WO2023145810A1 - 体液に含まれる成分の濃度を測定するシステムおよび方法 - Google Patents
体液に含まれる成分の濃度を測定するシステムおよび方法 Download PDFInfo
- Publication number
- WO2023145810A1 WO2023145810A1 PCT/JP2023/002402 JP2023002402W WO2023145810A1 WO 2023145810 A1 WO2023145810 A1 WO 2023145810A1 JP 2023002402 W JP2023002402 W JP 2023002402W WO 2023145810 A1 WO2023145810 A1 WO 2023145810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spectrum
- blood
- spectra
- concentration
- analysis
- Prior art date
Links
- 210000001124 body fluid Anatomy 0.000 title claims abstract description 74
- 239000010839 body fluid Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims description 40
- 238000001228 spectrum Methods 0.000 claims abstract description 363
- 238000004458 analytical method Methods 0.000 claims abstract description 60
- 239000000470 constituent Substances 0.000 claims abstract description 40
- 230000001678 irradiating effect Effects 0.000 claims abstract description 16
- 210000004369 blood Anatomy 0.000 claims description 100
- 239000008280 blood Substances 0.000 claims description 100
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 84
- 239000008103 glucose Substances 0.000 claims description 84
- 210000002381 plasma Anatomy 0.000 claims description 63
- 210000004204 blood vessel Anatomy 0.000 claims description 42
- 210000003743 erythrocyte Anatomy 0.000 claims description 42
- 239000000523 sample Substances 0.000 claims description 27
- 210000000601 blood cell Anatomy 0.000 claims description 20
- 238000001237 Raman spectrum Methods 0.000 claims description 17
- 238000001069 Raman spectroscopy Methods 0.000 claims description 15
- 230000003595 spectral effect Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 10
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000017531 blood circulation Effects 0.000 claims description 6
- 210000001772 blood platelet Anatomy 0.000 claims description 6
- 210000000265 leukocyte Anatomy 0.000 claims description 6
- 102000009027 Albumins Human genes 0.000 claims description 4
- 108010088751 Albumins Proteins 0.000 claims description 4
- 102000001554 Hemoglobins Human genes 0.000 claims description 4
- 108010054147 Hemoglobins Proteins 0.000 claims description 4
- 229940109239 creatinine Drugs 0.000 claims description 4
- 239000000306 component Substances 0.000 description 125
- 238000005259 measurement Methods 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 8
- 238000012935 Averaging Methods 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000000513 principal component analysis Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 210000000624 ear auricle Anatomy 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 230000002949 hemolytic effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000000491 multivariate analysis Methods 0.000 description 2
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100117236 Drosophila melanogaster speck gene Proteins 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 239000002473 artificial blood Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
Definitions
- the present invention relates to a system and method for measuring the concentration of components contained in body fluids of living organisms.
- Japanese Patent Application Laid-Open No. 2012-27008 describes that plasma glucose is measured through the following steps in order to provide a technique for improving the accuracy of plasma glucose concentration measurement.
- a sample preparation step of hemolyzing blood cells in blood to prepare a measurement sample a whole blood glucose measurement step of measuring the glucose concentration of whole blood using the measurement sample, the ratio of blood cells to plasma in the blood, and
- a total blood component ratio calculation step is described for calculating the liquid component ratio of whole blood from known values of the liquid component ratio of blood cells and the liquid component ratio of plasma.
- Body fluids of a living body such as blood, contain blood cells and plasma as main components, and blood cells include red blood cells, white blood cells, platelets, and the like.
- blood cells include red blood cells, white blood cells, platelets, and the like.
- glucose, hemoglobin A1c, creatinine, albumin, etc. in the blood is required in addition to the main constituents. requested. It is not easy to accurately measure the concentration of a component to be measured (target) contained in a body fluid such as blood containing various components.
- measurements in specific constituents may be important as indicators, such as plasma glucose levels.
- One aspect of the present invention is a system for measuring the concentration of components contained in bodily fluids.
- This system includes a device for acquiring data including, in time series, a spectrum obtained by irradiating at least part of a flowing body fluid with a laser beam, and a spectrum to be analyzed included in the acquired data, Analyze based on the analysis reference spectrum, which is highly similar to the analysis target spectrum, among the multiple reference spectra that mainly reflect one of the multiple main constituent components of the body fluid, and determine the concentration of the target component in the body fluid and an analysis device.
- the glucose concentration in the blood is being obtained from the Raman spectrum obtained by irradiating body fluids, such as blood, with laser light.
- One example of the test method involves averaging multiple Raman spectra obtained in time series according to a conventional procedure for measuring glucose concentration in whole blood, and determining the glucose-related data contained in the averaged spectra. It is being studied to determine the glucose concentration from the height or shape of the peak obtained.
- the inventors of the present application have found that when Raman spectra are obtained from a flowing body fluid, such as blood flowing through a blood vessel, at intervals shorter than the velocity of blood cells, the Raman spectra are information indicating an average concentration. It was found that the spectrum changed over time, especially in relatively thin blood vessels.
- the time-varying spectrum contains information on blood cells and plasma, which are the main components of blood, and information on different components such as red blood cells, white blood cells, and platelets, each of the main components can be reflected.
- information indicative of the concentration of the target component which is typically smaller than that information, such as the concentration of glucose, can be lost in the averaging. Therefore, simply averaging a large number of spectra does not improve the measurement accuracy, and on the contrary, it may make it difficult to accurately measure the concentration of the target component.
- the spectrum to be analyzed is based (as a reference) on an analytical reference spectrum that is highly similar to the spectrum to be analyzed, among a plurality of reference spectra that mainly reflect one of the plurality of main constituents of body fluids.
- an analytical reference spectrum that is highly similar to the spectrum to be analyzed, among a plurality of reference spectra that mainly reflect one of the plurality of main constituents of body fluids.
- multiple reference spectra include those containing blood cell components as main constituents, those containing plasma components as main constituents, and those containing mixed components thereof.
- a reference spectrum containing blood cell components as the main component may be further divided into, for example, those containing red blood cell components as the main component.
- a spectrum to be analyzed that is similar to a spectrum mainly containing plasma components is analyzed with reference to an average spectrum containing plasma components as an analysis reference spectrum to obtain another main configuration It is possible to suppress the disadvantage (noise) of the information of the component, for example, the blood cell component as the reference information at the time of analysis, and improve the measurement accuracy of the concentration of the target component such as glucose.
- a reference spectrum mainly containing constituents such as blood cell components and plasma components may be given in advance as a spectrum containing information on each constituent.
- An analysis reference spectrum may be determined based on a group of similar spectra including highly similar spectra repeatedly appearing among a plurality of spectra included in data acquired in time series.
- a reference spectrum may be obtained from a group of similar spectra and a plurality of standard spectra in which any one of a plurality of main constituents of body fluid is dominant.
- the system may also include a device that generates a reference spectrum, or a device that automatically generates (self-learns) a reference spectrum from highly similar spectra.
- a device that acquires data may be a device that acquires data from the cloud or the like, or a detection device that acquires data from a living body on-site.
- the detection device may include a Raman spectroscopic device that acquires a Raman spectrum, or may be a device that non-invasively acquires data from a living body.
- the bodily fluid is typically blood, and the multiple major components may include a plasma component and a blood cell component.
- the plurality of major components may include red blood cell, white blood cell and/or platelet components and plasma components.
- the target component may include glucose, hemoglobin A1c, creatinine and/or albumin.
- Another aspect of the present invention is a method for detecting components of bodily fluids.
- This method acquires data including, in time series, spectra obtained by irradiating a body fluid in a flowing state with a laser beam, and analyzes the spectra to be analyzed included in the acquired data from a plurality of main body fluids. and determining the concentration of the target component in the body fluid by performing analysis based on an analysis reference spectrum that is highly similar to the analysis target spectrum among a plurality of reference spectra that mainly reflect any of the constituent components.
- the method may further comprise determining an analytical reference spectrum based on a group of highly similar spectra recurring among the plurality of spectra included in the acquired data.
- Another aspect of the present invention is a method for measuring the concentration of a component contained in a body fluid, wherein the spectrum obtained by irradiating at least part of the body fluid in a flowing state with a laser beam is measured in time series.
- acquisition of data containing data, and analysis target spectra included in a group of similar spectra that include highly similar spectra that appear repeatedly in a plurality of spectra included in the acquired data are identified as spectral components common to the group of similar spectra. and analyzing based on an analytical reference spectrum comprising: determining the concentration of the target component in the bodily fluid.
- Determining may include determining the concentration of the target component contained in any of a plurality of main constituents in the bodily fluid. Also, acquiring may include acquiring data from a living body, acquiring may include acquiring a Raman spectrum, and acquiring data non-invasively by these methods. good.
- FIG. 3 is a diagram showing an example of CARS spectrum of blood flowing through a blood vessel; The figure which shows an example of the CARS spectrum made into the main component of red blood cells. The figure which shows an example of the CARS spectrum which mainly consists of plasma components. The figure which shows an example of the CARS spectrum of the blood reflecting the glucose concentration.
- FIG. 3 shows the correlation between glucose concentration and the associated peak intensity of RBC-like CARS spectra.
- FIG. 3 shows the correlation between glucose concentration and associated peak intensities in Plasma-like CARS spectra.
- a flow chart showing an example of a method for measuring a glucose concentration.
- FIG. 1 shows a system (body fluid test system, living body monitoring system, blood test system) that acquires a blood-derived Raman spectrum using blood flowing through the blood vessels of a sample (living body) as an observation target (monitoring target).
- An example of this system is to irradiate a blood vessel 5a of a living body 5 with a laser beam, and to obtain a CARS (Coherent Anti-Stokes Raman Scattering) spectrum 51 using blood flowing through the blood vessel 5a as an observation target (detection target) 5t. , and monitors the state of the living body 5 .
- the living body monitoring system 30 may include a medication system 38 that injects drugs for maintaining the health of the living body 5 .
- An example of the biological monitoring system 30 is a wearable portable terminal such as a smartwatch that incorporates a communication function and a user interface.
- An example of the drug administration system 38 is a system that injects a drug through the skin of the living body 5, and may include an injector 38a and a supply device (supply unit) 38b that supplies a predetermined drug to the injector 38a.
- a biological monitoring system 30 is a measurement system (blood glucose level measuring device) that measures blood glucose levels.
- a biological monitoring system 30 includes a detection device 31 including a Raman spectrometer (optical system) 10 that acquires a CARS spectrum 51 from blood 5t flowing through a blood vessel 5a, and a CARS spectrum 51 obtained from the detection device 31 via an input interface 32. and a blood glucose level monitor 33 that analyzes and outputs a plasma blood glucose level.
