WO2023145609A1 - 建設機械の駆動制御装置及びこれを備えた建設機械 - Google Patents

建設機械の駆動制御装置及びこれを備えた建設機械 Download PDF

Info

Publication number
WO2023145609A1
WO2023145609A1 PCT/JP2023/001565 JP2023001565W WO2023145609A1 WO 2023145609 A1 WO2023145609 A1 WO 2023145609A1 JP 2023001565 W JP2023001565 W JP 2023001565W WO 2023145609 A1 WO2023145609 A1 WO 2023145609A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
target
gravity
controller
leveling
Prior art date
Application number
PCT/JP2023/001565
Other languages
English (en)
French (fr)
Inventor
雅俊 洪水
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Publication of WO2023145609A1 publication Critical patent/WO2023145609A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present disclosure relates to a construction machine drive control device and a construction machine equipped with the same.
  • a hydraulic excavator is known as a construction machine that includes a machine body and a working device that is supported on the machine body so that it can rise and fall.
  • a working device of a hydraulic excavator includes a boom that is supported on a machine body so that it can be raised and lowered, and a rotating member that is supported on the boom so that it can rotate.
  • the rotating member includes an arm and a tip member such as a bucket that is rotatably supported by the arm.
  • Each of the boom, arm and tip member is moved by a telescoping hydraulic cylinder.
  • Such hydraulic excavators are capable of performing various types of work such as excavation work.
  • Patent Document 1 discloses a construction machine capable of improving work efficiency in work such as excavation.
  • This construction machine control device measures or calculates a motion state quantity of a combined center of gravity of a plurality of members constituting the work device, and controls the work device so that the motion state quantity follows a predetermined first target value.
  • An instruction value for the operation mechanism is determined using feedback control, and an operator's operation amount for the work device is adjusted based on the instruction value.
  • Patent document 2 discloses a construction machine for reducing the operator's load when repeatedly performing excavation work. Specifically, in Patent Document 2, the bucket can be pushed out linearly simply by the operator manipulating the arm in the pushing direction, so it is possible to reduce the load on the operator during excavation work. Are listed.
  • the ground leveling work includes leveling work, bottom leveling work, slope forming work, and the like.
  • the target leveling angle which is the target of the leveling angle
  • the device needs to work.
  • Such leveling work is not easy for unskilled workers, but Patent Document 1 describes how to specifically control the operation of a work device according to various target leveling angles set in the leveling work. is not mentioned.
  • Patent Document 2 is a technique for reducing the load on the operator during excavation work, and does not consider land leveling work at all.
  • An object of the present disclosure is to provide a drive control device capable of operating a work device so that a construction surface is leveled at a target leveling angle in leveling work, and a construction machine equipped with the same.
  • a drive control device for a construction machine comprising a machine body, a working device including a boom supported by the machine body so as to be able to rise and fall, and a rotating member supported by the boom so as to be able to rotate. and a controller for controlling the operation of the work device, wherein the controller sets a target leveling angle, which is a target leveling angle in the leveling work performed by the work device, and rotates at the speed of the center of gravity of the rotating member.
  • a certain rotation member center-of-gravity velocity is calculated, and a target velocity, which is a target velocity of the combined center-of-gravity of the work apparatus as a whole, is computed using the rotation-member center-of-gravity velocity and the target leveling angle, and the actual velocity of the combined center of gravity is computed.
  • the operation of the boom is controlled so that the speed approaches the target speed.
  • FIG. 1 is a side view showing a construction machine equipped with a drive control device according to an embodiment of the present disclosure
  • FIG. It is a hydraulic circuit diagram of the drive control device according to the embodiment.
  • 3 is a block diagram of a drive control device according to the embodiment;
  • FIG. It is a side view which shows an example of the ground leveling work which the construction machine which concerns on the said embodiment performs.
  • 1 is a block diagram of a drive control device according to an embodiment;
  • FIG. 4 is a flowchart showing arithmetic processing performed by a controller of the drive control device according to the embodiment; It is a top view which shows an example of the input device of the drive control apparatus which concerns on the said embodiment.
  • FIG. 5 is a perspective view showing another example of the input device of the drive control device according to the embodiment; It is a graph which shows an example of the map preset in the drive control apparatus which concerns on the said embodiment. It is a block diagram of the drive control apparatus based on the modification 1 of the said embodiment. It is a graph which shows an example of the map preset in the drive control apparatus which concerns on the modification 1 of the said embodiment. It is a block diagram of the drive control apparatus based on the modified example 2 of the said embodiment. It is a graph which shows an example of the map preset in the drive control apparatus which concerns on the modification 2 of the said embodiment.
  • FIG. 12 is a side view showing an example of a trajectory of the tip member of the working device in Modification 2 of the embodiment. It is a block diagram of the drive control apparatus based on the modified example 3 of the said embodiment.
  • FIG. 1 is a side view showing a hydraulic excavator 10 equipped with a drive control device (FIG. 2) according to an embodiment of the present disclosure.
  • This hydraulic excavator 10 is an example of a construction machine.
  • a hydraulic excavator 10 is mounted on a crawler-type lower traveling body 11 capable of traveling on the ground G and on the lower traveling body 11 so as to be able to turn around a turning center axis along a direction perpendicular to the ground. and a work device 13 (work attachment 13) mounted on the upper revolving body 12 so as to be able to rise and fall.
  • the work device 13 includes a boom 14 supported by the upper revolving body 12 so as to be able to rise and fall, and a rotating member 20 supported by the boom 14 so as to be able to rotate.
  • the rotating member 20 includes an arm 15 rotatably connected to the tip of the boom 14 and a bucket 16 rotatably linked to the tip of the arm 15 .
  • Bucket 16 is an example of a tip member. Bucket 16 has a bucket bottom 16H.
  • the upper revolving body 12 has a revolving frame and a cab supported by the revolving frame.
  • the lower running body 11 and the upper revolving body 12 are an example of the body.
  • the hydraulic excavator 10 includes a boom cylinder 17 that operates to raise and lower the boom 14 with respect to the upper revolving body 12, an arm cylinder 18 that operates to rotate the arm 15 with respect to the boom 14, a bucket cylinder 19 that operates to rotate the bucket 16 with respect to the arm 15 .
  • Each cylinder receives hydraulic fluid from a hydraulic pump and operates to expand and contract.
  • FIG. 2 is a hydraulic circuit diagram of the drive control device according to this embodiment.
  • the same components as those of the hydraulic excavator 10 shown in FIG. 1 are denoted by the same reference numerals. 1 and 2
  • g1 indicates the center of gravity of the boom 14
  • g2 indicates the center of gravity of the arm 15
  • g3 indicates the center of gravity of the bucket 16
  • g indicates the composite center of gravity of the working device 13.
  • the hydraulic excavator 10 further includes an engine 100, a hydraulic first pump 2A and a second hydraulic pump 2B, a pilot pressure oil hydraulic pump 3, an operator 4, an electromagnetic proportional valve 5, a control valve 7, and a controller 50 .
  • the engine 100 rotates by receiving a predetermined injection amount of fuel.
  • the first pump 2A and the second pump 2B are connected to the output shaft of the engine 100 and rotate by receiving the driving force of the engine 100 .
  • Each pump is a hydraulic pump, and discharges hydraulic oil for operating the boom cylinder 17 , the arm cylinder 18 and the bucket cylinder 19 .
  • the boom cylinder 17 expands and contracts so as to raise and lower (move) the boom 14 by being supplied with hydraulic oil discharged by the first pump 2A.
  • the boom cylinder 17 has a cylinder body and a cylinder rod that includes a piston portion that divides the cylinder body into a head chamber and a rod chamber and is relatively movable with respect to the cylinder body.
  • the tip of the cylinder rod is connected to the boom 14 via a link mechanism (not shown).
  • the boom cylinder 17 receives the hydraulic fluid discharged by the first pump 2A into the head chamber via the control valve 7 and discharges the hydraulic fluid from the rod chamber to extend the boom 14 (boom raising operation).
  • the hydraulic oil discharged by the first pump 2A is received in the rod chamber via the control valve 7, and the hydraulic oil is discharged from the head chamber, so that the boom 14 is contracted so as to fall down (boom lowering operation) is possible.
  • the arm cylinder 18 and bucket cylinder 19 also have the same structure as the boom cylinder 17 .
  • the operating device 4 is operated by an operator and receives operations for moving the boom 14, the arm 15 and the bucket 16 of the work device 13. That is, the operating device 4 includes a boom operating device, an arm operating device, and a bucket operating device.
  • the boom controller receives a boom raising operation for causing the boom 14 to perform a boom raising operation and a boom lowering operation for causing the boom 14 to perform a boom lowering operation.
  • the arm manipulator receives an arm pulling operation for causing the arm 15 to perform an arm pulling operation and an arm pushing operation for causing the arm 15 to perform an arm pushing operation.
  • the bucket operator receives a bucket pulling operation for causing the bucket 16 to perform a bucket pulling operation and a bucket pushing operation for causing the bucket 16 to perform a bucket pushing operation.
  • the operation device 4 also receives operations related to the turning motion of the upper rotating body 12 and the traveling motion of the lower traveling body 11 .
  • All or part of the operating device 4 is not limited to being provided inside the hydraulic excavator 10, and may be arranged at a position different from that of the hydraulic excavator 10 when the hydraulic excavator 10 is remotely controlled. .
  • the control valve 7 is arranged to be interposed between the hydraulic pump and the boom cylinder 17, and changes (controls) the flow rate and flow path of hydraulic oil supplied from the hydraulic pump to the boom cylinder 17. ) has a moving spool. Specifically, the control valve 7 mainly supplies the hydraulic oil of the hydraulic pump to the boom cylinder 17 and discharges the hydraulic oil discharged from the boom cylinder 17 mainly when the boom 14 performs the boom raising operation and the boom lowering operation. It operates to discharge to a tank (not shown).
  • the control valve 7 comprises a pilot-operated three-position directional valve having a pair of pilot ports.
  • the control valve 7 is kept in a neutral position when pilot pressure is not input to either of the pair of pilot ports, and blocks communication between the hydraulic pump and the boom cylinder 17 .
  • the control valve 7 When the boom lowering pilot pressure is input to one pilot port, the control valve 7 is switched from the neutral position to the boom lowering position with a stroke corresponding to the magnitude of the boom lowering pilot pressure. As a result, the control valve 7 allows hydraulic oil to be supplied from the hydraulic pump to the rod chamber of the boom cylinder 17 at a flow rate corresponding to the stroke, and the hydraulic oil is discharged from the head chamber of the boom cylinder 17. open the valve to allow As a result, the boom cylinder 17 is driven in the boom lowering direction at a speed corresponding to the boom lowering pilot pressure.
  • the control valve 7 When the boom raising pilot pressure is input to another pilot port, the control valve 7 is switched from the neutral position to the boom raising position with a stroke corresponding to the magnitude of the boom raising pilot pressure. As a result, the control valve 7 allows hydraulic oil to be supplied from the hydraulic pump to the head chamber of the boom cylinder 17 at a flow rate corresponding to the stroke, and the hydraulic oil is discharged from the rod chamber of the boom cylinder 17. open the valve to allow As a result, the boom cylinder 17 is driven in the boom raising direction at a speed corresponding to the boom raising pilot pressure.
  • Control valves 7 that operate in the same manner as described above are arranged between the hydraulic pump and the arm cylinder 18 and the bucket cylinder 19, respectively.
  • a control valve 7 corresponding to the arm cylinder 18 can be switched between an arm pushing position, a neutral position and an arm pulling position.
  • the electromagnetic proportional valve 5 is arranged so that the pilot pressure (secondary pressure) corresponding to the operation input to the operating device 4 is applied to each pilot port of the control valve 7 by the pilot oil supplied from the hydraulic pump 3 for pilot pressure oil. to open.
  • the opening degree of the electromagnetic proportional valve 5 is adjusted by a proportional signal input from the controller 50 .
  • the boom cylinder 17 and the arm are supplied with hydraulic oil from at least one of the first pump 2A and the second pump 2B according to the operation amount, which is the magnitude of the operation received by the operation device 4.
  • the cylinder 18 and the bucket cylinder 19 extend and contract. Hydraulic oil is supplied to the boom cylinder 17, the arm cylinder 18, and the bucket cylinder 19 from at least one of the first pump 2A and the second pump 2B through a control valve 7 that switches the direction of supply oil.
  • the operating device 4 may be composed of an electric lever capable of inputting an operation signal corresponding to an operation amount to the controller 50 , and a signal regarding the secondary pressure of the remote control valve of the operating device 4 is input to the controller 50 .
  • the controller 50 acquires the operation amount of the operation given to the operation device 4 (boom operation device, arm operation device, and bucket operation device) as a boom operation value, an arm operation value, and a bucket operation value, respectively.
  • a command signal is input to the electromagnetic proportional valve 5 corresponding to the operation in accordance with the value.
  • the boom 14 , the arm 15 and the bucket 16 of the working device 13 each operate at a speed corresponding to a command signal (proportional signal) input to the electromagnetic proportional valve 5 .
  • FIG. 3 is a block diagram of the drive control device according to this embodiment.
  • the controller 50 may be mounted in the operator's cab on the upper swing structure 12, for example.
  • the controller 50 also includes a computer, and each function is implemented by the computer executing a program.
  • a computer has a processor that operates according to a program as a main hardware configuration. Any type of processor can be used as long as it can implement functions by executing a program.
  • the controller 50 includes an arithmetic processing unit such as a CPU, a ROM that stores control programs, and a memory such as a RAM that is used as a work area for the arithmetic processing unit.
  • the controller 50 comprises a target grading angle setter 501, a contribution generator 502 (speed ratio generator), a target speed generator 503, a PID controller 504, and a regulator 505, which perform the above calculations
  • a processor is configured to function by executing a control program stored in memory. Arithmetic processing of the controller 50 will be described later.
  • controller 50 is not limited to being provided inside the hydraulic excavator 10, and may be arranged at a position different from the hydraulic excavator 10 when the hydraulic excavator 10 is remotely controlled.
