WO2023145974A1 - Film laminate, cured product, and printed wiring board comprising said cured product - Google Patents

Film laminate, cured product, and printed wiring board comprising said cured product Download PDF

Info

Publication number
WO2023145974A1
WO2023145974A1 PCT/JP2023/003127 JP2023003127W WO2023145974A1 WO 2023145974 A1 WO2023145974 A1 WO 2023145974A1 JP 2023003127 W JP2023003127 W JP 2023003127W WO 2023145974 A1 WO2023145974 A1 WO 2023145974A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin composition
resin
film laminate
composition layer
Prior art date
Application number
PCT/JP2023/003127
Other languages
French (fr)
Japanese (ja)
Inventor
香代子 徳光
文崇 加藤
大地 岡本
優之 志村
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023145974A1 publication Critical patent/WO2023145974A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a film laminate, and more particularly to a film laminate suitable for forming a solder resist. Furthermore, the present invention also relates to a cured product of the film laminate and a printed wiring board comprising the cured product.
  • the solder resist layer is formed by applying a photosensitive resin composition to the substrate, drying it, and curing it to form a pattern. It is mainly formed by so-called photosolder resist ink, in which the formed resin is fully cured by heating or light irradiation.
  • a dry film obtained by applying a photosensitive resin composition to a support film is used to form a solder resist layer without using a liquid photosensitive resin composition.
  • the dry film not only can omit the drying process, but also can be exposed while the layer of the photosensitive resin composition is covered with the support film.
  • the effect inhibition by oxygen is small, and the resulting solder resist layer has high surface smoothness and surface hardness (for example, Patent Document 1, etc.).
  • a dry film is obtained by applying a photosensitive resin composition to a support film
  • the support film repels the applied photosensitive resin composition, so that the thickness of the layer of the photosensitive resin composition on the support film becomes uneven, and the surface of the layer of the photosensitive resin composition may not be sufficiently smooth.
  • a solder resist layer obtained from such a dry film has a problem that it cannot sufficiently exhibit the properties such as insulation properties required for the solder resist.
  • an object of the present invention is to provide a film laminate in which repelling of the resin composition on the first film is suppressed when the resin composition is applied to the first film and dried.
  • Another object of the present invention is to provide a cured product obtained by curing the resin composition layer of the film laminate, and a printed wiring board comprising the cured product.
  • the present inventors have found that the contact angles between the first film and the resin composition at 25 ° C. and 75 ° C. respectively satisfy specific ranges, so that the resin on the first film It was found that repelling of the resin composition on the first film during coating and drying of the composition can be suppressed.
  • the present invention is based on such findings. That is, the gist of the present invention is as follows.
  • a film laminate comprising a first film and a resin composition layer provided on one surface of the first film, When the contact angle between the first film and the resin composition at 25°C is A, and the contact angle between the first film and the resin composition at 75°C is B, 15° ⁇ A ⁇ 30°, and 0.75A ⁇ B ⁇ 1.3A, A film laminate that satisfies [2]
  • [4] The film laminate according to any one of [1] to [3], wherein the maximum height of the surface of the first film in contact with the resin composition layer is less than 4.0 ⁇ m.
  • [5] The film laminate according to any one of [1] to [4], wherein the resin composition constituting the resin composition is a photosensitive resin composition.
  • [6] The film laminate according to any one of [1] to [5], wherein the surface of the first film in contact with the resin composition layer is surface-treated.
  • the film laminate according to any one of [1] to [6] which is a dry film.
  • [8] The film laminate according to any one of [1] to [7], which is used for forming a solder resist layer.
  • solder resist layer is a matte solder resist layer.
  • a cured product obtained by curing the resin composition layer of the film laminate according to any one of [1] to [9].
  • a printed wiring board comprising the cured product according to [10].
  • the first film and the resin composition are When the contact angles A and B at 75° C. each satisfy a specific range, repelling of the resin composition on the first film during coating and drying of the resin composition on the first film was suppressed.
  • Film laminates can be realized. Furthermore, according to the present invention, since the repelling of the resin composition on the film constituting the film laminate is suppressed, unevenness in the color and thickness of the resin composition layer in the film laminate, that is, color unevenness It is also possible to suppress variations in film thickness.
  • a film laminate of the present invention comprises a first film and a resin composition layer provided on one surface of the first film.
  • the film laminate may comprise layers other than the first film and the resin composition layer.
  • a second film may be provided on the surface of the resin composition layer.
  • the film laminate of the invention is preferably used as a dry film.
  • the film laminate of the present invention can be suitably used particularly for forming a solder resist layer, preferably a matte solder resist layer, of a printed wiring board.
  • the contact angle A between the first film and the resin composition at 25° C. satisfies the range of 15° ⁇ A ⁇ 30°, preferably 18° ⁇ A ⁇ 25°. Be satisfied. Since the contact angle between the first film and the resin composition at 25°C is 30° or less, at a general temperature (for example, room temperature) at which the resin composition is applied to the film in the production of the film laminate, Repelling can be suppressed when the resin composition is applied onto the first film. On the other hand, when the contact angle between the first film and the resin composition at 25° C. is 15° or more, it is possible to suppress excessive wetting and spreading upon application.
  • the contact angle B between the first film and the resin composition at 75 ° C. is the above-mentioned contact angle A between the first film and the resin composition at 25 ° C. , 0.75A ⁇ B ⁇ 1.3A, preferably 0.9A ⁇ B ⁇ 1.2A.
  • the contact angles A and B between the first film and the resin composition at 25 ° C. and 75 ° C. satisfy the above ranges, so that the resin composition is applied to the film and then dried at a general temperature (e.g., 75 ° C.), the repelling of the resin composition on the first film can be suppressed.
  • a method for adjusting each contact angle for example, in the film laminate of the present invention, a method of appropriately adjusting the material of the first film described later, and an arithmetic mean roughness and maximum height of the first film described later are appropriately adjusted.
  • a method of appropriately adjusting the viscosity of the resin composition described later a method of appropriately adjusting the solvent in the resin composition described later, and the like. Each of these methods may be performed singly or in combination of two or more.
  • the film laminate of the present invention has a sufficiently small contact angle A between the first film and the resin composition at 25 ° C., and a contact angle A between the first film and the resin composition at 75 ° C. Since B does not change greatly compared to the contact angle A, repelling when the resin composition is applied on the first film can be suppressed, and repelling when drying the applied resin composition can also be suppressed. As a result, non-uniformity in the thickness of the resin composition layer on the film caused by the film repelling the resin composition can be suppressed, and a resin composition layer having sufficiently high surface smoothness can be formed.
  • the thickness uniformity (surface smoothness) of the resin composition layer is considered to have a great effect on the performance of the solder resist layer obtained by curing it. Therefore, by suppressing the first film from repelling the resin composition in the production of the film laminate, the uniformity of the thickness of the resin composition layer (surface smoothness) is improved, and in turn the production of the film laminate It is considered that the yield in the process can be improved.
  • a film laminate of the present invention comprises a first film.
  • the first film preferably serves as a support for the resin composition layer to be described later, and the resin composition layer provided on one side of the first film is formed on a substrate such as a substrate. In the case of integral molding by lamination by heating or the like so as to be in contact with each other, it is at least adhered to the resin composition layer.
  • the first film may be peeled off from the resin composition layer in a step after lamination of the substrate and the resin composition layer. Particularly in the present invention, the first film is preferably peeled off from the resin composition layer in a step after curing the resin composition layer.
  • any known film can be used without any particular limitation.
  • a film made of a plastic resin can be preferably used.
  • polyester films are preferred, and polyethylene terephthalate films are particularly preferred, from the viewpoint of heat resistance, mechanical strength, handleability, and the like.
  • a laminate of these films can also be used as the first film.
  • the film made of the thermoplastic resin as described above is preferably a film stretched uniaxially or biaxially.
  • the first film as described above, a film is used in which the contact angles A and B between the first film and the resin composition at 25°C and 75°C respectively satisfy the ranges described above.
  • the means for adjusting the contact angle at each temperature is not particularly limited, and the material constituting the first film may be changed in relation to the resin composition, or the resin composition layer of the first film may be changed.
  • the contact angle with the resin composition can be adjusted by subjecting the surface in contact with the surface to surface treatment. Examples of the surface treatment applied to the surface of the first film include matte treatment and corona treatment.
  • the matte treatment includes, for example, coating type, kneading type, and the like.
  • the contact angle between the first film and the resin composition at each temperature is measured in accordance with JIS R3257: 1999, using a contact angle meter DropMaster DMo-601 (manufactured by Kyowa Interface Science Co., Ltd.) and multifunctional integrated analysis software.
  • a contact angle meter DropMaster DMo-601 manufactured by Kyowa Interface Science Co., Ltd.
  • FAMAS manufactured by Kyowa Interface Science Co., Ltd.
  • a droplet formed by dropping 0.25 ⁇ L of the resin composition onto the film using a syringe with a needle is photographed from the horizontal side and obtained. can be measured by analyzing the contact angle of the droplet at the film interface of the captured image.
  • the contact angle of the droplet at the film interface is the angle formed by the tangent to the droplet surface and the film surface at the point where the film and the droplet contact, and is the angle on the side containing the droplet.
  • the above-described droplet image capturing and contact angle analysis are performed on a plurality of droplets, preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more droplets. is done about
  • the arithmetic mean roughness (Ra) of the surface of the first film in contact with the resin composition layer is not particularly limited as long as the effects of the present invention are exhibited, but is preferably less than 0.2 ⁇ m.
  • the arithmetic mean roughness of the surface of the first film in contact with the resin composition layer is within the range described above, uniform coating can be achieved.
  • the arithmetic mean roughness of the surface in contact with the resin composition layer of the first film is measured using a laser microscope VK-X series (manufactured by Keyence Corporation) corresponding to the non-contact measurement method, JISB0601: 2001 ( ISO4287:1997) can be measured.
  • the target portion can be measured by setting the magnification of the surface of the first film in the range of 50 ⁇ m ⁇ 100 ⁇ m to 50 times.
  • the measurement of the arithmetic mean roughness of the first film described above is performed at a plurality of randomly selected locations of the first film, preferably 2 or more, more preferably 5 or more, and even more preferably is performed at 10 or more locations.
  • the arithmetic mean roughness of the first film is the average value of the measured values at those multiple points.
  • the maximum height (Rz) of the surface of the first film in contact with the resin composition layer is not particularly limited as long as the effects of the present invention are exhibited, but is preferably less than 4.0 ⁇ m. When the maximum height of the surface of the first film in contact with the resin composition layer is within the range described above, it is possible to suppress occurrence of uncoated portions (missing areas).
  • the maximum height of the surface of the first film in contact with the resin composition layer is measured using a laser microscope VK-X series (manufactured by Keyence Corporation) corresponding to the non-contact measurement method, JIS B0601: 2001 (ISO4287: 1997).
  • the target portion can be measured by setting the magnification of the surface of the first film in the range of 50 ⁇ m ⁇ 100 ⁇ m to 50 times.
  • the measurement of the arithmetic mean roughness of the first film described above is performed at a plurality of randomly selected locations of the first film, preferably 2 or more, more preferably 5 or more, and even more preferably is performed at 10 or more locations.
  • the arithmetic mean roughness of the first film is the average value of the measured values at those multiple points.
  • the thickness of the first film is not particularly limited, but considering flexibility and bendability, it is usually about 1 to 1000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m, especially It is preferably 20 to 200 ⁇ m.
  • the film laminate of the present invention comprises a resin composition layer provided on one surface of the first film.
  • the resin composition layer preferably forms a cured layer through a curing step, and particularly preferably forms a solder resist layer. Therefore, the resin composition forming the resin composition layer preferably contains a photosensitive resin.
  • the viscosity of the resin composition constituting the resin composition layer is not particularly limited, but the viscosity at 5 rpm at 25° C. is preferably 1.0 to 10 dPa ⁇ s, more preferably 1.0 to 5.0 dPa ⁇ s. is s.
  • the film thickness of the resin composition thickness of the resin composition (thickness of the resin composition layer) can be uniformly adjusted when the resin composition is applied to a film.
  • the viscosity of the resin composition is measured by collecting 1.0 ml of the resin composition and using a cone-plate viscometer TV-33H (rotor 1°34′ ⁇ R24, manufactured by Toki Sangyo Co., Ltd.). is the value of the viscosity measured after rotating for 30 seconds at 5 rpm (shear rate 10-1 s) at 25°C.
  • the photosensitive resin contained in the resin composition layer is not particularly limited, but a carboxyl group-containing resin is preferably used from the viewpoint of imparting alkali developability to the resin composition layer.
  • a carboxyl group-containing resin conventionally known various resins having a carboxyl group in the molecule can be used.
  • a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is preferable from the viewpoint of photocurability and development resistance.
  • the ethylenically unsaturated double bonds are preferably derived from acrylic acid or methacrylic acid or derivatives thereof.
  • carboxyl group-containing resins When only a carboxyl group-containing resin having no ethylenically unsaturated double bonds is used, in order to make the composition photocurable, a compound having a plurality of ethylenically unsaturated groups in the molecule described later, that is, photo It is necessary to use a polymerizable monomer together.
  • carboxyl group-containing resins include the following compounds (both oligomers and polymers).
  • Carboxyl group-containing resins may be used alone or in combination of two or more.
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth)acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylate, isobutylene, or the like.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • a diisocyanate such as a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a bixylenol type epoxy resin, or a biphenol type epoxy resin ( Carboxyl group-containing photosensitivity obtained by polyaddition reaction of partial acid anhydride-modified reaction product with monocarboxylic acid compound having ethylenically unsaturated double bond such as meth)acrylic acid, carboxyl group-containing dialcohol compound and diol compound Urethane resin.
  • a bifunctional epoxy resin such as a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a bixylenol type epoxy resin, or a biphenol type epoxy resin ( Carboxyl group-containing photosensitivity obtained by polyaddition reaction of partial acid anhydride-modified reaction product with monocarboxylic acid compound having
  • one isocyanate group and one or more (meth)acryloyl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • a carboxyl group-containing photosensitive resin obtained by reacting (meth)acrylic acid with a polyfunctional (solid) epoxy resin having a functionality of 2 or more and adding a dibasic acid anhydride to the hydroxyl group present in the side chain.
  • Group-containing photosensitive resin A carboxyl obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl group.
  • a bifunctional oxetane resin is reacted with a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid, and the resulting primary hydroxyl group is treated with a dibasic such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
  • a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid
  • a dibasic such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
  • Carboxyl group-containing polyester resin to which acid anhydride is added.
  • an epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol;
  • Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipine are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and the alcoholic hydroxyl group of the resulting reaction product is treated with A carboxyl group-containing photosensitive resin obtained by reacting a polybasic acid anhydride such as an acid.
  • (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group.
  • a carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • a carboxyl group-containing photosensitive resin obtained by further adding a compound having one epoxy group and one or more (meth)acryloyl groups in one molecule to the resins of (1) to (11).
  • (meth)acrylate is a generic term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
  • the acid value of the carboxyl group-containing resin is preferably 30-150 mgKOH/g. By setting the acid value of the carboxyl group-containing resin to 30 mgKOH/g or more, the alkali development becomes good. Also, by setting the acid value to 150 mgKOH/g or less, it is possible to facilitate drawing of a good resist pattern.
  • the acid value of the carboxyl group-containing resin is more preferably 50-130 mgKOH/g.
  • the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, it is generally preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. If the weight-average molecular weight is less than 2,000, the moisture resistance of the coating film after exposure may be poor, causing film thinning during development and greatly deteriorating resolution. On the other hand, when the weight-average molecular weight exceeds 150,000, the developability may be remarkably deteriorated, and the storage stability may also be deteriorated. Weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the blending amount of the carboxyl group-containing resin is preferably 20 to 60% by mass in terms of solid content in the resin composition. By making it 20% by mass or more, the strength of the coating film can be improved. Moreover, by making it 60% by mass or less, the viscosity becomes appropriate and the processability improves.
  • the content of the carboxyl group-containing resin is more preferably 30 to 50% by mass.
  • a photopolymerizable monomer can be blended in the resin composition.
  • a photopolymerizable monomer is a monomer having an ethylenically unsaturated double bond.
  • the photopolymerizable monomer especially when using a carboxyl group-containing non-photosensitive resin that does not have an ethylenically unsaturated double bond, must be used in combination with a photopolymerizable monomer to make the composition photocurable. Therefore, it is valid.
  • photopolymerizable monomers include commonly known polyester (meth)acrylates, polyether (meth)acrylates, urethane (meth)acrylates, carbonate (meth)acrylates, epoxy (meth)acrylates, and the like.
  • alkyl acrylates such as 2-ethylhexyl acrylate and cyclohexyl acrylate
  • hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate
  • alkylene glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol.
  • acrylamides such as N,N-dimethylacrylamide, N-methylolacrylamide and N,N-dimethylaminopropylacrylamide; N,N-dimethylaminoethyl acrylate, N,N-dimethylaminopropyl Aminoalkyl acrylates such as acrylates; Polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol and trishydroxyethyl isocyanurate, or their alkylene oxide adducts or ⁇ -caprolactone adducts, etc.
  • polyvalent acrylates phenols such as phenoxy acrylate and bisphenol A diacrylate or polyvalent acrylates such as alkylene oxide adducts thereof; glycidyls such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate Ether acrylates; not limited to the above, acrylates and melamine acrylates obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl-terminated polybutadiene, and polyester polyols, or urethane acrylated via diisocyanate, and the above acrylates can be appropriately selected from at least one of the methacrylates corresponding to and used.
  • Such photopolymerizable monomers can also be used as reactive diluents.
  • One type of the photopolymerizable monomer may be used alone, or two or more types may be used
  • the blending amount of the photopolymerizable monomer is preferably 10 to 100 parts by mass in terms of solid content with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the amount of the photopolymerizable monomer is 10 parts by mass or more, the photocurability is good, and pattern formation is facilitated in alkali development after irradiation with active energy rays.
  • the content is 100 parts by mass or less, halation is less likely to occur and good resolution can be obtained.
  • Photoinitiator Any known photopolymerization initiator can be used in the resin composition.
  • a photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • photopolymerization initiators include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis -(2,6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide , bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2, bisacylphosphine oxides such as 4,6-trimethylbenzoyl)-phenylphosphine oxide; 2,6-dimeth
  • the amount of the photopolymerization initiator (excluding the oxime ester-based photopolymerization initiator) in the resin composition is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the content is 1 part by mass or more, the photocurability of the resin composition is improved, the film is difficult to peel off, and the film properties such as chemical resistance are improved.
  • the content is 20 parts by mass or less, the effect of reducing outgassing is obtained, the light absorption on the surface of the solder resist coating film is improved, and the deep-part curability is less likely to deteriorate. More preferably, it is 3 to 10 parts by mass.
  • the amount of the oxime ester photopolymerization initiator in the resin composition is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the amount is 0.1 part by mass or more, the resin composition has good photocurability and good film properties such as heat resistance and chemical resistance.
  • the amount is 20 parts by mass or less, the light absorption of the solder resist film is improved, and the deep-part curability is less likely to deteriorate. More preferably, it is 0.5 to 10 parts by mass.
  • a photoinitiation aid or a sensitizer may be used in combination with the photopolymerization initiator described above.
  • Photoinitiation aids or sensitizers include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, xanthone compounds, and the like.
  • Thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone are particularly preferred.
  • Inclusion of a thioxanthone compound can improve deep-part curability.
  • These compounds can be used as a photopolymerization initiator in some cases, but are preferably used in combination with the photopolymerization initiator.
  • the photoinitiation aid and the sensitizer may be used singly or in combination of two
  • photopolymerization initiators since these photopolymerization initiators, photoinitiator aids, and sensitizers absorb specific wavelengths, the sensitivity may be lowered in some cases, and they may function as ultraviolet absorbers. However, these are not used only for the purpose of improving the sensitivity of the composition. It absorbs light of a specific wavelength as needed to increase the photoreactivity of the surface, change the line shape and opening of the resist to vertical, tapered, and reverse tapered shapes, and improve the accuracy of the line width and opening diameter. can be improved.
  • the resin composition may contain a thermosetting component.
  • a thermosetting component By including a thermosetting component in the resin composition, it can be expected that the heat resistance of the resin composition is improved.
  • thermosetting components include known and commonly used ones such as isocyanate compounds, blocked isocyanate compounds, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, epoxy compounds, oxetane compounds, and episulfide resins.
  • Preferred thermosetting components among these are epoxy resins.
  • a thermosetting component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Epoxy resins that can be used include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin. resins, cresol novolak-type epoxy resins, bisphenol A novolac-type epoxy resins, biphenyl-type epoxy resins, naphthalene-type epoxy resins, dicyclopentadiene-type epoxy resins, triphenylmethane-type epoxy resins, and the like.
  • Examples of commercially available epoxy resins include jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, ZX-1059 manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • Examples include ST-3000, EPICLON 830, 835, 840, 850, N-730A and N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Co., Ltd.
  • the resin composition may contain a curing agent.
  • a curing agent As the curing agent contained in the resin composition, known curing agents that are commonly used for curing the above-described thermosetting resins can be used. For example, amines, imidazoles, polyfunctional phenols , acid anhydrides, isocyanates, imidazole latent curing agents such as imidazole adducts, and polymers containing these functional groups. Examples of amines include dicyandiamide and diaminodiphenylmethane. Examples of imidazoles include alkyl-substituted imidazoles and benzimidazoles.
  • polyfunctional phenols examples include hydroquinone, resorcinol, bisphenol A and their halogen compounds, and condensates of these with aldehydes such as novolak and resole resins.
  • Acid anhydrides include, for example, phthalic anhydride, hexahydrophthalic anhydride, methylnadic anhydride, benzophenonetetracarboxylic acid and the like.
  • Isocyanates include, for example, tolylene diisocyanate and isophorone diisocyanate, and those isocyanates masked with phenols or the like can also be used.
  • the curing agents may be used singly or in combination of two or more. As the curing agent, imidazoles are preferably used.
  • imidazoles include reaction products of epoxy resins and imidazole, and specific examples include 2-methylimidazole, 4-methyl-2-ethylimidazole, 2-phenylimidazole, 4-methyl-2-phenyl imidazole, 1-benzyl-2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un decyl imidazole and the like.
  • imidazoles such as 2E4MZ, C11Z, C17Z, and 2PZ (reaction products of epoxy resin and imidazole), 2MZ-A, 2E4MZ-A, and 2MZA-PW (above, imidazole AZINE (azine) compound), 2MZ-OK, 2PZ-OK (above, isocyanurate of imidazole), 2PHZ, 2P4MHZ (above, imidazole hydroxymethyl) (all of these are manufactured by Shikoku Kasei Co., Ltd.) etc.
  • Examples of commercially available imidazole-type latent curing agents include CURESOL P-0505 (manufactured by Shikoku Kasei Kogyo Co., Ltd.).
  • the resin composition may contain an inorganic filler.
  • inorganic filler known inorganic fillers can be used, and barium sulfate, spherical silica, hydrotalcite and talc are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type. Spherical silica is particularly preferably used as the inorganic filler.
  • any spherical silica that can be used as a filler for electronic materials can be used as the spherical silica.
  • the shape of the spherical silica is not limited to being spherical as long as it is spherical.
  • suitable spherical silica include, but are not limited to, those having a sphericity of 0.8 or more measured as follows.
  • the average particle size of the spherical silica is not particularly limited, it is preferably 0.05-10 ⁇ m, more preferably 0.1-5 ⁇ m, and still more preferably 0.3-1 ⁇ m.
  • the average particle size of spherical silica is the average particle size (D50) including not only the particle size of primary particles but also the particle size of secondary particles (aggregates), and the value of D50 measured by a laser diffraction method. is. Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd. can be used as a measuring device using the laser diffraction method.
  • the maximum particle size (D100) and particle size (D10) can also be measured in the same manner using the above apparatus.
  • the average particle size of the spherical silica contained in the resin composition layer is the value obtained by measuring the spherical silica as described above before adjusting (preliminarily stirring, kneading) the resin composition constituting the resin composition layer. shall mean.
  • the above inorganic filler may be surface-treated.
  • a surface treatment with a coupling agent, or a surface treatment that does not introduce an organic group, such as alumina treatment may be performed.
  • the surface treatment method of the inorganic filler is not particularly limited, and a known and commonly used method may be used, and the inorganic filler is treated with a surface treatment agent having a curable reactive group, such as a coupling agent having a curable reactive group as an organic group. surface should be treated.
  • the surface treatment is preferably surface treatment with a coupling agent.
  • a coupling agent silane-based, titanate-based, aluminate-based, and zirco-aluminate-based coupling agents can be used. Among them, silane coupling agents are preferred.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, N-(2-aminomethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-amino propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-anilinopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxy Cyclohexyl)ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like can be mentioned, and these can be used alone or in combination.
  • the blending amount of the inorganic filler in the resin composition is preferably 85% by mass or less in terms of solid content based on the total solid content of the resin composition.
  • the range of the amount of the inorganic filler compounded is preferably 30 to 85% by mass, more preferably 40 to 80% by mass, and still more preferably 50 to 75% by mass in terms of solid content based on the total solid content of the resin composition. %.
  • the resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured product.
  • the thermoplastic resin is preferably soluble in solvents. When it is soluble in a solvent, the flexibility of the film laminate is improved, and the occurrence of cracks and falling powder can be suppressed.
  • Thermoplastic resins include thermoplastic polyhydroxy polyether resins, phenoxy resins that are condensates of epichlorohydrin and various bifunctional phenol compounds, and various acid anhydrides and acid chlorides that replace the hydroxyl groups of the hydroxy ether portion present in the skeleton. and esterified phenoxy resins, polyvinyl acetal resins, polyamide resins, polyamideimide resins, block copolymers, and the like.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • the blending amount of the thermoplastic resin is 0.5 to 20% by mass, preferably 0.5 to 10% by mass, relative to the entire resin composition layer. When the blending amount of the thermoplastic resin is within the above range, it is easy to obtain a uniform roughened surface state.
  • the resin composition may contain an organic solvent for the purpose of its preparation and viscosity adjustment when applying the resin composition to the first film.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether; , dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propy
  • the boiling point of the organic solvent is not particularly limited as long as the effect of the present invention is exhibited, but from the viewpoint of ease of adjustment of the amount of residual solvent in the film laminate, preferably 50 to 220 ° C., more preferably 50 to 150 °C.
  • residual solvent means that after forming a resin composition layer on the surface of the first film, it is dried at 75°C for 15 minutes to volatilize the solvent. The amount of solvent that is removed (i.e., remains).
  • Volatilization drying of organic solvents is carried out by using a hot air circulating drying furnace, IR furnace, hot plate, convection oven, etc. (equipped with a heat source that heats the air using steam), and a method in which the hot air in the dryer is brought into contact with the counter current and supported by a nozzle. method of spraying on the body) can be used.
  • the amount of the organic solvent blended in the resin composition can be appropriately changed according to the materials constituting the resin composition.
  • the amount of is based on the total amount of the resin composition layer of the film laminate (that is, the resin composition layer after forming the resin composition layer on the surface of the film and drying at 75 ° C. for 15 minutes), 0 .1 to 4% by mass, more preferably 0.3 to 3% by mass.
  • the amount of residual solvent can be adjusted by appropriately selecting the boiling point of a suitable organic solvent and the blending amount of the organic solvent in the resin composition.
  • the method for measuring the amount of residual solvent is not particularly limited, examples thereof include the measuring method described in Examples.
  • the resin composition layer may further optionally contain conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, asbestos, orben, Conventionally known thickeners such as bentone and finely divided silica; antifoaming agents and/or leveling agents such as silicone-based, fluorine-based and polymer-based agents; adhesion imparting agents such as thiazole-based, triazole-based and silane coupling agents , flame retardants, organic fillers, rubber-like particles, sensitizers, titanate-based and aluminum-based conventionally known additives.
  • conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, asbestos, orben
  • Conventionally known thickeners such as bentone and finely divided silica
  • the film laminate of the present invention can be produced by applying the resin composition described above onto the first film described above and drying it to form a resin composition layer.
  • the resin composition that constitutes the resin composition layer is diluted with an organic solvent to adjust the viscosity to an appropriate value, and then applied by a comma coater, a blade coater, a lip coater, a rod coater, a squeeze coater, a reverse coater, and a transfer roll coater. , gravure coater, spray coater, etc., to a uniform thickness on the first film, and usually dried at a temperature of 50 to 130 ° C. for 1 to 30 minutes to volatilize the organic solvent in the resin composition.
  • a resin composition layer can be formed.
  • the coating amount of the resin composition is not particularly limited, but is generally selected appropriately within the range of 1 to 150 ⁇ m, preferably 10 to 60 ⁇ m, in terms of film thickness after drying.
  • the drying performed after applying the resin composition is mainly performed to volatilize the solvent contained in the resin composition (evaporation drying). Drying is carried out by using a hot air circulating drying furnace, IR furnace, hot plate, convection oven, etc. (equipped with a heat source of air heating method using steam), and a method in which the hot air in the dryer is brought into contact with the counter current, and is blown onto the support from a nozzle. method) can be used.
  • a second film that can be peeled off from the surface of the resin composition layer for the purpose of preventing dust from adhering to the surface of the resin composition layer. is preferably laminated.
  • the second film refers to a film that separates from the resin composition layer before lamination when the film laminate is laminated by heating or the like so that the resin composition layer side of the film laminate is in contact with a base material such as a substrate and integrally molded.
  • a peelable second film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used. It is sufficient that the adhesive strength between the resin composition layer and the second film is smaller than the adhesive strength with the first film.
  • the thickness of the second film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the cured product of the present invention is obtained by curing the resin composition layer of the film laminate of the present invention described above.
  • the cured product of the present invention is preferably a solder resist layer, particularly a matte solder resist layer, having a thickness of 1 to 150 ⁇ m, for example.
  • the printed wiring board of the present invention has a cured product obtained from the resin composition layer of the film laminate of the present invention described above.
  • the resin composition layer of the film laminate is laminated on the substrate by a laminator or the like so as to be in contact with the substrate, and then the first film is peeled off. to form a resin composition layer on the substrate.
  • a patterned cured product can be formed on the base material by peeling off the first film after the exposure described later and performing development as long as the properties are not impaired.
  • the substrate examples include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, all grades (FR-4, etc.) of copper-clad laminates. Plates, metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
  • PEN polyethylene naphthalate
  • the lamination of the film laminate onto the substrate is preferably carried out under pressure and heat using a vacuum laminator or the like.
  • a vacuum laminator By using such a vacuum laminator, even if a substrate having a circuit formed thereon is used, even if the surface of the circuit substrate is uneven, the film laminate adheres to the circuit substrate. , the hole-filling property of the concave portion of the substrate surface is also improved.
  • the pressure condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
  • a resin composition layer After forming a resin composition layer on the substrate, it is selectively exposed to active energy rays through a photomask having a predetermined pattern, and the unexposed area is treated with a dilute alkaline aqueous solution (for example, 0.3 to 3% by mass sodium carbonate. aqueous solution) to form a patterned cured product on the substrate.
  • a dilute alkaline aqueous solution for example, 0.3 to 3% by mass sodium carbonate. aqueous solution
  • the first film may be peeled off from the film laminate, and the exposed resin composition layer may be exposed and developed as long as the properties are not impaired.
  • heat curing e.g., 100 to 220 ° C
  • final final curing main curing
  • the exposure machine used for the active energy ray irradiation may be any device equipped with a high-pressure mercury lamp, ultra-high pressure mercury lamp, metal halide lamp, mercury short arc lamp, etc., and irradiating ultraviolet rays in the range of 350 to 450 nm.
  • a direct writing device eg, a laser direct imaging device that draws an image with a laser directly from CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the amount of exposure for image formation varies depending on the film thickness and the like, but can generally be in the range of 10-1000 mJ/cm 2 , preferably 20-800 mJ/cm 2 .
  • a developing method As a developing method, a dipping method, a shower method, a spray method, a brush method, or the like can be used. , amines, etc. can be used.
  • Films 1 to 4 below were prepared as films (first films) constituting the film laminate.
  • Film 1 A polyethylene terephthalate film (thickness: 38 ⁇ m, arithmetic mean roughness Ra: 0.04 ⁇ m, maximum height Rz: 0.88 ⁇ m) prepared according to the procedure described in the preparation of film 1 below.
  • Film 2 A polyethylene terephthalate film (film thickness: 42 ⁇ m, arithmetic mean roughness Ra: 0.16 ⁇ m, maximum height Rz: 3.28 ⁇ m) prepared according to the procedure described in the preparation of film 2 below.
  • Film 3 A polyethylene terephthalate film (thickness: 42 ⁇ m, arithmetic mean roughness Ra: 0.22 ⁇ m, maximum height Rz: 4.16 ⁇ m) prepared according to the procedure described in the preparation of film 3 below.
  • Film 4 commercially available polypropylene film Alphan MA-411 (manufactured by Oji F-Tex Co., Ltd.) (Film thickness: 15 ⁇ m, arithmetic mean roughness Ra: 0.20 ⁇ m, maximum height Rz: 1.77 ⁇ m)
  • Film 1 described above was produced according to the following procedure. After the polyethylene terephthalate resin was melt extruded at 290°C, the extruded molten polyethylene terephthalate resin was cooled and solidified on a cooling roll whose surface temperature was set to 40°C by an electrostatic contact method to obtain an unstretched sheet. Next, the unstretched sheet is stretched in the roll winding direction (longitudinal direction) at 90° C., stretched in the transverse direction at 110° C. through a preheating step in a tenter, heat-treated for 10 seconds, and then 180° C. °C in the width direction to obtain a biaxially stretched polyester film (film 1). The film thickness of the film 1 was 38 ⁇ m.
  • the arithmetic mean roughness Ra and the maximum height Rz of the surface of the film 1 were measured in accordance with JIS B 0601: 2001 using a shape measuring laser microscope VX-100 (manufactured by Keyence Corporation) in shape measurement mode. It was measured. Specifically, in the shape measurement mode of the shape measurement laser microscope, launch the observation application VK-H1XV, place the film 1 on the XY stage, use the 50x objective lens, and use the shape measurement mode Focused with autofocus. The Z-axis was controlled as necessary to adjust the focus to the optimum position. Then, the observed image was captured in automatic measurement mode or manual measurement mode. Next, we launched the analysis application VK-H1XA and measured the arithmetic mean roughness and maximum height. Film 1 had an arithmetic mean roughness Ra of 0.04 ⁇ m and a maximum height Rz of 0.88 ⁇ m.
  • Film 2 described above was produced according to the following procedure. Methyl methacrylate, methyl acrylate, and 8-hydroxyoctyl methacrylate were blended so that the blending ratio in terms of solid content was 95:5:3.0 on a mass basis, prestirred using a stirrer, and diluted with ethyl acetate. As a result, a resin solution having a solid concentration of 35% by mass was obtained.
  • azobisisobutyronitrile as a polymerization initiator and Coronate (registered trademark) HX as a cross-linking agent were added dropwise to the obtained resin solution at a ratio of 1:30 on a mass basis, and then heated to 65°C. It was heated and reacted for a predetermined time to obtain an acrylic resin solution.
  • the obtained acrylic resin solution after adding ethyl acetate so that the solid content concentration is appropriate according to the desired thickness of the coating film, silicone resin Cymac US-270 (manufactured by Toagosei Co., Ltd.) and spherical silica SO-C2 (manufactured by Admatechs Co., Ltd.) so that the mixing ratio of acrylic resin, silicone resin and filler in terms of solid content is 59.7:0.3:6.2 on a mass basis. and thoroughly stirred at room temperature using a stirrer to obtain a homogeneous resin solution.
  • the obtained resin solution was applied to Film 1 described above and dried at 130° C. for 20 seconds to obtain Film 2 having a coating layer.
  • the film thickness of the film 2 was 42 ⁇ m.
  • the arithmetic mean roughness Ra and maximum height Rz of the surface of film 2 were measured in the same manner as the measurement of the arithmetic mean roughness and maximum height of film 1 described above.
  • Film 2 had an arithmetic mean roughness Ra of 0.16 ⁇ m and a maximum height Rz of 3.28 ⁇ m.
  • Film 3 described above was produced according to the following procedure.
  • Isobutylated melamine resin Amidia L-125-60 solid content 60%, manufactured by DIC Corporation
  • acrylic resin Acrydic A-405 for melamine baking solid content 50%, manufactured by DIC Corporation
  • the obtained acrylic melamine resin was diluted with methyl ethyl ketone to obtain a resin solution with a solid concentration of 35% by mass.
  • silicone resin Cymac US-270 manufactured by Toagosei Co., Ltd.
  • spherical silica SO- C2 manufactured by Admatechs Co., Ltd. was added so that the mixing ratio of acrylic melamine resin, silicone resin and filler in terms of solid content was 59.7: 0.3: 16.0 on a mass basis. was used to sufficiently stir at room temperature to obtain a homogeneous resin solution.
  • the resulting resin solution was applied to film 1 described above and dried at 130° C. for 20 seconds to obtain film 3 having a coating layer.
  • the film thickness of the film 3 was 42 ⁇ m.
  • the arithmetic mean roughness Ra and maximum height Rz of the surface of film 3 were measured in the same manner as the measurement of the arithmetic mean roughness and maximum height of film 1 described above.
  • Film 3 had an arithmetic mean roughness Ra of 0.22 ⁇ m and a maximum height Rz of 4.16 ⁇ m.
  • resin compositions 1 to 5 were prepared according to the following procedure.
  • a carboxyl group-containing resin A was synthesized according to the following procedure. First, an autoclave equipped with a thermometer, a nitrogen introduction device, an alkylene oxide introduction device, and a stirring device was charged with 119 novolak cresol resin (trade name "Shonol CRG951", manufactured by Aica Kogyo Co., Ltd., OH equivalent: 119.4). 4 parts by mass, 1.19 parts by mass of potassium hydroxide, and 119.4 parts by mass of toluene were introduced, and the inside of the system was replaced with nitrogen while stirring, and the temperature was raised.
  • 119 novolak cresol resin trade name "Shonol CRG951", manufactured by Aica Kogyo Co., Ltd., OH equivalent: 119.4
  • silica slurry was synthesized according to the following procedure. Dispersion treatment was performed using 700 g of spherical silica (manufactured by Admatec Co., Ltd.), 300 g of PMA as a solvent, and 0.7 ⁇ m zirconia beads in a bead mill. This was repeated three times and filtered through a 3 ⁇ m filter to prepare a silica slurry having an average particle size of 0.7 ⁇ m. The solid content of the obtained silica slurry was 70% by mass.
  • ⁇ Measurement of viscosity> 1.0 ml of the resin compositions 1 to 8 prepared according to the procedure described above were sampled and measured at 25° C. using a cone/plate viscometer TV-33H (rotor 1°34′ ⁇ R24, manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after rotating at 5 rpm (shear rate 10-1 s) for 30 seconds. Table 1 shows the measurement results.
  • each film laminate and copper foil prepared by the procedure described above are attached so that the resin composition and copper foil of each film laminate are in contact, and the film 1 is peeled off from each film laminate to obtain a resin composition.
  • a copper foil with a layer was obtained.
  • the weight (B) of each copper foil having a resin composition layer was measured with an electronic balance.
  • each copper foil having a resin composition layer is placed on a glass epoxy substrate and fixed with a clip, the resin composition layer is dried at 100 ° C. for 20 minutes, and the solvent ( residual solvent) was evaporated.
  • each copper foil having a resin composition layer is allowed to cool at room temperature for 20 minutes, the weight (C) after cooling is measured with an electronic balance, and the resin composition layer of each copper foil is cooled at 100 ° C.
  • the contact angle (contact angle A) between each film and each resin composition at 25°C was measured according to JIS R3257:1999. Specifically, the multifunctional integrated analysis software FAMAS (manufactured by Kyowa Interface Science Co., Ltd.) was activated to activate the CA/PD controller. At that time, the "field of view" on the controller screen was selected as "standard”. Put each resin composition described above at a measurement temperature of 25 ° C. in a plastic syringe, attach a stainless steel needle (22 gauge) to the tip of the syringe, and drop 2.5 ⁇ L of each resin composition onto each film described above. A droplet formed.
  • FAMAS manufactured by Kyowa Interface Science Co., Ltd.
  • each resin composition described above at a measurement temperature of 25 ° C. was put into a plastic syringe, and a stainless steel needle (22 gauge) heated to a temperature of 75 ° C. was attached to the tip of the plastic syringe, and 2.5 ⁇ L of each resin composition was added. was dropped onto each film heated to a temperature of 75° C. to form droplets.
  • the contact angle between each film and each resin composition at 75° C. was measured by the same method as the measurement of the contact angle A described above.
  • each contact angle B is the average value for five droplets.
  • the contact angle (contact angle A) between the film and the resin composition at 25°C and the contact angle (contact angle B) between the film and the resin composition at 75°C were evaluated based on the following criteria. bottom.
  • Table 3 shows the evaluation results.
  • The contact angles A and B satisfy both 15° ⁇ A ⁇ 30° and 0.75A ⁇ B ⁇ 1.3A.
  • x The contact angles A and B do not satisfy at least one of 15° ⁇ A ⁇ 30° and 0.75A ⁇ B ⁇ 1.3A.
  • each film was cut into a length of 30 cm and a width of 15 cm. Then, each resin composition was used to form a resin composition layer of 20 cm long ⁇ 8 cm wide ⁇ 20 ⁇ m thick on the surface of each cut film using an applicator having a gap of 50 ⁇ m. Next, the resin composition on each film was dried at 75° C. for 15 minutes to obtain each film laminate having a dried resin composition layer. Each obtained film laminate was visually observed, and suppression of flipping of the resin composition in each film laminate was evaluated based on the following criteria. Table 4 shows the evaluation results.
  • A Repelling of the resin composition on the surface of the film laminate is remarkably suppressed.
  • Repelling of the resin composition on the surface of the film laminate is sufficiently suppressed.
  • Repelling of the resin composition on the surface of the film laminate is not sufficiently suppressed.
  • x Repelling of the resin composition on the surface of the film laminate is hardly suppressed.
  • each film was cut into a length of 30 cm and a width of 15 cm. Then, each resin composition was used to form a resin composition layer of 20 cm long ⁇ 8 cm wide ⁇ 20 ⁇ m thick on the surface of each cut film using an applicator having a gap of 50 ⁇ m. Next, the resin composition on each film was dried at 75° C. for 15 minutes to obtain each film laminate having a dried resin composition layer. The L*a*b* values of the lightest and darkest color tone portions were measured for a region of 14 cm long ⁇ 6 cm wide in the center of the resin composition layer in each film laminate obtained.
  • each film laminate is placed on a white plate so that the film surface of each film laminate is in contact with the white plate, and a spectral side colorimeter CM-2600d (manufactured by Konica Minolta Japan Co., Ltd.) is used. Then, the L*a*b* value (SCE method, standard light source D65, visual field 10 deg.) of the resin composition of each film laminate was measured. The color difference ( ⁇ E*ab) between the lightest color tone portion and the darkest color tone portion within the measurement range was calculated based on Equation 1 below. As the white plate, a white plate having L*a*b* values of L*: 94.3, a*: -0.6, and b*: 2.8 was used.
  • the contact angle (contact angle A) at 25° C. and the contact angle (contact angle B) at 75° C. between the film and the resin composition are 15° ⁇ A ⁇ 30° 0.75A ⁇ B ⁇ 1.3A
  • the repelling of the resin composition on the film when the resin composition is applied and dried is well suppressed, and as a result, the color unevenness of the resin composition layer of the film laminate is good. is considered to be suppressed by
  • the film thickness of each portion is measured, and the difference between the film thickness of the darkest color tone portion and the film thickness of the lightest color tone portion (film thickness of the darkest color tone portion - film thickness of the lightest color tone portion ) was calculated. From the calculated film thickness difference, suppression of film thickness variation of the resin composition layer in each film laminate was evaluated based on the following criteria. Table 6 shows the evaluation results.
  • The film thickness difference is 2.0 ⁇ m or more and less than 3.0 ⁇ m, and the film thickness variation of the resin composition layer of the film laminate is sufficiently suppressed.
  • the film thickness difference is 3.0 ⁇ m or more and less than 4.0 ⁇ m, and the film thickness variation of the resin composition layer of the film laminate is not sufficiently suppressed.
  • x The film thickness difference is 4.0 ⁇ m or more, and the film thickness variation of the resin composition layer of the film laminate is hardly suppressed.
  • the solder resist may not exhibit sufficient performance.
  • the contact angle (contact angle A) between the film and the resin composition at 25 ° C. and the contact angle at 75 ° C. is 15° ⁇ A ⁇ 30° 0.75A ⁇ B ⁇ 1.3A

