WO2023146247A1 - 미지 용액내 미생물 농도 검출 소자 - Google Patents

미지 용액내 미생물 농도 검출 소자 Download PDF

Info

Publication number
WO2023146247A1
WO2023146247A1 PCT/KR2023/001088 KR2023001088W WO2023146247A1 WO 2023146247 A1 WO2023146247 A1 WO 2023146247A1 KR 2023001088 W KR2023001088 W KR 2023001088W WO 2023146247 A1 WO2023146247 A1 WO 2023146247A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
solution
microbial
microorganisms
concentration
Prior art date
Application number
PCT/KR2023/001088
Other languages
English (en)
French (fr)
Inventor
양성
이예성
김수성
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220040716A external-priority patent/KR20230114664A/ko
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2023146247A1 publication Critical patent/WO2023146247A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to an element for detecting the concentration of microorganisms in an unknown solution, and more particularly, to an element for detecting the concentration of microorganisms in an unknown solution by using a positive dielectrophoretic force in a pretreated unknown solution.
  • Dielectrophoresis was defined by Pohl in 1951. Dielectrophoresis refers to a phenomenon in which a directional force is applied to a particle by a dipole induced in the particle when the particle is placed in a non-uniform electric field. The strength of the force varies depending on the electrical and dielectric properties of the particles and the medium, the frequency of the alternating electric field, etc., and can be used to control the movement of the particles. Because dielectrophoresis technology is applicable to all polarizable particles, it can be used for the movement, separation, and capture of various biological particles, including cells.
  • the target microorganism may be cultured in a culture medium specific for the target microorganism.
  • this most commonly used culture method there is a problem in that it takes a long time to culture microorganisms for 24 hours or more.
  • immunochromatography and RT-PCR also have problems in that detection takes a long time, and accurate detection is difficult when the concentration of microorganisms is low using a small amount of sample, and there is a high possibility of showing erroneous results.
  • a technical problem to be achieved by the present invention is to provide an element for detecting the concentration of microorganisms in an unknown solution using the power of dielectrophoresis.
  • Another technical problem to be achieved by the present invention is to provide an element for detecting the concentration of microorganisms in an unknown solution in which dielectrophoretic force is smoothly applied to the microorganisms.
  • An element for detecting the concentration of microorganisms in an unknown solution generates a microbial replacement solution by substituting microorganisms in an unknown solution containing a target microorganism to be included in a reference solution through sonophoresis, and A preprocessing unit that calculates electrical property information, and the microbial replacement solution is separated into a microbial concentrate and a filtrate through dielectrophoresis based on the electrical property information measured in the preprocessing unit, and then the concentration of microorganisms in the microbial concentrate is measured. It includes a microbial concentration measuring unit that
  • the preprocessing unit includes an input unit into which the unknown solution and the reference solution are respectively input, and a substitution unit for substituting microorganisms included in the unknown solution input from the input unit through the sonophoresis to be included in the reference solution to generate a microbial replacement solution. It includes a unit, a first discharge unit for discharging the microbial replacement liquid substituted in the replacement unit and the unknown solution, respectively, and an electrical characteristic calculation unit for calculating electrical characteristic information of the microbial replacement liquid discharged from the first discharge unit.
  • the electrical characteristic calculating unit includes an impedance measuring unit measuring the impedance of the microbial replacement liquid discharged from the first discharge unit, and a calculating unit calculating electrical characteristic information based on the impedance measured by the impedance measuring unit.
  • the impedance measuring unit includes a current measuring unit measuring a current applied to the microbial replacement liquid discharged from the first discharge unit, and a voltage measurement unit measuring a voltage applied to the microbial replacement liquid discharged from the first discharge unit. .
  • the electrical property information includes electrical conductivity, permittivity, and CM (Clausius-Mossotti) factor.
  • the microbial concentration measurement unit includes a separator for separating the microbial replacement liquid into a microbial concentrate and a filtrate using positive dielectrophoresis, and a concentration measurement unit for measuring the concentration of microorganisms in the microbial concentrate separated in the separator. And, it includes a second discharge unit for discharging the microbial concentrate and the filtrate separated from the separation unit, respectively.
  • the separation unit includes a displacement liquid accommodating unit accommodating the microbial displacement liquid, and a plurality of displacement liquid accommodating units are installed, and the electrode is formed in a herringbone pattern shape bent at a predetermined angle around a bending point to accommodate the displacement liquid.
  • a herringbone electrode unit that separates the microbial replacement liquid into a microbial concentrate and a filtrate by moving the microorganisms included in the microbial replacement liquid in the compartment along the bending points by positive dielectrophoretic force, and a positive dielectric in the herringbone electrode unit and a first power application unit for applying power to the herringbone electrode unit based on the electrical property information calculated by the electrical property calculation unit so that a migration force can be generated.
  • the herringbone electrode part includes a first electrode part and a second electrode part, and the first and second electrode parts are spaced apart from each other and sequentially arranged, and the first electrode part is applied to the microbial replacement liquid flowing into the replacement liquid accommodating unit.
  • a plurality of first electrodes arranged spaced apart from each other at predetermined intervals based on the flow of the microbial replacement solution so that the microorganisms can be guided to the bending points by smoothly applying a positive dielectrophoretic force to the included microorganisms.
  • the second electrode unit is composed of a plurality of second electrodes arranged spaced apart from each other at predetermined intervals based on the flow of the microbial replacement solution passing through the first electrode unit so that a positive dielectrophoretic force can be smoothly applied.
  • the first electrodes are formed at different angles from each other, and the second electrodes are formed at constant angles from each other.
  • the concentration measurement unit is installed in the displacement solution accommodating unit, and the detection electrode unit captures the microorganisms concentrated in the microbial concentrate with the positive dielectrophoretic force, and the positive dielectrophoretic force is generated in the detection electrode unit. It includes a second power application unit for applying power to the detection electrode unit for a predetermined period of time, and a microorganism concentration detection unit for measuring the total microbial concentration by measuring a change in electrical signals generated for a predetermined period of time in the detection electrode unit.
  • the detection electrode unit is composed of one or more pairs of IDE electrodes.
  • An electrochemical sensor unit for detecting the concentration of each strain of microorganisms in the microbial concentrate discharged from the microbial concentration measurement unit, wherein the electrochemical sensor unit includes a sample solution injector into which the microbial concentrate is injected, and the sample solution injection a reaction solution injection unit connected to the unit and into which the reaction solution is injected; a solution receiving unit connected to the sample solution injection unit and sequentially accommodating the microbial concentrate and the reaction solution; and the microbial concentrate accommodated in the solution receiving unit.
  • a microbial concentration measurement unit for measuring the concentration of each strain of the microorganisms incubated in the incubation unit
  • the solution receiving unit and is connected to the microbial concentrate or reaction in the solution receiving unit. It includes a solution discharge unit for discharging the solution.
  • a shut-off valve installed in the sample solution injection unit to block the movement of the microbial concentrate or reaction solution, and the incubation unit for measuring the concentration of each strain of the incubated microorganism, in which the microbial concentrate and the reaction solution are sequentially supplied to the solution receiving unit.
  • a control unit for controlling the shut-off valve to be accommodated in.
