WO2023100843A1 - Curable resin composition, cured object, printed wiring board, and method for producing printed wiring board - Google Patents

Curable resin composition, cured object, printed wiring board, and method for producing printed wiring board Download PDF

Info

Publication number
WO2023100843A1
WO2023100843A1 PCT/JP2022/043882 JP2022043882W WO2023100843A1 WO 2023100843 A1 WO2023100843 A1 WO 2023100843A1 JP 2022043882 W JP2022043882 W JP 2022043882W WO 2023100843 A1 WO2023100843 A1 WO 2023100843A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
barium sulfate
printed wiring
solder resist
Prior art date
Application number
PCT/JP2022/043882
Other languages
French (fr)
Japanese (ja)
Inventor
義和 大胡
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Publication of WO2023100843A1 publication Critical patent/WO2023100843A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition, and more particularly to a curable resin composition that is suitable for forming solder resists. Furthermore, the present invention also relates to a printed wiring board using the curable resin composition and a method for producing the same.
  • solder bridging solder shorts
  • Patent Literature 1 proposes forming a solder resist having a matte surface by using a resin composition containing fine particles of aluminum silicate having a matting effect as a filler.
  • ultrafine anhydrous silica, talc, fused silica having a large particle size, clay, aluminum hydroxide, and the like as matting agents.
  • solder resists forming wiring boards are required to meet such needs.
  • Patent Document 2 a solder resist that has excellent heat resistance and moisture resistance, has a higher withstand voltage (insulation breakdown voltage) than conventional, and can be used stably for a long time even in a harsh environment is formed.
  • An electrically insulating resin composition has been proposed.
  • solder resists it has been difficult to achieve both the maintenance of low glossiness over time and the resulting solder adhesion resistance over time and the voltage resistance (dielectric breakdown voltage) at a high level. . Therefore, a solder resist that achieves both low glossiness over time and resistance to solder adhesion over time and voltage resistance at a high level, and a resin composition for forming such a solder resist. Providing it exists as a technical problem.
  • the present invention provides a solder resist that maintains low glossiness over time, which has been difficult to achieve in the past, and the resulting solder adhesion resistance over time, and voltage resistance at a high level.
  • An object of the present invention is to provide a curable resin composition that can be formed, a cured product thereof, and a printed wiring board comprising the cured product.
  • Another object of the present invention is to use the curable resin composition to provide a solder resist that achieves both low glossiness over time and solder adhesion resistance brought about by it and voltage resistance at a high level. It is an object of the present invention to provide a method for manufacturing a printed wiring board provided with.
  • the present inventors found that by adjusting the oil absorption of barium sulfate to 40 to 70 mL / 100 g in a curable resin composition containing a curable resin, barium sulfate, and a thermosetting catalyst, the above-mentioned I got the knowledge that the problem can be solved.
  • the present invention is based on such findings. That is, the gist of the present invention is as follows.
  • the curable resin according to [1] or [2], wherein the curable resin contains one or more thermosetting resins selected from the group consisting of epoxy compounds, polyfunctional oxetane compounds and oxazoline compounds. Composition.
  • a curable resin composition capable of forming a solder resist that maintains low glossiness over time and the resulting solder adhesion resistance over time and voltage resistance at a high level. product, a cured product thereof, and a printed wiring board comprising the cured product. Furthermore, using the curable resin composition, it is possible to provide a method for producing a printed wiring board having a solder resist that achieves both low gloss over time, solder adhesion resistance, and voltage resistance at a high level. can.
  • the curable resin composition of the present invention contains a curable resin, barium sulfate and a thermosetting catalyst as essential components.
  • the curable resin composition of the present invention is suitable for forming a solder resist in the manufacture of a printed wiring board, particularly a solder resist in a printed wiring board requiring high voltage and large current, especially a matte solder resist.
  • the curable resin composition of the present invention contains barium sulfate having an oil absorption of 40 to 70 mL / 100 g, so that the solder resist, which is a cured product of the curable resin composition, maintains low glossiness over time and it It is possible to provide the resistance to solder adhesion over time and the voltage resistance at a high level.
  • solder resists it has been difficult to maintain low glossiness over time, resulting in resistance to solder adhesion over time, and voltage resistance at a high level.
  • a component called a delustering agent as a filler into the resin composition for forming the solder resist.
  • silica or the like which is commonly used as a matting agent, is used, air bubbles adhere to those particles, air bubbles are present in the resin composition, and as a result in the solder resist formed by curing the resin composition. Air bubbles remain. Air bubbles adhering to silica or the like are difficult to separate and remove.
  • the curable resin composition of the present invention by using barium sulfate having a specific oil absorption as the matting agent, adhesion of air bubbles to the barium sulfate as the matting agent is suppressed, and the curable resin composition is improved. Residual air bubbles in the solder resist formed by curing are suppressed. As a result, it is believed that the solder resist can maintain low glossiness over time, resulting in resistance to solder adhesion over time, and withstand voltage at a high level.
  • the curable resin composition of the present invention has a 60° glossiness of a cured product (cured coating film) having a thickness of 25 ⁇ m, which is formed immediately after preparation, is preferably 20 or less, more preferably 15 or less, It is more preferably 10 or less.
  • the curable resin composition of the present invention even after being stored at 30 ° C. for 6 months after preparation, a cured product that maintains a low glossiness comparable to that of the curable resin composition immediately after preparation. can be formed. That is, the curable resin composition of the present invention is stored at 30 ° C. for 6 months after preparation. Below, more preferably 15 or less, still more preferably 10 or less.
  • the glossiness of the cured product of the curable resin composition was obtained by screen-printing the curable resin composition onto a copper plated FR-4 substrate with a thickness of 1.6 mm so that the film thickness after curing was 25 ⁇ m. and the cured product (cured coating film) of the curable resin composition formed by heating at 150 ° C for 30 minutes using a hot air circulation drying oven, BYK-Chemie gloss meter Micro Trigloss can be measured as the 60° specular reflectance measured using
  • a cured product (cured coating film) having a thickness of 50 ⁇ m has a withstand voltage value of preferably 5 kV (5 kV / 0.05 mm) or more, more preferably 5.5 kV (5.5 kV). /0.05 mm) or more, more preferably 6 kV (6 kV/0.05 mm) or more.
  • the withstand voltage value of the curable resin composition was measured using a withstand voltage tester TOS5101 manufactured by Kikusui Electronics Co., Ltd. for a substrate having a cured product (cured coating film) with a thickness of 50 ⁇ m. can be measured as the voltage value when the dielectric breakdown of the cured product occurs when the voltage is increased at 0.5 kV/sec in AC mode.
  • the curable resin composition of the present invention contains a curable resin.
  • the curable resin is not particularly limited as long as it is cured by the action of heat, light, or the like.
  • a thermosetting resin, a photocurable resin, or the like can be used as the curable resin.
  • the curable resin may be used singly or in combination of two or more.
  • a thermosetting resin or a photocurable resin may be used alone, or they may be used in combination.
  • thermosetting resin can be blended into the curable resin composition of the present invention as a curable resin. By adding a thermosetting resin, it is expected that the heat resistance of the curable resin composition is improved.
  • Thermosetting resins may be used singly or in combination of two or more. Any known thermosetting resin can be used.
  • known resins such as melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, oxazoline compounds, episulfide resins, bismaleimide, carbodiimide resins, etc.
  • a thermosetting resin can be used.
  • thermosetting resins may be monofunctional or polyfunctional.
  • thermosetting resins having a cyclic ether group or a cyclic thioether group in the molecule are preferably used.
  • examples of such thermosetting resins include epoxy compounds having an epoxy group in the molecule, oxetane compounds having an oxetanyl group in the molecule, oxazoline compounds having an oxazoline group in the molecule, and episulfide compounds having a thioether group in the molecule. Resin etc. are mentioned.
  • the thermosetting resin preferably contains one or more selected from the group consisting of epoxy compounds, polyfunctional oxetane compounds and oxazoline compounds, particularly preferably epoxy compounds.
  • Epoxidized vegetable oil bisphenol A type epoxy resin; hydroquinone type epoxy resin; bisphenol type epoxy resin; thioether type epoxy resin; brominated epoxy resin; Resin; bisphenol F type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydantoin type epoxy resin; alicyclic epoxy resin; bisphenol A novolak epoxy resin; tetraphenylolethane epoxy resin; heterocyclic epoxy resin; diglycidyl phthalate resin; tetraglycidyl xylenoyl ethane resin; epoxy resin having a dicyclopentadiene skeleton; glycidyl methacrylate copolymer epoxy resin; copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacrylate; epoxy-modified polybutadiene rubber derivative; It is not something that can be done.
  • These epoxy resins may be used individually by 1 type, and may be used in combination of 2 or
  • oxetane compound a polyfunctional oxetane compound having two or more oxetanyl groups in one molecule is preferably used.
  • polyfunctional oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3- methyl-3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3- Oxetanyl)methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate, and polyfunctional oxetanes such as their oligomers or
  • oxazoline compounds include possible compounds having two or more oxazoline groups in one molecule.
  • examples of such oxazoline compounds include oxazoline group-containing polymers such as polymers of oxazoline group-containing monomers and copolymers of oxazoline group-containing monomers and other monomers.
  • oxazoline group-containing monomers examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4,4-dimethyl-2-oxazoline, etc. is mentioned.
  • Examples of episulfide resins include compounds in which an oxygen atom constituting an epoxy group in any epoxy compound is substituted with a sulfur atom.
  • Epoxy compounds include those mentioned above.
  • a method for substituting an oxygen atom constituting an epoxy group in an epoxy compound with a sulfur atom a conventionally known method can be used.
  • Amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds and methylol urea compounds.
  • a polyisocyanate compound can be blended as the isocyanate compound.
  • Polyisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolylene dimer; Aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis(cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo alicyclic polyisocyanates such as heptane triisocyanate; and adducts, biurets and isocyanurates
  • an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used.
  • the isocyanate compound that can react with the isocyanate blocking agent include the aforementioned polyisocyanate compounds.
  • isocyanate blocking agents include phenolic blocking agents; lactam blocking agents; active methylene blocking agents; alcohol blocking agents; oxime blocking agents; mercaptan blocking agents; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents, and the like.
  • the amount of the thermosetting resin compounded in the curable resin composition is not particularly limited as long as the effect of the present invention is exhibited, for example, 3 to 50 in terms of solid content with respect to the total mass of the curable resin composition. % by mass or the like.
  • the curable resin composition of the present invention can contain a photocurable resin as a curable resin.
  • a photocurable resin a known and commonly used photocurable resin can be used. Among them, from the viewpoint of photocurability and development resistance, preferably a photocurable resin that can be cured by a radical addition polymerization reaction with an active energy ray, more preferably a photocurable resin having an ethylenically unsaturated group in the molecule.
  • a flexible resin is used.
  • the ethylenically unsaturated groups are preferably derived from acrylic acid, methacrylic acid, or derivatives thereof.
  • the photocurable resin may be used singly or in combination of two or more.
  • a carboxyl group-containing photosensitive resin which will be described later, is preferably used.
  • photocurable resin having an ethylenically unsaturated group in the molecule commonly known photopolymerizable oligomers, photopolymerizable monomers, and the like are used.
  • photopolymerizable oligomers include unsaturated polyester-based oligomers and (meth)acrylate-based oligomers.
  • (Meth)acrylate oligomers include epoxy (meth)acrylates such as phenol novolac epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, epoxyurethane (meth)acrylate, ) acrylates, polyester (meth)acrylates, polyether (meth)acrylates, polybutadiene-modified (meth)acrylates, and the like.
  • epoxy (meth)acrylates such as phenol novolac epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, epoxyurethane (meth)acrylate, ) acrylates, polyester (meth)acrylates, polyether (meth)acrylates, polybutadiene-modified (meth)acrylates, and the like.
  • the photopolymerizable monomer a monomer having an ethylenically unsaturated group is preferably used.
  • photopolymerizable monomers include commonly known polyester (meth)acrylates, polyether (meth)acrylates, urethane (meth)acrylates, carbonate (meth)acrylates, epoxy (meth)acrylates, and the like.
  • alkyl acrylates such as 2-ethylhexyl acrylate and cyclohexyl acrylate
  • hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate
  • alkylene glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol.
  • acrylamides such as N,N-dimethylacrylamide, N-methylolacrylamide, N,N-dimethylaminopropylacrylamide; N,N-dimethylaminoethyl acrylate, N,N-dimethylaminopropyl Aminoalkyl acrylates such as acrylates; Polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol and trishydroxyethyl isocyanurate, or their alkylene oxide adducts or ⁇ -caprolactone adducts, etc.
  • polyvalent acrylates phenols such as phenoxy acrylate and bisphenol A diacrylate or polyvalent acrylates such as alkylene oxide adducts thereof; glycidyls such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate Ether acrylates; not limited to the above, acrylates and melamine acrylates obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl-terminated polybutadiene, and polyester polyols, or urethane acrylated via diisocyanate, and the above acrylates can be appropriately selected from at least one of the methacrylates corresponding to and used.
  • photopolymerizable monomer One type of the photopolymerizable monomer may be used alone, or two or more types may be used in combination. Photopolymerizable monomers can also be used as reactive diluents.
  • photopolymerizable monomer refers to a compound that is a monomer among photocurable resins.
  • the amount of the photocurable resin in the curable resin composition is not particularly limited as long as the effect of the present invention is exhibited, for example, 10 to 50 in terms of solid content with respect to the total mass of the curable resin composition % by mass or the like.
  • the curable resin may preferably contain a carboxyl group-containing resin in order to impart alkaline developability to the curable resin composition.
  • a carboxyl group-containing resin conventionally known various resins having a carboxyl group in the molecule can be used. Specific examples of carboxyl group-containing resins include the following compounds (both oligomers and polymers).
  • Carboxyl group-containing resins obtained by copolymerizing unsaturated carboxylic acids such as (meth)acrylic acid and unsaturated group-containing compounds such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylates, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • a diisocyanate such as a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a bixylenol type epoxy resin, or a biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin produced by a polyaddition reaction of a partial acid anhydride-modified reaction product with a monocarboxylic acid compound having an ethylenically unsaturated group such as meth)acrylic acid, a carboxyl group-containing dialcohol compound, and a diol compound.
  • a bifunctional epoxy resin such as a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a bixylenol type epoxy resin, or a biphenol type epoxy resin
  • a carboxyl group-containing photosensitive urethane resin produced by a polyaddition reaction of
  • one isocyanate group and one or more (meth)acryloyl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • a carboxyl group-containing photosensitive resin obtained by reacting (meth)acrylic acid with a polyfunctional (solid) epoxy resin having two or more functionalities and adding a dibasic acid anhydride to the hydroxyl groups present in the side chains.
  • Group-containing photosensitive resin A carboxyl obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl group.
  • a bifunctional oxetane resin is reacted with a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid, and the resulting primary hydroxyl group is treated with a dibasic such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
  • a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid
  • a dibasic such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
  • Carboxyl group-containing polyester resin to which acid anhydride is added.
  • an epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol;
  • Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipine are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and the alcoholic hydroxyl group of the resulting reaction product is treated with A carboxyl group-containing photosensitive resin obtained by reacting a polybasic acid anhydride such as an acid.
  • (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group.
  • a carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth)acryloyl groups in one molecule to the resins (1) to (11).
  • (meth)acrylate is a generic term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
  • photosensitive resin a resin synthesized according to the procedure described in Examples described later can also be used.
  • the acid value of the carboxyl group-containing resin is suitably in the range of 30-150 mgKOH/g, more preferably in the range of 50-120 mgKOH/g.
  • the acid value of the carboxyl group-containing resin is 30 mgKOH/g or more, alkaline development can be performed appropriately. It is preferable because the exposed area and the unexposed area can be separated by dissolution and separation, and normal resist pattern drawing is facilitated.
  • the weight-average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, it is generally preferably in the range of 2,000 to 150,000, more preferably in the range of 5,000 to 100,000.
  • the weight-average molecular weight is 2,000 or more, the moisture resistance of the coating film after exposure is good, film reduction does not occur during development, and excellent resolution can be easily obtained.
  • the weight average molecular weight is 150,000 or less, good developability is likely to be obtained, and good storage stability is likely to be obtained.
  • Weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the curable resin composition of the present invention contains barium sulfate with an oil absorption of 40 to 70 mL/100 g.
  • the solder resist which is a cured product of the curable resin composition, maintains low glossiness over time and is thereby brought about. It is possible to provide a high level of resistance to solder adhesion over time and withstand voltage.
  • the oil absorption of barium sulfate is preferably 45-70 mL/100 g, more preferably 45-65 mL/100 g, and even more preferably 50-60 mL/100 g.
  • the oil absorption of barium sulfate can be measured according to the method defined by Japanese Industrial Standards (JIS K5101-13-1).
  • untreated barium sulfate may be used, or chemically and/or physically treated barium sulfate may be used.
  • treated barium sulfate for example, surface-treated barium sulfate can be used.
  • substances for surface-treating barium sulfate include inorganic substances such as silica and alumina. Among them, it is particularly preferable to use barium sulfate surface-treated with silica by multiple treatments (also referred to as “multi-treatment processing”).
  • the multi-treatment is a treatment in which a substance to be surface-treated (for example, silica, alumina, etc.) adheres to the surface of the barium sulfate to be surface-treated so that it exists very thickly.
  • a substance to be surface-treated for example, silica, alumina, etc.
  • Examples of commercial products of barium sulfate surface-treated with silica include PFS-701 manufactured by Ishihara Sangyo Co., Ltd., and the like.
  • Barium sulfate especially barium sulfate surface-treated with silica, has high matting performance compared to conventional matting agents, and by adding a small amount of barium sulfate surface-treated with silica to the curable resin composition, it is high. A matte effect can be obtained. Therefore, the inclusion of air bubbles in the curable resin composition, which is a problem when blending the matting agent, and the remaining air bubbles in the solder resist formed by curing the curable resin composition are suppressed, and as a result, , the decrease in voltage resistance of the solder resist can be suppressed. Furthermore, in general, when a matting agent is added to a resin composition, the viscosity of the resin composition increases.
  • barium sulfate By using the treated barium sulfate, an increase in the viscosity of the curable resin composition can be suppressed, and as a result, deterioration in printability of the curable resin composition onto the substrate can be suppressed. Furthermore, barium sulfate, especially barium sulfate surface-treated with silica, has high acid resistance (acid resistance). Therefore, by blending barium sulfate as a matting agent in the curable resin composition, the curable resin composition has high acid resistance, and as a result, it is highly resistant to tin plating etc. performed under strong acidity. (Tin plating resistance).
  • the amount of barium sulfate with an oil absorption of 40 to 70 mL/100 g is not particularly limited as long as the effect of the present invention is exhibited. , preferably 30 to 74% by mass, more preferably 40 to 70% by mass, and still more preferably 45 to 67% by mass in terms of solid content.
  • thermosetting catalyst The curable resin composition of the present invention contains a thermosetting catalyst.
  • thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Imidazole derivatives such as (2-cyanoethyl)-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole; dicyandiamide, benzyldimethylamine, 4-(dimethylamino)-N,N-dimethylbenzyl Amine compounds such as amines, 4-methoxy-N,N-dimethylbenzylamine and 4-methyl-N,N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide;
  • commercially available products include, for example, 2MZ-A, 2MZ-OK, 2PHZ, 2PHZ-PW, 2P4BHZ, and 2P4MHZ manufactured by Shikoku Kasei Co., Ltd. (all are trade names of imidazole compounds), manufactured by San-Apro Co., Ltd. U-CAT 3513N (trade name of dimethylamine compounds), DBU, DBN, U-CAT SA 102 (both of which are bicyclic amidine compounds and salts thereof).
  • thermosetting catalyst for an epoxy resin or an oxetane compound or any one that promotes the reaction between at least one of an epoxy group and an oxetanyl group and a carboxyl group.
  • a mixture of seeds or more may be used.
  • thermosetting catalyst 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as S-triazine/isocyanuric acid adducts and 2,4-diamino-6-methacryloyloxyethyl-S-triazine/isocyanuric acid adducts can also be used, and these adhesion-imparting agents are preferred.
  • a compound that also functions is used in conjunction with a thermosetting catalyst.
  • One of the thermosetting catalysts may be used alone, or two or more thereof may be used in combination.
  • the content of the thermosetting catalyst is preferably 2 to 30 parts by mass, more preferably 5 to 25 parts by mass, based on 100 parts by mass of the thermosetting resin.
  • the curable resin composition of the present invention contains a photosensitive resin
  • the curable resin composition preferably contains a photopolymerization initiator. Any known photopolymerization initiator can be used.
  • a photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more type.
  • photopolymerization initiators include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis -(2,6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide , bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2, bisacylphosphine oxides such as 4,6-trimethylbenzoyl)-phenylphosphine oxide; 2,6-dimeth
  • a photoinitiation aid or a sensitizer may be used in combination with the photopolymerization initiator described above.
  • photoinitiation aids or sensitizers include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
  • Thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone are particularly preferred.
  • Inclusion of a thioxanthone compound can improve deep-part curability.
  • These compounds can be used as a photopolymerization initiator in some cases, but are preferably used in combination with the photopolymerization initiator.
  • the photoinitiation aids or sensitizers may be used singly or in combination of two or more
  • photopolymerization initiators since these photopolymerization initiators, photoinitiator aids, and sensitizers absorb specific wavelengths, the sensitivity may be lowered in some cases, and they may function as ultraviolet absorbers. However, these are not used only for the purpose of improving the sensitivity of the curable resin composition. It absorbs light of a specific wavelength as needed to increase the photoreactivity of the surface, change the line shape and opening of the resist to vertical, tapered, and reverse tapered shapes, and improve the accuracy of the line width and opening diameter. can be improved.
  • the curable resin composition of the present invention may contain a filler other than barium sulfate as described above, if necessary, in order to increase the physical strength of the coating film, etc., as long as the effects of the present invention are not impaired. good.
  • fillers known inorganic or organic fillers can be used, and various types of silica (for example, finely divided silica, spherical silica, etc.), hydrotalcite and talc are particularly preferably used.
  • metal oxides and metal hydroxides such as aluminum hydroxide can be used as extender fillers in order to obtain a white appearance and flame retardancy.
  • the curable resin composition of the present invention can be blended with an organic solvent for the purpose of preparing the curable resin composition and adjusting the viscosity when applied to a substrate or film.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether; , dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, buty
  • Volatilization drying of organic solvents is carried out by using a hot air circulating drying furnace, IR furnace, hot plate, convection oven, etc. (equipped with a heat source that heats the air using steam), and a method in which the hot air in the dryer is brought into contact with the counter current and supported by a nozzle. method of spraying on the body) can be used.
  • the curable resin composition of the present invention may optionally further contain a coloring agent, an elastomer, a mercapto compound, a urethanization catalyst, a thixotropic agent, an adhesion promoter, a block copolymer, a chain transfer agent, a polymerization inhibitor, copper damage inhibitor, antioxidant, rust inhibitor, organic bentonite, thickener such as montmorillonite, at least one of silicone-based, fluorine-based, polymer-based defoaming agent and leveling agent, imidazole-based, Components such as a thiazole-based or triazole-based silane coupling agent, a phosphinate, a phosphoric acid ester derivative, a phosphorus compound such as a phosphazene compound, and other flame retardants can be blended.
  • a coloring agent an elastomer, a mercapto compound, a urethanization catalyst, a thixotropic agent, an adhesion
  • the curable resin composition of the present invention may be used as a dry film or as a liquid. Moreover, when it is used as a liquid, it may be one-liquid or two-liquid or more.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention described above, and maintains low glossiness over time and the resulting solder adhesion resistance over time and resistance to It is compatible with voltage characteristics at a high level.
  • the cured product of the present invention is, for example, a solder resist having a thickness of 1 to 150 ⁇ m, especially a matte solder resist.
  • the printed wiring board of the present invention has a cured product obtained from the curable resin composition of the present invention described above.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using an organic solvent, and is coated on the substrate by a dip coating method, a flow After applying by a method such as coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. to form a tack-free resin layer.
  • the substrate examples include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, all grades (FR-4, etc.) of copper-clad laminates. Plates, metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
  • PEN polyethylene naphthalate
  • Volatilization drying performed after applying the curable resin composition of the present invention can be performed using a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc.
  • a method of bringing hot air into countercurrent contact and a method of blowing hot air onto the support from a nozzle) can be used.
  • a resin layer on the substrate After forming a resin layer on the substrate, it is selectively exposed to active energy rays through a photomask having a predetermined pattern, and the unexposed area is treated with a dilute alkaline aqueous solution (eg, 0.3 to 3% by mass aqueous solution of sodium carbonate). to form a pattern of the cured product. Furthermore, after irradiating the cured product with active energy rays, heat curing (e.g., 100 to 220 ° C), or after heat curing, irradiating the active energy rays, or final final curing (main curing) only by heat curing. Forms a cured coating film with excellent properties such as toughness and hardness.
  • a dilute alkaline aqueous solution eg, 0.3 to 3% by mass aqueous solution of sodium carbonate
  • the exposure machine used for the active energy ray irradiation may be any device equipped with a high-pressure mercury lamp, ultra-high pressure mercury lamp, metal halide lamp, mercury short arc lamp, etc., and irradiating ultraviolet rays in the range of 350 to 450 nm.
  • a direct writing device eg, a laser direct imaging device that draws an image with a laser directly from CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the amount of exposure for image formation varies depending on the film thickness and the like, but can generally be in the range of 10-1000 mJ/cm 2 , preferably in the range of 20-800 mJ/cm 2 .
  • a developing method As a developing method, a dipping method, a shower method, a spray method, a brush method, or the like can be used. , amines, etc. can be used.
  • a solution of a photocurable resin (an aromatic ring-containing carboxyl group-containing resin) used in this example was prepared according to the following procedure. 1070 g of ortho-cresol novolac type epoxy resin (EPICLON N-695, manufactured by DIC Corporation), 360 g (5.0 mol) of acrylic acid, and 1.5 g of hydroquinone were added to 600 g of diethylene glycol monoethyl ether acetate and heated at 100°C. A solution was obtained by stirring until the mixture became uniform.
  • ortho-cresol novolac type epoxy resin EPICLON N-695, manufactured by DIC Corporation
  • Thermosetting resin phenol novolac epoxy resin (N-770, manufactured by DIC Corporation)
  • Photocurable resin (photosensitive resin) carboxyl group-containing resin solution having an aromatic ring prepared by the method described above, compounding amount is the value in terms of solid content
  • Photocurable resin (photopolymerizable monomer) dipentaerythritol hexa Acrylate (manufactured by Nippon Kayaku Co., Ltd.) Blue colorant: organic colorant phthalocyanine blue Yellow coloring agent: Organic coloring agent Chromophthalo Yellow Antifoaming agent: Polydimethylsiloxane (KS-66, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Photoinitiator 1 Bis ( ⁇ 5-2,4-cyclopentadien-1-yl) - bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium (Irgacure 784, BASF Japan Co., Ltd.) Photo
  • glossiness evaluation The glossiness of the cured product of each curable resin composition of Examples and Comparative Examples formed on each evaluation substrate was measured using a gloss meter Micro Trigloss manufactured by BYK-Chemie 60 ° specular reflection measured as a percentage. In addition, the evaluation of the glossiness is performed for each of the five evaluation substrates, and the second decimal place of the average value of the glossiness of the five evaluation substrates is rounded off to the first decimal place. expressed. Based on the numerical values obtained, glossiness was evaluated according to the following criteria. Table 1 shows the glossiness values and evaluation results. A: The glossiness is less than 10 and has an extremely low glossiness. ⁇ : The glossiness is 10 or more and less than 20, and has a sufficiently low glossiness. x: Glossiness is 20 or more and does not have low glossiness.
  • each curable resin composition of Examples and Comparative Examples was stored at 30 ° C. for 6 months after preparation, and then subjected to the same test for each evaluation substrate prepared, and the glossiness over time was measured according to the same criteria. evaluated.
  • Table 1 shows the values of the glossiness over time and the evaluation results.
  • solder adhesion resistance Using a flow soldering device on each evaluation board, without applying flux, in the atmosphere, the solder is flowed at a solder temperature of 260 ° C., a double wave, and a conveyor speed of 1.4 m / min, and then on each evaluation board. The adhesion state of solder on the surface of the cured product of the curable resin composition was visually observed, and solder adhesion resistance was evaluated according to the following criteria. Table 1 shows the evaluation results. In this evaluation, a copper circuit pattern board was used instead of the copper solid board in the production of the evaluation board, and the entire surface coating by screen printing in Examples 1 and 2 and Comparative Examples 1 and 2 was pattern printed.
  • evaluation substrates prepared in the same manner as in Examples 3 to 6 and Comparative Examples 3 to 6 were used, except that pattern exposure was used.
  • No adhesion of solder was observed on the surface of the cured product, and the resistance to solder adhesion was good.
  • x Spike-like and web-like solder adhesion was observed, and the solder adhesion resistance was poor.
  • each curable resin composition of Examples and Comparative Examples was stored at 30 ° C. for 6 months after preparation, and then subjected to the same test for each evaluation board prepared. Evaluated according to criteria. Table 1 shows the evaluation results.
  • Each value of the dielectric breakdown voltage (kV / 0.05 mm) in Table 1 is the value of the dielectric breakdown voltage of each evaluation substrate having a cured coating film with a thickness of 25 ⁇ m (0.025 mm) to 0.05 mm. It is converted.
  • Dielectric breakdown voltage is 5 kV/0.05 mm or more, and extremely high voltage resistance.
  • x The dielectric breakdown voltage is less than 5 kV/0.05 mm, and the withstand voltage is insufficient.
  • Each substrate for evaluation was tin-plated using a commercially available electroless tin-plating bath under conditions of 1 ⁇ 0.2 ⁇ m of tin. After visually observing the cured product of the curable resin composition on each substrate for evaluation after plating, the presence or absence of peeling of the cured product was confirmed by tape peeling, and the acid resistance was evaluated according to the following criteria. Table 1 shows the evaluation results. In this evaluation, a copper circuit pattern board was used instead of the copper solid board in the production of the evaluation board, and the entire surface coating by screen printing in Examples 1 and 2 and Comparative Examples 1 and 2 was pattern printed. Instead, evaluation substrates prepared in the same manner as in Examples 3 to 6 and Comparative Examples 3 to 6 were used, except that pattern exposure was used. ⁇ : Neither peeling nor whitening of the cured product was observed, and the acid resistance was sufficiently high. x: Peeling and whitening of the cured product are observed, and the acid resistance is insufficient.