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

[Problem] To provide a film laminate comprising a film and a resin composition layer provided on one surface of said film, wherein when a resin composition is applied to the film and dried, the repellency of the resin composition on the film is suppressed. [Solution] A film laminate comprises: a first film; and a resin composition layer provided on one surface of the first film, wherein 15°≤A≤30° and 0.75A≤B≤1.3A are satisfied, where A is a contact angle between the first film and the resin composition at 25 °C, and B is a contact angle between the first film and the resin composition at 75 °C.

Description

フィルム積層体、硬化物、および該硬化物を備えるプリント配線板Film laminate, cured product, and printed wiring board comprising the cured product
 本発明はフィルム積層体に関し、特にソルダーレジストの形成に好適に用いられるフィルム積層体に関する。さらに、本発明は、該フィルム積層体の硬化物および該硬化物を備えるプリント配線板にも関する。 The present invention relates to a film laminate, and more particularly to a film laminate suitable for forming a solder resist. Furthermore, the present invention also relates to a cured product of the film laminate and a printed wiring board comprising the cured product.
 近年の電子機器の軽薄短小化によるプリント配線板の高精度、高密度化に伴い、ソルダーレジスト層は、基板に感光性樹脂組成物を塗布、乾燥し、硬化させることによりパターン形成した後、パターン形成された樹脂を加熱または光照射によって本硬化させる、いわゆるフォトソルダーレジストインキによって形成されるのが主流となっている。 With the increasing precision and density of printed wiring boards due to the recent miniaturization of electronic devices, the solder resist layer is formed by applying a photosensitive resin composition to the substrate, drying it, and curing it to form a pattern. It is mainly formed by so-called photosolder resist ink, in which the formed resin is fully cured by heating or light irradiation.
 また、液状の感光性樹脂組成物を用いることなく、感光性樹脂組成物を支持フィルムに塗布して得られるドライフィルムを用いてソルダーレジスト層を形成することも行われている。ドライフィルムは、上述したような液状の感光性樹脂組成物を用いる場合と比較して、乾燥工程を省略できるだけでなく、感光性樹脂組成物の層が支持フィルムにより覆われた状態で露光できるため酸素による効果阻害の影響が少なく、得られるソルダーレジスト層の表面平滑性や表面硬度が高いという利点がある(例えば、特許文献1等)。 Also, a dry film obtained by applying a photosensitive resin composition to a support film is used to form a solder resist layer without using a liquid photosensitive resin composition. Compared to the case of using a liquid photosensitive resin composition as described above, the dry film not only can omit the drying process, but also can be exposed while the layer of the photosensitive resin composition is covered with the support film. There is an advantage that the effect inhibition by oxygen is small, and the resulting solder resist layer has high surface smoothness and surface hardness (for example, Patent Document 1, etc.).
 一方で、ドライフィルムは支持フィルムに感光性樹脂組成物を塗布することにより得られるため、その塗布時の支持フィルムによる感光性樹脂組成物の弾きにより、得られるドライフィルムに不具合が生じるという問題がある。具体的には、支持フィルムが、塗布される感光性樹脂組成物を弾くことにより、支持フィルム上の感光性樹脂組成物の層の厚みが不均一になり、感光性樹脂組成物の層の表面の平滑性が十分でない場合が生じ得る。そして、そのようなドライフィルムから得られるソルダーレジスト層は、絶縁性等のソルダーレジストに求められる性能を十分に発揮し得ないという問題がある。 On the other hand, since a dry film is obtained by applying a photosensitive resin composition to a support film, there is a problem that the resulting dry film suffers from defects due to repelling of the photosensitive resin composition by the support film during application. be. Specifically, the support film repels the applied photosensitive resin composition, so that the thickness of the layer of the photosensitive resin composition on the support film becomes uneven, and the surface of the layer of the photosensitive resin composition may not be sufficiently smooth. Moreover, a solder resist layer obtained from such a dry film has a problem that it cannot sufficiently exhibit the properties such as insulation properties required for the solder resist.
特開平7-15119号公報JP-A-7-15119
 したがって、本発明の目的は、第一のフィルムに樹脂組成物を塗布、乾燥する際の第一のフィルム上での樹脂組成物の弾きが抑制されたフィルム積層体を提供することである。また、本発明の別の目的は、上記フィルム積層体の樹脂組成物層を硬化させた硬化物、該硬化物を備えるプリント配線板を提供することである。 Therefore, an object of the present invention is to provide a film laminate in which repelling of the resin composition on the first film is suppressed when the resin composition is applied to the first film and dried. Another object of the present invention is to provide a cured product obtained by curing the resin composition layer of the film laminate, and a printed wiring board comprising the cured product.
 本発明者らは、上述したようなフィルム積層体において、第一のフィルムと樹脂組成物との25℃および75℃における接触角がそれぞれ特定の範囲を満足することで、第一のフィルムに樹脂組成物を塗布、乾燥する際の第一のフィルム上での樹脂組成物の弾きを抑制できることを見出した。本発明はかかる知見に基づくものである。すなわち、本発明の要旨は以下のとおりである。 In the film laminate as described above, the present inventors have found that the contact angles between the first film and the resin composition at 25 ° C. and 75 ° C. respectively satisfy specific ranges, so that the resin on the first film It was found that repelling of the resin composition on the first film during coating and drying of the composition can be suppressed. The present invention is based on such findings. That is, the gist of the present invention is as follows.
[1]第一のフィルムと、前記第一のフィルムの一方の面に設けられた樹脂組成物層とを備えるフィルム積層体であって、
 25℃における前記第一のフィルムと前記樹脂組成物との接触角をA、75℃における前記第一のフィルムと前記樹脂組成物との接触角をB、とした場合に、
 15°≦A≦30°、かつ
 0.75A≦B≦1.3A、
を満足する、フィルム積層体。
[2]前記樹脂組成物の25℃における5rpmでの粘度が1.0~10dPa・sである、[1]に記載のフィルム積層体。
[3]前記第一のフィルムの前記樹脂組成物層と接する面の算術平均粗さが0.2μm未満である、[1]または[2]に記載のフィルム積層体。
[4]前記第一のフィルムの前記樹脂組成物層と接する面の最大高さが4.0μm未満である、[1]~[3]のいずれかに記載のフィルム積層体。
[5]前記樹脂組成物を構成する樹脂組成物が感光性樹脂組成物である、[1]~[4]のいずれかに記載のフィルム積層体。
[6]前記第一のフィルムの前記樹脂組成物層と接する面が表面処理されている、[1]~[5]のいずれかに記載のフィルム積層体。
[7]ドライフィルムである、[1]~[6]のいずれかに記載のフィルム積層体。
[8]ソルダーレジスト層の形成に用いられる、[1]~[7]のいずれかに記載のフィルム積層体。
[9]前記ソルダーレジスト層が艶消しソルダーレジスト層である、[8]に記載のフィルム積層体。
[10][1]~[9]のいずれかに記載のフィルム積層体の前記樹脂組成物層を硬化させた硬化物。
[11][10]に記載の硬化物を備える、プリント配線板。
[1] A film laminate comprising a first film and a resin composition layer provided on one surface of the first film,
When the contact angle between the first film and the resin composition at 25°C is A, and the contact angle between the first film and the resin composition at 75°C is B,
15°≦A≦30°, and 0.75A≦B≦1.3A,
A film laminate that satisfies
[2] The film laminate according to [1], wherein the resin composition has a viscosity of 1.0 to 10 dPa·s at 5 rpm at 25°C.
[3] The film laminate according to [1] or [2], wherein the surface of the first film in contact with the resin composition layer has an arithmetic mean roughness of less than 0.2 µm.
[4] The film laminate according to any one of [1] to [3], wherein the maximum height of the surface of the first film in contact with the resin composition layer is less than 4.0 μm.
[5] The film laminate according to any one of [1] to [4], wherein the resin composition constituting the resin composition is a photosensitive resin composition.
[6] The film laminate according to any one of [1] to [5], wherein the surface of the first film in contact with the resin composition layer is surface-treated.
[7] The film laminate according to any one of [1] to [6], which is a dry film.
[8] The film laminate according to any one of [1] to [7], which is used for forming a solder resist layer.
[9] The film laminate according to [8], wherein the solder resist layer is a matte solder resist layer.
[10] A cured product obtained by curing the resin composition layer of the film laminate according to any one of [1] to [9].
[11] A printed wiring board comprising the cured product according to [10].
 本発明によれば、第一のフィルムと、前記第一のフィルムの一方の面に設けられた樹脂組成物層とを備えるフィルム積層体において、第一のフィルムと樹脂組成物との25℃および75℃における接触角AおよびBがそれぞれ特定の範囲を満足することにより、第一のフィルムに樹脂組成物を塗布、乾燥する際の第一のフィルム上での樹脂組成物の弾きが抑制されたフィルム積層体を実現することができる。さらに、本発明によれば、フィルム積層体を構成するフィルム上での樹脂組成物の弾きが抑制されるため、フィルム積層体における樹脂組成物層の色や厚みの不均一性、すなわち色むらや膜厚ばらつきを抑制することもできる。 According to the present invention, in a film laminate comprising a first film and a resin composition layer provided on one surface of the first film, the first film and the resin composition are When the contact angles A and B at 75° C. each satisfy a specific range, repelling of the resin composition on the first film during coating and drying of the resin composition on the first film was suppressed. Film laminates can be realized. Furthermore, according to the present invention, since the repelling of the resin composition on the film constituting the film laminate is suppressed, unevenness in the color and thickness of the resin composition layer in the film laminate, that is, color unevenness It is also possible to suppress variations in film thickness.
[フィルム積層体]
 本発明のフィルム積層体は、第一のフィルムと、前記第一のフィルムの一方の面に設けられた樹脂組成物層とを備えるものである。本発明の一つの実施形態において、フィルム積層体は、第一のフィルムおよび樹脂組成物層以外の他の層を備えていてもよい。例えば、樹脂組成物層の表面に第二のフィルムが設けられていてもよい。本発明のフィルム積層体は、好ましくはドライフィルムとして用いられる。また、本発明のフィルム積層体は、特にプリント配線板のソルダーレジスト層、好ましくは艶消しのソルダーレジスト層の形成に好適に用いることができる。
[Film laminate]
A film laminate of the present invention comprises a first film and a resin composition layer provided on one surface of the first film. In one embodiment of the present invention, the film laminate may comprise layers other than the first film and the resin composition layer. For example, a second film may be provided on the surface of the resin composition layer. The film laminate of the invention is preferably used as a dry film. In addition, the film laminate of the present invention can be suitably used particularly for forming a solder resist layer, preferably a matte solder resist layer, of a printed wiring board.
 本発明のフィルム積層体は、25℃における第一のフィルムと樹脂組成物との接触角Aが15°≦A≦30°の範囲を満足し、好ましくは18°≦A≦25°の範囲を満足する。25℃における第一のフィルムと樹脂組成物との接触角が30°以下であることにより、フィルム積層体の作製において樹脂組成物をフィルム上に塗布する一般的な温度(例えば、常温)において、第一のフィルム上に樹脂組成物を塗布する際の弾きを抑制できる。一方、25℃における第一のフィルムと樹脂組成物との接触角が15°以上であることにより、塗布した際の過剰な濡れ広がりを抑制できる。 In the film laminate of the present invention, the contact angle A between the first film and the resin composition at 25° C. satisfies the range of 15°≦A≦30°, preferably 18°≦A≦25°. Be satisfied. Since the contact angle between the first film and the resin composition at 25°C is 30° or less, at a general temperature (for example, room temperature) at which the resin composition is applied to the film in the production of the film laminate, Repelling can be suppressed when the resin composition is applied onto the first film. On the other hand, when the contact angle between the first film and the resin composition at 25° C. is 15° or more, it is possible to suppress excessive wetting and spreading upon application.
 また、本発明のフィルム積層体は、75℃における第一のフィルムと樹脂組成物との接触角Bが、上述した25℃における第一のフィルムと樹脂組成物との接触角Aとの関係において、0.75A≦B≦1.3Aの範囲を満足し、好ましくは0.9A≦B≦1.2Aの範囲を満足する。25℃および75℃における第一のフィルムと樹脂組成物との接触角AおよびBが上記の範囲を満足することにより、フィルムに樹脂組成物を塗布した後に乾燥させる一般的な温度(例えば、75℃)において、第一のフィルム上での樹脂組成物の弾きを抑制できる。25℃および75℃における第一のフィルムと樹脂組成物との接触角AおよびBの調整方法は特に限定されず、従来公知の方法により適宜調整することができる。各接触角の調製方法としては、例えば、本発明のフィルム積層体において、後述する第一のフィルムの材質を適宜調整する方法、後述する第一のフィルムの算術平均粗さや最大高さを適宜調整する方法、後述する樹脂組成物の粘度を適宜調整する方法、後述する樹脂組成物中の溶剤を適宜調整する方法などが挙げられる。これらの各方法は1つを単独で行ってもよく、2つ以上を組み合わせて行ってもよい。 Further, in the film laminate of the present invention, the contact angle B between the first film and the resin composition at 75 ° C. is the above-mentioned contact angle A between the first film and the resin composition at 25 ° C. , 0.75A≤B≤1.3A, preferably 0.9A≤B≤1.2A. The contact angles A and B between the first film and the resin composition at 25 ° C. and 75 ° C. satisfy the above ranges, so that the resin composition is applied to the film and then dried at a general temperature (e.g., 75 ° C.), the repelling of the resin composition on the first film can be suppressed. The method for adjusting the contact angles A and B between the first film and the resin composition at 25° C. and 75° C. is not particularly limited, and can be appropriately adjusted by a conventionally known method. As a method for adjusting each contact angle, for example, in the film laminate of the present invention, a method of appropriately adjusting the material of the first film described later, and an arithmetic mean roughness and maximum height of the first film described later are appropriately adjusted. a method of appropriately adjusting the viscosity of the resin composition described later, a method of appropriately adjusting the solvent in the resin composition described later, and the like. Each of these methods may be performed singly or in combination of two or more.
 本発明のフィルム積層体は、上述したように、25℃における第一のフィルムと樹脂組成物との接触角Aが十分に小さく、かつ75℃における第一のフィルムと樹脂組成物との接触角Bが接触角Aと比較して大きく変化しないことにより、第一のフィルム上に樹脂組成物を塗布する際の弾きを抑制でき、かつ塗布した樹脂組成物を乾燥させる際の弾きも抑制できる。その結果、フィルムが樹脂組成物を弾くことにより生じるフィルム上の樹脂組成物層の厚みの不均一性を抑制し、表面の平滑性が十分に高い樹脂組成物層を形成することができる。そして、フィルム積層体において、樹脂組成物層の厚みの均一性(表面の平滑性)は、それを硬化させて得られるソルダーレジスト層の性能に大きな影響を及ぼすと考えられる。したがって、フィルム積層体の製造において第一のフィルムが樹脂組成物を弾くことを抑制することによって、樹脂組成物層の厚みの均一性(表面の平滑性)が改善され、ひいてはフィルム積層体の製造における歩留りを改善することができると考えられる。以下、本発明のフィルム積層体を構成する各要素について詳述する。 As described above, the film laminate of the present invention has a sufficiently small contact angle A between the first film and the resin composition at 25 ° C., and a contact angle A between the first film and the resin composition at 75 ° C. Since B does not change greatly compared to the contact angle A, repelling when the resin composition is applied on the first film can be suppressed, and repelling when drying the applied resin composition can also be suppressed. As a result, non-uniformity in the thickness of the resin composition layer on the film caused by the film repelling the resin composition can be suppressed, and a resin composition layer having sufficiently high surface smoothness can be formed. In the film laminate, the thickness uniformity (surface smoothness) of the resin composition layer is considered to have a great effect on the performance of the solder resist layer obtained by curing it. Therefore, by suppressing the first film from repelling the resin composition in the production of the film laminate, the uniformity of the thickness of the resin composition layer (surface smoothness) is improved, and in turn the production of the film laminate It is considered that the yield in the process can be improved. Each element constituting the film laminate of the present invention will be described in detail below.
<第一のフィルム>
 本発明のフィルム積層体は、第一のフィルムを備える。第一のフィルムは、好ましくは後述する樹脂組成物層の支持体としての役割を担うものであり、第一のフィルムの一方の面に設けられた樹脂組成物層が基板等の基材上に接するように加熱等によりラミネートして一体成形される際には、少なくとも樹脂組成物層に接着しているものをいう。第一のフィルムは、基材と樹脂組成物層とのラミネート後の工程において、樹脂組成物層から剥離されても良い。特に本発明においては、第一のフィルムは、樹脂組成物層を硬化させた後の工程において樹脂組成物層から剥離されることが好ましい。
<First film>
A film laminate of the present invention comprises a first film. The first film preferably serves as a support for the resin composition layer to be described later, and the resin composition layer provided on one side of the first film is formed on a substrate such as a substrate. In the case of integral molding by lamination by heating or the like so as to be in contact with each other, it is at least adhered to the resin composition layer. The first film may be peeled off from the resin composition layer in a step after lamination of the substrate and the resin composition layer. Particularly in the present invention, the first film is preferably peeled off from the resin composition layer in a step after curing the resin composition layer.
 第一のフィルムとしては、公知のものであれば特に制限なく使用することができ、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを好適に使用することができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムが好ましく、ポリエチレンテレフタレートフィルムが特に好ましい。また、これらフィルムの積層体を第一のフィルムとして使用することもできる。 As the first film, any known film can be used without any particular limitation. A film made of a plastic resin can be preferably used. Among these, polyester films are preferred, and polyethylene terephthalate films are particularly preferred, from the viewpoint of heat resistance, mechanical strength, handleability, and the like. A laminate of these films can also be used as the first film.
 また、上述したような熱可塑性樹脂からなるフィルムは、機械的強度向上の観点から、一軸方向または二軸方向に延伸されたフィルムであることが好ましい。 In addition, from the viewpoint of improving the mechanical strength, the film made of the thermoplastic resin as described above is preferably a film stretched uniaxially or biaxially.
 本発明において、第一のフィルムとしては、上述したように第一のフィルムと樹脂組成物との25℃および75℃における接触角AおよびBがそれぞれ上述した範囲を満足し得るフィルムが用いられる。各温度における接触角を調整するための手段としては特に制限されるものではなく、樹脂組成物との関係で第一のフィルムを構成する材料を変更したり、第一のフィルムの樹脂組成物層と接する面に表面処理を施したりすることにより、樹脂組成物との接触角を調整することができる。第一のフィルムの表面に施される表面処理としては、例えば、マット処理、コロナ処理等が挙げられる。マット処理としては、例えば、コーティング型、練り込み型等のマット処理が挙げられる。 In the present invention, as the first film, as described above, a film is used in which the contact angles A and B between the first film and the resin composition at 25°C and 75°C respectively satisfy the ranges described above. The means for adjusting the contact angle at each temperature is not particularly limited, and the material constituting the first film may be changed in relation to the resin composition, or the resin composition layer of the first film may be changed. The contact angle with the resin composition can be adjusted by subjecting the surface in contact with the surface to surface treatment. Examples of the surface treatment applied to the surface of the first film include matte treatment and corona treatment. The matte treatment includes, for example, coating type, kneading type, and the like.
 本発明において、各温度における第一のフィルムと樹脂組成物との接触角は、JIS R3257:1999に準拠し、接触角計 DropMaster DMo―601(協和界面科学株式会社製)および多機能統合解析ソフトウェア FAMAS(協和界面科学株式会社製)を用い、樹脂組成物0.25μLを針付きのシリンジを用いてフィルム上に滴下することにより形成される液滴について、水平側方から画像を撮影し、得られた画像のフィルム界面における液滴の接触角を解析することにより測定することができる。なお、フィルム界面における液滴の接触角とは、フィルムと液滴とが接する点における、液滴表面に対する接線とフィルム表面とがなす角であって、液滴を含む側の角度である。一つの実施形態において、上述した液滴の画像の撮影および接触角の解析は複数の液滴について行われ、好ましくは2個以上、より好ましくは3個以上、さらに好ましくは5個以上の液滴について行われる。 In the present invention, the contact angle between the first film and the resin composition at each temperature is measured in accordance with JIS R3257: 1999, using a contact angle meter DropMaster DMo-601 (manufactured by Kyowa Interface Science Co., Ltd.) and multifunctional integrated analysis software. Using FAMAS (manufactured by Kyowa Interface Science Co., Ltd.), a droplet formed by dropping 0.25 μL of the resin composition onto the film using a syringe with a needle is photographed from the horizontal side and obtained. can be measured by analyzing the contact angle of the droplet at the film interface of the captured image. The contact angle of the droplet at the film interface is the angle formed by the tangent to the droplet surface and the film surface at the point where the film and the droplet contact, and is the angle on the side containing the droplet. In one embodiment, the above-described droplet image capturing and contact angle analysis are performed on a plurality of droplets, preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more droplets. is done about
 第一のフィルムの樹脂組成物層と接する面の算術平均粗さ(Ra)は、本発明の効果が奏される限り特に制限されないが、好ましくは0.2μm未満である。第一のフィルムの樹脂組成物層と接する面の算術平均粗さが上述した範囲にあることにより、均一に塗布することができる。本発明において、第一のフィルムの樹脂組成物層と接する面の算術平均粗さは、非接触測定法に対応したレーザ顕微鏡VK-Xシリーズ(キーエンス株式会社製)を用いて、JISB0601:2001(ISO4287:1997)に準拠して測定することができる。具体的には、第一のフィルムの50μm×100μmの範囲における表面の倍率を50倍として対象箇所を測定することができる。一つの実施形態において、上述した第一のフィルムの算術平均粗さの測定は第一のフィルムのランダムに選択された複数の箇所において行われ、好ましくは2以上、より好ましくは5以上、さらに好ましくは10以上の箇所において行われる。複数の箇所において測定される場合、第一のフィルムの算術平均粗さは、それら複数の箇所における測定値の平均値とする。 The arithmetic mean roughness (Ra) of the surface of the first film in contact with the resin composition layer is not particularly limited as long as the effects of the present invention are exhibited, but is preferably less than 0.2 μm. When the arithmetic mean roughness of the surface of the first film in contact with the resin composition layer is within the range described above, uniform coating can be achieved. In the present invention, the arithmetic mean roughness of the surface in contact with the resin composition layer of the first film is measured using a laser microscope VK-X series (manufactured by Keyence Corporation) corresponding to the non-contact measurement method, JISB0601: 2001 ( ISO4287:1997) can be measured. Specifically, the target portion can be measured by setting the magnification of the surface of the first film in the range of 50 μm×100 μm to 50 times. In one embodiment, the measurement of the arithmetic mean roughness of the first film described above is performed at a plurality of randomly selected locations of the first film, preferably 2 or more, more preferably 5 or more, and even more preferably is performed at 10 or more locations. When measured at multiple points, the arithmetic mean roughness of the first film is the average value of the measured values at those multiple points.