- the Raman spectrometer 10 shown in FIG. 1 is an example, and shows a system in which the ear of a mouse is used as a living body 5 for experiments, and blood 5t flowing through blood vessels 5a of the ear is observed.
- the Raman spectrometer 10 is not limited to this example as long as it can non-invasively obtain a signal of the blood 5t flowing through the blood vessel 5a through the skin of the living body 5.
- FIG. 1 the Raman spectrometer 10 is a minimally invasive method such as controlling the optical path with an implant embedded in the living body, or implanting an artificial blood vessel (bioport) in the living body to form a blood flow directly under the skin. It may be provided with a technique.
- the Raman spectrometer 10 includes a probe (exploration end, sampler) 13 for irradiating the blood 5t in the blood vessel to be observed with laser light to acquire CARS light, and a pump light (for example, 1030 nm wavelength) 59p and Stokes light (eg, 1100-1300 nm wavelength) 59s, and a spectrometer 12 for obtaining a spectrum 51 of CARS light 50 emitted from blood 5t.
- the Stokes light 59s may be of a broadband type with a wide wavelength band, or may be of a narrowband type using a variable length laser.
- the laser source 11 may further output probe light (for example, a wavelength of 780 nm), and the Raman spectroscopic device 10 acquires a time-dependent CARS spectrum considering the delay time. good too.
- This Raman spectrometer 10 has a configuration suitable for experiments, and further includes a visible light source 15 for optically confirming the position of the laser irradiated onto the sample 5 via the probe 13, and the sample 5. It includes a camera (CCD camera) 16 for confirming the position of the laser with transmitted visible light, and dichroic mirrors 17 and 18 for separating the visible light from the laser and CARS light.
- a camera CCD camera
- dichroic mirrors 17 and 18 for separating the visible light from the laser and CARS light.
- An example of the dichroic mirror 17 for separating laser light and visible light is a filter that transmits wavelengths of 750 nm or more. is a filter.
- Raman spectroscopy device 10 may include optical elements such as mirrors M1-M4 and prisms for forming appropriate optical paths.
- a laser source 11 emits a pulsed laser of fS (femtoseconds) to pS (picoseconds), and a spectrometer 12 detects, for example, an analysis target spectrum integrated in units of 8 mS (milliseconds) (first spectrum) 51 is obtained intermittently (in time series). Therefore, the detection device 31 can output data 52 including a plurality of spectra 51 to be analyzed obtained in time series, and the blood sugar level monitor 33 can acquire the data 52 via the input interface 32 .
- the pulse width and integration time are merely examples.
- the blood glucose monitor 33 includes an analysis device 20 that analyzes the analysis target spectrum 51 included in the data 52 acquired via the interface 32 .
- the analyzing apparatus 20 divides the spectrum 51 to be analyzed, which reflects the component of the body fluid obtained by irradiating the body fluid with laser light, into a plurality of reference spectra, each of which mainly reflects one of a plurality of main components of the body fluid.
- a first analysis unit 21 that analyzes based on an analysis reference spectrum 53 that is highly similar to the analysis target spectrum 51 in the (second spectrum) 54 and determines the concentration of the target component contained in the body fluid, for example, glucose. including.
- the first analysis unit 21 may be an analysis unit that determines the concentration using an analysis technique such as multivariate analysis (principal component analysis) based on the analysis reference spectrum 53 .
- the first analysis unit 21 is a learning model (AI(1) ) 21a.
- the analysis device 20 further includes a reference spectrum generation device 22 that determines an analysis reference spectrum 53 based on a group of similar spectra 55 containing highly similar spectra that repeatedly appear in the plurality of spectra 51 included in the acquired data 52. may contain.
- the generation device 22 generates a plurality of reference spectra (second spectra ) 52 (AI(2)) 22a.
- the analyzer 20 irradiates the body fluid (blood) 5t in a flowing state obtained by the Raman spectrometer 10 with a laser beam to obtain a plurality of analysis targets in time series (intermittently over time). From the spectrum 51 of , the concentration of the glucose (target) component contained in the blood 5t is obtained by the learning model 21a.
- the learning model 21a may be learned to obtain the concentration of a target component such as glucose based on a plurality of previously given reference spectra (second spectra) 54 stored in the library 25. .
- the self-learning device 22a refers to a standard spectrum 56 of the main constituent components of blood, such as red blood cells and blood plasma, which has been obtained in advance, and selects the standard A reference spectrum 54 including an analysis reference spectrum 53 that serves as a standard for determining the concentration may be generated (self-learning) from a group 55 of a plurality of spectra that are highly similar or highly correlated with the spectrum 56. .
- Analysis device 20 analyzes target spectra contained in similar spectrum group 55 containing highly similar spectra repeatedly appearing in a plurality of spectra 51 contained in acquired data 52 by cooperation of learning models 21a and 22a. 51 may be analyzed based on an analytical reference spectrum 53 containing spectral components common to similar spectra to determine the concentration of the target component in the body fluid.
- the biological monitoring system 30 may include an output interface 35 that outputs the obtained concentration of the target component such as glucose.
- the output interface 35 may output as the measured concentration of glucose in blood, with reference to the main constituent contained in the analytical reference spectrum 53 referenced to measure the concentration, e.g.
- a function (plasma blood sugar level output device) 35a for outputting the concentration of flowing glucose (in the main constituent) (plasma blood sugar level) may be included.
- the output interface 35 may include a function 35b for outputting the concentrations of target components contained in other main constituents such as red blood cells, not limited to blood plasma, for each constituent.
- FIG. 1 An example of the probe 13 is shown in FIG.
- This probe 13 pinches the earlobe 5 of a mouse, which is a sample of this system 30, irradiates laser beams 59p and 59s on the blood 5t flowing through the blood vessels 5a of the earlobe 5 as an observation object, and acquires the CARS light 50 noninvasively.
- the probe 13 includes upper and lower translucent plates 13a and 13b that sandwich the earlobe 5, and an actuator that can change the distance between the plates 13a and 13b, such as a piezo actuator 13c.
- the actuator 13c of this probe 13 functions as a mechanism that presses the blood vessel 5a to control the flow velocity of the blood 5t.
- the cross-sectional area of the blood vessel 5a By compressing the blood vessel 5a, the cross-sectional area of the blood vessel 5a can be controlled, and the flow velocity of the blood 5t flowing through the blood vessel 5a can be controlled. For example, by reducing the cross-sectional area, the blood flow can be slowed down, the passage of blood cell components such as red blood cells, which are the main constituents contained in blood 5t, can be inhibited, and blood cell components (red blood cells) can be intermittently passed, In the meantime, it is easy to create a temporal timing in which the plasma component is the main component.
- red blood cells red blood cells
- the probe 13 may be of a finger-clip type, a type that clamps a thin portion of the skin, or a type that is pressed against the skin to apply pressure to capillaries on the skin surface.
- the probe 13 may be of the type that acquires CARS light 50 transmitted through the skin forward with respect to the incident laser beams 59p and 59s, and emitted backward or obliquely with respect to the incident laser beams 59p and 59s. It may be of a type that acquires the CARS light 50 .
- the size shown in FIG. 2 is suitable for pinching the earlobe of a mouse as the sample 5 to apply pressure, and the size of the probe 13 is not limited to this.
- FIG. 3 shows an example of the CARS spectrum of blood 5t (in-vitro, ex-vivo).
- FIG. 3(a) shows the CARS spectrum (Raw Spectrum) 61 of a hemolyzed sample (whole blood) obtained by collecting 5 tons of mouse blood in comparison with the CARS spectrum 69 of water.
- the CARS spectrum 61 of the hemolyzed sample clearly differs from the CARS spectrum 69 of water in several regions 68 .
- FIG. 3(b) shows a spectrum (MEM spectrum) 62 analyzed by MEM (maximum entropy method) of the CARS spectrum of the hemolyzed whole blood.
- the MEM spectrum 62 emphasizes the features of the original spectrum 61 .
- FIG. 4 shows an example of the CARS spectrum 51 obtained from the blood 5t (in-vivo) flowing through the blood vessel 5a of the ear 5 of the mouse by the system 30 described above.
- FIG. 4(a) shows the CARS spectrum (MEM spectrum) 62 of the hemolyzed blood of FIG. 3(b) for comparison
- FIG. 4(b) shows the MEM spectrum 51 acquired by the system 30. is shown.
- MEM spectrum MEM spectrum
- the MEM spectrum 51 shown in FIG. 4(b) shows the result of measurement for 1 second with an integration time of 25 msec (msec), and shows an overview of 40 spectra obtained in 1 second.
- FIG. 5 shows a comparison of some examples of CARS spectra obtained from living organisms.
- FIG. 5(a) shows a CARS spectrum (MEM spectrum) 62 of hemolysis (whole blood).
- FIG. 5(b) shows an example of the CARS spectrum (MEM spectrum) 63 of the shallow skin.
- FIG. 5(c) shows an example of a CARS spectrum (MEM spectrum) 64 of tissue under the skin with blood vessels removed.
- Both spectra show different characteristics, and it can be seen that the system 30 can discriminate the CARS spectrum derived from the blood vessel when the blood vessel 5a is the observation target. Further, in the system 30, the camera 16 can be used to confirm the position where the laser is irradiated in order to obtain the CARS spectrum.
- FIG. 6 shows a more detailed analysis of the CARS spectrum (MEM spectrum, in-vivo) 51 obtained from the blood 5t flowing through the blood vessel 5a by this system 30.
- FIG. FIG. 6(a) shows a CARS spectrum (MEM spectrum) 51 integrated in units of 8 msec (msec), in which a plurality of spectra obtained in time series (intermittently) are superimposed for 1 second. ing.
- These CARS spectra 51 are examples of spectra contained in data 52 in system 30 shown in FIG.
- These spectra 51 are CARS spectra obtained from blood 5t, and although the overall trend seems to be similar, it can be seen that several patterns of spectra with different peak heights and the like appear repeatedly.
- FIG. 6(b) shows the results of principal component analysis (PCA) of these spectra 51.
- Principal component analysis a type of multivariate analysis, can synthesize a small number of uncorrelated variables that best represent the overall variability as principal components from a large number of correlated variables. can be reduced.
- spectra 51 obtained from blood can be classified into three groups 55a, 55b and 55c with high similarity.
- the first group 55a is a group of spectra mainly reflecting components of blood cells, particularly red blood cells (RBCs)
- the second group 55b is a group of spectra mainly reflecting components of plasma.
- the third group 55c is assumed to be a group of spectra in which red blood cells and plasma are mixed.
- FIG. 6(c) shows a representative spectrum of the first group (spectrum group) 55a, for example, a spectrum 53a obtained by averaging the spectra of the group 55a.