  • control program may be transmitted from a remote server (management device), cloud, or the like to the controller 50 in the hydraulic excavator 10 and executed, or the control program is executed on the server or cloud, and generated Various command signals received may be transmitted to the excavator 10 .
  • the hydraulic excavator 10 further includes an input device 91 , an attitude detector 31 , an IMU (inertial measurement unit) 33 and a display device 34 .
  • the input device 91 is provided in the cab and receives input of information necessary for control executed by the controller 50 . Note that all or part of the input device 91 is not limited to being provided inside the hydraulic excavator 10, and may be arranged at a position different from the hydraulic excavator 10 when the hydraulic excavator 10 is remotely controlled. . The same applies to each of the input devices 91A and 92, which will be described later.
  • the attitude detector 31 detects information about the attitude of the work device 13 . Specifically, the attitude detector 31 acquires relative attitude information of the working device 13 with respect to the upper swing body 12 .
  • the attitude detector 31 includes three sensors attached to the boom cylinder 17, the arm cylinder 18, and the bucket cylinder 19, respectively, and detects the stroke (extension amount or length) of each cylinder.
  • the stroke of each cylinder detected by each sensor is used to calculate the position and attitude of the boom 14, arm 15 and bucket 16, and further used to calculate the position and speed of the combined center of gravity of the work device 13. be done.
  • angle sensors for detecting the rotation angles of the boom 14, the arm 15 and the bucket 16 may be used. good.
  • the IMU 33 detects information about the attitude of the upper swing body 12 with respect to the ground G. That is, the IMU 33 detects the body posture and angle (inclination) of the hydraulic excavator 10 . As an example, the IMU 33 is attached to the upper surface of the cab. In the drive control device of the present disclosure, the IMU 33 may be omitted.
  • the display 34 is a display provided in the cab, and displays various information regarding the operation of the hydraulic excavator 10 and the control of the drive control device to notify the operator. All or part of the indicator 34 is not limited to being provided inside the excavator 10, and may be arranged at a position different from that of the excavator 10 when the excavator 10 is remotely controlled. .
  • the controller 50 sets a target leveling angle, which is a target leveling angle in leveling work performed by the work device 13, calculates a rotating member center-of-gravity velocity, which is the velocity of the center of gravity of the rotating member 20, and A target speed, which is a target speed of the composite center of gravity of the entire working device 13, is calculated using the rotation member center-of-gravity speed and the target ground leveling angle, and the boom is operated so that the actual speed of the composite center of gravity approaches the target speed. 14 operations are controlled.
  • the rotating member 20 is configured by the arm 15 and the bucket 16 , so the center of gravity of the rotating member 20 is the composite center of gravity of the arm 15 and the bucket 16 .
  • the operation of the work device 13 as a whole can be divided into a component related to the operation of the boom 14 and a component related to the operation of the rotating member 20.
  • the target leveling angle The boom 14 and the rotating member 20 may be operated with a balance (ratio) according to the angle. Therefore, in the drive control device according to the present embodiment, the controller 50 first calculates the rotating member center-of-gravity velocity, which is the velocity of the center of gravity of the rotating member 20 .
  • the target speed of the entire working device 13 corresponding to the center-of-gravity speed of the rotating member is determined according to the target leveling angle.
  • the controller 50 can calculate a target speed, which is a target speed of the composite center of gravity of the entire working device 13, using the rotational member center-of-gravity speed and the target leveling angle. Once the target speed of the work device 13 as a whole and the component (rotating member center-of-gravity velocity) related to the motion of the rotating member 20 are determined, the component related to the motion of the boom 14 can be calculated using these. That is, the controller 50 can control the operation of the boom 14 so that the actual speed of the composite center of gravity of the entire working device 13 approaches the target speed. Therefore, with this drive control device, it is possible to operate the work device 13 so that the construction surface is leveled at the target leveling angle in leveling work.
  • the drive control device by adjusting the boom operation based on the speed of the center of gravity, it is possible to reduce overload and reduction in work speed due to contact between the earth and sand on the construction surface and the bucket 16. Even if it is a rough surface, it can be leveled efficiently.
  • FIG. 4 is a side view showing an example of ground leveling work performed by the hydraulic excavator 10 according to this embodiment.
  • FIG. 5 is a block diagram of the drive control device according to this embodiment.
  • FIG. 6 is a flowchart showing arithmetic processing executed by the controller 50 of the drive control device.
  • the target leveling angle setter 501 of the controller 50 sets the target leveling angle ⁇ , which is the target leveling angle in the leveling work performed by the work device 13 (step S1 in FIG. 6).
  • the target leveling angle ⁇ is the angle of the construction plane (target construction plane) with respect to the reference plane.
  • the target leveling angle ⁇ is the angle of the construction surface (target construction surface) with respect to the ground surface G (reference surface) on which the lower traveling body 11 of the hydraulic excavator 10 is arranged.
  • the reference plane is not limited to the ground surface G on which the lower traveling body 11 is arranged, and may be, for example, a horizontal plane.
  • the input device 91 described above has a function as a setting input device 91A that receives an operator's input for setting the target leveling angle ⁇ , as shown in FIG. 7, for example.
  • the setting input device 91A has a switch SW that can be pushed by the operator.
  • the controller 50 changes the angle of the bucket bottom 16H of the bucket 16 with respect to the reference plane (for example, the ground G) (the angle of the bucket) when the switch SW of the setting input device 91A is input, that is, when the switch SW is pushed by the operator.
  • the target leveling angle ⁇ is set based on the angle of the bottom surface). Controller 50 can calculate the angle of bucket 16 based on the attitude information input from attitude detector 31 .
  • the operator arranges the bucket 16 at a desired angle to be set as the target ground leveling angle ⁇ on or near the work surface, and causes the controller 50 to set the target ground leveling angle ⁇ simply by inputting to the setting input device 91A. be able to.
  • the setting input device 91A shown in FIG. 7 has a display for displaying the current diagram or image of the bucket 16 together with the angle information of the bucket 16 (angle information with respect to the reference plane). Therefore, the operator can adjust the angle of the bucket 16 to the target leveling angle ⁇ while watching the display.
  • the switch SW of the setting input device 91A may be arranged on the operation lever of the operation device 4 as shown in FIG. 8, for example.
  • the operator may input the numerical value of the target leveling angle ⁇ , and the controller 50 may set the target leveling angle ⁇ based on the input value.
  • the contribution generator 502 (speed ratio generator) of the controller 50 determines the contribution r that the operation of the rotating member 20 should have to the operation of the entire working device 13 in the leveling work, and the target leveling angle ⁇ is A larger value is determined when the target ground leveling angle ⁇ is smaller than when it is large (step S2).
  • the controller 50 stores in advance a map as shown in FIG. 9, for example.
  • This map is a graph showing the relationship between the target leveling angle ⁇ and the degree of contribution r (ratio r).
  • the map of FIG. 9 can be represented by a relational expression such that the contribution r becomes a larger value when the target leveling angle ⁇ is small than when the target leveling angle ⁇ is large.
  • the map in FIG. 9 can be represented by a relational expression such that the smaller the target ground leveling angle ⁇ , the larger the value of the contribution r.
  • the map of FIG. 9 can be created from the following viewpoints.
  • the velocity component of the rotating member 20 moving in the front-rear direction with respect to the body of the hydraulic excavator 10 (for example, the upper revolving body 12) is As a result, the velocity component of the rotating member 20 moving vertically with respect to the machine body becomes smaller. That is, in this case, since the movement amount of the boom 14 for moving the rotating member 20 up and down is relatively small, the map is set so that the speed component of the rotating member 20 accounts for most of the speed of the working device 13 as a whole.
  • the velocity component of the rotating member 20 moving in the longitudinal direction with respect to the machine body becomes small.
  • the velocity component of the rotating member 20 moving in the vertical direction increases. That is, in this case, since the movement amount of the boom 14 for moving the rotating member 20 up and down is relatively large, the map is set so that the ratio of the speed component of the rotating member 20 to the overall speed of the working device 13 is small. ing.
  • the contribution generator 502 calculates the contribution r based on the map in FIG. 9 and the set target ground level angle ⁇ .
  • the controller 50 determines whether an operation related to leveling work has started (step S3). Specifically, for example, in the leveling work in which the target leveling angle ⁇ is set as shown in FIG. 4, the operator performs the arm pulling operation and the boom raising operation at the same time. Therefore, when an operation signal indicating that the arm pulling operation and the boom raising operation are performed simultaneously is input to the controller 50, the controller 50 determines that the operation related to the leveling work has started (YES in step S3). . Note that the controller 50 may determine that an operation related to leveling work has started by performing either the boom raising operation or the arm pulling operation.
  • the target velocity generator 503 of the controller 50 calculates the coordinates of the synthetic center of gravity of the rotating member 20 and the coordinates of the synthetic center of gravity of the entire working device 13 based on the posture information input from the posture detector 31 . (Step S4).
  • the Y coordinate is taken in the vertical direction and the X coordinate is taken in the horizontal direction
  • the mass of the boom 14 is m1
  • the center of gravity of the boom 14 is g. 1 is (x 1 (t), y 1 (t))
  • the mass of the arm 15 is m2
  • the coordinate of the center of gravity g 2 of the arm 15 is (x 2 (t), y 2 (t))
  • the bucket 16 is defined as m3
  • the coordinates of the center of gravity g3 of the bucket 16 are defined as ( x3 (t), y3 (t)).
  • each coordinate is represented as a variable of time t because it changes as the work device 13 operates.
  • the coordinates (X G23 (t), Y G23 (t)) of the synthetic center of gravity g23 of the rotating member 20 are represented by, for example, the following formula (1), and the coordinates (X g (t), Y g (t)) is represented by the following formula (2).
  • the target speed generator 503 calculates the speed of the combined center of gravity g23 of the rotating member 20 using the following formula (3) (step S5).
  • the target speed generator 503 calculates a contributing speed representing how much the speed of the combined center of gravity g23 of the rotating member 20 should contribute to the speed of the combined center of gravity g of the working device 13 (step S6).
  • the target speed generator 503 can calculate contribution speeds (V XG (t), V YG (t)) using, for example, the following equation (4).
  • This contributing speed (rotating member speed) is obtained by replacing the movement of the rotating member 20 with the speed of the combined center of gravity g of the working device 13 as a whole.
  • the target speed generator 503 calculates the contributing speed V'G(t ) , which is the magnitude of the contributing speeds ( VXG (t), VYG (t)) using the following equation (5). (Step S7).
  • the target speed generator 503 calculates the target speed V r (t) of the combined center of gravity g of the entire working device 13 using the contribution speed V′ G (t), the contribution r , and the following equation (6). Calculate (step S8).
  • the controller 50 feedback-controls the actual velocity V( t ) of the combined center of gravity g of the working device 13 so as to follow the target velocity Vr(t), thereby controlling the boom operator of the operator 4.
  • a boom operation value which is a value corresponding to the amount of operation given to , is adjusted, thereby controlling the operation of the work device 13 so that the bucket 16 of the work device 13 moves along the target leveling angle ⁇ .
  • the controller 50 calculates the actual velocity V(t) of the combined center of gravity g of the working device 13 using, for example, the following equations (7) and (8).
  • a boom correction value u(t), which is a value, is calculated using the following equations (9) and (10) (step S9).
  • Kp, Ki, and Kd are proportional gain, integral gain, and differential gain, respectively.
  • u(t-1) is the operation input (control input value) calculated in the previous calculation process in step S9 or step S10, that is, the previous value.
  • the controller 50 may directly input the calculated boom correction value u(t) as a control input value to the electromagnetic proportional valve 5 corresponding to the boom raising operation (step S10).
  • the final control input value for controlling the operation of the boom 14 is calculated, and the calculated control input value is used to raise the boom.
  • You may input to the electromagnetic proportional valve 5 corresponding to operation (step S10).
  • the controller 50 can determine the boom correction value u. (t) is computed.
  • the boom operation value which is a value corresponding to the amount of operation given to the boom operation device by the operator, is represented by "uh(t)”
  • the boom correction value calculated by the controller 50 in step S9 is represented by "uc( t)”.
  • the adjuster 505 of the controller 50 adjusts the final control input value u(t) from the boom operation value uh(t) and the boom correction value uc(t), and converts the control input value u(t) into Input to the electromagnetic proportional valve 5 corresponding to the boom raising operation.
  • the work device 13 performs the boom raising operation and the arm pulling operation in a balance along the target leveling angle ⁇ , so that the operator can easily perform operations related to the leveling work.
  • the adjuster 505 may adjust the boom correction value u(t), for example, based on Equation (11) below. That is, the adjuster 505 selects the smaller one of the boom operation value uh(t) and the boom correction value uc(t) as shown in equation (11), and converts the selected value to the control input value u(t). ) to the electromagnetic proportional valve 5. Further, the adjuster 505 may be triggered by an operator's operation and input the boom correction value uc(t) from the controller 50 as it is to the electromagnetic proportional valve 5 as the control input value u(t). Further, the adjuster 505 calculates a value obtained by adding the boom operation value uh(t) and the boom correction value uc(t) at a constant ratio, and uses this value as the control input value u(t). can be entered in Equation (11) below. That is, the adjuster 505 selects the smaller one of the boom operation value uh(t) and the boom correction value uc(t) as shown in equation (
  • FIG. 10 is a block diagram of a drive control device according to Modification 1 of the embodiment.