  • An element for detecting the concentration of microorganisms in an unknown solution has the following effects.
  • the present invention can separate the microbial replacement solution into a microbial concentrate and a filtrate through positive dielectrophoretic force by supplying power to the herringbone electrode part based on electrical property information of the pretreated microbial replacement solution.
  • a positive dielectrophoretic force can be smoothly applied to microorganisms by designing a herringbone electrode based on the flow of the microbial replacement solution flowing into the microbial replacement solution accommodating unit.
  • FIG. 1 is a cross-sectional view showing a microbial concentration detection device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an element for detecting the concentration of microorganisms in an unknown solution according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a preprocessing unit of a microbial concentration detection device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a replacement part of a microbial concentration detecting element according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an electrical characteristic calculation unit of a microbial concentration detection device according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a microbial concentration measuring unit of a microbial concentration detection device according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a microbial replacement solution accommodating part of a microbial concentration detection device according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an electrochemical sensor unit of a microbial concentration detection device according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the microbial concentration detection device 10 in an unknown solution includes a pretreatment unit 100, a microbial concentration measurement unit 200, and an electrochemical sensor unit 300.
  • the pretreatment unit 100 generates a microbial replacement solution by substituting microorganisms in an unknown solution containing a target microorganism to be included in a reference solution through sonophoresis, and Calculate electrical property information.
  • the pretreatment unit 100 includes an input unit 110, a replacement unit 120, a first discharge unit 130, and an electrical characteristic calculation unit 140.
  • the input unit 110 includes a first input unit 112 and a second input unit 114 .
  • An unknown solution containing a microorganism to be detected is injected into the first inlet 112 .
  • the second injection unit 114 is injected with the same amount of reference solution as the unknown solution.
  • the reference solution may be a sheath fluid used to replace unknown particles or microorganisms contained in a solvent.
  • the substitution unit 120 the unknown solution and the unknown solution introduced from the input unit 112 are not mixed but injected separately while maintaining the interface.
  • the unknown solution introduced from the input unit 110 includes A microorganism replacement solution is produced by substituting the microorganisms to be included in the reference solution.
  • the replacement unit 120 can exclude the influence of the solvent of the unknown solution when a dielectrophoretic force of an amount described below is applied to the microbial replacement solution.
  • Acoustic waves used in the phonophoresis may be surface acoustic waves or bulk acoustic waves formed in an interdigitated electrode (IDE) structure.
  • IDE interdigitated electrode
  • the first discharge unit 130 includes a displacement liquid discharge unit 131 and a residual solution discharge unit 132 .
  • the replacement liquid discharge unit 131 discharges the replacement liquid for microorganisms generated by replacing the unknown solution containing the microorganism to be detected in the replacement unit 120 through sonophoresis.
  • the unknown solution containing the microorganism to be tested in the replacement unit 120 is replaced with the reference solution, and the residual solution that does not contain the microorganism to be tested is discharged.
  • the electrical characteristic calculation unit 140 calculates electrical characteristic information of the microbial replacement solution discharged from the first discharge unit 130 and checks whether or not the microorganisms in the unknown solution are normally replaced by the standard solution.
  • the electrical property information may include electrical conductivity, dielectric constant, and CM (Clausius-Mossotti) factor.
  • the electrical characteristic calculating unit 140 includes an impedance measuring unit 142 and a calculating unit 144 .
  • the impedance measurement unit 142 measures the impedance of the microbial replacement solution discharged from the residual solution discharge unit 132, and includes a current measurement unit 142a and a voltage measurement unit 142b.
  • the electrical characteristics calculating unit 140 can calculate the electrical conductivity, but the dielectric constant cannot be calculated. Therefore, the current measuring unit 142a and the voltage measuring unit 142b apply the A/C current and the A/C voltage to the microbial replacement solution.
  • the microbial concentration measuring unit 200 separates the microbial replacement solution into a microbial concentrate and a filtrate through dielectrophoresis based on the electrical property information measured in the pretreatment unit 100. Then, the concentration of microorganisms in the microbial concentrate is measured.
  • the microbial concentration measurement unit 200 includes a separation unit 210 , a concentration measurement unit 220 and a second discharge unit 230 .
  • the separator 210 separates the microbial replacement liquid into a microbial concentrate and a filtrate using a positive dielectrophoresis force (DEP force).
  • DEP force a positive dielectrophoresis force
  • the separation unit 210 includes a displacement liquid accommodating unit 212, a herringbone electrode unit 216, and a first power applying unit (not shown).
  • the replacement liquid accommodating part 212 receives the microbial replacement liquid discharged from the first discharge part 130 and has a plurality of the herringbone electrode parts 216 installed therein.
  • the herringbone electrode part 216 is formed in a herringbone pattern shape in which the electrode is bent at a predetermined angle around a bending point.
  • the herringbone electrode part 216 moves the microorganisms included in the microbial replacement liquid in the replacement liquid accommodating part 212 along the bending points by positive dielectrophoretic force, thereby filtering the microbial replacement liquid with the microbial concentrate liquid. separate into liquid Specifically, the herringbone electrode unit 216 is discharged from the replacement liquid discharge unit 131 and introduced into the replacement liquid receiving unit 212, in the process of moving toward the second discharge unit 230. By inducing the microorganisms included in the microbial replacement solution to the bending point, the microbial concentrate is separated. Then, the filtrate excluding the microorganisms induced to the bending point moves to the second discharge unit 230 .
  • the herringbone electrode part 216 includes a first electrode part 216a and a second electrode part 216b.
  • the first electrode unit 216a is composed of a plurality of first electrodes spaced apart from each other at predetermined intervals based on the flow of the microbial replacement solution, and the first electrodes are formed at different angles.
  • the first electrode smoothes the positive dielectrophoretic force even in the flow of the microbial replacement solution in a curved shape due to the drag force appearing in the microbial replacement solution. is applied to induce the microorganisms to the bending points.
  • the second electrode part 216b is made up of a plurality of second electrodes arranged spaced apart from each other at a predetermined interval based on the flow of the microbial replacement solution passing through the first electrode part 216a. formed at an angle to each other.
  • the second electrode smoothly applies a positive dielectrophoretic force in the linear flow of the microbial replacement solution passing through the first electrode part 216a.
  • the first and second electrode parts 216b are spaced apart from each other by a predetermined interval and are sequentially arranged.
  • the first power applying unit applies power to the herringbone electrode unit 216 based on the electrical characteristic information calculated by the electrical characteristic calculating unit 140 . Specifically, as the first power application unit applies alternating current power suitable for separation of the microbial concentrate and the filtrate to the herringbone electrode unit 216 based on the CM factor, the displacement liquid accommodating unit 212 An electric field is formed. Accordingly, a positive dielectrophoretic force is generated in the microbial replacement solution in the herringbone electrode part 216 .
  • the concentration measurement unit 220 measures the microbial concentration of the microbial concentrate separated in the separation unit 210.
  • the concentration measurement unit 220 includes a detection electrode unit 222, a second power application unit (not shown), and a microbial concentration detection unit (not shown).