Abstract

[Problem] To provide a curable resin composition capable of forming solder resists which combine long-lasting low glossiness and resultant long-term freedom from solder adhesion with withstand voltage on a high level. [Solution] A curable resin composition comprising a curable resin, barium sulfate, and a heat-curing catalyst, the barium sulfate having an oil absorption of 40-70 mL/100 g.

Description

硬化性樹脂組成物、硬化物、プリント配線板、およびプリント配線板の製造方法Curable resin composition, cured product, printed wiring board, and method for producing printed wiring board
 本発明は、硬化性樹脂組成物に関し、特にソルダーレジストの形成に好適に用いられる硬化性樹脂組成物に関する。さらに、本発明は、該硬化性樹脂組成物を用いたプリント配線板およびその製造方法にも関する。 The present invention relates to a curable resin composition, and more particularly to a curable resin composition that is suitable for forming solder resists. Furthermore, the present invention also relates to a printed wiring board using the curable resin composition and a method for producing the same.
 プリント配線板を製造する際のフローはんだ工程時に発生するはんだのソルダーレジストへの付着は、はんだブリッジ(はんだショート)等の不良を引き起こす原因となり、結果としてプリント配線板の不良の原因となり得る。近年、プリント配線板における配線パターンの高精細化が進行したことに伴い、このようなはんだブリッジが特に発生しやすくなり、プリント配線板の効率的な製造を妨げる要因の一つとして考えられている。 The adhesion of solder to the solder resist, which occurs during the flow soldering process when manufacturing printed wiring boards, can cause defects such as solder bridging (solder shorts), resulting in printed wiring board defects. In recent years, as wiring patterns on printed wiring boards have become more and more precise, such solder bridges are particularly likely to occur, and are considered to be one of the factors that hinder the efficient manufacture of printed wiring boards. .
 従来、ソルダーレジストの表面を艶消し(低光沢度)にすることにより、ソルダーレジストへのはんだの付着を防止できることが知られており、ソルダーレジストの表面を艶消しにする方法として、ソルダーレジストを形成するための樹脂組成物中に艶消し剤と呼ばれる成分をフィラーとして配合する方法が試みられている。例えば、特許文献1では、艶消し効果を有する微粒状のケイ酸アルミニウムをフィラーとして含む樹脂組成物を用いて、艶消しの表面を有するソルダーレジストを形成することが提案されている。その他にも、超微粒子無水シリカ、タルク、粒径の大きい溶融シリカ、クレー、水酸化アルミニウム等を艶消し剤として用いることが知られている。 Conventionally, it is known that the adhesion of solder to the solder resist can be prevented by making the surface of the solder resist matte (low glossiness). Attempts have been made to incorporate a component called a delustering agent as a filler into the resin composition for forming. For example, Patent Literature 1 proposes forming a solder resist having a matte surface by using a resin composition containing fine particles of aluminum silicate having a matting effect as a filler. In addition, it is known to use ultrafine anhydrous silica, talc, fused silica having a large particle size, clay, aluminum hydroxide, and the like as matting agents.
 ところで、近年のカーボンニュートラル志向の高まりに伴って、社会的インフラや生活必需品における電気化が進み、例えば、自動車のような大型の機械を電気的に駆動させるニーズが高まっている。このような社会的インフラや生活必需品としては過酷な環境下での稼働、および高電圧、大電流での通電を求められるものも多く、それらを稼動させるための部品、例えばプリント配線板、ひいてはプリント配線板を構成するソルダーレジストにはそのようなニーズに対応することが求められている。例えば、特許文献2では、耐熱性および耐湿性に優れ、従来よりも高い耐電圧性(絶縁破壊電圧)を有し、過酷な環境下においても長期間にわたり安定的に使用可能なソルダーレジストを形成できる電気絶縁性樹脂組成物が提案されている。 By the way, with the recent increase in carbon neutral orientation, the electrification of social infrastructure and daily necessities has progressed, and the need for electrically driving large machines such as automobiles, for example, is increasing. Many of these social infrastructures and daily necessities are required to operate in harsh environments and to be energized with high voltage and large current. Solder resists forming wiring boards are required to meet such needs. For example, in Patent Document 2, a solder resist that has excellent heat resistance and moisture resistance, has a higher withstand voltage (insulation breakdown voltage) than conventional, and can be used stably for a long time even in a harsh environment is formed. An electrically insulating resin composition has been proposed.
特開平9-157574号公報JP-A-9-157574 特開2005-314554号公報JP 2005-314554 A
 しかしながら、ソルダーレジストにおいて、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性(絶縁破壊電圧)とを高い次元で両立させることは従来困難であった。したがって、経時的な低光沢度およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立したソルダーレジスト、およびそのようなソルダーレジストを形成するための樹脂組成物を提供することが、技術的課題として存在する。 However, in solder resists, it has been difficult to achieve both the maintenance of low glossiness over time and the resulting solder adhesion resistance over time and the voltage resistance (dielectric breakdown voltage) at a high level. . Therefore, a solder resist that achieves both low glossiness over time and resistance to solder adhesion over time and voltage resistance at a high level, and a resin composition for forming such a solder resist. Providing it exists as a technical problem.
 また、プリント配線板には、将来的に現在以上の高電圧、大電流での通電が求められることが予想されることから、現在のプリント配線板と同程度以上の耐電圧性を有するソルダーレジスト、およびそのようなソルダーレジストを形成するための樹脂組成物を提供することも、技術的課題として存在する。 In addition, it is expected that printed wiring boards will be required to carry current at higher voltages and currents in the future. , and to provide a resin composition for forming such a solder resist also exist as technical problems.
 そこで、本発明は、従来両立させることが困難であった経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立するソルダーレジストを形成することができる硬化性樹脂組成物、その硬化物、および硬化物を備えるプリント配線板を提供することを目的とする。また、本発明の別の目的は、上記硬化性樹脂組成物を用いて、経時的な低光沢度およびそれによりもたらされる耐はんだ付着性と、耐電圧性とを高い次元で両立するソルダーレジストを備えるプリント配線板の製造方法を提供することである。 Therefore, the present invention provides a solder resist that maintains low glossiness over time, which has been difficult to achieve in the past, and the resulting solder adhesion resistance over time, and voltage resistance at a high level. An object of the present invention is to provide a curable resin composition that can be formed, a cured product thereof, and a printed wiring board comprising the cured product. Another object of the present invention is to use the curable resin composition to provide a solder resist that achieves both low glossiness over time and solder adhesion resistance brought about by it and voltage resistance at a high level. It is an object of the present invention to provide a method for manufacturing a printed wiring board provided with.
 本発明者らは、鋭意研究した結果、硬化性樹脂、硫酸バリウム、および熱硬化触媒を含む硬化性樹脂組成物において、硫酸バリウムの吸油量を40~70mL/100gに調整することにより、上記の課題を解決できるとの知見を得た。本発明はかかる知見によるものである。すなわち、本発明の要旨は以下の通りである。 As a result of intensive research, the present inventors found that by adjusting the oil absorption of barium sulfate to 40 to 70 mL / 100 g in a curable resin composition containing a curable resin, barium sulfate, and a thermosetting catalyst, the above-mentioned I got the knowledge that the problem can be solved. The present invention is based on such findings. That is, the gist of the present invention is as follows.
[1]硬化性樹脂、硫酸バリウム、および熱硬化触媒を含む硬化性樹脂組成物であって、
 前記硫酸バリウムの吸油量が40~70mL/100gであることを特徴とする、硬化性樹脂組成物。
[2]前記硫酸バリウムが、シリカで表面処理された硫酸バリウムを含む、[1]に記載の硬化性樹脂組成物。
[3]前記硬化性樹脂が、エポキシ化合物、多官能オキセタン化合物およびオキサゾリン化合物からなる群から選択される1種以上の熱硬化性樹脂を含む、[1]または[2]に記載の硬化性樹脂組成物。
[4]前記硬化性樹脂が、1分子中に1個以上のエチレン性不飽和基を有するカルボキシル基含有感光性樹脂を含む、[1]~[3]のいずれかに記載の硬化性樹脂組成物。
[5]光重合開始剤をさらに含む、[4]に記載の硬化性樹脂組成物。
[6]ソルダーレジストの形成に用いられる、[1]~[5]のいずれかに記載の硬化性樹脂組成物。
[7]前記ソルダーレジストが艶消しソルダーレジストである、[6]に記載の硬化性樹脂組成物。
[8][1]~[7]のいずれかに記載の硬化性樹脂組成物の硬化物。
[9][8]に記載の硬化物を備える、プリント配線板。
[10]ソルダーレジストを備えるプリント配線板の製造方法であって、[1]~[7]のいずれかに記載の硬化性樹脂組成物を硬化させることによりソルダーレジストを形成する工程を含む、方法。
[1] A curable resin composition containing a curable resin, barium sulfate, and a thermosetting catalyst,
A curable resin composition, wherein the barium sulfate has an oil absorption of 40 to 70 mL/100 g.
[2] The curable resin composition according to [1], wherein the barium sulfate contains barium sulfate surface-treated with silica.
[3] The curable resin according to [1] or [2], wherein the curable resin contains one or more thermosetting resins selected from the group consisting of epoxy compounds, polyfunctional oxetane compounds and oxazoline compounds. Composition.
[4] The curable resin composition according to any one of [1] to [3], wherein the curable resin contains a carboxyl group-containing photosensitive resin having one or more ethylenically unsaturated groups in one molecule. thing.
[5] The curable resin composition according to [4], further comprising a photopolymerization initiator.
[6] The curable resin composition according to any one of [1] to [5], which is used for forming a solder resist.
[7] The curable resin composition according to [6], wherein the solder resist is a matte solder resist.
[8] A cured product of the curable resin composition according to any one of [1] to [7].
[9] A printed wiring board comprising the cured product of [8].
[10] A method for producing a printed wiring board comprising a solder resist, comprising the step of forming a solder resist by curing the curable resin composition according to any one of [1] to [7]. .
 本発明によれば、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立するソルダーレジストを形成することができる硬化性樹脂組成物、その硬化物、および硬化物を備えるプリント配線板を提供することができる。さらに、上記硬化性樹脂組成物を用いて、経時的な低光沢度および耐はんだ付着性と、耐電圧性とを高い次元で両立するソルダーレジストを備えるプリント配線板の製造方法を提供することができる。 According to the present invention, a curable resin composition capable of forming a solder resist that maintains low glossiness over time and the resulting solder adhesion resistance over time and voltage resistance at a high level. product, a cured product thereof, and a printed wiring board comprising the cured product. Furthermore, using the curable resin composition, it is possible to provide a method for producing a printed wiring board having a solder resist that achieves both low gloss over time, solder adhesion resistance, and voltage resistance at a high level. can.
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物は、硬化性樹脂、硫酸バリウムおよび熱硬化触媒を必須成分として含む。本発明の硬化性樹脂組成物は、プリント配線板の製造時のソルダーレジスト、特に高電圧、大電流での通電が求められるプリント配線板におけるソルダーレジスト、特に艶消しソルダーレジストを形成するために好適に用いることができる。本発明の硬化性樹脂組成物は、吸油量が40~70mL/100gの硫酸バリウムを含むことにより、硬化性樹脂組成物の硬化物であるソルダーレジストに、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で付与することができる。
[Curable resin composition]
The curable resin composition of the present invention contains a curable resin, barium sulfate and a thermosetting catalyst as essential components. The curable resin composition of the present invention is suitable for forming a solder resist in the manufacture of a printed wiring board, particularly a solder resist in a printed wiring board requiring high voltage and large current, especially a matte solder resist. can be used for The curable resin composition of the present invention contains barium sulfate having an oil absorption of 40 to 70 mL / 100 g, so that the solder resist, which is a cured product of the curable resin composition, maintains low glossiness over time and it It is possible to provide the resistance to solder adhesion over time and the voltage resistance at a high level.
 従来、ソルダーレジストにおいて、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立させることが困難であった理由は、以下のように推測される。すなわち、ソルダーレジストを艶消し(低光沢度)にする場合には、ソルダーレジストを形成するための樹脂組成物中に艶消し剤と呼ばれる成分をフィラーとして配合する方法が一般的である。艶消し剤として慣用されるシリカ等を用いる場合、それらの粒子に気泡が付着して、樹脂組成物中に気泡が存在し、結果的に樹脂組成物を硬化して形成されるソルダーレジスト中に気泡が残存する。シリカ等に付着した気泡は分離して除去することが難しく、例えば、多量の消泡剤を樹脂組成物中に配合しても樹脂組成物中に気泡が多量に残存する。同様に、艶消し剤として慣用される水酸化アルミニウム、ケイ酸アルミニウム等の親水性フィラーを用いる場合にも、それらの粒子に気泡が付着し、結果的にソルダーレジスト中に多量の気泡が残存する。ソルダーレジスト中に気泡が存在するとソルダーレジストの耐電圧性を大きく損なうことから、従来の艶消し剤を用いる場合には、ソルダーレジストにおける艶消し(低光沢度)およびそれによりもたらされる耐はんだ付着性と、耐電圧性とを高い次元で両立させることができなかったと考えられる。 Conventionally, in solder resists, it has been difficult to maintain low glossiness over time, resulting in resistance to solder adhesion over time, and voltage resistance at a high level. The reasons for this are as follows. inferred to. That is, when the solder resist is to be matted (low glossiness), it is common to add a component called a delustering agent as a filler into the resin composition for forming the solder resist. When silica or the like, which is commonly used as a matting agent, is used, air bubbles adhere to those particles, air bubbles are present in the resin composition, and as a result in the solder resist formed by curing the resin composition. Air bubbles remain. Air bubbles adhering to silica or the like are difficult to separate and remove. For example, even if a large amount of antifoaming agent is added to the resin composition, a large amount of air bubbles remain in the resin composition. Similarly, when hydrophilic fillers such as aluminum hydroxide and aluminum silicate, which are commonly used as matting agents, are used, air bubbles adhere to the particles, resulting in a large amount of air bubbles remaining in the solder resist. . Since the presence of air bubbles in the solder resist greatly impairs the voltage resistance of the solder resist, when using conventional matting agents, the matting (low glossiness) in the solder resist and the resulting solder adhesion resistance It is considered that it was not possible to achieve both high-level and high voltage resistance.
 一方、本発明の硬化性樹脂組成物においては、艶消し剤として特定の吸油量の硫酸バリウムを用いることによって、艶消し剤である硫酸バリウムへの気泡の付着が抑制され、硬化性樹脂組成物を硬化して形成されるソルダーレジスト中の気泡の残存が抑制される。その結果、ソルダーレジストに経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で付与し得ると考えられる。 On the other hand, in the curable resin composition of the present invention, by using barium sulfate having a specific oil absorption as the matting agent, adhesion of air bubbles to the barium sulfate as the matting agent is suppressed, and the curable resin composition is improved. Residual air bubbles in the solder resist formed by curing are suppressed. As a result, it is believed that the solder resist can maintain low glossiness over time, resulting in resistance to solder adhesion over time, and withstand voltage at a high level.
 本発明の硬化性樹脂組成物は、調製された直後に形成された、膜厚が25μmの硬化物(硬化塗膜)の60°の光沢度が、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下である。また、本発明の硬化性樹脂組成物は、調製後に30℃で6か月保存した後であっても、調製直後の硬化性樹脂組成物と同程度の低い光沢度が維持された硬化物を形成することができる。すなわち、本発明の硬化性樹脂組成物は、調製後に30℃で6か月保存した後に形成された、膜厚が25μmの硬化物(硬化塗膜)の60°の光沢度が、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下である。なお、硬化性樹脂組成物の硬化物の光沢度は、硬化性樹脂組成物を、厚さ1.6mmの銅べたFR-4基板上に、硬化後の膜厚が25μmとなるようにスクリーン印刷で全面塗布し、熱風循環式乾燥炉を用いて150℃で30分間加熱して形成される硬化性樹脂組成物の硬化物(硬化塗膜)について、BYK-Chemie社製の光沢計 マイクロトリグロスを用いて測定される60°鏡面反射率として測定することができる。 The curable resin composition of the present invention has a 60° glossiness of a cured product (cured coating film) having a thickness of 25 μm, which is formed immediately after preparation, is preferably 20 or less, more preferably 15 or less, It is more preferably 10 or less. In addition, the curable resin composition of the present invention, even after being stored at 30 ° C. for 6 months after preparation, a cured product that maintains a low glossiness comparable to that of the curable resin composition immediately after preparation. can be formed. That is, the curable resin composition of the present invention is stored at 30 ° C. for 6 months after preparation. Below, more preferably 15 or less, still more preferably 10 or less. The glossiness of the cured product of the curable resin composition was obtained by screen-printing the curable resin composition onto a copper plated FR-4 substrate with a thickness of 1.6 mm so that the film thickness after curing was 25 μm. and the cured product (cured coating film) of the curable resin composition formed by heating at 150 ° C for 30 minutes using a hot air circulation drying oven, BYK-Chemie gloss meter Micro Trigloss can be measured as the 60° specular reflectance measured using