  • the drive control device according to Modification 1 includes a rolling force input device 92 (pressing force input device) that receives an input for adjusting the rolling force, which is the strength of the force applied to the ground G by the rotating member 20 in the leveling work. 92) (see FIG. 3).
  • Controller 50 increases or decreases the contribution based on the input to rolling force input 92 . Specifically, it is as follows.
  • the rolling pressure input device 92 may be, for example, an input device similar to the setting input device 91A described above.
  • the controller 50 further includes a rolling force setter 506 (pressing force setter 506). Rolling force setter 506 increases or decreases the contribution based on operator input received by rolling force input device 92 . Specifically, it is as follows.
  • FIG. 11 is a graph showing an example of a map preset in the drive control device according to Modification 1.
  • the controller 50 stores a plurality of maps corresponding to a plurality of roller pressures (in FIG. 11, roller pressures in three stages of high, medium, and low).
  • the velocity component of the rotating member 20 moving in the longitudinal direction with respect to the body of the hydraulic excavator 10 increases.
  • the velocity component of the rotating member 20 moving vertically with respect to the machine body of the hydraulic excavator 10 decreases.
  • the work device 13 operates with a balance along a slope (an angle smaller than the target leveling angle ⁇ ) that is gentler than the surface determined according to the target leveling angle ⁇ , so that the boom raising operation and the arm pulling operation are performed. It is possible to increase the rolling pressure at the time of breaking.
  • the velocity component of the rotating member 20 moving in the longitudinal direction with respect to the machine body of the hydraulic excavator 10 becomes smaller.
  • the velocity component of the rotating member 20 moving vertically with respect to the body of the hydraulic excavator 10 increases.
  • the work device 13 operates with a balance along a steeper slope (an angle larger than the target leveling angle ⁇ ) than the plane determined according to the target leveling angle ⁇ , so that the boom raising operation and the arm pulling operation are performed. It is possible to reduce the rolling pressure at the time of cutting.
  • the controller 50 selects a map ( For example, select a map for rolling pressure "high”). Then, the contribution generator 502 of the controller 50 calculates the contribution r based on the map selected from the plurality of maps in FIG. 11 and the set target ground level angle ⁇ . Thereby, the contribution can be changed to adjust the rolling force.
  • FIG. 12 is a block diagram of a drive control device according to Modification 2 of the embodiment.
  • 13 is a graph showing an example of a map preset in the drive control device according to Modification 2.
  • FIG. 14 is a side view showing an example of the trajectory of the bucket 16 (tip member) of the working device 13 in Modification 2. As shown in FIG.
  • the controller 50 calculates a boom correction value for moving the boom 14 so that the actual speed of the combined center of gravity g of the entire working device 13 approaches the target speed,
  • the operation of the boom 14 is controlled using the boom operation value and the boom correction value.
  • the controller 50 adjusts the boom operation value and the boom operation value so that the ratio of the boom correction value to the boom operation value is higher when the operation skill of the operator for leveling work is low than when the operation skill of the operator is high.
  • a control input value for controlling the operation of the boom 14 is calculated using the boom correction value.
  • the assist by the controller 50 is moderated so that the leveling work can be performed according to the preference of the expert.
  • the operation skill of the operator is low, by increasing the degree of assistance by the controller 50, even an unskilled operator can improve the work efficiency of the land leveling work. Specifically, it is as follows.
  • the controller 50 further includes an assist rate adjuster 507 .
  • the controller 50 stores skill data in advance, which is data relating to the operation skill of an operator who performs land leveling work.
  • the skill data is used as a reference for the trajectory xi(t) of a predetermined specific portion of the bucket 16 (for example, the tip of the bucket 16) when the operator actually performs leveling work.
  • xbar(t) represents the target plane indicated by the dashed line in FIG. 14, and in FIG. It corresponds to the sign.
  • Such dispersion may be a variance value V, a standard deviation, or another index.
  • the target plane xbar(t) is a plane determined according to the target leveling angle ⁇ . Assuming that the skill data is the variance value V and the number of data during the land leveling work is n, the controller 50 can calculate the variance value V, for example, based on the following equation (12).
  • the controller 50 acquires the data of the trajectory xi(t) based on the known dimensions of the boom 14, the arm 15 and the bucket 16 of the working device 13 and the attitude information input from the attitude detector 31 to the controller 50. can do.
  • the assist rate adjuster 507 of the controller 50 adjusts the operator's operating skill based on the data on the operation skill of the operator, for example, the variance value V (trajectory variance value) of the trajectory xi(t) of the specific part as described above and the map shown in FIG. to set the assist rate K.
  • the assist rate K is set to a value of 0 or more and 1 or less, for example.
  • the controller 50 adds a value obtained by multiplying the boom operation value uh(t) by “1 ⁇ K” and a value obtained by multiplying the boom correction value uc(t) by “K”. By doing so, the final control input value u(t) is calculated.
  • the controller 50 inputs the calculated control input value u(t) to the electromagnetic proportional valve 5 corresponding to the boom raising operation. Thereby, the controller 50 can assist the operator's operation according to the operator's operation skill.
  • the operator's operation skill does not have to be pre-stored in the controller 50 before the leveling work as in the above specific example.
  • the controller 50 may be configured to acquire data regarding the operator's operation skill while performing assist control by the controller 50 according to the present disclosure when the leveling work is performed.
  • the operator's operation skill is not limited to the dispersion data such as the variance value V and the standard deviation as described above, and may be other data that can determine the operation skill.
  • the controller 50 may determine the assist rate K based on the soil quality of the ground that is the target of the leveling work, or may determine the assist rate K based on the work speed of the leveling work. Specifically, the controller 50 adjusts the boom operation value and the boom operation value and the A control input value for controlling the operation of the boom may be calculated using the boom correction value. In addition, the controller 50 is configured to increase the ratio of the boom correction value to the boom operation value when the work speed is low (in the case of an unskilled worker) compared to when the work speed is high (in the case of a skilled worker). A control input value for controlling the operation of the boom may be calculated using the boom operation value and the boom correction value.
  • FIG. 15 is a block diagram of a drive control device according to Modification 3 of the embodiment.
  • the controller 50 calculates the final control input value u(t) without considering the boom operation value of the boom operation by the operator. That is, in Modification 3, the operation of the boom 14 is automatically controlled by the controller 50 . Therefore, the operator can perform ground leveling work only by performing the arm pulling operation and the bucket operation.
  • the controller 50 calculates the final control input value u(t) without considering the operation value of the bucket operation by the operator (bucket operation value).
  • the bucket operation value is a value corresponding to the operation given to the bucket operator of the operator 4 .
  • the operation of the bucket 16 is automatically controlled by the controller 50 .
  • the controller 50 performs feedback control of the angle of the bucket bottom portion 16H of the bucket 16 so as to follow the target leveling angle ⁇ , thereby performing control to maintain the angle of the bucket bottom portion 16H at the target leveling angle ⁇ .
  • the target leveling angle ⁇ of the angle of the bucket bottom 16H is determined. Then, a command signal is input to the electromagnetic proportional valve 5 so as to eliminate the deviation by rotating the bucket 16 . Therefore, the operator can perform the leveling work without manipulating the bucket.
  • the controller 50 determines whether or not the operation related to the leveling work has started (step S3 in FIG. 6).
  • the controller 50 may determine that an operation related to leveling work has started even when the arm pushing operation and the boom lowering operation are performed at the same time.
  • the bucket 16 of the work device 13 performs the boom lowering operation and the arm pushing operation in a balance along the target leveling angle ⁇ , and the operator can easily perform the leveling work.
  • the controller 50 may determine that an operation related to leveling work has started by performing either the boom lowering operation or the arm pushing operation.
  • the controller 50 performs control for correcting the target ground leveling angle ⁇ in accordance with the body posture and angle (inclination) of the hydraulic excavator 10 detected by the IMU 33 .
  • the operator may move the position of the hydraulic excavator 10 (for example, move it back and forth) during leveling work. Since the inclination of the work site is not always uniform, as a result of moving the position of the excavator 10, the angle of the excavator 10 with respect to the reference plane changes, and the set target leveling angle ⁇ changes.
  • Modification 6 by storing the angle of the hydraulic excavator 10 with respect to the reference plane at the time when the target leveling angle ⁇ is set, even if the angle of the hydraulic excavator 10 with respect to the reference plane changes, the change can be considered. to correct the target leveling angle ⁇ .
  • a drive control device capable of operating a work device so that a construction surface is leveled at a target leveling angle in leveling work, and a construction machine equipped with the same.
  • a drive control device for a construction machine comprising a machine body, a working device including a boom supported by the machine body so as to be able to rise and fall, and a rotating member supported by the boom so as to be able to rotate. and a controller for controlling the operation of the work device, wherein the controller sets a target leveling angle, which is a target leveling angle in the leveling work performed by the work device, and rotates at the speed of the center of gravity of the rotating member.
  • a certain rotation member center-of-gravity velocity is calculated, and a target velocity, which is a target velocity of the combined center-of-gravity of the work apparatus as a whole, is computed using the rotation-member center-of-gravity velocity and the target leveling angle, and the actual velocity of the combined center of gravity is computed.
  • the operation of the boom is controlled so that the speed approaches the target speed.
  • the operation of the entire working device can be decomposed into a component related to the operation of the boom and a component related to the operation of the rotating member. It suffices to operate the boom and the rotating member at the same balance (ratio). Therefore, in this drive control device, the controller first calculates the velocity of the center of gravity of the rotating member, which is the velocity of the center of gravity of the rotating member.
  • the target speed of the entire working device corresponding to the center-of-gravity speed of the rotating member (that is, the component related to the motion of the rotating member) is determined according to the target leveling angle. Therefore, the controller can calculate the target velocity, which is the target velocity of the combined center of gravity of the entire working device, using the rotation member center-of-gravity velocity and the target leveling angle.
  • the controller can control the movement of the boom so that the actual velocity of the combined center of gravity of the entire work implement approaches the target velocity. Therefore, in this drive control device, the working device can be operated so that the construction surface is leveled at the target leveling angle in the leveling work.
  • the ratio between the operation of the rotating member and the operation of the boom for leveling the construction surface at the target leveling angle in the leveling work in other words, the operation of the rotating member accounts for the operation of the entire working device.
  • the power contribution has a large value when the target leveling angle is small compared to when the target leveling angle is large. Therefore, the controller determines the degree of contribution that the operation of the rotating member should make to the operation of the entire working device in the leveling work when the target leveling angle is small compared to when the target leveling angle is large. It is preferable to determine a large value and to calculate the target speed using the rotational member center-of-gravity speed and the contribution. As a result, the work device can be appropriately operated so that the construction surface is leveled at the target leveling angle in the leveling work.
  • the drive control device further includes a rolling force input device that receives an input for adjusting a rolling force that is the strength of the force applied to the ground by the rotating member during the leveling work, and the controller receives the rolling force input.
  • the contribution is increased or decreased based on the input to the device.
  • the rolling force increases as the degree of contribution occupied by the motion of the rotating member increases, and the rolling force decreases as the degree of contribution occupied by the motion of the rotating member decreases. Accordingly, the controller can adjust the rolling force by increasing or decreasing the contribution based on the input to the rolling force input.
  • the rotating member includes an arm rotatably supported by the boom and a tip member rotatably supported by the arm, and the controller determines the combined center of gravity of the arm and the tip member. It may be calculated as the center of gravity of the rotating member.
  • the controller calculates the motion of the arm and the motion of the tip member (for example, the bucket) as the combined motion of the center of gravity, thereby suppressing the complexity of arithmetic processing by the controller.
  • the drive control device further includes a setting input device that receives an input for setting the target leveling angle, and the controller controls the angle of the tip member when the input is made to the setting input device.
  • the target grading angle is set.
  • the drive control device further comprises a boom manipulator provided with a boom manipulation for moving the boom, the controller for moving the boom such that the actual speed of the combined center of gravity approaches the target speed. It is preferable to calculate a correction value and control the operation of the boom using the boom operation value corresponding to the operation amount of the boom operation and the boom correction value. In this configuration, the boom correction value can be used to assist the boom operation given to the boom operating device by the operator.
  • the controller adjusts the boom operation value and the boom operation value so that the ratio of the boom correction value to the boom operation value is higher when the operation skill of the operator regarding the ground leveling work is low than when the operation skill of the operator is high. It is more preferable to calculate a control input value for controlling the operation of the boom using the boom correction value.
  • a construction machine provided by the present disclosure includes the above-described drive control device, the machine body, and the work device.
  • the work device can be operated so that the construction surface is leveled at the target leveling angle in leveling work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