  • the detection electrode part 222 is installed in the displacement solution accommodating part 212, and captures the microorganisms concentrated in the microbial concentrate solution by positive dielectrophoretic force.
  • the detection electrode unit 222 may include one or more pairs of IDE electrodes. However, the number of electrode pairs included in the detection electrode unit 222 may be increased by the user to improve sensitivity of detecting microorganisms in some cases.
  • the second power application unit applies power to the detection electrode unit 222 for a predetermined period of time. Specifically, the second power supply unit applies alternating current power to the detection electrode unit 222 for a predetermined period of time, so that when a positive dielectrophoretic force is generated in the detection electrode unit 222, the captured microorganisms are excessively captured. to prevent loss of function.
  • the microbial concentration detection unit measures the total microbial concentration by measuring a change in an electrical signal generated by the detection electrode unit 222 for a predetermined period of time.
  • the second discharge unit 230 includes a concentrate discharge unit 232 and a filtrate discharge unit 234 .
  • the microbial concentrate in which microorganisms are concentrated in the displacement liquid accommodating unit 212 is discharged, and in the filtrate discharge unit 234, the microorganisms are separated from the displacement liquid accommodating unit 212 to produce The filtrate is discharged.
  • the electrochemical sensor unit 300 includes a sample solution injection unit 310, a reaction solution injection unit 320, a solution receiving unit 330, an incubation unit (not shown), and concentration measurement for each microbial strain. It includes a unit 340, a solution discharge unit 350, a shut-off valve 360 and a control unit (not shown).
  • the sample solution injection unit 310 is injected with the microbial concentrate discharged from the concentrate discharge unit 232 .
  • the reaction solution injection unit 320 is connected to the sample solution injection unit 310, and a reaction solution is injected for operation of the incubation unit.
  • the solution accommodating part 330 is connected to the sample solution injecting part 310, and the microbial concentrate and the reaction solution are sequentially accommodated.
  • a plurality of incubation units are installed in the solution accommodating unit 330, and incubate the microorganisms of the microbial concentrate contained in the solution accommodating unit for a predetermined time.
  • the incubation refers to a series of processes in which microorganisms (antigens) and antibodies are combined to capture microorganisms.
  • Different types of antibodies are immobilized in the incubation unit to capture microorganisms by type.
  • the concentration measurement unit 340 for each strain of microorganism measures the concentration of each strain of microorganisms incubated in the incubation unit. At this time, in order to measure the concentration of each strain of microorganisms, the reaction solution is injected into the solution receiving unit, and the microbial concentrate is discharged.
  • the concentration measurement unit 340 for each microbial strain measures the concentration of each microbial strain by measuring the electrochemical signal change (current or voltage value generated by the redox reaction) of the reaction solution generated by the combination of the microorganism and the antibody. .
  • the solution discharge part 350 is connected to the solution receiving part, and the microbial concentrate or reaction solution is discharged.
  • the shut-off valve 360 blocks the movement of the microbial concentrate or reaction solution.
  • the shutoff valve 360 is installed in the sample solution injector 310, is installed in the first shutoff valve 362 for blocking the movement of the microbial concentrate, and the reaction solution injector 320, and is installed in the reaction solution injector 320. It includes a second shutoff valve 364 that blocks the movement of the solution.
  • the control unit controls the first and second shutoff valves 362 and 364 so that the microbial concentrate and the sample solution are sequentially accommodated in the solution accommodating unit 330 . Specifically, the control unit injects the microbial concentrate into the solution receiving unit 330 by blocking the second shutoff valve 364 . In addition, the control unit injects the reaction solution into the solution receiving unit 330 by blocking the first blocking unit 362 .
  • control unit may control the entirety of injecting or discharging the microbial concentrate and the reaction solution according to circumstances.
  • the microbial concentration detection device 10 in an unknown solution uses the preprocessing unit 100, the microbial concentration measuring unit 200, and the electrochemical sensor unit 300 as a lumped parameter model. ) to maintain electrical functions.
  • the element 10 for detecting the concentration of microorganisms in an unknown solution is configured by designing resistance values in order of the electrochemical sensor unit 300, the concentration measurement unit 200 of microorganisms, and the pretreatment unit 100 to mutually interact with each other. maintain electrical function. More specifically, in the design of the resistance value, when the preprocessing unit 100, the microbial concentration measurement unit 200, and the electrochemical sensor are interconnected in order, the resistance value changes and the function is lost, so the electrochemical sensor unit 300, the microbial concentration The resistance value is designed in order of the measurement unit 200 and the preprocessing unit 100 .
  • An operation process of the microbial concentration detection element 10 in an unknown solution according to an embodiment of the present invention described above is as follows.
  • the replacement unit 120 replaces the microorganisms included in the unknown solution input from the input unit 110 to be included in the reference solution through sonophoresis to replace the microorganisms It creates a replacement liquid.
  • the microbial replacement liquid is discharged from the first discharge unit 130, and at the same time, the electrical characteristic calculation unit 140 calculates electrical characteristic information of the microbial replacement liquid.
  • the microbial replacement liquid discharged from the first discharge unit 130 is accommodated in the microbial replacement liquid accommodating unit 212 .
  • the drag force of the microbial replacement liquid is generated according to the flow.
  • positive dielectrophoretic force is generated by applying power based on the electrical characteristic information to the herringbone electrode unit 216 by the first power applying unit.
  • the microbial replacement liquid is separated into a microbial concentrate by moving the microorganisms along the bending point of the herringbone electrode part 216 by the positive dielectrophoretic force, and the drag force generated in the microbial replacement liquid causes the second discharge unit ( 230) to be separated into a filtrate.
  • the microbial concentration detection unit may determine the microbial concentration by measuring a change in an electrical signal generated by applying power to the microbial concentrate for a predetermined time.
  • the control unit blocks the second blocking unit 364, and the microbial concentrate is injected into the solution receiving unit 330 through the sample solution injecting unit 310. Subsequently, the incubation unit performs incubation of the microorganisms in the microbial concentrate.
  • the control unit blocks the first blocking unit 362, and the reaction solution is supplied to the solution receiving unit 330 through the reaction solution injection unit 320. is injected with At the same time, the microbial concentrate accommodated in the solution receiving unit 330 is discharged to the solution discharging unit 350 .
  • the concentration measurement unit 340 for each strain of microorganisms can determine the concentration of each strain of the captured microorganisms by measuring a change in electrical signal, such as a current or voltage value, generated by a redox reaction of the reaction solution.
  • the microbial concentration detection element 10 in the unknown solution supplies power to the herringbone electrode part 216 based on the electrical property information of the pretreated microbial replacement solution, thereby detecting the microbial replacement solution as a positive value. Through the power of dielectrophoresis, it can separate into microbial concentrate and filtrate.
  • the microbial concentration detection element 10 in the unknown solution designs the herringbone electrode part 216 based on the flow of the microbial replacement liquid flowing into the replacement liquid accommodating unit 212, thereby microbial microorganisms A positive dielectrophoretic force can be applied smoothly.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 미지 용액내 미생물 농도 검출 소자에 관한 것으로, 더욱 상세하게는 검출대상 미생물이 포함된 미지 용액의 미생물을 음파 영동을 통해 기준 용액에 포함되도록 치환함으로써 미생물 치환액을 생성하고, 상기 미생물 치환액의 전기적 특성 정보를 산출하는 전처리 유닛과, 상기 전처리 유닛에서 측정된 전기적 특성 정보에 기초하여 상기 미생물 치환액을 유전 영동을 통해 미생물 농축액과 여과액으로 분리한 후, 상기 미생물 농축액에서 미생물의 농도를 측정하는 미생물 농도 측정 유닛을 포함하며, 전처리된 미생물 치환액의 전기적 특성 정보에 기초하여 헤링본 전극부에 전력을 공급하여 양의 유전 영동의 힘을 통해 미생물과 여과액으로 고효율로 분리할 수 있으며, 미생물 치환액 수용부에 유입되는 치환액의 흐름에 기초하여 헤링본 전극부를 설계함으로써 미생물에 양의 유전 영동의 힘이 잘 인가될 수 있는 효과가 있다.