 第一のフィルムの樹脂組成物層と接する面の最大高さ(Rz)は、本発明の効果が奏される限り特に制限されないが、好ましくは4.0μm未満である。第一のフィルムの樹脂組成物層と接する面の最大高さが上述した範囲にあることにより、塗布されない箇所の発生(ヌケ)を抑制できる。第一のフィルムの樹脂組成物層と接する面の最大高さは、非接触測定法に対応したレーザ顕微鏡VK-Xシリーズ(キーエンス株式会社製)を用いて、JIS B0601:2001(ISO4287:1997)に準拠して測定することができる。具体的には、第一のフィルムの50μm×100μmの範囲における表面の倍率を50倍として対象箇所を測定することができる。一つの実施形態において、上述した第一のフィルムの算術平均粗さの測定は第一のフィルムのランダムに選択された複数の箇所において行われ、好ましくは2以上、より好ましくは5以上、さらに好ましくは10以上の箇所において行われる。複数の箇所において測定される場合、第一のフィルムの算術平均粗さは、それら複数の箇所における測定値の平均値とする。 The maximum height (Rz) of the surface of the first film in contact with the resin composition layer is not particularly limited as long as the effects of the present invention are exhibited, but is preferably less than 4.0 µm. When the maximum height of the surface of the first film in contact with the resin composition layer is within the range described above, it is possible to suppress occurrence of uncoated portions (missing areas). The maximum height of the surface of the first film in contact with the resin composition layer is measured using a laser microscope VK-X series (manufactured by Keyence Corporation) corresponding to the non-contact measurement method, JIS B0601: 2001 (ISO4287: 1997). can be measured according to Specifically, the target portion can be measured by setting the magnification of the surface of the first film in the range of 50 μm×100 μm to 50 times. In one embodiment, the measurement of the arithmetic mean roughness of the first film described above is performed at a plurality of randomly selected locations of the first film, preferably 2 or more, more preferably 5 or more, and even more preferably is performed at 10 or more locations. When measured at multiple points, the arithmetic mean roughness of the first film is the average value of the measured values at those multiple points.
 第一のフィルムの厚さは、特に制限されるものではないが、柔軟性や折り曲げ性を考慮すると、通常、1~1000μm程度であり、好ましくは5~500μm、より好ましくは10~200μm、特に好ましくは20~200μmである。 The thickness of the first film is not particularly limited, but considering flexibility and bendability, it is usually about 1 to 1000 μm, preferably 5 to 500 μm, more preferably 10 to 200 μm, especially It is preferably 20 to 200 μm.
<樹脂組成物層>
 本発明のフィルム積層体は、上記第一のフィルムの一方の面に設けられた樹脂組成物層を備える。樹脂組成物層は、好ましくは硬化工程により硬化層を形成し、特に好ましくはソルダーレジスト層を形成する。したがって、樹脂組成物層を構成する樹脂組成物は、好ましくは感光性樹脂を含む。
<Resin composition layer>
The film laminate of the present invention comprises a resin composition layer provided on one surface of the first film. The resin composition layer preferably forms a cured layer through a curing step, and particularly preferably forms a solder resist layer. Therefore, the resin composition forming the resin composition layer preferably contains a photosensitive resin.
 樹脂組成物層を構成する樹脂組成物の粘度は特に限定されないが、25℃における5rpmでの粘度が、好ましくは1.0~10dPa・sであり、より好ましくは1.0~5.0dPa・sである。樹脂組成物の粘度が上記範囲にあることで、樹脂組成物をフィルムに塗工する時に、樹脂組成物の膜厚(樹脂組成物層の厚み)を均一に調整することができる。なお、本発明において樹脂組成物の粘度とは、樹脂組成物を1.0ml採取し、コーン・プレート型粘度計 TV-33H(ロータ1°34’×R24、東機産業株式会社製)を用いて、25℃において回転数5rpm(せん断速度10-1s)で30秒間回転させた後に測定される粘度の値とする。 The viscosity of the resin composition constituting the resin composition layer is not particularly limited, but the viscosity at 5 rpm at 25° C. is preferably 1.0 to 10 dPa·s, more preferably 1.0 to 5.0 dPa·s. is s. When the viscosity of the resin composition is within the above range, the film thickness of the resin composition (thickness of the resin composition layer) can be uniformly adjusted when the resin composition is applied to a film. In the present invention, the viscosity of the resin composition is measured by collecting 1.0 ml of the resin composition and using a cone-plate viscometer TV-33H (rotor 1°34′×R24, manufactured by Toki Sangyo Co., Ltd.). is the value of the viscosity measured after rotating for 30 seconds at 5 rpm (shear rate 10-1 s) at 25°C.
(感光性樹脂)
 樹脂組成物層に含まれる感光性樹脂としては、特に制限されるものではないが、樹脂組成物層にアルカリ現像性を付与する観点から、好ましくはカルボキシル基含有樹脂が用いられる。カルボキシル基含有樹脂としては、分子中にカルボキシル基を有している従来公知の各種樹脂を使用できる。特に、分子中にエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂が、光硬化性や耐現像性の面から好ましい。エチレン性不飽和二重結合は、アクリル酸もしくはメタクリル酸またはそれらの誘導体由来であることが好ましい。エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いる場合、組成物を光硬化性とするためには、後述する分子中に複数のエチレン性不飽和基を有する化合物、すなわち光重合性モノマーを併用する必要がある。カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマーおよびポリマーのいずれでもよい)を挙げることができる。カルボキシル基含有樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Photosensitive resin)
The photosensitive resin contained in the resin composition layer is not particularly limited, but a carboxyl group-containing resin is preferably used from the viewpoint of imparting alkali developability to the resin composition layer. As the carboxyl group-containing resin, conventionally known various resins having a carboxyl group in the molecule can be used. In particular, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is preferable from the viewpoint of photocurability and development resistance. The ethylenically unsaturated double bonds are preferably derived from acrylic acid or methacrylic acid or derivatives thereof. When only a carboxyl group-containing resin having no ethylenically unsaturated double bonds is used, in order to make the composition photocurable, a compound having a plurality of ethylenically unsaturated groups in the molecule described later, that is, photo It is necessary to use a polymerizable monomer together. Specific examples of carboxyl group-containing resins include the following compounds (both oligomers and polymers). Carboxyl group-containing resins may be used alone or in combination of two or more.
(1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) A carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth)acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth)acrylate, isobutylene, or the like.
(2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキサイド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
(3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂と(メタ)アクリル酸等のエチレン性不飽和二重結合を有するモノカルボン酸化合物との反応物の部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。 (3) a diisocyanate, a bifunctional epoxy resin such as a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a bixylenol type epoxy resin, or a biphenol type epoxy resin ( Carboxyl group-containing photosensitivity obtained by polyaddition reaction of partial acid anhydride-modified reaction product with monocarboxylic acid compound having ethylenically unsaturated double bond such as meth)acrylic acid, carboxyl group-containing dialcohol compound and diol compound Urethane resin.
(4)前記(2)または(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。 (4) During the synthesis of the resin of (2) or (3), a compound having one hydroxyl group and one or more (meth)acryloyl groups in the molecule such as hydroxyalkyl (meth)acrylate is added, and the terminal ( Meta) acrylated carboxyl group-containing photosensitive urethane resin.
(5)前記(2)または(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。 (5) During the synthesis of the resin of (2) or (3), one isocyanate group and one or more (meth)acryloyl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. A carboxyl group-containing photosensitive urethane resin that is terminally (meth)acrylated by adding a compound having
(6)2官能またはそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (6) A carboxyl group-containing photosensitive resin obtained by reacting (meth)acrylic acid with a polyfunctional (solid) epoxy resin having a functionality of 2 or more and adding a dibasic acid anhydride to the hydroxyl group present in the side chain.
(7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (7) A carboxyl obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl group. Group-containing photosensitive resin.
(8)2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (8) A bifunctional oxetane resin is reacted with a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid, and the resulting primary hydroxyl group is treated with a dibasic such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride. Carboxyl group-containing polyester resin to which acid anhydride is added.
(9)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (9) an epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol; Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipine are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and the alcoholic hydroxyl group of the resulting reaction product is treated with A carboxyl group-containing photosensitive resin obtained by reacting a polybasic acid anhydride such as an acid.
(10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (10) A reaction obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and reacting an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting the product with a polybasic acid anhydride.
(11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group. A carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
(12)前記(1)~(11)の樹脂にさらに1分子内に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。 (12) A carboxyl group-containing photosensitive resin obtained by further adding a compound having one epoxy group and one or more (meth)acryloyl groups in one molecule to the resins of (1) to (11). In this specification, (meth)acrylate is a generic term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
 カルボキシル基含有樹脂の酸価は、30~150mgKOH/gであることが好ましい。カルボキシル基含有樹脂の酸価が30mgKOH/g以上とすることにより、アルカリ現像が良好になる。また、酸価を150mgKOH/gを以下とすることで、良好なレジストパターンの描画をし易くできる。カルボキシル基含有樹脂の酸価は、より好ましくは50~130mgKOH/gである。 The acid value of the carboxyl group-containing resin is preferably 30-150 mgKOH/g. By setting the acid value of the carboxyl group-containing resin to 30 mgKOH/g or more, the alkali development becomes good. Also, by setting the acid value to 150 mgKOH/g or less, it is possible to facilitate drawing of a good resist pattern. The acid value of the carboxyl group-containing resin is more preferably 50-130 mgKOH/g.
 また、前記カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、さらには5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000未満であると、露光後の塗膜の耐湿性が悪く、現像時に膜減りが生じ、解像度が大きく劣ることがある。一方、重量平均分子量が150,000を超えると、現像性が著しく悪くなることがあり、貯蔵安定性においても劣ることがある。重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。 In addition, although the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, it is generally preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. If the weight-average molecular weight is less than 2,000, the moisture resistance of the coating film after exposure may be poor, causing film thinning during development and greatly deteriorating resolution. On the other hand, when the weight-average molecular weight exceeds 150,000, the developability may be remarkably deteriorated, and the storage stability may also be deteriorated. Weight average molecular weight can be measured by gel permeation chromatography (GPC).
 カルボキシル基含有樹脂の配合量は、樹脂組成物中において、固形分換算で、20~60質量%であることが好ましい。20質量%以上とすることにより塗膜強度を向上させることができる。また、60質量%以下とすることで粘性が適当となり加工性が向上する。カルボキシル基含有樹脂の配合量は、より好ましくは30~50質量%である。 The blending amount of the carboxyl group-containing resin is preferably 20 to 60% by mass in terms of solid content in the resin composition. By making it 20% by mass or more, the strength of the coating film can be improved. Moreover, by making it 60% by mass or less, the viscosity becomes appropriate and the processability improves. The content of the carboxyl group-containing resin is more preferably 30 to 50% by mass.
(光重合性モノマー)
 樹脂組成物には、光重合性モノマーを配合することができる。光重合性モノマーは、エチレン性不飽和二重結合を有するモノマーである。光重合性モノマーは、特にエチレン性不飽和二重結合を有さないカルボキシル基含有非感光性樹脂を使用する場合、組成物を光硬化性とするために光重合性モノマーを併用する必要があるため、有効である。
(Photopolymerizable monomer)
A photopolymerizable monomer can be blended in the resin composition. A photopolymerizable monomer is a monomer having an ethylenically unsaturated double bond. The photopolymerizable monomer, especially when using a carboxyl group-containing non-photosensitive resin that does not have an ethylenically unsaturated double bond, must be used in combination with a photopolymerizable monomer to make the composition photocurable. Therefore, it is valid.
 光重合性モノマーとしては、例えば、慣用公知のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。具体的には、2-エチルヘキシルアクリレート、シクロヘキシルアクリレート等のアルキルアクリレート類;2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキルアクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキサイド誘導体のモノまたはジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミドなどのアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレート等のアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのアルキレンオキサイド付加物あるいはε-カプロラクトン付加物等の多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート等のフェノール類またはこれらのアルキレンオキサイド付加物等の多価アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルのアクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオール等のポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類の少なくともいずれか1種から適宜選択して用いることができる。このような光重合性モノマーは、反応性希釈剤としても用いることができる。光重合性モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of photopolymerizable monomers include commonly known polyester (meth)acrylates, polyether (meth)acrylates, urethane (meth)acrylates, carbonate (meth)acrylates, epoxy (meth)acrylates, and the like. Specifically, alkyl acrylates such as 2-ethylhexyl acrylate and cyclohexyl acrylate; hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; alkylene glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol. mono- or diacrylates of oxide derivatives; acrylamides such as N,N-dimethylacrylamide, N-methylolacrylamide and N,N-dimethylaminopropylacrylamide; N,N-dimethylaminoethyl acrylate, N,N-dimethylaminopropyl Aminoalkyl acrylates such as acrylates; Polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol and trishydroxyethyl isocyanurate, or their alkylene oxide adducts or ε-caprolactone adducts, etc. polyvalent acrylates; phenols such as phenoxy acrylate and bisphenol A diacrylate or polyvalent acrylates such as alkylene oxide adducts thereof; glycidyls such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate Ether acrylates; not limited to the above, acrylates and melamine acrylates obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl-terminated polybutadiene, and polyester polyols, or urethane acrylated via diisocyanate, and the above acrylates can be appropriately selected from at least one of the methacrylates corresponding to and used. Such photopolymerizable monomers can also be used as reactive diluents. One type of the photopolymerizable monomer may be used alone, or two or more types may be used in combination.
 光重合性モノマーの配合量は、固形分換算で、カルボキシル基含有樹脂100質量部に対して、好ましくは10~100質量部の割合である。光重合性モノマーの配合量が10質量部以上の場合、光硬化性が良好であり、活性エネルギー線照射後のアルカリ現像において、パターン形成がしやすい。一方、100質量部以下の場合、ハレーションが生じにくく良好な解像性が得られる。 The blending amount of the photopolymerizable monomer is preferably 10 to 100 parts by mass in terms of solid content with respect to 100 parts by mass of the carboxyl group-containing resin. When the amount of the photopolymerizable monomer is 10 parts by mass or more, the photocurability is good, and pattern formation is facilitated in alkali development after irradiation with active energy rays. On the other hand, when the content is 100 parts by mass or less, halation is less likely to occur and good resolution can be obtained.
(光重合開始剤)
 樹脂組成物は、光重合開始剤としては、公知のものをいずれも用いることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Photoinitiator)
Any known photopolymerization initiator can be used in the resin composition. A photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more type.
 光重合開始剤としては、具体的には例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のモノアシルフォスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)フォスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。 Specific examples of photopolymerization initiators include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis -(2,6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide , bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2, bisacylphosphine oxides such as 4,6-trimethylbenzoyl)-phenylphosphine oxide; 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethyl monoacylphosphine oxides such as benzoylphenylphosphinate methyl ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinate isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; phenyl ( 2,4,6-trimethylbenzoyl)ethylphosphinate, 1-hydroxy-cyclohexylphenyl ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1- one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one, 2-hydroxy-2-methyl-1 - hydroxyacetophenones such as phenylpropan-1-one; benzoins such as benzoin, benzyl, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether; benzoin alkyl ethers; benzophenone , p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone and other benzophenones; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy -2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-1-propanone, 2-benzyl-2-dimethyl Amino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl)-1-[4-(4-morpholinyl)phenyl]-1- Acetophenones such as butanone and N,N-dimethylaminoacetophenone; thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropyl Thioxanthones such as thioxanthone; anthraquinones such as anthraquinone, chloroanthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, and 2-aminoanthraquinone; acetophenone dimethyl ketal , ketals such as benzyl dimethyl ketal; ethyl-4-dimethylaminobenzoate, 2-(dimethylamino) ethyl benzoate, benzoic acid esters such as p-dimethylbenzoic acid ethyl ester; 1,2-octanedione, 1-[ 4-(phenylthio)phenyl]-,2-(O-benzoyloxime), ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O -acetyloxime); bis(η5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, bis Titanocenes such as (cyclopentadienyl)-bis[2,6-difluoro-3-(2-(1-pyr-1-yl)ethyl)phenyl]titanium; phenyl disulfide 2-nitrofluorene, butyroin, anisoin Ethyl ether, azobisisobutyronitrile, tetramethylthiuram disulfide and the like can be mentioned.
 樹脂組成物における光重合開始剤(オキシムエステル系光重合開始剤を除く)の配合量は、カルボキシル基含有樹脂100質量部に対して、1~20質量部であることが好ましい。1質量部以上の場合、樹脂組成物の光硬化性が良好となり、被膜が剥離しにくく、耐薬品性等の被膜特性も良好となる。一方、20質量部以下の場合、アウトガスの低減効果が得られ、さらにソルダーレジスト塗膜表面での光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは3~10質量部である。また、樹脂組成物におけるオキシムエステル系光重合開始剤の配合量は、カルボキシル基含有樹脂100質量部に対して、0.1~20質量部とすることが好ましい。0.1質量部以上の場合、樹脂組成物の光硬化性が良好となり、耐熱性、耐薬品性等の被膜特性も良好となる。一方、20質量部以下の場合、ソルダーレジスト被膜の光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは、0.5~10質量部である。 The amount of the photopolymerization initiator (excluding the oxime ester-based photopolymerization initiator) in the resin composition is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. When the content is 1 part by mass or more, the photocurability of the resin composition is improved, the film is difficult to peel off, and the film properties such as chemical resistance are improved. On the other hand, when the content is 20 parts by mass or less, the effect of reducing outgassing is obtained, the light absorption on the surface of the solder resist coating film is improved, and the deep-part curability is less likely to deteriorate. More preferably, it is 3 to 10 parts by mass. The amount of the oxime ester photopolymerization initiator in the resin composition is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. When the amount is 0.1 part by mass or more, the resin composition has good photocurability and good film properties such as heat resistance and chemical resistance. On the other hand, when the amount is 20 parts by mass or less, the light absorption of the solder resist film is improved, and the deep-part curability is less likely to deteriorate. More preferably, it is 0.5 to 10 parts by mass.