建設機械(10)の駆動制御装置は、作業装置(13)の動作を制御するコントローラ(50)を備え、コントローラ(50)は、作業装置(13)が行う整地作業における整地角度の目標である目標整地角度(θ)を設定し、回動部材(20)の重心の速度である回動部材重心速度を演算し、回動部材重心速度と目標整地角度(θ)とを用いて作業装置(13)全体の合成重心(g)の速度の目標である目標速度を演算し、合成重心(g)の実際の速度を目標速度に近づけるようにブーム(14)の動作を制御する。

Description

建設機械の駆動制御装置及びこれを備えた建設機械
 本開示は、建設機械の駆動制御装置及びこれを備えた建設機械に関するものである。
 従来、建設機械として、機体と、前記機体に起伏可能に支持された作業装置とを備える油圧ショベルが知られている。油圧ショベルの作業装置は、機体に起伏可能に支持されたブームと、ブームに回動可能に支持された回動部材と、を含む。回動部材は、アームと、アームに回動可能に支持されたバケットなどの先端部材と、を含む。ブーム、アーム及び先端部材のそれぞれは、伸縮可能な油圧シリンダによって動かされる。このような油圧ショベルは、掘削作業などの種々の作業を行うことが可能である。
 特許文献1は、掘削等の作業において作業効率の向上が可能となる建設機械を開示している。この建設機械の制御装置は、作業装置を構成する複数の部材の合成重心の運動状態量を測定もしくは算出し、当該運動状態量が所定の第1目標値に追従するように、前記作業装置の操作機構に対する指示値をフィードバック制御を用いて決定し、当該指示値に基づき、前記作業装置に対する操作者の操作量を調整する。
 特許文献2は、掘削作業を繰り返し行う際のオペレータの負荷を軽減するための建設機械を開示している。具体的には、特許文献2には、オペレータがアームを押出方向に操作するだけでバケットを直線的に押し出すことができるため、掘削作業時のオペレータの負荷を軽減することが可能となることが記載されている。
 ところで、油圧ショベルなどの建設機械では、作業装置の先端部材(例えばバケット)を用いて地面に対して整地作業が行われる場合がある。当該整地作業は、均し作業、底すらし作業、法面成形作業などを含む。整地作業では、整地角度の目標である目標整地角度は施工現場に応じて様々な角度に設定され、オペレータは、施工面が目標整地角度に整地されるようにブームと回動部材とを含む作業装置を動作させる必要がある。このような整地作業は非熟練者にとって容易ではないが、特許文献1には、整地作業において設定される様々な目標整地角度に応じて具体的にどのように作業装置の動作を制御するのかについては言及されていない。また、特許文献2は、掘削作業時のオペレータの負荷を軽減するための技術であり、整地作業については何ら考慮されていない。
特開2020-33815号公報 特開2021-59855号公報
 本開示の目的は、整地作業において施工面が目標整地角度に整地されるように作業装置を動作させることが可能な駆動制御装置及びこれを備えた建設機械を提供することにある。
 本開示により提供されるのは、機体と、前記機体に起伏可能に支持されたブーム及び前記ブームに回動可能に支持された回動部材を含む作業装置と、を備える建設機械の駆動制御装置であって、前記作業装置の動作を制御するコントローラを備え、前記コントローラは、前記作業装置が行う整地作業における整地角度の目標である目標整地角度を設定し、前記回動部材の重心の速度である回動部材重心速度を演算し、前記回動部材重心速度と前記目標整地角度とを用いて前記作業装置全体の合成重心の速度の目標である目標速度を演算し、前記合成重心の実際の速度を前記目標速度に近づけるように前記ブームの動作を制御する。
本開示の実施形態に係る駆動制御装置を備える建設機械を示す側面図である。 前記実施形態に係る駆動制御装置の油圧回路図である。 前記実施形態に係る駆動制御装置のブロック図である。 前記実施形態に係る建設機械が行う整地作業の一例を示す側面図である。 実施形態に係る駆動制御装置のブロック線図である。 前記実施形態に係る駆動制御装置のコントローラが行う演算処理を示すフローチャートである。 前記実施形態に係る駆動制御装置の入力器の一例を示す平面図である。 前記実施形態に係る駆動制御装置の入力器の他の例を示す斜視図である。 前記実施形態に係る駆動制御装置において予め設定されたマップの一例を示すグラフである。 前記実施形態の変形例1に係る駆動制御装置のブロック線図である。 前記実施形態の変形例1に係る駆動制御装置において予め設定されたマップの一例を示すグラフである。 前記実施形態の変形例2に係る駆動制御装置のブロック線図である。 前記実施形態の変形例2に係る駆動制御装置において予め設定されたマップの一例を示すグラフである。 前記実施形態の変形例2において、作業装置の先端部材の軌跡の一例を示す側面図である。 前記実施形態の変形例3に係る駆動制御装置のブロック線図である。
 以下、本開示の好ましい実施形態を、図面を参照しながら説明する。
 図1は、本開示の一実施形態に係る駆動制御装置(図2)が搭載される油圧ショベル10を示す側面図である。この油圧ショベル10は、建設機械の一例である。油圧ショベル10は、地面G上を走行可能なクローラ式の下部走行体11と、地面に対して垂直な方向に沿う旋回中心軸まわりに旋回可能となるように下部走行体11の上に搭載される上部旋回体12と、この上部旋回体12に起伏可能に搭載される作業装置13(作業アタッチメント13)と、を備える。当該作業装置13は、上部旋回体12に起伏可能に支持されるブーム14と、当該ブーム14に回動可能に支持される回動部材20と、を含む。回動部材20は、ブーム14の先端に回動可能に連結されるアーム15と、当該アーム15の先端に回動可能に連結されるバケット16と、を含む。バケット16は、先端部材の一例である。バケット16は、バケット底部16Hを有する。また、上部旋回体12は、旋回フレームと、当該旋回フレームに支持されるキャブと、を有する。下部走行体11及び上部旋回体12は、機体の一例である。
 油圧ショベル10は、上部旋回体12に対してブーム14を起伏動作させるように作動するブームシリンダ17と、当該ブーム14に対して前記アーム15を回動動作させるように作動するアームシリンダ18と、当該アーム15に対して前記バケット16を回動動作させるように作動するバケットシリンダ19と、を備える。各シリンダは、油圧ポンプから作動油を受け入れて伸縮するように作動する。
 図2は、本実施形態に係る駆動制御装置の油圧回路図である。図2において、図1に示す油圧ショベル10と同じ構成要素には同じ符号を付している。また、図1及び図2において、g1はブーム14の重心を示し、g2 はアーム15の重心を示し、g3 はバケット16の重心を示し、gは作業装置13の合成重心を示す。
 油圧ショベル10は、更に、エンジン100と、油圧式の第1ポンプ2A及び第2ポンプ2Bと、パイロット圧油用油圧ポンプ3と、操作器4と、電磁比例弁5と、コントロールバルブ7と、コントローラ50とを備える。
 エンジン100は、所定の噴射量の燃料を受け入れて回転する。第1ポンプ2A及び第2ポンプ2Bは、エンジン100の出力軸に接続され、エンジン100の駆動力を受けて回転する。各ポンプは、油圧式のポンプであり、ブームシリンダ17、アームシリンダ18及びバケットシリンダ19を作動させるための作動油を吐出する。
 ブームシリンダ17は、第1ポンプ2Aにより吐出される作動油の供給を受けることによりブーム14を起伏させる(動かす)ように伸縮する。本実施形態では、ブームシリンダ17は、シリンダ本体と、シリンダ本体をヘッド室とロッド室とに仕切るピストン部を含みシリンダ本体に対して相対移動可能なシリンダロッドとを有する。シリンダロッドの先端部は不図示のリンク機構を介してブーム14に接続されている。ブームシリンダ17は、第1ポンプ2Aにより吐出される作動油をコントロールバルブ7を介してヘッド室に受け入れロッド室から作動油を排出することでブーム14を起立させるように伸長する(ブーム上げ動作)ことが可能である一方、第1ポンプ2Aにより吐出される作動油をコントロールバルブ7を介してロッド室に受け入れヘッド室から作動油を排出することで、ブーム14を倒伏させるように収縮する(ブーム下げ動作)ことが可能である。なお、アームシリンダ18、バケットシリンダ19も、ブームシリンダ17と同様の構造を有する。
 操作器4は、オペレータによって操作され、作業装置13のブーム14、アーム15及びバケット16を動かすための操作を受ける。すなわち、操作器4は、ブーム操作器、アーム操作器、及びバケット操作器を含む。ブーム操作器は、ブーム14にブーム上げ動作を行わせるためのブーム上げ操作及びブーム14にブーム下げ動作を行わせるためのブーム下げ操作を受ける。アーム操作器は、アーム15にアーム引き動作を行わせるためのアーム引き操作及びアーム15にアーム押し動作を行わせるためのアーム押し操作を受ける。バケット操作器は、バケット16にバケット引き動作を行わせるためのバケット引き操作及びバケット16にバケット押し動作を行わせるためのバケット押し操作を受ける。なお、操作器4は、上部旋回体12の旋回動作、下部走行体11の走行動作に関する操作なども受け付ける。なお、操作器4のすべて又は一部は、油圧ショベル10内に設けられるものに限定されず、油圧ショベル10がリモート制御される場合には、油圧ショベル10とは異なる位置に配置されても良い。
 コントロールバルブ7は、油圧ポンプとブームシリンダ17との間に介在するように配置され、油圧ポンプから当該ブームシリンダ17に供給される作動油の流量及び流路を変化させるように(制御するように)移動するスプールを有する。具体的に、コントロールバルブ7は、主に、ブーム14がブーム上げ動作及びブーム下げ動作を行う際に、ブームシリンダ17に油圧ポンプの作動油を供給するとともにブームシリンダ17から排出された作動油を不図示のタンクに排出するように作動する。コントロールバルブ7は、一対のパイロットポートを有するパイロット操作式の3位置方向切換弁からなる。
 コントロールバルブ7は、一対のパイロットポートの何れにもパイロット圧が入力されないときは中立位置に保たれ、前記油圧ポンプとブームシリンダ17との間を遮断する。
 コントロールバルブ7は、一のパイロットポートにブーム下げパイロット圧が入力されると、そのブーム下げパイロット圧の大きさに対応したストロークで前記中立位置からブーム下げ位置に切り換えられる。これにより、コントロールバルブ7は、前記油圧ポンプからブームシリンダ17のロッド室に前記ストロークに応じた流量で作動油が供給されることを許容するとともに、当該ブームシリンダ17のヘッド室から作動油が排出されることを許容するように、開弁する。これにより、ブームシリンダ17はブーム下げパイロット圧に対応した速度でブーム下げ方向に駆動される。
 コントロールバルブ7は、他のパイロットポートにブーム上げパイロット圧が入力されると、そのブーム上げパイロット圧の大きさに対応したストロークで前記中立位置からブーム上げ位置に切り換えられる。これにより、コントロールバルブ7は、前記油圧ポンプからブームシリンダ17のヘッド室に前記ストロークに応じた流量で作動油が供給されることを許容するとともに、当該ブームシリンダ17のロッド室から作動油が排出されることを許容するように、開弁する。これにより、ブームシリンダ17は前記ブーム上げパイロット圧に対応した速度でブーム上げ方向に駆動される。
 なお、上記と同様の動作を行うコントロールバルブ7が、油圧ポンプと、アームシリンダ18及びバケットシリンダ19との間にそれぞれ配置されている。アームシリンダ18に対応するコントロールバルブ7は、アーム押し位置、中立位置、アーム引き位置に切り換え可能とされている。