- This spectrum (RBC spectrum) 53a is assumed to be a spectrum that strongly reflects the components of blood cells, particularly red blood cells (RBC).
- FIG. 6(d) shows a representative spectrum of the second group (spectrum group) 55b, for example, a spectrum (plasma spectrum, plasma spectrum) 53b obtained by averaging the spectra of the group 55b.
- This spectrum 53b is assumed to be a spectrum that strongly reflects the components of plasma.
- the CARS spectrum 51 obtained from the blood 5t flowing through the blood vessel 5a includes a spectrum belonging to a spectrum group 55a mainly reflecting red blood cell components and a spectrum group 55b mainly reflecting plasma components. It can be seen that broadly divided, three patterns of spectra are included repeatedly over time: the spectrum and the spectrum belonging to the spectrum group 55c in which the components of both red blood cells and blood plasma are reflected.
- the time intervals at which the spectra belonging to these different pattern spectral groups 55a to 55c are repeated depend on the blood flow velocity.
- the flow velocity of the blood 5t in the blood vessel 5a changes due to changes in the caliber and shape of the blood vessel due to the pressure applied to the blood vessel 5a, and changes in the amount of blood sugar after eating, etc.
- CARS is obtained from the blood. It was found to be significantly related to variations in the pattern of spectrum 51. Further, by further slowing down the velocity (blood flow) of the blood 5t flowing through the blood vessel 5a or by shortening the integration time of the CARS spectrum 51 obtained from the flowing blood 5t, other components of the blood can be obtained as patterns that appear repeatedly. , for example, a spectrum that strongly reflects the components of platelets and leukocytes can be identified.
- FIG. 7 shows an example of a CARS spectrum 56a acquired from a sample (in-vitro) obtained by hemolyzing red blood cells outside the body (FIG. 7(a)), and an example of a red blood cell obtained non-invasively (in-vivo) by the system 30. It is shown in comparison with an example of the CARS spectrum 51a (FIG. 7(b)) at the timing considered to reflect the component. These spectra are considered to have common characteristics.
- FIG. 8 shows an example of a CARS spectrum 56a obtained from a plasma sample (in-vitro) outside the body (FIG. 8(a)), and plasma components obtained non-invasively (in-vivo) by the system 30 are reflected.
- 8 shows an example of the CARS spectrum 51b (FIG. 8(b)) at the timing considered to be These spectra are also considered to have common features.
- CARS spectrum 51 is obtained continuously in time series or intermittently obtained by averaging or integrating in a short period of time, among the main components of blood 5t, , CARS spectra 51b and 51a reflecting different components, such as blood plasma and blood cells (red blood cells in this example), are obtained at predetermined timings according to the blood flow.
- this tendency is conspicuous when observing blood flowing in capillaries or similar thin blood vessels near the surface of the skin.
- FIG. 9(a) shows a plurality of CARS spectra 51 obtained in one second after injecting a glucose solution into the blood of the mouse 5 in the system 30 of this example. These CARS spectra 51 are considered to reflect changes in the glucose concentration in the blood 5t. Further, FIG. 9(b) shows an extracted CARS spectrum 51a judged to belong to a group 55a mainly composed of erythrocyte components among these CARS spectra 51. As shown in FIG. A spectrum (RBC-like spectrum) 51a mainly reflecting these red blood cell components appears periodically in a plurality of CARS spectra 51 obtained in time series (time-lapse) in the data 52 .
- RBC-like spectrum 51a mainly reflecting these red blood cell components appears periodically in a plurality of CARS spectra 51 obtained in time series (time-lapse) in the data 52 .
- the RBC-like spectrum 51a may be selected from the CARS spectrum 51 included in the data 52 by time (timing, time interval), or a spectrum that can be judged to be similar to the RBC spectrum 53a.
- a CARS spectrum (plasma-like spectrum) 51b determined to belong to a group 55b mainly composed of plasma components can also be similarly selected (extracted) from the plurality of CARS spectra 51 included in the data 2 .
- the plasma-like spectrum 51b may be selected by time (timing, time interval) from the CARS spectrum 51 included in the data 52, or a spectrum that can be judged to be similar to the plasma spectrum 53b.
- An example of simply obtaining the concentration of glucose is comparing the spectrum 51a classified as RBC-like with the standard RBC spectrum 53a, and rescaled (enlarged and/or or reduction) and obtaining in advance the correlation between the intensity between predetermined peaks and the glucose concentration.
- the RBC-like spectrum 51a according to the inventors' analysis, there is a high correlation between the difference (I 1 ⁇ I 0 ) between the intensity I 1 at a wavelength of 928 nm and the intensity I 0 at a wavelength of 926.2 nm and the glucose concentration. , it was found that the glucose concentration in blood, especially the glucose concentration that moves with red blood cells, can be determined with high accuracy.
- FIG. 10 shows the intensity difference of the glucose-related peaks contained in the RBC-like spectrum 51a selected in FIG. ) shows the correlation with the glucose concentration obtained by Nipro's Freestyle Freedom Lite). Therefore, using the analysis device 20, from the plurality of CARS spectra 51 obtained from the blood 5t flowing through the blood vessel 5a, the RBC-like spectrum (spectrum to be analyzed, first spectrum) 51a included in the RBC-like group 55a On the other hand, by selecting the standard RBC spectrum 53a and using the RBC spectrum 53a as the analysis reference spectrum (second spectrum) to obtain the target glucose concentration in the blood, the glucose in the blood can be obtained with extremely high accuracy. It can be seen that it is possible to determine (estimate) the concentration, in particular the glucose concentration (in red blood cells) flowing with the red blood cells.
- plasma-like spectra included in group 55b of CARS spectra (plasma-like spectra, plasma-like spectra) mainly composed of plasma
- a standard plasma spectrum 53b is selected for the spectrum (first spectrum) 51b, and the plasma spectrum 53b is used as an analysis reference spectrum (second spectrum) to determine the target glucose concentration in blood.
- the plasma spectrum 53b is used as an analysis reference spectrum (second spectrum) to determine the target glucose concentration in blood.
- it shows the correlation between the intensity difference of the glucose-related peaks contained in the Plasma-like spectrum 51b, in this example the above-described difference (I 3 ⁇ I 2 ), and the glucose concentration obtained by the glucose meter.
- FIG. 12 is a flow chart showing a method for obtaining the concentration of a target, for example glucose, from blood flowing through blood vessels in the system 30 of this example.
- the blood sugar level monitor 33 acquires data 52 including a plurality of CARS spectra 51 in time series from the blood 5t flowing through the blood vessel 5a via the input interface 32.
- the data 52 may be data acquired from the detection device 31 on-site or in real time, or may be data measured in the past and stored in advance in a cloud or the like.
- step 72 when the input interface 32 or the analysis device 20 determines that the CARS spectrum 51 measured over a certain period of time has been obtained, or that the coherent data 52 has been obtained, the CARS spectrum included in the data 52 51 analysis begins.
- the analysis device 20 determines the similarity of the spectrum 51 to be analyzed included in the acquired data 52 to the spectrum to be analyzed among a plurality of reference spectra mainly reflecting one of a plurality of main constituents of body fluid. Analyze based on the high analysis reference spectrum and determine the concentration of the target (glucose) component in the body fluid (blood). First, in step 73 , the first analysis unit 21 determines an analysis reference spectrum based on a group of highly similar spectra repeatedly appearing in the plurality of spectra 51 included in the acquired data 52 .
- the CARS spectrum 51 included in the data 52 is classified into an RBC-like spectrum group 55a having red blood cells as a main component and a Plasma-like spectrum group 55b having plasma as a main component,
- the RBC spectrum 53a or the Plasma spectrum 53b is determined as an analysis reference spectrum to be referred to during analysis.
- the reference spectrum generator 22 may automatically generate an analysis reference spectrum containing spectral components common to the similar spectrum group. Specifically, in step 74, if generation of reference spectra is designated, in step 75, the reference spectrum generation device 22 generates a group 55a of RBC-like spectra, which are grouped CARS spectra, and a group 55a of plasma-like spectra. An average component may be extracted from each of groups 55b to produce RBC spectrum 53a and Plasma spectrum 53b. At this time, from the standard RBC spectrum and plasma spectrum, a reference spectrum reflecting the user's characteristics is generated based on the information of the RBC-like spectrum group 55a and the plasma-like spectrum group 55b obtained from the blood of the individual (user). You may
- the first analysis unit 21 performs a process of determining the glucose concentration using the RBC spectrum 53a as an analysis reference spectrum in step 77. I do.
- the glucose concentration may be obtained by calculation using a preset function, or the learning model 21a that has undergone machine learning in advance to obtain the glucose concentration may obtain the glucose concentration.
- the plasma spectrum 53b is used as an analysis reference spectrum to determine the concentration of glucose.
- the glucose concentration may be calculated by a function preset for the spectrum having the plasma component as the main component, or the glucose concentration may be obtained based on the reference spectrum having the plasma component as the main component.
- the learning model 21a that has undergone machine learning in advance may obtain the glucose concentration.
- step 80 the dosing system 38 dispenses. Furthermore, in step 81, the blood glucose level monitor 33 can output (display) the blood glucose concentration via the output interface 35, or record it in appropriate media or a server on the cloud. In step 81, it is also possible to output the blood sugar level in plasma (plasma blood sugar level) from the analysis result of the Plasma-like spectrum 51b. Also, in step 81, it is possible to output the concentration of the glucose component contained in other constituents in the blood, such as red blood cells.
- the spectrum obtained in time series by irradiating laser light on blood (body fluid) flowing through blood vessels reflects each of the main constituents of the blood.
- Spectra are included repeatedly (cyclically), and it is possible to obtain spectra in which the main constituents are classified (fractionated) in time.
- capillaries under the skin to be measured noninvasively have a small diameter and are thin, it is easy to cyclically acquire a spectrum in which constituent components are fractionated.
- the effects of the main constituents are removed, or the peaks of the main constituents are referred to, and the biological conditions such as glucose are analyzed. Therefore, it is possible to accurately obtain the concentration of a minute amount of a component that tends to fluctuate.
- Obtaining the blood glucose concentration from the Raman spectrum obtained by irradiating the blood with a laser beam is being studied.
- the information of the main component having a large influence on the peak of the spectrum is averaged and included.
- large temporally fluctuating components are averaged, resulting in large noise in the information, making it difficult to detect trace components that are targets for inspection or measurement, such as glucose.
- the CARS spectrum obtained from blood flowing through blood vessels periodically and repeatedly includes a plasma-like CARS spectrum and an RBC-like CARS spectrum, and these are separately analyzed.