 上述した光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物などを挙げることができる。特に、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン化合物を用いることが好ましい。チオキサントン化合物が含まれることにより、深部硬化性を向上させることができる。これらの化合物は、光重合開始剤として用いることができる場合もあるが、光重合開始剤と併用して用いることが好ましい。光開始助剤および増感剤は、それぞれ1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A photoinitiation aid or a sensitizer may be used in combination with the photopolymerization initiator described above. Photoinitiation aids or sensitizers include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, xanthone compounds, and the like. Thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone are particularly preferred. Inclusion of a thioxanthone compound can improve deep-part curability. These compounds can be used as a photopolymerization initiator in some cases, but are preferably used in combination with the photopolymerization initiator. The photoinitiation aid and the sensitizer may be used singly or in combination of two or more.
 なお、これら光重合開始剤、光開始助剤、および増感剤は、特定の波長を吸収するため、場合によっては感度が低くなり、紫外線吸収剤として機能することがある。しかしながら、これらは組成物の感度を向上させることだけの目的に用いられるものではない。必要に応じて特定の波長の光を吸収させて、表面の光反応性を高め、レジストのライン形状および開口を垂直、テーパー状、逆テーパー状に変化させるとともに、ライン幅や開口径の精度を向上させることができる。 In addition, since these photopolymerization initiators, photoinitiator aids, and sensitizers absorb specific wavelengths, the sensitivity may be lowered in some cases, and they may function as ultraviolet absorbers. However, these are not used only for the purpose of improving the sensitivity of the composition. It absorbs light of a specific wavelength as needed to increase the photoreactivity of the surface, change the line shape and opening of the resist to vertical, tapered, and reverse tapered shapes, and improve the accuracy of the line width and opening diameter. can be improved.
(熱硬化性成分)
 樹脂組成物は、熱硬化性成分を含んでいてもよい。樹脂組成物が熱硬化性成分を含むことにより、樹脂組成物の耐熱性が向上することが期待できる。熱硬化性成分としては、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、マレイミド化合物、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、エピスルフィド樹脂などの公知慣用のものが挙げられる。これらの中でも好ましい熱硬化性成分は、エポキシ樹脂である。熱硬化性成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Thermosetting component)
The resin composition may contain a thermosetting component. By including a thermosetting component in the resin composition, it can be expected that the heat resistance of the resin composition is improved. Examples of thermosetting components include known and commonly used ones such as isocyanate compounds, blocked isocyanate compounds, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, epoxy compounds, oxetane compounds, and episulfide resins. Preferred thermosetting components among these are epoxy resins. A thermosetting component may be used individually by 1 type, and may be used in combination of 2 or more type.
 使用することができるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。 Epoxy resins that can be used include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin. resins, cresol novolak-type epoxy resins, bisphenol A novolac-type epoxy resins, biphenyl-type epoxy resins, naphthalene-type epoxy resins, dicyclopentadiene-type epoxy resins, triphenylmethane-type epoxy resins, and the like.
 市販されるエポキシ樹脂としては、例えば、三菱ケミカル株式会社製のjER 828、806、807、YX8000、YX8034、834、日鉄ケミカル&マテリアル株式会社製のYD-128、YDF-170、ZX-1059、ST-3000、DIC株式会社製のEPICLON 830、835、840、850、N-730A、N-695および日本化薬株式会社製のRE-306等が挙げられる。 Examples of commercially available epoxy resins include jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, ZX-1059 manufactured by Nippon Steel Chemical & Materials Co., Ltd. Examples include ST-3000, EPICLON 830, 835, 840, 850, N-730A and N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Co., Ltd.
(硬化剤)
 樹脂組成物は、硬化剤を含んでいてもよい。樹脂組成物に含まれる硬化剤としては、上述した熱硬化性樹脂を硬化させるために一般的に用いられている公知の硬化剤を用いることができ、例えば、アミン類、イミダゾール類、多官能フェノール類、酸無水物、イソシアネート類、イミダゾールアダクト体等のイミダゾール潜在性硬化剤、およびこれらの官能基を含むポリマー類が挙げられる。アミン類としては、例えば、ジシアンジアミド、ジアミノジフェニルメタン等が挙げられる。イミダゾール類としては、例えば、アルキル置換イミダゾール、ベンゾイミダゾール等が挙げられる。多官能フェノール類としては、例えば、ヒドロキノン、レゾルシノール、ビスフェノールAおよびそのハロゲン化合物、さらに、これにアルデヒドとの縮合物であるノボラック、レゾール樹脂等が挙げられる。酸無水物としては、例えば、無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルナジック酸、ベンゾフェノンテトラカルボン酸等が挙げられる。イソシアネート類としては、例えば、トリレンジイソシアネート、イソホロンジイソシアネート等が挙げられ、これらのイソシアネートをフェノール類等でマスクしたものを用いることもできる。硬化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。硬化剤としては、好ましくはイミダゾール類が用いられる。
(curing agent)
The resin composition may contain a curing agent. As the curing agent contained in the resin composition, known curing agents that are commonly used for curing the above-described thermosetting resins can be used. For example, amines, imidazoles, polyfunctional phenols , acid anhydrides, isocyanates, imidazole latent curing agents such as imidazole adducts, and polymers containing these functional groups. Examples of amines include dicyandiamide and diaminodiphenylmethane. Examples of imidazoles include alkyl-substituted imidazoles and benzimidazoles. Examples of polyfunctional phenols include hydroquinone, resorcinol, bisphenol A and their halogen compounds, and condensates of these with aldehydes such as novolak and resole resins. Acid anhydrides include, for example, phthalic anhydride, hexahydrophthalic anhydride, methylnadic anhydride, benzophenonetetracarboxylic acid and the like. Isocyanates include, for example, tolylene diisocyanate and isophorone diisocyanate, and those isocyanates masked with phenols or the like can also be used. The curing agents may be used singly or in combination of two or more. As the curing agent, imidazoles are preferably used.
 イミダゾール類としては、例えば、エポキシ樹脂とイミダゾールの反応物等が挙げられ、具体的には、2-メチルイミダゾール、4-メチル-2-エチルイミダゾール、2-フェニルイミダゾール、4-メチル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール等が挙げられる。イミダゾール類の市販品としては、例えば、2E4MZ、C11Z、C17Z、2PZ(以上は、エポキシ樹脂とイミダゾールの反応物)のイミダゾール類や、2MZ-A、2E4MZ-A、2MZA-PW(以上は、イミダゾールのAZINE(アジン)化合物)、2MZ-OK、2PZ-OK(以上は、イミダゾールのイソシアヌル酸塩)、2PHZ、2P4MHZ(以上は、イミダゾールヒドロキシメチル体)(これらはいずれも四国化成工業株式会社製)等が挙げられる。イミダゾール型潜在性硬化剤の市販品としては、例えば、キュアゾールP-0505(四国化成工業株式会社製)等を挙げることができる。 Examples of imidazoles include reaction products of epoxy resins and imidazole, and specific examples include 2-methylimidazole, 4-methyl-2-ethylimidazole, 2-phenylimidazole, 4-methyl-2-phenyl imidazole, 1-benzyl-2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un decyl imidazole and the like. Commercial products of imidazoles include, for example, imidazoles such as 2E4MZ, C11Z, C17Z, and 2PZ (reaction products of epoxy resin and imidazole), 2MZ-A, 2E4MZ-A, and 2MZA-PW (above, imidazole AZINE (azine) compound), 2MZ-OK, 2PZ-OK (above, isocyanurate of imidazole), 2PHZ, 2P4MHZ (above, imidazole hydroxymethyl) (all of these are manufactured by Shikoku Kasei Co., Ltd.) etc. Examples of commercially available imidazole-type latent curing agents include CURESOL P-0505 (manufactured by Shikoku Kasei Kogyo Co., Ltd.).
(無機充填材)
 樹脂組成物は、無機充填材を含んでいてもよい。無機充填材としては、公知の無機充填材を用いることができ、硫酸バリウム、球状シリカ、ハイドロタルサイトおよびタルクが好ましく用いられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。無機充填材としては、球状シリカが特に好ましく用いられる。
(Inorganic filler)
The resin composition may contain an inorganic filler. As the inorganic filler, known inorganic fillers can be used, and barium sulfate, spherical silica, hydrotalcite and talc are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type. Spherical silica is particularly preferably used as the inorganic filler.
 球状シリカとしては、電子材料用途の充填材として使用可能な球状シリカであればいずれでも用いることができる。球状シリカの形状は、球状であればよく、真球のものに限定されるものではない。好適な球状シリカとしては、例えば、以下のように測定される真球度が0.8以上のものが挙げられるが、これに限定されるものではない。 Any spherical silica that can be used as a filler for electronic materials can be used as the spherical silica. The shape of the spherical silica is not limited to being spherical as long as it is spherical. Examples of suitable spherical silica include, but are not limited to, those having a sphericity of 0.8 or more measured as follows.
 真球度は以下のように測定される。すなわち、まず、走査型電子顕微鏡(SEM)で球状シリカの写真を撮影し、その写真上で観察される粒子の面積および周囲長から、(真球度)={4π×(面積)÷(周囲長)2}で算出される値として算出する。具体的には、画像処理装置を用いて、100個の粒子について測定した平均値を採用することができる。 The sphericity is measured as follows. That is, first, a photograph of spherical silica is taken with a scanning electron microscope (SEM), and from the area and peripheral length of the particles observed on the photograph, (sphericity) = {4π × (area) ÷ (periphery length) 2}. Specifically, an average value measured for 100 particles using an image processing device can be employed.
 球状シリカの平均粒子径は特に限定されないが、好ましくは0.05~10μm、より好ましくは0.1~5μm、さらに好ましくは0.3~1μmである。球状シリカの平均粒子径とは、一次粒子の粒子径だけでなく、二次粒子(凝集体)の粒子径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、マイクロトラック・ベル株式会社製のMicrotracMT3300EXIIが挙げられる。なお、最大粒子径(D100)および粒子径(D10)についても、上記の装置にて同様に測定することができる。また、樹脂組成物層に含まれる球状シリカの平均粒子径とは、樹脂組成物層を構成する樹脂組成物を調整(予備撹拌、混練)する前の球状シリカを上記のようにして測定した値をいうものとする。 Although the average particle size of the spherical silica is not particularly limited, it is preferably 0.05-10 μm, more preferably 0.1-5 μm, and still more preferably 0.3-1 μm. The average particle size of spherical silica is the average particle size (D50) including not only the particle size of primary particles but also the particle size of secondary particles (aggregates), and the value of D50 measured by a laser diffraction method. is. Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd. can be used as a measuring device using the laser diffraction method. The maximum particle size (D100) and particle size (D10) can also be measured in the same manner using the above apparatus. Further, the average particle size of the spherical silica contained in the resin composition layer is the value obtained by measuring the spherical silica as described above before adjusting (preliminarily stirring, kneading) the resin composition constituting the resin composition layer. shall mean.
 上記した無機充填材は、表面処理されていてもよい。表面処理としては、カップリング剤による表面処理や、アルミナ処理等の有機基を導入しない表面処理がされていてもよい。無機フィラーの表面処理方法は特に限定されず、公知慣用の方法を用いればよく、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で無機フィラーの表面を処理すればよい。 The above inorganic filler may be surface-treated. As the surface treatment, a surface treatment with a coupling agent, or a surface treatment that does not introduce an organic group, such as alumina treatment, may be performed. The surface treatment method of the inorganic filler is not particularly limited, and a known and commonly used method may be used, and the inorganic filler is treated with a surface treatment agent having a curable reactive group, such as a coupling agent having a curable reactive group as an organic group. surface should be treated.
 表面処理は、カップリング剤による表面処理であることが好ましい。カップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコアルミネート系等のカップリング剤が使用できる。中でもシラン系カップリング剤が好ましい。かかるシラン系カップリング剤の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができ、これらは単独で、あるいは組み合わせて使用することができる。 The surface treatment is preferably surface treatment with a coupling agent. As the coupling agent, silane-based, titanate-based, aluminate-based, and zirco-aluminate-based coupling agents can be used. Among them, silane coupling agents are preferred. Examples of such silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, N-(2-aminomethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-amino propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-anilinopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxy Cyclohexyl)ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like can be mentioned, and these can be used alone or in combination.
 樹脂組成物における無機充填材の配合量は、樹脂組成物の全固形分量を基準として、固形分換算で、好ましくは85質量%以下である。無機充填材の配合量が85質量%以下であることにより、樹脂組成物の粘度の過度な増大を抑制することができ、良好な塗布性、成形性を維持することができ、また硬化物が十分な強度を有し得る。無機充填材の配合量の範囲は、樹脂組成物の全固形分量を基準として、固形分換算で、好ましくは30~85質量%、より好ましくは40~80質量%、さらに好ましくは50~75質量%である。無機充填材の配合量が上記の範囲にあることにより、良好な硬化膜物性が得られる。 The blending amount of the inorganic filler in the resin composition is preferably 85% by mass or less in terms of solid content based on the total solid content of the resin composition. When the amount of the inorganic filler is 85% by mass or less, an excessive increase in the viscosity of the resin composition can be suppressed, good coatability and moldability can be maintained, and the cured product can be It can have sufficient strength. The range of the amount of the inorganic filler compounded is preferably 30 to 85% by mass, more preferably 40 to 80% by mass, and still more preferably 50 to 75% by mass in terms of solid content based on the total solid content of the resin composition. %. When the amount of the inorganic filler to be blended is within the above range, good physical properties of the cured film can be obtained.
(熱可塑性樹脂)
 樹脂組成物は、得られる硬化物の機械的強度を向上させるために、さらに熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂は、溶剤に可溶であることが好ましい。溶剤に可溶である場合、フィルム積層体の柔軟性が向上し、クラックの発生や粉落ちを抑制できる。熱可塑性樹脂としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体等が挙げられる。熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Thermoplastic resin)
The resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured product. The thermoplastic resin is preferably soluble in solvents. When it is soluble in a solvent, the flexibility of the film laminate is improved, and the occurrence of cracks and falling powder can be suppressed. Thermoplastic resins include thermoplastic polyhydroxy polyether resins, phenoxy resins that are condensates of epichlorohydrin and various bifunctional phenol compounds, and various acid anhydrides and acid chlorides that replace the hydroxyl groups of the hydroxy ether portion present in the skeleton. and esterified phenoxy resins, polyvinyl acetal resins, polyamide resins, polyamideimide resins, block copolymers, and the like. The thermoplastic resin may be used alone or in combination of two or more.
 熱可塑性樹脂の配合量は、樹脂組成物層全体に対して、0.5~20質量%、好ましくは0.5~10質量%の割合である。熱可塑性樹脂の配合量が上記範囲内であると、均一な粗化面状態が得られやすい。 The blending amount of the thermoplastic resin is 0.5 to 20% by mass, preferably 0.5 to 10% by mass, relative to the entire resin composition layer. When the blending amount of the thermoplastic resin is within the above range, it is easy to obtain a uniform roughened surface state.
(有機溶剤)
 樹脂組成物は、その調製や、第一のフィルムに樹脂組成物を塗布する際の粘度調整等の目的で、有機溶剤を含んでいてもよい。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤等の公知慣用の有機溶剤を用いることができる。有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Organic solvent)
The resin composition may contain an organic solvent for the purpose of its preparation and viscosity adjustment when applying the resin composition to the first film. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether; , dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; known petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha Conventional organic solvents can be used. An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 有機溶剤の沸点は、本発明の効果が奏される限り特に限定されないが、フィルム積層体における残留溶剤の量の調整しやすさの観点から、好ましくは50~220℃、より好ましくは50~150℃である。なお、本発明において「残留溶剤」とは、第一のフィルムの表面に樹脂組成物層を形成した後、75℃で15分間乾燥させて溶剤を揮発させた場合に、樹脂組成物層に含まれる(すなわち残留する)溶剤の量をいう。 The boiling point of the organic solvent is not particularly limited as long as the effect of the present invention is exhibited, but from the viewpoint of ease of adjustment of the amount of residual solvent in the film laminate, preferably 50 to 220 ° C., more preferably 50 to 150 °C. In the present invention, the term "residual solvent" means that after forming a resin composition layer on the surface of the first film, it is dried at 75°C for 15 minutes to volatilize the solvent. The amount of solvent that is removed (i.e., remains).
 有機溶剤の揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用い乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatilization drying of organic solvents is carried out by using a hot air circulating drying furnace, IR furnace, hot plate, convection oven, etc. (equipped with a heat source that heats the air using steam), and a method in which the hot air in the dryer is brought into contact with the counter current and supported by a nozzle. method of spraying on the body) can be used.
 樹脂組成物における有機溶剤の配合量は、樹脂組成物を構成する材料に応じ適宜変更することができるが、例えば、樹脂組成物を用いてドライフィルム等のフィルム積層体を形成する場合、残留溶剤の量は、フィルム積層体の樹脂組成物層(すなわち、フィルムの表面上に樹脂組成物層を形成した後、75℃で15分間乾燥させた後の樹脂組成物層)の全量基準で、0.1~4質量%であることが好ましく、0.3~3質量%であることがより好ましい。残留溶剤の量が上記範囲内にあることで、フィルムとの剥離性を容易にすることができる。残留溶剤の量は、好適な有機溶剤の沸点や樹脂組成物への配合量を適宜選択することで調整することができる。残留溶剤の量の測定方法は特に限定されないが、例えば、実施例に記載の測定方法等が挙げられる。 The amount of the organic solvent blended in the resin composition can be appropriately changed according to the materials constituting the resin composition. The amount of is based on the total amount of the resin composition layer of the film laminate (that is, the resin composition layer after forming the resin composition layer on the surface of the film and drying at 75 ° C. for 15 minutes), 0 .1 to 4% by mass, more preferably 0.3 to 3% by mass. When the amount of residual solvent is within the above range, the film can be easily peeled off. The amount of residual solvent can be adjusted by appropriately selecting the boiling point of a suitable organic solvent and the blending amount of the organic solvent in the resin composition. Although the method for measuring the amount of residual solvent is not particularly limited, examples thereof include the measuring method described in Examples.
(その他の成分)
 樹脂組成物層は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の従来公知の着色剤、アスベスト、オルベン、ベントン、微紛シリカ等の従来公知の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤および/またはレベリング剤、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、難燃剤、有機フィラー、ゴム状粒子、増感剤、チタネート系、アルミニウム系の従来公知の添加剤類を含んでいてもよい。
(other ingredients)
The resin composition layer may further optionally contain conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, asbestos, orben, Conventionally known thickeners such as bentone and finely divided silica; antifoaming agents and/or leveling agents such as silicone-based, fluorine-based and polymer-based agents; adhesion imparting agents such as thiazole-based, triazole-based and silane coupling agents , flame retardants, organic fillers, rubber-like particles, sensitizers, titanate-based and aluminum-based conventionally known additives.
[フィルム積層体の製造方法]
 本発明のフィルム積層体は、上述した第一のフィルム上に、上述した樹脂組成物を塗布し、乾燥させて樹脂組成物層を形成することにより製造することができる。具体的には、樹脂組成物層を構成する樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等で第一のフィルム上に均一な厚さに塗布し、通常、50~130℃の温度で1~30分間乾燥させて樹脂組成物中の有機溶剤を揮発させることにより、樹脂組成物層を形成することができる。樹脂組成物の塗布量については特に制限はないが、一般に、乾燥後の膜厚で、1~150μm、好ましくは10~60μmの範囲で適宜選択される。
[Manufacturing method of film laminate]
The film laminate of the present invention can be produced by applying the resin composition described above onto the first film described above and drying it to form a resin composition layer. Specifically, the resin composition that constitutes the resin composition layer is diluted with an organic solvent to adjust the viscosity to an appropriate value, and then applied by a comma coater, a blade coater, a lip coater, a rod coater, a squeeze coater, a reverse coater, and a transfer roll coater. , gravure coater, spray coater, etc., to a uniform thickness on the first film, and usually dried at a temperature of 50 to 130 ° C. for 1 to 30 minutes to volatilize the organic solvent in the resin composition. , a resin composition layer can be formed. The coating amount of the resin composition is not particularly limited, but is generally selected appropriately within the range of 1 to 150 μm, preferably 10 to 60 μm, in terms of film thickness after drying.