Description

미지 용액내 미생물 농도 검출 소자
본 발명은 미지용액 내 미생물 농도 검출 소자에 관한 것으로 더욱 상세하게는 전처리된 미지 용액에서 양의 유전 영동의 힘을 이용하여 미생물의 농도를 검출하는 미지 용액내 미생물 농도 검출 소자에 관한 것이다.
유전영동은 1951년 Pohl에 의해 정의되었다. 유전영동은 불균일한 전기장에 입자가 놓였을 때, 입자에 유도된 쌍극자에 의해 입자에 방향성 있는 힘이 가해지는 현상을 말한다. 힘의 세기는 입자와 매질의 전기적 특성(electrical property)과 유전특성(dielectric property), 교류 전기장의 주파수 등에 따라 달라지며, 이를 이용하여 입자의 움직임을 제어할 수 있다. 유전영동 기술은 편극이 가능한 입자 모두에 적용 가능하기 때문에, 세포를 포함한 다양한 생물 입자의 이동, 분리, 포집 등에 활용될 수 있다.
미생물을 검출하기 위해 사용되는 종래의 절차는 전형적으로 시료를 배양하는 단계를 수반한다. 이 경우, 표적 미생물은 이러한 표적 미생물에 특이적인 배양 배지(culture medium)에서 배양될 수 있다. 이러한 가장 보편적으로 이용되는 배양법의 경우 24시간 이상 미생물 배양이 요구되어 시간이 오래 걸린다는 문제점이 있다.
또한, 면역 크로마토그래피, RT-PCR 역시 검출 시간이 오래 걸리며, 소량의 샘플을 이용하여 미생물의 농도가 낮은 경우 정확한 검출이 어렵고, 오류결과를 나타낼 가능성이 높다는 문제점이 있다.
따라서 정확한 검출을 위해서는 미생물 농도 증가를 위한 전처리 과정이 필요하다. 하지만 농축 기능과 통합된 센서는 매우 제한적이며, 기존 통합 센서의 경우 처리 속도가 매우 낮은 문제가 있으며, 이에 대한 연구는 미흡한 실정이다.
본 발명이 이루고자 하는 기술적 과제는 유전 영동의 힘을 이용한 미지 용액내 미생물 농도 검출 소자를 제공하는 것이다.
또한 본 발명이 이루고자 하는 기술적 과제는 미생물에 유전 영동의 힘이 원활하게 인가되는 미지 용액내 미생물 농도 검출 소자를 제공하는 것이다.
본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자는 검출대상 미생물이 포함된 미지 용액의 미생물을 음파 영동을 통해 기준 용액에 포함되도록 치환함으로써 미생물 치환액을 생성하고, 상기 미생물 치환액의 전기적 특성 정보를 산출하는 전처리 유닛과, 상기 전처리 유닛에서 측정된 전기적 특성 정보에 기초하여 상기 미생물 치환액을 유전 영동을 통해 미생물 농축액과 여과액으로 분리한 후, 상기 미생물 농축액에서 미생물의 농도를 측정하는 미생물 농도 측정 유닛을 포함한다.
상기 전처리 유닛은 상기 미지 용액과 기준 용액이 각각 투입되는 투입부와, 상기 음파 영동을 통해 상기 투입부에서 투입된 미지 용액에 포함된 미생물을 상기 기준 용액에 포함되도록 치환하여 미생물 치환액을 생성하는 치환부와, 상기 치환부에서 치환된 미생물 치환액과 미지 용액을 각각 배출하는 제1 배출부와, 상기 제1 배출부에서 배출된 미생물 치환액의 전기적 특성 정보를 산출하는 전기적 특성 산출부를 포함한다.
상기 전기적 특성 산출부는 상기 제1 배출부에서 배출되는 미생물 치환액의 임피던스를 측정하는 임피던스 측정부와, 상기 임피던스 측정부에서 측정된 임피던스에 기초하여 전기적 특성 정보를 산출하는 산출부를 포함한다.
상기 임피던스 측정부는 상기 제1 배출부에서 배출되는 미생물 치환액에 인가되는 전류를 측정하는 전류 측정부와, 상기 제1 배출부에서 배출되는 미생물 치환액에 인가되는 전압을 측정하는 전압 측정부를 포함한다.
상기 전기적 특성 정보는 전기 전도도, 유전율 및 CM(Clausius-Mossotti)인자이다.
상기 미생물 농도 측정 유닛은 상기 미생물 치환액을 양의 유전 영동의 힘을 이용하여 미생물 농축액과 여과액으로 분리하는 분리부와, 상기 분리부에서 분리된 미생물 농축액에서 미생물의 농도를 측정하는 농도 측정부와, 상기 분리부로부터 분리된 미생물 농축액과 여과액을 각각 배출하는 제2 배출부를 포함한다.
상기 분리부는 상기 미생물 치환액을 수용하는 치환액 수용부와, 상기 치환액 수용부에 다수개가 설치되며, 전극이 절곡점을 중심으로 소정각도 절곡되게 연장된 헤링본 패턴 형상으로 형성되어 상기 치환액 수용부내 미생물 치환액에 포함된 미생물이 양의 유전 영동의 힘에 의해 상기 절곡점들을 따라 이동함으로써 상기 미생물 치환액을 미생물 농축액과 여과액으로 분리시키는 헤링본 전극부와, 상기 헤링본 전극부에서 양의 유전 영동의 힘이 발생할 수 있도록 상기 전기적 특성 산출부에서 산출된 전기적 특성 정보에 기초하여 상기 헤링본 전극부에 전력을 인가하는 제1 전력인가부를 포함한다.
상기 헤링본 전극부는 제1 전극부와 제2 전극부를 포함하며, 상기 제1 및 제2 전극부는 소정간격 이격되어 순차적으로 배열되되, 상기 제1 전극부는 상기 치환액 수용부에 유입되는 미생물 치환액에 포함된 미생물에 양의 유전 영동의 힘을 원활하게 인가하여 상기 미생물이 상기 절곡점들로 유도될 수 있도록 상기 미생물 치환액의 흐름에 기초하여 소정간격 상호 이격되어 배열된 다수의 제1 전극들로 이루어지며, 상기 제2 전극부는 양의 유전 영동의 힘이 원활하게 인가될 수 있도록 상기 제1 전극부를 통과하는 미생물 치환액의 흐름에 기초하여 소정 간격 상호 이격되어 배열된 다수의 제2 전극들으로 이루어지되, 상기 제1 전극은 서로 상이한 각도로 형성되며, 상기 제2 전극은 서로 일정한 각도로 형성된다.
상기 농도 측정부는 상기 치환액 수용부에 설치되며, 양의 유전 영동의 힘으로 미생물 농축액에 농축된 미생물을 포획하는 검출 전극부와, 상기 검출 전극부에서 양의 유전 영동의 힘이 발생할 수 있도록 상기 검출 전극부에 소정 시간 전력을 인가하는 제2 전력인가부와, 상기 검출 전극부에서 소정 시간 발생한 전기 신호 변화를 측정함으로써 총 미생물 농도를 측정하는 미생물 농도 검출부를 포함한다.
상기 검출 전극부는 한쌍 이상의 IDE 전극으로 이루어진다.
상기 미생물 농도 측정 유닛으로부터 배출되는 미생물 농축액에서 미생물의 균주별 농도를 검출하는 전기 화학센서 유닛을 더 포함하며, 상기 전기 화학센서 유닛은 상기 미생물 농축액이 주입되는 샘플 용액 주입부와, 상기 샘플 용액 주입부에 연결되며, 반응 용액이 주입되는 반응 용액 주입부와, 상기 샘플 용액 주입부와 연결되며, 상기 미생물 농축액과 상기 반응 용액이 순차적으로 수용되는 용액 수용부와, 상기 용액 수용부에서 수용된 미생물 농축액의 미생물을 소정시간 인큐베이션하는 인큐베이션부와, 상기 인큐베이션부에서 인큐베이션된 미생물의 균주별 농도를 측정하는 미생물 균주별 농도 측정부와, 상기 용액 수용부에 연결되며, 상기 용액 수용부에서 미생물 농축액 또는 반응 용액을 배출하는 용액 배출부를 포함한다.
상기 샘플 용액 주입부에 설치되며, 미생물 농축액 또는 반응 용액의 이동을 차단하는 차단밸브와, 상기 인큐베이션부가 인큐베이션된 미생물의 균주별 농도를 측정하기 위한 것으로서 미생물 농축액과 반응 용액이 순차적으로 상기 용액 수용부에 수용되도록 상기 차단밸브를 제어하는 제어부를 포함한다.
본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자는 다음과 같은 효과가 있다.
(1) 본 발명은 전처리된 미생물 치환액의 전기적 특성 정보에 기초하여 헤링본 전극부에 전력을 공급함으로써 양의 유전 영동의 힘을 통해 미생물 치환액을 미생물 농축액과 여과액으로 분리할 수 있다.
(2) 본 발명은 미생물 치환액 수용부에 유입되는 미생물 치환액의 흐름에 기초하여 헤링본 전극부를 설계함으로써 미생물에 양의 유전 영동의 힘을 원활하게 인가할 수 있다.
도 1은 본 발명의 일 실시예에 따른 미생물 농도 검출 소자를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자를 도시한 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 미생물 농도 검출 소자의 전처리 유닛을 도시한 단면도이다.
