WO2023149147A1 - 冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機 - Google Patents

冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機 Download PDF

Info

Publication number
WO2023149147A1
WO2023149147A1 PCT/JP2022/048537 JP2022048537W WO2023149147A1 WO 2023149147 A1 WO2023149147 A1 WO 2023149147A1 JP 2022048537 W JP2022048537 W JP 2022048537W WO 2023149147 A1 WO2023149147 A1 WO 2023149147A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
flow rate
turbo compressor
refrigerator
Prior art date
Application number
PCT/JP2022/048537
Other languages
English (en)
French (fr)
Inventor
政輝 石井
信介 尾崎
建次 岩本
裕次郎 布袋
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Publication of WO2023149147A1 publication Critical patent/WO2023149147A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Definitions

  • the choke line the curve that connects the choke flow rate at each rotation speed.
  • the power of the compressor also increases, and there is a possibility that the motor will be overloaded before it reaches choke, making it impossible to operate.
  • the maximum flow at a given speed is therefore determined by choke or overload.
  • the choke line is defined as the maximum flow rate. Therefore, the operable region of the compressor is an intermediate region between the surge line and the choke line.
  • Patent Literature 1 a general operating method is to open the bypass valve when the refrigerator is started at room temperature, prevent surging by securing the flow rate, and close the bypass valve after the cooling has sufficiently progressed. commonly known.
  • Patent Document 2 the operation of a multi-stage compressor that avoids surging by using an inlet guide vane (compressor inlet flow control valve) and a bypass valve is shown.
  • Patent Document 1 prevents surging of the compressor by opening the bypass valve at startup and closing it after startup, but does not mention a method for accelerating the cool-down speed.
  • the number of components increases, which increases the risk of failure and cost of the device, so a simpler device is desirable.
  • inlet guide vanes used in refrigerators for air conditioning equipment, etc. are not provided.
  • the design flow rate of the turbo compressor can be secured, and there is little possibility of surging. Therefore, if control is added to prevent surging during unsteady cool-down, there is no problem in terms of operation.
  • the present invention aims to provide a refrigerator control method, a refrigerator control program, and a refrigerator capable of improving the cooldown speed while preventing surging in the cooldown of a turbo compressor. Make it an issue.
  • a turbo compressor the first refrigerant disposed in the first circulation path, before being adiabatically compressed by the turbo compressor, and the first refrigerant after being adiabatically compressed by the turbo compressor a main heat exchanger that exchanges heat with a first refrigerant; an expansion turbine that is arranged in the first circulation path and adiabatically expands the first refrigerant;
  • a secondary heat exchanger arranged in a circulation path for exchanging heat between the first refrigerant and the second refrigerant; measuring means arranged in the first circulation path; and the turbo compressor.
  • a control method for a refrigerator comprising a bypass valve that opens and closes the Step 1 of opening the bypass valve; step 2 of starting the expansion turbine; Step 3 of starting the turbo compressor at a rotational speed at which no-load operation is possible; A step 4 of increasing the rotation speed of the turbo compressor so that the relationship between the compressor flow rate and the pressure ratio transitions to the low flow rate, high pressure ratio side within the range of the operable region; Step 5 of closing the bypass valve; a step 6 of cooling down until the measured value of the measuring means reaches a predetermined value;
  • a refrigerator control method including [2]
  • the measuring means includes a thermometer for measuring the temperature of the first refriger
  • step 4 after increasing the rotation speed of the turbo compressor so that the relationship between the compressor flow rate and the pressure ratio transitions to the end of the low flow rate, high pressure ratio side within the range of the operable region ,
  • a refrigerator control program that causes a computer to execute the refrigerator control method according to any one of [1] to [5].
  • a refrigerator comprising a control device loaded with the control program for the refrigerator according to [6].
  • a refrigerator control method capable of improving the cooldown speed while preventing surging in the cooldown of a turbo compressor. be able to.
  • FIG. 1 is a schematic configuration diagram of a refrigerator according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of a refrigerator according to the second embodiment.
  • FIG. 3 is a schematic configuration diagram of a refrigerator according to the third embodiment.
  • FIG. 4 shows the flow rate of the first refrigerant on the outlet side of the turbo compressor (compressor flow rate, horizontal axis) and the outlet of the turbo compressor when the refrigerator control method of the present invention is executed.
  • 10 is a graph showing the relationship between the value (pressure ratio, vertical axis) of the ratio of the pressure of the first refrigerant on the inlet side to the pressure of the first refrigerant on the inlet side (outlet side pressure/inlet side pressure).
  • FIG. 5 shows the flow rate of the first refrigerant on the outlet side of the turbo compressor (compressor flow rate, horizontal axis) and the outlet of the turbo compressor when the refrigerator control method of the present invention is executed.
  • 10 is a graph showing the relationship between the value (pressure ratio, vertical axis) of the ratio of the pressure of the first refrigerant on the inlet side to the pressure of the first refrigerant on the inlet side (outlet side pressure/inlet side pressure).
  • FIG. 6 shows the flow rate of the first refrigerant on the outlet side of the turbo compressor (compressor flow rate, horizontal axis) and the outlet of the turbo compressor when the refrigerator control method of the present invention is executed.
  • FIG. 8 shows the flow rate (compressor flow rate, horizontal axis) of the first refrigerant on the outlet side of the turbo compressor and the outlet side of the turbo compressor when the conventional refrigerator control method is executed.
  • 2 is a graph showing the relationship between the value (pressure ratio, vertical axis) of the ratio (outlet side pressure/inlet side pressure) between the pressure of the first refrigerant and the pressure of the first refrigerant on the inlet side.
  • the numerical range represented using “-” includes the numerical values on both sides of "-”.
  • Stress is a phenomenon in which the compressor itself or its piping is damaged due to the backflow and pulsation of the fluid discharged from the compressor, which accompanies intense sound and large vibrations.
  • Choke means a flow rate at which the flow velocity inside or at the exit of the compressor reaches the speed of sound and is not operable.
  • FIG. 1 is a schematic configuration diagram of a refrigerator 101 according to the first embodiment of the present invention.
  • the refrigerator 101 includes a first circulation path L1 through which the first coolant M1 circulates and a second circulation path L2 through which the second coolant M2 circulates.