 樹脂組成物を塗布した後に行う乾燥は、主として樹脂組成物中に含まれる溶剤を揮発(揮発乾燥)させるために行われる。乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 The drying performed after applying the resin composition is mainly performed to volatilize the solvent contained in the resin composition (evaporation drying). Drying is carried out by using a hot air circulating drying furnace, IR furnace, hot plate, convection oven, etc. (equipped with a heat source of air heating method using steam), and a method in which the hot air in the dryer is brought into contact with the counter current, and is blown onto the support from a nozzle. method) can be used.
 第一のフィルム上に樹脂組成物層を形成した後、さらに、樹脂組成物層の表面に塵が付着するのを防ぐ等の目的で、樹脂組成物層の表面に剥離可能な第二のフィルムを積層することが好ましい。第二のフィルムとは、基板等の基材上にフィルム積層体の樹脂組成物層側が接するように加熱等によりラミネートして一体成形する際、ラミネート前に樹脂組成物層から剥離するものをいう。剥離可能な第二のフィルムとしては、例えば、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができ、第二のフィルムを剥離するときに樹脂組成物層と第一のフィルムとの接着力よりも樹脂組成物層と第二のフィルムとの接着力がより小さいものであればよい。 After forming the resin composition layer on the first film, a second film that can be peeled off from the surface of the resin composition layer for the purpose of preventing dust from adhering to the surface of the resin composition layer. is preferably laminated. The second film refers to a film that separates from the resin composition layer before lamination when the film laminate is laminated by heating or the like so that the resin composition layer side of the film laminate is in contact with a base material such as a substrate and integrally molded. . As the peelable second film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used. It is sufficient that the adhesive strength between the resin composition layer and the second film is smaller than the adhesive strength with the first film.
 第二のフィルムの厚さは、特に限定されるものではないが、例えば、10μm~150μmとすることができる。 The thickness of the second film is not particularly limited, but can be, for example, 10 μm to 150 μm.
[硬化物]
 本発明の硬化物は、上述した本発明のフィルム積層体の樹脂組成物層を硬化して得られるものである。本発明の硬化物は、例えば、厚さ1~150μmのソルダーレジスト層、特に艶消しソルダーレジスト層であることが好ましい。
[Cured product]
The cured product of the present invention is obtained by curing the resin composition layer of the film laminate of the present invention described above. The cured product of the present invention is preferably a solder resist layer, particularly a matte solder resist layer, having a thickness of 1 to 150 μm, for example.
[プリント配線板]
 本発明のプリント配線板は、上述した本発明のフィルム積層体の樹脂組成物層から得られる硬化物を有するものである。本発明のプリント配線板の製造方法においては、例えば、フィルム積層体の樹脂組成物層をラミネーター等により基材と接触するように基材上に貼り合わせた後、第一のフィルムを剥離することにより、基材上に樹脂組成物層を形成する。また、特性を損なわない範囲であれば、後述する露光後に第一のフィルムを剥離して現像を行うことにより、基材上にパターニングされた硬化物を形成することもできる。
[Printed wiring board]
The printed wiring board of the present invention has a cured product obtained from the resin composition layer of the film laminate of the present invention described above. In the method for producing a printed wiring board of the present invention, for example, the resin composition layer of the film laminate is laminated on the substrate by a laminator or the like so as to be in contact with the substrate, and then the first film is peeled off. to form a resin composition layer on the substrate. In addition, a patterned cured product can be formed on the base material by peeling off the first film after the exposure described later and performing development as long as the properties are not impaired.
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。 Examples of the substrate include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, all grades (FR-4, etc.) of copper-clad laminates. Plates, metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
 フィルム積層体の基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、回路形成された基板を用いた場合に、回路基板表面に凹凸があっても、フィルム積層体が回路基板に密着するため、気泡の混入がなく、また、基板表面の凹部の穴埋め性も向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。 The lamination of the film laminate onto the substrate is preferably carried out under pressure and heat using a vacuum laminator or the like. By using such a vacuum laminator, even if a substrate having a circuit formed thereon is used, even if the surface of the circuit substrate is uneven, the film laminate adheres to the circuit substrate. , the hole-filling property of the concave portion of the substrate surface is also improved. The pressure condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
 基材上に樹脂組成物層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して、基材上にパターニングされた硬化物を形成する。なお、特性を損なわない範囲であれば、露光前にフィルム積層体から第一のフィルムを剥離して、露出した樹脂組成物層を露光および現像しても良い。さらに、硬化物に活性エネルギー線を照射後に加熱硬化(例えば、100~220℃)、もしくは加熱硬化後に活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化塗膜を形成する。 After forming a resin composition layer on the substrate, it is selectively exposed to active energy rays through a photomask having a predetermined pattern, and the unexposed area is treated with a dilute alkaline aqueous solution (for example, 0.3 to 3% by mass sodium carbonate. aqueous solution) to form a patterned cured product on the substrate. Before exposure, the first film may be peeled off from the film laminate, and the exposed resin composition layer may be exposed and developed as long as the properties are not impaired. Furthermore, after irradiating the cured product with active energy rays, heat curing (e.g., 100 to 220 ° C), or after heat curing, irradiating the active energy rays, or final final curing (main curing) only by heat curing. Forms a cured coating film with excellent properties such as toughness and hardness.
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm2、好ましくは20~800mJ/cm2の範囲内とすることができる。 The exposure machine used for the active energy ray irradiation may be any device equipped with a high-pressure mercury lamp, ultra-high pressure mercury lamp, metal halide lamp, mercury short arc lamp, etc., and irradiating ultraviolet rays in the range of 350 to 450 nm. In addition, a direct writing device (eg, a laser direct imaging device that draws an image with a laser directly from CAD data from a computer) can also be used. The lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm. The amount of exposure for image formation varies depending on the film thickness and the like, but can generally be in the range of 10-1000 mJ/cm 2 , preferably 20-800 mJ/cm 2 .
 現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。 As a developing method, a dipping method, a shower method, a spray method, a brush method, or the like can be used. , amines, etc. can be used.
 次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following description, "parts" and "%" are based on mass unless otherwise specified.
 フィルム積層体を構成するフィルム(第一のフィルム)として、下記のフィルム1~4を準備した。
 フィルム1:下記のフィルム1の作製に記載の手順に従って作製されたポリエチレンテレフタレートフィルム
(膜厚:38μm、算術平均粗さRa:0.04μm、最大高さRz:0.88μm)
 フィルム2:下記のフィルム2の作製に記載の手順に従って作製されたポリエチレンテレフタレートフィルム
(膜厚:42μm、算術平均粗さRa:0.16μm、最大高さRz:3.28μm)
 フィルム3:下記のフィルム3の作製に記載の手順に従って作製されたポリエチレンテレフタレートフィルム
(膜厚:42μm、算術平均粗さRa:0.22μm、最大高さRz:4.16μm)
 フィルム4:市販のポリプロピレンフィルム アルファンMA-411(王子エフテックス株式会社製)
(膜厚:15μm、算術平均粗さRa:0.20μm、最大高さRz:1.77μm)
Films 1 to 4 below were prepared as films (first films) constituting the film laminate.
Film 1: A polyethylene terephthalate film (thickness: 38 μm, arithmetic mean roughness Ra: 0.04 μm, maximum height Rz: 0.88 μm) prepared according to the procedure described in the preparation of film 1 below.
Film 2: A polyethylene terephthalate film (film thickness: 42 μm, arithmetic mean roughness Ra: 0.16 μm, maximum height Rz: 3.28 μm) prepared according to the procedure described in the preparation of film 2 below.
Film 3: A polyethylene terephthalate film (thickness: 42 μm, arithmetic mean roughness Ra: 0.22 μm, maximum height Rz: 4.16 μm) prepared according to the procedure described in the preparation of film 3 below.
Film 4: commercially available polypropylene film Alphan MA-411 (manufactured by Oji F-Tex Co., Ltd.)
(Film thickness: 15 µm, arithmetic mean roughness Ra: 0.20 µm, maximum height Rz: 1.77 µm)
<フィルム1の作製>
 上述したフィルム1を、以下の手順に従って作製した。
 ポリエチレンテレフタレート樹脂を290℃で溶融押出した後、押出された溶融ポリエチレンテレフタレート樹脂を、表面温度を40℃に設定した冷却ロール上で静電印加密着法により冷却固化して未延伸シートを得た。次いで、未延伸シートを、90℃にてロール巻き取り方向(縦方向)に延伸し、テンター内での予熱工程を経て110℃で横方向に延伸した後、10秒間の熱処理を行い、その後180℃で幅方向に10%の弛緩を加え、二軸延伸ポリエステルフィルム(フィルム1)を得た。フィルム1の膜厚は38μmであった。
<Preparation of Film 1>
Film 1 described above was produced according to the following procedure.
After the polyethylene terephthalate resin was melt extruded at 290°C, the extruded molten polyethylene terephthalate resin was cooled and solidified on a cooling roll whose surface temperature was set to 40°C by an electrostatic contact method to obtain an unstretched sheet. Next, the unstretched sheet is stretched in the roll winding direction (longitudinal direction) at 90° C., stretched in the transverse direction at 110° C. through a preheating step in a tenter, heat-treated for 10 seconds, and then 180° C. °C in the width direction to obtain a biaxially stretched polyester film (film 1). The film thickness of the film 1 was 38 μm.
 また、フィルム1の表面の算術平均粗さRaおよび最大高さRzを、JIS B 0601:2001に準拠して、形状測定レーザマイクロスコープ VX―100(株式会社キーエンス製)を用いて形状測定モードにより測定した。具体的には、形状測定レーザマイクロスコープの形状測定モードにおいて、観察アプリケーション VK-H1XVを立ち上げ、X-Yステージ上にフィルム1を静置し、50倍の対物レンズを用いて、形状測定モードでオートフォーカスで焦点を合わせた。必要に応じてZ軸をコントロールし、焦点を最適な位置に調整した。次いで、自動測定モードまたは手動測定モードで観察画像の取り込みを行った。次いで、解析アプリケーション VK-H1XAを立ち上げ、算術平均粗さおよび最大高さの測定を行った。フィルム1の算術平均粗さRaは0.04μmであり、最大高さRzは0.88μmであった。 In addition, the arithmetic mean roughness Ra and the maximum height Rz of the surface of the film 1 were measured in accordance with JIS B 0601: 2001 using a shape measuring laser microscope VX-100 (manufactured by Keyence Corporation) in shape measurement mode. It was measured. Specifically, in the shape measurement mode of the shape measurement laser microscope, launch the observation application VK-H1XV, place the film 1 on the XY stage, use the 50x objective lens, and use the shape measurement mode Focused with autofocus. The Z-axis was controlled as necessary to adjust the focus to the optimum position. Then, the observed image was captured in automatic measurement mode or manual measurement mode. Next, we launched the analysis application VK-H1XA and measured the arithmetic mean roughness and maximum height. Film 1 had an arithmetic mean roughness Ra of 0.04 μm and a maximum height Rz of 0.88 μm.
<フィルム2(コーティング型)の作製>
 上述したフィルム2を、以下の手順に従って作製した。
 メチルメタクリレート、メチルアクリレートおよび8-ヒドロキシオクチルメタクリレートを、固形分換算の配合割合が質量基準で95:5:3.0となるように配合し、撹拌機を用いて予備撹拌し、酢酸エチルで希釈して、固形分濃度35質量%の樹脂溶液を得た。次いで、得られた樹脂溶液に、重合開始剤としてのアゾビスイソブチロニトリルと架橋剤としてのコロネート(登録商標)HXとを、質量基準で1:30の割合で滴下し、次いで65℃に加熱して所定の時間反応させ、アクリル系樹脂溶液を得た。
<Preparation of film 2 (coating type)>
Film 2 described above was produced according to the following procedure.
Methyl methacrylate, methyl acrylate, and 8-hydroxyoctyl methacrylate were blended so that the blending ratio in terms of solid content was 95:5:3.0 on a mass basis, prestirred using a stirrer, and diluted with ethyl acetate. As a result, a resin solution having a solid concentration of 35% by mass was obtained. Next, azobisisobutyronitrile as a polymerization initiator and Coronate (registered trademark) HX as a cross-linking agent were added dropwise to the obtained resin solution at a ratio of 1:30 on a mass basis, and then heated to 65°C. It was heated and reacted for a predetermined time to obtain an acrylic resin solution.
 次いで、得られたアクリル系樹脂溶液に、所望の塗膜の厚みに応じて適当な固形分濃度となるように酢酸エチルを添加した後、シリコーン系樹脂 サイマックUS-270(東亜合成株式会社製)および球状シリカ SO-C2(株式会社アドマテックス製)を、アクリル系樹脂、シリコーン系樹脂およびフィラーの固形分換算の配合割合が質量基準で59.7:0.3:6.2となるように添加し、撹拌機を用いて室温で十分に撹拌し、均一な樹脂溶液を得た。次いで、得られた樹脂溶液を上述したフィルム1に塗布し、130℃で20秒間乾燥させて、コーティング層を有するフィルム2を得た。フィルム2の膜厚は42μmであった。 Next, to the obtained acrylic resin solution, after adding ethyl acetate so that the solid content concentration is appropriate according to the desired thickness of the coating film, silicone resin Cymac US-270 (manufactured by Toagosei Co., Ltd.) and spherical silica SO-C2 (manufactured by Admatechs Co., Ltd.) so that the mixing ratio of acrylic resin, silicone resin and filler in terms of solid content is 59.7:0.3:6.2 on a mass basis. and thoroughly stirred at room temperature using a stirrer to obtain a homogeneous resin solution. Next, the obtained resin solution was applied to Film 1 described above and dried at 130° C. for 20 seconds to obtain Film 2 having a coating layer. The film thickness of the film 2 was 42 μm.
 また、フィルム2の表面の算術平均粗さRaおよび最大高さRzを、上述したフィルム1の算術平均粗さおよび最大高さの測定と同様の方法により測定した。フィルム2の算術平均粗さRaは0.16μmであり、最大高さRzは3.28μmであった。 In addition, the arithmetic mean roughness Ra and maximum height Rz of the surface of film 2 were measured in the same manner as the measurement of the arithmetic mean roughness and maximum height of film 1 described above. Film 2 had an arithmetic mean roughness Ra of 0.16 μm and a maximum height Rz of 3.28 μm.
<フィルム3(コーティング型)の作製>
 上述したフィルム3を、以下の手順に従って作製した。
 イソブチル化メラミン樹脂 アミディアL-125-60(固形分60%、DIC株式会社製)およびメラミン焼き付け用アクリル樹脂 アクリディックA-405(固形分50%、DIC株式会社製)を、固形分換算の配合割合が質量基準で25:75となるように配合し、撹拌機を用いて予備撹拌して、アクリルメラミン樹脂を得た。
<Preparation of film 3 (coating type)>
Film 3 described above was produced according to the following procedure.
Isobutylated melamine resin Amidia L-125-60 (solid content 60%, manufactured by DIC Corporation) and acrylic resin Acrydic A-405 for melamine baking (solid content 50%, manufactured by DIC Corporation) are blended in terms of solid content. They were blended so that the ratio was 25:75 on a mass basis, and pre-stirred using a stirrer to obtain an acrylic melamine resin.
 次いで、得られたアクリルメラミン樹脂をメチルエチルケトンで希釈して、固形分濃度35質量%の樹脂溶液を得た。得られた樹脂溶液に、所望の塗膜の厚みに応じて適当な固形分濃度となるようにメチルエチルケトンを添加した後、シリコーン系樹脂 サイマックUS-270(東亜合成株式会社製)および球状シリカ SO-C2(株式会社アドマテックス製)を、アクリルメラミン樹脂、シリコーン系樹脂およびフィラーの固形分換算の配合割合が質量基準で59.7:0.3:16.0となるように添加し、撹拌機を用いて室温で十分に撹拌し、均一な樹脂溶液を得た。得られた樹脂溶液を上述したフィルム1に塗布し、130℃で20秒間乾燥させて、コーティング層を有するフィルム3を得た。フィルム3の膜厚は42μmであった。 Next, the obtained acrylic melamine resin was diluted with methyl ethyl ketone to obtain a resin solution with a solid concentration of 35% by mass. After adding methyl ethyl ketone to the obtained resin solution so that the solid content concentration is appropriate according to the desired thickness of the coating film, silicone resin Cymac US-270 (manufactured by Toagosei Co., Ltd.) and spherical silica SO- C2 (manufactured by Admatechs Co., Ltd.) was added so that the mixing ratio of acrylic melamine resin, silicone resin and filler in terms of solid content was 59.7: 0.3: 16.0 on a mass basis. was used to sufficiently stir at room temperature to obtain a homogeneous resin solution. The resulting resin solution was applied to film 1 described above and dried at 130° C. for 20 seconds to obtain film 3 having a coating layer. The film thickness of the film 3 was 42 μm.
 また、フィルム3の表面の算術平均粗さRaおよび最大高さRzを、上述したフィルム1の算術平均粗さおよび最大高さの測定と同様の方法により測定した。フィルム3の算術平均粗さRaは0.22μmであり、最大高さRzは4.16μmであった。 In addition, the arithmetic mean roughness Ra and maximum height Rz of the surface of film 3 were measured in the same manner as the measurement of the arithmetic mean roughness and maximum height of film 1 described above. Film 3 had an arithmetic mean roughness Ra of 0.22 μm and a maximum height Rz of 4.16 μm.
 フィルム積層体を構成する樹脂組成物として、以下の手順に従って樹脂組成物1~5を準備した。 As the resin composition constituting the film laminate, resin compositions 1 to 5 were prepared according to the following procedure.
<カルボキシル基含有樹脂Aの合成>
 以下の手順に従って、カルボキシル基含有樹脂Aを合成した。
 まず、温度計、窒素導入装置、アルキレンオキサイド導入装置、および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(商品名「ショウノールCRG951」、アイカ工業株式会社製、OH当量:119.4)119.4質量部、水酸化カリウム1.19質量部、およびトルエン119.4質量部を導入し、撹拌しながら系内を窒素置換し、昇温した。次に、プロピレンオキサイド63.8質量部を徐々に滴下し、125~132℃、0~4.8kg/cm2で16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56質量部を添加および混合しながら水酸化カリウムを中和して、ノボラック型クレゾール樹脂のプロピレンオキサイド反応溶液[固形分:62.1%;水酸基価:182.2mgKOH/g(307.9g/eq.)]を得た。このプロピレンオキサイド反応溶液は、フェノール性水酸基1当量当りプロピレンオキサイドが平均1.08モル付加したものであった。
<Synthesis of carboxyl group-containing resin A>
A carboxyl group-containing resin A was synthesized according to the following procedure.
First, an autoclave equipped with a thermometer, a nitrogen introduction device, an alkylene oxide introduction device, and a stirring device was charged with 119 novolak cresol resin (trade name "Shonol CRG951", manufactured by Aica Kogyo Co., Ltd., OH equivalent: 119.4). 4 parts by mass, 1.19 parts by mass of potassium hydroxide, and 119.4 parts by mass of toluene were introduced, and the inside of the system was replaced with nitrogen while stirring, and the temperature was raised. Next, 63.8 parts by mass of propylene oxide was gradually added dropwise and reacted at 125 to 132° C. and 0 to 4.8 kg/cm 2 for 16 hours. Thereafter, the reaction solution was cooled to room temperature, 1.56 parts by mass of 89% phosphoric acid was added to the reaction solution, and the potassium hydroxide was neutralized while mixing to obtain a propylene oxide reaction solution of a novolac type cresol resin [solid content: 62.5 g]. 1%; hydroxyl value: 182.2 mgKOH/g (307.9 g/eq.)]. This propylene oxide reaction solution contained an average of 1.08 mol of propylene oxide per equivalent of phenolic hydroxyl group.
 得られたノボラック型クレゾール樹脂のプロピレンオキサイド反応溶液293.0質量部、アクリル酸43.2質量部、メタンスルホン酸11.53質量部、メチルハイドロキノン0.18質量部およびトルエン252.9質量部を、撹拌機、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら110℃で12時間反応させた。 293.0 parts by mass of the propylene oxide reaction solution of the obtained novolak-type cresol resin, 43.2 parts by mass of acrylic acid, 11.53 parts by mass of methanesulfonic acid, 0.18 parts by mass of methylhydroquinone and 252.9 parts by mass of toluene , a stirrer, a thermometer and an air blowing tube, and air was blown in at a rate of 10 ml/min to react at 110° C. for 12 hours while stirring.
 反応により生成した水12.6質量部を、トルエンとの共沸混合物として留出させた。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35質量部で中和し、次いで水洗した。その後、エバポレーターにてプロピレングリコールモノメチルエーテルアセテート(PMA)118.1質量部でトルエンを置換しながら留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5質量部およびトリフェニルフォスフィン1.22質量部を、撹拌器、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8質量部を徐々に加え、95~101℃で6時間反応させ、冷却後、取り出した。このようにして、カルボキシル基含有樹脂Aの溶液(固形分:70.6%;固形分の酸価:87.7mgKOH/g)を得た。 12.6 parts by mass of water produced by the reaction was distilled as an azeotrope with toluene. After cooling to room temperature, the resulting reaction solution was neutralized with 35.35 parts by mass of a 15% aqueous sodium hydroxide solution and then washed with water. After that, 118.1 parts by mass of propylene glycol monomethyl ether acetate (PMA) was distilled off using an evaporator while substituting toluene to obtain a novolak type acrylate resin solution. Next, 332.5 parts by mass of the obtained novolak-type acrylate resin solution and 1.22 parts by mass of triphenylphosphine were introduced into a reactor equipped with a stirrer, a thermometer and an air blowing tube, and air was added at 10 ml/ 60.8 parts by mass of tetrahydrophthalic anhydride was gradually added while stirring at a rate of 10 minutes, reacted at 95 to 101° C. for 6 hours, and taken out after cooling. Thus, a solution of carboxyl group-containing resin A (solid content: 70.6%; acid value of solid content: 87.7 mgKOH/g) was obtained.
<シリカスラリーの合成>
 以下の手順に従って、シリカスラリーを合成した。
 球状シリカ(株式会社アドマテック製)700g、溶剤としてPMA300g、ビーズミルにて0.7μmのジルコニアビーズを用い分散処理を行った。これを3回繰り返して3μmフィルターでろ過し、平均粒径が0.7μmとなるシリカスラリーを調製した。得られたシリカスラリーの固形分は70質量%であった。
<Synthesis of silica slurry>
A silica slurry was synthesized according to the following procedure.
Dispersion treatment was performed using 700 g of spherical silica (manufactured by Admatec Co., Ltd.), 300 g of PMA as a solvent, and 0.7 μm zirconia beads in a bead mill. This was repeated three times and filtered through a 3 μm filter to prepare a silica slurry having an average particle size of 0.7 μm. The solid content of the obtained silica slurry was 70% by mass.
<樹脂組成物の調製>
 下記表1に記載の各成分を配合し、十分に撹拌を行った。次いで、3本ロールミルもしくはビーズミルを用いて混合物を混練して、樹脂組成物1~8を得た。なお、表中の各成分の数値は質量部(固形分換算)を示す。