 電磁比例弁5は、操作器4に入力される操作に対応するパイロット圧(二次圧)がパイロット圧油用油圧ポンプ3から供給されるパイロット油によってコントロールバルブ7の各パイロットポートに作用するように開弁する。電磁比例弁5の開度は、コントローラ50から入力される比例信号によって調整される。
 図2に示すように、操作器4が受ける操作の大きさである操作量に応じて第1ポンプ2A及び第2ポンプ2Bの少なくとも一方から作動油の供給を受けることで、ブームシリンダ17、アームシリンダ18及びバケットシリンダ19が伸縮する。ブームシリンダ17、アームシリンダ18及びバケットシリンダ19には、供給油の方向を切り替えるコントロールバルブ7を通じて第1ポンプ2A及び第2ポンプ2Bの少なくとも一方から作動油が供給される。操作器4は、操作量に応じた操作信号をコントローラ50に入力することが可能な電気レバーにより構成されていてもよく、操作器4のリモコン弁の2次圧に関する信号がコントローラ50に入力されるように構成されていてもよい。コントローラ50は、操作器4(ブーム操作器、アーム操作器、及びバケット操作器)に与えられる操作の操作量をブーム操作値、アーム操作値、及びバケット操作値としてそれぞれ取得し、取得した各操作値に応じて当該操作に対応する電磁比例弁5に指令信号を入力する。作業装置13のブーム14、アーム15及びバケット16のそれぞれは、電磁比例弁5に入力される指令信号(比例信号)に応じた速度で動作する。
 図3は、本実施形態に係る駆動制御装置のブロック図である。本実施形態において、コントローラ50は、例えば、上部旋回体12上の運転室内に搭載してもよい。また、コントローラ50は、コンピュータを備えており、当該コンピュータがプログラムを実行することによって、各機能が実施される。コンピュータは、プログラムに従って動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。具体的には、例えば、コントローラ50は、CPUなどの演算処理装置と、制御プログラムを記憶するROM及び演算処理装置の作業領域として使用されるRAM等のメモリと、を備える。
 コントローラ50は、目標整地角度設定器501と、寄与度生成器502(速度比率生成器)と、目標速度生成器503と、PIDコントローラ504と、調整器505と、を備え、これらは、前記演算処理装置がメモリに記憶された制御プログラムを実行することにより機能するように構成されている。コントローラ50の演算処理については後述する。
 なお、コントローラ50のすべて又は一部は、油圧ショベル10内に設けられるものに限定されず、油圧ショベル10がリモート制御される場合には、油圧ショベル10とは異なる位置に配置されても良い。また、前記制御プログラムは遠隔地のサーバ(管理装置)やクラウドなどから油圧ショベル10内のコントローラ50に送信され実行されるものでもよいし、前記サーバやクラウド上で前記制御プログラムが実行され、生成された各種の指令信号が油圧ショベル10に送信されるものでもよい。
 油圧ショベル10は、更に、入力器91と、姿勢検出器31と、IMU(慣性計測装置:inertial measurement unit)33と、表示器34とを備える。入力器91は、キャブ内に設けられており、コントローラ50が実行する制御に必要な情報の入力を受け付ける。なお、入力器91のすべて又は一部は、油圧ショベル10内に設けられるものに限定されず、油圧ショベル10がリモート制御される場合には、油圧ショベル10とは異なる位置に配置されても良い。後述する入力器91A,92のそれぞれについても同様である。
 姿勢検出器31は、作業装置13の姿勢に関する情報を検出する。具体的には、姿勢検出器31は、上部旋回体12に対する作業装置13の相対的な姿勢情報を取得する。一例として、姿勢検出器31は、ブームシリンダ17、アームシリンダ18及びバケットシリンダ19にそれぞれ装着される3つのセンサを含み、各シリンダのストローク(伸長量又は長さ)を検出する。各センサによって検出された各シリンダのストロークは、ブーム14、アーム15及びバケット16の位置や姿勢を演算するために使用され、更に、作業装置13の合成重心の位置、速度を算出するために用いられる。なお、ブーム14、アーム15及びバケット16の位置や姿勢を演算するために、シリンダストロークセンサに代えて、ブーム14、アーム15及びバケット16の回動角度をそれぞれ検出するアングルセンサが用いられても良い。
 IMU33は、地面Gに対する上部旋回体12の姿勢に関する情報を検出する。すなわち、IMU33は、油圧ショベル10の機体の姿勢、角度(傾き)を検出する。一例として、IMU33は、キャブの上面部に装着されている。本開示の駆動制御装置では、IMU33は省略されてもよい。
 表示器34は、キャブ内に設けられたディスプレイであり、油圧ショベル10の作動、駆動制御装置の制御に関する各種の情報を表示して、オペレータに報知する。なお、表示器34のすべて又は一部は、油圧ショベル10内に設けられるものに限定されず、油圧ショベル10がリモート制御される場合には、油圧ショベル10とは異なる位置に配置されても良い。
 本実施形態では、コントローラ50は、作業装置13が行う整地作業における整地角度の目標である目標整地角度を設定し、回動部材20の重心の速度である回動部材重心速度を演算し、前記回動部材重心速度と前記目標整地角度とを用いて前記作業装置13全体の合成重心の速度の目標である目標速度を演算し、前記合成重心の実際の速度を前記目標速度に近づけるようにブーム14の動作を制御する。本実施形態では、回動部材20はアーム15とバケット16とにより構成されるので、回動部材20の重心は、アーム15とバケット16の合成重心である。
 作業装置13全体の動作は、ブーム14の動作に係る成分と、回動部材20の動作に係る成分と、に分解することができ、施工面を目標整地角度に整地するためには、目標整地角度に応じたバランス(比率)でブーム14と回動部材20を動作させればよい。そこで、本実施形態に係る駆動制御装置では、コントローラ50は、まず、回動部材20の重心の速度である回動部材重心速度を演算する。この回動部材重心速度(回動部材20の動作に係る成分)に対応する作業装置13全体の速度の目標は目標整地角度に応じて決まる。従って、コントローラ50は、回動部材重心速度と目標整地角度とを用いて作業装置13全体の合成重心の速度の目標である目標速度を演算することができる。作業装置13全体の目標速度と、回動部材20の動作に係る成分(回動部材重心速度)とが決まると、これらを用いてブーム14の動作に係る成分を演算することができる。すなわち、コントローラ50は、作業装置13全体の合成重心の実際の速度を目標速度に近づけるようにブーム14の動作を制御することができる。よって、この駆動制御装置では、整地作業において施工面が目標整地角度に整地されるように作業装置13を動作させることができる。また、本実施形態に係る駆動制御装置では、重心速度に基づきブーム操作を調整することで、施工面の土砂とバケット16との接触に伴う過負荷、作業速度の低下などを低減することができ、荒れた面であったとしても、効率的に整地を行うことができる。
 本実施形態に係る駆動制御装置の概要は上記の通りであるが、以下では、具体例を挙げて駆動制御装置による制御について説明する。なお、本開示の駆動制御装置による制御は、以下の具体例に限定されるものではない。
 図4は、本実施形態に係る油圧ショベル10が行う整地作業の一例を示す側面図である。図5は、本実施形態に係る駆動制御装置のブロック線図である。図6は、駆動制御装置のコントローラ50が実行する演算処理を示すフローチャートである。
 コントローラ50の目標整地角度設定器501は、作業装置13が行う整地作業における整地角度の目標である目標整地角度θを設定する(図6のステップS1)。目標整地角度θは、基準面に対する施工面(目標施工面)の角度である。図4に示す本実施形態では、目標整地角度θは、油圧ショベル10の下部走行体11が配置されている地面G(基準面)に対する施工面(目標施工面)の角度である。ただし、基準面は、下部走行体11が配置されている地面Gに限られず、例えば水平面であってもよい。
 本実施形態では、上述した入力器91は、例えば図7に示すように、目標整地角度θの設定のためのオペレータによる入力を受ける設定入力器91Aとしての機能を有する。設定入力器91Aは、オペレータが押すことが可能なスイッチSWを有する。コントローラ50は、設定入力器91AのスイッチSWに対する入力が行われたとき、すなわちスイッチSWがオペレータにより押されたときの前記基準面(例えば地面G)に対するバケット16のバケット底部16Hの角度(バケットの底面の角度)に基づいて、目標整地角度θを設定する。コントローラ50は、姿勢検出器31から入力される姿勢情報に基づいてバケット16の角度を演算することができる。整地作業において、オペレータは、施工面又はその近傍において、目標整地角度θとして設定したい所望の角度でバケット16を配置し、設定入力器91Aに入力するだけでコントローラ50に目標整地角度θを設定させることができる。これにより、オペレータが目標整地角度θの数値を入力する作業を省略することができる。図7に示す設定入力器91Aは、現在のバケット16の図又は映像をバケット16の角度情報(基準面に対する角度情報)とともに表示するディスプレイを備える。従って、オペレータは、当該ディスプレイを見ながらバケット16の角度を目標整地角度θに調節することができる。なお、設定入力器91AのスイッチSWは、例えば図8に示すように操作器4の操作レバーに配置されていてもよい。また、オペレータが目標整地角度θの数値を入力する作業を行い、コントローラ50は、入力された数値に基づいて目標整地角度θを設定してもよい。
 次に、コントローラ50の寄与度生成器502(速度比率生成器)は、整地作業において作業装置13全体の動作に対して回動部材20の動作が占めるべき寄与度rを、目標整地角度θが大きいときに比べて目標整地角度θが小さいときに大きな値になるように決定する(ステップS2)。具体的には、コントローラ50は、例えば図9に示すようなマップを予め記憶している。このマップは、目標整地角度θと寄与度r(比率r)との関係を示すグラフである。図9のマップは、目標整地角度θが大きいときに比べて目標整地角度θが小さいときに寄与度rが大きな値になるような関係式で表すことができる。
 より具体的には、図9のマップは、目標整地角度θが小さくなるほど寄与度rが大きな値になるような関係式で表すことができる。図9のマップは、以下の観点で作成することができる。
 目標整地角度θが小さい場合に施工面に沿ってバケット16を移動させる際には、油圧ショベル10の機体(例えば上部旋回体12)に対して前後方向に移動する回動部材20の速度成分が大きくなり、前記機体に対して上下方向に移動する回動部材20の速度成分が小さくなる。すなわち、この場合、回動部材20を上下させるブーム14の動作量は比較的小さくなるため、作業装置13全体の速度において回動部材20の速度成分が大部分を占めるようにマップを設定している。
 また、目標整地角度θが大きい場合に施工面に沿ってバケット16を移動させる際には、前記機体に対して前後方向に移動する回動部材20の速度成分が小さくなり、前記機体に対して上下方向に移動する回動部材20の速度成分が大きくなる。すなわち、この場合、回動部材20を上下させるブーム14の動作量は比較的大きくなるため、作業装置13全体の速度において回動部材20の速度成分の占める割合が小さくなるようにマップを設定している。
 寄与度生成器502は、図9のマップと、設定された目標整地角度θと、に基づいて、寄与度rを演算する。