  • the first circulation path L1 includes a turbo compressor 11 for adiabatically compressing the first refrigerant M1, and the first refrigerant M1 before being adiabatically compressed by the turbo compressor 11 and the turbo compressor.
  • the main heat exchanger 13 performs heat exchange with the first refrigerant M1 after being adiabatically compressed by 11 to recover cold heat, and the expansion turbine 15 adiabatically expands the first refrigerant M1 to generate cold. are placed.
  • a sub heat exchanger 14 that exchanges heat between the first refrigerant M1 and the second refrigerant M2 is arranged in the first circulation path L1 and the second circulation path L2.
  • thermometer 16 for measuring the temperature of the first refrigerant M1 is arranged on the inlet side of the expansion turbine 15 on the first circulation path L1. Although the thermometer 16 is arranged on the inlet side of the expansion turbine 15 in FIG.
  • the refrigerator 101 includes a first inverter 22 that controls the turbo compressor 11, a second inverter 23 that controls the expansion turbine 15, and a control device that controls the first inverter 22 and the second inverter 23. 21. Opening and closing of the bypass valve 12 is controlled by the controller 21 .
  • the control device 21 and the bypass valve 12 are connected by a communication line C1.
  • the control device 21 and the first inverter 22 are connected by a communication line C2, and the first inverter 22 and the second inverter 23 are connected by a communication line C3.
  • the first inverter 22 and the turbo compressor 11 are connected by a communication line C4.
  • the second inverter 23 and the expansion turbine 15 are connected by a communication line C5.
  • the controller 21 and the thermometer 16 are connected by a communication line C6, and the measured value of the thermometer 16 is input to the controller 21.
  • the turbo compressor 11 and the expansion turbine 15 can be operated and their rotational speeds adjusted according to commands from the first inverter 22 and the second inverter 23, respectively.
  • the first inverter 22 is supplied with power and controlled by the control device 21 .
  • the second inverter 23 is supplied with power and controlled by the controller 21 via the first inverter 22 . Power supply and control input/output to the second inverter 23 may be performed directly from the control device 21 without going through the first inverter 22, or may be performed from a control device independent of the control device 21.
  • the refrigerator 101 supplies a first refrigerant M1 adiabatically compressed by the turbo compressor 11 to the downstream side of the turbo compressor 11 and the upstream side of the main heat exchanger 13. 11 is provided with a bypass line L3.
  • a bypass valve 12 for opening and closing the bypass line L3 is arranged on the bypass line L3.
  • the bypass valve 12 is an automatic valve driven by a command from the control device 21, and is an electromagnetic valve capable of switching only between fully open/fully closed or a control valve capable of adjusting the degree of opening.
  • FIG. 2 is a schematic configuration diagram of a refrigerator 102 according to a second embodiment of the present invention. Below, the difference between the refrigerator 102 according to the second embodiment of the present invention and the refrigerator 101 according to the first embodiment of the present invention will be mainly described.
  • the refrigerator 102 is provided with a flow meter 17 for measuring the flow rate of the first refrigerant M1 on the outlet side of the turbo compressor 11 on the first circulation path L1.
  • the flow meter 17 may be arranged on the inlet side of the turbo compressor 11 .
  • the controller 21 and the flowmeter 17 are connected by a communication line C7, and the measured value of the flowmeter 17 is input to the controller 21.
  • thermometer 16 is not shown in FIG. 2, the thermometer 16 for measuring the temperature of the first refrigerant M1 is arranged on the inlet side or outlet side of the expansion turbine 15 or the outlet side of the auxiliary heat exchanger 14. may be In this case, the controller 21 and the thermometer 16 are connected by a communication line, and the measured value of the thermometer 16 is input to the controller 21 .
  • FIG. 3 is a schematic configuration diagram of a refrigerator 103 according to a third embodiment of the invention.
  • the following description focuses on the differences between the refrigerator 103 according to the third embodiment of the present invention, the refrigerator 102 according to the second embodiment of the present invention, and the refrigerator 101 according to the first embodiment of the present invention. explain.
  • the refrigerator 103 has a differential pressure gauge 18 that measures the pressure difference between the first refrigerant M1 between the inlet side and the outlet side of the turbo compressor 11 on the first circulation path L1.
  • the control device 21 and the differential pressure gauge 18 are connected by a communication line C8, and the measured value of the differential pressure gauge 18 is input to the control device 21.
  • thermometer 16 and the flow meter 17 are not shown in FIG. may be placed on the side.
  • the controller 21 and the thermometer 16 are connected by a communication line, and the measured value of the thermometer 16 is input to the controller 21 .
  • a flow meter 17 for measuring the flow rate of the first refrigerant M1 may be arranged on the outlet side or the inlet side of the turbo compressor 11 .
  • the controller 21 and the flowmeter 17 are connected by a communication line, and the measured value of the flowmeter 17 is input to the controller 21 .
  • a control method for the refrigerator 101 according to the first embodiment of the present invention includes the following steps 1 to 6 (see FIG. 4).
  • Step 1 of opening the bypass valve 12 (2) Step 2 of starting the expansion turbine 15 (3) Step 3 of starting the turbo-type compressor 11 at a rotational speed at which no-load operation is possible (4) Step 4 of increasing the rotational speed of the turbo compressor 11 so that the relationship between the compressor flow rate and the pressure ratio transitions to the low flow rate, high pressure ratio side within the operable range.
  • Step 5 of closing the bypass valve 12 (6) Step 6 of cooling down until the measured value of the thermometer 16 reaches a predetermined value It is preferable to perform steps 1 to 6 in this order.
  • the term "low flow rate, high pressure ratio side” means the range of low flow rate, high pressure ratio in graphs showing the relationship between compressor flow rate and pressure ratio (see, for example, FIGS. 4 to 8). do.
  • the low flow rate and high pressure ratio range includes the surge line, the choke line, the line indicating the number of revolutions immediately before the compressor process 4, and the compressor process In the operable range surrounded by the line indicating the number of revolutions immediately after 6, the range of high pressure ratio and low flow rate side in the four ranges created by the four points that divide each line 1:1 means.
  • the "low flow rate and high pressure ratio side” is a range of flow rate that is less than half (50% or less) of the entire flow rate in the graph showing the relationship between the compressor flow rate and the pressure ratio that can be operated. .
  • FIG. 4 shows the flow rate of the first refrigerant M1 on the outlet side of the turbo compressor 11 (compressor flow rate, horizontal axis ) and the ratio of the pressure of the first refrigerant M1 on the outlet side of the turbo compressor 11 and the pressure of the first refrigerant M1 on the inlet side (outlet side pressure/inlet side pressure) (pressure ratio, vertical axis).