<Preparation of resin composition>
Each component shown in Table 1 below was blended and thoroughly stirred. Then, the mixture was kneaded using a three-roll mill or a bead mill to obtain Resin Compositions 1-8. In addition, the numerical value of each component in a table|surface shows a mass part (solid content conversion).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<粘度の測定>
 上述した手順に従って作製した樹脂組成物1~8を1.0ml採取し、コーン・プレート型粘度計 TV-33H(ロータ1°34’×R24、東機産業株式会社製)を用いて、25℃において回転数5rpm(せん断速度10-1s)で30秒間回転させた後の粘度を測定した。測定結果を表1に示す。
<Measurement of viscosity>
1.0 ml of the resin compositions 1 to 8 prepared according to the procedure described above were sampled and measured at 25° C. using a cone/plate viscometer TV-33H (rotor 1°34′×R24, manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after rotating at 5 rpm (shear rate 10-1 s) for 30 seconds. Table 1 shows the measurement results.
<残留溶剤の量の測定>
 上述したフィルム1の表面上に、上述した手順に従って作製した樹脂組成物1~8を用いて、50μmのギャップを有するアプリケーターにより縦15cm×横8cm×膜厚20μmの樹脂組成物層を形成した。次いで、各フィルム1上の樹脂組成物層を75℃で15分間乾燥させ、乾燥した樹脂組成物層を有する各フィルム積層体を得た。一方で、銅箔(F2-WS、古河電気工業株式会社製)を縦15cm×横9.5cmの大きさに切り出し、重さ(A)を電子天秤で測定した。上述した手順で作製した各フィルム積層体と銅箔とを、各フィルム積層体の樹脂組成物と銅箔とが接するように貼り付け、各フィルム積層体からフィルム1を剥離して、樹脂組成物層を有する銅箔を得た。樹脂組成物層を有する各銅箔の重さ(B)を電子天秤で測定した。次いで、樹脂組成物層を有する各銅箔を、ガラスエポキシ基板上に載置してクリップで固定し、樹脂組成物層を100℃で20分間乾燥させて、樹脂組成物層に含まれる溶剤(残留溶剤)を揮発させた。次いで、樹脂組成物層を有する各銅箔を常温で20分放冷させ、放冷後の重さ(C)を電子天秤で測定し、各銅箔の樹脂組成物層を100℃で20分間乾燥させることにより揮発した溶剤(すなわち、各銅箔の樹脂組成物層中の残留溶剤)の質量を式1により算出し、算出された質量に基づいて式2により残留溶剤の量(質量%)を求めた。各樹脂組成物につき、3つのフィルム積層体を作製して重さを測定し、その平均を表1に示す。
(式1)残留溶剤(100℃20分間の乾燥により揮発した溶剤)の質量[g]=(B)―(C)
(式2)残留溶剤の量[質量%]={(B)―(C)}/{(B)―(A)}×100
<Measurement of amount of residual solvent>
On the surface of film 1 described above, resin compositions 1 to 8 prepared according to the procedure described above were used to form a resin composition layer having a length of 15 cm, a width of 8 cm, and a film thickness of 20 μm with an applicator having a gap of 50 μm. Then, the resin composition layer on each film 1 was dried at 75° C. for 15 minutes to obtain each film laminate having a dried resin composition layer. On the other hand, a copper foil (F2-WS, manufactured by Furukawa Electric Co., Ltd.) was cut into a size of 15 cm long×9.5 cm wide, and the weight (A) was measured with an electronic balance. Each film laminate and copper foil prepared by the procedure described above are attached so that the resin composition and copper foil of each film laminate are in contact, and the film 1 is peeled off from each film laminate to obtain a resin composition. A copper foil with a layer was obtained. The weight (B) of each copper foil having a resin composition layer was measured with an electronic balance. Next, each copper foil having a resin composition layer is placed on a glass epoxy substrate and fixed with a clip, the resin composition layer is dried at 100 ° C. for 20 minutes, and the solvent ( residual solvent) was evaporated. Next, each copper foil having a resin composition layer is allowed to cool at room temperature for 20 minutes, the weight (C) after cooling is measured with an electronic balance, and the resin composition layer of each copper foil is cooled at 100 ° C. for 20 minutes. The mass of the solvent volatilized by drying (that is, the residual solvent in the resin composition layer of each copper foil) is calculated by Equation 1, and the amount of residual solvent (% by mass) is calculated by Equation 2 based on the calculated mass. asked for For each resin composition, three film laminates were produced and weighed, and the average is shown in Table 1.
(Formula 1) Mass [g] of residual solvent (solvent volatilized by drying at 100 ° C. for 20 minutes) = (B) - (C)
(Formula 2) Amount of residual solvent [% by mass] = {(B) - (C)} / {(B) - (A)} x 100
<25℃における接触角の測定>
 25℃における各フィルムと各樹脂組成物との接触角(接触角A)を、JIS R3257:1999に準拠して測定した。
 具体的には、多機能統合解析ソフトウェア FAMAS(協和界面科学株式会社製)を起動し、CA/PDコントローラを立ち上げた。その際、コントローラの画面にある「視野」は「スタンダード」を選択した。測定温度25℃において上述した各樹脂組成物をプラスチックシリンジに入れ、その先端にステンレス製の針(22番ゲージ)を取り付けて各樹脂組成物2.5μLを、上述した各フィルム上に滴下して液滴を形成した。なお、滴下の際、自動接触角計 DMo-601(協和界面科学株式会社製)に付属するカメラの焦点が合っていることを確認した。水平側方から液滴の画像を撮影し、得られた画像のフィルム界面における液滴の接触角を解析した。なお、樹脂組成物の液滴の形状が安定してから液滴の画像の撮影および接触角の解析を行うために、樹脂組成物の液滴がフィルム上に付着(着滴)してから5秒後に液滴の撮影を行った。また、1種のフィルムに対して樹脂組成物ごとに任意の5個の液滴について接触角の解析を行った。各フィルムと各樹脂組成物との25℃における接触角(接触角A)を下記表2に示す。なお、表2中、各接触角Aの値は5個の液滴についての平均値である。
<Measurement of contact angle at 25°C>
The contact angle (contact angle A) between each film and each resin composition at 25°C was measured according to JIS R3257:1999.
Specifically, the multifunctional integrated analysis software FAMAS (manufactured by Kyowa Interface Science Co., Ltd.) was activated to activate the CA/PD controller. At that time, the "field of view" on the controller screen was selected as "standard". Put each resin composition described above at a measurement temperature of 25 ° C. in a plastic syringe, attach a stainless steel needle (22 gauge) to the tip of the syringe, and drop 2.5 μL of each resin composition onto each film described above. A droplet formed. During dropping, it was confirmed that the camera attached to the automatic contact angle meter DMo-601 (manufactured by Kyowa Interface Science Co., Ltd.) was in focus. An image of the droplet was taken from the horizontal side, and the contact angle of the droplet at the film interface of the obtained image was analyzed. In order to take an image of the droplet and analyze the contact angle after the shape of the droplet of the resin composition is stabilized, the droplet of the resin composition adheres (drops) on the film. Seconds later, the droplet was photographed. In addition, the contact angle was analyzed for five arbitrary droplets for each resin composition on one type of film. The contact angle (contact angle A) at 25° C. between each film and each resin composition is shown in Table 2 below. In addition, in Table 2, the value of each contact angle A is the average value for five droplets.
<75℃における接触角の測定>
 次いで、75℃における各フィルムと各樹脂組成物との接触角(接触角B)を、JIS R3257:1999に準拠して測定した。
 具体的には、測定温度25℃において上述した各樹脂組成物をプラスチックシリンジに入れ、その先端に温度75℃に加熱したステンレス製の針(22番ゲージ)を取り付けて各樹脂組成物2.5μLを、温度75℃に加熱した各フィルム上に滴下して液滴を形成した。上述した接触角Aの測定と同様の方法により、各フィルムと各樹脂組成物との75℃における接触角を測定した。なお、液滴の画像の撮影および接触角の解析は、1種のフィルムに対して樹脂組成物ごとに任意の5個の液滴について行った。各フィルムと各樹脂組成物との75℃における接触角(接触角B)を下記表2に示す。なお、表2中、各接触角Bの値は5個の液滴についての平均値である。
<Measurement of contact angle at 75°C>
Then, the contact angle (contact angle B) between each film and each resin composition at 75° C. was measured according to JIS R3257:1999.
Specifically, each resin composition described above at a measurement temperature of 25 ° C. was put into a plastic syringe, and a stainless steel needle (22 gauge) heated to a temperature of 75 ° C. was attached to the tip of the plastic syringe, and 2.5 μL of each resin composition was added. was dropped onto each film heated to a temperature of 75° C. to form droplets. The contact angle between each film and each resin composition at 75° C. was measured by the same method as the measurement of the contact angle A described above. In addition, the photographing of the droplet image and the analysis of the contact angle were performed for five arbitrary droplets for each resin composition on one type of film. The contact angle (contact angle B) at 75° C. between each film and each resin composition is shown in Table 2 below. In addition, in Table 2, the value of each contact angle B is the average value for five droplets.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、25℃におけるフィルムと樹脂組成物との接触角(接触角A)と75℃におけるフィルムと樹脂組成物との接触角(接触角B)を、下記の基準に基づき評価した。評価結果を表3に示す。
 ○:接触角AおよびBが、15°≦A≦30°および0.75A≦B≦1.3Aの両方を満足する。
 ×:接触角AおよびBが、15°≦A≦30°および0.75A≦B≦1.3Aの少なくとも一方を満足しない。
From the results shown in Table 2, the contact angle (contact angle A) between the film and the resin composition at 25°C and the contact angle (contact angle B) between the film and the resin composition at 75°C were evaluated based on the following criteria. bottom. Table 3 shows the evaluation results.
○: The contact angles A and B satisfy both 15°≦A≦30° and 0.75A≦B≦1.3A.
x: The contact angles A and B do not satisfy at least one of 15°≦A≦30° and 0.75A≦B≦1.3A.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<弾きの抑制の評価>
 以下の手順に従って、各フィルム上に各樹脂組成物を塗布する際の弾きの抑制を評価した。
 まず、各フィルムを縦30cm×横15cmに切り出した。次いで、切り出された各フィルムの表面上に、各樹脂組成物を用いて、50μmのギャップを有するアプリケーターにより縦20cm×横8cm×膜厚20μmの樹脂組成物層を形成した。次いで、各フィルム上の樹脂組成物を75℃で15分間乾燥させ、乾燥した樹脂組成物層を有する各フィルム積層体を得た。得られた各フィルム積層体を目視で観察し、各フィルム積層体における樹脂組成物の弾きの抑制を、下記の基準に基づき評価した。評価結果を表4に示す。
 ◎:フィルム積層体表面の樹脂組成物の弾きが顕著に抑制されている。
 ○:フィルム積層体表面の樹脂組成物の弾きが十分に抑制されている。
 △:フィルム積層体表面の樹脂組成物の弾きが十分に抑制されていない。
 ×:フィルム積層体表面の樹脂組成物の弾きがほとんど抑制されていない。
<Evaluation of suppression of flipping>
According to the following procedures, suppression of repelling was evaluated when each resin composition was applied onto each film.
First, each film was cut into a length of 30 cm and a width of 15 cm. Then, each resin composition was used to form a resin composition layer of 20 cm long×8 cm wide×20 μm thick on the surface of each cut film using an applicator having a gap of 50 μm. Next, the resin composition on each film was dried at 75° C. for 15 minutes to obtain each film laminate having a dried resin composition layer. Each obtained film laminate was visually observed, and suppression of flipping of the resin composition in each film laminate was evaluated based on the following criteria. Table 4 shows the evaluation results.
A: Repelling of the resin composition on the surface of the film laminate is remarkably suppressed.
◯: Repelling of the resin composition on the surface of the film laminate is sufficiently suppressed.
Δ: Repelling of the resin composition on the surface of the film laminate is not sufficiently suppressed.
x: Repelling of the resin composition on the surface of the film laminate is hardly suppressed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および4に示す結果から、フィルムと樹脂組成物との間の25℃における接触角(接触角A)と75℃における接触角(接触角B)とが、
 15°≦A≦30°
 0.75A≦B≦1.3A
の両方を満足する場合には、フィルム上における樹脂組成物の弾きが良好に抑制されることが分かる。
From the results shown in Tables 3 and 4, the contact angle (contact angle A) between the film and the resin composition at 25°C and the contact angle (contact angle B) at 75°C are
15°≤A≤30°
0.75A≤B≤1.3A
It can be seen that the repelling of the resin composition on the film is satisfactorily suppressed when both are satisfied.
<色むらの抑制の評価>
 以下の手順に従って、各フィルム上に各樹脂組成物を塗布する際の色むらの抑制を評価した。
 まず、各フィルムを縦30cm×横15cmに切り出した。次いで、切り出された各フィルムの表面上に、各樹脂組成物を用いて、50μmのギャップを有するアプリケーターにより縦20cm×横8cm×膜厚20μmの樹脂組成物層を形成した。次いで、各フィルム上の樹脂組成物を75℃で15分間乾燥させ、乾燥した樹脂組成物層を有する各フィルム積層体を得た。得られた各フィルム積層体における樹脂組成物層の中央部の縦14cm×横6cmの領域について、色調が最も薄い部分および最も濃い部分のL*a*b*値を測定した。具体的には、白色板上に、各フィルム積層体を、各フィルム積層体のフィルム面と白色板とが接するように乗せ、分光側色計 CM-2600d(コニカミノルタジャパン株式会社製)を用いて、各フィルム積層体の樹脂組成物のL*a*b*値(SCE 方式、標準光源D65、視野10 deg.)を測定した。測定範囲内で色調が最も薄い部分と最も濃い部分との色差(ΔE*ab)を下記の式1に基づいて算出した。なお、白色板としては、L*a*b*値がそれぞれ、L*:94.3、a*:-0.6、b*:2.8である白色板を用いた。
Figure JPOXMLDOC01-appb-M000005
<Evaluation of suppression of color unevenness>
Suppression of color unevenness when each resin composition was applied onto each film was evaluated according to the following procedure.
First, each film was cut into a length of 30 cm and a width of 15 cm. Then, each resin composition was used to form a resin composition layer of 20 cm long×8 cm wide×20 μm thick on the surface of each cut film using an applicator having a gap of 50 μm. Next, the resin composition on each film was dried at 75° C. for 15 minutes to obtain each film laminate having a dried resin composition layer. The L*a*b* values of the lightest and darkest color tone portions were measured for a region of 14 cm long×6 cm wide in the center of the resin composition layer in each film laminate obtained. Specifically, each film laminate is placed on a white plate so that the film surface of each film laminate is in contact with the white plate, and a spectral side colorimeter CM-2600d (manufactured by Konica Minolta Japan Co., Ltd.) is used. Then, the L*a*b* value (SCE method, standard light source D65, visual field 10 deg.) of the resin composition of each film laminate was measured. The color difference (ΔE*ab) between the lightest color tone portion and the darkest color tone portion within the measurement range was calculated based on Equation 1 below. As the white plate, a white plate having L*a*b* values of L*: 94.3, a*: -0.6, and b*: 2.8 was used.
Figure JPOXMLDOC01-appb-M000005
 次いで、算出された各フィルム積層体の樹脂組成物の色差(ΔE*ab)から、各フィルム積層体における樹脂組成物層の色むらの抑制を、下記の基準に基づき評価した。評価結果を表5に示す。
 ◎:色差がΔE*ab<3.0であり、フィルム積層体表面の樹脂組成物層の色むらが顕著に抑制されている。
 ○:色差が3.0≦ΔE*ab<4.5であり、フィルム積層体の樹脂組成物層の色むらが十分に抑制されている。
 △:色差が4.5≦ΔE*ab<6.0であり、フィルム積層体の樹脂組成物層の色むらが十分に抑制されていない。
 ×:色差が6.0≦ΔE*abであり、フィルム積層体の積層体の樹脂組成物層の色むらがほとんど抑制されていない。
Next, from the calculated color difference (ΔE*ab) of the resin composition of each film laminate, suppression of color unevenness of the resin composition layer in each film laminate was evaluated based on the following criteria. Table 5 shows the evaluation results.
A: The color difference is ΔE*ab<3.0, and the color unevenness of the resin composition layer on the surface of the film laminate is remarkably suppressed.
◯: Color difference is 3.0≦ΔE*ab<4.5, and color unevenness of the resin composition layer of the film laminate is sufficiently suppressed.
Δ: The color difference is 4.5≦ΔE*ab<6.0, and the color unevenness of the resin composition layer of the film laminate is not sufficiently suppressed.
x: The color difference is 6.0≦ΔE*ab, and the color unevenness of the resin composition layer of the laminate of the film laminate is hardly suppressed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3および5に示す結果から、フィルムと樹脂組成物との間の25℃における接触角(接触角A)と75℃における接触角(接触角B)とが、
 15°≦A≦30°
 0.75A≦B≦1.25A
の両方を満足する場合には、フィルム上における樹脂組成物層の色むらが良好に抑制されることが分かる。
From the results shown in Tables 3 and 5, the contact angle (contact angle A) at 25° C. and the contact angle (contact angle B) at 75° C. between the film and the resin composition are
15°≤A≤30°
0.75A≤B≤1.25A
It can be seen that when both conditions are satisfied, the color unevenness of the resin composition layer on the film is suppressed satisfactorily.
 表3~5に示す結果から、フィルムと樹脂組成物との間の25℃における接触角(接触角A)および75℃における接触角(接触角B)とが、
 15°≦A≦30°
 0.75A≦B≦1.3A
の両方を満足する場合には、樹脂組成物を塗布し、乾燥させる際のフィルム上における樹脂組成物の弾きが良好に抑制され、その結果、フィルム積層体の樹脂組成物層の色むらが良好に抑制されると考えられる。
From the results shown in Tables 3 to 5, the contact angle (contact angle A) at 25° C. and the contact angle (contact angle B) at 75° C. between the film and the resin composition are
15°≤A≤30°
0.75A≤B≤1.3A
When both are satisfied, the repelling of the resin composition on the film when the resin composition is applied and dried is well suppressed, and as a result, the color unevenness of the resin composition layer of the film laminate is good. is considered to be suppressed by
<膜厚ばらつきの抑制の評価>
 以下の手順に従って、各フィルム上に各樹脂組成物を塗布する際の膜厚の不均一性(膜厚ばらつき)の抑制を評価した。
 まず、上述した色むらの抑制の評価において用いた各フィルム積層体の樹脂組成物の中央部の縦14cm×横6cmの領域において、色調が最も薄い部分および最も濃い部分の膜厚をレーザ顕微鏡VK-X100(株式会社キーエンス製)を用いて、倍率10倍で観察した。次いで、それぞれの部分の膜厚を測定し、色調が最も濃い部分の膜厚と色調が最も薄い部分の膜厚との差(色調が最も濃い部分の膜厚-色調が最も薄い部分の膜厚)を算出した。算出された膜厚差から、各フィルム積層体における樹脂組成物層の膜厚ばらつきの抑制を、下記の基準に基づき評価した。評価結果を表6に示す。
 ◎:膜厚差が2.0μm未満であり、フィルム積層体の樹脂組成物層に膜厚ばらつきが顕著に抑制されている。
 ○:膜厚差が2.0μm以上3.0μm未満であり、フィルム積層体の樹脂組成物層の膜厚ばらつきが十分に抑制されている。
 △:膜厚差が3.0μm以上4.0μm未満であり、フィルム積層体の樹脂組成物層の膜厚ばらつきが十分に抑制されていない。
 ×:膜厚差が4.0μm以上であり、フィルム積層体の樹脂組成物層の膜厚ばらつきがほとんど抑制されていない。
<Evaluation of Suppression of Film Thickness Variation>
Suppression of film thickness non-uniformity (film thickness variation) when each resin composition was applied onto each film was evaluated according to the following procedure.
First, in the area of 14 cm long × 6 cm wide in the center of the resin composition of each film laminate used in the evaluation of the suppression of color unevenness described above, the film thickness of the lightest and darkest color tone portions was measured using a laser microscope VK. -X100 (manufactured by KEYENCE CORPORATION) was used to observe at a magnification of 10 times. Next, the film thickness of each portion is measured, and the difference between the film thickness of the darkest color tone portion and the film thickness of the lightest color tone portion (film thickness of the darkest color tone portion - film thickness of the lightest color tone portion ) was calculated. From the calculated film thickness difference, suppression of film thickness variation of the resin composition layer in each film laminate was evaluated based on the following criteria. Table 6 shows the evaluation results.
A: The film thickness difference is less than 2.0 µm, and the film thickness variation is remarkably suppressed in the resin composition layer of the film laminate.
◯: The film thickness difference is 2.0 μm or more and less than 3.0 μm, and the film thickness variation of the resin composition layer of the film laminate is sufficiently suppressed.
Δ: The film thickness difference is 3.0 μm or more and less than 4.0 μm, and the film thickness variation of the resin composition layer of the film laminate is not sufficiently suppressed.
x: The film thickness difference is 4.0 μm or more, and the film thickness variation of the resin composition layer of the film laminate is hardly suppressed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3および6に示す結果から、フィルムと樹脂組成物との間の25℃における接触角(接触角A)と75℃における接触角(接触角B)とが、
 15°≦A≦30°
 0.75A≦B≦1.3A
の両方を満足する場合には、フィルム上における樹脂組成物層の膜厚ばらつきが良好に抑制されることが分かる。
From the results shown in Tables 3 and 6, the contact angle (contact angle A) between the film and the resin composition at 25°C and the contact angle (contact angle B) at 75°C are
15°≤A≤30°
0.75A≤B≤1.3A
It can be seen that when both of the above conditions are satisfied, the film thickness variation of the resin composition layer on the film is suppressed satisfactorily.
 表3~4および6に示す結果から、フィルムと樹脂組成物との間の25℃における接触角(接触角A)および75℃における接触角(接触角B)とが、
 15°≦A≦30°
 0.75A≦B≦1.3A
の両方を満足する場合には、樹脂組成物を塗布し、乾燥させる際のフィルム上における樹脂組成物の弾きが良好に抑制され、その結果、フィルム積層体の樹脂組成物層の膜厚ばらつきが良好に抑制されると考えられる。
From the results shown in Tables 3 to 4 and 6, the contact angle (contact angle A) between the film and the resin composition at 25 ° C. and the contact angle (contact angle B) at 75 ° C.
15°≤A≤30°
0.75A≤B≤1.3A
When both are satisfied, the repelling of the resin composition on the film when the resin composition is applied and dried is well suppressed, and as a result, the film thickness variation of the resin composition layer of the film laminate is reduced. It is considered to be well suppressed.
 一般的に、ソルダーレジストを形成するための樹脂組成物層の厚みの均一性(樹脂組成物層の平滑性)が不十分であると、ソルダーレジストが十分な性能を発揮しない場合があることが知られている。上述したように、フィルムとその表面に設けられた樹脂組成物層とを備えるフィルム積層体において、フィルムと樹脂組成物との間の25℃における接触角(接触角A)および75℃における接触角(接触角B)とが、
 15°≦A≦30°
 0.75A≦B≦1.3A
の両方を満足する場合には、フィルム積層体の樹脂組成物層の膜厚ばらつきを良好に抑制することができる。したがって、このようなフィルム積層体を用いて形成されるソルダーレジストは、十分な性能を発揮することができると考えられる。
In general, if the uniformity of the thickness of the resin composition layer for forming the solder resist (smoothness of the resin composition layer) is insufficient, the solder resist may not exhibit sufficient performance. Are known. As described above, in a film laminate comprising a film and a resin composition layer provided on the surface thereof, the contact angle (contact angle A) between the film and the resin composition at 25 ° C. and the contact angle at 75 ° C. (Contact angle B) is
15°≤A≤30°
0.75A≤B≤1.3A
When both of the above conditions are satisfied, it is possible to satisfactorily suppress variations in film thickness of the resin composition layer of the film laminate. Therefore, it is considered that a solder resist formed using such a film laminate can exhibit sufficient performance.