 次に、コントローラ50は、整地作業に係る操作が開始されたか否かを判定する(ステップS3)。具体的には、例えば図4に示すような目標整地角度θが設定された整地作業では、オペレータは、アーム引き操作とブーム上げ操作とを同時に行う。従って、コントローラ50は、アーム引き操作とブーム上げ操作とが同時に行われたことを示す操作信号がコントローラ50に入力されると、整地作業に係る操作が開始されたと判定する(ステップS3においてYES)。なお、コントローラ50は、整地作業に係る操作が開始されたことを、ブーム上げ操作とアーム引き操作のいずれかの操作が行われたことで判定してもよい。
 次に、コントローラ50の目標速度生成器503は、姿勢検出器31から入力される姿勢情報に基づいて、回動部材20の合成重心の座標、及び作業装置13全体の合成重心の座標を演算する(ステップS4)。
 図1に示すように、作業装置13のブーム14の回動基端部を原点0として、鉛直方向にY座標、水平方向にX座標をとり、ブーム14の質量をm1、ブーム14の重心gの座標を(x(t)、y(t))、アーム15の質量をm2、アーム15の重心gの座標を(x(t)、y(t))、バケット16の質量をm3、バケット16の重心gの座標を(x(t)、y(t))と定義する。なお、各座標は、作業装置13が動作することに伴って変化するため、時間tの変数として表記している。この場合、回動部材20の合成重心g23の座標(XG23(t),YG23(t))は、例えば下記の式(1)で表され、作業装置13の合成重心gの座標(X(t)、Y(t))は、下記の式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 次に、目標速度生成器503は、回動部材20の合成重心g23の速度を下記の式(3)を用いて演算する(ステップS5)。
Figure JPOXMLDOC01-appb-M000003
 次に、目標速度生成器503は、作業装置13の合成重心gの速度のうち、回動部材20の合成重心g23の速度がどの程度寄与すべきかを表す寄与速度を演算する(ステップS6)。目標速度生成器503は、例えば下記の式(4)を用いて寄与速度(VXG(t),VYG(t))を演算することができる。この寄与速度(回動部材速度)は、回動部材20の動きを作業装置13全体の合成重心gの速度に置き換えたものである。
Figure JPOXMLDOC01-appb-M000004
 次に、目標速度生成器503は、下記の式(5)を用いて寄与速度(VXG(t),VYG(t))の大きさである寄与速度V'(t)を演算する(ステップS7)。
Figure JPOXMLDOC01-appb-M000005
 次に、目標速度生成器503は、寄与速度V'(t)と寄与度rと下記の式(6)を用いて、作業装置13全体の合成重心gの目標速度V(t)を演算する(ステップS8)。
Figure JPOXMLDOC01-appb-M000006
 次に、コントローラ50は、上記の目標速度V(t)に追従するように作業装置13の合成重心gの実際の速度V(t)をフィードバック制御することで、操作器4のブーム操作器に与えられる操作の操作量に応じた値であるブーム操作値が調整され、これにより、作業装置13のバケット16が目標整地角度θに沿って動くように作業装置13の動作が制御される。コントローラ50は、作業装置13の合成重心gの実際の速度V(t)を例えば下記の式(7)及び式(8)を用いて演算する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 具体的には、コントローラ50のPIDコントローラ504は、目標速度V(t)と作業装置13の合成重心gの実際の速度V(t)との偏差e(t)をゼロに近づけるようなアシスト値であるブーム補正値u(t)を下記の式(9)及び式(10)を用いて演算する(ステップS9)。なお、式(9)において、Kp、Ki、Kdはそれぞれ、比例ゲイン、積分ゲイン、微分ゲインである。式(9)において、u(t-1)は、ステップS9又はステップS10の前回の演算処理において算出された操作入力(制御入力値)、すなわち前回値である。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 コントローラ50は、演算されたブーム補正値u(t)を制御入力値としてそのままブーム上げ操作に対応する電磁比例弁5に入力してもよい(ステップS10)が、例えば以下のようにコントローラ50の調整器505においてブーム操作値と、ブーム補正値u(t)と、を用いて、ブーム14の動作を制御するための最終的な制御入力値を演算し、演算された制御入力値をブーム上げ操作に対応する電磁比例弁5に入力してもよい(ステップS10)。上記のような何れかの制御入力値が電磁比例弁5に入力されることにより、アームの動き(回動部材の動き)とブームの動きを重心という同じ指標の上で表現することができる。
 次に、調整器505が行う演算処理の具体例について説明する。図5を参照して説明したように、目標速度Vr(t)に追従するように作業装置13全体の合成重心gの速度V(t)をフィードバック制御することで、コントローラ50によりブーム補正値u(t)が演算される。ここで、オペレータによりブーム操作器に与えられる操作の操作量に応じた値であるブーム操作値を「uh(t)」で表し、ステップS9においてコントローラ50により演算されたブーム補正値を「uc(t)」で表す。コントローラ50の調整器505は、前記ブーム操作値uh(t)とブーム補正値uc(t)とから、最終的な制御入力値u(t)を調整し、当該制御入力値u(t)をブーム上げ操作に対応する電磁比例弁5に入力する。これにより、作業装置13が目標整地角度θに沿うようなバランスでブーム上げ動作及びアーム引き動作を行うので、オペレータは整地作業に係る操作を容易に行うことができる。
 調整器505は、例えば下記の式(11)に基づいてブーム補正値u(t)を調整してもよい。すなわち、調整器505は、式(11)に示すように、ブーム操作値uh(t)とブーム補正値uc(t)のうちの小さい方を選択し、選択した値を制御入力値u(t)として電磁比例弁5に入力してもよい。また、調整器505は、オペレータの操作をトリガーにして、コントローラ50によるブーム補正値uc(t)をそのまま電磁比例弁5に制御入力値u(t)として入力してもよい。また、調整器505は、ブーム操作値uh(t)とブーム補正値uc(t)とを一定比率で足し合わせた値を演算し、当該値を制御入力値u(t)として電磁比例弁5に入力してもよい。
Figure JPOXMLDOC01-appb-M000011
 以上、本開示の実施形態に係る駆動制御装置及びこれを備えた油圧ショベル10について説明したが、本開示は、上記実施形態に限定されるものではなく、例えば以下のような変形例を含む。
 [変形例1]
 図10は、実施形態の変形例1に係る駆動制御装置のブロック線図である。この変形例1に係る駆動制御装置は、前記整地作業において回動部材20が地面Gに加える力の強さである転圧力を調節するための入力を受ける転圧力入力器92(押付け力入力器92)をさらに備える(図3参照)。コントローラ50は、転圧力入力器92に対する前記入力に基づいて前記寄与度を増加又は減少させる。具体的には次の通りである。
 転圧力入力器92は、例えば、上述した設定入力器91Aと同様の入力装置であってもよい。コントローラ50は、転圧力設定器506(押付け力設定器506)をさらに備える。転圧力設定器506は、転圧力入力器92が受けたオペレータによる入力に基づいて、前記寄与度を増加又は減少させる。具体的には次の通りである。
 図11は、変形例1に係る駆動制御装置において予め設定されたマップの一例を示すグラフである。図11に示す具体例では、コントローラ50は、複数の転圧力(図11では、高、中、低の3段階の転圧力)に応じた複数のマップを記憶している。
 この変形例1では、「転圧力:中」のマップに比べると「転圧力:高」のマップでは、作業装置13全体の動作のうち回動部材20の動作が占める寄与度を増加させている。また、「転圧力:中」のマップに比べると「転圧力:低」のマップでは、作業装置13全体の動作のうち回動部材20の動作が占める寄与度を減少させている。
 具体的に、作業装置13全体の動作に対して回動部材20の動作が占める寄与度を増加させると、油圧ショベル10の前記機体に対して前後方向に移動する回動部材20の速度成分が大きくなり、油圧ショベル10の前記機体に対して上下方向に移動する回動部材20の速度成分が小さくなる。これにより、目標整地角度θに応じて決まる面よりも緩やかな傾斜(目標整地角度θよりも小さい角度)に沿うようなバランスで作業装置13が作動するため、ブーム上げ動作及びアーム引き動作が行われる際の転圧力を高めることができる。
 また、作業装置13全体の動作に対して回動部材20の動作が占める寄与度を減少させると、油圧ショベル10の前記機体に対して前後方向に移動する回動部材20の速度成分が小さくなり、油圧ショベル10の前記機体に対して上下方向に移動する回動部材20の速度成分が大きくなる。これにより、目標整地角度θに応じて決まる面よりも急な傾斜(目標整地角度θよりも大きい角度)に沿うようなバランスで作業装置13が作動するため、ブーム上げ動作及びアーム引き動作が行われる際の転圧力を低くすることができる。
 コントローラ50は、例えばオペレータが転圧力入力器92に対して転圧力「高」、「中」、「低」のいずれかに対応する入力を行うと、複数のマップから当該入力に対応するマップ(例えば転圧力「高」のマップ)を選択する。そして、コントローラ50の寄与度生成器502は、図11の複数のマップのうち選択されたマップと、設定された目標整地角度θと、に基づいて、寄与度rを演算する。これにより、前記寄与度を変更し、転圧力を調節することができる。
 [変形例2]
 図12は、前記実施形態の変形例2に係る駆動制御装置のブロック線図である。図13は、変形例2に係る駆動制御装置において予め設定されたマップの一例を示すグラフである。図14は、変形例2において、作業装置13のバケット16(先端部材)の軌跡の一例を示す側面図である。
 この変形例2では、コントローラ50は、作業装置13全体の合成重心gの実際の速度を前記目標速度に近づけるようにブーム14を動かすためのブーム補正値を演算し、ブーム操作の操作量に応じたブーム操作値と前記ブーム補正値とを用いてブーム14の動作を制御する。この際に、コントローラ50は、整地作業に関するオペレータの操作技能が高い場合に比べて操作技能が低い場合に前記ブーム操作値に対する前記ブーム補正値の比率が高くなるように、前記ブーム操作値と前記ブーム補正値とを用いてブーム14の動作を制御するための制御入力値を演算する。この変形例2では、オペレータの操作技能が高い場合には、コントローラ50によるアシストを控えめにして熟練者の好みに応じた整地作業が行われることが可能になる。一方、オペレータの操作技能が低い場合には、コントローラ50によるアシストの度合いを高めることで非熟練者であっても整地作業の作業効率を高めることができる。具体的には以下の通りである。
 変形例2では、コントローラ50は、アシスト率調整器507をさらに備える。コントローラ50は、例えば図14に示すように、整地作業を行うオペレータの操作技能に関するデータである技能データを予め記憶している。技能データは、例えば、図14に示すように、オペレータが整地作業を実際に行ったときに、バケット16における予め設定された特定部位(例えばバケット16の先端)の軌跡xi(t)の基準としての目標面xbar(t)に対する散らばり具合であってもよい。ここで、「xbar(t)」は、図14において破線で示される目標面を表すものであり、図14において「x(t)」の文字のうち「x」の上に横線が付された符号に対応するものである。このような散らばり具合は、分散値Vであってもよく、標準偏差であってもよく、他の指標であってもよい。目標面xbar(t)は、目標整地角度θに応じて決まる面である。技能データが分散値Vであり、整地作業中のデータ数をnとすると、コントローラ50は、例えば下記の式(12)に基づいて分散値Vを演算することができる。