- the target trace component such as glucose
- this measurement method focusing on the fact that blood vessels, particularly capillaries, impede the flow of the main constituents of blood such as red blood cells, blood vessels are used as elements that separate the main constituents of blood,
- One of the characteristics is that information (spectrum) obtained by fractionating (time-resolved) blood whose components are not uniform is obtained.
- the concentration of the target component of the plasma-like composition of blood for example, the plasma blood sugar level.
- Such a process selects a plasma-like or RBC-like reference spectrum from a plurality of CARS spectra, and extracts the concentration of the measurand from information reflecting a measurand component such as glucose contained in the plasma-like or RBC-like spectrum. may be performed using a learning model (AI(1)) 21a that has learned to derive
- Reference spectra that reflect the main components in body fluids that serve as standards for analysis such as the RBC spectrum 53a and the plasma spectrum (plasma spectrum) 53b, may be given in advance, but can further reflect individual characteristics.
- a plurality of spectral groups 55a and 55b with high similarity (correlation) of some spectral components to a plurality of reference spectra for example, A module (AI(2)) 22a may be provided for acquiring the Plasma spectrum 53b representing the plasma component and the RBC spectrum 53a representing the blood cell component through self-learning.
- blood flowing through blood vessels is described as a typical example of body fluids, but components contained in other body fluids such as lymph flowing through lymphatic vessels can be similarly measured.
- the main constituents are not limited to plasma components and red blood cells, but may contain other blood cell components such as white blood cells and/or platelets.
- the target component whose concentration is to be measured is not limited to glucose, and may include at least one of hemoglobin A1c, creatinine, and albumin, and may include any component to be tested in body fluids such as blood. .
- One of the preferred methods for acquiring a spectrum reflecting the components contained in body fluid is to use Raman scattering for acquiring a scattering spectrum, not limited to CARS, stimulated Raman scattering (SRS, Stimulated Raman Scattering), It may be a spectrum obtained using other known methods such as Surface Enhanced Raman Scattering (SERS). Alternatively, a method of acquiring an absorption spectrum such as an IR absorption spectrum may be employed.
- Raman scattering for acquiring a scattering spectrum, not limited to CARS, stimulated Raman scattering (SRS, Stimulated Raman Scattering), It may be a spectrum obtained using other known methods such as Surface Enhanced Raman Scattering (SERS).
- SERS Surface Enhanced Raman Scattering
- a method of acquiring an absorption spectrum such as an IR absorption spectrum may be employed.
- the method for detecting a component of a bodily fluid comprises a plurality of first spectra obtained intermittently by irradiating a flowing bodily fluid with a laser beam, wherein the plurality of components of the bodily fluid are Acquiring a plurality of first spectra each reflecting, analyzing based on any of a plurality of second spectra mainly reflecting any one of the plurality of main components of the body fluid,
- a method is disclosed comprising obtaining the concentration of a component of a target to be measured.
- the method further comprises obtaining the plurality of second spectra from a group of a plurality of spectra having high correlation of some spectral components among the plurality of first spectra obtained in time series. good too.
- This method obtains the plurality of second spectra from a group of a plurality of spectra in which some spectral components are highly correlated and appear periodically among the plurality of first spectra obtained in time series. You may have more.
- the method further includes self-learning the plurality of second spectra from a group of spectra having high correlation of some spectral components among the plurality of first spectra obtained in time series. You may A typical one of the plurality of first spectra is a Raman spectrum.
- the above also includes a spectrum reflecting a component of the body fluid obtained by irradiating the body fluid with a laser beam, and a plurality of second spectra mainly reflecting any one of a plurality of main components of the body fluid.
- a learning model that has learned to obtain the concentration of a target component contained in the body fluid by analyzing based on either of and an analyzer for obtaining concentrations of target constituents contained in the bodily fluid from the first spectrum according to the learning model.
- the system further includes a device that self-learns the plurality of second spectra from a group of spectra having high correlation of some spectral components among the plurality of first spectra obtained in time series. You may The plurality of first spectra may include Raman spectra.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
体液に含まれる成分の濃度を測定するシステム(30)は、流れている状態の前記体液の少なくとも一部にレーザー光を照射して得られるスペクトル(51)を時系列で含むデータ(52)を取得する装置(32)と、取得された前記データ(52)に含まれる解析対象のスペクトル(51)を、前記体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトル(54)の中の、前記解析対象のスペクトル(51)と類似性の高い解析参照スペクトル(53)に基づき解析し、前記体液中のターゲットの成分の濃度を判断する解析装置(20)とを有する。
Description
本発明は、生体の体液に含まれる成分の濃度を測定するシステムおよび方法に関するものである。
国際公開WO2019/117177号公報には、細胞から得られるラマンスペクトルに基づいて、従来よりも正確に細胞の種類を判別することを可能にする判別方法、学習方法、判別装置及びコンピュータプログラムを提供することが記載されている。試料に含まれる細胞の種類を判別する方法において、一つの未判別の細胞から一つのラマンスペクトルを取得し、種類の判明している複数の細胞の夫々から一つずつ得られたラマンスペクトルからなる複数のラマンスペクトルの主成分分析により得られた複数の主成分のスペクトルに対して、前記未判別の細胞のラマンスペクトルが一致する度合を示す複数の一致度を計算し、前記主成分分析により得られた前記種類の判明している複数の細胞の夫々に対応する複数の主成分スコアを、教師あり学習を用いる学習モデルによって種類別に分類した結果に基づいて、前記複数の一致度を分類することにより、前記未判別の細胞の種類を判別することが記載されている。
特開2012-27008号公報には、血漿グルコース濃度の測定の精度を上げる技術を提供するために以下のステップを経て血漿グルコースの測定を行うことが記載されている。血液中の血球を溶血させ測定用試料を調製する試料調製ステップ、前記測定用試料を用いて全血のグルコース濃度を測定する全血グルコース測定ステップ、前記血液中の血球と血漿の比率、並びに、既知の値である血球の液体成分比率及び血漿の液体成分比率から、全血の液体成分比率を算出する全血液体成分比演算ステップが記載されている。