Claims (11)

  1.  第一のフィルムと、前記第一のフィルムの一方の面に設けられた樹脂組成物層とを備えるフィルム積層体であって、
     25℃における前記第一のフィルムと前記樹脂組成物との接触角をA、
     75℃における前記第一のフィルムと前記樹脂組成物との接触角をB、とした場合に、
     15°≦A≦30°、かつ
     0.75A≦B≦1.3A、
    を満足する、フィルム積層体。
    A film laminate comprising a first film and a resin composition layer provided on one surface of the first film,
    A is the contact angle between the first film and the resin composition at 25°C,
    When the contact angle between the first film and the resin composition at 75°C is B,
    15°≦A≦30°, and 0.75A≦B≦1.3A,
    A film laminate that satisfies
  2.  前記樹脂組成物の25℃における5rpmでの粘度が1.0~10dPa・sである、請求項1に記載のフィルム積層体。 The film laminate according to claim 1, wherein the resin composition has a viscosity of 1.0 to 10 dPa·s at 25°C and 5 rpm.
  3.  前記第一のフィルムの前記樹脂組成物層と接する面の算術平均粗さが0.2μm未満である、請求項1または2に記載のフィルム積層体。 The film laminate according to claim 1 or 2, wherein the surface of the first film in contact with the resin composition layer has an arithmetic mean roughness of less than 0.2 µm.
  4.  前記第一のフィルムの前記樹脂組成物層と接する面の最大高さが4.0μm未満である、請求項1または2に記載のフィルム積層体。 The film laminate according to claim 1 or 2, wherein the maximum height of the surface of the first film in contact with the resin composition layer is less than 4.0 µm.
  5.  前記樹脂組成物層を構成する樹脂組成物が感光性樹脂組成物である、請求項1または2に記載のフィルム積層体。 The film laminate according to claim 1 or 2, wherein the resin composition constituting the resin composition layer is a photosensitive resin composition.
  6.  前記第一のフィルムの前記樹脂組成物層と接する面が表面処理されている、請求項1または2に記載のフィルム積層体。 The film laminate according to claim 1 or 2, wherein the surface of the first film in contact with the resin composition layer is surface-treated.
  7.  ドライフィルムである、請求項1または2に記載のフィルム積層体。 The film laminate according to claim 1 or 2, which is a dry film.
  8.  ソルダーレジスト層の形成に用いられる、請求項1または2に記載のフィルム積層体。 The film laminate according to claim 1 or 2, which is used for forming a solder resist layer.
  9.  前記ソルダーレジスト層が艶消しソルダーレジスト層である、請求項8に記載のフィルム積層体。 The film laminate according to claim 8, wherein the solder resist layer is a matte solder resist layer.
  10.  請求項1または2に記載のフィルム積層体の前記樹脂組成物層を硬化させた硬化物。 A cured product obtained by curing the resin composition layer of the film laminate according to claim 1 or 2.
  11.  請求項10に記載の硬化物を備える、プリント配線板。 A printed wiring board comprising the cured product according to claim 10.
PCT/JP2023/003127 2022-01-31 2023-01-31 Film laminate, cured product, and printed wiring board comprising said cured product WO2023145974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013804 2022-01-31
JP2022013804 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145974A1 true WO2023145974A1 (en) 2023-08-03