Figure JPOXMLDOC01-appb-M000012
 コントローラ50は、作業装置13のブーム14、アーム15及びバケット16の既知の寸法と、姿勢検出器31からコントローラ50に入力される姿勢情報と、に基づいて、軌跡xi(t)のデータを取得することができる。
 コントローラ50のアシスト率調整器507は、オペレータの操作技能に関するデータ、例えば上記のような特定部位の軌跡xi(t)の分散値V(軌跡分散値)と、図13に示すマップと、に基づいて、アシスト率Kを設定する。この変形例2では、アシスト率Kは、例えば、0以上1以下の値に設定される。
 そして、コントローラ50は、前記ブーム操作値uh(t)に「1-K」をかけて得られる値と、前記ブーム補正値uc(t)に「K」をかけて得られる値と、を足し算することにより、最終的な制御入力値u(t)を演算する。コントローラ50は、演算した制御入力値u(t)を、ブーム上げ操作に対応する電磁比例弁5に入力する。これにより、コントローラ50は、オペレータの操作技能に応じてオペレータの操作をアシストすることができる。
 なお、オペレータの操作技能は、上記の具体例のように整地作業の前にコントローラ50に予め記憶されたものでなくてもよい。すなわち、コントローラ50は、整地作業が行われるときに本開示に係るコントローラ50によるアシストの制御を行いながら、オペレータの操作技能に関するデータを取得するように構成されていてもよい。また、オペレータの操作技能は、上記のような分散値V、標準偏差などの散らばり具合のデータに限られず、操作技能を判定することが可能な他のデータであってもよい。
 なお、コントローラ50は、整地作業の対象となる地盤の土質に基づいてアシスト率Kを決定してもよく、整地作業の作業速度に基づいてアシスト率Kを決定してもよい。具体的には、コントローラ50は、地盤の土質が整地しやすい場合に比べて土質が整地しにくい場合に前記ブーム操作値に対する前記ブーム補正値の比率が高くなるように、前記ブーム操作値と前記ブーム補正値とを用いて前記ブームの動作を制御するための制御入力値を演算してもよい。また、コントローラ50は、作業速度が高い場合(熟練者の場合)に比べて作業速度が低い場合(非熟練者の場合)に前記ブーム操作値に対する前記ブーム補正値の比率が高くなるように、前記ブーム操作値と前記ブーム補正値とを用いて前記ブームの動作を制御するための制御入力値を演算してもよい。
 図15は、前記実施形態の変形例3に係る駆動制御装置のブロック線図である。図15に示すように、変形例3では、コントローラ50は、最終的な制御入力値u(t)を、オペレータによるブーム操作のブーム操作値を考慮することなく演算する。すなわち、この変形例3では、ブーム14の動作は、コントローラ50により自動的に制御される。したがって、オペレータは、アーム引き操作およびバケット操作のみを行うことで整地作業を行うことができる。
 次に、前記実施形態の変形例4について説明する。この変形例4では、コントローラ50は、最終的な制御入力値u(t)を、オペレータによるバケット操作の操作値(バケット操作値)を考慮することなく演算する。バケット操作値は、操作器4のバケット操作器に与えられる操作に応じた値である。この変形例4では、バケット16の動作は、コントローラ50により自動的に制御される。コントローラ50は、上記の目標整地角度θに追従するようにバケット16のバケット底部16Hの角度をフィードバック制御することで、バケット底部16Hの角度を目標整地角度θに維持する制御を行う。具体的には、例えば姿勢検出器31により検出されるブーム14、アーム15及びバケット16の回動角度を用いてバケット底部16Hの角度を監視することで、バケット底部16Hの角度の目標整地角度θからのずれ量を演算し、バケット16を回動させることでこのずれ量が解消するように指令信号を電磁比例弁5に入力する。したがって、オペレータは、バケット操作をすることなく整地作業を行うことができる。
 次に、前記実施形態の変形例5について説明する。上述した実施形態では、アーム引き操作とブーム上げ操作とが同時に行われた場合に、コントローラ50は、整地作業に係る操作が開始されたか否かを判定していた(図6のステップS3)が、これに限られず、変形例5では、コントローラ50は、アーム押し操作とブーム下げ操作とが同時に行われた場合においても整地作業に係る操作が開始されたと判定してよい。この場合、作業装置13のバケット16が目標整地角度θに沿うようなバランスでブーム下げ動作及びアーム押し動作を行うことになり、オペレータは整地作業を容易に行うことができる。なお、この変形例5において、コントローラ50は、整地作業に係る操作が開始されたことを、ブーム下げ操作とアーム押し操作のいずれかの操作が行われたことで判定してもよい。
 次に、前記実施形態の変形例6について説明する。この変形例6では、コントローラ50は、IMU33により検出される油圧ショベル10の機体の姿勢、角度(傾き)に応じて、目標整地角度θを補正する制御を行う。具体的に、例えば、オペレータは整地作業中に油圧ショベル10の位置を移動させる(例えば、前後させる)場合がある。作業現場の傾斜は一様とは限らないので、油圧ショベル10の位置を移動させた結果、油圧ショベル10の基準面に対する角度が変化し、設定していた目標整地角度θが変化してしまう場合がある。そこで、変形例6では目標整地角度θを設定した時点での油圧ショベル10の基準面に対する角度を記憶しておくことで、油圧ショベル10の基準面に対する角度が変化した場合でも、その変化を考慮して目標整地角度θを補正する。
 以上説明したように、本開示によれば、整地作業において施工面が目標整地角度に整地されるように作業装置を動作させることが可能な駆動制御装置及びこれを備えた建設機械が提供される。
 本開示により提供されるのは、機体と、前記機体に起伏可能に支持されたブーム及び前記ブームに回動可能に支持された回動部材を含む作業装置と、を備える建設機械の駆動制御装置であって、前記作業装置の動作を制御するコントローラを備え、前記コントローラは、前記作業装置が行う整地作業における整地角度の目標である目標整地角度を設定し、前記回動部材の重心の速度である回動部材重心速度を演算し、前記回動部材重心速度と前記目標整地角度とを用いて前記作業装置全体の合成重心の速度の目標である目標速度を演算し、前記合成重心の実際の速度を前記目標速度に近づけるように前記ブームの動作を制御する。
 作業装置全体の動作は、ブームの動作に係る成分と、回動部材の動作に係る成分と、に分解することができ、施工面を目標整地角度に整地するためには、目標整地角度に応じたバランス(比率)でブームと回動部材を動作させればよい。そこで、この駆動制御装置では、コントローラは、まず、回動部材の重心の速度である回動部材重心速度を演算する。この回動部材重心速度(すなわち回動部材の動作に係る成分)に対応する作業装置全体の速度の目標は目標整地角度に応じて決まる。従って、コントローラは、回動部材重心速度と目標整地角度とを用いて作業装置全体の合成重心の速度の目標である目標速度を演算することができる。作業装置全体の合成重心の目標速度と、回動部材の動作に係る成分(すなわち回動部材重心速度)とが決まると、これらを用いてブームの動作に係る成分を演算することができる。すなわち、コントローラは、作業装置全体の合成重心の実際の速度を目標速度に近づけるようにブームの動作を制御することができる。よって、この駆動制御装置では、整地作業において施工面が目標整地角度に整地されるように作業装置を動作させることができる。
 具体的には、整地作業において施工面を目標整地角度に整地するための回動部材の動作とブームの動作との比率、言い換えると、作業装置全体の動作に対して回動部材の動作が占めるべき寄与度は、目標整地角度が大きいときに比べて目標整地角度が小さいときに大きな値になる。従って、前記コントローラは、前記整地作業において前記作業装置全体の動作に対して前記回動部材の動作が占めるべき寄与度を、前記目標整地角度が大きいときに比べて前記目標整地角度が小さいときに大きな値になるように決定し、前記回動部材重心速度と前記寄与度とを用いて前記目標速度を演算することが好ましい。これにより、整地作業において施工面が目標整地角度に整地されるように作業装置を適切に動作させることができる。
 前記駆動制御装置は、前記整地作業において前記回動部材が地面に加える力の強さである転圧力を調節するための入力を受ける転圧力入力器をさらに備え、前記コントローラは、前記転圧力入力器に対する前記入力に基づいて前記寄与度を増加又は減少させることが好ましい。この構成では、回動部材の動作が占める寄与度が増加すると転圧力が大きくなり、回動部材の動作が占める寄与度が減少すると転圧力が小さくなる。従って、コントローラは、転圧力入力器に対する入力に基づいて前記寄与度を増加又は減少させることで、転圧力を調節することができる。
 前記回動部材は、前記ブームに回動可能に支持されたアームと、前記アームに回動可能に支持された先端部材と、を含み、前記コントローラは、前記アームと前記先端部材の合成重心を前記回動部材の重心として演算してもよい。この構成では、コントローラは、アームの動作と先端部材(例えばバケット)の動作をこれらの合成重心の動作として演算するので、コントローラによる演算処理が複雑になるのを抑制できる。
 前記駆動制御装置は、前記目標整地角度の設定のための入力を受ける設定入力器をさらに備え、前記コントローラは、前記設定入力器に前記入力が行われたときの前記先端部材の角度に基づいて前記目標整地角度を設定することが好ましい。この構成では、整地作業において、オペレータは、先端部材を施工面に所望の角度で配置して設定入力器に入力するだけでコントローラに目標整地角度を設定させることができるので、オペレータが目標整地角度の数値を入力する作業を省略することができる。
 前記駆動制御装置は、前記ブームを動かすためのブーム操作が与えられるブーム操作器をさらに備え、前記コントローラは、前記合成重心の実際の速度を前記目標速度に近づけるように前記ブームを動かすためのブーム補正値を演算し、前記ブーム操作の操作量に応じたブーム操作値と前記ブーム補正値とを用いて前記ブームの動作を制御することが好ましい。この構成では、オペレータがブーム操作器に与えるブーム操作を、ブーム補正値によりアシストすることができる。
 この場合、前記コントローラは、前記整地作業に関するオペレータの操作技能が高い場合に比べて前記操作技能が低い場合に前記ブーム操作値に対する前記ブーム補正値の比率が高くなるように、前記ブーム操作値と前記ブーム補正値とを用いて前記ブームの動作を制御するための制御入力値を演算することがより好ましい。この構成では、オペレータの操作技能が高い場合には、コントローラによるアシストを控えめにして熟練者の好みに応じた整地作業が行われることが可能になる。一方、オペレータの操作技能が低い場合には、コントローラによるアシストの度合いを高めることで非熟練者であっても整地作業の作業効率を高めることができる。
 本開示により提供される建設機械は、上述した駆動制御装置と、前記機体と、前記作業装置と、を備えている。この建設機械では、整地作業において施工面が目標整地角度に整地されるように作業装置を動作させることができる。

Claims (8)

  1.  機体と、前記機体に起伏可能に支持されたブーム及び前記ブームに回動可能に支持された回動部材を含む作業装置と、を備える建設機械の駆動制御装置であって、
     前記作業装置の動作を制御するコントローラを備え、
     前記コントローラは、
     前記作業装置が行う整地作業における整地角度の目標である目標整地角度を設定し、
     前記回動部材の重心の速度である回動部材重心速度を演算し、
     前記回動部材重心速度と前記目標整地角度とを用いて前記作業装置全体の合成重心の速度の目標である目標速度を演算し、
     前記合成重心の実際の速度を前記目標速度に近づけるように前記ブームの動作を制御する、駆動制御装置。
  2.  前記コントローラは、前記整地作業において前記作業装置全体の動作に対して前記回動部材の動作が占めるべき寄与度を、前記目標整地角度が大きいときに比べて前記目標整地角度が小さいときに大きな値になるように決定し、前記回動部材重心速度と前記寄与度とを用いて前記目標速度を演算する、請求項1に記載の駆動制御装置。
  3.  前記整地作業において前記回動部材が地面に加える力の強さである転圧力を調節するための入力を受ける転圧力入力器をさらに備え、
     前記コントローラは、前記転圧力入力器に対する前記入力に基づいて前記寄与度を増加又は減少させる、請求項2に記載の駆動制御装置。
  4.  前記回動部材は、前記ブームに回動可能に支持されたアームと、前記アームに回動可能に支持された先端部材と、を含み、
     前記コントローラは、前記アームと前記先端部材の合成重心を前記回動部材の重心として演算する、請求項1~3の何れか1項に記載の駆動制御装置。
  5.  前記目標整地角度の設定のための入力を受ける設定入力器をさらに備え、
     前記コントローラは、前記設定入力器に前記入力が行われたときの前記先端部材の角度に基づいて前記目標整地角度を設定する、請求項4に記載の駆動制御装置。
  6.  前記ブームを動かすためのブーム操作が与えられるブーム操作器をさらに備え、
     前記コントローラは、前記合成重心の実際の速度を前記目標速度に近づけるように前記ブームを動かすためのブーム補正値を演算し、前記ブーム操作の操作量に応じたブーム操作値と前記ブーム補正値とを用いて前記ブームの動作を制御する、請求項1~5の何れか1項に記載の駆動制御装置。
  7.  前記コントローラは、前記整地作業に関するオペレータの操作技能が高い場合に比べて前記操作技能が低い場合に前記ブーム操作値に対する前記ブーム補正値の比率が高くなるように、前記ブーム操作値と前記ブーム補正値とを用いて前記ブームの動作を制御するための制御入力値を演算する、請求項6に記載の駆動制御装置。
  8.  請求項1~7の何れか1項に記載の駆動制御装置と、前記機体と、前記作業装置と、を備えた建設機械。
PCT/JP2023/001565 2022-01-28 2023-01-19 建設機械の駆動制御装置及びこれを備えた建設機械 WO2023145609A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011751 2022-01-28
JP2022011751A JP2023110359A (ja) 2022-01-28 2022-01-28 建設機械の駆動制御装置及びこれを備えた建設機械

Publications (1)

Publication Number Publication Date
WO2023145609A1 true WO2023145609A1 (ja) 2023-08-03

Family

ID=87471810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001565 WO2023145609A1 (ja) 2022-01-28 2023-01-19 建設機械の駆動制御装置及びこれを備えた建設機械

Country Status (2)

Country Link
JP (1) JP2023110359A (ja)
WO (1) WO2023145609A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033814A (ja) * 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械
JP2020033815A (ja) * 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械
JP2021055289A (ja) * 2019-09-27 2021-04-08 コベルコ建機株式会社 建設機械の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033814A (ja) * 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械
JP2020033815A (ja) * 2018-08-31 2020-03-05 コベルコ建機株式会社 建設機械
JP2021055289A (ja) * 2019-09-27 2021-04-08 コベルコ建機株式会社 建設機械の制御装置

Also Published As

Publication number Publication date
JP2023110359A (ja) 2023-08-09

Similar Documents

Publication Publication Date Title
JP5947477B1 (ja) 作業機械の制御装置、作業機械、及び作業機械の制御方法
US6498973B2 (en) Flow control for electro-hydraulic systems
JP6573319B2 (ja) 建設機械におけるアクチュエータ駆動制御装置
JP6209276B2 (ja) 作業機械の制御装置、作業機械及び作業機械の制御方法
JP6752186B2 (ja) 作業機械
US11261578B2 (en) Work machine
WO2020049821A1 (ja) 作業機械
CN106460362A (zh) 工程机械的控制系统、工程机械、以及工程机械的控制方法
WO2017094463A1 (ja) 作業機械の操作支援装置
JP7146530B2 (ja) 建設機械
WO2020066225A1 (ja) 建設機械
KR20190032287A (ko) 작업 기계의 제어 시스템 및 작업 기계의 제어 방법
US20210054595A1 (en) Shovel
CN111587306B (zh) 回转式液压工程机械
WO2023145609A1 (ja) 建設機械の駆動制御装置及びこれを備えた建設機械
JP7395521B2 (ja) ショベル、ショベルのシステム
JP6707053B2 (ja) 作業機械
WO2023068154A1 (ja) 作業機械制御システム、作業機械、管理装置及び作業機械の制御方法
WO2023100689A1 (ja) 建設機械の駆動装置、これを備えた建設機械及び建設機械システム
US20230349398A1 (en) Systems and methods for dynamic control of work vehicles
WO2023276421A1 (ja) 建設機械
WO2023140092A1 (ja) 建設機械の制御装置およびこれを備えた建設機械
WO2023219015A1 (ja) 旋回式作業機械の駆動制御装置及びこれを備えた旋回式作業機械
JP7488962B2 (ja) 作業機械
WO2023100620A1 (ja) 作業機械のためのシステム、方法、及び作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746822

Country of ref document: EP

Kind code of ref document: A1