 本発明の硬化性樹脂組成物は、膜厚が50μmの硬化物(硬化塗膜)の耐電圧値が、好ましくは5kV(5kV/0.05mm)以上、より好ましくは5.5kV(5.5kV/0.05mm)以上、さらに好ましくは6kV(6kV/0.05mm)以上である。なお、硬化性樹脂組成物の耐電圧値は、膜厚が50μmの硬化物(硬化塗膜)を有する基板について、菊水電子工業株式会社製の耐電圧試験器TOS5101を用いて、直径10mmの電極によりACモードで0.5kV/秒で昇圧して、硬化物が絶縁破壊した時の電圧値として測定することができる。 In the curable resin composition of the present invention, a cured product (cured coating film) having a thickness of 50 μm has a withstand voltage value of preferably 5 kV (5 kV / 0.05 mm) or more, more preferably 5.5 kV (5.5 kV). /0.05 mm) or more, more preferably 6 kV (6 kV/0.05 mm) or more. The withstand voltage value of the curable resin composition was measured using a withstand voltage tester TOS5101 manufactured by Kikusui Electronics Co., Ltd. for a substrate having a cured product (cured coating film) with a thickness of 50 μm. can be measured as the voltage value when the dielectric breakdown of the cured product occurs when the voltage is increased at 0.5 kV/sec in AC mode.
 以下、本発明の硬化性樹脂組成物の各成分について詳細に説明する。
(硬化性樹脂)
 本発明の硬化性樹脂組成物は、硬化性樹脂を含む。硬化性樹脂としては、熱や光等が作用することにより硬化する樹脂であれば特に限定されることなく用いることができる。具体的には、硬化性樹脂としては、熱硬化性樹脂、光硬化性樹脂等を用いることができる。硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、熱硬化性樹脂または光硬化性樹脂をそれぞれ単独で用いてもよく、これらを組み合わせて用いてもよい。
Each component of the curable resin composition of the present invention will be described in detail below.
(Curable resin)
The curable resin composition of the present invention contains a curable resin. The curable resin is not particularly limited as long as it is cured by the action of heat, light, or the like. Specifically, a thermosetting resin, a photocurable resin, or the like can be used as the curable resin. The curable resin may be used singly or in combination of two or more. For example, a thermosetting resin or a photocurable resin may be used alone, or they may be used in combination.
 本発明の硬化性樹脂組成物には、硬化性樹脂として熱硬化性樹脂を配合することができる。熱硬化性樹脂を配合することにより、硬化性樹脂組成物の耐熱性が向上することが期待できる。熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱硬化性樹脂としては、公知のものをいずれも用いることができる。例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、オキサゾリン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等の公知の熱硬化性樹脂を用いることができる。これらの各熱硬化性樹脂は、単官能であってもよく、多官能であってもよい。このような熱硬化性樹脂のうち、好ましくは分子中に環状エーテル基または環状チオエーテル基を有する熱硬化性樹脂が用いられる。そのような熱硬化性樹脂としては、例えば、分子中にエポキシ基を有するエポキシ化合物、分子中にオキセタニル基を有するオキセタン化合物、分子中にオキサゾリン基を有するオキサゾリン化合物、分子中にチオエーテル基を有するエピスルフィド樹脂等が挙げられる。熱硬化性樹脂は、好ましくはエポキシ化合物、多官能オキセタン化合物およびオキサゾリン化合物からなる群から選択される1種以上を含み、特に好ましくはエポキシ化合物を含む。硬化性樹脂組成物に熱硬化性樹脂としてこれらの化合物を配合することにより、硬化性樹脂組成物に特に優れた耐熱性、耐薬品性、密着性を付与することができる。 A thermosetting resin can be blended into the curable resin composition of the present invention as a curable resin. By adding a thermosetting resin, it is expected that the heat resistance of the curable resin composition is improved. Thermosetting resins may be used singly or in combination of two or more. Any known thermosetting resin can be used. For example, known resins such as melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, oxazoline compounds, episulfide resins, bismaleimide, carbodiimide resins, etc. A thermosetting resin can be used. Each of these thermosetting resins may be monofunctional or polyfunctional. Among such thermosetting resins, thermosetting resins having a cyclic ether group or a cyclic thioether group in the molecule are preferably used. Examples of such thermosetting resins include epoxy compounds having an epoxy group in the molecule, oxetane compounds having an oxetanyl group in the molecule, oxazoline compounds having an oxazoline group in the molecule, and episulfide compounds having a thioether group in the molecule. Resin etc. are mentioned. The thermosetting resin preferably contains one or more selected from the group consisting of epoxy compounds, polyfunctional oxetane compounds and oxazoline compounds, particularly preferably epoxy compounds. By blending these compounds as a thermosetting resin in the curable resin composition, particularly excellent heat resistance, chemical resistance and adhesion can be imparted to the curable resin composition.
 エポキシ化合物としては、エポキシ化植物油;ビスフェノールA型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビスフェノール型エポキシ樹脂;チオエーテル型エポキシ樹脂;ブロム化エポキシ樹脂;ノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;ビフェノールノボラック型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;脂環式エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂;ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;ビスフェノールS型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;テトラフェニロールエタン型エポキシ樹脂;複素環式エポキシ樹脂;ジグリシジルフタレート樹脂;テトラグリシジルキシレノイルエタン樹脂;ナフタレン基含有エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ樹脂等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Epoxidized vegetable oil; bisphenol A type epoxy resin; hydroquinone type epoxy resin; bisphenol type epoxy resin; thioether type epoxy resin; brominated epoxy resin; Resin; bisphenol F type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydantoin type epoxy resin; alicyclic epoxy resin; bisphenol A novolak epoxy resin; tetraphenylolethane epoxy resin; heterocyclic epoxy resin; diglycidyl phthalate resin; tetraglycidyl xylenoyl ethane resin; epoxy resin having a dicyclopentadiene skeleton; glycidyl methacrylate copolymer epoxy resin; copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacrylate; epoxy-modified polybutadiene rubber derivative; It is not something that can be done. These epoxy resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 オキセタン化合物としては、1分子中に2個以上のオキセタニル基を有する多官能オキセタン化合物が好ましく用いられる。多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 As the oxetane compound, a polyfunctional oxetane compound having two or more oxetanyl groups in one molecule is preferably used. Examples of polyfunctional oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3- methyl-3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3- Oxetanyl)methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate, and polyfunctional oxetanes such as their oligomers or copolymers, as well as oxetane alcohols and novolak resins , poly(p-hydroxystyrene), cardo-type bisphenols, calixarenes, calixresorcinarenes, and etherified products with resins having a hydroxyl group such as silsesquioxane. Other examples include copolymers of unsaturated monomers having an oxetane ring and alkyl (meth)acrylates.
 オキサゾリン化合物としては、例えば、1分子中に2個以上のオキサゾリン基を有する可能な化合物が挙げられる。そのようなオキサゾリン化合物としては、例えば、オキサゾリン基含有モノマーの重合体、オキサゾリン基含有モノマーと他のモノマーとの共重合体等のオキサゾリン基含有ポリマーが挙げられる。オキサゾリン基含有モノマーとしては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4,4-ジメチル-2-オキサゾリン等が挙げられる。 Examples of oxazoline compounds include possible compounds having two or more oxazoline groups in one molecule. Examples of such oxazoline compounds include oxazoline group-containing polymers such as polymers of oxazoline group-containing monomers and copolymers of oxazoline group-containing monomers and other monomers. Examples of oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4,4-dimethyl-2-oxazoline, etc. is mentioned.
 エピスルフィド樹脂としては、例えば、任意のエポキシ化合物におけるエポキシ基を構成する酸素原子が硫黄原子に置換した化合物が挙げられる。エポキシ化合物としては、上述したのと同様のものが挙げられる。また、エポキシ化合物におけるエポキシ基を構成する酸素原子を硫黄原子に置換する方法としては、従来公知の方法を用いることができる。 Examples of episulfide resins include compounds in which an oxygen atom constituting an epoxy group in any epoxy compound is substituted with a sulfur atom. Epoxy compounds include those mentioned above. As a method for substituting an oxygen atom constituting an epoxy group in an epoxy compound with a sulfur atom, a conventionally known method can be used.
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。 Amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds and methylol urea compounds.
 イソシアネート化合物としては、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;ならびに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。 A polyisocyanate compound can be blended as the isocyanate compound. Polyisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolylene dimer; Aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis(cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo alicyclic polyisocyanates such as heptane triisocyanate; and adducts, biurets and isocyanurates of the above-mentioned isocyanate compounds.
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。 As the blocked isocyanate compound, an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used. Examples of the isocyanate compound that can react with the isocyanate blocking agent include the aforementioned polyisocyanate compounds. Examples of isocyanate blocking agents include phenolic blocking agents; lactam blocking agents; active methylene blocking agents; alcohol blocking agents; oxime blocking agents; mercaptan blocking agents; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents, and the like.
 硬化性樹脂組成物における熱硬化性樹脂の配合量は、本発明の効果が奏される限り特に限定されず、例えば、硬化性樹脂組成物の総質量に対し、固形分換算で、3~50質量%等とすることができる。 The amount of the thermosetting resin compounded in the curable resin composition is not particularly limited as long as the effect of the present invention is exhibited, for example, 3 to 50 in terms of solid content with respect to the total mass of the curable resin composition. % by mass or the like.
 本発明の硬化性樹脂組成物には、硬化性樹脂として光硬化性樹脂を配合することができる。光硬化性樹脂としては、公知慣用の光硬化性樹脂を用いることができる。その中でも、光硬化性や耐現像性の面から、好ましくは活性エネルギー線によってラジカル性の付加重合反応により硬化し得る光硬化性樹脂、より好ましくは分子中にエチレン性不飽和基を有する光硬化性樹脂が用いられる。なお、エチレン性不飽和基は、アクリル酸もしくはメタクリル酸またはそれらの誘導体由来であることが好ましい。光硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。光硬化性樹脂としては、好ましくは後述するカルボキシル基含有感光性樹脂が用いられる。 The curable resin composition of the present invention can contain a photocurable resin as a curable resin. As the photocurable resin, a known and commonly used photocurable resin can be used. Among them, from the viewpoint of photocurability and development resistance, preferably a photocurable resin that can be cured by a radical addition polymerization reaction with an active energy ray, more preferably a photocurable resin having an ethylenically unsaturated group in the molecule. A flexible resin is used. The ethylenically unsaturated groups are preferably derived from acrylic acid, methacrylic acid, or derivatives thereof. The photocurable resin may be used singly or in combination of two or more. As the photocurable resin, a carboxyl group-containing photosensitive resin, which will be described later, is preferably used.
 分子中にエチレン性不飽和基を有する光硬化性樹脂としては、公知慣用の光重合性オリゴマー、および光重合性モノマー等が用いられる。このうち光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。 As the photocurable resin having an ethylenically unsaturated group in the molecule, commonly known photopolymerizable oligomers, photopolymerizable monomers, and the like are used. Examples of photopolymerizable oligomers include unsaturated polyester-based oligomers and (meth)acrylate-based oligomers. (Meth)acrylate oligomers include epoxy (meth)acrylates such as phenol novolac epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, epoxyurethane (meth)acrylate, ) acrylates, polyester (meth)acrylates, polyether (meth)acrylates, polybutadiene-modified (meth)acrylates, and the like.
 一方、光重合性モノマーとしては、好ましくはエチレン性不飽和基を有するモノマーが用いられる。このような光重合性モノマーとしては、例えば、慣用公知のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。具体的には、2-エチルヘキシルアクリレート、シクロヘキシルアクリレート等のアルキルアクリレート類;2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキルアクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキサイド誘導体のモノまたはジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド等のアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレート等のアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのアルキレンオキサイド付加物あるいはε-カプロラクトン付加物等の多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート等のフェノール類またはこれらのアルキレンオキサイド付加物等の多価アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルのアクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオール等のポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類の少なくともいずれか1種から適宜選択して用いることができる。光重合性モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、光重合性モノマーは、反応性希釈剤としても用いることができる。なお、「光重合性モノマー」とは、光硬化性樹脂の中でも特にモノマーである化合物を指す。 On the other hand, as the photopolymerizable monomer, a monomer having an ethylenically unsaturated group is preferably used. Examples of such photopolymerizable monomers include commonly known polyester (meth)acrylates, polyether (meth)acrylates, urethane (meth)acrylates, carbonate (meth)acrylates, epoxy (meth)acrylates, and the like. Specifically, alkyl acrylates such as 2-ethylhexyl acrylate and cyclohexyl acrylate; hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; alkylene glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol. mono- or diacrylates of oxide derivatives; acrylamides such as N,N-dimethylacrylamide, N-methylolacrylamide, N,N-dimethylaminopropylacrylamide; N,N-dimethylaminoethyl acrylate, N,N-dimethylaminopropyl Aminoalkyl acrylates such as acrylates; Polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol and trishydroxyethyl isocyanurate, or their alkylene oxide adducts or ε-caprolactone adducts, etc. polyvalent acrylates; phenols such as phenoxy acrylate and bisphenol A diacrylate or polyvalent acrylates such as alkylene oxide adducts thereof; glycidyls such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate Ether acrylates; not limited to the above, acrylates and melamine acrylates obtained by directly acrylated polyols such as polyether polyols, polycarbonate diols, hydroxyl-terminated polybutadiene, and polyester polyols, or urethane acrylated via diisocyanate, and the above acrylates can be appropriately selected from at least one of the methacrylates corresponding to and used. One type of the photopolymerizable monomer may be used alone, or two or more types may be used in combination. Photopolymerizable monomers can also be used as reactive diluents. The term "photopolymerizable monomer" refers to a compound that is a monomer among photocurable resins.
 硬化性樹脂組成物における光硬化性樹脂の配合量は、本発明の効果が奏される限り特に限定されず、例えば、硬化性樹脂組成物の総質量に対し、固形分換算で、10~50質量%等とすることができる。 The amount of the photocurable resin in the curable resin composition is not particularly limited as long as the effect of the present invention is exhibited, for example, 10 to 50 in terms of solid content with respect to the total mass of the curable resin composition % by mass or the like.
 硬化性樹脂は、硬化性樹脂組成物に対しアルカリ現像性を付与するために、好ましくはカルボキシル基含有樹脂を配合することができる。カルボキシル基含有樹脂としては、分子中にカルボキシル基を有している従来公知の各種樹脂を用いることができる。
 カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマーおよびポリマーのいずれでもよい)を挙げることができる。
The curable resin may preferably contain a carboxyl group-containing resin in order to impart alkaline developability to the curable resin composition. As the carboxyl group-containing resin, conventionally known various resins having a carboxyl group in the molecule can be used.
Specific examples of carboxyl group-containing resins include the following compounds (both oligomers and polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) Carboxyl group-containing resins obtained by copolymerizing unsaturated carboxylic acids such as (meth)acrylic acid and unsaturated group-containing compounds such as styrene, α-methylstyrene, lower alkyl (meth)acrylates, and isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキサイド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
 (3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂と(メタ)アクリル酸等のエチレン性不飽和基を有するモノカルボン酸化合物との反応物の部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。 (3) a diisocyanate, a bifunctional epoxy resin such as a bisphenol A type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a bixylenol type epoxy resin, or a biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin produced by a polyaddition reaction of a partial acid anhydride-modified reaction product with a monocarboxylic acid compound having an ethylenically unsaturated group such as meth)acrylic acid, a carboxyl group-containing dialcohol compound, and a diol compound. .
 (4)前記(2)または(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。 (4) During the synthesis of the resin (2) or (3) above, a compound having one hydroxyl group and one or more (meth)acryloyl groups in the molecule such as hydroxyalkyl (meth)acrylate is added, and the terminal ( Meta) acrylated carboxyl group-containing photosensitive urethane resin.
 (5)前記(2)または(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。 (5) During the synthesis of the resin of (2) or (3), one isocyanate group and one or more (meth)acryloyl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. A carboxyl group-containing photosensitive urethane resin that is terminally (meth)acrylated by adding a compound having
 (6)2官能またはそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (6) A carboxyl group-containing photosensitive resin obtained by reacting (meth)acrylic acid with a polyfunctional (solid) epoxy resin having two or more functionalities and adding a dibasic acid anhydride to the hydroxyl groups present in the side chains.
 (7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (7) A carboxyl obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl group. Group-containing photosensitive resin.
 (8)2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (8) A bifunctional oxetane resin is reacted with a dicarboxylic acid such as adipic acid, phthalic acid, and hexahydrophthalic acid, and the resulting primary hydroxyl group is treated with a dibasic such as phthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride. Carboxyl group-containing polyester resin to which acid anhydride is added.
 (9)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (9) an epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol; Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipine are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and the alcoholic hydroxyl group of the resulting reaction product is treated with A carboxyl group-containing photosensitive resin obtained by reacting a polybasic acid anhydride such as an acid.
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (10) A reaction obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and reacting an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting the product with a polybasic acid anhydride.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group. A carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (12)前記(1)~(11)の樹脂にさらに1分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。
(12) A carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth)acryloyl groups in one molecule to the resins (1) to (11).
In this specification, (meth)acrylate is a generic term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
 また、感光性樹脂としては、後述する実施例に記載の手順に従って合成される樹脂を用いることもできる。 In addition, as the photosensitive resin, a resin synthesized according to the procedure described in Examples described later can also be used.
 カルボキシル基含有樹脂の酸価は、30~150mgKOH/gの範囲が適当であり、より好ましくは50~120mgKOH/gの範囲である。カルボキシル基含有樹脂の酸価が30mgKOH/g以上であるとアルカリ現像を適切に行うことができ、一方、150mgKOH/g以下であると現像液による露光部の溶解が進まないために、現像液により露光部と未露光部とを区別して溶解剥離することができ、正常なレジストパターンの描画が容易となるので好ましい。 The acid value of the carboxyl group-containing resin is suitably in the range of 30-150 mgKOH/g, more preferably in the range of 50-120 mgKOH/g. When the acid value of the carboxyl group-containing resin is 30 mgKOH/g or more, alkaline development can be performed appropriately. It is preferable because the exposed area and the unexposed area can be separated by dissolution and separation, and normal resist pattern drawing is facilitated.
 カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、さらには5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000以上であると、露光後の塗膜の耐湿性が良好であり、現像時に膜減りが生じず、優れた解像度が得られやすい。一方、重量平均分子量が150,000以下であると、良好な現像性が得られやすく、また良好な貯蔵安定性が得られやすい。重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。 Although the weight-average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, it is generally preferably in the range of 2,000 to 150,000, more preferably in the range of 5,000 to 100,000. When the weight-average molecular weight is 2,000 or more, the moisture resistance of the coating film after exposure is good, film reduction does not occur during development, and excellent resolution can be easily obtained. On the other hand, when the weight average molecular weight is 150,000 or less, good developability is likely to be obtained, and good storage stability is likely to be obtained. Weight average molecular weight can be measured by gel permeation chromatography (GPC).
(硫酸バリウム)
 本発明の硬化性樹脂組成物は、吸油量が40~70mL/100gの硫酸バリウムを含む。硬化性樹脂組成物が、このような比較的高い吸油量を有する硫酸バリウムを含むことによって、硬化性樹脂組成物の硬化物であるソルダーレジストに、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で付与することができる。
(barium sulfate)
The curable resin composition of the present invention contains barium sulfate with an oil absorption of 40 to 70 mL/100 g. When the curable resin composition contains barium sulfate having such a relatively high oil absorption, the solder resist, which is a cured product of the curable resin composition, maintains low glossiness over time and is thereby brought about. It is possible to provide a high level of resistance to solder adhesion over time and withstand voltage.
 硫酸バリウムの吸油量は、好ましくは45~70mL/100g、より好ましくは45~65mL/100g、さらに好ましくは50~60mL/100gである。なお、硫酸バリウムの吸油量は、日本産業規格が定める方法(JIS K5101-13-1)に準拠して測定することができる。 The oil absorption of barium sulfate is preferably 45-70 mL/100 g, more preferably 45-65 mL/100 g, and even more preferably 50-60 mL/100 g. The oil absorption of barium sulfate can be measured according to the method defined by Japanese Industrial Standards (JIS K5101-13-1).
 硫酸バリウムとしては、無処理の硫酸バリウムを用いてもよく、化学的および/または物理的な処理がなされた硫酸バリウムを用いてもよい。そのような処理がなされた硫酸バリウムとしては、例えば、表面処理された硫酸バリウムを用いることができる。硫酸バリウムを表面処理するための物質としては、例えば、シリカ、アルミナ等の無機物質が挙げられる。中でも、シリカで多処理(「多処理加工」ともいう。)により表面処理された硫酸バリウムを用いることが特に好ましい。なお、多処理とは、表面処理される硫酸バリウムの表面において、表面処理する物質(例えば、シリカ、アルミナ等)が非常に厚く存在するように付着させる処理である。シリカで多処理表面処理された硫酸バリウムの市販品としては、例えば、石原産業株式会社製のPFS-701等が挙げられる。 As the barium sulfate, untreated barium sulfate may be used, or chemically and/or physically treated barium sulfate may be used. As such treated barium sulfate, for example, surface-treated barium sulfate can be used. Examples of substances for surface-treating barium sulfate include inorganic substances such as silica and alumina. Among them, it is particularly preferable to use barium sulfate surface-treated with silica by multiple treatments (also referred to as “multi-treatment processing”). The multi-treatment is a treatment in which a substance to be surface-treated (for example, silica, alumina, etc.) adheres to the surface of the barium sulfate to be surface-treated so that it exists very thickly. Examples of commercial products of barium sulfate surface-treated with silica include PFS-701 manufactured by Ishihara Sangyo Co., Ltd., and the like.
 硫酸バリウム、特にシリカで表面処理された硫酸バリウムは、従来の艶消し剤と比較して艶消し性能が高く、硬化性樹脂組成物にシリカで表面処理された硫酸バリウムを少量配合することにより高い艶消し効果を得ることができる。したがって、艶消し剤を配合する際に問題となる硬化性樹脂組成物への気泡の混入、および硬化性樹脂組成物を硬化して形成されるソルダーレジスト中の気泡の残存が抑制され、その結果、ソルダーレジストの耐電圧性の低下を抑制することができる。さらに、一般的に、艶消し剤を樹脂組成物に配合する場合には樹脂組成物の粘性が増大することから、少量の配合で高い艶消し効果を得ることができる硫酸バリウム、特にシリカで表面処理された硫酸バリウムを用いることによって、硬化性樹脂組成物の粘性の増大を抑制し、その結果、基板への硬化性樹脂組成物の印刷性の低下を抑制することができる。さらに、硫酸バリウム、特にシリカで表面処理された硫酸バリウムは酸に対する高い耐性(耐酸性)を有する。したがって、硬化性樹脂組成物に艶消し剤として硫酸バリウムを配合することによって硬化性樹脂組成物が高い耐酸性を有し、その結果、強い酸性下で行われるスズめっき等に対しても高い耐性(スズめっき耐性)を有する。 Barium sulfate, especially barium sulfate surface-treated with silica, has high matting performance compared to conventional matting agents, and by adding a small amount of barium sulfate surface-treated with silica to the curable resin composition, it is high. A matte effect can be obtained. Therefore, the inclusion of air bubbles in the curable resin composition, which is a problem when blending the matting agent, and the remaining air bubbles in the solder resist formed by curing the curable resin composition are suppressed, and as a result, , the decrease in voltage resistance of the solder resist can be suppressed. Furthermore, in general, when a matting agent is added to a resin composition, the viscosity of the resin composition increases. By using the treated barium sulfate, an increase in the viscosity of the curable resin composition can be suppressed, and as a result, deterioration in printability of the curable resin composition onto the substrate can be suppressed. Furthermore, barium sulfate, especially barium sulfate surface-treated with silica, has high acid resistance (acid resistance). Therefore, by blending barium sulfate as a matting agent in the curable resin composition, the curable resin composition has high acid resistance, and as a result, it is highly resistant to tin plating etc. performed under strong acidity. (Tin plating resistance).
 硬化性樹脂組成物において、吸油量が40~70mL/100gの硫酸バリウムの配合量は、本発明の効果が奏される限り特に限定されず、例えば、硬化性樹脂組成物の総質量に対して、固形分換算で、好ましくは30~74質量%、より好ましくは40~70質量%、さらに好ましくは45~67質量%である。 In the curable resin composition, the amount of barium sulfate with an oil absorption of 40 to 70 mL/100 g is not particularly limited as long as the effect of the present invention is exhibited. , preferably 30 to 74% by mass, more preferably 40 to 70% by mass, and still more preferably 45 to 67% by mass in terms of solid content.
(熱硬化触媒)
 本発明の硬化性樹脂組成物は、熱硬化触媒を含む。熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルフォスフィン等のリン化合物等が挙げられる。また、市販されているものとしては、例えば四国化成工業株式会社製の2MZ-A、2MZ-OK、2PHZ、2PHZ-PW、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT 3513N(ジメチルアミン系化合物の商品名)、DBU、DBN、U-CAT SA 102(いずれも二環式アミジン化合物およびその塩)等が挙げられる。特に、これらに限られるものではなく、エポキシ樹脂やオキセタン化合物の熱硬化触媒、もしくはエポキシ基およびオキセタニル基の少なくともいずれか1種とカルボキシル基の反応を促進するものであればよく、単独でまたは2種以上を混合して使用してもかまわない。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を熱硬化触媒と併用する。熱硬化触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Thermosetting catalyst)
The curable resin composition of the present invention contains a thermosetting catalyst. Examples of thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Imidazole derivatives such as (2-cyanoethyl)-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole; dicyandiamide, benzyldimethylamine, 4-(dimethylamino)-N,N-dimethylbenzyl Amine compounds such as amines, 4-methoxy-N,N-dimethylbenzylamine and 4-methyl-N,N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; phosphorus compounds such as triphenylphosphine; etc. In addition, commercially available products include, for example, 2MZ-A, 2MZ-OK, 2PHZ, 2PHZ-PW, 2P4BHZ, and 2P4MHZ manufactured by Shikoku Kasei Co., Ltd. (all are trade names of imidazole compounds), manufactured by San-Apro Co., Ltd. U-CAT 3513N (trade name of dimethylamine compounds), DBU, DBN, U-CAT SA 102 (both of which are bicyclic amidine compounds and salts thereof). In particular, it is not limited to these, and it may be a thermosetting catalyst for an epoxy resin or an oxetane compound, or any one that promotes the reaction between at least one of an epoxy group and an oxetanyl group and a carboxyl group. A mixture of seeds or more may be used. Also, guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as S-triazine/isocyanuric acid adducts and 2,4-diamino-6-methacryloyloxyethyl-S-triazine/isocyanuric acid adducts can also be used, and these adhesion-imparting agents are preferred. A compound that also functions is used in conjunction with a thermosetting catalyst. One of the thermosetting catalysts may be used alone, or two or more thereof may be used in combination.
 熱硬化触媒の配合量は、熱硬化性樹脂100質量部に対して、好ましくは2~30質量部、より好ましくは5~25質量部である。 The content of the thermosetting catalyst is preferably 2 to 30 parts by mass, more preferably 5 to 25 parts by mass, based on 100 parts by mass of the thermosetting resin.
(光重合開始剤)
 本発明の硬化性樹脂組成物が感光性樹脂を含む場合、硬化性樹脂組成物は、好ましくは光重合開始剤を含む。光重合開始剤としては、公知のものをいずれも用いることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Photoinitiator)
When the curable resin composition of the present invention contains a photosensitive resin, the curable resin composition preferably contains a photopolymerization initiator. Any known photopolymerization initiator can be used. A photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more type.