도 4는 본 발명의 일 실시예에 따른 미생물 농도 검출 소자의 치환부를 도시한 단면도이다.
도 5는 본 발명의 일 실시예에 따른 미생물 농도 검출 소자의 전기적 특성 산출부를 도시한 단면도이다.
도 6은 본 발명의 일 실시예에 따른 미생물 농도 검출 소자의 미생물 농도 측정 유닛을 도시한 단면도이다.
도 7은 본 발명의 일 실시예에 따른 미생물 농도 검출 소자의 미생물 치환 용액 수용부를 도시한 단면도이다.
도 8은 본 발명의 일 실시예에 따른 미생물 농도 검출 소자의 전기 화학센서 유닛을 도시한 단면도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 '미지 용액내 미생물 농도 검출 소자'에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자(10)는 전처리 유닛(100), 미생물 농도 측정 유닛(200) 및 전기 화학센서 유닛(300)을 포함한다.
도 3 내지 도 5를 참조하면, 상기 전처리 유닛(100)은 검출대상 미생물이 포함된 미지 용액의 미생물을 음파 영동을 통해 기준 용액에 포함되도록 치환함으로써 미생물 치환액을 생성하고, 상기 미생물 치환액의 전기적 특성 정보를 산출한다.
상기 전처리 유닛(100)은 투입부(110), 치환부(120), 제1 배출부(130) 및 전기적 특성 산출부(140)를 포함한다.
상기 투입부(110)는 제1 투입부(112)와 제2 투입부(114)를 포함한다. 상기 제1 투입부(112)에는 검출대상 미생물이 포함된 미지 용액이 주입된다. 상기 제2 투입부(114)는 상기 미지 용액과 동일한 양의 기준 용액이 주입된다. 상기 기준 용액은 용매에 포함된 미지 입자 또는 미생물을 치환하기 위해 사용하는 쉬스 용액(sheath fluid)일 수 있다.
상기 치환부(120)는 상기 투입부(112)에서 투입된 미지 용액과 미지 용액은 혼합되지 않고 계면을 유지하면서 각각 주입되며, 이때, 음파 영동을 통해 상기 투입부(110)에서 투입된 미지 용액에 포함된 미생물이 상기 기준 용액에 포함되도록 치환하여 미생물 치환액을 생성한다. 상기 치환부(120)는 미생물 치환액을 생성함으로써 후술되는 양의 유전 영동의 힘을 미생물 치환액에 인가할 때 미지 용액의 용매 영향을 배제할 수 있다.
상기 음파 영동에 사용되는 음파는 IDE(Interdigitated electrode)구조로 형성된 표면 탄성파 또는 벌크 탄성파일 수 있다.
상기 제1 배출부(130)는 치환액 배출부(131)와 잔류 용액 배출부(132)를 포함한다.
상기 치환액 배출부(131)에서는 상기 치환부(120)에서 검출대상 미생물이 포함된 미지 용액이 음파 영동을 통해 치환됨으로써 생성된 미생물 치환액이 배출된다.
상기 잔류 용액 배출부(132)에서는 상기 치환부(120)에서 검사대상 미생물이 포함된 미지 용액이 기준 용액으로 치환됨으로써 검사대상 미생물이 포함되지 않은 잔류 용액이 배출된다.
상기 전기적 특성 산출부(140)는 상기 제1 배출부(130)에서 배출되는 미생물 치환액의 전기적 특성 정보를 산출하며, 상기 미지 용액의 미생물이 기준 용액으로 정상적으로 치환되었는지 여부를 확인한다. 상기 전기적 특성 정보는 전기 전도도, 유전율 및 CM(Clausius-Mossotti)인자일 수 있다.
상기 전기적 특성 산출부(140)는 임피던스 측정부(142)와 산출부(144)를 포함한다.
상기 임피던스 측정부(142)는 잔류 용액 배출부(132)에서 배출되는 미생물 치환액의 임피던스를 측정하며, 전류 측정부(142a)와 전압 측정부(142b)를 포함한다.
상기 전류 측정부(142a)와 전압 측정부(142b)에서는 D/C전류 및 D/C전압을 미생물 치환액에 인가하면, 상기 전기적 특성 산출부(140)에서는 전기 전도도를 산출할 수 있으나 상기 유전율을 산출할 수 없다. 따라서 상기 전류 측정부(142a)와 전압 측정부(142b)은 A/C전류 및 A/C전압을 미생물 치환액에 인가한다.
도 6 및 도 7을 참조하면, 상기 미생물 농도 측정 유닛(200)은 상기 전처리 유닛(100)에서 측정된 전기적 특성 정보에 기초하여 상기 미생물 치환액을 유전 영동을 통해 미생물 농축액과 여과액으로 분리한 후, 상기 미생물 농축액에서 미생물의 농도를 측정한다.
상기 미생물 농도 측정 유닛(200)은 분리부(210), 농도 측정부(220) 및 제2 배출부(230)를 포함한다.
상기 분리부(210)는 미생물 치환액을 양의 유전 영동의 힘(dielectrophoresis force, DEP force)을 이용하여 미생물 농축액과 여과액으로 분리한다.
상기 분리부(210)는 치환액 수용부(212), 헤링본 전극부(216) 및 제1 전력인가부(미도시)를 포함한다.
상기 치환액 수용부(212)는 상기 제1 배출부(130)로부터 배출되는 미생물 치환액이 수용되며, 상기 헤링본 전극부(216)가 다수개 설치된다.
상기 헤링본 전극부(216)는 전극이 절곡점을 중심으로 소정각도 절곡되게 연장된 헤링본 패턴 형상으로 형성된다.
상기 헤링본 전극부(216)는 상기 치환액 수용부(212)내 미생물 치환액에 포함된 미생물이 양의 유전 영동의 힘에 의해 상기 절곡점들을 따라 이동됨으로써, 상기 미생물 치환액을 미생물 농축액과 여과액으로 분리한다. 구체적으로 상기 헤링본 전극부는(216) 상기 치환액 배출부(131)에서 배출되어 상기 치환액 수용부(212)로 유입된 미생물 치환액이 상기 제2 배출부(230)를 향해 이동하는 과정에서 상기 미생물 치환액에 포함된 미생물을 상기 절곡점으로 유도함으로써 미생물 농축액으로 분리된다. 그리고상기 절곡점으로 유도되는 미생물을 제외한 여과액이 상기 제2 배출부(230)로 이동하게 된다.
상기 헤링본 전극부(216)는 제1 전극부(216a)와 제2 전극부(216b)를 포함한다.
상기 제1 전극부(216a)는 상기 미생물 치환액의 흐름에 기초하여 소정간격 상호 이격되어 배열된 다수의 제1 전극들로 이루어지되, 상기 제1 전극은 서로 상이한 각도로 형성된다. 상기 제1 전극은 상기 미생물 치환액의 상기 치환액 수용부(212)에 유입시, 미생물 치환액에 나타나는 항력(Drag force)에 의해 곡률형태의 미생물 치환액 흐름에서도 양의 유전 영동의 힘을 원활하게 인가하여 상기 미생물을 상기 절곡점들로 유도한다.
상기 제2 전극부(216b)는 상기 제1 전극부(216a)를 통과하는 미생물 치환액의 흐름에 기초하여 소정 간격 상호 이격되어 배열된 다수의 제2 전극들로 이루어지되, 상기 제2 전극은 서로 일정한 각도로 형성된다. 상기 제2 전극은 상기 제1 전극부(216a)를 통과하는 미생물 치환액의 직선형태의 흐름에서 양의 유전 영동의 힘을 원활하게 인가한다.
상기 제1 및 제2 전극부(216b)는 소정간격 이격되어 순차적으로 배열된다.
상기 제1 전력인가부는 상기 전기적 특성 산출부(140)에서 산출된 전기적 특성 정보에 기초하여 상기 헤링본 전극부(216)에 전력을 인가한다. 구체적으로 상기 제1 전력인가부는 상기 CM 인자에 기초하여 상기 헤링본 전극부(216)에 미생물 농축액과 여과액의 분리에 적합한 교류(Alternating Current)전력을 인가함에 따라 상기 치환액 수용부(212)에는 전기장(electric field)이 형성된다. 따라서 상기 헤링본 전극부(216)에는 미생물 치환액에 양의 유전 영동의 힘이 발생된다.
상기 농도 측정부(220)는 상기 분리부(210)에서 분리된 미생물 농축액의 미생물 농도를 측정한다.
상기 농도 측정부(220)는 검출 전극부(222), 제2 전력인가부(미도시) 및 미생물 농도 검출부(미도시)를 포함한다.
상기 검출 전극부(222)는 상기 치환액 수용부(212)에 설치되며, 양의 유전 영동의 힘으로 미생물 농축액에 농축된 미생물을 포획한다.