生体の体液、例えば、血液には主な組成成分として血球と血漿とが含まれ、血球としては、赤血球、白血球、血小板などが含まれる。また、生体の健康状態をチェックするためには、主な組成成分とは別に、血液中のグルコース、ヘモグロビンA1c、クレアチニン、アルブミンなどの測定が求められ、血糖値の測定基準としては血漿血糖値が要求される。多様な成分が含まれる血液などの体液に含まれる測定の対象(ターゲット)となる成分の濃度を精度よく測定することは容易ではない。さらに、指標として血漿血糖値のように、特定の組成成分中の測定値が重要であることもある。
本発明の一態様は、体液に含まれる成分の濃度を測定するシステムである。このシステムは、流れている状態の体液の少なくとも一部にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得する装置と、取得されたデータに含まれる解析対象のスペクトルを、体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトルの中の、解析対象のスペクトルと類似性の高い解析参照スペクトルに基づき解析し、体液中のターゲットの成分の濃度を判断する解析装置とを有する。
体液、例えば血液にレーザー光を照射して得られるラマンスペクトルから血中のグルコース濃度を得ることが行われようとしている。その検査方法の一例は、従来の全血のグルコース濃度を測定している手続きにしたがって、時系列的に得られた複数のラマンスペクトルを平均化して、平均化されたスペクトルに含まれるグルコースに関連したピークの高さあるいは形状からグルコース濃度を求めることが検討されている。しかしながら、本願の発明者は、流れている状態の体液、例えば、血管を流れる血液から、血球の速度よりも短い間隔でラマンスペクトルを取得すると、それらのラマンスペクトルは平均的な濃度を示す情報ではなく、特に、比較的細い血管においては、スペクトルが経時的に変化することを見出した。
それらのスペクトルを平均化して全血のスペクトルとすることは可能であろう。しかしながら、経時的に変化するスペクトルに血液の主たる構成成分である血球および血漿の情報、さらには、赤血球、白血球、血小板などの異なる成分の情報が含まれているとすると、主たる構成成分をそれぞれ反映した複数のスペクトルを平均化することにより、それらの情報より一般的に小さい、ターゲットの成分の濃度を示す情報、例えば、グルコースの濃度に関する情報は、平均化により埋没してしまう可能性がある。したがって、単に、数多くのスペクトルを平均化しても、測定精度は向上せず、逆に、ターゲットの成分の濃度を精度よく測定することを困難にしている可能性がある。
一方、流れている状態の体液にレーザー光を照射して得られる複数のスペクトルを時系列で含むデータにおいては、それら複数のスペクトルを時系列で分類(区別、分解、分画)することが可能であり、それらのスペクトルには体液の主要な構成成分を時分解(分画)した情報が含まれることを本願の発明者らは見出した。すなわち、主要な構成成分が一様には含まれていない体液のスペクトルを、体液が流れている状態で取得することにより、それら主要な構成成分を分画した情報を得ることが可能となる。このため、解析対象のスペクトルを、体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトルの中の、解析対象のスペクトルと類似性の高い解析参照スペクトルに基づき(参照として)解析することにより、体液中に含まれるターゲットの成分の濃度を精度よく測定できる。さらに、複数の主たる構成成分のいずれかを特定し、それに含まれるターゲットの成分の濃度を判断することが可能となる。
例えば、血液の場合、複数の参照スペクトルは、血球成分を主たる構成成分として含むものと、血漿成分を主たる構成成分として含むものと、それらが混合した成分を含むもの、などが含まれる。血球成分を主たる構成成分として含む参照スペクトルは、さらに、赤血球の成分を主たる構成成分として含むものなどに分けることができる可能性がある。複数の参照スペクトルの中の、例えば、血漿成分を主として含むスペクトルに類似する解析対象のスペクトルを、血漿成分を含む平均的なスペクトルを解析参照スペクトルとして参照して解析することにより、他の主たる構成成分、例えば、血球成分の情報が解析時の参照情報として不利益(ノイズ)となることを抑制でき、グルコースなどのターゲットの成分の濃度の測定精度を向上できる。さらに、糖尿病などの判断の基準となる血漿グルコース濃度を直に取得することも可能となる。
血球成分、血漿成分などの構成成分を主として含む参照スペクトルは、それぞれの構成成分の情報を含むスペクトルとして予め与えられていてもよい。時系列に取得されたデータに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群に基づき解析参照スペクトルを決定してもよい。さらに、類似スペクトル群と、体液の複数の主たる構成成分のいずれかが主とした複数の標準スペクトルとから参照スペクトルを求めてもよい。また、システムは、参照スペクトルを生成する装置を含んでいてもよく、類似性の高いスペクトルから参照スペクトルを自動的に生成する(自己学習する)装置を含んでいてもよい。
データを取得する装置は、クラウドなどからデータを取得する装置であってもよく、オンサイトで生体からデータを取得する検出装置であってもよい。検出装置は、ラマンスペクトルを取得するラマン分光装置を含んでいてもよく、生体から非侵襲でデータを取得する装置であってもよい。体液は典型的には血液であり、複数の主たる成分は、血漿成分および血球成分を含んでもよい。複数の主たる成分は、赤血球、白血球および血小板の少なくともいずれかの成分と、血漿成分とを含んでもよい。ターゲットの成分はグルコース、ヘモグロビンA1c、クレアチニンおよびアルブミンの少なくともいずれかを含んでもよい。
本発明の他の態様の1つは、体液の成分を検出する方法である。この方法は、流れている状態の体液にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得することと、取得されたデータに含まれる解析対象のスペクトルを、体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトルの中の、解析対象のスペクトルと類似性の高い解析参照スペクトルに基づき解析し、体液中のターゲットの成分の濃度を判断することとを有する。この方法は、取得されたデータに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトル群に基づき解析参照スペクトルを決定することをさらに有してもよい。
本発明の他の態様の1つは、体液に含まれる成分の濃度を測定する方法であって、流れている状態の体液の少なくとも一部にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得することと、取得されたデータに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群に含まれる解析対象のスペクトルを、類似スペクトル群に共通するスペクトル成分を含む解析参照スペクトルに基づき解析し、体液中のターゲットの成分の濃度を判断することとを有する方法である。
判断することは、体液中の複数の主たる構成成分のいずれかに含まれるターゲットの成分の濃度を判断することを含んでもよい。また、取得することは、生体からデータを取得することを含んでもよく、取得することは、ラマンスペクトルを取得することを含んでもよく、これらの方法により非侵襲でデータを取得することを含んでもよい。
図1に本発明に関連して、サンプル(生体)の血管を流れる血液を観察対象(モニタリングの対象)とし、血液由来のラマンスペクトルを取得するシステム(体液検査システム、生体監視システム、血液検査システム)の概要を示している。このシステムの一例は、生体5の血管5aにレーザー光を照射して、血管5aを流れる血液を観察対象(検出対象)5tとしてCARS(コヒーレント反ストークスラマン散乱、Coherent Anti-Stokes Raman Scattering)スペクトル51を取得し、生体5の状態を監視(モニタリング)する生体監視システム30である。生体監視システム30は、生体5の健康を維持するための薬剤を注入する投薬システム38を備えていてもよい。生体監視システム30の一例はスマートウォッチなどの通信機能およびユーザーインターフェイスを内蔵したウェアラブルな携帯端末である。投薬システム38の一例は、生体5の皮膚を介して薬剤を注入するシステムであり、インジェクタ38aと、インジェクタ38aに所定の薬剤を供給する供給装置(供給ユニット)38bとを含んでいてもよい。
生体監視システム(生体管理システム)30の一例は血糖値を測定する測定システム(血糖値測定装置)である。生体監視システム30は、血管5aを流れる血液5tからCARSスペクトル51を取得するラマン分光装置(光学系)10を含む検出装置31と、検出装置31から入力インターフェイス32を介して得られたCARSスペクトル51を解析して血漿血糖値を出力する血糖値モニター33とを有する。図1に示したラマン分光装置10は一例であり、実験用に生体5としてマウスの耳を対象として、耳の血管5aを流れる血液5tを観察対象としたシステムを示している。ラマン分光装置10は、非侵襲で生体5の皮膚を介して血管5aを流れる血液5tの信号が得られるものであればよく、この例に限定されるものではない。また、ラマン分光装置10は、生体内に埋め込まれたインプラントで光路を制御したり、生体内に人口血管(バイオポート)を埋め込んで血液の流れを皮膚直下に形成したりするなどの低侵襲的な手法を備えたものであってもよい。
ラマン分光装置10は、観察対象の血管中の血液5tにレーザー光を照射してCARS光を取得するためのプローブ(探査端、サンプラー)13と、プローブ13を介して血液5tにポンプ光(例えば波長1030nm)59pおよびストーク光(例えば波長1100-1300nm)59sとを照射するためのレーザー源11と、血液5tから発せられるCARS光50のスペクトル51を取得するスペクトロメータ12とを含む。ストークス光59sは波長帯の広いブロードバンドタイプであってもよく、可変長レーザーを用いたナローバンドタイプであってもよい。さらに、レーザー源11は、さらに、プローブ光(例えば波長780nm)を出力するものであってもよく、ラマン分光装置10は、遅延時間を考慮した時間依存型のCARSスペクトルを取得するものであってもよい。
このラマン分光装置10は、実験に適した構成となっており、さらに、プローブ13を介してサンプル5に照射されているレーザーのポジションを光学的に確認するための可視光源15と、サンプル5を透過した可視光によりレーザーのポジションを確認するためのカメラ(CCDカメラ)16と、レーザーおよびCARS光と可視光とを分離するためのダイクロイックミラー17および18とを含む。レーザー光と可視光とを分離するためのダイクロイックミラー17の一例は波長750nm以上を透過するフィルターであり、CARS光と可視光と分離するためのダイクロイックミラー18の一例は波長805nmを中心とするSPフィルターである。ラマン分光装置10は、適当な光路を形成するためのミラーM1~M4、プリズムなどの光学素子を含んでいてもよい。
レーザー源11からはfS(フェムト秒)からpS(ピコ秒)のパルス状のレーザーが放出され、スペクトロメータ12では、例えば、8mS(ミリ秒)単位で積分された解析対象のスペクトル(第1のスペクトル)51が断続的(時系列)に得られる。したがって、検出装置31は、時系列に得られた複数の解析対象のスペクトル51を含むデータ52を出力でき、血糖値モニター33は入力インターフェイス32を介してデータ52を取得できる。なお、パルス幅、積分時間は一例に過ぎない。
血糖値モニター33は、インターフェイス32を介して取得したデータ52に含まれる解析対象のスペクトル51を解析する解析装置20を含む。解析装置20は、体液にレーザー光を照射して得られた体液の成分が反映された解析対象のスペクトル51を、体液の複数の主たる構成成分のいずれかが主としてそれぞれ反映された複数の参照スペクトル(第2のスペクトル)54の中の解析対象のスペクトル51と類似性の高い解析参照スペクトル53に基づき解析し、体液に含まれるターゲットの成分、例えばグルコースの濃度を判断する第1の解析ユニット21を含む。第1の解析ユニット21は、解析参照スペクトル53に基づく多変量解析(主成分分析)などの解析手法を用いて濃度を判断する解析ユニットであってもよい。また、第1の解析ユニット21は、解析対象のスペクトル51と類似性の高い解析参照スペクトル53に基づき、所定のターゲットの成分の濃度を推定することを事前に学習した学習モデル(AI(1))21aを含んでいてもよい。
解析装置20は、さらに、取得されたデータ52に含まれる複数のスペクトル51の中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群55に基づき解析参照スペクトル53を決定する参照スペクトル生成装置22を含んでいてもよい。生成装置22は、複数の解析対象のスペクトル(第1のスペクトル)51の中の、一部のスペクトル成分の相関または類似性の高い複数のスペクトルのグループ55から複数の参照スペクトル(第2のスペクトル)52を自己学習する装置(AI(2))22aを含んでいてもよい。