  • the bypass valve 12 is opened, and (2) the expansion turbine 15 is activated.
  • the turbo-type compressor 11 is started at a rotational speed at which no-load operation is possible.
  • the flow rate (compressor flow rate) and pressure ratio of the first refrigerant M1 increase.
  • the rotation speed of the turbo compressor 11 is increased so that the relationship between the compressor flow rate and the pressure ratio transitions to the low flow rate, high pressure ratio side within the operable range.
  • the flow rate of the refrigerant M1 passing through the bypass line L3 is set to zero or very small.
  • Cool down until the measured value of the thermometer 16 reaches a predetermined value.
  • the turbo compressor 11 is switched to a control mode such as PID control, and the rotational speed is controlled so that the measured value of the thermometer 16 becomes a constant value to prevent surging of the compressor. Gain a higher pressure ratio and improve cooldown speed.
  • FIG. 5 shows the flow rate of the first refrigerant M1 on the outlet side of the turbo compressor 11 (compressor flow rate, horizontal axis) and the ratio of the pressure of the first refrigerant M1 on the outlet side and the pressure of the first refrigerant M1 on the inlet side of the turbo compressor 11 (pressure ratio, vertical axis).
  • (1) The bypass valve 12 is opened, and (2) the expansion turbine 15 is activated. Next, (3) the turbo-type compressor 11 is started at a rotational speed at which no-load operation is possible. The flow rate (compressor flow rate) and pressure ratio of the first refrigerant M1 increase.
  • (3)-1 Immediately after that, the opening degree of the bypass valve 12 is adjusted and opened to reduce the flow rate of the bypass line L3.
  • the rotation speed of the turbo compressor 11 is increased so that the relationship between the compressor flow rate and the pressure ratio moves to the low flow rate, high pressure ratio side within the operable range.
  • the flow rate of the refrigerant M1 passing through the bypass line L3 is set to zero or very small.
  • Cool down until the measured value of the thermometer 16 reaches a predetermined value.
  • the turbo compressor 11 is switched to a control mode such as PID control, and the rotational speed is controlled so that the measured value of the thermometer 16 becomes a constant value to prevent surging of the compressor. Gain a higher pressure ratio and improve cooldown speed.
  • FIG. 6 shows the flow rate (compressed The relationship between the pressure ratio of the first refrigerant M1 on the outlet side of the turbo compressor 11 and the pressure of the first refrigerant M1 on the inlet side (pressure ratio, vertical axis). It is a graph showing. (1) The bypass valve 12 is opened, and (2) the expansion turbine 15 is activated. Next, (3) the turbo-type compressor 11 is started at a rotational speed at which no-load operation is possible. The flow rate (compressor flow rate) and pressure ratio of the first refrigerant M1 increase. (4) The rotation speed of the turbo compressor 11 is increased so that the relationship between the compressor flow rate and the pressure ratio moves to the low flow rate, high pressure ratio side within the operable range.
  • FIG. 7 shows the flow rate (compressed The relationship between the pressure ratio of the first refrigerant M1 on the outlet side of the turbo compressor 11 and the pressure of the first refrigerant M1 on the inlet side (pressure ratio, vertical axis). It is a graph showing. (1) The bypass valve 12 is opened, and (2) the expansion turbine 15 is activated. Next, (3) the turbo-type compressor 11 is started at a rotational speed at which no-load operation is possible. The flow rate (compressor flow rate) and pressure ratio of the first refrigerant M1 increase. After that, the following (4), (5), and (6) are executed simultaneously.
  • the rotation speed of the turbo compressor 11 is increased so that the relationship between the compressor flow rate and the pressure ratio moves to the low flow rate, high pressure ratio side within the operable range.
  • the flow rate of the refrigerant M1 passing through the bypass line L3 is set to zero or very small.
  • cooling down is performed until the measured value of the thermometer 16 reaches a predetermined value, and then the rotational speed is controlled so that the measured value of the thermometer 16 becomes a constant value.
  • cooling down is performed until the measured value of the flowmeter 17 reaches a predetermined value, and then the rotation speed is controlled so that the measured value of the flowmeter 17 becomes a constant value.
  • the surge line and choke line have been confirmed in advance, and the pressure ratio is estimated from the relationship between the flow rate and the rotation speed of the compressor. As in the first embodiment, it is possible to prevent compressor surging, obtain a high pressure ratio, and improve the cool-down speed.
  • cooling down is performed until the measured value of the thermometer 16 reaches a predetermined value, and then the rotational speed is controlled so that the measured value of the thermometer 16 becomes a constant value.
  • cooling down is performed until the measured value of the differential pressure gauge 18 reaches a predetermined value, and then the rotational speed is controlled so that the measured value of the differential pressure gauge 18 becomes a constant value.
  • the surge line and choke line have been confirmed in advance, and the flow rate of the compressor is estimated from the relationship between the pressure ratio and the rotation speed. As in the first embodiment, it is possible to prevent compressor surging, obtain a high pressure ratio, and improve the cool-down speed.
  • FIG. 8 shows the flow velocity (flow velocity, horizontal axis) of the first refrigerant M1 on the outlet side of the turbo compressor 11 and the turbo compressor when the conventional refrigerator control method is executed in the refrigerator 101.
  • 11 is a graph showing the relationship between the pressure ratio of the first refrigerant M1 on the outlet side and the pressure of the first refrigerant M1 on the inlet side (pressure ratio, vertical axis). The following steps 1' to 6' are executed.
  • Step 1' Open the bypass valve 12
  • Step 2' Start the expansion turbine 15
  • Step 3' Start the turbo compressor 11 at a low rotational speed
  • Step 3'-1 Adjust the degree of opening of the bypass valve 12
  • Step 4' Gradually increase the rotation speed of the turbo compressor 11 to a medium rotation speed
  • Step 5' Cool down until the measured value of the thermometer 16 reaches a predetermined value
  • Step 6' Close the bypass valve 12 Refrigerating machine of the present invention
  • the steps 5 and 6 are reversed, the flow rate increases during cool-down, so the pressure ratio decreases, the cool-down speed cannot be improved, and the cool-down takes time.
  • a refrigerator control program of the present invention is a refrigerator control program that causes a computer to execute the above-described refrigerator control method.
  • the refrigerator control program of the present invention is installed in, for example, the control device 21 and executed by a processor built in the control device 21 .
  • the flow rate of the first refrigerant does not increase during cool-down, and the pressure ratio between the outlet side and the inlet side of the turbo compressor does not decrease. can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