상기 검출 전극부(222)는 한쌍 이상의 IDE 전극을 포함할 수 있다. 그러나 상기 검출 전극부(222)에 포함된 전극쌍의 수는 경우에 따라 사용자가 미생물 검출 민감도를 향상시키기 위해 증가될 수 있다.
상기 제2 전력 인가부는 상기 검출 전극부(222)에 소정 시간 전력을 인가한다. 구체적으로 상기 제2 전력 인가부는 소정 시간 교류(Alternating Current)전력을 상기 검출 전극부(222)에 인가함으로써 상기 검출 전극부(222)에서 양의 유전 영동의 힘이 발생할 때 포획되는 미생물의 과다 포획으로 제 기능을 상실하는 것을 방지한다.
상기 미생물 농도 검출부는 상기 검출 전극부(222)에서 소정 시간 발생한 전기 신호 변화를 측정함으로써 총 미생물 농도를 측정한다.
상기 제2 배출부(230)는 농축액 배출부(232)와 여과액 배출부(234)를 포함한다.
상기 농축액 배출부(232)에서는 상기 치환액 수용부(212)에서 미생물이 농축된 미생물 농축액이 배출되며, 상기 여과액 배출부(234)에서는 상기 치환액 수용부(212)에서 미생물이 분리됨으로써 생성된 여과액이 배출된다.
도 8을 참조하면, 상기 전기 화학센서 유닛(300)은 샘플 용액 주입부(310), 반응 용액 주입부(320), 용액 수용부(330), 인큐베이션부(미도시), 미생물 균주별 농도 측정부(340), 용액 배출부(350), 차단밸브(360) 및 제어부(미도시)를 포함한다.
상기 샘플 용액 주입부(310)는 상기 농축액 배출부(232)로부터 배출되는 미생물 농축액이 주입된다.
상기 반응 용액 주입부(320)는 상기 샘플 용액 주입부(310)과 연결되며, 상기 인큐베이션부의 작동을 위해 반응 용액이 주입된다.
상기 용액 수용부(330)는 상기 샘플 용액 주입부(310)과 연결되며, 상기 미생물 농축액과 상기 반응 용액이 순차적으로 수용된다.
상기 인큐베이션부는 상기 용액 수용부(330)에 다수개가 설치되며, 상기 용액 수용부에서 수용된 미생물 농축액의 미생물을 소정시간 동안 인큐베이션 한다. 상기 인큐베이션은 미생물을 포획하기 위해 미생물(항원)과 항체의 결합을 실시하는 일련의 과정을 말한다.
상기 인큐베이션부는 미생물을 종류별로 포획할 수 있도록 서로 상이한 종류의 항체가 각각 고정되어 있다.
상기 미생물 균주별 농도 측정부(340)는 상기 인큐베이션부에서 인큐베이션된 미생물의 균주별 농도를 측정한다. 이때 미생물의 균주별 농도를 측성하기 위해서 상기 용액 수용부에는 상기 반응 용액이 주입되며, 상기 미생물 농축액은 배출된다.
상기 미생물 균주별 농도 측정부(340)는 미생물과 항체의 결합으로 발생하는 반응 용액의 전기 화학 신호 변화(산화 환원 반응에 의해 발생하는 전류 또는 전압값)를 측정함으로써 미생물의 균주별 농도를 측정한다.
상기 용액 배출부(350)는 상기 용액 수용부에 연결되며, 상기 미생물 농축액 또는 반응 용액이 배출된다.
상기 차단밸브(360)는 미생물 농축액 또는 반응 용액의 이동을 차단한다. 상기 차단밸브(360)는 상기 샘플 용액 주입부(310)에 설치되며, 상기 미생물 농축액의 이동을 차단하는 제1 차단밸브(362)와, 상기 반응 용액 주입부(320)에 설치되며, 상기 반응 용액의 이동을 차단하는 제2 차단밸브(364)를 포함한다.
상기 제어부는 상기 미생물 농축액과 샘플 용액이 순차적으로 상기 용액 수용부(330)에 수용되도록 상기 제1 및 제2 차단밸브(362, 364)를 제어한다. 구체적으로 상기 제어부는 상기 제2 차단밸브(364)를 차단함으로써 상기 미생물 농축액을 상기 용액 수용부(330)으로 주입시킨다. 또한, 상기 제어부는 상기 제1 차단부(362)를 차단함으로써 상기 반응 용액을 상기 용액 수용부(330)에 주입시킨다.
또한 상기 제어부는 경우에 따라 상기 미생물 농축액과 반응 용액을 주입 또는 배출하도록 전반을 제어할 수도 있다.
본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자(10)는 상기 전처리 유닛(100), 미생물 농도 측정 유닛(200) 및 전기 화학센서 유닛(300)을 집중 매개변수 모델(lumped parameter model)을 통해 상호 연결함으로써 전기적 기능을 유지한다.
또한 본 발명의 일 실시예에 따른 미지 용액 내 미생물 농도 검출 소자(10)는 전기 화학센서 유닛(300), 미생물 농도 측정 유닛(200) 및 전처리 유닛(100)순으로, 저항값을 설계함으로써 상호 전기적 기능을 유지한다. 보다 구체적으로 저항값의 설계는 상기 전처리 유닛(100), 미생물 농도 측정 유닛(200) 및 전기 화학센서 순서로 상호 연결하면 저항값이 달라져 제 기능을 상실하므로 전기 화학센서 유닛(300), 미생물 농도 측정 유닛(200) 및 전처리 유닛(100)순으로 저항값을 설계한다.
이상에서 설명한 본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자(10)의 작동과정은 다음과 같다.
미지 용액과 기준 용액이 각각 투입부(110)에 투입되면, 치환부(120)가 음파 영동을 통해 상기 투입부(110)에서 투입된 미지 용액에 포함된 미생물을 상기 기준 용액에 포함되도록 치환하여 미생물 치환액을 생성하게 된다. 이때, 상기 제1 배출부(130)에서는 미생물 치환액이 배출되며, 동시에 전기적 특성 산출부(140)가 상기 미생물 치환액의 전기적 특성 정보를 산출하게 된다.
이어서 상기 미생물 치환액 수용부(212)에 상기 제1 배출부(130)로부터 배출되는 상기 미생물 치환액이 수용된다. 또한, 상기 미생물 치환액의 항력이 흐름에 따라 발생된다.
또한 상기 치환액 수용부(212)는 상기 제1 전력인가부가 상기 전기적 특성정보에 기초한 전력을 헤링본 전극부(216)에 인가함으로써 양의 유전 영동의 힘이 발생된다.
따라서 상기 미생물 치환액은 양의 유전 영동의 힘에 의해 미생물이 상기 헤링본 전극부(216)의 절곡점을 따라 이동됨으로써 미생물 농축액으로 분리되며, 상기 미생물 치환액에 발생하는 항력으로 제2 배출부(230)를 향해 이동됨으로써 여과액으로 분리된다. 동시에 미생물 농도 검출부가 상기 미생물 농축액에 소정시간 전력을 인가하여 발생하는 전기 신호 변화를 측정함으로써 미생물 농도를 파악할 수 있다.
한편, 미생물 균주별 농도를 파악하기 위해 상기 제어부가 상기 제2 차단부(364)를 차단하고, 미생물 농축액이 샘플 용액 주입부(310)를 통해 상기 용액 수용부(330)로 주입된다. 이어서, 상기 인큐베이션부는 미생물 농축액의 미생물에 대해 인큐베이션을 실시한다.
상기 인큐베이션부가 소정 시간 동안 상기 미생물에 대한 인큐베이션을 마치면, 상기 제어부가 상기 제1 차단부(362)를 차단하며, 상기 반응 용액 주입부(320)을 통해 상기 반응 용액이 상기 용액 수용부(330)로 주입된다. 동시에 용액 수용부(330)에 수용된 미생물 농축액은 상기 용액 배출부(350)으로 배출되게 된다.
이어서, 상기 미생물 균주별 농도 측정부(340)은 상기 반응 용액의 산화 환원 반응에 의해 발생하는 전류 또는 전압값과 같은 전기 신호 변화를 측정함으로써 포획된 미생물의 균주별 농도를 파악할 수 있다.
따라서 본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자(10)는 전처리된 미생물 치환액의 전기적 특성 정보에 기초하여 상기 헤링본 전극부(216)에 전력을 공급함으로써 미생물 치환액을 양의 유전 영동의 힘을 통해 미생물 농축액과 여과액으로 분리할 수 있다.
또한, 본 발명의 일 실시예에 따른 미지 용액내 미생물 농도 검출 소자(10)는 치환액 수용부(212)에 유입되는 미생물 치환액의 흐름에 기초하여 상기 헤링본 전극부(216)를 설계함으로써 미생물에 양의 유전 영동의 힘이 원활하게 인가할 수 있다.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.