解析装置20は、ラマン分光装置10により得られた、流れている状態の体液(血液)5tにレーザー光を照射して時系列で(経時的に、断続的に)得られた複数の解析対象のスペクトル51から学習モデル21aにより血液5tに含まれるグルコース(ターゲット)の成分の濃度を得る。学習モデル21aは、ライブラリ25に格納された、予め与えられた複数の参照スペクトル(第2のスペクトル)54に基づきグルコースなどのターゲットの成分の濃度を得るように学習されたものであってもよい。自己学習装置22aは、予め得られている血液の主たる構成成分、例えば、赤血球、血漿などの標準スペクトル56を参照し、ラマン分光装置10から得られる複数の解析対象のスペクトル51の中の、標準スペクトル56との類似性または相関性の高い複数のスペクトルのグループ55から、濃度を判断するための基準となる解析参照スペクトル53を含む参照スペクトル54を生成(自己学習)するものであってもよい。
解析装置20は、学習モデル21aおよび22aの協働により、取得されたデータ52に含まれる複数のスペクトル51の中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群55に含まれる解析対象のスペクトル51を、類似スペクトル群に共通するスペクトル成分を含む解析参照スペクトル53に基づき解析し、体液中のターゲットの成分の濃度を判断する機能を含んでいてもよい。
生体監視システム30は、得られたグルコースなどのターゲットの成分の濃度を出力する出力インターフェイス35を含んでいてもよい。出力インターフェイス35は、測定された血液中のグルコースの濃度として出力してもよく、濃度を測定するために参照された解析参照スペクトル53に含まれる主たる構成成分、例えば血漿を参照して、血漿とともに流動する(主たる構成成分中の)グルコースの濃度(血漿血糖値)として出力する機能(血漿血糖値出力装置)35aを含んでいてもよい。出力インターフェイス35は、血漿に限らず、赤血球などの他の主たる構成成分に含まれるターゲットの成分の濃度を構成成分毎に出力する機能35bを含んでいてもよい。
図2にプローブ13の一例を示している。このプローブ13は、このシステム30のサンプルであるマウスの耳たぶ5を挟み込んで耳たぶ5の血管5aを流れる血液5tを観察対象としてレーザー光59pおよび59sを照射し、非侵襲でCARS光50を取得する。プローブ13は耳たぶ5を挟み込む上下の透光性の板13aおよび13bと、それらの板13aおよび13bの間隔を変えることができるアクチュエータ、例えばピエゾアクチュエータ13cとを含む。このプローブ13のアクチュエータ13cは、血管5aを圧迫して血液5tの流速を制御する機構として機能する。
血管5aを圧迫することにより血管5aの断面積を制御することが可能であり、血管5a中を流れる血液5tの流速を制御できる。例えば、断面積を小さくすることにより、血流を遅くできるとともに、血液5tに含まれる主たる構成成分である赤血球などの血球成分の通過を阻害でき、血球成分(赤血球)を断続的に通過させ、その間に血漿成分が主となる時間的なタイミングを作りやすい。したがって、血管5aを流れる血液5tを測定することにより、血液5tに含まれる主たる構成要素、例えば、赤血球と血漿とを時間的に分画した状態で測定でき、主たる構成要素が、より特徴的に表れるスペクトルを得ることができる。プローブ13はフィンガークリップ型や、その他の皮膚の薄い部分を挟むタイプ、あるいは皮膚に圧着され皮膚表面の毛細血管に圧力を加えられるタイプなどであってもよい。プローブ13は、入射するレーザー光59pおよび59sに対して前方に皮膚を透過したCARS光50を取得するタイプであってもよく、入射するレーザー光59pおよび59sに対して後方あるいは斜めに放出されるCARS光50を取得するタイプであってもよい。なお、図2に示したサイズは、サンプル5としてマウスの耳たぶを挟み込んで圧力を加えるのに適したものであり、プローブ13のサイズはこれに限定されない。
図3に、血液5t(in-vitro, ex-vivo)のCARSスペクトルの一例を示している。図3(a)は、マウスの血液5tを採取した後、溶血させたサンプル(全血)のCARSスペクトル(Raw Spectrum)61を、水のCARSスペクトル69と比較して示している。溶血サンプルのCARSスペクトル61は、いくつかの領域68で水のCARSスペクトル69と明確な差が見られる。図3(b)に、溶血サンプル(hemolyzed whole blood)のCARSスペクトルのMEM(最大エントロピー法)により解析したスペクトル(MEMスペクトル)62を示している。MEMスペクトル62では原スペクトル61の特徴が強調して表される。
図4に、上述したシステム30により、マウスの耳5の血管5aを流れる血液5t(in-vivo)から取得されたCARSスペクトル51の一例を示している。図4(a)に、図3(b)の全血(hemolyzed blood)のCARSスペクトル(MEMスペクトル)62を比較のために示し、図4(b)に、システム30により取得されたMEMスペクトル51を示している。これらの体内(in-vivo)のCARSスペクトル51は、図3(b)に示した体外(in-vitro)の溶血サンプルのMEMスペクトル62と同様の特徴を備えている。したがって、システム30により、非侵襲で、血管5a中を流れる血液5tを示すCARSスペクトル51が精度よく得られることがわかる。
なお、図4(b)に示したMEMスペクトル51は、積分時間25msec(m秒)で1秒間測定した結果を示しており、1秒間で得られた40のスペクトルの概要を示している。
図5に、生体から得られるCARSスペクトルのいくつかの例を比較して示している。図5(a)は、溶血(全血)のCARSスペクトル(MEMスペクトル)62を示している。図5(b)は、表皮(shallow skin)のCARSスペクトル(MEMスペクトル)63の一例を示している。図5(c)は、血管を外した皮膚下組織(tissue)のCARSスペクトル(MEMスペクトル)64の一例を示している。いずれのスペクトルも異なる特徴を示しており、システム30において、血管5aを観察対象としたときにて血管由来のCARSスペクトルを判別できることがわかる。また、システム30においては、カメラ16により、CARSスペクトルを取得するためにレーザーを照射している位置が画像により確認できるようになっている。
図6に、このシステム30により、血管5aを流れる血液5tから得られたCARSスペクトル(MEMスペクトル、in-vivo)51をさらに詳しく解析した様子を示している。図6(a)は、8msec(m秒)単位で積分したCARSスペクトル(MEMスペクトル)51であって、1秒間に、時系列で(断続的に)得られた複数のスペクトルを重ね合わせて示している。これらのCARSスペクトル51は、図1に示したシステム30においてデータ52に含まれるスペクトルの一例である。これらのスペクトル51は、血液5tから得られるCARSスペクトルであり、全体の傾向は似ているように見えるが、ピークの高さなどが異なるいくつかのパターンのスペクトルが繰り返し現れていることがわかる。
図6(b)に、これらのスペクトル51を主成分解析(PCA)した結果を示している。多変量解析の1つである主成分分析により、相関のある多数の変数から、相関のない、少数で全体のばらつきを最もよく表す主成分となる変数を合成することができ、データの次元を削減することができる。本例においては、血液から取得されたスペクトル51は、類似性の高い3つのグループ55a、55bおよび55cに分類できる。第1のグループ55aは、血球、特に、赤血球(RBC)の成分が主に反映されたスペクトル群であり、第2のグループ55bは、血漿(plasma)の成分が主に反映されたスペクトル群であり、第3のグループ55cは、赤血球と血漿とが混合されたスペクトル群であると想定される。
図6(c)に、第1のグループ(スペクトル群)55aの代表的なスペクトル、例えば、グループ55aのスペクトルを平均化したスペクトル53aを示している。このスペクトル(RBCスペクトル)53aは、血球、特に、赤血球(RBC)の成分を強く反映したスペクトルであると想定される。図6(d)に、第2のグループ(スペクトル群)55bの代表的なスペクトル、例えば、グループ55bのスペクトルを平均化したスペクトル(血漿スペクトル、plasmaスペクトル)53bを示している。このスペクトル53bは、血漿(plasma)の成分を強く反映したスペクトルであると想定される。このように、血管5aを流れる血液5tから得られるCARSスペクトル51には、赤血球の成分が主に反映されたスペクトル群55aに属するスペクトルと、血漿の成分が主に反映されたスペクトル群55bに属するスペクトルと、赤血球および血漿の両方の成分が反映されたスペクトル群55cに属するスペクトルとの、大きく分けて3つのパターンのスペクトルが、時間経過により繰り返し含まれることがわかる。
発明者らの解析によると、これらの異なるパターンのスペクトル群55a~55cに属するスペクトルが繰り返される時間間隔は血液の流速に依存すると判断される。血管5aの血液5tの流速は、血管5aを圧迫する圧力により血管の口径や形状が変動したり、食後などで血糖量が変動することにより変わり、その血液の流速の変動が血液から得られるCARSスペクトル51のパターンの変動と有意に関連性があることがわかった。また、血管5aを流れる血液5tの速度(血流)をさらに遅くしたり、流れている血液5tから得られるCARSスペクトル51の積分時間を短縮することにより、繰り返し現れるパターンとして、血液の他の成分、例えば、血小板、白血球の成分が強く反映したスペクトルを識別できると考えられる。
図7に、体外で赤血球を溶血したサンプル(in-vitro)から取得したCARSスペクトル56aの一例(図7(a))と、システム30により非侵襲(in-vivo)で得られた、赤血球の成分が反映されていると考えられるタイミングのCARSスペクトル51aの一例(図7(b))とを比較して示している。これらのスペクトルは特徴が共通していると考えられる。
図8に、体外で血漿サンプル(in-vitro)から取得したCARSスペクトル56aの一例(図8(a))と、システム30により非侵襲(in-vivo)で得られた、血漿成分が反映されていると考えられるタイミングのCARSスペクトル51bの一例(図8(b))とを示している。これらのスペクトルも特徴が共通していると考えられる。したがって、血管5aを流れる血液5tを観察対象としてCARSスペクトル51を時系列で連続的に、または、短時間で平均化あるいは積分した結果を断続的に得ると、血液5tの主な構成成分の中の、異なる構成成分、例えば、血漿と、血球(本例では赤血球)とをそれぞれ反映したCARSスペクトル51bおよび51aが、血流に応じた所定のタイミングで得られることがわかる。特に、皮膚表面に近い、毛細血管あるいはそれに準ずる細い血管内を流れる血液を観察対象とする場合は、その傾向が顕著に表れると考えられる。
図9(a)に、本例のシステム30において、マウス5の血液にグルコース溶液を注入した後に、1秒間に得られる複数のCARSスペクトル51を示している。これらのCARSスペクトル51は、血液5t中のグルコース濃度の変化が反映されていると考えられる。さらに、図9(b)に、これらのCARSスペクトル51中で、赤血球の成分を主体とするグループ55aに属すると判断されるCARSスペクトル51aを抜き出して示している。これらの赤血球の成分が主に反映されたスペクトル(RBCライクスペクトル)51aは、データ52の中に時系列で(経時的に)取得された複数のCARSスペクトル51の中に周期的に現れる。したがって、RBCライクスペクトル51aは、データ52に含まれるCARSスペクトル51の中から時間(タイミング、時間間隔)により選択してもよく、RBCスペクトル53aに類似すると判断できるスペクトルを選択してもよい。血漿の成分を主体するするグループ55bに属すると判断されるCARSスペクトル(plasmaライクスペクトル)51bも同様にデータ2に含まれる複数のCARSスペクトル51から選択(抽出)することができる。plasmaライクスペクトル51bは、データ52に含まれるCARSスペクトル51の中から時間(タイミング、時間間隔)により選択してもよく、plasmaスペクトル53bに類似すると判断できるスペクトルを選択してもよい。
図9(a)に示したCARSスペクトル51には、主成分の差によるバリエーションの他に、グルコース濃度による変動がみられる。例えば、発明者らの事前解析によると、一例として、波長928nm近傍(Pg1)の値にグルコース濃度が強く反映され、波長926-927nm近傍(Pg0)の値はグルコース濃度の影響を受けにくいことが分かった。したがって、RBCライクと分類されたスペクトル51aおよびPlasmaライクと分類されたスペクトル51bを、それぞれ標準となるRBCスペクトル53aおよびPlasmaスペクトル53bと比較することにより、それぞれ異なる主成分のピークに対してグルコースをターゲットとして、その濃度を個別にさらに精度よく示す関係を解析することができる。1つの好適な方法は、それぞれのスペクトル53aおよび53bに基づいて、グルコースの濃度の変化を事前に学習した学習モデルAI21を採用することであることは上記に説明した通りである。
簡易的にグルコースの濃度を求める一例は、RBCライクと分類されたスペクトル51aを、標準となるRBCスペクトル53aと比較し、例えば、波長920-930nmの強度が同一となるようにリスケーイル(拡大および/または縮小)し、所定のピーク間の強度とグルコース濃度との相関を事前に得ておくことにより判断することである。例えば、RBCライクスペクトル51aにおいては、発明者らの解析によると、波長928nmの強度I1と、波長926.2nmの強度I0の差分(I1-I0)とグルコース濃度との相関が高く、血液中のグルコース濃度、特に、赤血球とともに移動するグルコース濃度を精度よく判断できることが分かった。Plasmaライクスペクトル51bにおいては、波長928.5nm)の強度I3と、波長926-927nmの強度の平均値I2との差分(I3-I2)とグルコース濃度との相関が高く、血液中のグルコース濃度、特に、血漿とともに移動するグルコース濃度(血漿血糖濃度)を精度よく判断できることが分かった。