ターボ式の圧縮機のクールダウンにおけるサージングを防止しつつ、クールダウン速度を向上させることが可能である、冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機を提供することを目的とし、本発明はバイパス弁(12)を開とする工程1と、膨張タービン(15)を起動する工程2と、ターボ式の圧縮機(11)を無負荷運転が可能な回転数で起動する工程と、圧縮機流量と圧力比との関係が運転可能領域の範囲内における低流量高圧力比側を推移するように、ターボ式の圧縮機(11)の回転数を増速する工程と、バイパス弁(12)を閉とする工程と、温度計(16)の測定値が所定の値になるまでクールダウンする工程とを含む冷凍機(101)の制御方法を提供する。

Description

冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機
 本発明は、冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機に関する。
 断熱圧縮、等圧冷却、断熱膨張及び等圧加熱を繰り返す極低温の冷凍サイクルを利用する冷凍機は、送電ケーブル、限流器又は変圧器等の超電導電力機器の冷却に用いられる。超電導電力機器の冷却では、液体窒素、液体水素、液体へリウム等(以下、被冷却流体)を超電導電力機器に循環させ、超電導電力機器での発熱や系内の侵入熱により熱負荷を受けて昇温した被冷却流体が冷凍機によって所定の温度まで冷却される。冷凍機は大容量の冷凍能力が必要となる場合に適している。冷凍機の冷媒としてはネオンガス、ヘリウムガス等が用いられている。
 ターボ式の圧縮機は流量と圧力比との関係から、一定流量以下になるとサージングが発生する。回転数によりサージングが発生する流量は異なり、各回転数のサージング開始流量を結んだ曲線をサージラインと呼ぶ。ターボ式の圧縮機は膨張タービンが十分に冷えている状態(冷凍機の定常状態)において規定の流量となるようインペラやディフューザなどの内部構成部品が設計されている。また、膨張タービンは常温では流量が小さくなり、低温になると流量が増加する特性がある。したがって常温からの冷凍機起動時は、膨張タービンが常温のため、圧縮機流量は設計よりも小さくなりサージングが発生するおそれがある。そのため一般的に、常温時の膨張タービン流量の低下分を補うために、圧縮機出入口を接続するバイパスラインおよびバイパス弁が設けられ、バイパス弁の開閉で圧縮機流量を調整し、サージングを回避する。圧縮機流量及び圧力比は、タービン温度、圧縮機回転数及びバイパス弁開度により決定される。タービン温度及び圧縮機回転数が一定のとき、バイパス弁の開度を大きくすると、圧縮機流量は増加し圧力比は減少する。タービン温度及びバイパス弁開度が一定のとき、圧縮機回転数を大きくすると、圧縮機流量及び圧力比は増加する。圧縮機回転数及びバイパス弁開度が一定のとき、タービン温度が低下すると、圧縮機流量は増加し、圧力比は減少する。
 一方で、圧縮機流量が大きくなると、ある流量においてチョークが発生し運転が不可能となる。サージラインと同様に、各回転数におけるチョーク流量を結んだ曲線をチョークラインと呼ぶ。また、流量が大きくなると圧縮機の動力も大きくなり、チョークに達する前にモータが過負荷となり運転ができなくなる可能性もある。したがって、ある回転数における最大流量はチョーク又は過負荷により決定される。ただし、本明細書においては、便宜上、チョークラインを最大流量とする。したがって、圧縮機の運転可能領域はサージラインとチョークラインの中間領域となる。
 以上より、常温から所定の冷却温度まで冷却(クールダウン)する際に、圧縮機の圧力比および流量を運転可能領域内に保つ必要がある。さらに、クールダウン時間を極力短くすることで、被冷却流体の冷却が早期に可能となる。そのためには、クールダウン中の圧力比を極力高くすることが有効である。
 特許文献1が示すように、冷凍機の常温起動時にはバイパス弁を開状態とし、流量を確保することでサージングを防止し、十分に冷却が進んだ後バイパス弁を閉状態とする運転方法は一般的に知られている。
 特許文献2が示すように、インレットガイドベーン(圧縮機入口流量調節弁)およびバイパス弁を利用することで複数段の圧縮機についてもサージングを回避した運転が示されている。
特開2018-066511 特開2020-079688
 特許文献1では、バイパス弁の開度を起動時に開状態、起動後に閉状態とすることで、圧縮機のサージングを防止しているが、クールダウン速度を早める方法については言及されていない。
 特許文献2の方法では構成機器が多くなり、装置の故障リスク及びコストが高まるため、より簡便な装置が望ましい。また本用途においては、系内の圧力損失増加による冷凍能力の低下を防止するため、空調設備用冷凍機などに採用されるインレットガイドベーンは設けない。
 超電導電力機器向けの冷凍機は、クールダウンが完了し膨張タービンが冷却されれば、ターボ式の圧縮機の設計流量が確保でき、サージングの可能性は少ない。そのため、非定常であるクールダウン時においてサージングを防止する制御を加えれば運転上差し支えない。
 本発明は、ターボ式の圧縮機のクールダウンにおけるサージングを防止しつつ、クールダウン速度を向上させることが可能である、冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機を提供することを課題とする。
[1] 第1の冷媒が循環する第1の循環経路と、第2の冷媒が循環する第2の循環経路と、前記第1の循環経路に配置され、前記第1の冷媒を断熱圧縮するターボ式の圧縮機と、前記第1の循環経路に配置され、前記ターボ式の圧縮機により断熱圧縮される前の前記第1の冷媒と前記ターボ式の圧縮機により断熱圧縮された後の前記第1の冷媒との熱交換を行う主熱交換器と、前記第1の循環経路に配置され、前記第1の冷媒を断熱膨張する膨張タービンと、前記第1の循環経路及び前記第2の循環経路に配置され、前記第1の冷媒と前記第2の冷媒との熱交換を行う副熱交換器と、前記第1の循環経路に配置された測定手段と、前記ターボ式の圧縮機を制御する第1のインバータと、前記膨張タービンを制御する第2のインバータと、前記第1のインバータ及び前記第2のインバータの一方又は両方を制御する制御装置と、前記ターボ式の圧縮機の下流側で、かつ前記主熱交換器の上流側に前記ターボ式の圧縮機で断熱圧縮された前記第1の冷媒を前記ターボ式の圧縮機に戻すバイパスラインと、前記バイパスライン上に前記バイパスラインを開閉するバイパス弁と、を備える冷凍機の制御方法であって、
 前記バイパス弁を開とする工程1と、
 前記膨張タービンを起動する工程2と、
