得芯片200集成度高,元器件复用率高,不均能够同时实现电荷泵功能、降压充电功能和放电功能,而且有利于芯片小型化和降低成本。
综上所述,根据本公开的电源电路,通过共用电压转换电路,并通过第一选通电路和第二选通电路的配合可在同一个电路中实现电荷泵功能和降压充电功能,从而通过元器件复用可实现快充以及预充或恒压充,减少了元器件的使用,降低了布板面积和成本。
在一些实施例中,还提供一种电子设备,其包括前述的电源电路。
根据本公开的电子设备,通过前述的电源电路,通过共用电压转换电路,并通过第一选通电路和第二选通电路的配合可在同一个电路中实现电荷泵和降压功能,从而通过元器件复用可实现快充以及预充或恒压充,减少了元器件的使用,降低了布板面积和成本。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个 元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 电源电路,包括:
    电压转换电路,所述电压转换电路的输入端与供电电源相连;
    第一选通电路,所述第一选通电路的一端与所述电压转换电路的输出端相连,所述第一选通电路的另一端与电池相连;
    第二选通电路,所述第二选通电路的一端通过电感与所述电压转换电路的输出端相连,所述第二选通电路的另一端与所述电池相连,所述第二选通电路的一端还与负载相连;
    控制电路,所述控制电路分别与所述电压转换电路、所述第一选通电路和所述第二选通电路相连,所述控制电路用于,当所述第一选通电路处于导通状态时,控制所述供电电源通过所述电压转换电路给所述电池快充;当所述第二选通电路处于导通状态时,控制所述供电电源通过所述电压转换电路给所述电池预充或恒压充,或者控制所述电池给所述负载供电。
  2. 根据权利要求1所述的电源电路,其中,所述电压转换电路包括:
    第一开关,所述第一开关的第一端与所述电压转换电路的输入端相连,所述第一开关的控制端与所述控制电路相连;
    第二开关,所述第二开关的第一端与所述第一开关的第二端相连,所述第二开关的控制端与所述控制电路相连;
    第三开关,所述第三开关的第一端和所述第二开关的第二端相连后与所述电压转换电路的输出端相连,所述第三开关的控制端与所述控制电路相连;
    第四开关,所述第四开关的第一端与所述第三开关的第二端相连,所述第四开关的第二端接地,所述第四开关的控制端与所述控制电路相连。
  3. 根据权利要求2所述的电源电路,其中,所述第二开关的第一端和所述第一开关的第二端相连后还与第一电容的一端相连,所述第四开关的第一端和所述第三开关的第二端相连后还与所述第一电容的另一端相连。
  4. 根据权利要求1所述的电源电路,其中,所述第一选通电路包括:
    第五开关,所述第五开关的第一端与所述电压转换电路的输出端相连,所述第五开关 的第二端与所述电池相连,所述第五开关的控制端与所述控制电路相连。
  5. 根据权利要求4所述的电源电路,其中,所述第五开关的第二端还通过第二电容接地。
  6. 根据权利要求1所述的电源电路,其中,所述第二选通电路包括:
    第六开关,所述第六开关的第一端通过所述电感与所述电压转换电路的输出端相连,所述第六开关的第二端与所述电池相连,所述第六开关的控制端与所述控制电路相连。
  7. 根据权利要求6所述的电源电路,其中,所述第六开关的第一端还通过第三电容接地。
  8. 根据权利要求1所述的电源电路,其中,所述电源电路还包括:
    第七开关,所述第七开关的第一端与所述供电电源相连,所述第七开关的第二端与所述电压转换电路的输入端相连,所述第七开关的控制端与所述控制电路相连。
  9. 根据权利要求8所述的电源电路,其中,所述电压转换电路、所述第一选通电路、所述第二选通电路、所述控制电路和所述第七开关集成设置在同一芯片中。
  10. 根据权利要求8所述的电源电路,其中,所述控制电路包括驱动器和控制器,所述控制器通过所述驱动器与所述电压转换电路、所述第一选通电路、所述第二选通电路和所述第七开关相连。
  11. 电子设备,包括根据权利要求1-10中任一项所述的电源电路。
PCT/CN2022/138687 2022-02-11 2022-12-13 电源电路及电子设备 WO2023151375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220284858.5 2022-02-11
CN202220284858.5U CN216929876U (zh) 2022-02-11 2022-02-11 电源电路及电子设备

Publications (1)

Publication Number Publication Date
WO2023151375A1 true WO2023151375A1 (zh) 2023-08-17

Family

ID=82265214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138687 WO2023151375A1 (zh) 2022-02-11 2022-12-13 电源电路及电子设备

Country Status (2)

Country Link
CN (1) CN216929876U (zh)
WO (1) WO2023151375A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216929876U (zh) * 2022-02-11 2022-07-08 Oppo广东移动通信有限公司 电源电路及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697647A (zh) * 2020-06-08 2020-09-22 珠海市魅族科技有限公司 一种充电电路及终端、充电电路的控制方法及装置
CN113507149A (zh) * 2021-06-29 2021-10-15 珠海智融科技有限公司 一种混合模式充电电路及充电方法
CN113595177A (zh) * 2021-07-12 2021-11-02 南京矽力微电子技术有限公司 混合模式充电电路、系统及充电方法
CN216929876U (zh) * 2022-02-11 2022-07-08 Oppo广东移动通信有限公司 电源电路及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697647A (zh) * 2020-06-08 2020-09-22 珠海市魅族科技有限公司 一种充电电路及终端、充电电路的控制方法及装置
CN113507149A (zh) * 2021-06-29 2021-10-15 珠海智融科技有限公司 一种混合模式充电电路及充电方法
CN113595177A (zh) * 2021-07-12 2021-11-02 南京矽力微电子技术有限公司 混合模式充电电路、系统及充电方法
CN216929876U (zh) * 2022-02-11 2022-07-08 Oppo广东移动通信有限公司 电源电路及电子设备

Also Published As

Publication number Publication date
CN216929876U (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US10790742B1 (en) Multi-level power converter with improved transient load response
US8854019B1 (en) Hybrid DC/DC power converter with charge-pump and buck converter
US20240055881A1 (en) Hybrid-mode charging circuit, and charging method
US20020047309A1 (en) DC to DC converter and power management system
US20220140651A1 (en) Circuit for Battery Charging and System Supply, Combining Capacitive and Inductive Charging
CN111313707B (zh) 一种dc/dc电源转换系统
WO2023151375A1 (zh) 电源电路及电子设备
WO2022062425A1 (zh) 一种开关电容型直流/直流变换器、开关电源及控制方法
CN106887953A (zh) 开关电源装置
CN105939107A (zh) 一种混合型准开关升压dc-dc变换器
US9960619B2 (en) Battery device and battery control device
WO2020140256A1 (zh) Dcdc变换器
TWI556559B (zh) A Bidirectional DC - DC Converter with Adaptive Phase Shift Angle Control Mechanism
CN213990297U (zh) 一种无线充电接收装置和无线充电装置
CN211456754U (zh) 一种降压输出的移动电源
CN110601535B (zh) 适用于双节电池系统中的前级稳压器及其控制方法
CN115882722A (zh) 具有飞电容的混合降压-升压直流-直流转换器
CN114785114A (zh) 一种高电压变比的混合模式双相功率变换器
CN210111854U (zh) 一种dc-dc boost自充电电路
CN103248222A (zh) 升压式电压转换器
WO2021102998A1 (zh) 电压调节模块、充电模组和充电桩
CN113794374B (zh) 一种适用于电池供压的混合模式升压变换器
WO2022241625A1 (zh) 电源电路及终端设备
CN114285280B (zh) 一种混合型无缝模式过渡的降压-升压开关电源转换器
CN116887478B (zh) 一种同步整流汽车led灯驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925726

Country of ref document: EP

Kind code of ref document: A1