図10に、図9(b)において選択されたRBCライクスペクトル51aに含まれるグルコース関連のピークの強度差、本例においては上述した差分(I1-I0)と、グルコースメータ(Glucometer (SMBG) ニプロ社製 Freestyle Freedom Lite)により得られたグルコース濃度との相関を示している。したがって、解析装置20を用いて、血管5aを流れる血液5tから得られた複数のCARSスペクトル51から、RBCライクのグループ55aに含まれるRBCライクスペクトル(解析対象のスペクトル、第1のスペクトル)51aに対して、標準となるRBCスペクトル53aを選択し、RBCスペクトル53aを解析参照スペクトル(第2のスペクトル)として、血液中のターゲットとなるグルコースの濃度を求めることにより、極めて高い精度で血液中のグルコース濃度、特に、赤血球とともに流れる(赤血球中の)グルコース濃度を判断(推定)できることがわかる。
図11に、同様に、データ52に含まれるCARSスペクトル51の中から、血漿の成分を主体とするCARSスペクトル(血漿ライクスペクトル、Plasmaライクスペクトル)のグループ55bに含まれるPlasmaライクスペクトル(解析対象のスペクトル、第1のスペクトル)51bに対して、標準となるPlasmaスペクトル53bを選択し、Plasmaスペクトル53bを解析参照スペクトル(第2のスペクトル)として、血液中のターゲットとなるグルコースの濃度を求めた結果を示している。具体的には、Plasmaライクスペクトル51bに含まれるグルコース関連のピークの強度差、本例においては上述した差分(I3-I2)と、グルコースメータにより得られたグルコース濃度との相関を示している。
本図から分かるように、血液5tから得られたCARSスペクトル51を時間で分解(分画)したPlasmaライクスペクトル51bから、それらの標準または平均となるPlasmaスペクトル53bを参照して求められたグルコース濃度(強度)と、グルコースメータにより得られたグルコース濃度とは高い相関を示している。したがって、ターゲットとなるグルコースの血液中の濃度を極めて高い精度で測定できる。さらに、血管中を血漿とともに流れる(血漿中の)グルコース濃度を判断(推定)できる。糖尿病における血糖値モニターとしては血漿グルコース濃度が参照され、グルコースメータなどにおいてはヘマトクリット補正により血漿グルコース濃度を示すように設計されているものがある。これに対し、本例のシステム30においては、血漿グルコース濃度を、血漿ライク(Plasmaライク)のCARSスペクトル51bから直に導くことが可能となる。
図12に、本例のシステム30において、血管中を流れる血液から、ターゲット、例えばグルコースの濃度を求める方法をフローチャートにより示している。ステップ71において、血糖値モニター33は、入力インターフェイス32を介して血管5aを流れる血液5tからの複数のCARSスペクトル51を時系列で含むデータ52を取得する。データ52は、検出装置31からオンサイトまたはリアルタイムで取得されたデータであってもよく、過去に測定され、クラウドなどに予め蓄積されたデータであってもよい。ステップ72において、入力インターフェイス32または解析装置20が、ある程度の期間にわたり測定されたCARSスペクトル51が得られたと判断したり、纏まりのあるデータ52が取得されたと判断すると、データ52に含まれるCARSスペクトル51の解析を開始する。
解析装置20は、取得されたデータ52に含まれる解析対象のスペクトル51を、体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトルの中の、解析対象のスペクトルと類似性の高い解析参照スペクトルに基づき解析し、体液中(血液中)のターゲット(グルコース)の成分の濃度を判断する。まず、ステップ73において、第1の解析ユニット21により、取得されたデータ52に含まれる複数のスペクトル51の中に繰り返し現れる類似性の高いスペクトル群に基づき、解析参照スペクトルを決定する。具体的には、データ52に含まれているCARSスペクトル51を、赤血球を主たる構成成分とするRBCライクスペクトルのグループ55aと、血漿を主たる構成成分とするPlasmaライクスペクトルのグループ55bとに分類し、解析の際に参照する解析参照スペクトルとしてRBCスペクトル53aまたはPlasmaスペクトル53bを決定する。
この際、参照スペクトル生成装置22により、類似スペクトル群に共通するスペクトル成分を含む解析参照スペクトルを自動生成してもよい。具体的には、ステップ74において、参照スペクトルの生成が指定されていると、ステップ75において、参照スペクトル生成装置22は、グルーピングされたCARSスペクトル群であるRBCライクスペクトルのグループ55aおよびPlasmaライクスペクトルのグループ55bのそれぞれから平均的な成分を抽出してRBCスペクトル53aとPlasmaスペクトル53bとを生成してもよい。この際、標準的なRBCスペクトルおよびPlasmaスペクトルを、個人(ユーザー)の血液から得られたRBCライクスペクトルのグループ55aおよびPlasmaライクスペクトルのグループ55bの情報によりユーザーの特性が反映された参照スペクトルを生成してもよい。
第1の解析ユニット21は、ステップ76において、RBCライクであると分類されたスペクトル(RBCライクスペクトル)51aの場合は、ステップ77において、RBCスペクトル53aを解析参照スペクトルとしてグルコースの濃度を判断する処理を行う。この処理では、予め設定された関数による計算にグルコース濃度を求めてもよく、グルコース濃度を求めるように予め機械学習を行った学習モデル21aがグルコース濃度を求めてもよい。ステップ76において、Plasmaライクであると分類されたスペック(Plasmaライクスペクトル)51bに対しては、ステップ78において、Plasmaスペクトル53bを解析参照スペクトルとしてグルコースの濃度を判断する処理を行う。この処理では、血漿成分を主たる構成成分とするスペクトルに対して予め設定された関数による計算にグルコース濃度を求めてもよく、血漿成分を主たる構成成分とする参照スペクトルに基づきグルコース濃度を求めるように予め機械学習を行った学習モデル21aがグルコース濃度を求めてもよい。
ステップ79において、求められたグルコース濃度が規定値よりも高く、インシュリンの投与が必要であると判断されると、ステップ80において投薬システム38が投薬する。さらに、血糖値モニター33は、ステップ81において、出力インターフェイス35を介して血液中のグルコース濃度を出力(表示)したり、適当なメディアまたはクラウド上のサーバーなどに記録することができる。ステップ81において、Plasmaライクスペクトル51bの解析結果より、血漿中の血糖値(血漿血糖値)を出力することも可能である。また、ステップ81において、赤血球などの血液中の他の構成成分に含まれるグルコース成分の濃度を出力することも可能である。
以上に、体液として血液を例に説明したように、血管を流れている状態の血液(体液)にレーザー光を照射して時系列得られるスペクトルには、血液の主たる構成成分がそれぞれ反映されたスペクトルが繰り返し(サイクリックに)含まれており、主たる構成成分が時間的に分類された(分画された)スペクトルを得ることができる。特に、非侵襲で測定する対象となる皮膚下の毛細血管は直径が小さく細いので、構成成分が分画されたスペクトルをサイクリックに取得しやすい。そのスペクトルを、血液の主たる構成成分が主に反映されたスペクトルを参照して解析することにより、主たる構成成分の影響を除き、あるいは主たる構成成分のピークを参照して、グルコースなどの生体の条件により変動しやすい微量な成分の濃度を精度よく取得することができる。
血液にレーザー光を照射して得られるラマンスペクトルから血中のグルコース濃度を得ることが検討されているが、血液から得られたラマンスペクトルをすべて平均化すると、血漿成分の情報や赤血球の情報などスペクトルのピークに大きな影響を持つ主たる構成成分の情報が平均化して含まれることとなる。そのような平均化されたスペクトルは、時間的に変動する大きな成分が平均化されて情報が大きなノイズとなり、グルコースなどの、検査または測定のターゲットとなる微量成分の検出を難しくしていた。
これに対し、本発明においては、血管を流れる血液から得られるCARSスペクトルに、血漿ライクのCARSスペクトル、RBCライクのCARSスペクトルが定期的に繰り返し含まれることに注目し、それらを分けて解析することにより、主たる構成成分の情報がノイズとなることを抑制でき、グルコースなどのターゲットとなる微量成分を高い精度で測定(解析)することができる。すなわち、この測定方法においては、血管、特に毛細血管が、赤血球などの血液の主たる構成成分の流動の障害となることに着目し、血管を、血液の主たる構成成分を分画する要素として用い、成分が一様ではない血液を分画(時分解)した情報(スペクトル)を得ることを1つの特徴としている。
また、本発明においては、血液の血漿ライクが組成のターゲットの成分の濃度、例えば、血漿血糖値を直に得ることも可能となる。さらに、血漿ライクなCARSスペクトル51bと、RBCライクなCARSスペクトル51cが現れる頻度から、ヘマトクリット値を求めることも可能となる。
このような処理は、複数のCARSスペクトルから血漿ライクまたはRBCライクの参照スペクトルを選択して、血漿ライクまたはRBCライクのスペクトルに含まれるグルコースなどの測定対象の成分を反映した情報から測定対象の濃度を導くように学習した学習モデル(AI(1))21aを用いて行ってもよい。
解析の基準となる体液中の主な構成成分をそれぞれ反映した参照スペクトル、例えば、RBCスペクトル53a、Plasmaスペクトル(血漿スペクトル)53bは、予め与えられていてもよいが、個人の特性をさらに反映できるように、システム30において、時系列で得られる複数のCARSスペクトル51の中の、一部のスペクトル成分の類似性(相関)の高い複数のスペクトルのグループ55aおよび55bから複数の参照スペクトル、例えば、血漿成分を示すPlasmaスペクトル53b、血球成分を示すRBCスペクトル53aを自己学習により取得するモジュール(AI(2))22aを設けてもよい。
なお、上記においては、体液の典型的な例として血管を流れる血液を例に説明しているが、体液はリンパ管を流れるリンパ液などの他の体液に含まれる成分であっても同様に測定できる。主たる構成成分は、血漿成分、赤血球に限らず、他の血球成分、例えば、白血球および/または血小板を含んでいてもよい。また、濃度を測定するターゲットとなる成分はグルコースに限らず、ヘモグロビンA1c、クレアチニンおよびアルブミンの少なくともいずれかを含んでもよく、血液などの体液の検査対象となるいずれかの成分を含んでいてもよい。体液に含まれる成分が反映されたスペクトルを取得する好適な方法の1つは、散乱スペクトルを取得するラマン散乱を用いることであり、CARSに限らず、誘導ラマン散乱(SRS、Stimulated Raman Scattering)、表面増強ラマン散乱(SERS、Surface Enhanced Raman Scattering)などの他の公知の方法を用いて取得されたスペクトルであってもよい。また、IR吸収スペクトルなどの吸収スペクトルを取得する方法を採用してもよい。
上記においては、体液の成分を検出する方法であって、流れている状態の体液にレーザー光を照射して断続的に得られる複数の第1のスペクトルであって、前記体液の複数の成分がそれぞれ反映された複数の第1のスペクトルを取得することと、前記体液の複数の主たる成分のいずれかが主としてそれぞれ反映された複数の第2のスペクトルのいずれかに基づき解析し、前記体液に含まれるターゲットの成分の濃度を得ることを有する方法が開示されている。この方法は、時系列で得られる前記複数の第1のスペクトルの中の、一部のスペクトル成分の相関の高い複数のスペクトルのグループから前記複数の第2のスペクトルを得ることをさらに有してもよい。この方法は、時系列で得られる前記複数の第1のスペクトルの中で定期的に現れる、一部のスペクトル成分の相関の高い複数のスペクトルのグループから前記複数の第2のスペクトルを得ることをさらに有してもよい。この方法は、時系列で得られる前記複数の第1のスペクトルの中の、一部のスペクトル成分の相関の高い複数のスペクトルのグループから前記複数の第2のスペクトルを自己学習することをさらに有してもよい。前記複数の第1のスペクトルの典型的なものはラマンスペクトルである。
上記には、また、体液にレーザー光を照射して得られた前記体液の成分が反映されたスペクトルを、前記体液の複数の主たる成分のいずれかが主としてそれぞれ反映された複数の第2のスペクトルのいずれかに基づき解析し、前記体液に含まれるターゲットの成分の濃度を得ることを学習した学習モデルと、流れている状態の前記体液にレーザー光を照射して断続的に得られた複数の第1のスペクトルから前記学習モデルにより前記体液に含まれるターゲットの成分の濃度を得る解析装置とを有するシステムが開示されている。このシステムは、時系列で得られる前記複数の第1のスペクトルの中の、一部のスペクトル成分の相関の高い複数のスペクトルのグループから前記複数の第2のスペクトルを自己学習する装置をさらに有してもよい。前記複数の第1のスペクトルはラマンスペクトルを含んでもよい。
また、上記においては、本発明の特定の実施形態を説明したが、様々な他の実施形態および変形例は本発明の範囲および精神から逸脱することなく当業者が想到し得ることであり、そのような他の実施形態および変形は以下の請求の範囲の対象となり、本発明は以下の請求の範囲により規定されるものである。
Claims (18)
- 体液に含まれる成分の濃度を測定するシステムであって、
流れている状態の前記体液の少なくとも一部にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得する装置と、