Claims (12)

  1. 검출대상 미생물이 포함된 미지 용액의 미생물을 음파 영동을 통해 기준 용액에 포함되도록 치환함으로써 미생물 치환액을 생성하고, 상기 미생물 치환액의 전기적 특성 정보를 산출하는 전처리 유닛과;
    상기 전처리 유닛에서 측정된 전기적 특성 정보에 기초하여 상기 미생물 치환액을 유전 영동을 통해 미생물 농축액과 여과액으로 분리한 후, 상기 미생물 농축액에서 미생물의 농도를 측정하는 미생물 농도 측정 유닛을 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  2. 제1 항에 있어서,
    상기 전처리 유닛은
    상기 미지 용액과 기준 용액이 각각 투입되는 투입부와;
    상기 음파 영동을 통해 상기 투입부에서 투입된 미지 용액에 포함된 미생물을 상기 기준 용액에 포함되도록 치환하여 미생물 치환액을 생성하는 치환부와;
    상기 치환부에서 치환된 미생물 치환액과 미지 용액을 각각 배출하는 제1 배출부와;
    상기 제1 배출부에서 배출된 미생물 치환액의 전기적 특성 정보를 산출하는 전기적 특성 산출부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  3. 제2 항에 있어서,
    상기 전기적 특성 산출부는
    상기 제1 배출부에서 배출되는 미생물 치환액의 임피던스를 측정하는 임피던스 측정부와;
    상기 임피던스 측정부에서 측정된 임피던스에 기초하여 전기적 특성 정보를 산출하는 산출부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  4. 제3 항에 있어서,
    상기 임피던스 측정부는
    상기 제1 배출부에서 배출되는 미생물 치환액에 인가되는 전류를 측정하는 전류 측정부와;
    상기 제1 배출부에서 배출되는 미생물 치환액에 인가되는 전압을 측정하는 전압 측정부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  5. 제3 항에 있어서,
    상기 전기적 특성 정보는 전기 전도도, 유전율 및 CM(Clausius-Mossotti)인자인 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  6. 제5 항에 있어서,
    상기 미생물 농도 측정 유닛은
    상기 미생물 치환액을 양의 유전 영동의 힘을 이용하여 미생물 농축액과 여과액으로 분리하는 분리부와;
    상기 분리부에서 분리된 미생물 농축액에서 미생물의 농도를 측정하는 농도 측정부와;
    상기 분리부로부터 분리된 미생물 농축액과 여과액을 각각 배출하는 제2 배출부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  7. 제6 항에 있어서,
    상기 분리부는
    상기 미생물 치환액을 수용하는 치환액 수용부와;
    상기 치환액 수용부에 다수개가 설치되며, 전극이 절곡점을 중심으로 소정각도 절곡되게 연장된 헤링본 패턴 형상으로 형성되어 상기 치환액 수용부내 미생물 치환액에 포함된 미생물이 양의 유전 영동의 힘에 의해 상기 절곡점들을 따라 이동함으로써 상기 미생물 치환액을 미생물 농축액과 여과액으로 분리시키는 헤링본 전극부와;
    상기 헤링본 전극부에서 양의 유전 영동의 힘이 발생할 수 있도록 상기 전기적 특성 산출부에서 산출된 전기적 특성 정보에 기초하여 상기 헤링본 전극부에 전력을 인가하는 제1 전력인가부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  8. 제7 항에 있어서,
    상기 헤링본 전극부는 제1 전극부와 제2 전극부를 포함하며,
    상기 제1 및 제2 전극부는 소정간격 이격되어 순차적으로 배열되되,
    상기 제1 전극부는 상기 치환액 수용부에 유입되는 미생물 치환액에 포함된 미생물에 양의 유전 영동의 힘을 원활하게 인가하여 상기 미생물이 상기 절곡점들로 유도될 수 있도록 상기 미생물 치환액의 흐름에 기초하여 소정간격 상호 이격되어 배열된 다수의 제1 전극들로 이루어지며,
    상기 제2 전극부는 양의 유전 영동의 힘이 원활하게 인가될 수 있도록 상기 제1 전극부를 통과하는 미생물 치환액의 흐름에 기초하여 소정 간격 상호 이격되어 배열된 다수의 제2 전극들으로 이루어지되
    상기 제1 전극은 서로 상이한 각도로 형성되며,
    상기 제2 전극은 서로 일정한 각도로 형성되는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  9. 제7 항에 있어서,
    상기 농도 측정부는
    상기 치환액 수용부에 설치되며, 양의 유전 영동의 힘으로 미생물 농축액에 농축된 미생물을 포획하는 검출 전극부와;
    상기 검출 전극부에서 양의 유전 영동의 힘이 발생할 수 있도록 상기 검출 전극부에 소정 시간 전력을 인가하는 제2 전력인가부와;
    상기 검출 전극부에서 소정 시간 발생한 전기 신호 변화를 측정함으로써 총 미생물 농도를 측정하는 미생물 농도 검출부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  10. 제9 항에 있어서,
    상기 검출 전극부는 한쌍 이상의 IDE 전극으로 이루어지는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  11. 제1 항에 있어서,
    상기 미생물 농도 측정 유닛으로부터 배출되는 미생물 농축액에서 미생물의 균주별 농도를 검출하는 전기 화학센서 유닛을 더 포함하며,
    상기 전기 화학센서 유닛은
    상기 미생물 농축액이 주입되는 샘플 용액 주입부와;
    상기 샘플 용액 주입부에 연결되며, 반응 용액이 주입되는 반응 용액 주입부와;
    상기 샘플 용액 주입부와 연결되며, 상기 미생물 농축액과 상기 반응 용액이 순차적으로 수용되는 용액 수용부와;
    상기 용액 수용부에서 수용된 미생물 농축액의 미생물을 소정시간 인큐베이션하는 인큐베이션부와;
    상기 인큐베이션부에서 인큐베이션된 미생물의 균주별 농도를 측정하는 미생물 균주별 농도 측정부와;
    상기 용액 수용부에 연결되며, 상기 용액 수용부에서 미생물 농축액 또는 반응 용액을 배출하는 용액 배출부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
  12. 제11 항에 있어서,
    상기 샘플 용액 주입부에 설치되며, 미생물 농축액 또는 반응 용액의 이동을 차단하는 차단밸브와;
    상기 인큐베이션부가 인큐베이션된 미생물의 균주별 농도를 측정하기 위한 것으로서 미생물 농축액과 반응 용액이 순차적으로 상기 용액 수용부에 수용되도록 상기 차단밸브를 제어하는 제어부를 포함하는 것을 특징으로 하는
    미지 용액내 미생물 농도 검출 소자.
PCT/KR2023/001088 2022-01-25 2023-01-25 미지 용액내 미생물 농도 검출 소자 WO2023146247A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220010371 2022-01-25
KR10-2022-0010371 2022-01-25
KR10-2022-0040716 2022-03-31
KR1020220040716A KR20230114664A (ko) 2022-01-25 2022-03-31 미지 용액내 미생물 농도 검출 소자