 光重合開始剤としては、具体的には例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のモノアシルフォスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)フォスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアルキルフェノン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。 Specific examples of photopolymerization initiators include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis -(2,6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide , bis-(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2, bisacylphosphine oxides such as 4,6-trimethylbenzoyl)-phenylphosphine oxide; 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethyl monoacylphosphine oxides such as benzoylphenylphosphinate methyl ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinate isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; phenyl ( 2,4,6-trimethylbenzoyl)ethylphosphinate, 1-hydroxy-cyclohexylphenyl ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1- one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one, 2-hydroxy-2-methyl-1 - hydroxyacetophenones such as phenylpropan-1-one; benzoins such as benzoin, benzyl, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether; benzoin alkyl ethers; benzophenone , p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone and other benzophenones; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy -2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-1-propanone, 2-benzyl-2-dimethyl Amino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl)-1-[4-(4-morpholinyl)phenyl]-1- Acetophenones such as butanone and N,N-dimethylaminoacetophenone; thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropyl Thioxanthones such as thioxanthone; anthraquinones such as anthraquinone, chloroanthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, and 2-aminoanthraquinone; acetophenone dimethyl ketal , ketals such as benzyl dimethyl ketal; ethyl-4-dimethylaminobenzoate, 2-(dimethylamino) ethyl benzoate, benzoic acid esters such as p-dimethylbenzoic acid ethyl ester; 1,2-octanedione, 1-[ 4-(phenylthio)phenyl]-,2-(O-benzoyloxime), ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O -acetyloxime); bis(η5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, bis (Cyclopentadienyl)-bis[2,6-difluoro-3-(2-(1-pyr-1-yl)ethyl)phenyl]titanium; 2-dimethylamino-2-(4-methyl) -benzyl)-1-(4-morpholinophenyl)-butan-1-one and other alkylphenones; phenyl disulfide 2-nitrofluorene, butyroin, anisoin ethyl ether, azobisisobutyronitrile, tetramethylthiuram disulfide etc. can be mentioned.
 上記した光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物等を挙げることができる。特に、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン化合物を用いることが好ましい。チオキサントン化合物が含まれることにより、深部硬化性を向上させることができる。これらの化合物は、光重合開始剤として用いることができる場合もあるが、光重合開始剤と併用して用いることが好ましい。また、光開始助剤または増感剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A photoinitiation aid or a sensitizer may be used in combination with the photopolymerization initiator described above. Examples of photoinitiation aids or sensitizers include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds. Thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone are particularly preferred. Inclusion of a thioxanthone compound can improve deep-part curability. These compounds can be used as a photopolymerization initiator in some cases, but are preferably used in combination with the photopolymerization initiator. The photoinitiation aids or sensitizers may be used singly or in combination of two or more.
 なお、これら光重合開始剤、光開始助剤、および増感剤は、特定の波長を吸収するため、場合によっては感度が低くなり、紫外線吸収剤として機能することがある。しかしながら、これらは硬化性樹脂組成物の感度を向上させることだけの目的に用いられるものではない。必要に応じて特定の波長の光を吸収させて、表面の光反応性を高め、レジストのライン形状および開口を垂直、テーパー状、逆テーパー状に変化させるとともに、ライン幅や開口径の精度を向上させることができる。 In addition, since these photopolymerization initiators, photoinitiator aids, and sensitizers absorb specific wavelengths, the sensitivity may be lowered in some cases, and they may function as ultraviolet absorbers. However, these are not used only for the purpose of improving the sensitivity of the curable resin composition. It absorbs light of a specific wavelength as needed to increase the photoreactivity of the surface, change the line shape and opening of the resist to vertical, tapered, and reverse tapered shapes, and improve the accuracy of the line width and opening diameter. can be improved.
(フィラー)
 本発明の硬化性樹脂組成物は、その塗膜の物理的強度等を上げるために、本発明の効果が損なわれない範囲において、必要に応じて上述した硫酸バリウム以外のフィラーを含有してもよい。このようなフィラーとしては、公知の無機または有機フィラーが使用できるが、特に各種シリカ(例えば、微粉シリカ、球状シリカ等)、ハイドロタルサイトおよびタルクが好ましく用いられる。さらに、白色の外観や難燃性を得るために金属酸化物、水酸化アルミ等の金属水酸化物を体質顔料フィラーとしても使用することができる。
(filler)
The curable resin composition of the present invention may contain a filler other than barium sulfate as described above, if necessary, in order to increase the physical strength of the coating film, etc., as long as the effects of the present invention are not impaired. good. As such fillers, known inorganic or organic fillers can be used, and various types of silica (for example, finely divided silica, spherical silica, etc.), hydrotalcite and talc are particularly preferably used. Furthermore, metal oxides and metal hydroxides such as aluminum hydroxide can be used as extender fillers in order to obtain a white appearance and flame retardancy.
(有機溶剤)
 本発明の硬化性樹脂組成物には、硬化性樹脂組成物の調製や、基板やフィルムに塗布する際の粘度調整等の目的で、有機溶剤を配合することができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤等、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Organic solvent)
The curable resin composition of the present invention can be blended with an organic solvent for the purpose of preparing the curable resin composition and adjusting the viscosity when applied to a substrate or film. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether; , dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha; Conventional organic solvents can be used. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
 有機溶剤の揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用い乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatilization drying of organic solvents is carried out by using a hot air circulating drying furnace, IR furnace, hot plate, convection oven, etc. (equipped with a heat source that heats the air using steam), and a method in which the hot air in the dryer is brought into contact with the counter current and supported by a nozzle. method of spraying on the body) can be used.
(その他の成分)
 本発明の硬化性樹脂組成物には、必要に応じてさらに、着色剤、エラストマー、メルカプト化合物、ウレタン化触媒、チキソ化剤、密着促進剤、ブロック共重合体、連鎖移動剤、重合禁止剤、銅害防止剤、酸化防止剤、防錆剤、有機ベントナイト、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤およびレベリング剤の少なくともいずれか1種、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、フォスフィン酸塩、燐酸エステル誘導体、フォスファゼン化合物等のリン化合物等の難燃剤等の成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。
(other ingredients)
The curable resin composition of the present invention may optionally further contain a coloring agent, an elastomer, a mercapto compound, a urethanization catalyst, a thixotropic agent, an adhesion promoter, a block copolymer, a chain transfer agent, a polymerization inhibitor, copper damage inhibitor, antioxidant, rust inhibitor, organic bentonite, thickener such as montmorillonite, at least one of silicone-based, fluorine-based, polymer-based defoaming agent and leveling agent, imidazole-based, Components such as a thiazole-based or triazole-based silane coupling agent, a phosphinate, a phosphoric acid ester derivative, a phosphorus compound such as a phosphazene compound, and other flame retardants can be blended. As these, those known in the field of electronic materials can be used.
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。また、液状として用いる場合は、1液性でも2液性以上でもよい。 The curable resin composition of the present invention may be used as a dry film or as a liquid. Moreover, when it is used as a liquid, it may be one-liquid or two-liquid or more.
[硬化物]
 本発明の硬化物は、上述した本発明の硬化性樹脂組成物を硬化して得られるものであり、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立する。本発明の硬化物は、例えば、厚さ1~150μmのソルダーレジスト、特に艶消しソルダーレジストである。
[Cured product]
The cured product of the present invention is obtained by curing the curable resin composition of the present invention described above, and maintains low glossiness over time and the resulting solder adhesion resistance over time and resistance to It is compatible with voltage characteristics at a high level. The cured product of the present invention is, for example, a solder resist having a thickness of 1 to 150 μm, especially a matte solder resist.
[プリント配線板]
 本発明のプリント配線板は、上述した本発明の硬化性樹脂組成物から得られる硬化物を有するものである。本発明のプリント配線板の製造方法においては、例えば、本発明の硬化性樹脂組成物を、有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコート法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。
[Printed wiring board]
The printed wiring board of the present invention has a cured product obtained from the curable resin composition of the present invention described above. In the method for producing a printed wiring board of the present invention, for example, the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using an organic solvent, and is coated on the substrate by a dip coating method, a flow After applying by a method such as coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. to form a tack-free resin layer.
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。 Examples of the substrate include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, all grades (FR-4, etc.) of copper-clad laminates. Plates, metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
 本発明の硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatilization drying performed after applying the curable resin composition of the present invention can be performed using a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc. A method of bringing hot air into countercurrent contact and a method of blowing hot air onto the support from a nozzle) can be used.
 基材上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。さらに、硬化物に活性エネルギー線を照射後に加熱硬化(例えば、100~220℃)、もしくは加熱硬化後に活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化塗膜を形成する。 After forming a resin layer on the substrate, it is selectively exposed to active energy rays through a photomask having a predetermined pattern, and the unexposed area is treated with a dilute alkaline aqueous solution (eg, 0.3 to 3% by mass aqueous solution of sodium carbonate). to form a pattern of the cured product. Furthermore, after irradiating the cured product with active energy rays, heat curing (e.g., 100 to 220 ° C), or after heat curing, irradiating the active energy rays, or final final curing (main curing) only by heat curing. Forms a cured coating film with excellent properties such as toughness and hardness.
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。 The exposure machine used for the active energy ray irradiation may be any device equipped with a high-pressure mercury lamp, ultra-high pressure mercury lamp, metal halide lamp, mercury short arc lamp, etc., and irradiating ultraviolet rays in the range of 350 to 450 nm. In addition, a direct writing device (eg, a laser direct imaging device that draws an image with a laser directly from CAD data from a computer) can also be used. The lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm. The amount of exposure for image formation varies depending on the film thickness and the like, but can generally be in the range of 10-1000 mJ/cm 2 , preferably in the range of 20-800 mJ/cm 2 .
 現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。 As a developing method, a dipping method, a shower method, a spray method, a brush method, or the like can be used. , amines, etc. can be used.
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例において、「部」および「%」の記載は、特に断りのない限りいずれも質量基準である。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the examples, "parts" and "%" are based on mass unless otherwise specified.
[光硬化性樹脂溶液の調製]
 以下の手順に従って、本実施例で用いる光硬化性樹脂(芳香環を有するカルボキシル基含有樹脂)溶液を調製した。
 ジエチレングリコールモノエチルエーテルアセテート600gに、オルソクレゾールノボラック型エポキシ樹脂(EPICLON N-695、DIC株式会社製)1070g、アクリル酸360g(5.0モル)、およびハイドロキノン1.5gを仕込み、100℃で加熱しながら均一になるまで撹拌して溶液を得た。次いで、得られた溶液にトリフェニルフォスフィン4.3gを添加し、110℃で2時間加熱して反応を行った後、120℃に昇温してさらに12時間反応を行い、反応液を得た。得られた反応液に芳香族系炭化水素(ソルベッソ150、安藤パラケミー株式会社製)415g、およびテトラヒドロ無水フタル酸456.0g(3.0モル)を添加し、110℃で4時間反応を行い、冷却後、固形分酸価89mgKOH/g、固形分65質量%の芳香環を有する感光性のカルボキシル基含有樹脂溶液を得た。
[Preparation of photocurable resin solution]
A solution of a photocurable resin (an aromatic ring-containing carboxyl group-containing resin) used in this example was prepared according to the following procedure.
1070 g of ortho-cresol novolac type epoxy resin (EPICLON N-695, manufactured by DIC Corporation), 360 g (5.0 mol) of acrylic acid, and 1.5 g of hydroquinone were added to 600 g of diethylene glycol monoethyl ether acetate and heated at 100°C. A solution was obtained by stirring until the mixture became uniform. Next, 4.3 g of triphenylphosphine was added to the obtained solution, and after the reaction was carried out by heating at 110°C for 2 hours, the temperature was raised to 120°C and the reaction was further carried out for 12 hours to obtain a reaction solution. rice field. 415 g of an aromatic hydrocarbon (Solvesso 150, manufactured by Ando Parachemie Co., Ltd.) and 456.0 g (3.0 mol) of tetrahydrophthalic anhydride were added to the obtained reaction solution, and the reaction was carried out at 110° C. for 4 hours. After cooling, a photosensitive carboxyl group-containing resin solution having a solid content acid value of 89 mgKOH/g and a solid content of 65% by mass and having an aromatic ring was obtained.
[硬化性樹脂組成物の調製]
 下記表1に示す各成分を、同表に示す量で混合し、撹拌機を用いて予備撹拌した後、3本ロールミルを用いて混錬し、実施例1~6および比較例1~6の各硬化性樹脂組成物を調製した。なお、表1中の各成分の詳細は以下の通りである。
 熱硬化性樹脂:フェノールノボラックエポキシ樹脂(N-770、DIC株式会社製)
 光硬化性樹脂(感光性樹脂):上述した方法により調製された芳香環を有するカルボキシル基含有樹脂溶液、配合量は固形分換算の値
 光硬化性樹脂(光重合性モノマー):ジペンタエリスリトールヘキサアクリレート(日本化薬株式会社製)
 青色着色剤:有機着色剤 フタロシアニンブル-
 黄色着色剤:有機着色剤 クロモフタロイエロー
 消泡剤:ポリジメチルシロキサン(KS-66、信越化学工業株式会社製)
 光重合開始剤1:ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム(Irgacure 784、BASFジャパン株式会社製)
 光重合開始剤2:2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリノフェニル)-ブタン-1-オン(Omnirad 379EG、IGM Resins社製)
 熱硬化触媒1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(2PHZ-PW、四国化成工業株式会社製)
 熱硬化触媒2:メラミン
 ケイ酸アルミニウム系艶消し剤:焼成カオリン(サテントン5HB、BASFジャパン株式会社製)
 水酸化アルミニウム系艶消し剤:水酸化アルミニウム(ハイジライトH-42、昭和電工株式会社製)
 フィラー沈降防止剤:有機ベントナイト(BENTONE(登録商標)38、Elementis Specialities社製)
 微粉シリカ系艶消し剤:微粉シリカ(ACEMATT(登録商標)82、EVONIK社製)
 シリカ-アルミナ表面処理硫酸バリウム(BARIACE(登録商標) B-30、堺化学工業株式会社製)(吸油量:18mL/100g)
 シリカ表面処理硫酸バリウム(高耐候性艶消し材 PFS701、石原産業株式会社製)(吸油量:56mL/100g)
 有機溶剤1:ジエチレングリコールモノエチルエーテルアセテート(カルビトールアセテート)
 有機溶剤2:石油系溶剤(SOLVESSO150、安藤パラケミー株式会社製)
[Preparation of curable resin composition]
Each component shown in Table 1 below was mixed in the amount shown in the same table, pre-stirred using a stirrer, and then kneaded using a three-roll mill to obtain Examples 1-6 and Comparative Examples 1-6. Each curable resin composition was prepared. The details of each component in Table 1 are as follows.
Thermosetting resin: phenol novolac epoxy resin (N-770, manufactured by DIC Corporation)
Photocurable resin (photosensitive resin): carboxyl group-containing resin solution having an aromatic ring prepared by the method described above, compounding amount is the value in terms of solid content Photocurable resin (photopolymerizable monomer): dipentaerythritol hexa Acrylate (manufactured by Nippon Kayaku Co., Ltd.)
Blue colorant: organic colorant phthalocyanine blue
Yellow coloring agent: Organic coloring agent Chromophthalo Yellow Antifoaming agent: Polydimethylsiloxane (KS-66, manufactured by Shin-Etsu Chemical Co., Ltd.)
Photoinitiator 1: Bis (η5-2,4-cyclopentadien-1-yl) - bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium (Irgacure 784, BASF Japan Co., Ltd.)
Photoinitiator 2: 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholinophenyl)-butan-1-one (Omnirad 379EG, manufactured by IGM Resins)
Thermosetting catalyst 1: 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW, manufactured by Shikoku Kasei Co., Ltd.)
Thermosetting catalyst 2: melamine aluminum silicate delustering agent: calcined kaolin (Satinton 5HB, manufactured by BASF Japan Ltd.)
Aluminum hydroxide matting agent: aluminum hydroxide (Higilite H-42, manufactured by Showa Denko K.K.)
Filler anti-settling agent: organic bentonite (BENTONE (registered trademark) 38, manufactured by Elementis Specialties)
Fine silica matting agent: Fine silica (ACEMATT (registered trademark) 82, manufactured by EVONIK)
Silica-alumina surface-treated barium sulfate (BARIACE (registered trademark) B-30, manufactured by Sakai Chemical Industry Co., Ltd.) (oil absorption: 18 mL/100 g)
Silica surface-treated barium sulfate (highly weather-resistant matte material PFS701, manufactured by Ishihara Sangyo Co., Ltd.) (oil absorption: 56 mL/100 g)
Organic solvent 1: diethylene glycol monoethyl ether acetate (carbitol acetate)
Organic solvent 2: petroleum solvent (SOLVESSO150, manufactured by Ando Parachemie Co., Ltd.)
[印刷性の評価]
 実施例および比較例の各硬化性樹脂組成物を、IPC規格、Bパターンの基板に印刷機(株式会社セリアコーポレーション製)を用いてテトロン100メッシュのスクリーンで印刷した。各硬化性樹脂組成物を硬化させた後の塗膜(硬化塗膜)の外観を目視で観察し、硬化性樹脂組成物の印刷性を以下の基準に従って評価した。評価結果を表1に示す。
 〇:良好な印刷性を有する(レベリング性が良好である)
 △:許容される印刷性を有する(メッシュ目が認められる)
 ×:許容されない印刷性を有する(ピンホールがあり、下地が透けて見える)
[Evaluation of printability]
Each curable resin composition of Examples and Comparative Examples was printed on an IPC standard, pattern B substrate with a Tetoron 100-mesh screen using a printing machine (manufactured by Seria Corporation). The appearance of the coating film (cured coating film) after curing each curable resin composition was visually observed, and the printability of the curable resin composition was evaluated according to the following criteria. Table 1 shows the evaluation results.
○: Good printability (good leveling property)
△: Has acceptable printability (mesh pattern is observed)
×: Possesses unacceptable printability (there are pinholes and the base is visible through)
 さらに、実施例および比較例の各硬化性樹脂組成物を、調製後30℃で6か月保存した後に同様の試験を行い、経時的な印刷性を同様の基準に従って評価した。評価結果を表1に示す。 Furthermore, the curable resin compositions of Examples and Comparative Examples were stored at 30°C for 6 months after preparation, and then subjected to the same test to evaluate printability over time according to the same criteria. Table 1 shows the evaluation results.
[評価用基板の作製(実施例1、2および比較例1、2)]
 実施例1、2および比較例1、2の各硬化性樹脂組成物を、厚さ1.6mmの銅べたFR-4基板上に、硬化後の膜厚が25μmとなるようにスクリーン印刷で全面塗布し、熱風循環式乾燥炉を用いて150℃で30分間加熱し、各硬化性樹脂組成物の硬化物(硬化塗膜)を有する評価用基板を作製した。
[Preparation of substrates for evaluation (Examples 1 and 2 and Comparative Examples 1 and 2)]
Each curable resin composition of Examples 1 and 2 and Comparative Examples 1 and 2 was applied to a 1.6 mm thick FR-4 copper plated substrate by screen printing so that the film thickness after curing was 25 μm. It was applied and heated at 150° C. for 30 minutes using a hot air circulating drying oven to prepare a substrate for evaluation having a cured product (cured coating film) of each curable resin composition.
[評価用基板の作製(実施例3~6および比較例3~6)]
 実施例3~6および比較例3~6の各硬化性樹脂組成物を、厚さ1.6mmの銅べたFR-4基板上に、乾燥後の膜厚が25μmとなるようにスクリーン印刷で全面塗布し、熱風循環式乾燥炉を用いて80℃で30分乾燥し、室温まで放冷した。この基板を高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて500mJ/cmで露光し、30℃の1質量%炭酸ナトリウム水溶液を0.2MPaのスプレー圧で90秒間スプレーして現像を行った。次いで、UVコンベア炉を用いて積算露光量1000mJ/cmの条件で紫外線照射した後、熱風循環式乾燥炉を用いて160℃で60分間加熱し、各硬化性樹脂組成物の硬化物(硬化塗膜)を有する評価用基板を作製した。
[Preparation of substrates for evaluation (Examples 3 to 6 and Comparative Examples 3 to 6)]
Each curable resin composition of Examples 3 to 6 and Comparative Examples 3 to 6 was applied to a 1.6 mm thick FR-4 copper plated substrate by screen printing so that the film thickness after drying was 25 μm. It was applied, dried at 80° C. for 30 minutes using a hot air circulating drying oven, and allowed to cool to room temperature. This substrate was exposed at 500 mJ/cm 2 using an exposure device equipped with a high-pressure mercury lamp (short arc lamp), and developed by spraying a 1% by mass sodium carbonate aqueous solution at 30° C. at a spray pressure of 0.2 MPa for 90 seconds. rice field. Then, after irradiating with ultraviolet rays under the condition of an integrated exposure amount of 1000 mJ / cm 2 using a UV conveyor furnace, it is heated at 160 ° C. for 60 minutes using a hot air circulation drying furnace, and the cured product of each curable resin composition (cured A substrate for evaluation having a coating film) was prepared.
[光沢度の評価]
 各評価用基板上に形成された実施例および比較例の各硬化性樹脂組成物の硬化物の光沢度を、BYK-Chemie社製の光沢計 マイクロトリグロスを用いて測定された60°鏡面反射率として測定した。なお、光沢度の評価は各評価用基板について5枚ずつ行い、5枚の評価用基板の光沢度の平均値の小数点以下第2位の数値を四捨五入して小数点以下第1位までの数値として表した。得られた数値に基づき、光沢度を以下の基準に従って評価した。光沢度の数値および評価結果をそれぞれ表1に示す。
 ◎:光沢度が10未満であり、極めて低い光沢度を有する。
 ○:光沢度が10以上20未満であり、十分に低い光沢度を有する。
 ×:光沢度が20以上であり、低い光沢度を有さない。
[Glossiness evaluation]
The glossiness of the cured product of each curable resin composition of Examples and Comparative Examples formed on each evaluation substrate was measured using a gloss meter Micro Trigloss manufactured by BYK-Chemie 60 ° specular reflection measured as a percentage. In addition, the evaluation of the glossiness is performed for each of the five evaluation substrates, and the second decimal place of the average value of the glossiness of the five evaluation substrates is rounded off to the first decimal place. expressed. Based on the numerical values obtained, glossiness was evaluated according to the following criteria. Table 1 shows the glossiness values and evaluation results.
A: The glossiness is less than 10 and has an extremely low glossiness.
○: The glossiness is 10 or more and less than 20, and has a sufficiently low glossiness.
x: Glossiness is 20 or more and does not have low glossiness.
 さらに、実施例および比較例の各硬化性樹脂組成物を、調製後に30℃で6か月保存した後に作製した各評価用基板について同様の試験を行い、経時的な光沢度を同様の基準に従って評価した。経時的な光沢度の数値および評価結果をそれぞれ表1に示す。 Furthermore, each curable resin composition of Examples and Comparative Examples was stored at 30 ° C. for 6 months after preparation, and then subjected to the same test for each evaluation substrate prepared, and the glossiness over time was measured according to the same criteria. evaluated. Table 1 shows the values of the glossiness over time and the evaluation results.
[耐はんだ付着性の評価]
 各評価用基板に、フローソルダリング装置を用い、フラックスを塗布せず、大気中で、はんだ温度260℃、ダブルウェーブ、コンベアスピード1.4m/分ではんだフローし、次いで、各評価用基板上の硬化性樹脂組成物の硬化物表面におけるはんだの付着状態を目視で観察し、耐はんだ付着性を以下の基準に従って評価した。評価結果を表1に示す。なお、本評価においては、上記評価用基板の作製において、銅べた基板に代えて銅回路パターン基板を使用し、実施例1、2および比較例1、2におけるスクリーン印刷での全面塗布をパターン印刷に代え、実施例3~6および比較例3~6における露光をパターン露光に代えた以外は同様にして作製された評価用基板を用いた。
 ○:硬化物表面にはんだの付着が認められず、耐はんだ付着性が良好である。
 ×:とげ状、くもの巣上のはんだの付着が認められ、耐はんだ付着性が不良である。
[Evaluation of solder adhesion resistance]
Using a flow soldering device on each evaluation board, without applying flux, in the atmosphere, the solder is flowed at a solder temperature of 260 ° C., a double wave, and a conveyor speed of 1.4 m / min, and then on each evaluation board. The adhesion state of solder on the surface of the cured product of the curable resin composition was visually observed, and solder adhesion resistance was evaluated according to the following criteria. Table 1 shows the evaluation results. In this evaluation, a copper circuit pattern board was used instead of the copper solid board in the production of the evaluation board, and the entire surface coating by screen printing in Examples 1 and 2 and Comparative Examples 1 and 2 was pattern printed. Instead, evaluation substrates prepared in the same manner as in Examples 3 to 6 and Comparative Examples 3 to 6 were used, except that pattern exposure was used.
◯: No adhesion of solder was observed on the surface of the cured product, and the resistance to solder adhesion was good.
x: Spike-like and web-like solder adhesion was observed, and the solder adhesion resistance was poor.
 さらに、実施例および比較例の各硬化性樹脂組成物を、調製後に30℃で6か月保存した後に作製した各評価用基板について同様の試験を行い、経時的な耐はんだ付着性を同様の基準に従って評価した。評価結果を表1に示す。 Furthermore, each curable resin composition of Examples and Comparative Examples was stored at 30 ° C. for 6 months after preparation, and then subjected to the same test for each evaluation board prepared. Evaluated according to criteria. Table 1 shows the evaluation results.
[耐電圧性の評価]
 各評価用基板について、菊水電子工業株式会社製の耐電圧試験器TOS5101を用いて、直径10mmの電極によりACモードで0.5kV/秒で昇圧して、各評価用基板上の硬化性樹脂組成物の硬化物が絶縁破壊する時の電圧値(絶縁破壊電圧)を測定した。なお、耐電圧性の評価は各評価用基板について3枚ずつ行い、3枚の評価用基板の絶縁破壊電圧の平均値の小数点以下第2位の数値を四捨五入して小数点以下第1位までの数値として表した。得られた数値に基づき、以下の基準に従って評価した。絶縁破壊電圧の数値および耐電圧性の評価結果をそれぞれ表1に示す。なお、表1中の絶縁破壊電圧(kV/0.05mm)の各値は、厚さ25μm(0.025mm)の硬化塗膜を有する各評価用基板の絶縁破壊電圧の値を0.05mmに換算したものである。
 ○:絶縁破壊電圧が5kV/0.05mm以上であり、極めて高い耐電圧性を有する。
 ×:絶縁破壊電圧が5kV/0.05mm未満であり、耐電圧性が不十分である。
[Evaluation of withstand voltage]
For each evaluation substrate, using a withstand voltage tester TOS5101 manufactured by Kikusui Electronics Co., Ltd., the pressure is increased at 0.5 kV / sec in AC mode with an electrode with a diameter of 10 mm, and the curable resin composition on each evaluation substrate A voltage value (dielectric breakdown voltage) was measured when the cured product of the product broke down. In addition, the evaluation of the withstand voltage property was performed for each of three evaluation boards, and the average value of the dielectric breakdown voltage of the three evaluation boards was rounded to the first decimal place. expressed as a numerical value. Based on the obtained values, evaluation was made according to the following criteria. Table 1 shows the values of dielectric breakdown voltage and evaluation results of withstand voltage. Each value of the dielectric breakdown voltage (kV / 0.05 mm) in Table 1 is the value of the dielectric breakdown voltage of each evaluation substrate having a cured coating film with a thickness of 25 μm (0.025 mm) to 0.05 mm. It is converted.
◯: Dielectric breakdown voltage is 5 kV/0.05 mm or more, and extremely high voltage resistance.
x: The dielectric breakdown voltage is less than 5 kV/0.05 mm, and the withstand voltage is insufficient.
[耐酸性の評価]
 各評価用基板について、市販の無電解スズめっき浴を用いて、スズ1±0.2μmの条件でスズめっきを行った。めっき後の各評価用基板上の硬化性樹脂組成物の硬化物を目視で観察した後、テープピーリングにより硬化物の剥がれの有無を確認し、耐酸性を以下の基準に従って評価した。評価結果を表1に示す。なお、本評価においては、上記評価用基板の作製において、銅べた基板に代えて銅回路パターン基板を使用し、実施例1、2および比較例1、2におけるスクリーン印刷での全面塗布をパターン印刷に代え、実施例3~6および比較例3~6における露光をパターン露光に代えた以外は同様にして作製された評価用基板を用いた。
 ○:硬化物の剥がれおよび白化のいずれも確認されず、十分に高い耐酸性を有する。
 ×:硬化物の剥がれおよび白化が確認され、耐酸性が不十分である。
[Evaluation of acid resistance]
Each substrate for evaluation was tin-plated using a commercially available electroless tin-plating bath under conditions of 1±0.2 μm of tin. After visually observing the cured product of the curable resin composition on each substrate for evaluation after plating, the presence or absence of peeling of the cured product was confirmed by tape peeling, and the acid resistance was evaluated according to the following criteria. Table 1 shows the evaluation results. In this evaluation, a copper circuit pattern board was used instead of the copper solid board in the production of the evaluation board, and the entire surface coating by screen printing in Examples 1 and 2 and Comparative Examples 1 and 2 was pattern printed. Instead, evaluation substrates prepared in the same manner as in Examples 3 to 6 and Comparative Examples 3 to 6 were used, except that pattern exposure was used.
◯: Neither peeling nor whitening of the cured product was observed, and the acid resistance was sufficiently high.
x: Peeling and whitening of the cured product are observed, and the acid resistance is insufficient.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す評価結果から、各実施例の硬化性樹脂組成物を用いた場合には、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立するソルダーレジストを形成できることが分かる。さらに、各実施例の硬化性樹脂組成物を用いた場合には、高い耐酸性を有するソルダーレジストを形成できることが分かる。すなわち、硬化性樹脂、硫酸バリウムおよび熱硬化触媒を含み、硫酸バリウムの吸油量が40~70mL/100gである硬化性樹脂組成物によれば、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とを高い次元で両立し、さらに高い耐酸性を有するソルダーレジストを形成できることが示された。一方、各比較例の硬化性樹脂組成物を用いた場合には、経時的な低光沢度の維持およびそれによりもたらされる経時的な耐はんだ付着性と、耐電圧性とが両立しないことが示された。 From the evaluation results shown in Table 1, when the curable resin composition of each example was used, the maintenance of low glossiness over time and the resulting solder adhesion resistance over time, voltage resistance, and It can be seen that it is possible to form a solder resist that satisfies both at a high level. Furthermore, it can be seen that when the curable resin composition of each example is used, a solder resist having high acid resistance can be formed. That is, according to a curable resin composition containing a curable resin, barium sulfate, and a thermosetting catalyst, and having an oil absorption of 40 to 70 mL/100 g of barium sulfate, a low glossiness is maintained over time and thereby brought about. It was shown that a solder resist that has both resistance to solder adhesion over time and voltage resistance at a high level and that has high acid resistance can be formed. On the other hand, when the curable resin composition of each comparative example was used, it was shown that the maintenance of the low glossiness over time and the resulting solder adhesion resistance over time and the voltage resistance are not compatible. was done.

Claims (10)

  1.  硬化性樹脂、硫酸バリウム、および熱硬化触媒を含む硬化性樹脂組成物であって、
     前記硫酸バリウムの吸油量が40~70mL/100gであることを特徴とする、硬化性樹脂組成物。
    A curable resin composition comprising a curable resin, barium sulfate, and a thermosetting catalyst,
    A curable resin composition, wherein the barium sulfate has an oil absorption of 40 to 70 mL/100 g.
  2.  前記硫酸バリウムが、シリカで表面処理された硫酸バリウムを含む、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the barium sulfate includes barium sulfate surface-treated with silica.
  3.  前記硬化性樹脂が、エポキシ化合物、多官能オキセタン化合物およびオキサゾリン化合物からなる群から選択される1種以上の熱硬化性樹脂を含む、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the curable resin contains one or more thermosetting resins selected from the group consisting of epoxy compounds, polyfunctional oxetane compounds and oxazoline compounds.
  4.  前記硬化性樹脂が、1分子中に1個以上のエチレン性不飽和基を有するカルボキシル基含有感光性樹脂を含む、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the curable resin contains a carboxyl group-containing photosensitive resin having one or more ethylenically unsaturated groups in one molecule.
  5.  光重合開始剤をさらに含む、請求項4に記載の硬化性樹脂組成物。 The curable resin composition according to claim 4, further comprising a photopolymerization initiator.
  6.  ソルダーレジストの形成に用いられる、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, which is used for forming a solder resist.
  7.  前記ソルダーレジストが艶消しソルダーレジストである、請求項6に記載の硬化性樹脂組成物。 The curable resin composition according to claim 6, wherein the solder resist is a matte solder resist.
  8.  請求項1に記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 1.
  9.  請求項8に記載の硬化物を備える、プリント配線板。 A printed wiring board comprising the cured product according to claim 8.
  10.  ソルダーレジストを備えるプリント配線板の製造方法であって、請求項1に記載の硬化性樹脂組成物を硬化させることによりソルダーレジストを形成する工程を含む、方法。 A method for manufacturing a printed wiring board comprising a solder resist, comprising the step of forming the solder resist by curing the curable resin composition according to claim 1.
PCT/JP2022/043882 2021-11-30 2022-11-29 Curable resin composition, cured object, printed wiring board, and method for producing printed wiring board WO2023100843A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194939 2021-11-30
JP2021194939 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100843A1 true WO2023100843A1 (en) 2023-06-08