取得された前記データに含まれる解析対象のスペクトルを、前記体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトルの中の、前記解析対象のスペクトルと類似性の高い解析参照スペクトルに基づき解析し、前記体液中のターゲットの成分の濃度を判断する解析装置とを有するシステム。 - 請求項1において、
取得された前記データに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群に基づき前記解析参照スペクトルを決定する参照スペクトル生成装置をさらに有する、システム。 - 体液に含まれる成分の濃度を測定するシステムであって、
流れている状態の前記体液の少なくとも一部にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得する装置と、
取得された前記データに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群に含まれる解析対象のスペクトルを、前記類似スペクトル群に共通するスペクトル成分を含む解析参照スペクトルに基づき解析し、前記体液中のターゲットの成分の濃度を判断する解析装置とを有するシステム。 - 請求項1ないし3のいずれかにおいて、
前記解析装置は、前記体液中の前記複数の主たる構成成分のいずれかに含まれる前記ターゲットの成分の濃度を判断する、システム。 - 請求項1ないし4のいずれかにおいて、
前記解析装置は、前記解析参照スペクトルに基づき前記ターゲットの成分の濃度を得ることを学習した学習モデルを含む、システム。 - 請求項1ないし5のいずれかにおいて、
前記取得する装置は、生体から前記データを取得する検出装置を含む、システム。 - 請求項6において、
前記検出装置は、ラマンスペクトルを取得するラマン分光装置を含む、システム。 - 請求項6または7において、
前記検出装置は、前記体液として、血管を流れている血液を対象として前記データを取得するプローブを含む、システム。 - 請求項8において、
前記プローブは前記血管を圧迫して血液の流速を制御する機能を含む、システム。 - 体液の成分を検出する方法であって、
流れている状態の前記体液にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得することと、
取得された前記データに含まれる解析対象のスペクトルを、前記体液の複数の主たる構成成分のいずれかが主として反映された複数の参照スペクトルの中の、前記解析対象のスペクトルと類似性の高い解析参照スペクトルに基づき解析し、前記体液中のターゲットの成分の濃度を判断することとを有する、方法。 - 請求項10において、
取得された前記データに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトル群に基づき前記解析参照スペクトルを決定することをさらに有する、方法。 - 体液に含まれる成分の濃度を測定する方法であって、
流れている状態の前記体液の少なくとも一部にレーザー光を照射して得られるスペクトルを時系列で含むデータを取得することと、
取得された前記データに含まれる複数のスペクトルの中に繰り返し現れる類似性の高いスペクトルを含む類似スペクトル群に含まれる解析対象のスペクトルを、前記類似スペクトル群に共通するスペクトル成分を含む解析参照スペクトルに基づき解析し、前記体液中のターゲットの成分の濃度を判断することとを有する、方法。 - 請求項10ないし12のいずれかにおいて、
前記判断することは、前記体液中の前記複数の主たる構成成分のいずれかに含まれる前記ターゲットの成分の濃度を判断することを含む、方法。 - 請求項10ないし13のいずれかにおいて、
前記取得することは、生体から前記データを取得することを含む、方法。 - 請求項14において、
前記取得することは、ラマンスペクトルを取得することを含む、方法。 - 請求項10ないし15のいずれかにおいて、
前記体液は血液であり、前記主たる構成成分は、血漿成分および血球成分を含む、方法。 - 請求項10ないし15のいずれかにおいて、
前記体液は血液であり、前記主たる構成成分は、赤血球、白血球および血小板の少なくともいずれかの成分と、血漿成分とを含む、方法。 - 請求項10ないし17のいずれかにおいて、
前記ターゲットの成分はグルコース、ヘモグロビンA1c、クレアチニンおよびアルブミンの少なくともいずれかを含む、方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380018955.7A CN118748926A (zh) | 2022-01-28 | 2023-01-26 | 测定体液中包含的成分的浓度的系统和方法 |
JP2023523261A JP7500117B2 (ja) | 2022-01-28 | 2023-01-26 | 体液に含まれる成分の濃度を測定するシステムおよび方法 |
JP2024086206A JP2024103571A (ja) | 2022-01-28 | 2024-05-28 | 体液に含まれる成分の濃度を測定するシステムおよび方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022011549 | 2022-01-28 | ||
JP2022-011549 | 2022-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023145810A1 true WO2023145810A1 (ja) | 2023-08-03 |
Family
ID=87471529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/002402 WO2023145810A1 (ja) | 2022-01-28 | 2023-01-26 | 体液に含まれる成分の濃度を測定するシステムおよび方法 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7500117B2 (ja) |
CN (1) | CN118748926A (ja) |
WO (1) | WO2023145810A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001522625A (ja) * | 1997-11-12 | 2001-11-20 | ライタッチ メディカル インコーポレイテッド | 検体を非侵襲的に測定する方法及び装置 |
WO2014178199A1 (ja) * | 2013-05-02 | 2014-11-06 | アトナープ株式会社 | 生体を監視するモニターおよびシステム |
JP2017060753A (ja) * | 2015-09-23 | 2017-03-30 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 分析物質の濃度予測方法および装置 |
JP2021009135A (ja) * | 2019-06-28 | 2021-01-28 | キヤノン株式会社 | 情報処理装置、情報処理装置の制御方法、及びプログラム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208561A1 (ja) | 2018-04-24 | 2019-10-31 | 興和株式会社 | 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム |
-
2023
- 2023-01-26 CN CN202380018955.7A patent/CN118748926A/zh active Pending
- 2023-01-26 JP JP2023523261A patent/JP7500117B2/ja active Active
- 2023-01-26 WO PCT/JP2023/002402 patent/WO2023145810A1/ja active Application Filing
-
2024
- 2024-05-28 JP JP2024086206A patent/JP2024103571A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001522625A (ja) * | 1997-11-12 | 2001-11-20 | ライタッチ メディカル インコーポレイテッド | 検体を非侵襲的に測定する方法及び装置 |
WO2014178199A1 (ja) * | 2013-05-02 | 2014-11-06 | アトナープ株式会社 | 生体を監視するモニターおよびシステム |
JP2017060753A (ja) * | 2015-09-23 | 2017-03-30 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 分析物質の濃度予測方法および装置 |
JP2021009135A (ja) * | 2019-06-28 | 2021-01-28 | キヤノン株式会社 | 情報処理装置、情報処理装置の制御方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN118748926A (zh) | 2024-10-08 |
JPWO2023145810A1 (ja) | 2023-08-03 |
JP7500117B2 (ja) | 2024-06-17 |
JP2024103571A (ja) | 2024-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100762659B1 (ko) | 비관혈 혈액 성분치 측정 장치 및 방법 | |
JP3621699B2 (ja) | 高信頼非侵襲性血液ガス測定方法 | |
JP4936203B2 (ja) | グルコース濃度の定量装置 | |
DE69227545T2 (de) | Oximeter zur zuverlässigen klinischen Bestimmung der Blutsauerstoffsättigung in einem Fötus | |
US11147482B2 (en) | Method and system for non-invasive blood glucose measurement using signal change of the non-glucose components induced by the presence of glucose | |
US7725144B2 (en) | Determination of disease state using raman spectroscopy of tissue | |
US20080306363A1 (en) | Specialized Human Servo Device And Process For Tissue Modulation Of Human Fingerprints | |
EP0630203A1 (en) | Non-invasive device and method for determining concentrations of various components of blood or tissue | |
WO1993012712A1 (en) | Blood constituent determination based on differential spectral analysis | |
JP4472794B2 (ja) | グルコース濃度の定量装置 | |
EP3056141A1 (en) | A method of non-invasive measurement of blood glucose and optoelectronic system to non-invasive measurement of blood glucose | |
WO2018194056A1 (ja) | 血液の吸収スペクトルを算出する情報処理方法、情報処理装置およびプログラム | |
WO2023145810A1 (ja) | 体液に含まれる成分の濃度を測定するシステムおよび方法 | |
WO2019208561A1 (ja) | 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム | |
JP3584288B2 (ja) | 生体計測装置 | |
JPH0415046A (ja) | 血液循環動態の測定方法 | |
JP2011506915A (ja) | 生体組織から分光検査信号を収集する方法及び測定機器 | |
RU2148257C1 (ru) | Способ исследования крови | |
GB2613032A (en) | Calibration method and system | |
Doemer et al. | Measurement of optical pulsation and transmission spectra as reference for a Monte Carlo simulation of the finger tip | |
CN116568215A (zh) | 使用具有单波长的激光组合的光声诊断设备和方法 | |
Blanco Núñez | Evaluation of a Non-Invasive Optical Glucose Monitoring Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023523261 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23747020 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |