WO2017122460A1 - Dry film and printed wiring board - Google Patents

Dry film and printed wiring board Download PDF

Info

Publication number
WO2017122460A1
WO2017122460A1 PCT/JP2016/086192 JP2016086192W WO2017122460A1 WO 2017122460 A1 WO2017122460 A1 WO 2017122460A1 JP 2016086192 W JP2016086192 W JP 2016086192W WO 2017122460 A1 WO2017122460 A1 WO 2017122460A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
dry film
epoxy resin
film
Prior art date
Application number
PCT/JP2016/086192
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 新
英司 播磨
貴幸 中条
諭 興津
良朋 青山
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN201680078987.6A priority Critical patent/CN108476589B/en
Priority to KR1020187022984A priority patent/KR102641274B1/en
Priority to JP2017561542A priority patent/JP6937701B2/en
Publication of WO2017122460A1 publication Critical patent/WO2017122460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a dry film and a printed wiring board, and more particularly to a dry film having a resin layer excellent in embedding property and flatness, and a printed wiring board having a cured product obtained by curing the dry film.
  • a dry film has been used as one of means for forming a protective film or an insulating layer such as a solder resist or an interlayer insulating layer provided on a printed wiring board used in an electronic device or the like (for example, Patent Documents 1 to 3).
  • a dry film has a resin layer obtained by applying a curable resin composition having desired characteristics on a carrier film and then undergoing a drying process, and generally protects the surface opposite to the carrier film.
  • the protective film for carrying out is distribute
  • the resin layer When laminating a resin layer of a dry film on a substrate, the resin layer is not sufficiently embedded in the unevenness of the circuit pattern on the substrate, and bubbles may be generated between the resin layer and the substrate. Such air bubbles sometimes impair the adhesion between the resin layer and the substrate.
  • an object of the present invention is to provide a dry film having a resin layer excellent in embedding property and flatness, and a printed wiring board having a cured product obtained by curing the dry film.
  • the melt viscosity at 100 ° C. is 60 to 5500 dPa ⁇ s
  • the storage elastic modulus at 100 ° C. is 10 to 5500 Pa
  • the liquid epoxy resin is 60% of the total amount of epoxy resin.
  • the dry film of the present invention is a dry film having a film and a resin layer containing an epoxy resin formed on the film, and the resin layer has a melt viscosity of 60 to 5500 dPa ⁇ s at 100 ° C.
  • the storage modulus of the resin layer is 80 to 5500 Pa at 100 ° C.
  • the resin layer contains at least a liquid epoxy resin as the epoxy resin, Content of the said liquid epoxy resin is less than 60 mass% with respect to the said epoxy resin total mass, It is characterized by the above-mentioned.
  • the amount of residual solvent in the resin layer is preferably 1.0 to 7.0% by mass.
  • the dry film of the present invention contains at least two organic solvents selected from the group consisting of N, N-dimethylformamide, toluene, cyclohexanone, aromatic hydrocarbons having 8 or more carbon atoms, and methyl ethyl ketone in the resin layer. It is preferable.
  • the resin layer further comprises at least one semi-solid epoxy resin selected from the group consisting of a bisphenol A type epoxy resin, a naphthalene type epoxy resin, and a phenol novolac type epoxy resin as the epoxy resin. It is preferable to include.
  • the resin layer preferably contains a filler, and the filler has an average particle size of 0.1 to 10 ⁇ m.
  • the resin layer contains a filler, and the content of the filler is 40 to 80% by mass per total resin layer (the total amount excluding the solvent when the resin layer contains a solvent). preferable.
  • the resin layer includes a filler
  • the filler includes a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, and an isocyanate group.
  • Surface treatment with at least one of a silane coupling agent having a vinyl group, a silane coupling agent having a vinyl group, a silane coupling agent having a styryl group, a silane coupling agent having an acrylic group, and a silane coupling agent having a methacryl group It is preferable that
  • the cured product of the present invention is obtained by curing the resin layer of the dry film.
  • the printed wiring board of the present invention is characterized by comprising the cured product.
  • the present invention it is possible to provide a dry film having a resin layer excellent in embedding property and flatness, and a printed wiring board comprising a cured product obtained by curing the dry film.
  • the dry film of the present invention is a dry film having a film and a resin layer formed on the film, wherein the resin layer has a melt viscosity of 60 to 5500 dPa ⁇ s at 100 ° C. And the resin layer contains at least a liquid epoxy resin as the epoxy resin, and the content of the liquid epoxy resin is 60% by mass with respect to the total amount of the epoxy resin. It is characterized by being less than.
  • both the melt viscosity and the storage elastic modulus of the resin layer are adjusted to the above ranges, and the ratio of the liquid epoxy resin contained in the resin layer to the total amount of the epoxy resin is less than 60% by mass. As a result, embedding and flatness are remarkably improved.
  • a cured film having a flat surface can be formed. Therefore, when a plating resist is formed on the dry film, omission of the plating resist line and development failure can be suppressed. . That is, according to the dry film of the present invention, a cured product having excellent plating resist formability can be obtained. As a result, a high-definition conductive circuit can be formed on the resin layer. On the other hand, when the melt viscosity of the resin layer of the dry film is less than 60 dPa ⁇ s at 100 ° C.
  • the melt viscosity of the resin layer exceeds 5500 dPa ⁇ s at 100 ° C. or the storage elastic modulus of the resin layer exceeds 5500 Pa at 100 ° C., it becomes difficult to obtain flatness of the outer surface of the resin layer.
  • the melt viscosity of the resin layer is preferably 400 to 3000 dPa ⁇ s at 100 ° C.
  • the storage elastic modulus of the resin layer is preferably 100 to 3500 Pa at 100 ° C.
  • the content of the liquid epoxy resin is 60% by mass or more with respect to the total amount of the epoxy resin, it is difficult to obtain the embedding property of the dry film and the flatness of the outer surface of the resin layer.
  • melt viscosity of the resin layer is 3000 dPa ⁇ s or less at 100 ° C. and the storage elastic modulus of the resin layer is 3000 Pa or less at 100 ° C. because of excellent flatness and plating resist formation.
  • melt viscosity of the resin layer is 100 dPa ⁇ s or more at 100 ° C. and the storage elastic modulus of the resin layer is 100 Pa or more at 100 ° C., it is preferable because bubbles are less likely to be entrained during lamination and the embedding property is more excellent. .
  • the melt viscosity of the resin layer is 500 to 3000 dPa ⁇ s at 100 ° C.
  • the storage elastic modulus of the resin layer is 500 to 3000 Pa at 100 ° C.
  • the method for adjusting the melt viscosity and storage modulus of the resin layer is not particularly limited, but can be easily adjusted by selecting the blending amount, particle size, type, and the like of the filler as described later. Moreover, it can adjust also with a thermosetting component or a hardening
  • FIG. 1 is a schematic sectional view showing an embodiment of the dry film of the present invention.
  • the resin layer 12 is a dry film 11 having a two-layer structure formed on the film 13. Further, as shown in FIG. 2, a dry film having a three-layer structure in which a resin layer 22 is formed on the first film 23 and a second film 24 is further laminated to protect the surface of the resin layer 22. 21 may be sufficient. If necessary, another resin layer may be provided between the film and the resin layer.
  • the resin layer of the dry film of the present invention is in a state generally referred to as a B stage state, and is obtained from a curable resin composition. Specifically, the resin layer of the dry film is obtained through a drying process after applying the curable resin composition to the film. As long as the said curable resin composition satisfy
  • the film thickness of the resin layer is not particularly limited, and for example, the film thickness after drying may be 1 to 200 ⁇ m. However, the thinner the resin layer, the more prominent the effect of the present invention. Specifically, the film thickness of the resin layer is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less, since the effects of the present invention are easily exhibited.
  • the resin layer includes an epoxy resin.
  • the epoxy resin is a resin having an epoxy group, and any conventionally known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. Note that a hydrogenated epoxy resin may be used.
  • the resin layer contains, as the epoxy resin, a liquid epoxy resin with a content of less than 60% by mass based on the total mass of the epoxy resin.
  • the resin layer contains at least one of a solid epoxy resin and a semi-solid epoxy resin as an epoxy resin other than the liquid epoxy resin.
  • a solid epoxy resin refers to an epoxy resin that is solid at 40 ° C.
  • a semi-solid epoxy resin refers to an epoxy resin that is solid at 20 ° C. and is liquid at 40 ° C. Means an epoxy resin that is liquid at 20 ° C.
  • thermomate (model BF500) assembled to this is turned on and set to a set temperature (20 ° C or 40 ° C), and the water temperature is set to a set temperature ⁇ 0.1 ° C.
  • fine adjustment was performed with a thermomate (model BF500), any apparatus capable of the same adjustment can be used.
  • test tube As shown in FIG. 3, the test tube is made of a flat bottom cylindrical transparent glass having an inner diameter of 30 mm and a height of 120 mm, and marked lines 31 and 32 are respectively provided at heights of 55 mm and 85 mm from the tube bottom.
  • the test tube 30a for liquid judgment with the mouth of the test tube sealed with a rubber member 33a, and a rubber plug 33b having the same size and the same marked line with a hole for inserting and supporting a thermometer in the center
  • a test tube 30b for temperature measurement in which the mouth of the test tube is sealed and a thermometer 34 is inserted into the rubber plug 33b is used.
  • thermometer 34 a marked line having a height of 55 mm from the tube bottom is referred to as “A line”, and a marked line having a height of 85 mm from the tube bottom is referred to as “B line”.
  • a line a marked line having a height of 55 mm from the tube bottom
  • B line a marked line having a height of 85 mm from the tube bottom
  • the thermometer 34 the one for freezing point measurement (SOP-58 scale range 20 to 50 ° C) specified in JIS B7410 (1982) "Petroleum test glass thermometer” is used, but the temperature is 0 to 50 ° C. It is sufficient if the range can be measured.
  • test tube 30a for liquid judgment is taken out of the low-temperature water bath and immediately tilted horizontally on a horizontal test stand, and the time when the tip of the liquid level in the test tube has moved from the A line to the B line is measured with a stopwatch. Measure and record. A sample is determined to be liquid when the measured temperature is 90 seconds or less at a set temperature, and solid when it exceeds 90 seconds.
  • Solid epoxy resins include HP-4700 (naphthalene type epoxy resin) manufactured by DIC, EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC, and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd.
  • Naphthalene type epoxy resin such as EPPN-502H (Trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Epoxy product of a condensate of phenols and aromatic aldehyde having a phenolic hydroxyl group (Trisphenol type epoxy resin); DIC Dicyclopentadiene aralkyl epoxy resin such as Epicron HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by Nihon Kayaku Co., Ltd .; biphenyl aralkyl such as NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Type epoch Biphenyl / phenol novolac type epoxy resin such as NC-3000L manufactured by Nippon Kayaku; Novolak type epoxy resin such as Epicron N660 and Epicron N690 manufactured by DIC, EOCN-104S manufactured by Nippon Kayaku; YX manufactured by Mitsubishi Chemical Corporation Biphenyl type epoxy resin such as ⁇ 4000; phosphorus-containing epoxy resin such as TX0712 manufactured by Nippon Steel & Sumikin Chemical Co .; tris (2,3-epoxypropyl) isocyanurate such as TEPIC manufactured by Nissan Chemical Industries, Ltd., and the like.
  • Semi-solid epoxy resins include DIC's Epicron 860, Epicron 900-IM, Epicron EXA-4816, Epicron EXA-4822, Asahi Ciba's Araldite AER280, Toto Kasei's Epoto YD-134, Mitsubishi Chemical's jER834, jER872, bisphenol A type epoxy resin such as ELA-134 manufactured by Sumitomo Chemical Co., Ltd .; naphthalene type epoxy resin such as Epicron HP-4032 manufactured by DIC; phenol novolac type epoxy resin such as Epicron N-740 manufactured by DIC .
  • the semisolid epoxy resin preferably contains at least one selected from the group consisting of bisphenol A type epoxy resins, naphthalene type epoxy resins and phenol novolac type epoxy resins.
  • Tg glass transition temperature
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin And alicyclic epoxy resins.
  • Epoxy resin can be used in combination of two or more.
  • the compounding amount of the epoxy resin is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 35% by mass based on the total amount of the resin layer of the dry film excluding the solvent.
  • the content of the liquid epoxy resin is preferably 5 to 45% by mass, more preferably 5 to 40% by mass, and particularly preferably 5 to 30% by mass with respect to the total mass of the epoxy resin. .
  • the resin layer preferably contains a filler.
  • a filler By containing the filler, the thermal properties of the dry film can be improved by combining the heat strength with a conductor layer such as copper around the insulating layer.
  • the filler conventionally known inorganic fillers and organic fillers can be used and are not limited to specific ones, but inorganic fillers that suppress the curing shrinkage of the coating film and contribute to the improvement of properties such as adhesion and hardness are preferred.
  • the inorganic filler for example, barium sulfate, barium titanate, barium zirconate titanate, strontium titanate, calcium titanate, calcium zirconate, magnesium titanate, bismuth titanate, barium neodymium titanate, barium tin titanate, Silica such as lead titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, Neuburg silica particles, boehmite, magnesium carbonate, calcium carbonate, titanium oxide, aluminum oxide, aluminum hydroxide, silicon nitride And extender pigments such as aluminum nitride, and metal powders such as copper, tin, zinc, nickel, silver, palladium, aluminum, iron, cobalt, gold and platinum.
  • Silica such as lead titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, Neuburg silic
  • the inorganic filler is preferably spherical particles.
  • the average particle size of the filler is preferably 0.1 to 10 ⁇ m. In the present specification, the average particle size of the filler is not only the particle size of the primary particles but also the average particle size including the particle size of the secondary particles (aggregates). The average particle size can be determined by a laser diffraction particle size distribution measuring device. An example of a measuring apparatus using the laser diffraction method is Nanotrac wave manufactured by Nikkiso Co., Ltd.
  • the inorganic filler is preferably surface-treated.
  • a surface treatment with a coupling agent is preferable.
  • a silane coupling agent a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Among these, a silane coupling agent is preferable.
  • silane coupling agent as an organic group, a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, a silane coupling agent having an isocyanate group, a vinyl group.
  • a silane coupling agent having a styryl group, a silane coupling agent having a methacryl group, a silane coupling agent having an acryl group, or the like can be used.
  • a silane coupling agent having an epoxy group and a silane coupling agent having an amino group are preferable because of excellent adhesion to a base circuit.
  • the inorganic filler may be subjected to a surface treatment such as alumina treatment that does not introduce an organic group.
  • the surface-treated inorganic filler only needs to be blended in the resin layer of the dry film in a surface-treated state.
  • the surface-untreated inorganic filler and the surface treatment agent are separately separated.
  • an inorganic filler may be surface-treated in the composition by blending, it is preferable to blend an inorganic filler that has been surface-treated in advance when adjusting the curable resin composition.
  • a pre-dispersion liquid in which an inorganic filler is pre-dispersed in a solvent is pre-dispersed in a solvent and the pre-dispersion liquid is blended in the composition, or More preferably, after pre-dispersing the untreated inorganic filler in the solvent, the pre-dispersed liquid is blended into the composition.
  • silica surface-treated with a silane coupling agent having a vinyl group in advance is blended, the dielectric loss tangent after humidification is excellent.
  • the alumina surface-treated with a silane coupling agent having a vinyl group in advance is blended, heat dissipation is excellent.
  • the blending amount of the filler is preferably 25 to 85% by mass, and more preferably 40 to 85% by mass based on the total amount of the resin layer of the dry film excluding the solvent.
  • the blending amount of the filler is 25 to 85% by mass, the embedding property is excellent.
  • a linear expansion coefficient can be made low as it is 25 mass% or more, and it is excellent in the thermal radiation characteristic.
  • the filling efficiency of the filler can be increased. Thereby, the dielectric loss tangent after humidification can be made low, a linear expansion coefficient can be made small, and the crack tolerance at the time of the thermal cycle after reflow can be improved.
  • the amount of residual solvent in the resin layer is preferably 1.0 to 7.0% by mass, more preferably 3.0 to 5.0% by mass, and 3.5 to 4.5% by mass. Even more preferably.
  • the residual solvent is 7.0% by mass or less, bumping at the time of thermosetting is suppressed, and the surface flatness is improved. Moreover, it can suppress that melt viscosity falls too much and resin flows, and flatness becomes favorable.
  • the residual solvent is 1.0% by mass or more, the fluidity during lamination is good, and the flatness and embedding are good. Further, when the residual solvent is 3.0 to 5.0% by mass, the handleability and the coating film characteristics of the dry film are excellent.
  • the resin layer contains at least two organic solvents selected from the group consisting of N, N-dimethylformamide, toluene, cyclohexanone, aromatic hydrocarbons having 8 or more carbon atoms, and methyl ethyl ketone.
  • organic solvents selected from the group consisting of N, N-dimethylformamide, toluene, cyclohexanone, aromatic hydrocarbons having 8 or more carbon atoms, and methyl ethyl ketone.
  • the curable resin composition is a thermosetting resin composition containing an epoxy resin such as a liquid epoxy resin.
  • an epoxy resin such as a liquid epoxy resin.
  • Photocurable Thermosetting Resin Composition Containing Photoagent, Photocurable Thermosetting Resin Composition Containing Photobase Generator, Photocurable Thermosetting Resin Composition Containing Photoacid Generator, Negative Type Photocurable thermosetting resin composition and positive photosensitive thermosetting resin composition, alkali development type photocurable thermosetting resin composition, solvent development type photocurable thermosetting resin composition, swelling release type Examples include, but are not limited to, thermosetting resin compositions and melt-peelable thermosetting resin compositions.
  • the epoxy resin such as a liquid epoxy resin include those exemplified as the epoxy resin contained in the resin layer.
  • Photocurable thermosetting resin composition As an example of the photocurable thermosetting resin composition, a resin composition containing a carboxyl group-containing resin and a photopolymerization initiator in addition to the epoxy resin will be described below.
  • the carboxyl group-containing resin can be rendered alkali developable by containing a carboxyl group. From the viewpoint of photocurability and development resistance, it is preferable to have an ethylenically unsaturated bond in the molecule in addition to the carboxyl group, but only a carboxyl group-containing resin having no ethylenically unsaturated bond is used. May be.
  • a compound (photosensitive monomer) having one or more ethylenically unsaturated bonds in the molecule is used in order to make the composition photocurable. There is a need.
  • carboxyl group-containing resins there are carboxyl group-containing resins having a copolymer structure, carboxyl group-containing resins having a urethane structure, carboxyl group-containing resins starting from an epoxy resin, and carboxyl group-containing resins starting from a phenol compound. preferable.
  • Specific examples of the carboxyl group-containing resin include compounds listed below (which may be either oligomers or polymers).
  • a bifunctional or higher polyfunctional epoxy resin as described later is reacted with (meth) acrylic acid, and a hydroxyl group present in the side chain is reacted with 2 such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc.
  • the bifunctional or higher polyfunctional epoxy resin is preferably solid.
  • a polyfunctional epoxy resin obtained by epoxidizing a hydroxyl group of a bifunctional epoxy resin as described later with epichlorohydrin is reacted with (meth) acrylic acid, and a dibasic acid anhydride is added to the resulting hydroxyl group.
  • the bifunctional epoxy resin is preferably solid.
  • An epoxy compound having two or more epoxy groups in one molecule is combined with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, and (meth) acrylic acid or the like.
  • Polybasic such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid, etc., with respect to the alcoholic hydroxyl group of the reaction product obtained by reacting with a saturated carboxylic acid containing monocarboxylic acid A carboxyl group-containing photosensitive resin obtained by reacting an acid anhydride.
  • Two or more per molecule such as bisphenol A, bisphenol F, bisphenol S, novolac type phenol resin, poly-p-hydroxystyrene, condensate of naphthol and aldehydes, condensate of dihydroxynaphthalene and aldehydes Reaction obtained by reacting an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid with a reaction product obtained by reacting a compound having a phenolic hydroxyl group with an alkylene oxide such as ethylene oxide or propylene oxide A carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
  • an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid
  • a reaction product obtained by reacting a compound having a phenolic hydroxyl group with an alkylene oxide such as ethylene oxide or propylene oxide
  • an alkylene oxide such as ethylene oxide or propylene oxide
  • a reaction product obtained by reacting a compound having two or more phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate is reacted with an unsaturated group-containing monocarboxylic acid.
  • Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A type A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a carboxyl group-containing urethane resin by a polyaddition reaction between a diisocyanate, a carboxyl group-containing dialcohol compound such as dimethylolpropionic acid or dimethylolbutyric acid, and a diol compound, a molecule such as hydroxyalkyl (meth) acrylate
  • a carboxyl group-containing urethane resin in which a compound having one hydroxyl group and one or more (meth) acryloyl groups is added and terminally (meth) acrylated.
  • a carboxyl group-containing urethane resin obtained by adding a compound having two isocyanate groups and one or more (meth) acryloyl groups, and then terminally (meth) acrylating.
  • Carboxy group-containing photosensitivity obtained by copolymerization of unsaturated carboxylic acid such as (meth) acrylic acid and unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene. resin.
  • unsaturated carboxylic acid such as (meth) acrylic acid
  • unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene. resin.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid such as adipic acid, phthalic acid or hexahydrophthalic acid and adding a dibasic acid anhydride to the primary hydroxyl group produced.
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups in one molecule, such as glycidyl (meth) acrylate and ⁇ -methylglycidyl (meth) acrylate .
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having a cyclic ether group and a (meth) acryloyl group in one molecule to the carboxyl group-containing resin of any one of (1) to (10) described above.
  • (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and a mixture thereof, and the same applies to other similar expressions below.
  • the acid value of the carboxyl group-containing resin is preferably 40 to 150 mgKOH / g.
  • the acid value of the carboxyl group-containing resin is 40 mgKOH / g or more, alkali development is improved.
  • the acid value is 50 to 130 mgKOH / g.
  • the blending amount of the carboxyl group-containing resin is preferably 20 to 60% by mass based on the total amount of the resin layer of the dry film excluding the solvent. Coating strength can be improved by setting it as 20 mass% or more. Further, when the content is 60% by mass or less, viscosity becomes appropriate and workability is improved. More preferably, it is 20 to 50% by mass.
  • the photopolymerization initiator known ones can be used, and among them, an oxime ester photopolymerization initiator having an oxime ester group, an ⁇ -aminoacetophenone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator. Agents and titanocene photopolymerization initiators are preferred.
  • a photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type.
  • the blending amount of the photopolymerization initiator is, for example, 0.1 to 30 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the blending amount is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the blending amount is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • each compounding amount is 0.01 to 15 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • it is 0.5 to 10 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • a photoinitiator or sensitizer may be used in combination with the above-described photopolymerization initiator.
  • the photoinitiation assistant or sensitizer include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds. These compounds may be used as a photopolymerization initiator in some cases, but are preferably used in combination with a photopolymerization initiator.
  • a photoinitiator auxiliary or a sensitizer may be used individually by 1 type, and may use 2 or more types together.
  • the photocurable thermosetting resin composition may contain a thermosetting component other than the epoxy resin for the purpose of improving characteristics such as heat resistance and insulation reliability.
  • thermosetting components include known and commonly used thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, polyfunctional oxetane compounds, and episulfide resins. Can be used.
  • the blending amount of the thermosetting component is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the photocurable thermosetting resin composition preferably contains a thermosetting catalyst.
  • thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
  • Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • the blending amount of the thermosetting catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15.0 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the photocurable thermosetting resin composition may contain a photosensitive monomer in addition to the above-described carboxyl group-containing resin, photopolymerization initiator, and epoxy resin.
  • the photosensitive monomer is a compound having one or more ethylenically unsaturated bonds in the molecule. The photosensitive monomer assists photocuring of the carboxyl group-containing resin by irradiation with active energy rays.
  • Examples of the compound used as the photosensitive monomer include conventionally known polyester (meth) acrylate, polyether (meth) acrylate, urethane (meth) acrylate, carbonate (meth) acrylate, and epoxy (meth) acrylate.
  • hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; N, N-dimethylacrylamide Acrylamides such as N-methylol acrylamide and N, N-dimethylaminopropyl acrylamide; aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate and N, N-dimethylaminopropyl acrylate; hexanediol, trimethylolpropane, Polyhydric alcohols such as pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate or the like Multivalent acrylates such as a thyroxide adduct, a propylene oxide adduct, or an ⁇ -caprolactone a
  • Epoxy acrylate resin obtained by reacting polyfunctional epoxy resin such as cresol novolac type epoxy resin with acrylic acid, and hydroxyl acrylate of the epoxy acrylate resin, hydroxy acrylate such as pentaerythritol triacrylate, and diisocyanate half urethane such as isophorone diisocyanate
  • polyfunctional epoxy resin such as cresol novolac type epoxy resin
  • hydroxy acrylate such as pentaerythritol triacrylate
  • diisocyanate half urethane such as isophorone diisocyanate
  • An epoxy urethane acrylate compound reacted with a compound may be used as the photosensitive monomer.
  • Such an epoxy acrylate resin can improve photocurability without deteriorating the touch drying property.
  • the compounding amount of the compound having an ethylenically unsaturated bond in the molecule used as the photosensitive monomer is preferably 5 to 100 parts by mass, more preferably 5 to 70 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. It is a ratio.
  • the photocurability of a photocurable thermosetting resin composition improves.
  • the coating-film hardness can be improved by making a compounding quantity into 100 mass parts or less.
  • the photocurable thermosetting resin composition preferably contains a filler in addition to the above-described components, and may contain other components such as a colorant, an elastomer, and a thermoplastic resin.
  • a filler in addition to the above-described components, and may contain other components such as a colorant, an elastomer, and a thermoplastic resin.
  • these components will also be described.
  • a filler can be blended as necessary in order to increase the physical strength of the obtained cured product.
  • a filler there is no restriction
  • a filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
  • the addition amount of the filler is preferably 500 parts by mass or less, more preferably 0.1 to 400 parts by mass, and particularly preferably 0.1 to 300 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the addition amount of the filler is 500 parts by mass or less, the viscosity of the photocurable thermosetting resin composition does not become too high, the printability is good, and the cured product is not easily brittle.
  • the photocurable thermosetting resin composition may contain a colorant.
  • a colorant known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
  • the addition amount of the colorant is not particularly limited, but is preferably 10 parts by mass or less, particularly preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • an elastomer can be blended in the photocurable thermosetting resin composition for the purpose of imparting flexibility to the obtained cured product and improving the brittleness of the cured product.
  • the elastomer include a polyester elastomer, a polyurethane elastomer, a polyester urethane elastomer, a polyamide elastomer, a polyesteramide elastomer, an acrylic elastomer, and an olefin elastomer.
  • resins obtained by modifying some or all of the epoxy groups of epoxy resins having various skeletons with carboxylic acid-modified butadiene-acrylonitrile rubbers at both ends can also be used.
  • epoxy-containing polybutadiene elastomers acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers and the like can also be used.
  • One type of elastomer may be used alone, or a mixture of two or more types may be used.
  • the amount of the elastomer added is preferably 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 30 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
  • the addition amount of the elastomer is 50 parts by mass or less, the alkali developability of the photocurable thermosetting resin composition becomes good, and the developable pot life is not easily shortened.
  • the photocurable thermosetting resin composition may contain components such as a block copolymer, an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary.
  • a block copolymer such as polyethylene glycol dimethacrylate copolymer
  • an adhesion promoter such as polyethylene glycol dimethacrylate copolymer
  • an antioxidant such as sodium metabisulfite
  • an ultraviolet absorber such as sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium
  • the organic solvent that can be used is not particularly limited, and examples thereof include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. be able to.
  • ketones such as methyl ethyl ketone, cyclohexanone, methyl butyl ketone, methyl isobutyl ketone, and methyl ethyl ketone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl Glycol ethers such as carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether Class: ethyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ester Esters such as tera
  • a conventionally known method may be used as a method for producing a printed wiring board using a dry film having a resin layer made of a photo-curable thermosetting resin composition.
  • a printed wiring board can be produced by the following method.
  • the second film is peeled off from the dry film to expose the resin layer, and the resin layer of the dry film is laminated on the substrate on which the circuit pattern is formed using a vacuum laminator or the like, and pattern exposure is performed on the resin layer.
  • the first film may be peeled off either after exposure after lamination or after exposure.
  • a patterned resin layer is formed on the substrate, and the patterned resin layer is cured by light irradiation and heat to form a cured coating, thereby producing a printed wiring board.
  • Can do
  • thermosetting resin composition As an example of the thermosetting resin composition, a resin composition containing no epoxy resin and containing an epoxy resin will be described below.
  • thermosetting resin composition it is preferable to add a filler to the thermosetting resin composition, and the physical strength of the obtained cured product can be increased.
  • a filler there is no restriction
  • a filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
  • organic solvent which can be used
  • the organic solvent illustrated with the said photocurable thermosetting resin composition is mentioned.
  • An organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • the thermosetting resin composition can contain a curing agent.
  • the curing agent include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, maleimide compounds, and alicyclic olefin polymers.
  • curing agent can be used individually by 1 type or in combination of 2 or more types.
  • the dielectric loss tangent after humidification can be lowered by using at least a cyanate ester resin or an active ester resin.
  • the crack resistance during the cooling / heating cycle after reflow is improved.
  • the resin layer is composed of a thermosetting resin composition
  • bubbles are likely to be generated when cured at a high temperature, but according to the dry film of the present invention, curing at a high temperature such as a phenol resin, an active ester resin, a cyanate ester resin, etc. Even when it contains a curing agent that requires a small amount of bubbles, it is difficult for bubbles to form after curing.
  • the curing agent preferably has a structure of at least one of a biphenyl skeleton and a naphthol skeleton.
  • phenol resin examples include a phenol novolak resin, an alkylphenol volac resin, a bisphenol A novolak resin, a dicyclopentadiene type phenol resin, an Xylok type phenol resin, a terpene-modified phenol resin, a cresol / naphthol resin, a polyvinylphenol, and a phenol / naphthol resin.
  • ⁇ -naphthol skeleton-containing phenol resin, triazine skeleton-containing cresol novolak resin, biphenyl aralkyl type phenol resin, zylock type phenol novolak resin, and the like can be used singly or in combination of two or more. .
  • the hydroxyl group equivalent is 130 g / eq.
  • the above are preferable, and 150 g / eq. The above is more preferable.
  • Hydroxyl equivalent weight is 130 g / eq.
  • the phenol resin include a dicyclopentadiene skeleton phenol novolak resin (GDP series, manufactured by Gunei Chemical Co., Ltd.), a zylock type phenol novolac resin (MEH-7800, manufactured by Meiwa Kasei Co., Ltd.), and a biphenylaralkyl type novolak resin (MEH).
  • the cyanate ester resin is a compound having two or more cyanate ester groups (—OCN) in one molecule. Any conventionally known cyanate ester resins can be used. Examples of the cyanate ester resin include phenol novolac type cyanate ester resin, alkylphenol novolak type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type cyanate ester resin. Is mentioned. Further, it may be a prepolymer partially triazine.
  • the active ester resin is a resin having two or more active ester groups in one molecule.
  • the active ester resin can generally be obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound.
  • an active ester compound obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.
  • the active ester resin may be naphthalenediol alkyl / benzoic acid type.
  • the maleimide compound is a compound having a maleimide skeleton, and any conventionally known compound can be used.
  • the maleimide compound preferably has two or more maleimide skeletons, and N, N′-1,3-phenylene dimaleimide, N, N′-1,4-phenylene dimaleimide, N, N′-4,4- Diphenylmethane bismaleimide, 1,2-bis (maleimide) ethane, 1,6-bismaleimide hexane, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, bis (3-ethyl -5-methyl-4-maleimidophenyl) methane, bisphenol A dipheny
  • the ratio of the functional group in the curing agent that reacts with the functional group such as the epoxy group of the thermosetting component and the functional group in the curing agent that reacts with the functional group is the curing agent functional group / thermosetting reaction.
  • the functional group (equivalent ratio) is preferably in a ratio of 0.2 to 2.
  • the functional group equivalent (g / eq.) Of the phenol resin, cyanate ester resin, active ester resin, and maleimide compound is 200 or more, warpage can be reduced.
  • the thermosetting resin composition can further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured film.
  • the thermoplastic resin is preferably soluble in a solvent. When it is soluble in the solvent, the flexibility of the dry film is improved, and the generation of cracks and powder falling can be suppressed.
  • the thermoplastic resin use is made of thermoplastic polyhydroxy polyether resin, phenoxy resin that is a condensate of epichlorohydrin and various bifunctional phenolic compounds, or hydroxyl group of hydroxy ether part present in the skeleton of various acid anhydrides and acid chlorides. And esterified phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamideimide resin, block copolymer and the like.
  • a thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the thermoplastic resin is 0.5 to 20% by mass, preferably 0.5 to 10% by mass, based on the total amount of the resin layer excluding the solvent.
  • the blending amount of the thermoplastic resin is out of the above range, it becomes difficult to obtain a uniform roughened surface state.
  • thermosetting resin composition can contain rubber-like particles as necessary.
  • rubber-like particles include polybutadiene rubber, polyisopropylene rubber, urethane-modified polybutadiene rubber, epoxy-modified polybutadiene rubber, acrylonitrile-modified polybutadiene rubber, carboxyl group-modified polybutadiene rubber, acrylonitrile butadiene rubber modified with a carboxyl group or a hydroxyl group, and
  • These crosslinked rubber particles, core-shell type rubber particles, and the like can be mentioned, and one kind can be used alone or two or more kinds can be used in combination.
  • These rubber-like particles are added to improve the flexibility of the resulting cured film, improve crack resistance, enable surface roughening treatment with an oxidizing agent, and improve adhesion strength with copper foil, etc. Is done.
  • the average particle size of the rubber-like particles is preferably in the range of 0.005 to 1 ⁇ m, more preferably in the range of 0.2 to 1 ⁇ m.
  • the average particle size of the rubber-like particles in the present invention can be determined by a laser diffraction particle size distribution measuring device. For example, rubber-like particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of the rubber-like particles is created on a mass basis using Nanotrac wave manufactured by Nikkiso Co., Ltd. It can be measured by doing.
  • the compounding amount of the rubber-like particles is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, based on the total amount of the resin layer excluding the solvent. In the case of 0.5% by mass or more, crack resistance is obtained, and the adhesion strength with a conductor pattern or the like can be improved. When the content is 10% by mass or less, the coefficient of thermal expansion (CTE) decreases, the glass transition temperature (Tg) increases, and the curing characteristics are improved.
  • CTE coefficient of thermal expansion
  • Tg glass transition temperature
  • the resin layer of the dry film of the present invention can contain a curing accelerator.
  • the curing accelerator is for accelerating the thermosetting reaction, and is used for further improving properties such as adhesion, chemical resistance, and heat resistance.
  • Specific examples of such curing accelerators include imidazole and derivatives thereof; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, Polyamines such as melamine and polybasic hydrazides; organic acid salts and / or epoxy adducts thereof; boron trifluoride amine complexes; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4- Triazine derivatives such as diamino-6-
  • a hardening accelerator can be used individually by 1 type or in mixture of 2 or more types.
  • the use of a curing accelerator is not essential, but when it is desired to accelerate the curing, it can be used preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the thermosetting component.
  • a metal catalyst it is preferably 10 to 550 ppm, preferably 25 to 200 ppm in terms of metal with respect to 100 parts by mass of the thermosetting component.
  • thermosetting resin composition may further include, as necessary, conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, asbestos, Conventionally known thickeners such as olben, benton and fine silica, adhesion of antifoaming and / or leveling agents such as silicones, fluorines and polymers, thiazoles, triazoles and silane coupling agents Conventionally known additives such as imparting agents, flame retardants, titanates, and aluminum can be used.
  • conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, asbestos
  • thickeners such as olben, benton and fine silica
  • adhesion of antifoaming and / or leveling agents such as silicones, fluorines and polymers, thi
  • a printed wiring board can be produced by the following method.
  • the second film is peeled off from the dry film, heat laminated to the circuit board on which the circuit pattern is formed, and then thermally cured.
  • the heat curing may be performed in an oven or by a hot plate press.
  • a printed wiring board can be manufactured by forming a pattern or a via hole by laser irradiation or drilling at a position corresponding to a predetermined position on the substrate on which the circuit pattern is formed, and exposing the circuit wiring. At this time, if there is a component (smear) that cannot be completely removed on the circuit wiring in the pattern or via hole, desmear processing is performed.
  • the first film may be peeled off after lamination, after heat curing, after laser processing, or after desmear treatment.
  • Photocurable thermosetting resin composition containing a photobase generator As an example of a photocurable thermosetting resin composition containing a photobase generator (hereinafter also referred to as a photobase generator-containing composition), in addition to an epoxy resin, an alkali developable resin, a photobase generator, The composition containing is described below.
  • the alkali-developable resin is a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution, preferably a compound having two or more phenolic hydroxyl groups, carboxyl Examples thereof include a group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
  • the carboxyl group-containing resin a known resin containing a carboxyl group can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable. In addition to the carboxyl group, a compound having an ethylenically unsaturated bond in the molecule may be used. In the present invention, the carboxyl group-containing resin does not have an ethylenically unsaturated bond as the carboxyl group-containing resin. It is preferable to use only.
  • the compounds as listed any of oligomers and polymers may be mentioned.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers
  • a carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are introduced into the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • the carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
  • a polyfunctional epoxy resin as described above is reacted with a saturated monocarboxylic acid, and a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride or hexahydrophthalic anhydride is added to the hydroxyl group present in the side chain.
  • Carboxyl group-containing resin is preferably solid.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin as described later with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide.
  • a saturated monocarboxylic acid is reacted with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide.
  • a carboxyl group-containing resin obtained by reacting a basic acid anhydride.
  • polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc.
  • Such an alkali-developable resin has a large number of carboxyl groups, hydroxyl groups, and the like in the side chain of the backbone polymer, so that development with an alkaline aqueous solution becomes possible.
  • the hydroxyl group equivalent or carboxyl group equivalent of the alkali developable resin is 80 to 900 g / eq. And more preferably 100 to 700 g / eq. It is. Hydroxyl group equivalent or carboxyl group equivalent is 900 g / eq. In the following cases, adhesion of the pattern layer is obtained, and alkali development becomes easy.
  • the hydroxyl group equivalent or the carboxyl group equivalent is 80 g / eq.
  • the above case is preferable because dissolution of the light-irradiated portion by the developer is suppressed, and a normal resist pattern can be easily drawn without losing lines more than necessary. Further, it is preferable that the carboxyl group equivalent or the phenol group equivalent is large because development is possible even when the content of the alkali-developable resin is small.
  • the acid value of the alkali developable resin is preferably 40 to 150 mgKOH / g.
  • the acid value of the alkali-developable resin is 40 mgKOH / g or more, alkali development is improved.
  • the acid value is 50 to 130 mgKOH / g.
  • the blending amount of the alkali developing resin is preferably 20 to 60% by mass based on the total amount of the resin layer of the dry film excluding the solvent. Coating strength can be improved by setting it as 20 mass% or more. Further, when the content is 60% by mass or less, the viscosity becomes appropriate and the coating property is improved. More preferably, it is 30 to 50% by mass.
  • One or more photobase generators can function as a catalyst for the addition reaction of the above-mentioned thermoreactive compound when the molecular structure is changed by irradiation with light such as ultraviolet rays or visible light, or when the molecule is cleaved. It is a compound that produces a basic substance. Examples of basic substances include secondary amines and tertiary amines.
  • photobase generators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group.
  • the photobase generator may be used alone or in combination of two or more.
  • the blending amount of the photobase generator in the photobase generator-containing composition is preferably 1 to 50 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of the thermoreactive compound.
  • the amount of 1 part by mass or more is preferable because development is easy.
  • a filler it is preferable to add a filler to the photobase generator-containing composition, and the physical strength and the like of the resulting cured product can be increased.
  • a filler there is no restriction
  • a filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
  • organic solvent which can be used
  • the organic solvent illustrated with the said photocurable thermosetting resin composition is mentioned.
  • An organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • the photobase generator-containing composition may further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber.
  • a mercapto compound such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite
  • antifoaming agents such as silicone, fluorine, and polymer.
  • well-known and usual additives such as a leveling agent, a silane coupling agent, a rust preventive agent, can be mix
  • a method for producing a printed wiring board using a dry film having a resin layer composed of a photobase generator-containing composition a conventionally known method may be used.
  • a printed wiring board can be produced by the following method. The second film is peeled from the dry film to expose the resin layer, and the dry film is laminated on the substrate on which the circuit pattern is formed using a vacuum laminator or the like.
  • the photobase generator contained in the photobase generator-containing resin composition is activated by negative pattern light irradiation to cure the light irradiated portion, and the negative portion is removed by alkali development to remove the unirradiated portion.
  • a pattern layer of the mold can be formed.
  • the first film may be peeled off either after lamination or after exposure.
  • the heating after light irradiation and before development is preferably a temperature at which the unirradiated part is not thermally cured.
  • thermosetting post-cure
  • ultraviolet curing may be performed to activate the photobase generator remaining without being activated at the time of light irradiation, and then heat curing (post-cure) may be performed.
  • thermosetting resin composition As an example of a positive photosensitive thermosetting resin composition, a resin composition containing a compound that generates a carboxyl group by light irradiation in addition to an epoxy resin will be described below.
  • Naphthoquinone diazide compounds are conventionally used in systems that suppress alkali solubility such as carboxyl groups by forming complexes with carboxyl groups and phenolic hydroxyl groups, and then dissociate the complex by subsequent light irradiation to develop alkali solubility. ing. In this case, if the naphthoquinone diazide compound remains in the film, the complex may be dissociated by light irradiation and the solubility may be expressed.
  • a naphthoquinone diazide compound when used as a compound that generates a carboxyl group by light irradiation, the naphthoquinone diazide compound remaining in the unexposed part is incorporated into the crosslinked structure during the thermosetting reaction and is stabilized,
  • the film toughness that is, the bending resistance and the electrical characteristics can be improved without causing the conventional removal problem.
  • naphthoquinone diazide compound as a compound that generates a carboxyl group by light irradiation is used in combination with polyamideimide resin and thermosetting component to ensure good developability and resolution while ensuring flexibility. This is preferable because it can be improved.
  • naphthoquinonediazide compound examples include, for example, naphthoquinonediazide adduct of tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene (for example, TS533, TS567, TS583, TS593 manufactured by Sanpo Chemical Laboratory Co., Ltd.). ), Naphthoquinonediazide adducts of tetrahydroxybenzophenone (for example, BS550, BS570, BS599 manufactured by Sanpo Chemical Laboratory Co., Ltd.) and the like can be used.
  • naphthoquinonediazide compound examples include, for example, naphthoquinonediazide adduct of tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene (for example, TS533, TS567, TS583, TS593 manufactured by Sanpo Chemical Laboratory Co., Ltd.).
  • a filler to the positive photosensitive thermosetting resin composition, and the physical strength of the resulting cured product can be increased.
  • a filler there is no restriction
  • a filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
  • alkali-developable resin contained in the positive photosensitive thermosetting resin composition include the carboxyl group-containing resin exemplified in the photocurable thermosetting resin composition, and the photobase generator-containing composition. Examples thereof include alkali developable resins.
  • the positive photosensitive thermosetting resin composition may contain a thermosetting component other than the epoxy resin for the purpose of improving characteristics such as heat resistance and insulation reliability.
  • a thermosetting component known and commonly used thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, polyfunctional oxetane compounds, and episulfide resins can be used. .
  • organic solvent which can be used
  • the organic solvent illustrated with the said photocurable thermosetting resin composition is mentioned.
  • An organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • the positive photosensitive thermosetting resin composition preferably contains a filler.
  • a filler there is no restriction
  • a filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
  • the positive photosensitive thermosetting resin composition may contain other components such as a block copolymer, a colorant, an elastomer, and a thermoplastic resin in addition to the components described above.
  • the positive photosensitive thermosetting resin composition may further contain components such as an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary. As these, those known in the field of electronic materials can be used.
  • known and commonly used thickeners such as fine silica, hydrotalcite, organic bentonite, montmorillonite, at least one of defoamers and leveling agents such as silicone, fluorine, and polymer, imidazole, and thiazole
  • a silane coupling agent such as a triazole or triazole
  • a rust inhibitor such as a rust inhibitor
  • a fluorescent brightening agent can be blended.
  • a conventionally known method may be used as a method for producing a printed wiring board using a dry film having a resin layer made of a positive photosensitive thermosetting resin composition.
  • a printed wiring board can be produced by the following method. The second film is peeled from the dry film, the resin layer is exposed, and the dry film is laminated on the substrate on which the circuit pattern is formed using a vacuum laminator or the like. Thereafter, the resin layer is irradiated with light in a positive pattern, the resin layer is alkali-developed, and the light irradiation portion is removed, whereby a positive pattern layer can be formed.
  • the first film may be peeled off either after lamination or after exposure.
  • a printed wiring board can be manufactured by heat-hardening (post-cure) a resin layer after image development, and hardening
  • a composition that is soluble in an alkali developer is changed by an acid generated by light irradiation, so that a positive pattern can be formed by alkali development.
  • the film When laminating a dry film having a resin layer sandwiched between a carrier film and a protective film, in many cases, the protective film is peeled off and the surface of the resin layer on the side in contact with the protective film is the base. Laminated to contact the material.
  • the carrier film may be peeled and laminated so that the surface of the resin layer on the side in contact with the carrier film is in contact with the substrate.
  • the resin layer is sandwiched between the first film and the second film as shown in FIG. 2 by the carrier film and the protective film.
  • the film on the side in contact with the surface of the resin layer that comes into contact with the substrate when laminating to the substrate is the second film
  • the surface in contact with the resin layer of the second film is The arithmetic average surface roughness Ra is preferably from 0.1 to 1.2 ⁇ m, more preferably from 0.3 to 1.2 ⁇ m, and even more preferably from 0.4 to 1.2 ⁇ m.
  • arithmetic mean surface roughness Ra means the value measured based on JISB0601.
  • the second film may be either a carrier film or a protective film.
  • the first film is a carrier film and the second film is a protective film.
  • the carrier film has a role of supporting the resin layer of the dry film, and is a film to which the curable resin composition is applied when the resin layer is formed.
  • a polyester film such as polyethylene terephthalate or polyethylene naphthalate, a polyimide film, a polyamideimide film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a film made of a thermoplastic resin such as a polystyrene film, and Surface-treated paper or the like can be used.
  • polyester films can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability, and the like.
  • the thickness of the carrier film is not particularly limited, but is appropriately selected depending on the intended use within a range of about 10 to 150 ⁇ m.
  • the surface on which the resin layer of the carrier film is provided may be subjected to release treatment.
  • the surface which provides the resin layer of a carrier film may form sputter
  • the protective film is provided on the surface opposite to the carrier film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the dry film and improving the handleability.
  • a film made of a thermoplastic resin exemplified for the carrier film, surface-treated paper, and the like can be used.
  • a polyester film, a polyethylene film, and a polypropylene film are preferable.
  • the thickness of the protective film is not particularly limited, but is appropriately selected depending on the intended use within a range of about 10 to 150 ⁇ m.
  • the surface on which the resin layer of the protective film is provided may be subjected to a mold release treatment.
  • thermoplastic resin film As the second film having the arithmetic average surface roughness Ra as described above, a filler is added to the resin when forming the film, or the film surface is blasted.
  • the surface can be made into a predetermined form by hairline processing, mat coating, chemical etching, or the like, and a thermoplastic resin film having the arithmetic average surface roughness Ra can be obtained.
  • the arithmetic average surface roughness Ra can be controlled by adjusting the particle size and the addition amount of the filler.
  • the arithmetic average surface roughness Ra can be controlled by adjusting processing conditions such as blasting material and blast pressure.
  • thermoplastic resin film having such a surface roughness may be used.
  • Lumirror X42, Lumirror X43, Lumirror X44 manufactured by Toray Industries, Inc. Emblet PTH-12, Emblet PTH manufactured by Unitika -25, emblet PTHA-25, emblet PTH-38, Alfane MA-411, MA-420, E-201F and ER-440 manufactured by Oji F-Tex.
  • the first film preferably has an arithmetic average surface roughness Ra of 0.1 ⁇ m or less on the surface in contact with the resin layer.
  • Ra arithmetic average surface roughness
  • the thickness A of the first film is preferably larger than the thickness B of the second film because the second film can be easily peeled off. More preferably, the difference (A ⁇ B) between the thickness A and the thickness B is 1 ⁇ m or more. Further, if there is a difference in thickness between the first film and the second film, it becomes easy to recognize which film is the touch or the appearance, and an operational error can be prevented.
  • the thickness of the first film is preferably 10 to 100 ⁇ m, more preferably 15 ⁇ m or more. In the case of 10 ⁇ m or more, after laminating the dry film on the base material, even if the first film is heat-treated without being peeled off, the first film is difficult to heat shrink, and the thickness is not uniform due to the heat shrinking, It is possible to prevent deterioration in quality such that the resin layer flows along the streaks generated in the first film due to the shrinkage, and the streaks are also generated in the resin layer.
  • the first film is exposed to light such as the above thermoplastic resin so that the first dry film can be exposed without peeling. It is preferable to use a permeable material. In that case, the thickness of the first film is preferably 45 ⁇ m or less. When it is 45 ⁇ m or less, undercut is reduced. More preferably, it is 40 ⁇ m or less.
  • the cured product of the resin layer of the dry film of the present invention is excellent in forming a plating resist, it is preferably used for forming an interlayer insulating layer.
  • Examples 1 to 34 and Comparative Examples 1 to 12 ⁇ Production of dry film>
  • Each component was blended according to the formulations shown in the Examples and Comparative Examples described in Tables 1, 3, 5, 7, 9, 11, 13 and 15 below, and dispersed in a roll mill, and the viscosity was 0.5 to 20 dPa ⁇ s (rotation).
  • the curable resin composition was adjusted to have a viscometer of 5 rpm and 25 ° C.
  • the carrier film was peeled off using a viscosity / viscoelasticity measuring device Rheostress RS-6000 (manufactured by HAAKE), and then the temperature-viscoelasticity of each resin layer was measured.
  • the measurement conditions were as follows: temperature increase mode 5 ° C./min, oscillation mode strain amount 8%, frequency 1 Hz, parallel plate of measurement sensor ⁇ 20 mm, and gap 300 ⁇ m between sensors. By thickening the resin layer with respect to the gap, a sufficient resin thickness can be secured between the gaps even during heating. From the temperature-storage elastic modulus G ′ and viscosity ⁇ curves measured by the method as described above, the storage elastic modulus and melt viscosity at 100 ° C. are expressed as “resin layer storage elastic modulus G ′” and “resin layer It was referred to as “melt viscosity”. The measurement results are shown in the table.
  • Lamination was carried out under the conditions of 5 kgf / cm 2 , 100 ° C., 1 minute, 1 Torr, and then leveled in the hot plate press step under the conditions of 10 kgf / cm 2 , 100 ° C., 1 minute. After laminating, air entered the boundary between the line and the space, and whether or not bubbles were generated was confirmed after peeling the carrier film at 100 locations. What was evaluated by this method was defined as “after lamination”. Next, the evaluation of the presence or absence of generation of bubbles in the state where the resin layer was cured was regarded as “after curing”. The curing conditions are detailed in the next section. The evaluation criteria are as follows. ⁇ : No void was confirmed. ⁇ : 1 to 5 voids were confirmed. X: Viscosity and elastic modulus were high and could not be embedded in a substrate having fine wires.
  • the curing system is thermosetting
  • the resin layer was cured at 180 ° C. for 30 minutes in a hot air circulation drying oven and then at 200 ° C. for 60 minutes to completely cure the resin layer.
  • the curing system is light / thermosetting, it is photocured at an exposure amount of 300 mJ / cm 2 (i-line, Ushio projection exposure machine) so that the thin line portion is completely exposed from the carrier film. Then, the carrier film was peeled off.
  • the evaluation criteria are as follows. A: On a fine circuit, the unevenness has a maximum tolerance of less than 0.3 ⁇ m. At the same time, copper burn of the fine circuit was not observed. ⁇ : On the fine circuit, the unevenness has a maximum tolerance of less than 0.3 ⁇ m. ⁇ : Concavities and convexities are maximum and tolerance is 0.3 ⁇ m or more and less than 1.0 ⁇ m on a fine circuit. ⁇ : On the fine circuit, the unevenness is maximum and the tolerance is 1.0 ⁇ m or more. XX: Concavities and convexities are maximum and the tolerance is 5.0 ⁇ m or more on a fine circuit. The unevenness of the circuit was noticeable.
  • Etching treatment corresponding to 0.5 ⁇ m was performed on the glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (manufactured by Furukawa Circuit Foil Co., Ltd.) by CZ-8101 treatment manufactured by MEC. Thereafter, the respective dry films are laminated on the treated surface side by the method described in ⁇ embedding property (bubble generation FLS)>, and then the method of ⁇ flatness of substrate after curing> The resin layer was completely cured.
  • ⁇ Formability of plating resist> The cured substrate produced by the method described in ⁇ Flatness of Substrate After Curing> was further evaluated by forming a plating resist on the surface thereof. Specifically, the cured substrate thus produced was swelled at 60 ° C. for 5 minutes, permanganic acid at 80 ° C. for 20 minutes, and reduced at 50 ° C. at a permanganate desmear treatment (manufactured by Atotech, Securigant MV series for vertical desmear). The surface of the substrate was roughened by performing a partial treatment.
  • a copper seed layer having a thickness of 0.3 ⁇ m was formed on the surface of the substrate using an electroless copper plating process (manufactured by Uemura Kogyo Co., Ltd., alkali ion type Pd). Thereafter, the surface of the copper seed layer was degreased with alkali, and then a plating resist Fortec RY-3625 (manufactured by Hitachi Chemical Co., Ltd., SAP plating resist, thickness 25 ⁇ m) was used under a pressure condition of 110 ° C. and 0.4 MPa using a roll laminator. The substrates were bonded to each other.
  • EXP-2960 manufactured by Oak Manufacturing Co., Ltd., parallel light exposure machine.
  • a negative mask a negative pattern was formed on the substrate surface with an exposure amount of 100 mJ / cm 2 .
  • substrate it observed using SEM.
  • ⁇ Dielectric loss tangent after humidification> A dry film having a resin layer thickness of 15 ⁇ m prepared by the method described in ⁇ Preparation of Dry Film> is placed on the glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (Furukawa Circuit Foil Co., Ltd.). Lamination was performed by the method described in (FLS)>, and then the resin layer was completely cured by the method ⁇ Flatness of substrate after curing>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 15 ⁇ m. The obtained cured product is stored in a high-temperature and high-humidity tank set at a temperature of 85 ° C.
  • the dielectric loss tangent at the time of humidification of 5.1 GHz at 23 ° C. was measured. Judgment criteria are as follows. A: The dielectric loss tangent at 5 GHz is less than 0.005. A: The dielectric loss tangent at 5 GHz is 0.005 or more and less than 0.01. ⁇ : Dielectric loss tangent at 5 GHz is 0.01 or more and less than 0.015. (Triangle
  • ⁇ Heat dissipation characteristics> A cured product of 15 ⁇ m obtained by the same method as in ⁇ Dielectric loss tangent after humidification> was measured for the thermal conductivity of the cured product in accordance with the method described in JIS-R1611. Judgment criteria are as follows. A: Thermal conductivity is 1 W / m ⁇ K or more. ⁇ : Thermal conductivity is 0.3 W / m ⁇ K or more and less than 1 W / m ⁇ K. ⁇ : Thermal conductivity is less than 0.3 W / m ⁇ K. X: Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
  • CTE below glass transition temperature is 10 ppm or more and less than 17 ppm.
  • CTE below glass transition temperature is 17 ppm or more and less than 30 ppm.
  • delta CTE below a glass transition temperature is 30 ppm or more.
  • Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
  • ⁇ Board warpage> On a copper clad laminate having a thickness of 200 ⁇ m and a size of 100 ⁇ 100 mm (MCL-E-770G, Hitachi Chemical Co., Ltd., copper thickness of 18 ⁇ m, pre-treated with etching equivalent to CZ-8101 1 ⁇ m) > Using a vacuum laminator to laminate a dry film with a resin thickness of 15 ⁇ m, prepared by the method described in>, and then peeling off the carrier film, and then completely curing the resin layer using a hot air circulating drying oven I let you. About the obtained board
  • A The maximum value of warpage is less than 3 mm.
  • The maximum value of warpage is 3 mm or more and less than 15 mm.
  • delta) The maximum value of curvature is 15 mm or more.
  • Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
  • vias were formed using a CO 2 laser processing machine (manufactured by Hitachi Via Mechanics) so that the top diameter was 65 ⁇ m and the bottom diameter was 50 ⁇ m.
  • the curing system is light / thermosetting, exposure and development are performed using a negative pattern of ⁇ 65 ⁇ m by the method described in ⁇ Flatness of Substrate After Curing>, and then UV irradiation and main curing are performed. And vias were formed.
  • the obtained via pattern is processed in the order of commercially available wet permanganate desmear (manufactured by ATOTECH), electroless copper plating (Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.), and electrolytic copper plating treatment in order. Copper plating treatment was performed so as to fill the via thickness with a copper thickness of 25 ⁇ m. Subsequently, the test board
  • test substrate was subjected to a reflow treatment three-cycle thermal shock under the lead-free assembly conditions (peak temperature: 270 ° C., 10 seconds), and then subjected to 30 minutes at ⁇ 65 ° C. and 30 minutes at 150 ° C. for 1 minute.
  • a cold cycle treatment was performed.
  • the central portion of the via was cut and polished with a precision cutting machine, and the cross-sectional state was observed. Evaluation criteria were evaluated according to the following. The number of observation vias was 100 holes.
  • No crack occurred after 2000 cycles. 1 to 5 cracks occurred in 3000 cycles.
  • 1 to 5 cracks occurred after 2000 cycles.
  • X The test piece could not be produced because the melt viscosity and the storage elastic modulus exceeded the optimum range.
  • ⁇ Relative permittivity> A dry film having a resin layer thickness of 15 ⁇ m prepared by the method described in ⁇ Preparation of Dry Film> is placed on the glossy surface of electrolytic copper foil GTS-MP-18 ⁇ m (Furukawa Circuit Foil Co., Ltd.). Lamination was performed by the method described in (FLS)>, and then the resin layer was completely cured by the method ⁇ Flatness of substrate after curing>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 15 ⁇ m. About the obtained hardened
  • ⁇ Circuit concealment> A cured film was formed on the fine circuit board by the methods described in the above ⁇ Embedment property (bubble generation FLS)> and ⁇ Flatness of substrate after curing>, and then the carrier film was peeled off to obtain a printed wiring board. About the obtained evaluation board
  • TGIC triglycidyl isocyanurate (solid epoxy resin), epoxy equivalent: 99 g / eq * 5: Mitsubishi Chemical 1003, Bis-A type solid epoxy resin, epoxy equivalent: 720 g / eq * 6: TD-2131 manufactured by DIC, phenol novolac resin, hydroxyl group equivalent: 104 g / eq * 7: MEH-7851-4H manufactured by Meiwa Kasei Co., Ltd., biphenyl aralkyl type phenol resin, hydroxyl group equivalent: 240 g / eq * 8: DIC LA-3018, ATN-containing phenol novolac resin, hydroxyl equivalent: 151 g / eq * 9: Maruka Linker M manufactured by Maruzen Chemical Co., polyvinylphenol, hydroxyl group equivalent of 120 g / eq * 10: PT-30 manufactured by Lonza Japan, novolak-type cyanate ester resin, cyanate equivalent: 124 g /
  • the dry films of Examples 1 to 34 are excellent in the embedding property and flatness of the resin layer.
  • the dry film of Comparative Examples 1 to 11 in which the melt viscosity of the resin layer does not satisfy 60 to 5500 dPa ⁇ s at 100 ° C., or the storage elastic modulus of the resin layer does not satisfy 80 to 5500 Pa at 100 ° C., and the resin layer
  • the dry film of Comparative Example 12 having a liquid epoxy resin content of 60% by mass or more was inferior in embedding property and flatness.

Abstract

To provide: a dry film having a resin layer that has excellent embeddability and planarity; and a printed wiring board which is provided with a cured product that is obtained by curing this dry film. A dry film which comprises a film and a resin layer that is formed on the film and contains an epoxy resin, and which is characterized in that: the resin layer has a melt viscosity of 60-5,500 dPa·s at 100°C; the resin layer has a storage elastic modulus of 80-5,500 Pa at 100°C; the resin layer contains, as the epoxy resin, at least a liquid epoxy resin; and the content of the liquid epoxy resin is less than 60% by mass of the total mass of the epoxy resin.

Description

ドライフィルムおよびプリント配線板Dry film and printed wiring board
 本発明は、ドライフィルムおよびプリント配線板に関し、詳しくは、埋め込み性および平坦性に優れる樹脂層を有するドライフィルム、該ドライフィルムを硬化して得られる硬化物を具備するプリント配線板に関する。 The present invention relates to a dry film and a printed wiring board, and more particularly to a dry film having a resin layer excellent in embedding property and flatness, and a printed wiring board having a cured product obtained by curing the dry film.
 従来、電子機器等に用いられるプリント配線板に設けられるソルダーレジストや層間絶縁層等の保護膜や絶縁層の形成手段の一つとして、ドライフィルムが利用されている(例えば特許文献1~3)。ドライフィルムは、所望の特性を有する硬化性樹脂組成物をキャリアフィルムの上に塗布後、乾燥工程を経て得られる樹脂層を有し、一般的には、キャリアフィルムとは反対側の面を保護するための保護フィルムがさらに積層された状態で市場に流通している。ドライフィルムの樹脂層を、回路パターンを有する基材にラミネートした後、パターニングや硬化処理を施すことによって、上記のような保護膜や絶縁層をプリント配線板に形成することができる。 Conventionally, a dry film has been used as one of means for forming a protective film or an insulating layer such as a solder resist or an interlayer insulating layer provided on a printed wiring board used in an electronic device or the like (for example, Patent Documents 1 to 3). . A dry film has a resin layer obtained by applying a curable resin composition having desired characteristics on a carrier film and then undergoing a drying process, and generally protects the surface opposite to the carrier film. The protective film for carrying out is distribute | circulating in the market in the state laminated | stacked further. By laminating the resin layer of the dry film on a substrate having a circuit pattern and then performing patterning and curing treatment, the above protective film and insulating layer can be formed on the printed wiring board.
特開平7-15119号公報(特許請求の範囲)JP 7-15119 A (Claims) 特開2002-162736号公報(特許請求の範囲)JP 2002-162736 A (Claims) 特開2003-131366号公報(特許請求の範囲)JP 2003-131366 A (Claims)
 ドライフィルムの樹脂層を基材にラミネートする際に、基材上の回路パターンの凹凸に対して十分に樹脂層が埋め込まれずに、樹脂層と基材の間に気泡が生じてしまうことがあり、このような気泡によって樹脂層と基材との密着性が損なわれる場合があった。 When laminating a resin layer of a dry film on a substrate, the resin layer is not sufficiently embedded in the unevenness of the circuit pattern on the substrate, and bubbles may be generated between the resin layer and the substrate. Such air bubbles sometimes impair the adhesion between the resin layer and the substrate.
 また、ラミネート後のドライフィルムの樹脂層の外側の表面を平坦にするために、真空ラミネートやプレスが行われているが、基材上の回路パターンの凹凸が外側の表面に転写されてしまうため、平坦性が十分ではなかった。特に、近年の電子機器の軽薄短小化の流れからプリント配線板も薄型化し、ドライフィルムの樹脂層もより一層薄くなることが求められている。これにより、真空ラミネートやプレスを行ったとしても基材への樹脂層の埋め込み性や、樹脂層の外側表面の平坦性を得ることが難しくなっている。 In addition, vacuum laminating and pressing are performed to flatten the outer surface of the resin layer of the dry film after lamination, but the unevenness of the circuit pattern on the substrate is transferred to the outer surface. The flatness was not enough. In particular, printed circuit boards have been made thinner and the resin layer of the dry film has been required to be thinner due to the recent trend of light and thin electronic devices. Thereby, even if vacuum lamination or pressing is performed, it is difficult to obtain the embedding property of the resin layer in the base material and the flatness of the outer surface of the resin layer.
 そこで本発明の目的は、埋め込み性および平坦性に優れる樹脂層を有するドライフィルム、および、該ドライフィルムを硬化して得られる硬化物を具備するプリント配線板を提供することにある。 Accordingly, an object of the present invention is to provide a dry film having a resin layer excellent in embedding property and flatness, and a printed wiring board having a cured product obtained by curing the dry film.
 本発明者等は上記を鑑み鋭意検討した結果、100℃における溶融粘度が60~5500dPa・sであり、100℃における貯蔵弾性率が10~5500Paであり、液状エポキシ樹脂をエポキシ樹脂全量に対し60質量%未満で含有する樹脂層を有するドライフィルムを用いることによって、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies by the inventors in view of the above, the melt viscosity at 100 ° C. is 60 to 5500 dPa · s, the storage elastic modulus at 100 ° C. is 10 to 5500 Pa, and the liquid epoxy resin is 60% of the total amount of epoxy resin. The present inventors have found that the above problems can be solved by using a dry film having a resin layer contained at less than% by mass, and have completed the present invention.
 即ち、本発明のドライフィルムは、フィルムと、該フィルム上に形成したエポキシ樹脂を含む樹脂層と、を有するドライフィルムであって、前記樹脂層の溶融粘度が、100℃で60~5500dPa・sであり、前記樹脂層の貯蔵弾性率が、100℃で80~5500Paであり、前記樹脂層が、前記エポキシ樹脂として、少なくとも液状エポキシ樹脂を含み、
 前記液状エポキシ樹脂の含有量が、前記エポキシ樹脂全質量に対し60質量%未満であることを特徴とするものである。
That is, the dry film of the present invention is a dry film having a film and a resin layer containing an epoxy resin formed on the film, and the resin layer has a melt viscosity of 60 to 5500 dPa · s at 100 ° C. The storage modulus of the resin layer is 80 to 5500 Pa at 100 ° C., and the resin layer contains at least a liquid epoxy resin as the epoxy resin,
Content of the said liquid epoxy resin is less than 60 mass% with respect to the said epoxy resin total mass, It is characterized by the above-mentioned.
 本発明のドライフィルムは、前記樹脂層中の残留溶剤量が、1.0~7.0質量%であることが好ましい。 In the dry film of the present invention, the amount of residual solvent in the resin layer is preferably 1.0 to 7.0% by mass.
 本発明のドライフィルムは、前記樹脂層中に、N,N-ジメチルホルムアミド、トルエン、シクロヘキサノン、炭素数が8以上の芳香族炭化水素およびメチルエチルケトンからなる群より選ばれる少なくとも2種の有機溶剤を含むことが好ましい。 The dry film of the present invention contains at least two organic solvents selected from the group consisting of N, N-dimethylformamide, toluene, cyclohexanone, aromatic hydrocarbons having 8 or more carbon atoms, and methyl ethyl ketone in the resin layer. It is preferable.
 本発明のドライフィルムは、前記樹脂層が、前記エポキシ樹脂として、さらに、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも1種の半固形エポキシ樹脂を含むことが好ましい。 In the dry film of the present invention, the resin layer further comprises at least one semi-solid epoxy resin selected from the group consisting of a bisphenol A type epoxy resin, a naphthalene type epoxy resin, and a phenol novolac type epoxy resin as the epoxy resin. It is preferable to include.
 本発明のドライフィルムは、前記樹脂層が、フィラーを含み、前記フィラーの平均粒径が、0.1~10μmであることが好ましい。 In the dry film of the present invention, the resin layer preferably contains a filler, and the filler has an average particle size of 0.1 to 10 μm.
 本発明のドライフィルムは、前記樹脂層が、フィラーを含み、前記フィラーの含有量が、樹脂層全量(樹脂層が溶剤を含む場合は溶剤を除く全量)あたり40~80質量%であることが好ましい。 In the dry film of the present invention, the resin layer contains a filler, and the content of the filler is 40 to 80% by mass per total resin layer (the total amount excluding the solvent when the resin layer contains a solvent). preferable.
 本発明のドライフィルムは、前記樹脂層が、フィラーを含み、前記フィラーが、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、メルカプト基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤、ビニル基を有するシランカップリング剤、スチリル基を有するシランカップリング剤、アクリル基を有するシランカップリング剤およびメタクリル基を有するシランカップリング剤の少なくともいずれか1種で表面処理されていることが好ましい。 In the dry film of the present invention, the resin layer includes a filler, and the filler includes a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, and an isocyanate group. Surface treatment with at least one of a silane coupling agent having a vinyl group, a silane coupling agent having a vinyl group, a silane coupling agent having a styryl group, a silane coupling agent having an acrylic group, and a silane coupling agent having a methacryl group It is preferable that
 本発明の硬化物は、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product of the present invention is obtained by curing the resin layer of the dry film.
 本発明のプリント配線板は、前記硬化物を具備することを特徴とするものである。 The printed wiring board of the present invention is characterized by comprising the cured product.
 本発明によれば、埋め込み性および平坦性に優れる樹脂層を有するドライフィルム、および、該ドライフィルムを硬化して得られる硬化物を具備するプリント配線板を提供することができる。 According to the present invention, it is possible to provide a dry film having a resin layer excellent in embedding property and flatness, and a printed wiring board comprising a cured product obtained by curing the dry film.
本発明の積層構造体の一実施態様を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically one embodiment of the laminated structure of this invention. 本発明の積層構造体の他の一実施態様を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically another embodiment of the laminated structure of this invention. エポキシ樹脂の液状判定に用いた2本の試験管を示す概略側面図である。It is a schematic side view which shows the two test tubes used for the liquid determination of the epoxy resin.
<ドライフィルム>
 本発明のドライフィルムは、フィルムと、該フィルム上に形成した樹脂層と、を有するドライフィルムであって、前記樹脂層の溶融粘度が、100℃で60~5500dPa・sであり、前記樹脂層の貯蔵弾性率が、100℃で80~5500Paであり、前記樹脂層が、前記エポキシ樹脂として、少なくとも液状エポキシ樹脂を含み、前記液状エポキシ樹脂の含有量が、前記エポキシ樹脂全量に対し60質量%未満であることを特徴とする。詳しいメカニズムは明らかではないが、樹脂層の溶融粘度および貯蔵弾性率の両方を上記範囲に調整し、かつ、樹脂層に含まれる液状エポキシ樹脂のエポキシ樹脂全量に対する割合を60質量%未満にすることによって、埋め込み性と平坦性が顕著に改善される。
<Dry film>
The dry film of the present invention is a dry film having a film and a resin layer formed on the film, wherein the resin layer has a melt viscosity of 60 to 5500 dPa · s at 100 ° C. And the resin layer contains at least a liquid epoxy resin as the epoxy resin, and the content of the liquid epoxy resin is 60% by mass with respect to the total amount of the epoxy resin. It is characterized by being less than. Although the detailed mechanism is not clear, both the melt viscosity and the storage elastic modulus of the resin layer are adjusted to the above ranges, and the ratio of the liquid epoxy resin contained in the resin layer to the total amount of the epoxy resin is less than 60% by mass. As a result, embedding and flatness are remarkably improved.
 また、本発明のドライフィルムによれば、表面が平坦な硬化膜を形成することができるので、その上にメッキレジストを形成した場合、メッキレジストのラインの欠落や現像不良を抑制することができる。すなわち、本発明のドライフィルムによれば、メッキレジストの形成性に優れた硬化物を得ることができる。これによって、樹脂層の上に高精細な導電回路を形成することも可能となる。
 これに対し、ドライフィルムの樹脂層の溶融粘度が100℃で60dPa・s未満または樹脂層の貯蔵弾性率が100℃で80Pa未満となると、ドライフィルムのラミネート時に気泡を巻き込みやすくなり、埋め込み性を得ることが困難になる。一方、樹脂層の溶融粘度が100℃で5500dPa・s超または樹脂層の貯蔵弾性率が100℃で5500Pa超となると、樹脂層の外側表面の平坦性を得ることが困難になる。樹脂層の溶融粘度は、100℃で400~3000dPa・sであることが好ましく、樹脂層の貯蔵弾性率が、100℃で100~3500Paであることが好ましい。また、液状エポキシ樹脂の含有量がエポキシ樹脂全量に対し60質量%以上となる場合も、ドライフィルムの埋め込み性と樹脂層の外側表面の平坦性を得ることが困難となる。
In addition, according to the dry film of the present invention, a cured film having a flat surface can be formed. Therefore, when a plating resist is formed on the dry film, omission of the plating resist line and development failure can be suppressed. . That is, according to the dry film of the present invention, a cured product having excellent plating resist formability can be obtained. As a result, a high-definition conductive circuit can be formed on the resin layer.
On the other hand, when the melt viscosity of the resin layer of the dry film is less than 60 dPa · s at 100 ° C. or the storage elastic modulus of the resin layer is less than 80 Pa at 100 ° C., it becomes easy to entrap bubbles when laminating the dry film, and the embedding property is improved. It becomes difficult to obtain. On the other hand, when the melt viscosity of the resin layer exceeds 5500 dPa · s at 100 ° C. or the storage elastic modulus of the resin layer exceeds 5500 Pa at 100 ° C., it becomes difficult to obtain flatness of the outer surface of the resin layer. The melt viscosity of the resin layer is preferably 400 to 3000 dPa · s at 100 ° C., and the storage elastic modulus of the resin layer is preferably 100 to 3500 Pa at 100 ° C. Further, when the content of the liquid epoxy resin is 60% by mass or more with respect to the total amount of the epoxy resin, it is difficult to obtain the embedding property of the dry film and the flatness of the outer surface of the resin layer.
 前記樹脂層の溶融粘度が、100℃で3000dPa・s以下であり、前記樹脂層の貯蔵弾性率が、100℃で3000Pa以下であると、平坦性およびメッキレジストの形成性に優れるため好ましい。 It is preferable that the melt viscosity of the resin layer is 3000 dPa · s or less at 100 ° C. and the storage elastic modulus of the resin layer is 3000 Pa or less at 100 ° C. because of excellent flatness and plating resist formation.
 前記樹脂層の溶融粘度が、100℃で100dPa・s以上であり、前記樹脂層の貯蔵弾性率が、100℃で100Pa以上であると、ラミネート時に気泡を巻き込みにくく、より埋め込み性に優れるため好ましい。 When the melt viscosity of the resin layer is 100 dPa · s or more at 100 ° C. and the storage elastic modulus of the resin layer is 100 Pa or more at 100 ° C., it is preferable because bubbles are less likely to be entrained during lamination and the embedding property is more excellent. .
 前記樹脂層の溶融粘度が、100℃で500~3000dPa・sであり、前記樹脂層の貯蔵弾性率が、100℃で500~3000Paであることがさらに好ましい。 More preferably, the melt viscosity of the resin layer is 500 to 3000 dPa · s at 100 ° C., and the storage elastic modulus of the resin layer is 500 to 3000 Pa at 100 ° C.
 樹脂層の溶融粘度および貯蔵弾性率の調整方法は特に限定されないが、後述するように、フィラーの配合量、粒径、種類等を選択することによって容易に調整することができる。また、熱硬化性成分や硬化剤によっても調整することができる。 The method for adjusting the melt viscosity and storage modulus of the resin layer is not particularly limited, but can be easily adjusted by selecting the blending amount, particle size, type, and the like of the filler as described later. Moreover, it can adjust also with a thermosetting component or a hardening | curing agent.
 図1は、本発明のドライフィルムの一実施形態を示した概略断面図である。樹脂層12が、フィルム13上に形成された二層構造のドライフィルム11である。また、図2に示すように、第一のフィルム23の上に樹脂層22を形成し、樹脂層22の表面を保護するために、さらに第二のフィルム24を積層した三層構造のドライフィルム21であってもよい。必要に応じて、フィルムと樹脂層との間に他の樹脂層を設けてもよい。 FIG. 1 is a schematic sectional view showing an embodiment of the dry film of the present invention. The resin layer 12 is a dry film 11 having a two-layer structure formed on the film 13. Further, as shown in FIG. 2, a dry film having a three-layer structure in which a resin layer 22 is formed on the first film 23 and a second film 24 is further laminated to protect the surface of the resin layer 22. 21 may be sufficient. If necessary, another resin layer may be provided between the film and the resin layer.
[樹脂層]
 本発明のドライフィルムの樹脂層は、一般にBステージ状態と言われる状態であり、硬化性樹脂組成物から得られるものである。具体的には、ドライフィルムの樹脂層は、フィルムに硬化性樹脂組成物を塗布後、乾燥工程を経て得られる。前記硬化性樹脂組成物は、上記溶融粘度、貯蔵弾性率および液状エポキシ樹脂の配合量を満たす限り、その他の成分の種類や配合量は特に限定されない。樹脂層の膜厚は特に限定されず、例えば、乾燥後の膜厚が1~200μmであれば良いが、樹脂層の膜厚が薄くなるほど本発明の効果が顕著に得られる。具体的には、樹脂層の膜厚が好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは15μm以下であるほど本発明の効果を発揮しやすくなるので好ましい。
[Resin layer]
The resin layer of the dry film of the present invention is in a state generally referred to as a B stage state, and is obtained from a curable resin composition. Specifically, the resin layer of the dry film is obtained through a drying process after applying the curable resin composition to the film. As long as the said curable resin composition satisfy | fills the said melt viscosity, storage elastic modulus, and the compounding quantity of a liquid epoxy resin, the kind and compounding quantity of another component are not specifically limited. The film thickness of the resin layer is not particularly limited, and for example, the film thickness after drying may be 1 to 200 μm. However, the thinner the resin layer, the more prominent the effect of the present invention. Specifically, the film thickness of the resin layer is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 15 μm or less, since the effects of the present invention are easily exhibited.
 前記樹脂層は、エポキシ樹脂を含む。エポキシ樹脂は、エポキシ基を有する樹脂であり、従来公知のものをいずれも使用できる。分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加されたエポキシ樹脂であってもよい。前記樹脂層は、前記エポキシ樹脂として、液状エポキシ樹脂を、前記エポキシ樹脂全質量あたり60質量%未満の含有量で含む。前記樹脂層は、液状エポキシ樹脂以外のエポキシ樹脂として、固形エポキシ樹脂および半固形エポキシ樹脂の少なくとも何れか一方を含有する。本明細書において、固形エポキシ樹脂とは40℃で固体状であるエポキシ樹脂をいい、半固形エポキシ樹脂とは20℃で固体状であり、40℃で液状であるエポキシ樹脂をいい、液状エポキシ樹脂とは20℃で液状のエポキシ樹脂をいう。 The resin layer includes an epoxy resin. The epoxy resin is a resin having an epoxy group, and any conventionally known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. Note that a hydrogenated epoxy resin may be used. The resin layer contains, as the epoxy resin, a liquid epoxy resin with a content of less than 60% by mass based on the total mass of the epoxy resin. The resin layer contains at least one of a solid epoxy resin and a semi-solid epoxy resin as an epoxy resin other than the liquid epoxy resin. In this specification, a solid epoxy resin refers to an epoxy resin that is solid at 40 ° C., and a semi-solid epoxy resin refers to an epoxy resin that is solid at 20 ° C. and is liquid at 40 ° C. Means an epoxy resin that is liquid at 20 ° C.
 液状の判定は、危険物の試験及び性状に関する省令(平成元年自治省令第1号)の別紙第2の「液状の確認方法」に準じて行う。
(1)装置
恒温水槽:
 攪拌機、ヒーター、温度計、自動温度調節器(±0.1℃で温度制御が可能なもの)を備えたもので深さ150mm以上のものを用いる。
 尚、後述する実施例で用いたエポキシ樹脂の判定では、いずれもヤマト科学社製の低温恒温水槽(型式BU300)と投入式恒温装置サーモメイト(型式BF500)の組み合わせを用い、水道水約22リットルを低温恒温水槽(型式BU300)に入れ、これに組み付けられたサーモメイト(型式BF500)の電源を入れて設定温度(20℃または40℃)に設定し、水温を設定温度±0.1℃にサーモメイト(型式BF500)で微調整したが、同様の調整が可能な装置であればいずれも使用できる。
Judgment of liquid state shall be made in accordance with the second “Liquid Confirmation Method” of the Ministerial Ordinance on Dangerous Goods Testing and Properties (Ministry of Local Government Ordinance No. 1 of 1989).
(1) Equipment constant temperature water bath:
A thing equipped with a stirrer, a heater, a thermometer, and an automatic temperature controller (with temperature control at ± 0.1 ° C.) having a depth of 150 mm or more is used.
In the determination of the epoxy resin used in the examples to be described later, a combination of a low temperature thermostatic water bath (model BU300) manufactured by Yamato Scientific Co., Ltd. and a thermostat (model BF500) of a charging type thermostatic apparatus (model BF500) is used. Is put into a low temperature constant temperature water bath (model BU300), the thermomate (model BF500) assembled to this is turned on and set to a set temperature (20 ° C or 40 ° C), and the water temperature is set to a set temperature ± 0.1 ° C. Although fine adjustment was performed with a thermomate (model BF500), any apparatus capable of the same adjustment can be used.
試験管:
 試験管としては、図3に示すように、内径30mm、高さ120mmの平底円筒型透明ガラス製のもので、管底から55mmおよび85mmの高さのところにそれぞれ標線31、32が付され、試験管の口をゴム千33aで密閉した液状判定用試験管30aと、同じサイズで同様に標線が付され、中央に温度計を挿入・支持するための孔があけられたゴム栓33bで試験管の口を密閉し、ゴム栓33bに温度計34を挿入した温度測定用試験管30bを用いる。以下、管底から55mmの高さの標線を「A線」、管底から85mmの高さの標線を「B線」という。
 温度計34としては、JIS B7410(1982)「石油類試験用ガラス製温度計」に規定する凝固点測定用のもの(SOP-58目盛範囲20~50℃)を用いるが、0~50℃の温度範囲が測定できるものであればよい。
Test tube:
As shown in FIG. 3, the test tube is made of a flat bottom cylindrical transparent glass having an inner diameter of 30 mm and a height of 120 mm, and marked lines 31 and 32 are respectively provided at heights of 55 mm and 85 mm from the tube bottom. The test tube 30a for liquid judgment with the mouth of the test tube sealed with a rubber member 33a, and a rubber plug 33b having the same size and the same marked line with a hole for inserting and supporting a thermometer in the center A test tube 30b for temperature measurement in which the mouth of the test tube is sealed and a thermometer 34 is inserted into the rubber plug 33b is used. Hereinafter, a marked line having a height of 55 mm from the tube bottom is referred to as “A line”, and a marked line having a height of 85 mm from the tube bottom is referred to as “B line”.
As the thermometer 34, the one for freezing point measurement (SOP-58 scale range 20 to 50 ° C) specified in JIS B7410 (1982) "Petroleum test glass thermometer" is used, but the temperature is 0 to 50 ° C. It is sufficient if the range can be measured.
(2)試験の実施手順
 温度20±5℃の大気圧下で24時間以上放置した試料を、図3(a)に示す液状判定用試験管30aと図3(b)に示す温度測定用試験管30bにそれぞれA線まで入れる。2本の試験管30a、30bを低温恒温水槽にB線が水面下になるように直立させて静置する。温度計は、その下端がA線よりも30mm下となるようにする。
 試料温度が設定温度±0.1℃に達してから10分間そのままの状態を保持する。10分後、液状判断用試験管30aを低温恒温水槽から取り出し、直ちに水平な試験台の上に水平に倒し、試験管内の液面の先端がA線からB線まで移動した時間をストップウォッチで測定し、記録する。試料は、設定温度において、測定された時聞が90秒以内のものを液状、90秒を超えるものを固体状と判定する。
(2) Test procedure The liquid test tube 30a shown in FIG. 3 (a) and the temperature measurement test shown in FIG. 3 (b) were prepared for 24 hours or more at atmospheric pressure of 20 ± 5 ° C. Insert up to line A in each tube 30b. The two test tubes 30a and 30b are left standing in a low temperature constant temperature water tank so that the line B is below the water surface. The thermometer has its lower end 30 mm below the A line.
The state is maintained as it is for 10 minutes after the sample temperature reaches the set temperature ± 0.1 ° C. Ten minutes later, the test tube 30a for liquid judgment is taken out of the low-temperature water bath and immediately tilted horizontally on a horizontal test stand, and the time when the tip of the liquid level in the test tube has moved from the A line to the B line is measured with a stopwatch. Measure and record. A sample is determined to be liquid when the measured temperature is 90 seconds or less at a set temperature, and solid when it exceeds 90 seconds.
 固形エポキシ樹脂としては、DIC社製HP-4700(ナフタレン型エポキシ樹脂)、DIC社製EXA4700(4官能ナフタレン型エポキシ樹脂)、日本化薬社製NC-7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬社製EPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC社製エピクロンHP-7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬社製NC-3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;日本化薬社製NC-3000L等のビフェニル/フェノールノボラック型エポキシ樹脂;DIC社製エピクロンN660、エピクロンN690、日本化薬社製EOCN-104S等のノボラック型エポキシ樹脂;三菱化学社製YX-4000等のビフェニル型エポキシ樹脂;新日鉄住金化学社製TX0712等のリン含有エポキシ樹脂;日産化学工業社製TEPIC等のトリス(2,3-エポキシプロピル)イソシアヌレート等が挙げられる。 Solid epoxy resins include HP-4700 (naphthalene type epoxy resin) manufactured by DIC, EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC, and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd. Naphthalene type epoxy resin such as EPPN-502H (Trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Epoxy product of a condensate of phenols and aromatic aldehyde having a phenolic hydroxyl group (Trisphenol type epoxy resin); DIC Dicyclopentadiene aralkyl epoxy resin such as Epicron HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by Nihon Kayaku Co., Ltd .; biphenyl aralkyl such as NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Type epoch Biphenyl / phenol novolac type epoxy resin such as NC-3000L manufactured by Nippon Kayaku; Novolak type epoxy resin such as Epicron N660 and Epicron N690 manufactured by DIC, EOCN-104S manufactured by Nippon Kayaku; YX manufactured by Mitsubishi Chemical Corporation Biphenyl type epoxy resin such as −4000; phosphorus-containing epoxy resin such as TX0712 manufactured by Nippon Steel & Sumikin Chemical Co .; tris (2,3-epoxypropyl) isocyanurate such as TEPIC manufactured by Nissan Chemical Industries, Ltd., and the like.
 半固形エポキシ樹脂としては、DIC社製エピクロン860、エピクロン900-IM、エピクロンEXA―4816、エピクロンEXA-4822、旭チバ社製アラルダイトAER280、東都化成社製エポトートYD-134、三菱化学社製jER834、jER872、住友化学工業社製ELA-134等のビスフェノールA型エポキシ樹脂;DIC社製エピクロンHP-4032等のナフタレン型エポキシ樹脂;DIC社製エピクロンN-740等のフェノールノボラック型エポキシ樹脂等が挙げられる。
 半固形状エポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。それらの半固形状エポキシ樹脂を含むことにより、硬化物のガラス転移温度(Tg)が高く、CTEが低くなり、クラック耐性に優れる。
Semi-solid epoxy resins include DIC's Epicron 860, Epicron 900-IM, Epicron EXA-4816, Epicron EXA-4822, Asahi Ciba's Araldite AER280, Toto Kasei's Epoto YD-134, Mitsubishi Chemical's jER834, jER872, bisphenol A type epoxy resin such as ELA-134 manufactured by Sumitomo Chemical Co., Ltd .; naphthalene type epoxy resin such as Epicron HP-4032 manufactured by DIC; phenol novolac type epoxy resin such as Epicron N-740 manufactured by DIC .
The semisolid epoxy resin preferably contains at least one selected from the group consisting of bisphenol A type epoxy resins, naphthalene type epoxy resins and phenol novolac type epoxy resins. By including those semi-solid epoxy resins, the glass transition temperature (Tg) of the cured product is high, the CTE is low, and the crack resistance is excellent.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。 Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin And alicyclic epoxy resins.
 エポキシ樹脂は、2種以上を組み合わせて用いることができる。エポキシ樹脂の配合量は、溶剤を除いたドライフィルムの樹脂層全量基準で、5~50質量%であることが好ましく、5~40質量%であることがより好ましく、5~35質量%がさらに好ましい。また、液状エポキシ樹脂の含有量は、エポキシ樹脂全質量あたり、5~45質量%であることが好ましく、5~40質量%であることがより好ましく、5~30質量%であることが特に好ましい。 Epoxy resin can be used in combination of two or more. The compounding amount of the epoxy resin is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 35% by mass based on the total amount of the resin layer of the dry film excluding the solvent. preferable. The content of the liquid epoxy resin is preferably 5 to 45% by mass, more preferably 5 to 40% by mass, and particularly preferably 5 to 30% by mass with respect to the total mass of the epoxy resin. .
 前記樹脂層は、フィラーを含有することが好ましい。フィラーを含有することによって、絶縁層の周囲にある銅等の導体層と熱強度を合わせることにより、ドライフィルムの熱特性を向上することができる。フィラーとしては従来公知の無機フィラーおよび有機フィラーが使用でき、特定のものに限定されないが、塗膜の硬化収縮を抑制し、密着性、硬度などの特性の向上に寄与する無機フィラーが好ましい。無機フィラーとしては、例えば、硫酸バリウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ジルコン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、チタン酸バリウムネオジム、チタン酸バリウム錫、チタン酸鉛、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカなどのシリカ、タルク、クレー、ノイブルグ珪土粒子、ベーマイト、炭酸マグネシウム、炭酸カルシウム、酸化チタン、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等の体質顔料や、銅、錫、亜鉛、ニッケル、銀、パラジウム、アルミニウム、鉄、コバルト、金、白金等の金属粉体が挙げられる。
 上記フィラーの中でも、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ジルコン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、チタン酸バリウムネオジム、チタン酸バリウム錫、チタン酸鉛、酸化チタンを使用すると、誘電率を高くすることでき、回路の隠ぺい性を向上させることができるので、好ましい。
 無機フィラーは球状粒子であることが好ましい。フィラーの平均粒径は、0.1~10μmであることが好ましい。なお、本願明細書において、フィラーの平均粒径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒径である。平均粒径は、レーザー回折式粒子径分布測定装置により求めることができる。レーザー回折法による測定装置としては、日機装社製Nanotrac waveなどが挙げられる。
The resin layer preferably contains a filler. By containing the filler, the thermal properties of the dry film can be improved by combining the heat strength with a conductor layer such as copper around the insulating layer. As the filler, conventionally known inorganic fillers and organic fillers can be used and are not limited to specific ones, but inorganic fillers that suppress the curing shrinkage of the coating film and contribute to the improvement of properties such as adhesion and hardness are preferred. As the inorganic filler, for example, barium sulfate, barium titanate, barium zirconate titanate, strontium titanate, calcium titanate, calcium zirconate, magnesium titanate, bismuth titanate, barium neodymium titanate, barium tin titanate, Silica such as lead titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, Neuburg silica particles, boehmite, magnesium carbonate, calcium carbonate, titanium oxide, aluminum oxide, aluminum hydroxide, silicon nitride And extender pigments such as aluminum nitride, and metal powders such as copper, tin, zinc, nickel, silver, palladium, aluminum, iron, cobalt, gold and platinum.
Among the above fillers, barium titanate, barium zirconate titanate, strontium titanate, calcium titanate, calcium zirconate, magnesium titanate, bismuth titanate, barium neodymium titanate, barium tin titanate, lead titanate, oxidation Use of titanium is preferable because the dielectric constant can be increased and the concealability of the circuit can be improved.
The inorganic filler is preferably spherical particles. The average particle size of the filler is preferably 0.1 to 10 μm. In the present specification, the average particle size of the filler is not only the particle size of the primary particles but also the average particle size including the particle size of the secondary particles (aggregates). The average particle size can be determined by a laser diffraction particle size distribution measuring device. An example of a measuring apparatus using the laser diffraction method is Nanotrac wave manufactured by Nikkiso Co., Ltd.
 前記無機フィラーは、表面処理されていることが好ましい。表面処理としては、カップリング剤による表面処理が好ましい。カップリング剤としては、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等を用いることができる。中でも、シランカップリング剤が好ましい。 The inorganic filler is preferably surface-treated. As the surface treatment, a surface treatment with a coupling agent is preferable. As the coupling agent, a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Among these, a silane coupling agent is preferable.
 シランカップリング剤としては、有機基として、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、メルカプト基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤、ビニル基を有するシランカップリング剤、スチリル基を有するシランカップリング剤、メタクリル基を有するシランカップリング剤、アクリル基を有するシランカップリング剤等を用いることができる。特に、下地回路との密着性に優れることから、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤が好ましい。 As the silane coupling agent, as an organic group, a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having a mercapto group, a silane coupling agent having an isocyanate group, a vinyl group. A silane coupling agent having a styryl group, a silane coupling agent having a methacryl group, a silane coupling agent having an acryl group, or the like can be used. In particular, a silane coupling agent having an epoxy group and a silane coupling agent having an amino group are preferable because of excellent adhesion to a base circuit.
 また、無機フィラーは、アルミナ処理等の有機基を導入しない表面処理がされていてもよい。 The inorganic filler may be subjected to a surface treatment such as alumina treatment that does not introduce an organic group.
 表面処理した無機フィラーは、表面処理された状態でドライフィルムの樹脂層に配合されていればよく、硬化性樹脂組成物を調整する際に表面未処理の無機フィラーと表面処理剤とを別々に配合して組成物中で無機フィラーが表面処理されてもよいが、硬化性樹脂組成物を調整する際に予め表面処理した無機フィラーを配合することが好ましい。予め表面処理した無機フィラーを配合することによって、樹脂層の硬化後の平坦性およびメッキレジストの形成性がより向上し、また、加湿後の誘電正接に優れる。予め表面処理する場合は、溶剤に無機フィラーを予備分散した予備分散液を配合することが好ましく、表面処理した無機フィラーを溶剤に予備分散し、該予備分散液を組成物に配合するか、表面未処理の無機フィラーを溶剤に予備分散する際に十分に表面処理した後、該予備分散液を組成物に配合することがより好ましい。
 ここで、予めビニル基を有するシランカップリング剤で表面処理したシリカを配合すると加湿後の誘電正接に優れる。また、予めビニル基を有するシランカップリング剤で表面処理したアルミナを配合すると放熱性に優れる。
The surface-treated inorganic filler only needs to be blended in the resin layer of the dry film in a surface-treated state. When adjusting the curable resin composition, the surface-untreated inorganic filler and the surface treatment agent are separately separated. Although an inorganic filler may be surface-treated in the composition by blending, it is preferable to blend an inorganic filler that has been surface-treated in advance when adjusting the curable resin composition. By blending a surface-treated inorganic filler in advance, the flatness after curing of the resin layer and the formability of the plating resist are further improved, and the dielectric loss tangent after humidification is excellent. When the surface treatment is performed in advance, it is preferable to blend a pre-dispersion liquid in which an inorganic filler is pre-dispersed in a solvent. The surface-treated inorganic filler is pre-dispersed in a solvent and the pre-dispersion liquid is blended in the composition, or More preferably, after pre-dispersing the untreated inorganic filler in the solvent, the pre-dispersed liquid is blended into the composition.
Here, when silica surface-treated with a silane coupling agent having a vinyl group in advance is blended, the dielectric loss tangent after humidification is excellent. Moreover, when the alumina surface-treated with a silane coupling agent having a vinyl group in advance is blended, heat dissipation is excellent.
 フィラーの配合量は、溶剤を除いたドライフィルムの樹脂層全量基準で、25~85質量%であることが好ましく、40~85質量%であることがより好ましい。フィラーの配合量が25~85質量%の場合、埋め込み性に優れる。25質量%以上であると、線膨張係数を低くでき、放熱特性に優れる。
 また、フィラーを2種以上組み合わせて用いると、平坦性およびメッキレジストの形成性に優れるため好ましい。ここで、フィラーとして平均一次粒径が100nm以下のナノフィラーを含む場合、フィラーの充填効率を高くすることができる。これにより、加湿後の誘電正接を低くでき、線膨張係数を小さくでき、リフロー後の冷熱サイクル時のクラック耐性を向上できる。
The blending amount of the filler is preferably 25 to 85% by mass, and more preferably 40 to 85% by mass based on the total amount of the resin layer of the dry film excluding the solvent. When the blending amount of the filler is 25 to 85% by mass, the embedding property is excellent. A linear expansion coefficient can be made low as it is 25 mass% or more, and it is excellent in the thermal radiation characteristic.
Further, it is preferable to use two or more kinds of fillers in combination because they are excellent in flatness and plating resist formability. Here, when a nanofiller having an average primary particle size of 100 nm or less is included as a filler, the filling efficiency of the filler can be increased. Thereby, the dielectric loss tangent after humidification can be made low, a linear expansion coefficient can be made small, and the crack tolerance at the time of the thermal cycle after reflow can be improved.
 前記樹脂層中の残留溶剤量が、1.0~7.0質量%であることが好ましく、3.0~5.0質量%であることがより好ましく、3.5~4.5質量%であることがさらにより好ましい。残留溶剤が7.0質量%以下であると、熱硬化時の突沸を抑え、表面の平坦性が良好となる。また、溶融粘度が下がり過ぎて樹脂が流れてしまうことを抑制でき、平坦性が良好となる。残留溶剤が1.0質量%以上であると、ラミネート時の流動性が良好で、平坦性および埋め込み性が良好となる。また、残留溶剤が3.0~5.0質量%であると、ドライフィルムのハンドリング性および塗膜特性に優れる。 The amount of residual solvent in the resin layer is preferably 1.0 to 7.0% by mass, more preferably 3.0 to 5.0% by mass, and 3.5 to 4.5% by mass. Even more preferably. When the residual solvent is 7.0% by mass or less, bumping at the time of thermosetting is suppressed, and the surface flatness is improved. Moreover, it can suppress that melt viscosity falls too much and resin flows, and flatness becomes favorable. When the residual solvent is 1.0% by mass or more, the fluidity during lamination is good, and the flatness and embedding are good. Further, when the residual solvent is 3.0 to 5.0% by mass, the handleability and the coating film characteristics of the dry film are excellent.
 前記樹脂層中に、N,N-ジメチルホルムアミド、トルエン、シクロヘキサノン、炭素数が8以上の芳香族炭化水素およびメチルエチルケトンからなる群より選ばれる少なくとも2種の有機溶剤を含むことが好ましい。樹脂層の形成にそのような有機溶剤を含む樹脂組成物を用いると、乾燥マージンを得られやすくなる。すなわち、乾燥時間を長くとることができ、乾燥時間の自由度が向上する。 It is preferable that the resin layer contains at least two organic solvents selected from the group consisting of N, N-dimethylformamide, toluene, cyclohexanone, aromatic hydrocarbons having 8 or more carbon atoms, and methyl ethyl ketone. When a resin composition containing such an organic solvent is used for forming the resin layer, it becomes easy to obtain a drying margin. That is, the drying time can be increased and the degree of freedom of the drying time is improved.
 前記硬化性樹脂組成物は、液状エポキシ樹脂等のエポキシ樹脂を含む熱硬化性樹脂組成物であり、具体例として、光硬化性熱硬化性樹脂組成物、熱硬化性樹脂組成物、光重合開始剤を含有する光硬化性熱硬化性樹脂組成物、光塩基発生剤を含有する光硬化性熱硬化性樹脂組成物、光酸発生剤を含有する光硬化性熱硬化性樹脂組成物、ネガ型光硬化性熱硬化性樹脂組成物およびポジ型感光性熱硬化性樹脂組成物、アルカリ現像型光硬化性熱硬化性樹脂組成物、溶剤現像型光硬化性熱硬化性樹脂組成物、膨潤剥離型熱硬化性樹脂組成物、溶解剥離型熱硬化性樹脂組成物が挙げられるが、これらに限定されるものではない。尚、液状エポキシ樹脂等のエポキシ樹脂としては、前記樹脂層が含有するエポキシ樹脂として例示したものが挙げられる。 The curable resin composition is a thermosetting resin composition containing an epoxy resin such as a liquid epoxy resin. As specific examples, a photocurable thermosetting resin composition, a thermosetting resin composition, and photopolymerization start. Photocurable Thermosetting Resin Composition Containing Photoagent, Photocurable Thermosetting Resin Composition Containing Photobase Generator, Photocurable Thermosetting Resin Composition Containing Photoacid Generator, Negative Type Photocurable thermosetting resin composition and positive photosensitive thermosetting resin composition, alkali development type photocurable thermosetting resin composition, solvent development type photocurable thermosetting resin composition, swelling release type Examples include, but are not limited to, thermosetting resin compositions and melt-peelable thermosetting resin compositions. Examples of the epoxy resin such as a liquid epoxy resin include those exemplified as the epoxy resin contained in the resin layer.
(光硬化性熱硬化性樹脂組成物)
 光硬化性熱硬化性樹脂組成物の一例として、エポキシ樹脂の他に、カルボキシル基含有樹脂と、光重合開始剤とを含む樹脂組成物について、下記に説明する。
(Photo-curable thermosetting resin composition)
As an example of the photocurable thermosetting resin composition, a resin composition containing a carboxyl group-containing resin and a photopolymerization initiator in addition to the epoxy resin will be described below.
 カルボキシル基含有樹脂は、カルボキシル基が含まれることによりアルカリ現像性とすることができる。また、光硬化性や耐現像性の観点から、カルボキシル基の他に、分子内にエチレン性不飽和結合を有することが好ましいが、エチレン性不飽和結合を有さないカルボキシル基含有樹脂のみを使用してもよい。カルボキシル基含有樹脂がエチレン性不飽和結合を有さない場合は、組成物を光硬化性とするために分子中に1個以上のエチレン性不飽和結合を有する化合物(感光性モノマー)を併用する必要がある。エチレン性不飽和結合としては、アクリル酸もしくはメタアクリル酸またはそれらの誘導体由来のものが好ましい。カルボキシル基含有樹脂の中でも、共重合構造を有するカルボキシル基含有樹脂、ウレタン構造を有するカルボキシル基含有樹脂、エポキシ樹脂を出発原料とするカルボキシル基含有樹脂、フェノール化合物を出発原料とするカルボキシル基含有樹脂が好ましい。カルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマーまたはポリマーのいずれでもよい)が挙げられる。 The carboxyl group-containing resin can be rendered alkali developable by containing a carboxyl group. From the viewpoint of photocurability and development resistance, it is preferable to have an ethylenically unsaturated bond in the molecule in addition to the carboxyl group, but only a carboxyl group-containing resin having no ethylenically unsaturated bond is used. May be. When the carboxyl group-containing resin does not have an ethylenically unsaturated bond, a compound (photosensitive monomer) having one or more ethylenically unsaturated bonds in the molecule is used in order to make the composition photocurable. There is a need. As the ethylenically unsaturated bond, those derived from acrylic acid, methacrylic acid or derivatives thereof are preferable. Among the carboxyl group-containing resins, there are carboxyl group-containing resins having a copolymer structure, carboxyl group-containing resins having a urethane structure, carboxyl group-containing resins starting from an epoxy resin, and carboxyl group-containing resins starting from a phenol compound. preferable. Specific examples of the carboxyl group-containing resin include compounds listed below (which may be either oligomers or polymers).
 (1)後述するような2官能またはそれ以上の多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸などの2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。ここで、2官能またはそれ以上の多官能エポキシ樹脂は固形であることが好ましい。 (1) A bifunctional or higher polyfunctional epoxy resin as described later is reacted with (meth) acrylic acid, and a hydroxyl group present in the side chain is reacted with 2 such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. A carboxyl group-containing photosensitive resin to which a basic acid anhydride is added. Here, the bifunctional or higher polyfunctional epoxy resin is preferably solid.
 (2)後述するような2官能エポキシ樹脂の水酸基を、さらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に、(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。ここで、2官能エポキシ樹脂は固形であることが好ましい。 (2) A polyfunctional epoxy resin obtained by epoxidizing a hydroxyl group of a bifunctional epoxy resin as described later with epichlorohydrin is reacted with (meth) acrylic acid, and a dibasic acid anhydride is added to the resulting hydroxyl group. A carboxyl group-containing photosensitive resin. Here, the bifunctional epoxy resin is preferably solid.
 (3)1分子中に2個以上のエポキシ基を有するエポキシ化合物に、1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸などの不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸などの多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (3) An epoxy compound having two or more epoxy groups in one molecule is combined with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, and (meth) acrylic acid or the like. Polybasic, such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid, etc., with respect to the alcoholic hydroxyl group of the reaction product obtained by reacting with a saturated carboxylic acid containing monocarboxylic acid A carboxyl group-containing photosensitive resin obtained by reacting an acid anhydride.
 (4)ビスフェノールA、ビスフェノールF、ビスフェノールS、ノボラック型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物などの1分子中に2個以上のフェノール性水酸基を有する化合物と、エチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に、(メタ)アクリル酸などの不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (4) Two or more per molecule such as bisphenol A, bisphenol F, bisphenol S, novolac type phenol resin, poly-p-hydroxystyrene, condensate of naphthol and aldehydes, condensate of dihydroxynaphthalene and aldehydes Reaction obtained by reacting an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid with a reaction product obtained by reacting a compound having a phenolic hydroxyl group with an alkylene oxide such as ethylene oxide or propylene oxide A carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
 (5)1分子中に2個以上のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に、不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (5) A reaction product obtained by reacting a compound having two or more phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate is reacted with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting the resulting reaction product with a polybasic acid anhydride.
 (6)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネートなどのジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物などのジオール化合物の重付加反応によるウレタン樹脂の末端に、酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (6) Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A type A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (7)ジイソシアネートと、ジメチロールプロピオン酸、ジメチロール酪酸などのカルボキシル基含有ジアルコール化合物と、ジオール化合物との重付加反応によるカルボキシル基含有ウレタン樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレートなどの分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (7) During synthesis of a carboxyl group-containing urethane resin by a polyaddition reaction between a diisocyanate, a carboxyl group-containing dialcohol compound such as dimethylolpropionic acid or dimethylolbutyric acid, and a diol compound, a molecule such as hydroxyalkyl (meth) acrylate A carboxyl group-containing urethane resin in which a compound having one hydroxyl group and one or more (meth) acryloyl groups is added and terminally (meth) acrylated.
 (8)ジイソシアネートと、カルボキシル基含有ジアルコール化合物と、ジオール化合物との重付加反応によるカルボキシル基含有ウレタン樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (8) During synthesis of a carboxyl group-containing urethane resin by polyaddition reaction of a diisocyanate, a carboxyl group-containing dialcohol compound, and a diol compound, an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate, etc. A carboxyl group-containing urethane resin obtained by adding a compound having two isocyanate groups and one or more (meth) acryloyl groups, and then terminally (meth) acrylating.
 (9)(メタ)アクリル酸などの不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレンなどの不飽和基含有化合物との共重合により得られるカルボキシル基含有感光性樹脂。 (9) Carboxy group-containing photosensitivity obtained by copolymerization of unsaturated carboxylic acid such as (meth) acrylic acid and unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene. resin.
 (10)多官能オキセタン樹脂に、アジピン酸、フタル酸、ヘキサヒドロフタル酸などのジカルボン酸を反応させ、生じた1級の水酸基に、2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂に、さらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレートなどの1分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。 (10) To a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin with a dicarboxylic acid such as adipic acid, phthalic acid or hexahydrophthalic acid and adding a dibasic acid anhydride to the primary hydroxyl group produced. Further, a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups in one molecule, such as glycidyl (meth) acrylate and α-methylglycidyl (meth) acrylate .
 (11)上述した(1)~(10)のいずれかのカルボキシル基含有樹脂に、1分子中に環状エーテル基と(メタ)アクリロイル基を有する化合物を付加させたカルボキシル基含有感光性樹脂。 (11) A carboxyl group-containing photosensitive resin obtained by adding a compound having a cyclic ether group and a (meth) acryloyl group in one molecule to the carboxyl group-containing resin of any one of (1) to (10) described above.
 なお、ここで(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、以下他の類似の表現についても同様である。 In addition, here, (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and a mixture thereof, and the same applies to other similar expressions below.
 カルボキシル基含有樹脂の酸価は、40~150mgKOH/gであることが好ましい。カルボキシル基含有樹脂の酸価が40mgKOH/g以上とすることにより、アルカリ現像が良好になる。また、酸価を150mgKOH/gを以下とすることで、正常なレジストパターンの描画をし易くできる。より好ましくは、50~130mgKOH/gである。 The acid value of the carboxyl group-containing resin is preferably 40 to 150 mgKOH / g. When the acid value of the carboxyl group-containing resin is 40 mgKOH / g or more, alkali development is improved. In addition, by setting the acid value to 150 mgKOH / g or less, it is possible to easily draw a normal resist pattern. More preferably, it is 50 to 130 mgKOH / g.
 カルボキシル基含有樹脂の配合量は、溶剤を除いたドライフィルムの樹脂層全量基準で、20~60質量%であることが好ましい。20質量%以上とすることにより塗膜強度を向上させることができる。また60質量%以下とすることで粘性が適当となり加工性が向上する。より好ましくは、20~50質量%である。 The blending amount of the carboxyl group-containing resin is preferably 20 to 60% by mass based on the total amount of the resin layer of the dry film excluding the solvent. Coating strength can be improved by setting it as 20 mass% or more. Further, when the content is 60% by mass or less, viscosity becomes appropriate and workability is improved. More preferably, it is 20 to 50% by mass.
 光重合開始剤としては、公知のものを用いることができるが、なかでも、オキシムエステル基を有するオキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤が好ましい。光重合開始剤は1種を単独で用いてもよく、2種以上を併用して用いてもよい。
 光重合開始剤の配合量としては、例えば、カルボキシル基含有樹脂100質量部に対し、0.1~30質量部である。
As the photopolymerization initiator, known ones can be used, and among them, an oxime ester photopolymerization initiator having an oxime ester group, an α-aminoacetophenone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator. Agents and titanocene photopolymerization initiators are preferred. A photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type.
The blending amount of the photopolymerization initiator is, for example, 0.1 to 30 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
 オキシムエステル系光重合開始剤を使用する場合の配合量は、カルボキシル基含有樹脂100質量部に対して、0.01~5質量部とすることが好ましい。0.01質量部以上とすることにより、銅上での光硬化性がより確実となり、耐薬品性などの塗膜特性が向上する。また、5質量部以下とすることにより、塗膜表面での光吸収が抑えられ、深部の硬化性も向上する傾向がある。より好ましくは、カルボキシル基含有樹脂100質量部に対して0.5~3質量部である。 When the oxime ester photopolymerization initiator is used, the blending amount is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. By setting it as 0.01 mass part or more, photocurability on copper becomes more reliable and coating-film characteristics, such as chemical resistance, improve. Moreover, the light absorption in the coating-film surface is suppressed by setting it as 5 mass parts or less, and there exists a tendency for the sclerosis | hardenability of a deep part to improve. More preferably, it is 0.5 to 3 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
 α-アミノアセトフェノン系光重合開始剤またはアシルホスフィンオキサイド系光重合開始剤を用いる場合のそれぞれの配合量は、カルボキシル基含有樹脂100質量部に対して、0.01~15質量部であることが好ましい。0.01質量部以上とすることにより、銅上での光硬化性がより確実となり、耐薬品性などの塗膜特性が向上する。また、15質量部以下とすることにより、十分なアウトガスの低減効果が得られ、さらに硬化被膜表面での光吸収が抑えられ、深部の硬化性も向上する。より好ましくはカルボキシル基含有樹脂100質量部に対して0.5~10質量部である。 In the case of using an α-aminoacetophenone photopolymerization initiator or an acylphosphine oxide photopolymerization initiator, each compounding amount is 0.01 to 15 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. preferable. By setting it as 0.01 mass part or more, photocurability on copper becomes more reliable and coating-film characteristics, such as chemical resistance, improve. Moreover, by setting it as 15 mass parts or less, sufficient reduction effect of an outgas is acquired, Furthermore, the light absorption in the cured film surface is suppressed, and the sclerosis | hardenability of a deep part improves. More preferably, it is 0.5 to 10 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
 上記した光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物などを挙げることができる。これらの化合物は、光重合開始剤として用いることができる場合もあるが、光重合開始剤と併用して用いることが好ましい。また、光開始助剤または増感剤は1種類を単独で用いてもよく、2種以上を併用してもよい。 A photoinitiator or sensitizer may be used in combination with the above-described photopolymerization initiator. Examples of the photoinitiation assistant or sensitizer include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds. These compounds may be used as a photopolymerization initiator in some cases, but are preferably used in combination with a photopolymerization initiator. Moreover, a photoinitiator auxiliary or a sensitizer may be used individually by 1 type, and may use 2 or more types together.
 光硬化性熱硬化性樹脂組成物には、耐熱性、絶縁信頼性等の特性を向上させる目的で、エポキシ樹脂以外の熱硬化性成分が含まれていてもよい。そのような熱硬化性成分としては、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、マレイミド化合物、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、多官能オキセタン化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂が使用できる。 The photocurable thermosetting resin composition may contain a thermosetting component other than the epoxy resin for the purpose of improving characteristics such as heat resistance and insulation reliability. Such thermosetting components include known and commonly used thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, polyfunctional oxetane compounds, and episulfide resins. Can be used.
 熱硬化性成分の配合量は、カルボキシル基含有樹脂100質量部に対して10~100質量部が好ましい。 The blending amount of the thermosetting component is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
 光硬化性熱硬化性樹脂組成物は、熱硬化触媒を含有することが好ましい。そのような熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物などが挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を熱硬化触媒と併用する。 The photocurable thermosetting resin composition preferably contains a thermosetting catalyst. Examples of such thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole. Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine / isocyanuric acid adducts and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adducts can also be used. A compound that also functions in combination with a thermosetting catalyst.
 熱硬化触媒の配合量は、エポキシ樹脂100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~15.0質量部である。 The blending amount of the thermosetting catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15.0 parts by mass with respect to 100 parts by mass of the epoxy resin.
 光硬化性熱硬化性樹脂組成物には、上記したカルボキシル基含有樹脂、光重合開始剤、およびエポキシ樹脂に加えて、感光性モノマーが含まれていてもよい。感光性モノマーは、分子中に1個以上のエチレン性不飽和結合を有する化合物である。感光性モノマーは、活性エネルギー線照射によるカルボキシル基含有樹脂の光硬化を助けるものである。 The photocurable thermosetting resin composition may contain a photosensitive monomer in addition to the above-described carboxyl group-containing resin, photopolymerization initiator, and epoxy resin. The photosensitive monomer is a compound having one or more ethylenically unsaturated bonds in the molecule. The photosensitive monomer assists photocuring of the carboxyl group-containing resin by irradiation with active energy rays.
 感光性モノマーとして用いられる化合物としては、例えば、慣用公知のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレートなどのヒドロキシアルキルアクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミドなどのアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレートなどのアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレートなどの多価アルコールまたはこれらのエチレオキサイド付加物、プロピレンオキサイド付加物、もしくはε-カプロラクトン付加物などの多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多価アクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオールなどのポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類のいずれか少なくとも1種から適宜選択して用いることができる。 Examples of the compound used as the photosensitive monomer include conventionally known polyester (meth) acrylate, polyether (meth) acrylate, urethane (meth) acrylate, carbonate (meth) acrylate, and epoxy (meth) acrylate. Specifically, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; N, N-dimethylacrylamide Acrylamides such as N-methylol acrylamide and N, N-dimethylaminopropyl acrylamide; aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate and N, N-dimethylaminopropyl acrylate; hexanediol, trimethylolpropane, Polyhydric alcohols such as pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate or the like Multivalent acrylates such as a thyroxide adduct, a propylene oxide adduct, or an ε-caprolactone adduct; a polyvalent acrylate such as phenoxyacrylate, bisphenol A diacrylate, and ethylene oxide or propylene oxide adducts of these phenols Acrylates; glyceryl diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyglycerides of glycidyl ether such as triglycidyl isocyanurate; not limited to the above, polyether polyol, polycarbonate diol, hydroxyl-terminated polybutadiene, Polyurethane polyol such as polyester polyol is directly acrylated or urethane acrylate via diisocyanate It can be used by appropriately selecting from at least one selected from acrylates and melamine acrylates and methacrylates corresponding to the acrylates.
 クレゾールノボラック型エポキシ樹脂などの多官能エポキシ樹脂に、アクリル酸を反応させたエポキシアクリレート樹脂や、さらにそのエポキシアクリレート樹脂の水酸基に、ペンタエリスリトールトリアクリレートなどのヒドロキシアクリレートとイソホロンジイソシアネートなどのジイソシアネートのハーフウレタン化合物を反応させたエポキシウレタンアクリレート化合物などを感光性モノマーとして用いてもよい。このようなエポキシアクリレート系樹脂は、指触乾燥性を低下させることなく、光硬化性を向上させることができる。 Epoxy acrylate resin obtained by reacting polyfunctional epoxy resin such as cresol novolac type epoxy resin with acrylic acid, and hydroxyl acrylate of the epoxy acrylate resin, hydroxy acrylate such as pentaerythritol triacrylate, and diisocyanate half urethane such as isophorone diisocyanate An epoxy urethane acrylate compound reacted with a compound may be used as the photosensitive monomer. Such an epoxy acrylate resin can improve photocurability without deteriorating the touch drying property.
 感光性モノマーとして用いられる分子中にエチレン性不飽和結合を有する化合物の配合量は、好ましくはカルボキシル基含有樹脂100質量部に対して、5~100質量部、より好ましくは5~70質量部の割合である。エチレン性不飽和結合を有する化合物の配合量を5質量部以上とすることにより、光硬化性熱硬化性樹脂組成物の光硬化性が向上する。また、配合量を100質量部以下とすることにより、塗膜硬度を向上させることができる。 The compounding amount of the compound having an ethylenically unsaturated bond in the molecule used as the photosensitive monomer is preferably 5 to 100 parts by mass, more preferably 5 to 70 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. It is a ratio. By making the compounding quantity of the compound which has an ethylenically unsaturated bond into 5 mass parts or more, the photocurability of a photocurable thermosetting resin composition improves. Moreover, the coating-film hardness can be improved by making a compounding quantity into 100 mass parts or less.
 光硬化性熱硬化性樹脂組成物は、上記した成分以外にも、フィラーを含有することが好ましく、着色剤、エラストマー、熱可塑性樹脂等の他の成分が含まれていてもよい。以下、これら成分についても説明する。 The photocurable thermosetting resin composition preferably contains a filler in addition to the above-described components, and may contain other components such as a colorant, an elastomer, and a thermoplastic resin. Hereinafter, these components will also be described.
 光硬化性熱硬化性樹脂組成物には、得られる硬化物の物理的強度等を上げるために、必要に応じて、フィラーを配合することができる。フィラーとしては、特に制限はないが、例えば、前記樹脂層が含有するフィラーとして例示したものが挙げられる。フィラーは、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 In the photocurable thermosetting resin composition, a filler can be blended as necessary in order to increase the physical strength of the obtained cured product. Although there is no restriction | limiting in particular as a filler, For example, what was illustrated as a filler which the said resin layer contains is mentioned. A filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
 フィラーの添加量は、カルボキシル基含有樹脂100質量部に対して、好ましくは500質量部以下、より好ましくは0.1~400質量部、特に好ましくは0.1~300質量部である。フィラーの添加量が500質量部以下の場合、光硬化性熱硬化性樹脂組成物の粘度が高くなりすぎず、印刷性が良く、硬化物が脆くなりにくい。 The addition amount of the filler is preferably 500 parts by mass or less, more preferably 0.1 to 400 parts by mass, and particularly preferably 0.1 to 300 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. When the addition amount of the filler is 500 parts by mass or less, the viscosity of the photocurable thermosetting resin composition does not become too high, the printability is good, and the cured product is not easily brittle.
 光硬化性熱硬化性樹脂組成物には、着色剤が含まれていてもよい。着色剤としては、赤、青、緑、黄、黒、白などの公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。 The photocurable thermosetting resin composition may contain a colorant. As the colorant, known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
 着色剤の添加量は特に制限はないが、カルボキシル基含有樹脂100質量部に対して、好ましくは10質量部以下、特に好ましくは0.1~7質量部の割合で充分である。 The addition amount of the colorant is not particularly limited, but is preferably 10 parts by mass or less, particularly preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
 また、光硬化性熱硬化性樹脂組成物には、得られる硬化物に対する柔軟性の付与、硬化物の脆さの改善などを目的にエラストマーを配合することができる。エラストマーとしては、例えばポリエステル系エラストマー、ポリウレタン系エラストマー、ポリエステルウレタン系エラストマー、ポリアミド系エラストマー、ポリエステルアミド系エラストマー、アクリル系エラストマー、オレフィン系エラストマー等が挙げられる。また、種々の骨格を有するエポキシ樹脂の一部または全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴムで変性した樹脂等も使用できる。更にはエポキシ含有ポリブタジエン系エラストマー、アクリル含有ポリブタジエン系エラストマー、水酸基含有ポリブタジエン系エラストマー、水酸基含有イソプレン系エラストマー等も使用することができる。エラストマーは、1種を単独で用いてもよく、2種類以上の混合物として使用してもよい。 Also, an elastomer can be blended in the photocurable thermosetting resin composition for the purpose of imparting flexibility to the obtained cured product and improving the brittleness of the cured product. Examples of the elastomer include a polyester elastomer, a polyurethane elastomer, a polyester urethane elastomer, a polyamide elastomer, a polyesteramide elastomer, an acrylic elastomer, and an olefin elastomer. In addition, resins obtained by modifying some or all of the epoxy groups of epoxy resins having various skeletons with carboxylic acid-modified butadiene-acrylonitrile rubbers at both ends can also be used. Furthermore, epoxy-containing polybutadiene elastomers, acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers and the like can also be used. One type of elastomer may be used alone, or a mixture of two or more types may be used.
 エラストマーの添加量は、カルボキシル基含有樹脂100質量部に対して、好ましくは50質量部以下、より好ましくは1~30質量部、特に好ましくは、5~30質量部である。エラストマーの添加量が50質量部以下の場合、光硬化性熱硬化性樹脂組成物のアルカリ現像性が良好となり、現像可能な可使時間が短くなりにくい。 The amount of the elastomer added is preferably 50 parts by mass or less, more preferably 1 to 30 parts by mass, and particularly preferably 5 to 30 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. When the addition amount of the elastomer is 50 parts by mass or less, the alkali developability of the photocurable thermosetting resin composition becomes good, and the developable pot life is not easily shortened.
 また、光硬化性熱硬化性樹脂組成物には、必要に応じて、ブロック共重合体、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。また、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、防錆剤、蛍光増白剤などのような公知慣用の添加剤類の少なくとも何れか一種を配合することができる。 In addition, the photocurable thermosetting resin composition may contain components such as a block copolymer, an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary. As these, those known in the field of electronic materials can be used. Also, known and commonly used thickeners such as finely divided silica, hydrotalcite, organic bentonite, montmorillonite, antifoaming agents such as silicones, fluorines, and polymers, leveling agents, imidazoles, thiazoles, triazoles, etc. At least one of known and commonly used additives such as a silane coupling agent, a rust inhibitor, and a fluorescent brightening agent can be blended.
 使用できる有機溶剤としては、特に制限はないが、例えば、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などが挙げることができる。より具体的には、メチルエチルケトン、シクロヘキサノン、メチルブチルケトン、メチルイソブチルケトン、メチルエチルケトン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、酢酸イソブチル、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなどのエステル類;エタノール、プロパノール、2-メトキシプロパノール、n-ブタノール、イソブチルアルコール、イソペンチルアルコール、エチレングリコール、プロピレングリコール等のアルコール類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等の他、N,N-ジメチルホルムアミド(DMF)、テトラクロロエチレン、テレビン油等が挙げられる。また、丸善石油化学社製スワゾール1000、スワゾール1500、スタンダード石油大阪発売所社製ソルベッソ100、ソルベッソ150、三共化学社製ソルベント#100、ソルベント#150、シェルケミカルズジャパン社製シェルゾールA100、シェルゾールA150、出光興産社製イプゾール100番、イプゾール150番等の有機溶剤を用いてもよい。このような有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 The organic solvent that can be used is not particularly limited, and examples thereof include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. be able to. More specifically, ketones such as methyl ethyl ketone, cyclohexanone, methyl butyl ketone, methyl isobutyl ketone, and methyl ethyl ketone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl Glycol ethers such as carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether Class: ethyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ester Esters such as teracetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol butyl ether acetate; ethanol, propanol, 2-methoxypropanol, n-butanol, isobutyl alcohol, isopentyl alcohol Alcohols such as ethylene glycol and propylene glycol; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha; and N, N-dimethylformamide ( DMF), tetrachloroethylene, turpentine oil and the like. In addition, Maruzen Petrochemical Co., Ltd. Swazol 1000, Swazol 1500, Standard Petroleum Osaka Sales Co., Ltd. Solvesso 100, Solvesso 150, Sankyo Chemical Co., Ltd. Solvent # 100, Solvent # 150, Shell Chemicals Japan Co., Ltd. Shell Sol A100, Shell Sol A150 Organic solvents such as Ipsol No. 100 and Ipsol No. 150 manufactured by Idemitsu Kosan Co., Ltd. may be used. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
 光硬化性熱硬化性樹脂組成物からなる樹脂層を有するドライフィルムを用いたプリント配線板の製造方法としては、従来公知の方法を用いればよい。例えば、図2に示すような、第一のフィルムと第二のフィルムとの間に樹脂層が挟まれたドライフィルムの場合、下記のような方法でプリント配線板を製造することができる。ドライフィルムから第二のフィルムを剥離して、樹脂層を露出させ、回路パターンが形成された基板上に、真空ラミネーター等を用いてドライフィルムの樹脂層をラミネートし、樹脂層にパターン露光を行う。第一のフィルムは、ラミネート後露光前または露光後のいずれかに、剥離すればよい。その後、アルカリ現像を行うことにより、基板上にパターニングされた樹脂層を形成し、パターニングされた樹脂層を光照射および熱により硬化させて、硬化被膜を形成することによりプリント配線板を製造することができる。 A conventionally known method may be used as a method for producing a printed wiring board using a dry film having a resin layer made of a photo-curable thermosetting resin composition. For example, in the case of a dry film in which a resin layer is sandwiched between a first film and a second film as shown in FIG. 2, a printed wiring board can be produced by the following method. The second film is peeled off from the dry film to expose the resin layer, and the resin layer of the dry film is laminated on the substrate on which the circuit pattern is formed using a vacuum laminator or the like, and pattern exposure is performed on the resin layer. . The first film may be peeled off either after exposure after lamination or after exposure. Thereafter, by performing alkali development, a patterned resin layer is formed on the substrate, and the patterned resin layer is cured by light irradiation and heat to form a cured coating, thereby producing a printed wiring board. Can do.
(熱硬化性樹脂組成物)
 熱硬化性樹脂組成物の一例として、光硬化性成分を含まず、エポキシ樹脂を含む樹脂組成物について、下記に説明する。
(Thermosetting resin composition)
As an example of the thermosetting resin composition, a resin composition containing no epoxy resin and containing an epoxy resin will be described below.
 熱硬化性樹脂組成物には、フィラーを配合することが好ましく、得られる硬化物の物理的強度等を上げることができる。フィラーとしては、特に制限はないが、例えば、前記樹脂層が含有するフィラーとして例示したものが挙げられる。フィラーは、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 It is preferable to add a filler to the thermosetting resin composition, and the physical strength of the obtained cured product can be increased. Although there is no restriction | limiting in particular as a filler, For example, what was illustrated as a filler which the said resin layer contains is mentioned. A filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
 使用できる有機溶剤としては、特に制限はないが、例えば、前記光硬化性熱硬化性樹脂組成物で例示した有機溶剤が挙げられる。有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 Although there is no restriction | limiting in particular as an organic solvent which can be used, For example, the organic solvent illustrated with the said photocurable thermosetting resin composition is mentioned. An organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
 熱硬化性樹脂組成物は硬化剤を含有することができる。硬化剤としては、フェノール樹脂、ポリカルボン酸およびその酸無水物、シアネートエステル樹脂、活性エステル樹脂、マレイミド化合物、脂環式オレフィン重合体等が挙げられる。硬化剤は1種を単独または2種以上を組み合わせて用いることができる。ここで、少なくともシアネートエステル樹脂又は活性エステル樹脂を使用することにより、加湿後の誘電正接を低くすることができる。また、少なくともシアネートエステル樹脂又はマレイミド化合物を使用することにより、リフロー後の冷熱サイクル時のクラック耐性が向上する。
 樹脂層が熱硬化性樹脂組成物からなる場合は、高温で硬化すると気泡が発生しやすが、本発明のドライフィルムによれば、フェノール樹脂、活性エステル樹脂、シアネートエステル樹脂等の高温での硬化を要する硬化剤を含有する場合であっても、硬化後に気泡が生じにくい。また、硬化剤は、ビフェニル骨格およびナフトール骨格の少なくとも何れか一方の構造を有することが好ましい。
The thermosetting resin composition can contain a curing agent. Examples of the curing agent include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, maleimide compounds, and alicyclic olefin polymers. A hardening | curing agent can be used individually by 1 type or in combination of 2 or more types. Here, the dielectric loss tangent after humidification can be lowered by using at least a cyanate ester resin or an active ester resin. In addition, by using at least a cyanate ester resin or a maleimide compound, the crack resistance during the cooling / heating cycle after reflow is improved.
When the resin layer is composed of a thermosetting resin composition, bubbles are likely to be generated when cured at a high temperature, but according to the dry film of the present invention, curing at a high temperature such as a phenol resin, an active ester resin, a cyanate ester resin, etc. Even when it contains a curing agent that requires a small amount of bubbles, it is difficult for bubbles to form after curing. The curing agent preferably has a structure of at least one of a biphenyl skeleton and a naphthol skeleton.
 前記フェノール樹脂としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、クレゾール/ナフトール樹脂、ポリビニルフェノール類、フェノール/ナフトール樹脂、α-ナフトール骨格含有フェノール樹脂、トリアジン骨格含有クレゾールノボラック樹脂、ビフェニルアラルキル型フェノール樹脂、ザイロック型フェノールノボラック樹脂等の従来公知のものを、1種を単独または2種以上を組み合わせて用いることができる。
 前記フェノール樹脂の中でも、水酸基当量が130g/eq.以上のものが好ましく、150g/eq.以上のものがより好ましい。水酸基当量が130g/eq.以上のフェノール樹脂としては、例えば、ジシクロペンタジエン骨格フェノールノボラック樹脂(GDPシリーズ、群栄化学社製)、ザイロック型フェノールノボラック樹脂(MEH-7800、明和化成社製)、ビフェニルアラルキル型ノボラック樹脂(MEH-7851、明和化成社製)、ナフトールアラルキル型硬化剤(SNシリーズ、新日鉄住金社製)、トリアジン骨格含有クレゾールノボラック樹脂(LA-3018-50P、DIC社製)などが挙げられる。
Examples of the phenol resin include a phenol novolak resin, an alkylphenol volac resin, a bisphenol A novolak resin, a dicyclopentadiene type phenol resin, an Xylok type phenol resin, a terpene-modified phenol resin, a cresol / naphthol resin, a polyvinylphenol, and a phenol / naphthol resin. , Α-naphthol skeleton-containing phenol resin, triazine skeleton-containing cresol novolak resin, biphenyl aralkyl type phenol resin, zylock type phenol novolak resin, and the like can be used singly or in combination of two or more. .
Among the phenol resins, the hydroxyl group equivalent is 130 g / eq. The above are preferable, and 150 g / eq. The above is more preferable. Hydroxyl equivalent weight is 130 g / eq. Examples of the phenol resin include a dicyclopentadiene skeleton phenol novolak resin (GDP series, manufactured by Gunei Chemical Co., Ltd.), a zylock type phenol novolac resin (MEH-7800, manufactured by Meiwa Kasei Co., Ltd.), and a biphenylaralkyl type novolak resin (MEH). -7851, manufactured by Meiwa Kasei Co., Ltd.), naphthol aralkyl type curing agent (SN series, manufactured by Nippon Steel & Sumikin Co., Ltd.), triazine skeleton-containing cresol novolac resin (LA-3018-50P, manufactured by DIC), and the like.
 前記シアネートエステル樹脂は、一分子中に2個以上のシアネートエステル基(-OCN)を有する化合物である。シアネートエステル樹脂は、従来公知のものをいずれも使用することができる。シアネートエステル樹脂としては、例えば、フェノールノボラック型シアネートエステル樹脂、アルキルフェノールノボラック型シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂が挙げられる。また、一部がトリアジン化したプレポリマーであってもよい。 The cyanate ester resin is a compound having two or more cyanate ester groups (—OCN) in one molecule. Any conventionally known cyanate ester resins can be used. Examples of the cyanate ester resin include phenol novolac type cyanate ester resin, alkylphenol novolak type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type cyanate ester resin. Is mentioned. Further, it may be a prepolymer partially triazine.
 前記活性エステル樹脂は、一分子中に2個以上の活性エステル基を有する樹脂である。活性エステル樹脂は、一般に、カルボン酸化合物とヒドロキシ化合物との縮合反応によって得ることができる。中でも、ヒドロキシ化合物としてフェノール化合物またはナフトール化合物を用いて得られる活性エステル化合物が好ましい。フェノール化合物またはナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。また、活性エステル樹脂としては、ナフタレンジオールアルキル/安息香酸型でもよい。 The active ester resin is a resin having two or more active ester groups in one molecule. The active ester resin can generally be obtained by a condensation reaction between a carboxylic acid compound and a hydroxy compound. Among these, an active ester compound obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like. The active ester resin may be naphthalenediol alkyl / benzoic acid type.
 前記マレイミド化合物は、マレイミド骨格を有する化合物であり、従来公知のものをいずれも使用できる。マレイミド化合物は、2以上のマレイミド骨格を有することが好ましく、N,N’-1,3-フェニレンジマレイミド、N,N’-1,4-フェニレンジマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、1,2-ビス(マレイミド)エタン、1,6-ビスマレイミドヘキサン、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビスフェノールAジフェニルエーテルビスマレイミド、ポリフェニルメタンマレイミド、およびこれらのオリゴマー、ならびにマレイミド骨格を有するジアミン縮合物のうちの少なくとも何れか1種であることがより好ましい。前記オリゴマーは、上述のマレイミド化合物のうちのモノマーであるマレイミド化合物を縮合させることにより得られたオリゴマーである。マレイミド化合物は、1種を単独または2種以上を組み合わせて用いることができる。 The maleimide compound is a compound having a maleimide skeleton, and any conventionally known compound can be used. The maleimide compound preferably has two or more maleimide skeletons, and N, N′-1,3-phenylene dimaleimide, N, N′-1,4-phenylene dimaleimide, N, N′-4,4- Diphenylmethane bismaleimide, 1,2-bis (maleimide) ethane, 1,6-bismaleimide hexane, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, bis (3-ethyl -5-methyl-4-maleimidophenyl) methane, bisphenol A diphenyl ether bismaleimide, polyphenylmethanemaleimide, Beauty and more preferably at least any one of diamines condensates with these oligomers and maleimide skeleton. The said oligomer is an oligomer obtained by condensing the maleimide compound which is a monomer of the above-mentioned maleimide compounds. A maleimide compound can be used individually by 1 type or in combination of 2 or more types.
 前記硬化剤は、熱硬化性成分のエポキシ基等の熱硬化反応が可能な官能基と、その官能基と反応する硬化剤中の官能基との比率が、硬化剤の官能基/熱硬化反応が可能な官能基(当量比)=0.2~2となるような割合で配合することが好ましい。硬化剤の官能基/熱硬化反応が可能な官能基(当量比)を上記範囲内とすることで、デスミア工程におけるフィルム表面の粗化を防止することができる。より好ましくは硬化剤の官能基/熱硬化反応が可能な官能基(当量比)=0.2~1.5であり、さらに好ましくは硬化剤の官能基/熱硬化反応が可能な官能基(当量比)=0.3~1.0である。
 フェノール樹脂、シアネートエステル樹脂、活性エステル樹脂、マレイミド化合物の官能基当量(g/eq.)が200以上であると、反りを小さくすることができる。
The ratio of the functional group in the curing agent that reacts with the functional group such as the epoxy group of the thermosetting component and the functional group in the curing agent that reacts with the functional group is the curing agent functional group / thermosetting reaction. The functional group (equivalent ratio) is preferably in a ratio of 0.2 to 2. By setting the functional group of the curing agent / functional group capable of thermosetting reaction (equivalent ratio) within the above range, roughening of the film surface in the desmear process can be prevented. More preferably, the functional group of the curing agent / functional group capable of thermal curing reaction (equivalent ratio) = 0.2 to 1.5, and more preferably the functional group of the curing agent / functional group capable of thermal curing reaction ( Equivalent ratio) = 0.3 to 1.0.
When the functional group equivalent (g / eq.) Of the phenol resin, cyanate ester resin, active ester resin, and maleimide compound is 200 or more, warpage can be reduced.
 熱硬化性樹脂組成物は、得られる硬化被膜の機械的強度を向上させるために、さらに熱可塑性樹脂を含有することができる。熱可塑性樹脂は、溶剤に可溶であることが好ましい。溶剤に可溶である場合、ドライフィルムの柔軟性が向上し、クラックの発生や粉落ちを抑制できる。熱可塑性樹脂としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体等が挙げられる。熱可塑性樹脂は1種を単独または2種以上を組み合わせて用いることができる。 The thermosetting resin composition can further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured film. The thermoplastic resin is preferably soluble in a solvent. When it is soluble in the solvent, the flexibility of the dry film is improved, and the generation of cracks and powder falling can be suppressed. As the thermoplastic resin, use is made of thermoplastic polyhydroxy polyether resin, phenoxy resin that is a condensate of epichlorohydrin and various bifunctional phenolic compounds, or hydroxyl group of hydroxy ether part present in the skeleton of various acid anhydrides and acid chlorides. And esterified phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamideimide resin, block copolymer and the like. A thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
 熱可塑性樹脂の配合量は、溶剤を除いた樹脂層全量基準で、0.5~20質量%、好ましくは0.5~10質量%の割合である。熱可塑性樹脂の配合量が上記範囲外になると、均一な粗化面状態を得られ難くなる。 The blending amount of the thermoplastic resin is 0.5 to 20% by mass, preferably 0.5 to 10% by mass, based on the total amount of the resin layer excluding the solvent. When the blending amount of the thermoplastic resin is out of the above range, it becomes difficult to obtain a uniform roughened surface state.
 さらに、熱硬化性樹脂組成物は、必要に応じてゴム状粒子を含有することができる。このようなゴム状粒子としては、ポリブタジエンゴム、ポリイソプロピレンゴム、ウレタン変性ポリブタジエンゴム、エポキシ変性ポリブタジエンゴム、アクリロニトリル変性ポリブタジエンゴム、カルボキシル基変性ポリブタジエンゴム、カルボキシル基または水酸基で変性したアクリロニトリルブタジエンゴム、およびそれらの架橋ゴム粒子、コアシェル型ゴム粒子等が挙げられ、1種を単独または2種以上を組み合わせて用いることができる。これらのゴム状粒子は、得られる硬化被膜の柔軟性を向上させたり、クラック耐性が向上したり、酸化剤による表面粗化処理を可能とし、銅箔等との密着強度を向上させるために添加される。 Furthermore, the thermosetting resin composition can contain rubber-like particles as necessary. Examples of such rubber-like particles include polybutadiene rubber, polyisopropylene rubber, urethane-modified polybutadiene rubber, epoxy-modified polybutadiene rubber, acrylonitrile-modified polybutadiene rubber, carboxyl group-modified polybutadiene rubber, acrylonitrile butadiene rubber modified with a carboxyl group or a hydroxyl group, and These crosslinked rubber particles, core-shell type rubber particles, and the like can be mentioned, and one kind can be used alone or two or more kinds can be used in combination. These rubber-like particles are added to improve the flexibility of the resulting cured film, improve crack resistance, enable surface roughening treatment with an oxidizing agent, and improve adhesion strength with copper foil, etc. Is done.
 ゴム状粒子の平均粒径は0.005~1μmの範囲が好ましく、0.2~1μmの範囲がより好ましい。本発明におけるゴム状粒子の平均粒径は、レーザー回折式粒子径分布測定装置により求めることができる。例えば、適当な有機溶剤にゴム状粒子を超音波などにより均一に分散させ、日機装社製Nanotrac waveを用いて、ゴム状粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。 The average particle size of the rubber-like particles is preferably in the range of 0.005 to 1 μm, more preferably in the range of 0.2 to 1 μm. The average particle size of the rubber-like particles in the present invention can be determined by a laser diffraction particle size distribution measuring device. For example, rubber-like particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of the rubber-like particles is created on a mass basis using Nanotrac wave manufactured by Nikkiso Co., Ltd. It can be measured by doing.
 ゴム状粒子の配合量は、溶剤を除いた樹脂層全量基準で、0.5~10質量%であることが好ましく、1~5質量%であることがより好ましい。0.5質量%以上の場合、クラック耐性が得られ、導体パターン等との密着強度を向上できる。10質量%以下の場合、熱膨張係数(CTE)が低下し、ガラス転移温度(Tg)が上昇して硬化特性が向上する。 The compounding amount of the rubber-like particles is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, based on the total amount of the resin layer excluding the solvent. In the case of 0.5% by mass or more, crack resistance is obtained, and the adhesion strength with a conductor pattern or the like can be improved. When the content is 10% by mass or less, the coefficient of thermal expansion (CTE) decreases, the glass transition temperature (Tg) increases, and the curing characteristics are improved.
 本発明のドライフィルムの樹脂層は、硬化促進剤を含有することができる。硬化促進剤は、熱硬化反応を促進させるものであり、密着性、耐薬品性、耐熱性等の特性をより一層向上させるために使用される。このような硬化促進剤の具体例としては、イミダゾールおよびその誘導体;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩および/またはエポキシアダクト;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類;トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等のアミン類;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール類;トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド等のホスホニウム塩類;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の4級アンモニウム塩類;前記多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート等の光カチオン重合触媒;スチレン-無水マレイン酸樹脂;フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物、金属触媒等の従来公知の硬化促進剤が挙げられる。硬化促進剤の中でも、BHAST耐性が得られることから、ホスホニウム塩類が好ましい。 The resin layer of the dry film of the present invention can contain a curing accelerator. The curing accelerator is for accelerating the thermosetting reaction, and is used for further improving properties such as adhesion, chemical resistance, and heat resistance. Specific examples of such curing accelerators include imidazole and derivatives thereof; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, Polyamines such as melamine and polybasic hydrazides; organic acid salts and / or epoxy adducts thereof; boron trifluoride amine complexes; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4- Triazine derivatives such as diamino-6-xylyl-S-triazine; trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hexa (N-methyl) Amines such as lamin, 2,4,6-tris (dimethylaminophenol), tetramethylguanidine and m-aminophenol; polyphenols such as polyvinylphenol, polyvinylphenol bromide, phenol novolac and alkylphenol novolac; tributylphosphine, tri Organic phosphines such as phenylphosphine and tris-2-cyanoethylphosphine; phosphonium salts such as tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide and hexadecyltributylphosphonium chloride; benzyltrimethylammonium chloride and phenyltributylammonium chloride Quaternary ammonium salts such as polybasic acid anhydrides; diphenyliodonium tetrafluoroboroate, triphenyl Photocationic polymerization catalyst such as sulfonium hexafluoroantimonate and 2,4,6-triphenylthiopyrylium hexafluorophosphate; styrene-maleic anhydride resin; equimolar reaction product of phenyl isocyanate and dimethylamine, tolylene diisocyanate, Conventionally known curing accelerators such as an equimolar reaction product of an organic polyisocyanate such as isophorone diisocyanate and dimethylamine, and a metal catalyst can be used. Among the curing accelerators, phosphonium salts are preferred because BHAST resistance is obtained.
 硬化促進剤は、1種を単独または2種以上混合して用いることができる。硬化促進剤の使用は必須ではないが、特に硬化を促進したい場合には、熱硬化性成分100質量部に対して好ましくは0.01~5質量部の範囲で用いることができる。金属触媒の場合、熱硬化性成分100質量部に対して金属換算で10~550ppmが好ましく、25~200ppmが好ましい。 A hardening accelerator can be used individually by 1 type or in mixture of 2 or more types. The use of a curing accelerator is not essential, but when it is desired to accelerate the curing, it can be used preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the thermosetting component. In the case of a metal catalyst, it is preferably 10 to 550 ppm, preferably 25 to 200 ppm in terms of metal with respect to 100 parts by mass of the thermosetting component.
 熱硬化性樹脂組成物は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の従来公知の着色剤、アスベスト、オルベン、ベントン、微紛シリカ等の従来公知の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤および/またはレベリング剤、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、難燃剤、チタネート系、アルミニウム系の従来公知の添加剤類を用いることができる。 The thermosetting resin composition may further include, as necessary, conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, asbestos, Conventionally known thickeners such as olben, benton and fine silica, adhesion of antifoaming and / or leveling agents such as silicones, fluorines and polymers, thiazoles, triazoles and silane coupling agents Conventionally known additives such as imparting agents, flame retardants, titanates, and aluminum can be used.
 熱硬化性樹脂組成物からなる樹脂層を有するドライフィルムを用いたプリント配線板の製造方法としては、従来公知の方法を用いればよい。例えば、図2に示すような、第一のフィルムと第二のフィルムとの間に樹脂層が挟まれたドライフィルムの場合、下記のような方法でプリント配線板を製造することができる。ドライフィルムから第二のフィルムを剥離し、回路パターンが形成された回路基板に加熱ラミネートした後、熱硬化させる。熱硬化は、オーブン中で硬化、もしくは熱板プレスで硬化させてもよい。回路が形成された基材と本発明のドライフィルムをラミネートもしくは熱板プレスする際に、銅箔もしくは回路形成された基材を同時に積層することもできる。回路パターンが形成された基板上の所定の位置に対応する位置に、レーザー照射またはドリルでパターンやビアホールを形成し、回路配線を露出させることで、プリント配線板を製造することができる。この際、パターンやビアホール内の回路配線上に除去しきれないで残留した成分(スミア)が存在する場合にはデスミア処理を行う。第一のフィルムは、ラミネート後、熱硬化後、レーザー加工後またはデスミア処理後のいずれかに、剥離すればよい。 As a method for producing a printed wiring board using a dry film having a resin layer made of a thermosetting resin composition, a conventionally known method may be used. For example, in the case of a dry film in which a resin layer is sandwiched between a first film and a second film as shown in FIG. 2, a printed wiring board can be produced by the following method. The second film is peeled off from the dry film, heat laminated to the circuit board on which the circuit pattern is formed, and then thermally cured. The heat curing may be performed in an oven or by a hot plate press. When laminating or hot plate pressing the substrate on which the circuit is formed and the dry film of the present invention, the copper foil or the substrate on which the circuit is formed can be laminated simultaneously. A printed wiring board can be manufactured by forming a pattern or a via hole by laser irradiation or drilling at a position corresponding to a predetermined position on the substrate on which the circuit pattern is formed, and exposing the circuit wiring. At this time, if there is a component (smear) that cannot be completely removed on the circuit wiring in the pattern or via hole, desmear processing is performed. The first film may be peeled off after lamination, after heat curing, after laser processing, or after desmear treatment.
(光塩基発生剤を含有する光硬化性熱硬化性樹脂組成物)
 光塩基発生剤を含有する光硬化性熱硬化性樹脂組成物(以下、光塩基発生剤含有組成物とも称する)の一例として、エポキシ樹脂の他に、アルカリ現像性樹脂と、光塩基発生剤とを含む組成物について、下記に説明する。
(Photocurable thermosetting resin composition containing a photobase generator)
As an example of a photocurable thermosetting resin composition containing a photobase generator (hereinafter also referred to as a photobase generator-containing composition), in addition to an epoxy resin, an alkali developable resin, a photobase generator, The composition containing is described below.
 アルカリ現像性樹脂は、フェノール性水酸基、チオール基およびカルボキシル基のうち1種以上の官能基を含有し、アルカリ溶液で現像可能な樹脂であり、好ましくはフェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられる。 The alkali-developable resin is a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution, preferably a compound having two or more phenolic hydroxyl groups, carboxyl Examples thereof include a group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
 カルボキシル基含有樹脂としては、公知のカルボキシル基を含む樹脂を用いることができる。カルボキシル基の存在により、樹脂組成物をアルカリ現像性とすることができる。また、カルボキシル基の他に、分子内にエチレン性不飽和結合を有する化合物を用いてもよいが、本発明においては、カルボキシル基含有樹脂として、エチレン性不飽和結合を有さないカルボキシル基含有樹脂のみを用いることが好ましい。 As the carboxyl group-containing resin, a known resin containing a carboxyl group can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable. In addition to the carboxyl group, a compound having an ethylenically unsaturated bond in the molecule may be used. In the present invention, the carboxyl group-containing resin does not have an ethylenically unsaturated bond as the carboxyl group-containing resin. It is preferable to use only.
 本発明に用いることができるカルボキシル基含有樹脂の具体例としては、前記光硬化性熱硬化性樹脂組成物に含まれるカルボキシル基含有樹脂として挙げた(1)~(11)の他に、以下に列挙するような化合物(オリゴマーおよびポリマーのいずれでもよい)が挙げられる。 Specific examples of the carboxyl group-containing resin that can be used in the present invention include the following (1) to (11) as the carboxyl group-containing resin included in the photocurable thermosetting resin composition. The compounds as listed (any of oligomers and polymers) may be mentioned.
 (12)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (12) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers A carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (13)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (13) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
 (14)上記(12)または(13)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (14) During the synthesis of the resin of the above (12) or (13), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing urethane resin.
 (15)上記(12)または(13)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (15) During the synthesis of the resin of the above (12) or (13), one isocyanate group and one or more (meth) acryloyl groups are introduced into the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. The carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
 (16)前述するような多官能エポキシ樹脂に飽和モノカルボン酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。ここで、多官能エポキシ樹脂は固形であることが好ましい。 (16) A polyfunctional epoxy resin as described above is reacted with a saturated monocarboxylic acid, and a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride or hexahydrophthalic anhydride is added to the hydroxyl group present in the side chain. Carboxyl group-containing resin. Here, the polyfunctional epoxy resin is preferably solid.
 (17)後述するような多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (17) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin as described later with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (18)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (18) A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide. .
 (19)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に飽和モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (19) A saturated monocarboxylic acid is reacted with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide. A carboxyl group-containing resin obtained by reacting a basic acid anhydride.
 (20)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に飽和モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (20) A reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate, with a saturated monocarboxylic acid. A carboxyl group-containing resin obtained by reacting with a polybasic acid anhydride.
 (21)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (21) A carboxyl group obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. Containing resin.
 (22)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、飽和モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (22) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and a saturated monocarboxylic acid React with acid and react with polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc. to the alcoholic hydroxyl group of the resulting reaction product Carboxyl group-containing resin obtained by making it.
 (23)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (23) reacting an epoxy compound having a plurality of epoxy groups in one molecule with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol; Carboxyl groups obtained by reacting polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid with the alcoholic hydroxyl group of the obtained reaction product Containing resin.
 (24)上記(12)~(23)のいずれかの樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。 (24) One epoxy group and one or more (meth) acryloyl groups in the molecule of glycidyl (meth) acrylate, α-methylglycidyl (meth) acrylate, etc., in addition to the resin of any one of (12) to (23) above A carboxyl group-containing resin formed by adding a group-containing compound.
 上記のようなアルカリ現像性樹脂は、バックボーン・ポリマーの側鎖に多数のカルボキシル基やヒロドキシ基等を有するため、アルカリ水溶液による現像が可能になる。
 また、上記アルカリ現像性樹脂のヒドロキシル基当量またはカルボキシル基当量は、80~900g/eq.であることが好ましく、さらに好ましくは、100~700g/eq.である。ヒドロキシル基当量またはカルボキシル基当量が900g/eq.以下の場合、パターン層の密着性が得られ、アルカリ現像が容易となる。一方、ヒドロキシル基当量またはカルボキシル基当量が80g/eq.以上の場合には、現像液による光照射部の溶解が抑えられ、必要以上にラインが痩せたりせずに、正常なレジストパターンの描画が容易となるため好ましい。また、カルボキシル基当量やフェノール基当量が大きい場合、アルカリ現像性樹脂の含有量が少ない場合でも、現像が可能となるため、好ましい。
Such an alkali-developable resin has a large number of carboxyl groups, hydroxyl groups, and the like in the side chain of the backbone polymer, so that development with an alkaline aqueous solution becomes possible.
Further, the hydroxyl group equivalent or carboxyl group equivalent of the alkali developable resin is 80 to 900 g / eq. And more preferably 100 to 700 g / eq. It is. Hydroxyl group equivalent or carboxyl group equivalent is 900 g / eq. In the following cases, adhesion of the pattern layer is obtained, and alkali development becomes easy. On the other hand, the hydroxyl group equivalent or the carboxyl group equivalent is 80 g / eq. The above case is preferable because dissolution of the light-irradiated portion by the developer is suppressed, and a normal resist pattern can be easily drawn without losing lines more than necessary. Further, it is preferable that the carboxyl group equivalent or the phenol group equivalent is large because development is possible even when the content of the alkali-developable resin is small.
 アルカリ現像性樹脂の酸価は、40~150mgKOH/gであることが好ましい。アルカリ現像性樹脂の酸価が40mgKOH/g以上とすることにより、アルカリ現像が良好になる。また、酸価を150mgKOH/gを以下とすることで、正常なレジストパターンの描画をし易くできる。より好ましくは、50~130mgKOH/gである。 The acid value of the alkali developable resin is preferably 40 to 150 mgKOH / g. When the acid value of the alkali-developable resin is 40 mgKOH / g or more, alkali development is improved. In addition, by setting the acid value to 150 mgKOH / g or less, it is possible to easily draw a normal resist pattern. More preferably, it is 50 to 130 mgKOH / g.
 アルカリ現像性樹脂の配合量は、溶剤を除いたドライフィルムの樹脂層全量基準で、20~60質量%であることが好ましい。20質量%以上とすることにより塗膜強度を向上させることができる。また60質量%以下とすることで粘性が適当となり塗布性が向上する。より好ましくは、30~50質量%である。 The blending amount of the alkali developing resin is preferably 20 to 60% by mass based on the total amount of the resin layer of the dry film excluding the solvent. Coating strength can be improved by setting it as 20 mass% or more. Further, when the content is 60% by mass or less, the viscosity becomes appropriate and the coating property is improved. More preferably, it is 30 to 50% by mass.
 光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、上記の熱反応性化合物の付加反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。 One or more photobase generators can function as a catalyst for the addition reaction of the above-mentioned thermoreactive compound when the molecular structure is changed by irradiation with light such as ultraviolet rays or visible light, or when the molecule is cleaved. It is a compound that produces a basic substance. Examples of basic substances include secondary amines and tertiary amines.
 光塩基発生剤として、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。 Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group.
 前記光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。光塩基発生剤含有組成物中の光塩基発生剤の配合量は、好ましくは熱反応性化合物100質量部に対して1~50質量部であり、さらに好ましくは、1~40質量部である。1質量部以上の場合、現像が容易になるため好ましい。 The photobase generator may be used alone or in combination of two or more. The blending amount of the photobase generator in the photobase generator-containing composition is preferably 1 to 50 parts by mass, more preferably 1 to 40 parts by mass with respect to 100 parts by mass of the thermoreactive compound. The amount of 1 part by mass or more is preferable because development is easy.
 光塩基発生剤含有組成物には、フィラーを配合することが好ましく、得られる硬化物の物理的強度等を上げることができる。フィラーとしては、特に制限はないが、例えば、前記樹脂層が含有するフィラーとして例示したものが挙げられる。フィラーは、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 It is preferable to add a filler to the photobase generator-containing composition, and the physical strength and the like of the resulting cured product can be increased. Although there is no restriction | limiting in particular as a filler, For example, what was illustrated as a filler which the said resin layer contains is mentioned. A filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
 使用できる有機溶剤としては、特に制限はないが、例えば、前記光硬化性熱硬化性樹脂組成物で例示した有機溶剤が挙げられる。有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 Although there is no restriction | limiting in particular as an organic solvent which can be used, For example, the organic solvent illustrated with the said photocurable thermosetting resin composition is mentioned. An organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
 光塩基発生剤含有組成物には、必要に応じてさらに、メルカプト化合物、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。
 また、上記の光塩基発生剤含有組成物には、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤および/またはレベリング剤、シランカップリング剤、防錆剤などのような公知慣用の添加剤類を配合することができる。
If necessary, the photobase generator-containing composition may further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber. As these, those known in the field of electronic materials can be used.
The photobase generator-containing composition includes known conventional thickeners such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite, antifoaming agents such as silicone, fluorine, and polymer. Or well-known and usual additives, such as a leveling agent, a silane coupling agent, a rust preventive agent, can be mix | blended.
 光塩基発生剤含有組成物からなる樹脂層を有するドライフィルムを用いたプリント配線板の製造方法としては、従来公知の方法を用いればよい。例えば、図2に示すような、第一のフィルムと第二のフィルムとの間に樹脂層が挟まれたドライフィルムの場合、下記のような方法でプリント配線板を製造することができる。ドライフィルムから第二のフィルムを剥離して、樹脂層を露出させ、回路パターンが形成された基板上に、真空ラミネーター等を用いてドライフィルムをラミネートする。その後、ネガ型のパターン状の光照射にて光塩基発生剤含有樹脂組成物に含まれる光塩基発生剤を活性化して光照射部を硬化し、アルカリ現像により未照射部を除去することによりネガ型のパターン層を形成することができる。第一のフィルムは、ラミネート後または露光後のいずれかに、剥離すればよい。また、光照射後かつ現像前に、樹脂層を加熱することが好ましい。これにより、樹脂層を十分に硬化して、さらに硬化特性に優れたパターン層を得ることができる。尚、光照射後かつ現像前の加熱は、未照射部が熱硬化しない温度であることが好ましい。また、現像後に、熱硬化(ポストキュア)を行うことが好ましい。現像後、紫外線照射を行うことで、光照射時に活性化せずに残った光塩基発生剤を活性化させた後に、熱硬化(ポストキュア)を行ってもよい。 As a method for producing a printed wiring board using a dry film having a resin layer composed of a photobase generator-containing composition, a conventionally known method may be used. For example, in the case of a dry film in which a resin layer is sandwiched between a first film and a second film as shown in FIG. 2, a printed wiring board can be produced by the following method. The second film is peeled from the dry film to expose the resin layer, and the dry film is laminated on the substrate on which the circuit pattern is formed using a vacuum laminator or the like. After that, the photobase generator contained in the photobase generator-containing resin composition is activated by negative pattern light irradiation to cure the light irradiated portion, and the negative portion is removed by alkali development to remove the unirradiated portion. A pattern layer of the mold can be formed. The first film may be peeled off either after lamination or after exposure. Moreover, it is preferable to heat a resin layer after light irradiation and before image development. Thereby, a resin layer can fully be hardened and the pattern layer excellent in the hardening characteristic can be obtained. The heating after light irradiation and before development is preferably a temperature at which the unirradiated part is not thermally cured. Moreover, it is preferable to perform thermosetting (post-cure) after development. After development, ultraviolet curing may be performed to activate the photobase generator remaining without being activated at the time of light irradiation, and then heat curing (post-cure) may be performed.
(ポジ型感光性熱硬化性樹脂組成物)
 ポジ型感光性熱硬化性樹脂組成物の一例として、エポキシ樹脂の他に、光照射によりカルボキシル基を発生する化合物を含む樹脂組成物について、下記に説明する。
(Positive photosensitive thermosetting resin composition)
As an example of a positive photosensitive thermosetting resin composition, a resin composition containing a compound that generates a carboxyl group by light irradiation in addition to an epoxy resin will be described below.
 光照射によりカルボキシル基を発生する化合物の中でも、ナフトキノンジアジド化合物を用いることが好ましい。ナフトキノンジアジド化合物は、従来より、カルボキシル基やフェノール性水酸基と錯体を形成することによりカルボキシル基等のアルカリ可溶性を抑え、その後の光照射によって錯体が解離して、アルカリ可溶性を発現させる系に用いられている。この場合、ナフトキノンジアジド化合物が膜中に残存していると、光照射によって錯体が解離し可溶性が発現するおそれがあるため、半導体分野等では、残存するナフトキノンジアジド化合物は、最終的に高温で飛ばすことで除去されていた。しかし、プリント配線板の分野ではこのような高温をかけることができず、安定性の観点から永久塗膜として使用できないために、ナフトキノンジアジド化合物は、実際上、用いられていなかった。本発明において、光照射によりカルボキシル基を発生する化合物としてナフトキノンジアジド化合物を用いた場合には、未露光部に残存するナフトキノンジアジド化合物は、熱硬化反応時に架橋構造に取り込まれて安定化するので、従来のような除去の問題を生ずることなく、膜強靭性、すなわち、耐屈曲性や、電気特性を向上させることができる。特に、光照射によりカルボキシル基を発生する化合物としてのナフトキノンジアジド化合物を、ポリアミドイミド樹脂と熱硬化成分とを併用することで、現像性や解像性を良好に確保しつつ、屈曲性を効果的に向上することができるものとなり、好ましい。 Among the compounds that generate a carboxyl group by light irradiation, it is preferable to use a naphthoquinonediazide compound. Naphthoquinone diazide compounds are conventionally used in systems that suppress alkali solubility such as carboxyl groups by forming complexes with carboxyl groups and phenolic hydroxyl groups, and then dissociate the complex by subsequent light irradiation to develop alkali solubility. ing. In this case, if the naphthoquinone diazide compound remains in the film, the complex may be dissociated by light irradiation and the solubility may be expressed. Therefore, in the semiconductor field and the like, the remaining naphthoquinone diazide compound will eventually fly at a high temperature. It was removed by that. However, in the field of printed wiring boards, such a high temperature cannot be applied, and since it cannot be used as a permanent coating film from the viewpoint of stability, a naphthoquinone diazide compound has not been actually used. In the present invention, when a naphthoquinone diazide compound is used as a compound that generates a carboxyl group by light irradiation, the naphthoquinone diazide compound remaining in the unexposed part is incorporated into the crosslinked structure during the thermosetting reaction and is stabilized, The film toughness, that is, the bending resistance and the electrical characteristics can be improved without causing the conventional removal problem. In particular, naphthoquinone diazide compound as a compound that generates a carboxyl group by light irradiation is used in combination with polyamideimide resin and thermosetting component to ensure good developability and resolution while ensuring flexibility. This is preferable because it can be improved.
 ナフトキノンジアジド化合物としては、具体的には例えば、トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼンのナフトキノンジアジド付加物(例えば、三宝化学研究所社製のTS533,TS567,TS583,TS593)や、テトラヒドロキシベンゾフェノンのナフトキノンジアジド付加物(例えば、三宝化学研究所社製のBS550,BS570,BS599)等を使用することができる。 Specific examples of the naphthoquinonediazide compound include, for example, naphthoquinonediazide adduct of tris (4-hydroxyphenyl) -1-ethyl-4-isopropylbenzene (for example, TS533, TS567, TS583, TS593 manufactured by Sanpo Chemical Laboratory Co., Ltd.). ), Naphthoquinonediazide adducts of tetrahydroxybenzophenone (for example, BS550, BS570, BS599 manufactured by Sanpo Chemical Laboratory Co., Ltd.) and the like can be used.
 ポジ型感光性熱硬化性樹脂組成物には、フィラーを配合することが好ましく、得られる硬化物の物理的強度等を上げることができる。フィラーとしては、特に制限はないが、例えば、前記樹脂層が含有するフィラーとして例示したものが挙げられる。フィラーは、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 It is preferable to add a filler to the positive photosensitive thermosetting resin composition, and the physical strength of the resulting cured product can be increased. Although there is no restriction | limiting in particular as a filler, For example, what was illustrated as a filler which the said resin layer contains is mentioned. A filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
 ポジ型感光性熱硬化性樹脂組成物が含有するアルカリ現像性樹脂の具体例としては、前記光硬化性熱硬化性樹脂組成物で例示したカルボキシル基含有樹脂、および、前記光塩基発生剤含有組成物で例示したアルカリ現像性樹脂等が挙げられる。 Specific examples of the alkali-developable resin contained in the positive photosensitive thermosetting resin composition include the carboxyl group-containing resin exemplified in the photocurable thermosetting resin composition, and the photobase generator-containing composition. Examples thereof include alkali developable resins.
 ポジ型感光性熱硬化性樹脂組成物には、耐熱性、絶縁信頼性等の特性を向上させる目的でエポキシ樹脂以外の熱硬化性成分が含まれていてもよい。熱硬化性成分としては、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、マレイミド化合物、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、多官能オキセタン化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂が使用できる。 The positive photosensitive thermosetting resin composition may contain a thermosetting component other than the epoxy resin for the purpose of improving characteristics such as heat resistance and insulation reliability. As the thermosetting component, known and commonly used thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, maleimide compounds, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, polyfunctional oxetane compounds, and episulfide resins can be used. .
 使用できる有機溶剤としては、特に制限はないが、例えば、前記光硬化性熱硬化性樹脂組成物で例示した有機溶剤が挙げられる。有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 Although there is no restriction | limiting in particular as an organic solvent which can be used, For example, the organic solvent illustrated with the said photocurable thermosetting resin composition is mentioned. An organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
 ポジ型感光性熱硬化性樹脂組成物は、フィラーを含有することが好ましい。フィラーとしては、特に制限はないが、例えば、前記樹脂層が含有するフィラーとして例示したものが挙げられる。フィラーは、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 The positive photosensitive thermosetting resin composition preferably contains a filler. Although there is no restriction | limiting in particular as a filler, For example, what was illustrated as a filler which the said resin layer contains is mentioned. A filler may be used individually by 1 type and may be used as a mixture of 2 or more types.
 ポジ型感光性熱硬化性樹脂組成物は、上記した成分以外にも、ブロック共重合体、着色剤、エラストマー、熱可塑性樹脂等の他の成分が含まれていてもよい。また、ポジ型感光性熱硬化性樹脂組成物には、必要に応じてさらに、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。また、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤およびレベリング剤の少なくとも何れか1種、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、防錆剤、蛍光増白剤などのような公知慣用の添加剤類の少なくとも何れか一種を配合することができる。 The positive photosensitive thermosetting resin composition may contain other components such as a block copolymer, a colorant, an elastomer, and a thermoplastic resin in addition to the components described above. In addition, the positive photosensitive thermosetting resin composition may further contain components such as an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary. As these, those known in the field of electronic materials can be used. Further, known and commonly used thickeners such as fine silica, hydrotalcite, organic bentonite, montmorillonite, at least one of defoamers and leveling agents such as silicone, fluorine, and polymer, imidazole, and thiazole At least one of known and commonly used additives such as a silane coupling agent such as a triazole or triazole, a rust inhibitor, and a fluorescent brightening agent can be blended.
 ポジ型感光性熱硬化性樹脂組成物からなる樹脂層を有するドライフィルムを用いたプリント配線板の製造方法としては、従来公知の方法を用いればよい。例えば、図2に示すような、第一のフィルムと第二のフィルムとの間に樹脂層が挟まれたドライフィルムの場合、下記のような方法でプリント配線板を製造することができる。ドライフィルムから第二のフィルムを剥離し、樹脂層を露出させ、回路パターンが形成された基板上に、真空ラミネーター等を用いてドライフィルムをラミネートする。その後、樹脂層に光をポジ型のパターン状に照射し、樹脂層をアルカリ現像して、光照射部を除去することによりポジ型のパターン層を形成することができる。第一のフィルムは、ラミネート後または露光後のいずれかに、剥離すればよい。また、現像後に、樹脂層を加熱硬化(ポストキュア)し、未照射部を硬化することによって、プリント配線板を製造することができる。ポジ型感光性熱硬化性樹脂組成物においては、光照射により発生する酸によって、アルカリ現像液に対して可溶な組成に変化するので、アルカリ現像によるポジ型のパターン形成が可能となる。 A conventionally known method may be used as a method for producing a printed wiring board using a dry film having a resin layer made of a positive photosensitive thermosetting resin composition. For example, in the case of a dry film in which a resin layer is sandwiched between a first film and a second film as shown in FIG. 2, a printed wiring board can be produced by the following method. The second film is peeled from the dry film, the resin layer is exposed, and the dry film is laminated on the substrate on which the circuit pattern is formed using a vacuum laminator or the like. Thereafter, the resin layer is irradiated with light in a positive pattern, the resin layer is alkali-developed, and the light irradiation portion is removed, whereby a positive pattern layer can be formed. The first film may be peeled off either after lamination or after exposure. Moreover, a printed wiring board can be manufactured by heat-hardening (post-cure) a resin layer after image development, and hardening | curing an unirradiated part. In the positive photosensitive thermosetting resin composition, a composition that is soluble in an alkali developer is changed by an acid generated by light irradiation, so that a positive pattern can be formed by alkali development.
[フィルム]
 キャリアフィルムと保護フィルムとの間に挟まれた樹脂層を有するドライフィルムをラミネートする際には、多くの場合、保護フィルムを剥離して、保護フィルムと接していた側の樹脂層の面が基材と接触するようにラミネートされる。しかしながら、キャリアフィルムを剥離して、キャリアフィルムと接していた側の樹脂層の面が基材と接触するようにラミネートされる場合もある。本発明においては、キャリアフィルムおよび保護フィルムによって、図2に示すように樹脂層が第一のフィルムと第二のフィルムとの間に挟まれていることが好ましい。また、基材にラミネートする際に基材と接触する樹脂層の面(即ちラミネート面)と接する側のフィルムが第二のフィルムであって、第二のフィルムの前記樹脂層に接する面が、算術平均表面粗さRaが0.1~1.2μmであることが好ましく、0.3~1.2μmであることがより好ましく、0.4~1.2μmであることがさらに好ましい。なお、算術平均表面粗さRaとは、JIS B0601に準拠して測定された値を意味する。第二のフィルムは、キャリアフィルムと保護フィルムのどちらであってもよい。好ましくは、第一のフィルムがキャリアフィルムであり、第二のフィルムが保護フィルムである。
[the film]
When laminating a dry film having a resin layer sandwiched between a carrier film and a protective film, in many cases, the protective film is peeled off and the surface of the resin layer on the side in contact with the protective film is the base. Laminated to contact the material. However, the carrier film may be peeled and laminated so that the surface of the resin layer on the side in contact with the carrier film is in contact with the substrate. In the present invention, it is preferable that the resin layer is sandwiched between the first film and the second film as shown in FIG. 2 by the carrier film and the protective film. In addition, the film on the side in contact with the surface of the resin layer that comes into contact with the substrate when laminating to the substrate (that is, the laminate surface) is the second film, and the surface in contact with the resin layer of the second film is The arithmetic average surface roughness Ra is preferably from 0.1 to 1.2 μm, more preferably from 0.3 to 1.2 μm, and even more preferably from 0.4 to 1.2 μm. In addition, arithmetic mean surface roughness Ra means the value measured based on JISB0601. The second film may be either a carrier film or a protective film. Preferably, the first film is a carrier film and the second film is a protective film.
 キャリアフィルムとは、ドライフィルムの樹脂層を支持する役割を有するものであり、該樹脂層を形成する際に、硬化性樹脂組成物が塗布されるフィルムである。キャリアフィルムとしては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルム、および、表面処理した紙等を用いることができる。を好適に使用することができるが、これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムを好適に使用することができる。キャリアフィルムの厚さは、特に制限されるものではないが概ね10~150μmの範囲で用途に応じて適宜選択される。キャリアフィルムの樹脂層を設ける面には、離型処理が施されていてもよい。また、キャリアフィルムの樹脂層を設ける面には、スパッタもしくは極薄銅箔が形成されていてもよい。 The carrier film has a role of supporting the resin layer of the dry film, and is a film to which the curable resin composition is applied when the resin layer is formed. As the carrier film, for example, a polyester film such as polyethylene terephthalate or polyethylene naphthalate, a polyimide film, a polyamideimide film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a film made of a thermoplastic resin such as a polystyrene film, and Surface-treated paper or the like can be used. Among these, polyester films can be preferably used from the viewpoints of heat resistance, mechanical strength, handleability, and the like. The thickness of the carrier film is not particularly limited, but is appropriately selected depending on the intended use within a range of about 10 to 150 μm. The surface on which the resin layer of the carrier film is provided may be subjected to release treatment. Moreover, the surface which provides the resin layer of a carrier film may form sputter | spatter or ultra-thin copper foil.
 保護フィルムとは、ドライフィルムの樹脂層の表面に塵等が付着するのを防止するとともに取扱性を向上させる目的で、樹脂層のキャリアフィルムとは反対の面に設けられる。保護フィルムとしては、例えば、前記キャリアフィルムで例示した熱可塑性樹脂からなるフィルム、および、表面処理した紙等を用いることができるが、これらの中でも、ポリエステルフィルムおよびポリエチレンフィルム、ポリプロピレンフィルムが好ましい。保護フィルムの厚さは、特に制限されるものではないが概ね10~150μmの範囲で用途に応じて適宜選択される。保護フィルムの樹脂層を設ける面には、離型処理が施されていてもよい。 The protective film is provided on the surface opposite to the carrier film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the dry film and improving the handleability. As the protective film, for example, a film made of a thermoplastic resin exemplified for the carrier film, surface-treated paper, and the like can be used. Among these, a polyester film, a polyethylene film, and a polypropylene film are preferable. The thickness of the protective film is not particularly limited, but is appropriately selected depending on the intended use within a range of about 10 to 150 μm. The surface on which the resin layer of the protective film is provided may be subjected to a mold release treatment.
 上記したような算術平均表面粗さRaを有する第二のフィルムとして、熱可塑性樹脂フィルムを使用する場合、フィルムを成膜する際の樹脂中にフィラーを添加したり、フィルム表面をブラスト処理したり、あるいはヘアライン加工、マットコーティング、またはケミカルエッチング等により、表面を所定の形態にすることができ、上記した算術平均表面粗さRaを有する熱可塑性樹脂フィルムを得ることができる。例えば、樹脂中にフィラーを添加する場合に、フィラーの粒径や添加量を調整することにより、算術平均表面粗さRaを制御することができる。また、ブラスト処理する場合は、ブラスト材やブラスト圧等の処理条件を調整することにより、算術平均表面粗さRaを制御することができる。このような表面粗さを有する熱可塑性樹脂フィルムとして、市販のものを使用してもよく、例えば、東レ社製ルミラーX42、ルミラーX43、ルミラーX44、ユニチカ社製エンブレットPTH-12、エンブレットPTH-25、エンブレットPTHA-25、エンブレットPTH-38、王子エフテックス社製アルファンMA-411、MA-420、E-201FおよびER-440等が挙げられる。 When using a thermoplastic resin film as the second film having the arithmetic average surface roughness Ra as described above, a filler is added to the resin when forming the film, or the film surface is blasted. Alternatively, the surface can be made into a predetermined form by hairline processing, mat coating, chemical etching, or the like, and a thermoplastic resin film having the arithmetic average surface roughness Ra can be obtained. For example, when a filler is added to the resin, the arithmetic average surface roughness Ra can be controlled by adjusting the particle size and the addition amount of the filler. In the case of blasting, the arithmetic average surface roughness Ra can be controlled by adjusting processing conditions such as blasting material and blast pressure. A commercially available thermoplastic resin film having such a surface roughness may be used. For example, Lumirror X42, Lumirror X43, Lumirror X44 manufactured by Toray Industries, Inc., Emblet PTH-12, Emblet PTH manufactured by Unitika -25, emblet PTHA-25, emblet PTH-38, Alfane MA-411, MA-420, E-201F and ER-440 manufactured by Oji F-Tex.
 第一のフィルムは、前記樹脂層に接する面の算術平均表面粗さRaが0.1μm以下であることが好ましい。0.1μm以下の場合、硬化後の樹脂層の表面の平坦性が良好となり、光沢度も良好となる。また、第一のフィルムと第二のフィルムの算術平均表面粗さRaに差があると、見た目(光沢の有無)でどちらのフィルムかを認識し易くなり、作業上のミスを防止することができる。 The first film preferably has an arithmetic average surface roughness Ra of 0.1 μm or less on the surface in contact with the resin layer. When the thickness is 0.1 μm or less, the flatness of the surface of the resin layer after curing becomes good and the glossiness becomes good. Also, if there is a difference in the arithmetic average surface roughness Ra between the first film and the second film, it will be easier to recognize which film is visually (whether it is glossy) and prevent work mistakes. it can.
 また、第二のフィルムを剥離し易くなるため、第一のフィルムの厚さAは、第二のフィルムの厚さBよりも大きいことが好ましい。より好ましくは、厚さAと厚さBとの差(A-B)が1μm以上である。また、第一のフィルムと第二のフィルムの厚さに差があると、手触りや見た目でどちらのフィルムかを認識し易くなり、作業上のミスを防止することができる。 Also, the thickness A of the first film is preferably larger than the thickness B of the second film because the second film can be easily peeled off. More preferably, the difference (A−B) between the thickness A and the thickness B is 1 μm or more. Further, if there is a difference in thickness between the first film and the second film, it becomes easy to recognize which film is the touch or the appearance, and an operational error can be prevented.
 第一のフィルムの厚さは10~100μmが好ましいが、15μm以上であることがより好ましい。10μm以上の場合、ドライフィルムを基材にラミネート後、第一のフィルムを剥離せずに熱処理を施しても第一のフィルムが熱収縮しにくく、熱収縮によって厚さが均一ではなくなったり、熱収縮によって第一のフィルムに生じたスジに沿って樹脂層が流れてしまい、樹脂層にもスジが生じたりするという品質の劣化を防ぐことができる。 The thickness of the first film is preferably 10 to 100 μm, more preferably 15 μm or more. In the case of 10 μm or more, after laminating the dry film on the base material, even if the first film is heat-treated without being peeled off, the first film is difficult to heat shrink, and the thickness is not uniform due to the heat shrinking, It is possible to prevent deterioration in quality such that the resin layer flows along the streaks generated in the first film due to the shrinkage, and the streaks are also generated in the resin layer.
 本発明のドライフィルムの樹脂層が感光性樹脂組成物からなる場合は、第一のドライフィルムを剥離せずに露光できるようにするため、第一のフィルムとして上記の熱可塑性樹脂のような光透過性の材料を用いることが好ましい。その場合、第一のフィルムの厚さは、45μm以下であることが好ましい。45μm以下の場合、アンダーカットが低減される。より好ましくは40μm以下である。 When the resin layer of the dry film of the present invention is composed of a photosensitive resin composition, the first film is exposed to light such as the above thermoplastic resin so that the first dry film can be exposed without peeling. It is preferable to use a permeable material. In that case, the thickness of the first film is preferably 45 μm or less. When it is 45 μm or less, undercut is reduced. More preferably, it is 40 μm or less.
 本発明のドライフィルムは、プリント配線板の永久保護膜の形成に好ましく用いることができ、中でもソルダーレジスト層、層間絶縁層、フレキシブルプリント配線板のカバーレイの形成に好ましく用いることができる。また、本発明のドライフィルムは、埋め込み性に優れるため、気泡の影響が大きいパッケージ基板のような微細回路を備えたプリント配線板に好適に用いることができ、特にL/S=10/10μm以下の微細回路を備えたプリント配線板に好適に用いることができる。さらに、ドライフィルムのラミネート方法として気泡が生じ易い真空ラミネートを採用した場合にも、本発明のドライフィルムを好適に用いることができる。また、本発明のドライフィルムの樹脂層の硬化物は、メッキレジストの形成性に優れるため、層間絶縁層の形成に用いることが好ましい。本発明のドライフィルムを用いて、配線を貼り合わせることによって配線板を形成してもよい。また、半導体チップ用の封止樹脂としても用いることができる。コアレス基板の最外層や層間絶縁層の形成にも用いることができる。 The dry film of the present invention can be preferably used for forming a permanent protective film of a printed wiring board, and can be preferably used for forming a solder resist layer, an interlayer insulating layer, and a cover lay of a flexible printed wiring board. Further, since the dry film of the present invention is excellent in embedding property, it can be suitably used for a printed wiring board having a fine circuit such as a package substrate having a large influence of bubbles, and particularly L / S = 10/10 μm or less. It can use suitably for the printed wiring board provided with the following fine circuit. Furthermore, the dry film of the present invention can also be suitably used when a vacuum laminate in which bubbles are likely to be generated is employed as the dry film laminating method. Moreover, since the cured product of the resin layer of the dry film of the present invention is excellent in forming a plating resist, it is preferably used for forming an interlayer insulating layer. You may form a wiring board by bonding a wiring together using the dry film of this invention. It can also be used as a sealing resin for semiconductor chips. It can also be used to form the outermost layer of the coreless substrate and the interlayer insulating layer.
 以下、本発明の実施例、比較例および試験例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be specifically described with reference to Examples, Comparative Examples and Test Examples of the present invention, but the present invention is not limited to the following Examples. In the following description, “parts” and “%” are all based on mass unless otherwise specified.
[表面処理された無機フィラーの調整]
(表面処理されたシリカA~Dの調整および表面処理されたアルミナA、Bの調整)
 フラスコ中に、それぞれの無機フィラー100g、アルコール水溶液2000g(水:アルコール=1:9重量比)を加え、室温で回転数300rpmで30分程度撹拌し、スラリー状にした。次いで、それぞれのシランカップリング剤を無機フィラーの重量に対し1wt%用意し、液滴が飛び散らないように、10分間かけゆっくりとスラリー中へ滴下し、10分間、300rpmでスラリーを撹拌した。その後、円形定性ろ紙を行い表面処理されたフィラーを取り出した。次いで、表面処理した無機フィラーを浅いトレーに広げ、110℃にて60分間乾燥を行い、シランカップリング剤で表面処理された無機フィラーを得た。用いた無機フィラーおよびシランカップリング剤については、下記表1の注釈に記載した。
[Adjustment of surface-treated inorganic filler]
(Adjustment of surface-treated silicas A to D and adjustment of surface-treated aluminas A and B)
Into the flask, 100 g of each inorganic filler and 2000 g of an aqueous alcohol solution (water: alcohol = 1: 9 weight ratio) were added, and the mixture was stirred at room temperature at a rotation speed of 300 rpm for about 30 minutes to form a slurry. Next, 1 wt% of each silane coupling agent was prepared with respect to the weight of the inorganic filler, and slowly dropped into the slurry over 10 minutes so that the droplets did not scatter, and the slurry was stirred at 300 rpm for 10 minutes. Thereafter, circular qualitative filter paper was used to take out the surface-treated filler. Next, the surface-treated inorganic filler was spread on a shallow tray and dried at 110 ° C. for 60 minutes to obtain an inorganic filler surface-treated with a silane coupling agent. The inorganic filler and silane coupling agent used are described in the notes in Table 1 below.
(実施例1~34および比較例1~12)
<ドライフィルムの作製>
 下記表1、3、5、7、9、11、13および15に記載の実施例、比較例に示す処方にて各成分を配合し、ロールミル分散し、粘度0.5~20dPa・s(回転粘度計5rpm、25℃)になるように硬化性樹脂組成物を調整した。次いで、バーコーターを用いて、ドライフィルムの膜厚が乾燥後、15μmになるように、キャリアフィルム(ルミラーS10、厚み38μm、表面処理なし、Ra=0.03μm、東レ社製)上に塗布した。次いで、熱風循環式乾燥炉にて残留溶剤量が3.5~4.5%となるように85℃、5~15分間乾燥を行い、キャリアフィルム上に硬化性樹脂層を形成した。次いで、保護フィルム(MA-411、厚み15μm、Ra=0.45μm、王子エフテック社製)を乾燥塗膜面上に設定温度70℃にてロールラミネーターし、3層構造のドライフィルムを得た。
(Examples 1 to 34 and Comparative Examples 1 to 12)
<Production of dry film>
Each component was blended according to the formulations shown in the Examples and Comparative Examples described in Tables 1, 3, 5, 7, 9, 11, 13 and 15 below, and dispersed in a roll mill, and the viscosity was 0.5 to 20 dPa · s (rotation). The curable resin composition was adjusted to have a viscometer of 5 rpm and 25 ° C. Next, using a bar coater, it was applied on a carrier film (Lumirror S10, thickness 38 μm, no surface treatment, Ra = 0.03 μm, manufactured by Toray Industries, Inc.) so that the film thickness of the dry film was 15 μm after drying. . Next, drying was performed at 85 ° C. for 5 to 15 minutes in a hot air circulation drying oven so that the residual solvent amount was 3.5 to 4.5%, and a curable resin layer was formed on the carrier film. Next, a protective film (MA-411, thickness 15 μm, Ra = 0.45 μm, manufactured by Oji F-Tech Co., Ltd.) was roll laminator on the dry coating surface at a set temperature of 70 ° C. to obtain a dry film having a three-layer structure.
<樹脂層の貯蔵弾性率G’および溶融粘度> 
 上記で作製した各々のドライフィルムについて、保護フィルムを剥離し、1チャンバー式社真空ラミネーターMVLP-500(名機社製)にて2枚のドライフィルムの樹脂層を重ね合わせて熱圧着し、樹脂層の厚みが350μmになるようにした。その際、フィルムに熱を加えないようにするため、温度は40℃、圧力0.5MPa、1min間ラミネートし、フィルムを重ねた。次いで、粘度・粘弾性測定装置レオストレスRS-6000(HAAKE社製)にて、キャリアフィルムを剥離した後、それぞれの樹脂層の温度―粘弾性測定を行った。測定条件については、昇温モード5℃/min、オシレーションモードひずみ量8%、周波数1Hz、測定センサーΦ20mmのパラレルプレート、センサー間のギャップ300μmにて行った。ギャップに対して樹脂層を厚くすることで、加熱時にも、ギャップ間に十分な樹脂厚みを確保できる。前記のような方法にて測定した温度-貯蔵弾性率G’、粘度ηの曲線より、100℃での貯蔵弾性率および溶融粘度を、「樹脂層の貯蔵弾性率G’」、「樹脂層の溶融粘度」とした。測定結果は、表中に示す。
<Storage elastic modulus G ′ and melt viscosity of resin layer>
For each dry film produced above, the protective film is peeled off, and the two dry film resin layers are stacked and thermocompression bonded with a one-chamber vacuum laminator MVLP-500 (manufactured by Meiki Co., Ltd.). The thickness of the layer was set to 350 μm. At that time, in order not to apply heat to the film, the temperature was 40 ° C., the pressure was 0.5 MPa, and the film was laminated for 1 minute, and the films were stacked. Next, the carrier film was peeled off using a viscosity / viscoelasticity measuring device Rheostress RS-6000 (manufactured by HAAKE), and then the temperature-viscoelasticity of each resin layer was measured. The measurement conditions were as follows: temperature increase mode 5 ° C./min, oscillation mode strain amount 8%, frequency 1 Hz, parallel plate of measurement sensor Φ20 mm, and gap 300 μm between sensors. By thickening the resin layer with respect to the gap, a sufficient resin thickness can be secured between the gaps even during heating. From the temperature-storage elastic modulus G ′ and viscosity η curves measured by the method as described above, the storage elastic modulus and melt viscosity at 100 ° C. are expressed as “resin layer storage elastic modulus G ′” and “resin layer It was referred to as “melt viscosity”. The measurement results are shown in the table.
<埋め込み性(気泡の発生 FLS(ファインライン&スペース))> 
 銅厚10μm、L(ライン:配線幅)/S(スペース:間隔幅)=5/5μm、アスペクト比2.0の櫛歯パターンの微細回路が形成されている両面プリント配線基板に前処理として、メック社製CZ-8101処理にて0.5μm相当のエッチング処理を行った。次いで、上記で作製を行った厚み15μmのドライフィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機社製)を用い、L/Sが形成された基板上にラミネートした。ラミネート条件は、5kgf/cm、100℃、1分、1Torrの条件にて加熱ラミネートし、次いで熱板プレス工程で10kgf/cm、100℃、1分の条件にてレベリングさせた。ラミネート後にラインとスペースの境界部分に空気が入り込み、気泡(ボイド)が発生しているか否かを100ヶ所、キャリアフィルムを剥がした後に確認した。この方法にて評価したものを「ラミネート後」とした。次いで、樹脂層を硬化させた状態にて同様に気泡の発生の有無を評価したものを「硬化後」とした。硬化条件については、次項に詳細を示す。評価基準は以下のとおりである。
○: ボイドが確認されなかった。
△: 1~5ヶ所のボイドが確認された。
×: 粘度および弾性率が高く、細線を有する基板への埋め込みができなかった。
<Embedment (bubble generation FLS (fine line &space))>
As a pretreatment on a double-sided printed wiring board in which a fine circuit of a comb-tooth pattern having a copper thickness of 10 μm, L (line: wiring width) / S (space: spacing width) = 5/5 μm, and an aspect ratio of 2.0 is formed, Etching treatment corresponding to 0.5 μm was performed by CZ-8101 treatment manufactured by MEC. Next, the dry film having a thickness of 15 μm prepared as described above was laminated on the substrate on which L / S was formed using a batch type vacuum pressure laminator MVLP-500 (manufactured by Meiki Co., Ltd.). Lamination was carried out under the conditions of 5 kgf / cm 2 , 100 ° C., 1 minute, 1 Torr, and then leveled in the hot plate press step under the conditions of 10 kgf / cm 2 , 100 ° C., 1 minute. After laminating, air entered the boundary between the line and the space, and whether or not bubbles were generated was confirmed after peeling the carrier film at 100 locations. What was evaluated by this method was defined as “after lamination”. Next, the evaluation of the presence or absence of generation of bubbles in the state where the resin layer was cured was regarded as “after curing”. The curing conditions are detailed in the next section. The evaluation criteria are as follows.
○: No void was confirmed.
Δ: 1 to 5 voids were confirmed.
X: Viscosity and elastic modulus were high and could not be embedded in a substrate having fine wires.
<硬化後の基板の平坦性>
 前記の<埋め込み性(気泡の発生 FLS)>に記載の方法にて、微細回路が形成されている基板上にラミネートした各々のドライフィルムの樹脂層について、硬化システムが熱硬化性のものは、キャリアフィルムを剥離した後に、熱風循環式乾燥炉にて、180℃、30分熱硬化させた後に、200℃にて60分間熱硬化させ、樹脂層を完全に硬化させた。
 一方、硬化システムが光・熱硬化性のものは、キャリアフィルム上から、細線部分上が完全に露光されるように、露光量300mJ/cm(i線、ウシオ投影露光機)にて光硬化をさせた後、キャリアフィルムを剥離した。次いで、1wt%の炭酸ナトリウム水溶液、0.2MPaの圧力、液温30℃にて、60秒間現像をおこなった。次いで、高圧水銀灯照射装置にて1000mJ/cm露光を行った。その後、熱風循環式乾燥炉にて、180℃、60分間熱硬化させ、樹脂層を完全に硬化させた。
 それぞれの硬化方法にて完全硬化させた基板について、細線に対して垂直方向の硬化膜の表面の凹凸を接触型表面粗さ計測装置(SE-300、小坂研究所社製)にて、長さ20mmの幅で硬化膜上の凹凸を測定した。評価基準は以下のとおりである。
◎:微細回路上で、凹凸が最大公差0.3μm未満。あわせて微細回路の銅焼けがみられなかった。
○:微細回路上で、凹凸が最大公差0.3μm未満。
△:微細回路上で、凹凸が最大で公差0.3μm以上1.0μm未満。
×:微細回路上で、凹凸が最大で公差1.0μm以上。
××:微細回路上で、凹凸が最大で公差5.0μm以上。回路の凹凸が顕著に見られた。
<Flatness of substrate after curing>
With respect to the resin layer of each dry film laminated on the substrate on which the fine circuit is formed by the method described in <Embeddability (Bubbling Generation FLS)>, the curing system is thermosetting, After the carrier film was peeled off, the resin layer was cured at 180 ° C. for 30 minutes in a hot air circulation drying oven and then at 200 ° C. for 60 minutes to completely cure the resin layer.
On the other hand, when the curing system is light / thermosetting, it is photocured at an exposure amount of 300 mJ / cm 2 (i-line, Ushio projection exposure machine) so that the thin line portion is completely exposed from the carrier film. Then, the carrier film was peeled off. Subsequently, development was performed for 60 seconds at a 1 wt% sodium carbonate aqueous solution, a pressure of 0.2 MPa, and a liquid temperature of 30 ° C. Subsequently, 1000 mJ / cm < 2 > exposure was performed with the high pressure mercury lamp irradiation apparatus. Thereafter, the resin layer was completely cured by heat curing at 180 ° C. for 60 minutes in a hot air circulation drying oven.
For the substrate completely cured by each curing method, the unevenness of the surface of the cured film perpendicular to the fine line was measured with a contact surface roughness measuring device (SE-300, manufactured by Kosaka Laboratory). The unevenness on the cured film was measured with a width of 20 mm. The evaluation criteria are as follows.
A: On a fine circuit, the unevenness has a maximum tolerance of less than 0.3 μm. At the same time, copper burn of the fine circuit was not observed.
○: On the fine circuit, the unevenness has a maximum tolerance of less than 0.3 μm.
Δ: Concavities and convexities are maximum and tolerance is 0.3 μm or more and less than 1.0 μm on a fine circuit.
×: On the fine circuit, the unevenness is maximum and the tolerance is 1.0 μm or more.
XX: Concavities and convexities are maximum and the tolerance is 5.0 μm or more on a fine circuit. The unevenness of the circuit was noticeable.
<下地回路との密着性>
 電解銅箔GTS-MP-18μm(古河サーキットフォイル社製)の光沢面に、メック社製CZ-8101処理にて0.5μm相当のエッチング処理を行った。
 その後、処理面側に対して、それぞれのドライフィルムを<埋め込み性(気泡の発生 FLS)>に記載の方法にて、ラミネートを行い、次いで<硬化後の基板の平坦性>の方法にて、樹脂層を完全硬化させた。その後、樹脂層側に2液型接着剤アラルダイトを用い、1.6mmtFR-4のエッチアウト板に張り合わせを行い、接着層を室温にて硬化させ、CZ処理銅箔-樹脂層-FR4材の3層構造を得た。得られた基板について、JIS-C-6481の銅張積層版試験方法、ピール強度の測定方法(試験片幅10mm、90°方向、速度50mm/min)に準拠し、それぞれの樹脂層のCZ処理面との接着力を測定した。判断基準は以下に示す通りである。
◎:接着力が5.0N/cm以上。
○:接着力が3.0N/cm以上5.0N/cm未満。
×:粘度もしくは弾性率が高く、評価サンプルの作製を行うことができなかった。
<Adhesion with underlying circuit>
Etching treatment corresponding to 0.5 μm was performed on the glossy surface of electrolytic copper foil GTS-MP-18 μm (manufactured by Furukawa Circuit Foil Co., Ltd.) by CZ-8101 treatment manufactured by MEC.
Thereafter, the respective dry films are laminated on the treated surface side by the method described in <embedding property (bubble generation FLS)>, and then the method of <flatness of substrate after curing> The resin layer was completely cured. After that, using a two-component adhesive araldite on the resin layer side, the 1.6 mm tFR-4 etch-out plate was laminated, the adhesive layer was cured at room temperature, and CZ-treated copper foil-resin layer-FR4 material 3 A layer structure was obtained. The obtained substrate was subjected to CZ treatment of each resin layer in accordance with the JIS-C-6481 copper-clad laminate test method and peel strength measurement method (test piece width 10 mm, 90 ° direction, speed 50 mm / min). The adhesive strength with the surface was measured. Judgment criteria are as follows.
A: Adhesive strength is 5.0 N / cm or more.
○: Adhesive strength is 3.0 N / cm or more and less than 5.0 N / cm.
X: Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
<メッキレジストの形成性>
 <硬化後の基板の平坦性>に記載の方法にて作製した硬化基板について、さらにその表面にメッキレジストを形成し、評価を行った。
 具体的には、作製した硬化基板について、過マンガン酸デスミア処理(アトテック社製、垂直デスミア向けセキュリガントMVシリーズ)にて、膨潤60℃5分、過マンガン酸80℃20分、還元50℃5分処理することにより、基板表面を粗化処理した。次いで、無電解銅めっき処理(上村工業社製、アルカリイオンタイプPd)を用い、0.3μmの厚みの銅シード層を基板表面に形成した。その後、銅シード層表面をアルカリ脱脂した後、めっきレジストフォーテックRY-3625(日立化成工業社製、SAP用メッキレジスト、厚み25μm)を、ロールラミネーターを用い、110℃、0.4MPaの圧力条件にて基板表面に張り合わせを行った。次いで、EXP-2960(オーク製作所社製、平行光露光機)にて、ガラス乾板ネガマスクL/Sパターン(20mm×20mmのエリアの範囲に、L/S=10/10μmのパターンが形成されているネガマスク)を用い、露光量100mJ/cmにて、基板表面にネガパターンを形成した。次いで、1wt%の炭酸ナトリウム水溶液にて、30℃にて30秒間現像を行い、L/Sパターンを基板表面に形成した。得られた基板について、SEMを用い観察した。20mm×20mmの範囲で無作為に、100箇所抽出を行い、メッキレジストの形成性の評価(ラインが飛んでいる状態や、凹みにより現像不良個所が発生している状態の有無の確認)を行った。判断基準は以下に示す通りである。
○:形成性良好。
△:L/Sの形成不良(ラインの欠落、現像不良)が、1箇所以上10箇所未満見られた。
×:L/Sの形成不良(ラインの欠落、現像不良)が、10箇所以上見られた。
××:下地が平坦でないため、設計値どおりのパターン形成ができていなかった。
<Formability of plating resist>
The cured substrate produced by the method described in <Flatness of Substrate After Curing> was further evaluated by forming a plating resist on the surface thereof.
Specifically, the cured substrate thus produced was swelled at 60 ° C. for 5 minutes, permanganic acid at 80 ° C. for 20 minutes, and reduced at 50 ° C. at a permanganate desmear treatment (manufactured by Atotech, Securigant MV series for vertical desmear). The surface of the substrate was roughened by performing a partial treatment. Next, a copper seed layer having a thickness of 0.3 μm was formed on the surface of the substrate using an electroless copper plating process (manufactured by Uemura Kogyo Co., Ltd., alkali ion type Pd). Thereafter, the surface of the copper seed layer was degreased with alkali, and then a plating resist Fortec RY-3625 (manufactured by Hitachi Chemical Co., Ltd., SAP plating resist, thickness 25 μm) was used under a pressure condition of 110 ° C. and 0.4 MPa using a roll laminator. The substrates were bonded to each other. Subsequently, a glass dry plate negative mask L / S pattern (L / S = 10/10 μm pattern is formed in an area of 20 mm × 20 mm by EXP-2960 (manufactured by Oak Manufacturing Co., Ltd., parallel light exposure machine). Using a negative mask, a negative pattern was formed on the substrate surface with an exposure amount of 100 mJ / cm 2 . Next, development was performed with a 1 wt% aqueous sodium carbonate solution at 30 ° C. for 30 seconds to form an L / S pattern on the substrate surface. About the obtained board | substrate, it observed using SEM. Extract 100 locations at random within the range of 20mm x 20mm, and evaluate the formation of plating resist (confirmation of the presence or absence of development defects due to lines flying or dents) It was. Judgment criteria are as follows.
○: Good formability.
Δ: L / S formation failure (line missing, development failure) was observed in one or more places and less than 10 places.
X: L / S formation failure (line missing, development failure) was observed at 10 or more locations.
XX: The pattern was not formed as designed because the ground was not flat.
<加湿後の誘電正接>
 <ドライフィルムの作製>に記載の方法で作製した樹脂層の厚み15μmのドライフィルムを電解銅箔GTS-MP-18μm(古河サーキットフォイル社製)の光沢面上に、<埋め込み性(気泡の発生 FLS)>に記載の方法にて、ラミネートを行い、次いで<硬化後の基板の平坦性>の方法にて、樹脂層を完全硬化させた。その後、銅箔から硬化物を剥離し、厚み15μmの硬化物を得た。
 得られた硬化物について、温度85℃、湿度85%RHに設定された高温高湿槽に、100時間保管し、取り出し10分以内に、SPDR誘電体共振器とネットワークアナライザー(ともにアジレント社製)を用い、23℃における5.1GHzの加湿時の誘電正接の測定を行った。判断基準は以下に示す通りである。
◎◎:5GHzでの誘電正接が0.005未満。
◎ :5GHzでの誘電正接が0.005以上、0.01未満。
○ :5GHzでの誘電正接が0.01以上0.015未満。
△ :5GHZでの誘電正接が0.015以上0.02未満。
× :5GHzでの誘電正接が0.02以上。
<Dielectric loss tangent after humidification>
A dry film having a resin layer thickness of 15 μm prepared by the method described in <Preparation of Dry Film> is placed on the glossy surface of electrolytic copper foil GTS-MP-18 μm (Furukawa Circuit Foil Co., Ltd.). Lamination was performed by the method described in (FLS)>, and then the resin layer was completely cured by the method <Flatness of substrate after curing>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 15 μm.
The obtained cured product is stored in a high-temperature and high-humidity tank set at a temperature of 85 ° C. and a humidity of 85% RH for 100 hours, and within 10 minutes of removal, an SPDR dielectric resonator and a network analyzer (both manufactured by Agilent) The dielectric loss tangent at the time of humidification of 5.1 GHz at 23 ° C. was measured. Judgment criteria are as follows.
A: The dielectric loss tangent at 5 GHz is less than 0.005.
A: The dielectric loss tangent at 5 GHz is 0.005 or more and less than 0.01.
○: Dielectric loss tangent at 5 GHz is 0.01 or more and less than 0.015.
(Triangle | delta): The dielectric loss tangent in 5 GHz is 0.015 or more and less than 0.02.
X: The dielectric loss tangent at 5 GHz is 0.02 or more.
<放熱特性>
 <加湿後の誘電正接>と同様の方法にて得られた15μmの硬化物を、JIS-R1611に記載の方法に準拠し、硬化物の熱伝導率の測定を行った。判断基準は以下に示す通りである。
◎:熱伝導率が1W/m・K以上。
○:熱伝導率が0.3W/m・K以上、1W/m・K未満。
△:熱伝導率が0.3W/m・K未満。
×:粘度もしくは弾性率が高く、評価サンプルの作製を行うことができなかった。
<Heat dissipation characteristics>
A cured product of 15 μm obtained by the same method as in <Dielectric loss tangent after humidification> was measured for the thermal conductivity of the cured product in accordance with the method described in JIS-R1611. Judgment criteria are as follows.
A: Thermal conductivity is 1 W / m · K or more.
○: Thermal conductivity is 0.3 W / m · K or more and less than 1 W / m · K.
Δ: Thermal conductivity is less than 0.3 W / m · K.
X: Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
<熱膨張係数>
 <加湿後の誘電正接>と同様の方法にて得られた15μmの硬化物を銅箔より剥離した後、測定サイズ(3mm×10mmのサイズ)にサンプルを切り出し、セイコーインスツル社製TMA6100に供した。TMA測定は、試験加重5g、サンプルを10℃/分の昇温速度で室温より昇温、連続して2回測定した。2回目における、Tg以下の領域における熱膨張係数(CTE(α1))として評価した。判断基準は以下に示す通りである。
◎◎:ガラス転移温度以下のCTEが10ppm未満。
◎:ガラス転移温度以下のCTEが10ppm以上17ppm未満。
○:ガラス転移温度以下のCTEが17ppm以上30ppm未満。
△:ガラス転移温度以下のCTEが30ppm以上。
×:粘度もしくは弾性率が高く、評価サンプルの作製を行うことができなかった。
<Coefficient of thermal expansion>
A 15 μm cured product obtained by the same method as in <Dielectric loss tangent after humidification> was peeled off from the copper foil, and then a sample was cut out to a measurement size (3 mm × 10 mm size) and supplied to TMA6100 manufactured by Seiko Instruments Inc. did. In the TMA measurement, the test weight was 5 g, and the sample was heated from room temperature at a heating rate of 10 ° C./min, and was measured twice continuously. Evaluation was made as the coefficient of thermal expansion (CTE (α1)) in the region of Tg or less in the second time. Judgment criteria are as follows.
A: CTE below glass transition temperature is less than 10 ppm.
(Double-circle): CTE below glass transition temperature is 10 ppm or more and less than 17 ppm.
○: CTE below glass transition temperature is 17 ppm or more and less than 30 ppm.
(Triangle | delta): CTE below a glass transition temperature is 30 ppm or more.
X: Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
<基板反り>
 厚み200μm、サイズ100×100mmの銅張積層板(MCL-E-770G、日立化成社、銅厚18μm、前処理としてCZ-8101 1μm相当のエッチング処理を施した)上に、<ドライフィルムの作製>の記載の方法にて作製した、樹脂厚み15μmのドライフィルムを真空ラミネーターを用い、基板の片面にラミネートし、次いでキャリアフィルムを剥離後、熱風循環式乾燥炉を用い、樹脂層を完全に硬化させた。得られた基板について、基板の4隅をノギスを用い反り量を測長し以下の判断基準に従い、評価を行った。
◎:反りの最大値が3mm未満。
○:反りの最大値が3mm以上15mm未満。
△:反りの最大値が15mm以上。
×:粘度もしくは弾性率が高く、評価サンプルの作製を行うことができなかった。
<Board warpage>
On a copper clad laminate having a thickness of 200 μm and a size of 100 × 100 mm (MCL-E-770G, Hitachi Chemical Co., Ltd., copper thickness of 18 μm, pre-treated with etching equivalent to CZ-8101 1 μm) > Using a vacuum laminator to laminate a dry film with a resin thickness of 15 μm, prepared by the method described in>, and then peeling off the carrier film, and then completely curing the resin layer using a hot air circulating drying oven I let you. About the obtained board | substrate, the amount of curvature was measured using the caliper in four corners of the board | substrate, and evaluation was performed according to the following judgment criteria.
A: The maximum value of warpage is less than 3 mm.
○: The maximum value of warpage is 3 mm or more and less than 15 mm.
(Triangle | delta): The maximum value of curvature is 15 mm or more.
X: Viscosity or elastic modulus was high, and an evaluation sample could not be prepared.
<リフロー+TCT(Thermal Cycling Test)>
 各実施例および比較例のドライフィルム厚み(樹脂厚15μm)を、バッチ式真空加圧ラミネーターMVLP-500(名機社製)を用いて、銅張積層板の銅上に5kgf/cm、80℃、1分、1Torrの条件にてラミネートした。その後、キャリアフィルムを剥がし、熱風循環式乾燥炉にて加熱し、樹脂層を180℃にて30分間硬化させた。その後、COレーザー加工機(日立ビアメカニクス社製)を用いてトップ径65μm、ボトム径50μmになるようにビア形成を行った。
 硬化系が、光・熱硬化性のものについては、<硬化後の基板の平坦性>に記載の方法にて、Φ65μmのネガパターンを用い、露光および現像を行い、次いで紫外線照射および本硬化を行い、ビアの形成を行った。
 次いで、得られたビアパターンに対して、市販の湿式過マンガン酸デスミア(ATOTECH社製)、無電解銅めっき(スルカップPEA、上村工業社製)、電解銅めっき処理の順に処理を行い、樹脂層上に銅厚み25μm、ビア部分をフィルドするように銅めっき処理を施した。次いで熱風循環式乾燥炉にて200℃にて60分間、熱硬化を行い、完全硬化させた銅めっき処理を施した試験基板を得た。得られた試験用基板を、鉛フリーアセンブリの条件(ピーク温度270℃、10秒間)にて、リフロー処理3サイクル熱衝撃を加えた後、-65℃で30分、150℃で30分を1サイクルとして冷熱サイクル処理を施した。2000および3000サイクル経過後、ビア底や壁面の状態を光学顕微鏡により観察するために、ビア中心部分を精密切断機で裁断、研磨し断面状態の観察を行った。評価基準は、下記に従い評価を行った。観察ビア数は100穴とした。
◎:3000サイクル終了後で、クラック発生なし。
○:2000サイクル終了後で、クラックの発生なし。3000サイクルで1~5ヶ所のクラックが発生。
△:2000サイクル終了後で、1~5ヶ所のクラックが発生。
×:溶融粘度、貯蔵弾性率が最適範囲を超えているため、テストピースが作製できなかった。
<Reflow + TCT (Thermal Cycling Test)>
The dry film thickness (resin thickness 15 μm) of each Example and Comparative Example was set to 5 kgf / cm 2 on the copper of the copper-clad laminate using a batch type vacuum pressure laminator MVLP-500 (manufactured by Meiki Co., Ltd.), 80 Lamination was performed at 1 ° C. for 1 minute at a temperature. Thereafter, the carrier film was peeled off and heated in a hot air circulation drying furnace, and the resin layer was cured at 180 ° C. for 30 minutes. Thereafter, vias were formed using a CO 2 laser processing machine (manufactured by Hitachi Via Mechanics) so that the top diameter was 65 μm and the bottom diameter was 50 μm.
When the curing system is light / thermosetting, exposure and development are performed using a negative pattern of Φ65 μm by the method described in <Flatness of Substrate After Curing>, and then UV irradiation and main curing are performed. And vias were formed.
Then, the obtained via pattern is processed in the order of commercially available wet permanganate desmear (manufactured by ATOTECH), electroless copper plating (Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.), and electrolytic copper plating treatment in order. Copper plating treatment was performed so as to fill the via thickness with a copper thickness of 25 μm. Subsequently, the test board | substrate which performed the thermosetting for 60 minutes at 200 degreeC with the hot-air circulation type drying furnace and performed the copper plating process which carried out complete hardening was obtained. The obtained test substrate was subjected to a reflow treatment three-cycle thermal shock under the lead-free assembly conditions (peak temperature: 270 ° C., 10 seconds), and then subjected to 30 minutes at −65 ° C. and 30 minutes at 150 ° C. for 1 minute. As a cycle, a cold cycle treatment was performed. After 2000 and 3000 cycles, in order to observe the state of the bottom and wall surface of the via with an optical microscope, the central portion of the via was cut and polished with a precision cutting machine, and the cross-sectional state was observed. Evaluation criteria were evaluated according to the following. The number of observation vias was 100 holes.
A: No cracks occurred after the end of 3000 cycles.
○: No crack occurred after 2000 cycles. 1 to 5 cracks occurred in 3000 cycles.
Δ: 1 to 5 cracks occurred after 2000 cycles.
X: The test piece could not be produced because the melt viscosity and the storage elastic modulus exceeded the optimum range.
<比誘電率>
 <ドライフィルムの作製>に記載の方法で作製した樹脂層の厚み15μmのドライフィルムを電解銅箔GTS-MP-18μm(古河サーキットフォイル社製)の光沢面上に、<埋め込み性(気泡の発生 FLS)>に記載の方法にて、ラミネートを行い、次いで<硬化後の基板の平坦性>の方法にて、樹脂層を完全硬化させた。その後、銅箔から硬化物を剥離し、厚み15μmの硬化物を得た。
 得られた硬化物について、SPDR誘電体共振器とネットワークアナライザー(ともにアジレント社製)を用い、23℃における1GHzの比誘電率の測定を行った。判断基準は以下に示す通りである。
◎:1GHzでの比誘電率が10.0以上。
○:1GHzでの比誘電率が5.0以上10.0未満。
<Relative permittivity>
A dry film having a resin layer thickness of 15 μm prepared by the method described in <Preparation of Dry Film> is placed on the glossy surface of electrolytic copper foil GTS-MP-18 μm (Furukawa Circuit Foil Co., Ltd.). Lamination was performed by the method described in (FLS)>, and then the resin layer was completely cured by the method <Flatness of substrate after curing>. Thereafter, the cured product was peeled from the copper foil to obtain a cured product having a thickness of 15 μm.
About the obtained hardened | cured material, the specific dielectric constant of 1 GHz in 23 degreeC was measured using the SPDR dielectric resonator and the network analyzer (both manufactured by Agilent). Judgment criteria are as follows.
A: Dielectric constant at 1 GHz is 10.0 or more.
○: The relative dielectric constant at 1 GHz is 5.0 or more and less than 10.0.
<回路隠蔽性>
 前記<埋め込み性(気泡の発生 FLS)>および<硬化後の基板の平坦性>に記載の方法で微細回路基板上に硬化膜を形成した後、キャリアフィルムを剥離しプリント配線板を得た。
 得られた評価基板につき、硬化膜上からの銅回路の変色を目視により確認して、回路の隠蔽性について評価した。判断基準は下記に示す通り。
◎:変色が確認されない。
×:変色が確認された。
<Circuit concealment>
A cured film was formed on the fine circuit board by the methods described in the above <Embedment property (bubble generation FLS)> and <Flatness of substrate after curing>, and then the carrier film was peeled off to obtain a printed wiring board.
About the obtained evaluation board | substrate, the discoloration of the copper circuit from a cured film was confirmed visually, and the concealability of the circuit was evaluated. Judgment criteria are as follows.
A: Discoloration is not confirmed.
X: Discoloration was confirmed.
Figure JPOXMLDOC01-appb-T000001
*1:DIC社製HP-820、アルキルフェノール型液状エポキシ樹脂、エポキシ当量:225g/eq
*2:日本化薬社製NC-3000L、ビフェニルアラルキル型固形エポキシ樹脂、エポキシ当量:275g/eq
*3:大阪ガスケミカル社製CG-500、フルオレン系固形エポキシ樹脂、エポキシ当量:311g/eq
*4:日産化学社製TGIC、トリグリシジルイソシアヌラート(固形エポキシ樹脂)、エポキシ当量:99g/eq
*5:三菱化学社製1003、Bis-A型固形エポキシ樹脂、エポキシ当量:720g/eq
*6:DIC社製TD-2131、フェノールノボラック樹脂、水酸基当量:104g/eq
*7:明和化成社製MEH-7851-4H、ビフェニルアラルキル型フェノール樹脂、水酸基当量:240g/eq
*8:DIC社製LA-3018、ATN含有フェノールノボラック樹脂、水酸基当量:151g/eq
*9:丸善化学社製マルカリンカーM、ポリビニルフェノール、水酸基当量120g/eq
*10:ロンザジャパン社製PT-30、ノボラック型シアネートエステル樹脂、シアネート当量:124g/eq
*11:ロンザジャパン社製BA-3000、Bis-A型シアネートエステル樹脂、シアネート当量:284g/eq
*12:大和化成工業社製BMI-1100、N,N’-ジフェニルメタンビスマレイミド、マレイミド当量:179g/eq
*13:日本化薬社社製MIR-3000、ビフェニル骨格含有ビスマレイミド、マレイミド当量:275g/eq
*14:エア・ウォータ社製PC-1100-02、多官能型活性エステル樹脂、活性エステル当量:154g/eq
*15:DIC社製EXB9416、ナフトール末端、ジシクロペンタジエン骨格含有活性エステル樹脂、活性エステル当量:220g/eq
*16:日本乳化剤社製RMA-11902、フェノール樹脂を出発原料とするアクリル基を有する感光性カルボキシル基含有樹脂(固形分:65%)
*17:新中村化学工業社製A-DCP、ジシクロペンタジエン骨格アクリル酸モノマー*18:東亜合成社製HPS-500、D50=0.5μmの球状シリカ
*19:東亜合成社製HPS-1000、D50=1.0μmの球状シリカ
*20:上記で調整した表面処理されたシリカA(アドマテックス社製ナノシリカ(平均一次粒径(D50)=50nm)の1wt%のアミノシラン処理品)
*21:電気化学工業社製FB-5SDX、D50=4.9μmの球状シリカ
*22:上記で調整した表面処理されたシリカB(HPS-500/KBE-1003、HPS-500の1wt%ビニルシラン処理品)
*23:上記で調整した表面処理されたシリカC(HPS-500/KBE-9103、HPS-500の1wt%アミノシラン処理品)
*24:上記で調整した表面処理されたシリカD(HPS-1000/KBE-1003、HPS-1000の1wt%ビニルシラン処理品)
*25:上記で調整した表面処理されたシリカE(FB-5SDX/KBE-9103、FB-5SDXの1wt%アミノシラン処理品)
*26:電気化学工業社製ASFP-20、D50=0.3μmの球状アルミナ
*27:電気化学工業社製DAM-03、D50=3.7μmの球状アルミナ
*28:上記で調整した表面処理されたアルミナA(ASFP-20/KBE-1003、ASFP-20の1wt%ビニルシラン処理品)
*29:上記で調整した表面処理されたアルミナB(DAM-03/KBE-1003、DAM-03の1wt%ビニルシラン処理品)
*30:龍森社製ヒューズレックスWX、D50=1.5μmの不定形シリカ
*31:信越化学社製KBE-1003、ビニルトリエトキシシラン
*32:信越化学社製KBE-402、3-グリシドキシプロピルメチルジエトキシシラン
*33:信越化学社製KBE-9103、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
*34:BASFジャパン社製イルガキュア369、α-アミノアルキルフェノン系光重
合開始剤
*35:コバルトアセチルアセトナート1wt%、DMF溶液
*36:四国化成社製2E4MZ-AP、イミダゾール
*37:三菱化学社製YL7600、低誘電骨格含有フェノキシ樹脂
*38:シクロヘキサノン
*39:DMF(N,N-ジメチルホルムアミド)
*40:出光興産社製 イプゾール100、 芳香族系高沸点溶剤
Figure JPOXMLDOC01-appb-T000001
* 1: HP-820 manufactured by DIC, alkylphenol type liquid epoxy resin, epoxy equivalent: 225 g / eq
* 2: Nippon Kayaku NC-3000L, biphenyl aralkyl type solid epoxy resin, epoxy equivalent: 275 g / eq
* 3: CG-500 manufactured by Osaka Gas Chemical Company, fluorene-based solid epoxy resin, epoxy equivalent: 311 g / eq
* 4: Nissan Chemical Co., Ltd. TGIC, triglycidyl isocyanurate (solid epoxy resin), epoxy equivalent: 99 g / eq
* 5: Mitsubishi Chemical 1003, Bis-A type solid epoxy resin, epoxy equivalent: 720 g / eq
* 6: TD-2131 manufactured by DIC, phenol novolac resin, hydroxyl group equivalent: 104 g / eq
* 7: MEH-7851-4H manufactured by Meiwa Kasei Co., Ltd., biphenyl aralkyl type phenol resin, hydroxyl group equivalent: 240 g / eq
* 8: DIC LA-3018, ATN-containing phenol novolac resin, hydroxyl equivalent: 151 g / eq
* 9: Maruka Linker M manufactured by Maruzen Chemical Co., polyvinylphenol, hydroxyl group equivalent of 120 g / eq
* 10: PT-30 manufactured by Lonza Japan, novolak-type cyanate ester resin, cyanate equivalent: 124 g / eq
* 11: BA-3000 manufactured by Lonza Japan, Bis-A type cyanate ester resin, cyanate equivalent: 284 g / eq
* 12: Yamato Kasei Kogyo BMI-1100, N, N′-diphenylmethane bismaleimide, maleimide equivalent: 179 g / eq
* 13: MIR-3000 manufactured by Nippon Kayaku Co., Ltd., biphenyl skeleton-containing bismaleimide, maleimide equivalent: 275 g / eq
* 14: PC-1100-02 manufactured by Air Water, polyfunctional active ester resin, active ester equivalent: 154 g / eq
* 15: EXB9416 manufactured by DIC, naphthol end, dicyclopentadiene skeleton-containing active ester resin, active ester equivalent: 220 g / eq
* 16: RMA-11902 manufactured by Nippon Emulsifier Co., Ltd., photosensitive carboxyl group-containing resin having acrylic group starting from phenol resin (solid content: 65%)
* 17: Shin-Nakamura Chemical Co., Ltd. A-DCP, dicyclopentadiene skeleton acrylic monomer * 18: Toa Gosei HPS-500, D50 = 0.5 μm spherical silica * 19: Toa Gosei HPS-1000 D50 = Spherical silica of 1.0 μm * 20: Surface-treated silica A prepared as above (Nanosilica manufactured by Admatechs (average primary particle size (D50) = 50 nm) treated with 1 wt% aminosilane)
* 21: FB-5SDX, manufactured by Denki Kagaku Kogyo Co., Ltd., D50 = 4.9 μm spherical silica * 22: Surface-treated silica B prepared above (HPS-500 / KBE-1003, HPS-500 treated with 1 wt% vinyl silane) Product)
* 23: Surface-treated silica C prepared as described above (HPS-500 / KBE-9103, HPS-500 treated with 1 wt% aminosilane)
* 24: Surface-treated silica D prepared as described above (HPS-1000 / KBE-1003, HPS-1000 treated with 1 wt% vinyl silane)
* 25: Surface-treated silica E prepared as described above (FB-5SDX / KBE-9103, FB-5SDX treated with 1 wt% aminosilane)
* 26: ASFP-20 manufactured by Denki Kagaku Kogyo Co., Ltd., D50 = 0.3 μm spherical alumina * 27: DAM-03 manufactured by Denki Kagaku Kogyo Co., Ltd., D50 = 3.7 μm spherical alumina * 28: Surface treatment adjusted as above. Alumina A (ASFP-20 / KBE-1003, 1% by weight vinyl silane treated product of ASFP-20)
* 29: Surface-treated alumina B prepared as described above (DAM-03 / KBE-1003, DAM-03 treated with 1 wt% vinyl silane)
* 30: Fuselex WX manufactured by Tatsumori, D50 = 1.5 μm amorphous silica * 31: KBE-1003 manufactured by Shin-Etsu Chemical, vinyltriethoxysilane * 32: KBE-402, 3-glycid manufactured by Shin-Etsu Chemical Xylpropylmethyldiethoxysilane * 33: Shin-Etsu Chemical KBE-9103, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine * 34: BASF Japan Irgacure 369, α-aminoalkyl Phenone photopolymerization initiator * 35: 1% by weight of cobalt acetylacetonate, DMF solution * 36: 2E4MZ-AP manufactured by Shikoku Kasei Co., Ltd., imidazole * 37: YL7600 manufactured by Mitsubishi Chemical Co., Ltd., phenoxy resin containing low dielectric skeleton * 38: Cyclohexanone * 39: DMF (N, N-dimethylformamide)
* 40: Ipsol 100, Idemitsu Kosan Co., Ltd., aromatic high boiling point solvent
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
*42:DIC社製EPICLON 860、ビスフェノールA型半固形エポキシ樹脂、エポキシ当量:245g/eq
*43:DIC社製HP-4032、ナフタレン型半固形エポキシ樹脂、エポキシ当量:150g/eq
*44:DIC社製N-740、フェノールノボラック型半固形エポキシ樹脂、エポキシ当量:180g/eq
Figure JPOXMLDOC01-appb-T000009
* 42: EPICLON 860 manufactured by DIC, bisphenol A type semi-solid epoxy resin, epoxy equivalent: 245 g / eq
* 43: DIC's HP-4032, naphthalene type semi-solid epoxy resin, epoxy equivalent: 150 g / eq
* 44: N-740 manufactured by DIC, phenol novolac semi-solid epoxy resin, epoxy equivalent: 180 g / eq
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
*45: 堺化学工業製BT-03B D50=0.3μm
 
*46:石原産業製タイペークCR-97 D50=0.25μm
*47:堺化学工業製CZ-03 D50=0.3μm
Figure JPOXMLDOC01-appb-T000011
* 45: BT-03B manufactured by Sakai Chemical Industry D50 = 0.3μm

* 46: Ishihara Sangyo Typepek CR-97 D50 = 0.25μm
* 47: Sakai Chemical Industry CZ-03 D50 = 0.3 μm
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
*48:ラミネート不可
Figure JPOXMLDOC01-appb-T000014
* 48: Cannot be laminated
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記表に示す結果から、実施例1~34のドライフィルムの場合、樹脂層の埋め込み性および平坦性に優れることがわかる。一方、樹脂層の溶融粘度が100℃で60~5500dPa・sを満たさないか、樹脂層の貯蔵弾性率が100℃で80~5500Paを満たさない比較例1~11のドライフィルム、および、樹脂層における液状エポキシ樹脂の含有量が60質量%以上の比較例12のドライフィルムは、埋め込み性および平坦性に劣るものであった。 From the results shown in the above table, it can be seen that the dry films of Examples 1 to 34 are excellent in the embedding property and flatness of the resin layer. On the other hand, the dry film of Comparative Examples 1 to 11 in which the melt viscosity of the resin layer does not satisfy 60 to 5500 dPa · s at 100 ° C., or the storage elastic modulus of the resin layer does not satisfy 80 to 5500 Pa at 100 ° C., and the resin layer The dry film of Comparative Example 12 having a liquid epoxy resin content of 60% by mass or more was inferior in embedding property and flatness.
11 二層構造のドライフィルム
12 樹脂層
13 フィルム
21 三層構造のドライフィルム
22 樹脂層
23 第一のフィルム
24 第二のフィルム
30a 液状判定用試験管
30b 温度測定用試験管
31 標線(A線)
32 標線(B線)
33a、33b ゴム栓
34 温度計
 
DESCRIPTION OF SYMBOLS 11 Two-layer dry film 12 Resin layer 13 Film 21 Three-layer dry film 22 Resin layer 23 First film 24 Second film 30a Test tube 30b for liquid determination Temperature test tube 31 Mark (A line )
32 Mark (B line)
33a, 33b Rubber stopper 34 Thermometer

Claims (9)

  1.  フィルムと、該フィルム上に形成したエポキシ樹脂を含む樹脂層と、を有するドライフィルムであって、
     前記樹脂層の溶融粘度が、100℃で60~5500dPa・sであり、
     前記樹脂層の貯蔵弾性率が、100℃で80~5500Paであり、
     前記樹脂層が、前記エポキシ樹脂として、少なくとも液状エポキシ樹脂を含み、
     前記液状エポキシ樹脂の含有量が、前記エポキシ樹脂全質量あたり60質量%未満であることを特徴とするドライフィルム。
    A dry film having a film and a resin layer containing an epoxy resin formed on the film,
    The resin layer has a melt viscosity of 60 to 5500 dPa · s at 100 ° C.,
    The storage elastic modulus of the resin layer is 80 to 5500 Pa at 100 ° C.,
    The resin layer includes at least a liquid epoxy resin as the epoxy resin,
    Content of the said liquid epoxy resin is less than 60 mass% per said epoxy resin total mass, The dry film characterized by the above-mentioned.
  2.  前記樹脂層中の残留溶剤量が、1.0~7.0質量%である請求項1記載のドライフィルム。 The dry film according to claim 1, wherein the amount of residual solvent in the resin layer is 1.0 to 7.0% by mass.
  3.  前記樹脂層中に、N,N-ジメチルホルムアミド、トルエン、シクロヘキサノン、炭素数が8以上の芳香族炭化水素およびメチルエチルケトンからなる群より選ばれる少なくとも2種の有機溶剤を含むことを特徴とする請求項1記載のドライフィルム。 The resin layer contains at least two organic solvents selected from the group consisting of N, N-dimethylformamide, toluene, cyclohexanone, aromatic hydrocarbons having 8 or more carbon atoms, and methyl ethyl ketone. 1. The dry film according to 1.
  4.  前記樹脂層が、前記エポキシ樹脂として、さらに、ビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも1種の半固形エポキシ樹脂を含むことを特徴とする請求項1記載のドライフィルム。 The resin layer further includes at least one semi-solid epoxy resin selected from the group consisting of a bisphenol A type epoxy resin, a naphthalene type epoxy resin, and a phenol novolac type epoxy resin as the epoxy resin. Item 2. The dry film according to Item 1.
  5.  前記樹脂層が、フィラーを含み、
     前記フィラーの平均粒径が、0.1~10μmである請求項1記載のドライフィルム。
    The resin layer includes a filler,
    2. The dry film according to claim 1, wherein the filler has an average particle size of 0.1 to 10 μm.
  6.  前記樹脂層が、フィラーを含み、
     前記フィラーの配合量が、樹脂層全量(樹脂層が溶剤を含む場合は溶剤を除く全量)あたり40~80質量%である請求項1記載のドライフィルム。
    The resin layer includes a filler,
    The dry film according to claim 1, wherein the blending amount of the filler is 40 to 80% by mass based on the total amount of the resin layer (the total amount excluding the solvent when the resin layer includes a solvent).
  7.  前記樹脂層が、フィラーを含み、
     前記フィラーが、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、メルカプト基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤、ビニル基を有するシランカップリング剤、スチリル基を有するシランカップリング剤、メタクリル基を有するシランカップリング剤およびアクリル基を有するシランカップリング剤の少なくともいずれか1種で表面処理されている請求項1記載のドライフィルム。
    The resin layer includes a filler,
    The filler is an epoxy group-containing silane coupling agent, an amino group-containing silane coupling agent, a mercapto group-containing silane coupling agent, an isocyanate group-containing silane coupling agent, a vinyl group-containing silane coupling agent, or styryl. The dry film according to claim 1, which is surface-treated with at least one of a silane coupling agent having a group, a silane coupling agent having a methacryl group, and a silane coupling agent having an acrylic group.
  8.  請求項1~7のいずれか一項記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the resin layer of the dry film according to any one of claims 1 to 7.
  9.  請求項8記載の硬化物を具備することを特徴とするプリント配線板。 A printed wiring board comprising the cured product according to claim 8.
PCT/JP2016/086192 2016-01-13 2016-12-06 Dry film and printed wiring board WO2017122460A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680078987.6A CN108476589B (en) 2016-01-13 2016-12-06 Dry film and printed circuit board
KR1020187022984A KR102641274B1 (en) 2016-01-13 2016-12-06 Dry film and printed wiring board
JP2017561542A JP6937701B2 (en) 2016-01-13 2016-12-06 Dry film and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004825 2016-01-13
JP2016-004825 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122460A1 true WO2017122460A1 (en) 2017-07-20

Family

ID=59311203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086192 WO2017122460A1 (en) 2016-01-13 2016-12-06 Dry film and printed wiring board

Country Status (5)

Country Link
JP (1) JP6937701B2 (en)
KR (1) KR102641274B1 (en)
CN (1) CN108476589B (en)
TW (1) TWI721070B (en)
WO (1) WO2017122460A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053092A (en) * 2016-09-28 2018-04-05 味の素株式会社 Resin composition
WO2018123695A1 (en) * 2016-12-28 2018-07-05 太陽インキ製造株式会社 Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
JP2019044006A (en) * 2017-08-30 2019-03-22 京セラ株式会社 Resin composition for semiconductor sealing and semiconductor device
WO2019138992A1 (en) * 2018-01-09 2019-07-18 三菱瓦斯化学株式会社 Resin composition, prepreg, metal-foil-lined laminate, resin composite sheet, and printed circuit board
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
WO2019187904A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Alkali developing-type photosensitive resin composition, dry film, cured product and printed circuit board
WO2020040092A1 (en) * 2018-08-20 2020-02-27 Jsr株式会社 Method for forming pattern, and radiation-sensitive composition
JP2020122158A (en) * 2020-04-30 2020-08-13 味の素株式会社 Resin composition
JP2020145270A (en) * 2019-03-05 2020-09-10 住友ベークライト株式会社 Electronic device
JP2020154052A (en) * 2019-03-18 2020-09-24 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component
JP2020197603A (en) * 2019-05-31 2020-12-10 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method of manufacturing multilayer printed wiring board
EP3901699A4 (en) * 2018-12-19 2022-09-21 Taiyo Ink Mfg. Co., Ltd. Curable resin composition, dry film, cured article, and electronic component
WO2022202661A1 (en) * 2021-03-25 2022-09-29 太陽インキ製造株式会社 Laminate structure, cured product of resin layer in said laminate structure, electronic component, and cured product formation method
WO2023145974A1 (en) * 2022-01-31 2023-08-03 太陽ホールディングス株式会社 Film laminate, cured product, and printed wiring board comprising said cured product
WO2023238732A1 (en) * 2022-06-06 2023-12-14 太陽ホールディングス株式会社 Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476086B1 (en) * 2015-06-25 2022-12-09 닛뽄 가야쿠 가부시키가이샤 Epoxy resin composition and cured product thereof
CN111378252A (en) * 2018-12-29 2020-07-07 太阳油墨(苏州)有限公司 Resin filler
JP7221064B2 (en) * 2019-01-30 2023-02-13 太陽インキ製造株式会社 Dry films, cured products and electronic components
KR102465161B1 (en) * 2019-11-06 2022-11-09 주식회사 아모그린텍 Heat radiation sheet, method for manufacturing thereof, and electronic device comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264109A (en) * 2004-03-22 2005-09-29 Hitachi Chem Co Ltd Film-shaped adhesive and manufacturing method of semiconductor device using the same
JP2009227992A (en) * 2008-02-29 2009-10-08 Sekisui Chem Co Ltd Film and printed circuit board
JP2015056480A (en) * 2013-09-11 2015-03-23 デクセリアルズ株式会社 Underfill material, and method for manufacturing semiconductor device using the same
JP2015179829A (en) * 2014-02-26 2015-10-08 日東電工株式会社 Method of manufacturing electronic component package
JP2015216317A (en) * 2014-05-13 2015-12-03 日東電工株式会社 Method for manufacturing semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715119A (en) 1993-06-23 1995-01-17 Toagosei Co Ltd Dry film type solder resist
JP2002162736A (en) 2000-11-22 2002-06-07 Kanegafuchi Chem Ind Co Ltd Photosensitive dry film
JP2003131366A (en) 2001-10-30 2003-05-09 Kansai Paint Co Ltd Positive active energy ray-sensitive dry film
JPWO2008087890A1 (en) * 2007-01-15 2010-05-06 太陽インキ製造株式会社 Thermosetting resin composition
JP5150381B2 (en) * 2008-06-20 2013-02-20 太陽ホールディングス株式会社 Thermosetting resin composition
JP5251806B2 (en) * 2009-09-24 2013-07-31 宇部興産株式会社 Process for producing conjugated diene polymer
JP5810763B2 (en) * 2011-09-02 2015-11-11 宇部興産株式会社 Rubber composition
CN105917462B (en) * 2013-11-28 2019-10-15 日东电工株式会社 The manufacturing method of thermosetting encapsulation resin sheet and hollow package body
JPWO2015141797A1 (en) * 2014-03-20 2017-04-13 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for producing the same, semiconductor device, and LED device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264109A (en) * 2004-03-22 2005-09-29 Hitachi Chem Co Ltd Film-shaped adhesive and manufacturing method of semiconductor device using the same
JP2009227992A (en) * 2008-02-29 2009-10-08 Sekisui Chem Co Ltd Film and printed circuit board
JP2015056480A (en) * 2013-09-11 2015-03-23 デクセリアルズ株式会社 Underfill material, and method for manufacturing semiconductor device using the same
JP2015179829A (en) * 2014-02-26 2015-10-08 日東電工株式会社 Method of manufacturing electronic component package
JP2015216317A (en) * 2014-05-13 2015-12-03 日東電工株式会社 Method for manufacturing semiconductor device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053092A (en) * 2016-09-28 2018-04-05 味の素株式会社 Resin composition
JP7102093B2 (en) 2016-09-28 2022-07-19 味の素株式会社 Resin composition, resin sheet, circuit board and semiconductor chip package
WO2018123695A1 (en) * 2016-12-28 2018-07-05 太陽インキ製造株式会社 Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
JP2019044006A (en) * 2017-08-30 2019-03-22 京セラ株式会社 Resin composition for semiconductor sealing and semiconductor device
JPWO2019138992A1 (en) * 2018-01-09 2020-01-16 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
CN111386313A (en) * 2018-01-09 2020-07-07 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
WO2019138992A1 (en) * 2018-01-09 2019-07-18 三菱瓦斯化学株式会社 Resin composition, prepreg, metal-foil-lined laminate, resin composite sheet, and printed circuit board
US11008420B2 (en) 2018-01-09 2021-05-18 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
CN111386313B (en) * 2018-01-09 2020-10-30 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
CN111868169B (en) * 2018-03-16 2024-03-08 株式会社力森诺科 Epoxy resin composition and electronic component device
CN111868169A (en) * 2018-03-16 2020-10-30 日立化成株式会社 Epoxy resin composition and electronic component device
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
JP7351291B2 (en) 2018-03-16 2023-09-27 株式会社レゾナック Epoxy resin composition and electronic component equipment
JPWO2019176859A1 (en) * 2018-03-16 2021-03-11 昭和電工マテリアルズ株式会社 Epoxy resin composition and electronic component equipment
CN110753881A (en) * 2018-03-30 2020-02-04 太阳油墨制造株式会社 Alkali development type photosensitive resin composition, dry film, cured product and printed wiring board
WO2019187904A1 (en) * 2018-03-30 2019-10-03 太陽インキ製造株式会社 Alkali developing-type photosensitive resin composition, dry film, cured product and printed circuit board
WO2020040092A1 (en) * 2018-08-20 2020-02-27 Jsr株式会社 Method for forming pattern, and radiation-sensitive composition
EP3901699A4 (en) * 2018-12-19 2022-09-21 Taiyo Ink Mfg. Co., Ltd. Curable resin composition, dry film, cured article, and electronic component
JP2020145270A (en) * 2019-03-05 2020-09-10 住友ベークライト株式会社 Electronic device
JP2020154052A (en) * 2019-03-18 2020-09-24 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component
JP7316071B2 (en) 2019-03-18 2023-07-27 太陽ホールディングス株式会社 Curable resin compositions, dry films, cured products and electronic components
JP2020197603A (en) * 2019-05-31 2020-12-10 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method of manufacturing multilayer printed wiring board
JP7251323B2 (en) 2019-05-31 2023-04-04 株式会社レゾナック Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method for producing multilayer printed wiring board
JP7070604B2 (en) 2020-04-30 2022-05-18 味の素株式会社 Resin composition, resin sheet, circuit board and semiconductor chip package
JP2020122158A (en) * 2020-04-30 2020-08-13 味の素株式会社 Resin composition
WO2022202661A1 (en) * 2021-03-25 2022-09-29 太陽インキ製造株式会社 Laminate structure, cured product of resin layer in said laminate structure, electronic component, and cured product formation method
WO2023145974A1 (en) * 2022-01-31 2023-08-03 太陽ホールディングス株式会社 Film laminate, cured product, and printed wiring board comprising said cured product
WO2023238732A1 (en) * 2022-06-06 2023-12-14 太陽ホールディングス株式会社 Layered structure, cured product of resin layer in said layered structure, and electronic component having said cured product

Also Published As

Publication number Publication date
JP6937701B2 (en) 2021-09-22
KR20180103101A (en) 2018-09-18
TW201801584A (en) 2018-01-01
JPWO2017122460A1 (en) 2018-11-01
TWI721070B (en) 2021-03-11
CN108476589A (en) 2018-08-31
KR102641274B1 (en) 2024-02-29
CN108476589B (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2017122460A1 (en) Dry film and printed wiring board
JP6294360B2 (en) Photocurable and thermosetting resin composition and dry film solder resist
TWI745366B (en) Curable resin composition, dry film, cured product, and printed wiring board
JP2016086000A (en) Dry film and printed wiring board
JP2016079384A (en) Dry film, cured product, and printed wiring board
JP2019166688A (en) Dry film, cured product and electronic component
JP2019178307A (en) Curable resin composition, dry film, cured product and electronic component
TW201842407A (en) Photosensitive resin composition obtaining a cured product high glass transition temperature and excellent undercut resistance and crack resistance
JP6710034B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2018173609A (en) Curable resin composition, dry film, cured product, and printed wiring board
KR102543357B1 (en) Laminated film
US20230047699A1 (en) Photosensitive resin composition, photosensitive resin film, multilayered printed wiring board, semiconductor package, and method for producing multilayered printed wiring board
US20230303750A1 (en) Photosensitive resin composition, photosensitive resin film, multilayered printed wiring board, semiconductor package, and method for producing multilayered printed wiring board
JP6837281B2 (en) Laminated film
JP7388374B2 (en) Photosensitive resin composition
JP2019178303A (en) Curable resin composition, dry film, cured product and electronic component
JP2019178306A (en) Curable resin composition, dry film, cured product and electronic component
JP7444192B2 (en) Photosensitive resin composition
KR102543365B1 (en) Curable composition, dry film, cured product and printed wiring board
JP7445095B2 (en) Photosensitive resin compositions, dry films, cured products, and printed wiring boards
JP6742796B2 (en) Curable resin composition, dry film, cured product and printed wiring board
WO2023190393A1 (en) Cured product and printed wiring board
KR101746788B1 (en) Multifunctional compound, photo-curable and thermo-curable resin composition and dry film solder resist
KR20240054181A (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
JP2024059604A (en) Photosensitive resin composition, dry film, cured product, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022984

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022984

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16885063

Country of ref document: EP

Kind code of ref document: A1