Publications (1)

Publication Number Publication Date
WO2023146247A1 true WO2023146247A1 (ko) 2023-08-03

Family

ID=87471943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001088 WO2023146247A1 (ko) 2022-01-25 2023-01-25 미지 용액내 미생물 농도 검출 소자

Country Status (1)

Country Link
WO (1) WO2023146247A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153297A (ja) * 2000-11-24 2002-05-28 Matsushita Electric Ind Co Ltd 微生物数測定方法及び前処理装置付き微生物数測定装置
JP2003000224A (ja) * 2001-06-26 2003-01-07 Japan Science & Technology Corp 微生物活性測定装置及び微生物活性の測定方法
JP2010252785A (ja) * 2009-03-31 2010-11-11 Kanagawa Acad Of Sci & Technol 細胞濃縮分離装置
KR20120066100A (ko) * 2010-12-14 2012-06-22 한국전자통신연구원 혈액 분석용 소자 및 이를 이용한 혈액 분석 방법
US20200206740A1 (en) * 2017-08-15 2020-07-02 University Of Washington Particle separation systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153297A (ja) * 2000-11-24 2002-05-28 Matsushita Electric Ind Co Ltd 微生物数測定方法及び前処理装置付き微生物数測定装置
JP2003000224A (ja) * 2001-06-26 2003-01-07 Japan Science & Technology Corp 微生物活性測定装置及び微生物活性の測定方法
JP2010252785A (ja) * 2009-03-31 2010-11-11 Kanagawa Acad Of Sci & Technol 細胞濃縮分離装置
KR20120066100A (ko) * 2010-12-14 2012-06-22 한국전자통신연구원 혈액 분석용 소자 및 이를 이용한 혈액 분석 방법
US20200206740A1 (en) * 2017-08-15 2020-07-02 University Of Washington Particle separation systems and methods

Similar Documents

Publication Publication Date Title
CN106442679A (zh) 一种检测分子之间结合能及结合动力学的传感装置及方法
CN109720235A (zh) 基于全桥绝缘检测电路的绝缘检测系统及电动汽车
WO2015130000A1 (en) Airborne microbial measurement apparatus and method
CN204008405U (zh) 双鞘流阻抗法粒子分析仪
CN103886360B (zh) 一种智能卡芯片中防功耗分析的方法和电路
CN106198689A (zh) 一种测定库伦生化需氧量的装置
CN102175744A (zh) 一种数字微流控技术的电化学传感器芯片
WO2023146247A1 (ko) 미지 용액내 미생물 농도 검출 소자
CN112924745A (zh) 纳米孔基因测序微电流检测装置
WO2015046702A1 (ko) 충방전기의 충전 전류 정밀도 검출 장치
DK182983A (da) Fremgangsmaade og apparat til identifikation af mikroorganismer
WO2011142614A2 (ko) 절연된 박막 전극의 전위 측정을 통한 나노포어 입자 검출기
WO2015129979A1 (en) Airborne microbial measurement apparatus and measurement method thereof
CN106197248B (zh) 膜厚的检测装置
WO2013151203A1 (ko) 나노채널을 이용한 실시간 분자서열 분석시스템 및 방법
WO2016003153A1 (ko) 대전체의 정전하 감지기 및 그 측정 장치
WO2013154345A1 (ko) 다수의 박막 구조물의 조합을 이용한 미소입자 처리 장치
CN205563607U (zh) 指纹检测装置及电子装置
WO2022215817A1 (ko) 액적의 크기 제어가 가능한 능동형 액적 생성장치, 이를 이용한 액적 크기 제어방법 및 액적 생성 자가진단 장치
WO2010107273A2 (en) Amplifying driving unit using giant magneto resistance sensor and diagnosis device using the same
KR20230114664A (ko) 미지 용액내 미생물 농도 검출 소자
WO2016024690A1 (en) Apparatus for detecting particles
WO2018182082A1 (ko) 펌프가 필요 없는 비접촉식 전기전도도 측정 기반 미소유체 칩 등전점 전기영동
WO2023177044A1 (ko) 용액 내 입자 측정 방법 및 이를 수행하는 장치
CN205484500U (zh) 一种便携式微电流测量电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747288

Country of ref document: EP

Kind code of ref document: A1