 前記ターボ式の圧縮機を無負荷運転が可能な回転数で起動する工程3と、
 前記ターボ式の圧縮機の回転数を圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側を推移するように増速する工程4と、
 前記バイパス弁を閉とする工程5と、
 前記測定手段の測定値が所定の値になるまでクールダウンする工程6と、
を含む冷凍機の制御方法。
[2] 前記測定手段が、前記膨張タービンの入口側若しくは出口側又は前記副熱交換器の出口側の前記第1の冷媒の温度を測定する温度計、前記ターボ式の圧縮機の出口側の前記第1の冷媒の流量を測定する流量計、及び前記ターボ式の圧縮機の入口側と出口側の前記第1の冷媒の圧力差を測定する差圧計からなる群から選択される少なくとも1種である、[1]に記載の冷凍機の制御方法。
[3] 前記工程3の直後に前記バイパス弁の開度を中間開度に変更する、[1]又は[2]に記載の冷凍機の制御方法。
[4] 前記工程4において、圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側末端を推移するように前記ターボ式の圧縮機の回転数を増速した後、予め定めた一定の回転数で保持した後、前記バイパス弁を閉とする、[1]~[3]のいずれかに記載の冷凍機の制御方法。
[5] 前記工程4、前記工程5及び前記工程6を同時に実行する、[1]~[3]のいずれかに記載の冷凍機の制御方法。
[6] [1]~[5]のいずれかに記載の冷凍機の制御方法をコンピュータに実行させる、冷凍機の制御プログラム。
[7] [6]に記載の冷凍機の制御プログラムを搭載した制御装置を備える、冷凍機。
 本発明によれば、ターボ式の圧縮機のクールダウンにおけるサージングを防止しつつ、クールダウン速度を向上させることが可能である、冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機を提供することができる。
図1は、第1の実施形態に係る冷凍機の概略構成図である。 図2は、第2の実施形態に係る冷凍機の概略構成図である。 図3は、第3の実施形態に係る冷凍機の概略構成図である。 図4は、本発明の冷凍機の制御方法を実行した場合の、ターボ式の圧縮機の出口側の第1の冷媒の流量(圧縮機流量、横軸)と、ターボ式の圧縮機の出口側の第1の冷媒の圧力と入口側の第1の冷媒の圧力との比(出口側圧力/入り口側圧力)の値(圧力比、縦軸)との関係を示すグラフである。 図5は、本発明の冷凍機の制御方法を実行した場合の、ターボ式の圧縮機の出口側の第1の冷媒の流量(圧縮機流量、横軸)と、ターボ式の圧縮機の出口側の第1の冷媒の圧力と入口側の第1の冷媒の圧力との比(出口側圧力/入り口側圧力)の値(圧力比、縦軸)との関係を示すグラフである。 図6は、本発明の冷凍機の制御方法を実行した場合の、ターボ式の圧縮機の出口側の第1の冷媒の流量(圧縮機流量、横軸)と、ターボ式の圧縮機の出口側の第1の冷媒の圧力と入口側の第1の冷媒の圧力との比(出口側圧力/入り口側圧力)の値(圧力比、縦軸)との関係を示すグラフである。 図7は、本発明の冷凍機の制御方法を実行した場合の、ターボ式の圧縮機の出口側の第1の冷媒の流量(圧縮機流量、横軸)と、ターボ式の圧縮機の出口側の第1の冷媒の圧力と入口側の第1の冷媒の圧力との比(出口側圧力/入り口側圧力)の値(圧力比、縦軸)との関係を示すグラフである。 図8は、従来の冷凍機の制御方法を実行した場合の、ターボ式の圧縮機の出口側の第1の冷媒の流量(圧縮機流量、横軸)と、ターボ式の圧縮機の出口側の第1の冷媒の圧力と入口側の第1の冷媒の圧力との比(出口側圧力/入り口側圧力)の値(圧力比、縦軸)との関係を示すグラフである。
 本発明において「~」を用いて表される数値範囲は「~」の両側の数値をその数値範囲に含む。
 「サージング」とは、圧縮機吐出流体の逆流・脈動により激しい音響と大きな振動を伴い、圧縮機自体又はその配管を損傷させてしまう現象をいう。
 「チョーク」とは、圧縮機内部又は出口の流速が音速に達し運転ができない流量をいう。
 以下では本発明の実施形態について詳細に説明するが、本発明は後述する実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り、種々の変形が可能である。
[冷凍機]
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る冷凍機101の概略構成図である。
 冷凍機101は、第1の冷媒M1が循環する第1の循環経路L1と、第2の冷媒M2が循環する第2の循環経路L2とを備えている。
 第1の循環経路L1には、第1の冷媒M1を断熱圧縮するターボ式の圧縮機11と、ターボ式の圧縮機11により断熱圧縮される前の第1の冷媒M1とターボ式の圧縮機11により断熱圧縮された後の第1の冷媒M1との熱交換を行い、冷熱を回収する主熱交換器13と、第1の冷媒M1を断熱膨張して寒冷を発生させる膨張タービン15とが配置されている。
 第1の循環経路L1及び第2の循環経路L2には、第1の冷媒M1と第2の冷媒M2との熱交換を行う副熱交換器14が配置されている。
 第1の循環経路L1上の膨張タービン15の入口側には、第1の冷媒M1の温度を測定する温度計16が配置されている。図1では、温度計16を膨張タービン15の入口側に配置しているが、膨張タービン15の出口側又は副熱交換器14の出口側に配置してもよい。
 冷凍機101は、ターボ式の圧縮機11を制御する第1のインバータ22と、膨張タービン15を制御する第2のインバータ23と、第1のインバータ22及び第2のインバータ23を制御する制御装置21とを備えている。
 バイパス弁12の開閉は制御装置21によって制御される。
 制御装置21とバイパス弁12とは通信ラインC1で接続されている。
 制御装置21と第1のインバータ22は通信ラインC2で接続され、第1のインバータ22と第2のインバータ23とは通信ラインC3で接続されている。
 第1のインバータ22とターボ式の圧縮機11とは通信ラインC4で接続されている。
 第2のインバータ23と膨張タービン15とは通信ラインC5で接続されている。
 制御装置21と温度計16とは通信ラインC6で接続され、温度計16の測定値は制御装置21に入力される。
 ターボ式の圧縮機11は第1のインバータ22からの指令により、膨張タービン15は第2のインバータ23からの指令により、それぞれ、運転及び回転数の調整が可能である。
 第1のインバータ22は、制御装置21により電力供給及び制御入出力がなされる。第2のインバータ23は、第1のインバータ22を介して制御装置21により電力供給及び制御入出力がなされる。第2のインバータ23への電力供給及び制御入出力は、第1のインバータ22を介さず、制御装置21から直接なされてもよいし、制御装置21とは独立した制御装置からなされてもよい。
 冷凍機101は、ターボ式の圧縮機11の下流側で、かつ主熱交換器13の上流側に、ターボ式の圧縮機11で断熱圧縮された第1の冷媒M1を、ターボ式の圧縮機11に戻すバイパスラインL3を備えている。
 バイパスラインL3上には、バイパスラインL3を開閉するバイパス弁12が配置されている。
 バイパス弁12は、制御装置21からの指令により駆動する自動弁であり、全開/全閉のみ切替え可能な電磁弁又は開度調節可能な調節弁である。
 図1に示す冷凍機101では、バイパスラインは、ターボ式の圧縮機11の出口側と入口側とを接続する経路としている。しかしながら、主熱交換器13と膨張タービン15の入口側との間と、膨張タービン15の出口側と主熱交換器13との間を接続する経路としてもよい。ただし、この場合、当該バイパスライン上に設置するバイパス弁を低温仕様にする必要があり、コスト増の要因となるため、ターボ式の圧縮機11の入口側と出口側とを接続する経路とすることが好ましい。
 バイパス弁12は、冷凍機常温起動時に開度全開において極力サージライン近辺の流量となるようなサイズを選定することが好ましい。バイパス弁本体及び周辺配管のコストが高くなるという欠点はあるが、裕度を持たせてサイズの大きいバイパス弁を用いてもよい。
(第2の実施形態)
 図2は、本発明の第2の実施形態に係る冷凍機102の概略構成図である。
 以下では本発明の第2の実施形態に係る冷凍機102と本発明の第1の実施形態に係る冷凍機101との相違点を中心に説明する。
 冷凍機102は、第1の循環経路L1上のターボ式の圧縮機11の出口側に、第1の冷媒M1の流量を測定する流量計17が配置されている。流量計17はターボ式の圧縮機11の入口側に配置されていてもよい。
 制御装置21と流量計17とは通信ラインC7で接続され、流量計17の測定値は制御装置21に入力される。
 図2には温度計16を図示していないが、第1の冷媒M1の温度を測定する温度計16が、膨張タービン15の入口側若しくは出口側又は副熱交換器14の出口側に配置されていてもよい。この場合、制御装置21と温度計16とは通信ラインで接続され、温度計16の測定値は制御装置21に入力される。
(第3の実施形態)
 図3は、本発明の第3の実施形態に係る冷凍機103の概略構成図である。
 以下では本発明の第3の実施形態に係る冷凍機103と本発明の第2の実施形態に係る冷凍機102及び本発明の第1の実施形態に係る冷凍機101との相違点を中心に説明する。
 冷凍機103は、第1の循環経路L1上のターボ式の圧縮機11の入口側と出口側の第1の冷媒M1の圧力差を測定する差圧計18を有する。
 制御装置21と差圧計18とは通信ラインC8で接続され、差圧計18の測定値は制御装置21に入力される。
 図3には温度計16及び流量計17を図示していないが、第1の冷媒M1の温度を測定する温度計16が、膨張タービン15の入口側若しくは出口側又は副熱交換器14の出口側に配置されていてもよい。この場合、制御装置21と温度計16とは通信ラインで接続され、温度計16の測定値は制御装置21に入力される。
 また、第1の冷媒M1の流量を測定する流量計17がターボ式の圧縮機11の出口側又は入口側に配置されていてもよい。この場合、制御装置21と流量計17とは通信ラインで接続され、流量計17の測定値は制御装置21に入力される。
[冷凍機の制御方法]
(第1の実施形態)
 本発明の第1の実施形態に係る冷凍機101の制御方法は、以下の工程1から工程6までを含む(図4参照)。
(1)バイパス弁12を開とする工程1
(2)膨張タービン15を起動する工程2
(3)ターボ式の圧縮機11を無負荷運転が可能な回転数で起動する工程3
(4)圧縮機流量と圧力比との関係が運転可能領域の範囲内における低流量高圧力比側を推移するようにターボ式の圧縮機11の回転数を増速する工程4
(5)バイパス弁12を閉とする工程5
(6)温度計16の測定値が所定の値になるまでクールダウンする工程6
 工程1から工程6までは、この順に実行することが好ましい。
 なお、本願明細書において、「低流量高圧力比側」とは、圧縮機流量と圧力比との関係を示すグラフ(例えば、図4~8を参照)において、低流量高圧比の範囲を意味する。圧縮機流量と圧力比との関係を示すグラフにおいて、低流量高圧比の範囲とは、サージラインと、チョークラインと、圧縮機の工程4の直前の回転数を示すラインと、圧縮機の工程6の直後の回転数を示すラインとによって囲まれた運転可能な範囲において、それぞれのラインを1:1に分割する4点が作る4つの範囲の中の高圧力比かつ低流量側の範囲を意味する。
 言い換えれば、「低流量高圧力比側」とは、運転可能な、圧縮機流量と圧力比との関係を示すグラフにおいて、流量全体に対して半分以下(50%以下)の流量の範囲である。
 図4は、本発明の第1の実施形態に係る冷凍機101の制御方法を実行した場合の、ターボ式の圧縮機11の出口側の第1の冷媒M1の流量(圧縮機流量、横軸)と、ターボ式の圧縮機11の出口側の第1の冷媒M1の圧力と入口側の第1の冷媒M1の圧力との比(出口側圧力/入り口側圧力)の値(圧力比、縦軸)との関係を示すグラフである。
 (1)バイパス弁12を「開」とし、(2)膨張タービン15を起動する。次いで、(3)ターボ式の圧縮機11を無負荷運転が可能な回転数で起動する。第1の冷媒M1の流量(圧縮機流量)及び圧力比が増加する。(4)圧縮機流量と圧力比との関係が運転可能領域の範囲内における低流量高圧力比側を推移するようにターボ式の圧縮機11の回転数を増加させる。(5)バイパス弁12を「閉」として、バイパスラインL3を通過する冷媒M1の流量をゼロ又は微小とする。(6)温度計16の測定値が所定の値になるまでクールダウンする。その後は、ターボ式の圧縮機11をPID制御などの制御モードに切り替えて、温度計16の測定値が一定の値になるように回転数を制御して、圧縮機のサージングを防止するとともに、高い圧力比を得て、クールダウン速度を向上させる。
 図5は、本発明の第1の実施形態に係る冷凍機101の制御方法の別の態様を実行した場合の、ターボ式の圧縮機11の出口側の第1の冷媒M1の流量(圧縮機流量、横軸)とターボ式の圧縮機11の出口側の第1の冷媒M1の圧力と入口側の第1の冷媒M1の圧力の比の値(圧力比、縦軸)との関係を示すグラフである。
 (1)バイパス弁12を「開」とし、(2)膨張タービン15を起動する。次いで、(3)ターボ式の圧縮機11を無負荷運転が可能な回転数で起動する。第1の冷媒M1の流量(圧縮機流量)及び圧力比が増加する。(3)-1:その直後にバイパス弁12の開度を調整開とし、バイパスラインL3の流量を下げる操作を実行する。(4)ターボ式の圧縮機11の回転数を圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側を推移するように増加させる。(5)バイパス弁12を「閉」として、バイパスラインL3を通過する冷媒M1の流量をゼロ又は微小とする。(6)温度計16の測定値が所定の値になるまでクールダウンする。その後は、ターボ式の圧縮機11をPID制御などの制御モードに切り替えて、温度計16の測定値が一定の値になるように回転数を制御して、圧縮機のサージングを防止するとともに、高い圧力比を得て、クールダウン速度を向上させる。
 図6は、本発明の第1の実施形態に係る冷凍機101の制御方法のまた別の態様を実行した場合の、ターボ式の圧縮機11の出口側の第1の冷媒M1の流量(圧縮機流量、横軸)とターボ式の圧縮機11の出口側の第1の冷媒M1の圧力と入口側の第1の冷媒M1の圧力の比の値(圧力比、縦軸)との関係を示すグラフである。
 (1)バイパス弁12を「開」とし、(2)膨張タービン15を起動する。次いで、(3)ターボ式の圧縮機11を無負荷運転が可能な回転数で起動する。第1の冷媒M1の流量(圧縮機流量)及び圧力比が増加する。(4)ターボ式の圧縮機11の回転数を圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側を推移するように増加させる。(4)-1:圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側末端を推移するように回転数を増速した後、一定の圧縮機回転数を保持してクールダウンを実行し、最後に(5)バイパス弁12を「閉」として、バイパスラインL3を通過する冷媒M1の流量をゼロ又は微小とする。その後は、ターボ式の圧縮機11をPID制御などの制御モードに切り替えて、温度計16の測定値が一定の値になるように回転数を制御して、圧縮機のサージングを防止するとともに、高い圧力比を得て、クールダウン速度を向上させる。
 図7は、本発明の第1の実施形態に係る冷凍機101の制御方法のさらに別の態様を実行した場合の、ターボ式の圧縮機11の出口側の第1の冷媒M1の流量(圧縮機流量、横軸)とターボ式の圧縮機11の出口側の第1の冷媒M1の圧力と入口側の第1の冷媒M1の圧力の比の値(圧力比、縦軸)との関係を示すグラフである。
 (1)バイパス弁12を「開」とし、(2)膨張タービン15を起動する。次いで、(3)ターボ式の圧縮機11を無負荷運転が可能な回転数で起動する。第1の冷媒M1の流量(圧縮機流量)及び圧力比が増加する。その後、以下の(4)、(5)、(6)を同時に実行する。
 (4)ターボ式の圧縮機11の回転数を圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側を推移するように増加させる。
 (5)バイパス弁12を「閉」として、バイパスラインL3を通過する冷媒M1の流量をゼロ又は微小とする。
 (6)温度計16の測定値が所定の値になるまでクールダウンする。
 温度計16の測定値が所定の値になるまでクールダウンしたら、ターボ式の圧縮機11をPID制御などの制御モードに切り替えて、温度計16の測定値が一定の値になるように回転数を制御して、圧縮機のサージングを防止するとともに、高い圧力比を得て、クールダウン速度を向上させる。
(第2の実施形態)
 第1の実施形態では、温度計16の測定値が所定の値になるまでクールダウンし、その後は温度計16の測定値が一定の値になるように回転数を制御したが、第2の実施形態では、流量計17の測定値が所定の値になるまでクールダウンし、その後は流量計17の測定値が一定の値になるように回転数を制御する。このとき事前にサージライン及びチョークラインが確認された状態であり、圧縮機流量と回転数の関係から圧力比を推定する。第1の実施形態と同様に、圧縮機のサージングを防止するとともに、高い圧力比を得て、クールダウン速度を向上させることができる。
(第3の実施形態)
 第1の実施形態では、温度計16の測定値が所定の値になるまでクールダウンし、その後は温度計16の測定値が一定の値になるように回転数を制御したが、第3の実施形態では、差圧計18の測定値が所定の値になるまでクールダウンし、その後は差圧計18の測定値が一定の値になるように回転数を制御する。このとき事前にサージライン及びチョークラインが確認された状態であり、圧力比と回転数の関係から圧縮機流量を推定する。第1の実施形態と同様に、圧縮機のサージングを防止するとともに、高い圧力比を得て、クールダウン速度を向上させることができる。
(従来の制御方法)
 図8は、冷凍機101で従来の冷凍機の制御方法を実行した場合の、ターボ式の圧縮機11の出口側の第1の冷媒M1の流速(流速、横軸)とターボ式の圧縮機11の出口側の第1の冷媒M1の圧力と入口側の第1の冷媒M1の圧力の比の値(圧力比、縦軸)との関係を示すグラフである。
 以下の工程1’から工程6’までを実行する。
 工程1’:バイパス弁12を開
 工程2’:膨張タービン15を起動
 工程3’:ターボ式の圧縮機11を低回転数で起動
 工程3’-1:バイパス弁12の開度調整
 工程4’:ターボ式の圧縮機11の回転数を中回転数まで徐々に増加
 工程5’:温度計16の測定値が所定値になるまでクールダウン
 工程6’:バイパス弁12を閉
 本発明の冷凍機の制御方法と比べると、サージラインとチョークラインの中央付近で動作を進めているため、各回転数で圧力比のピークから外れていて、クールダウン速度が遅くなる。また、工程5と工程6が逆になっていることで、クールダウン中に流量が増加方向になるため圧力比が下がり、クールダウン速度の向上ができず、クールダウンに時間がかかる。
[冷凍機の制御プログラム]
 本発明の冷凍機の制御プログラムは、上述した冷凍機の制御方法をコンピュータに実行させる冷凍機の制御プログラムである。
 本発明の冷凍機の制御プログラムは、例えば、制御装置21に搭載されており、制御装置21に内蔵されたプロセッサによって実行される。
[作用効果]
 本発明の冷凍機の制御方法は、クールダウン中に第1の冷媒の流量が増加方向にならずターボ式の圧縮機の出口側と入口側の冷媒の圧力比が下がらないため、クールダウン速度を向上できる。
 11 ターボ式の圧縮機
 12 バイパス弁
 13 主熱交換器
 14 副熱交換器
 15 膨張タービン
 16 温度計
 17 流量計
 18 差圧計
 21 制御装置
 22 第1のインバータ
 23 第2のインバータ
 101,102,103 冷凍機
 C1,C2,C3,C4,C5,C6,C7,C8 通信ライン
 L1 第1の循環経路
 L2 第2の循環経路
 L3 バイパスライン
 M1 第1の冷媒
 M2 第2の冷媒