Family

ID=87472146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003127 WO2023145974A1 (en) 2022-01-31 2023-01-31 Film laminate, cured product, and printed wiring board comprising said cured product

Country Status (1)

Country Link
WO (1) WO2023145974A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715119A (en) * 1993-06-23 1995-01-17 Toagosei Co Ltd Dry film type solder resist
JP2015106141A (en) * 2013-12-03 2015-06-08 日立化成株式会社 Photosensitive resin composition and photosensitive element
WO2017122460A1 (en) * 2016-01-13 2017-07-20 太陽インキ製造株式会社 Dry film and printed wiring board
WO2021065951A1 (en) * 2019-09-30 2021-04-08 太陽インキ製造株式会社 Method for reusing base material for wiring boards

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715119A (en) * 1993-06-23 1995-01-17 Toagosei Co Ltd Dry film type solder resist
JP2015106141A (en) * 2013-12-03 2015-06-08 日立化成株式会社 Photosensitive resin composition and photosensitive element
WO2017122460A1 (en) * 2016-01-13 2017-07-20 太陽インキ製造株式会社 Dry film and printed wiring board
WO2021065951A1 (en) * 2019-09-30 2021-04-08 太陽インキ製造株式会社 Method for reusing base material for wiring boards

Similar Documents

Publication Publication Date Title
JP5882510B2 (en) Photosensitive dry film and method for producing printed wiring board using the same
JP6258547B2 (en) Photosensitive dry film and method for producing printed wiring board using the same
JP6770131B2 (en) Curable composition, dry film, cured product and printed wiring board
JP2020200449A (en) Curable resin composition, dry film, cured product and printed wiring board
JP2022025366A (en) Dry film, dry film set, cured product of the same, and electronic component
JP2020166207A (en) Curable resin composition, dry film, cured product and printed wiring board
JP7066634B2 (en) Curable composition, main agent and curing agent, dry film, cured product, and printed wiring board
TW201910917A (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
WO2021065950A1 (en) Cured film
WO2023145974A1 (en) Film laminate, cured product, and printed wiring board comprising said cured product
WO2021157282A1 (en) Curable composition, and dry film and cured object obtained therefrom
JP7339103B2 (en) Curable resin composition, dry film, cured product, and electronic component
JP2021042268A (en) Curable resin composition
JP2020154052A (en) Curable resin composition, dry film, cured product and electronic component
WO2023054616A1 (en) Photosensitive film laminate, cured product, and printed wiring board
TWI798403B (en) Photosensitive film laminate and its cured product, and electronic parts
WO2023238732A1 (en) Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product
JP2024065105A (en) CURABLE RESIN COMPOSITION, METHOD FOR PRODUCING CURED PRODUCT OF THE CURABLE RESIN COMPOSITION, AND METHOD FOR PRODUCING PRINTED WIRING BOARD COMPRISING THE CURED PRODUCT
WO2023190455A1 (en) Photosensitive resin composition, cured product, printed circuit board, and method for producing printed circuit board
JP2024065106A (en) Method for producing cured product of curable resin composition and printed wiring board including said cured product
JP2022155116A (en) Photosensitive resin composition, dry film, hardened material, and electronic component
JP2024054101A (en) CURABLE RESIN COMPOSITION, DRY FILM, CURED PRODUCT, AND PRINTED WIRING
WO2023190393A1 (en) Cured product and printed wiring board
WO2024075714A1 (en) Photosensitive resin composition, dry film, cured product and printed wiring board
WO2023100843A1 (en) Curable resin composition, cured object, printed wiring board, and method for producing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747184

Country of ref document: EP

Kind code of ref document: A1