Family

ID=86612292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043882 WO2023100843A1 (en) 2021-11-30 2022-11-29 Curable resin composition, cured object, printed wiring board, and method for producing printed wiring board

Country Status (1)

Country Link
WO (1) WO2023100843A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057356A (en) * 2015-09-18 2017-03-23 関西ペイント株式会社 Aqueous clear coating composition
JP2020200449A (en) * 2019-06-04 2020-12-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
CN113698669A (en) * 2021-09-07 2021-11-26 河北辛集化工集团有限责任公司 White carbon black modified nano barium sulfate and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057356A (en) * 2015-09-18 2017-03-23 関西ペイント株式会社 Aqueous clear coating composition
JP2020200449A (en) * 2019-06-04 2020-12-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
CN113698669A (en) * 2021-09-07 2021-11-26 河北辛集化工集团有限责任公司 White carbon black modified nano barium sulfate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN106662813B (en) Curable resin composition, dry film, cured product, and printed wiring board
KR102541610B1 (en) Photosensitive resin composition, dry film, and printed wiring board
JP7053345B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP5466522B2 (en) Photocurable resin composition, dry film and cured product thereof, and printed wiring board using them
JP7181094B2 (en) Photocurable resin composition, dry film, cured product, and printed wiring board
JP6770131B2 (en) Curable composition, dry film, cured product and printed wiring board
JP6951323B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP6463079B2 (en) Curable resin composition, dry film, cured product and printed wiring board
KR102167486B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JPWO2020066601A1 (en) Curable resin composition, dry film, cured product, printed wiring board and electronic components
JP2018173609A (en) Curable resin composition, dry film, cured product, and printed wiring board
JP7187227B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP7216483B2 (en) Curable resin composition, dry film, cured product and printed wiring board
WO2023190456A1 (en) Cured product, photosensitive resin composition, dry film, and printed wiring board
JP2019179232A (en) Dry film, cured product and printed wiring board
JP2014078045A (en) Photocurable resin composition, dry film and cured product of the composition, and printed wiring board using the same
WO2023100843A1 (en) Curable resin composition, cured object, printed wiring board, and method for producing printed wiring board
KR102571046B1 (en) Curable resin composition, dry film, cured product and printed wiring board
WO2021157282A1 (en) Curable composition, and dry film and cured object obtained therefrom
CN113448166A (en) Curable resin composition, dry film, cured product, and electronic component
JP2020166271A (en) Photosensitive resin composition, dry film, cured product and printed wiring board
JP7339103B2 (en) Curable resin composition, dry film, cured product, and electronic component
JP2021044387A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product
JP2020047731A (en) Curable resin composition, cured product and printed wiring board
KR20140134465A (en) Photo-curable and thermo-curable resin composition and dry film solder resist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901275

Country of ref document: EP

Kind code of ref document: A1