Claims (7)

  1.  第1の冷媒が循環する第1の循環経路と、第2の冷媒が循環する第2の循環経路と、前記第1の循環経路に配置され、前記第1の冷媒を断熱圧縮するターボ式の圧縮機と、前記第1の循環経路に配置され、前記ターボ式の圧縮機により断熱圧縮される前の前記第1の冷媒と前記ターボ式の圧縮機により断熱圧縮された後の前記第1の冷媒との熱交換を行う主熱交換器と、前記第1の循環経路に配置され、前記第1の冷媒を断熱膨張する膨張タービンと、前記第1の循環経路及び前記第2の循環経路に配置され、前記第1の冷媒と前記第2の冷媒との熱交換を行う副熱交換器と、前記第1の循環経路に配置された測定手段と、前記ターボ式の圧縮機を制御する第1のインバータと、前記膨張タービンを制御する第2のインバータと、前記第1のインバータ及び前記第2のインバータの一方又は両方を制御する制御装置と、前記ターボ式の圧縮機の下流側で、かつ前記主熱交換器の上流側に前記ターボ式の圧縮機で断熱圧縮された前記第1の冷媒を前記ターボ式の圧縮機に戻すバイパスラインと、前記バイパスライン上に前記バイパスラインを開閉するバイパス弁とを備える冷凍機の制御方法であって、
     前記バイパス弁を開とする工程1と、
     前記膨張タービンを起動する工程2と、
     前記ターボ式の圧縮機を無負荷運転が可能な回転数で起動する工程3と、
     前記ターボ式の圧縮機の回転数を圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側を推移するように増速する工程4と、
     前記バイパス弁を閉とする工程5と、
     前記測定手段の測定値が所定の値になるまでクールダウンする工程6と、
    を含む冷凍機の制御方法。
  2.  前記測定手段が、前記膨張タービンの入口側若しくは出口側又は前記副熱交換器の出口側の前記第1の冷媒の温度を測定する温度計、前記ターボ式の圧縮機の出口側の前記第1の冷媒の流量を測定する流量計、及び前記ターボ式の圧縮機の入口側と出口側の前記第1の冷媒の圧力差を測定する差圧計からなる群から選択される少なくとも1種である、請求項1に記載の冷凍機の制御方法。
  3.  前記工程3の直後に前記バイパス弁の開度を中間開度に変更する、請求項1又は2に記載の冷凍機の制御方法。
  4.  前記工程4において、圧縮機流量と圧力比の関係が運転可能領域の範囲内における低流量高圧力比側末端を推移するように前記ターボ式の圧縮機の回転数を増速した後、予め定めた一定の回転数で保持した後、前記バイパス弁を閉とする、請求項1~3のいずれか1項に記載の冷凍機の制御方法。
  5.  前記工程4、前記工程5及び前記工程6を同時に実行する、請求項1~3のいずれか1項に記載の冷凍機の制御方法。
  6.  請求項1~5のいずれか1項に記載の冷凍機の制御方法をコンピュータに実行させる、冷凍機の制御プログラム。
  7.  請求項6に記載の冷凍機の制御プログラムを搭載した制御装置を備える、冷凍機。
PCT/JP2022/048537 2022-02-04 2022-12-28 冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機 WO2023149147A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016407 2022-02-04
JP2022016407A JP7071601B1 (ja) 2022-02-04 2022-02-04 冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機

Publications (1)

Publication Number Publication Date
WO2023149147A1 true WO2023149147A1 (ja) 2023-08-10

Family

ID=81653401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048537 WO2023149147A1 (ja) 2022-02-04 2022-12-28 冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機

Country Status (2)

Country Link
JP (1) JP7071601B1 (ja)
WO (1) WO2023149147A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151502A (ja) * 1997-07-30 1999-02-26 Hitachi Ltd ターボ冷凍機
JP2011002186A (ja) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP2018066511A (ja) * 2016-10-19 2018-04-26 大陽日酸株式会社 ターボ冷凍機
JP2020079688A (ja) * 2018-11-14 2020-05-28 荏原冷熱システム株式会社 ターボ冷凍機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646530A (en) * 1986-07-02 1987-03-03 Carrier Corporation Automatic anti-surge control for dual centrifugal compressor system
WO2014103931A1 (ja) 2012-12-26 2014-07-03 株式会社Schaft 速度測定装置および速度測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151502A (ja) * 1997-07-30 1999-02-26 Hitachi Ltd ターボ冷凍機
JP2011002186A (ja) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP2018066511A (ja) * 2016-10-19 2018-04-26 大陽日酸株式会社 ターボ冷凍機
JP2020079688A (ja) * 2018-11-14 2020-05-28 荏原冷熱システム株式会社 ターボ冷凍機

Also Published As

Publication number Publication date
JP7071601B1 (ja) 2022-05-19
JP2023114193A (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
JP5985746B2 (ja) ブレイトンサイクル冷凍機
JP5667239B2 (ja) 制御システム、遠心コンプレッサに安定制御を提供する方法、蒸気圧縮システム
JP3347103B2 (ja) 圧縮機の定常状態運転を行う方法
US20160327049A1 (en) Multi-stage compression system and method of operating the same
JP5495499B2 (ja) ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP5185298B2 (ja) 圧縮機の制御方法及びそのシステム
JP5981180B2 (ja) ターボ冷凍機及びその制御方法
JP2018526557A (ja) 多段遠心圧縮機のための容量制御システム及び方法
CN113137691A (zh) 磁悬浮空调机组的控制方法
WO2023149147A1 (ja) 冷凍機の制御方法、冷凍機の制御プログラム及び冷凍機
KR100258235B1 (ko) 터보냉동기의 서징 방지장치
JP5090932B2 (ja) エコノマイザを備えた遷臨界運転のための冷却装置
CN114364929B (zh) 室外单元以及冷冻循环装置
JP4109997B2 (ja) ターボ冷凍機
JP7245708B2 (ja) 圧縮式冷凍機
JP7323372B2 (ja) 熱源システム、制御方法、及びプログラム
US20230417465A1 (en) Refrigerator and operation method during precooling of refrigerator
JP4690574B2 (ja) 冷凍機における膨張弁の制御方法及び制御装置
JP2013194922A (ja) ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
CN114777345B (zh) 制冷设备
US20240011673A1 (en) Refrigeration system
CN219492688U (zh) 一种具可调导叶的压缩机及储能热管理系统
EP4357696A1 (en) Oil-lubricated cryocooler compressor and operation method thereof
JP2024076234A (ja) 冷凍機、制御装置、制御方法、及びプログラム
JPH05164413A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925049

Country of ref document: EP

Kind code of ref document: A1