WO2023145582A1 - 自動分析装置及び自動分析方法 - Google Patents

自動分析装置及び自動分析方法 Download PDF

Info

Publication number
WO2023145582A1
WO2023145582A1 PCT/JP2023/001411 JP2023001411W WO2023145582A1 WO 2023145582 A1 WO2023145582 A1 WO 2023145582A1 JP 2023001411 W JP2023001411 W JP 2023001411W WO 2023145582 A1 WO2023145582 A1 WO 2023145582A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
analysis step
automatic analyzer
reagent
time
Prior art date
Application number
PCT/JP2023/001411
Other languages
English (en)
French (fr)
Inventor
樹 高倉
晃啓 安居
和広 野田
博也 梅木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023145582A1 publication Critical patent/WO2023145582A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer and an automatic analysis method.
  • Patent Document 1 As an example of an automatic analyzer that reacts an analytical reagent that specifically reacts with a component to be measured in a specimen such as blood and the specimen, and measures the resulting reaction product mainly by a spectroscopic method, see Patent Document 1. aims to simplify the configuration of the device by performing both biochemical tests and immunoassays on a single unit, and by using a part of the mechanism used for analysis in common for the biochemical analysis and immunoassay processes. is described.
  • Patent Document 1 the analysis steps of biochemical tests and immunological tests that require pretreatment are performed on an intermediate disk, and a pretreatment dispensing mechanism and an immunoanalysis reagent dispensing mechanism are shared to achieve an apparatus configuration. is simplified.
  • the present invention provides an automatic analysis device and an automatic analysis method that can efficiently perform inspections for multiple items while simplifying the device configuration, and can prevent deterioration in analysis performance.
  • the present invention includes a plurality of means for solving the above problems.
  • One example is an automatic analyzer capable of parallelly performing a first analysis step and a second analysis step with different items. , one or more common analysis units commonly used in the first analysis step and the second analysis step, and a control section for controlling the operation of the common analysis unit,
  • the steps can be repeatedly performed every first cycle time, and the second analysis step can be repeatedly performed every second cycle time, the second cycle time being a positive integer multiple of the first cycle time.
  • the first cycle time includes a first time period and a second time period that does not overlap with the first time period, wherein the common cycle time for operations specific to the first analysis step in the first time period. It is characterized by having a first time chart configured to operate an analysis unit and to operate the common analysis unit with respect to an operation specific to the second analysis process in the second time period.
  • FIG. 1 is a diagram showing a schematic configuration of an automatic analyzer of Example 1.
  • FIG. 4 is a diagram showing the analysis cycle of the first analysis step in the automatic analyzer of Example 1.
  • FIG. 4 is a diagram showing an analysis cycle of a second analysis step in the automatic analyzer of Example 1.
  • FIG. 4 is a diagram showing a first time chart in the automatic analyzer of Example 1.
  • FIG. 5 is a diagram showing a time chart for executing a first analysis step and a second analysis step in the first time chart in the automatic analyzer of Embodiment 1;
  • FIG. 5 is a diagram showing a time chart for executing a first analysis step and a second analysis step in the first time chart in the automatic analyzer of Embodiment 1
  • FIG. 10 is a diagram showing a time
  • FIG. 10 is a diagram showing a time chart for executing a first analysis step and a second analysis step in the first time chart in the automatic analyzer of Example 2;
  • FIG. 10 is a diagram showing a time chart in the case of executing only the first analysis step among the first time charts in the automatic analyzer of Example 2;
  • Example 1 of the automatic analysis device and the automatic analysis method will be described with reference to FIGS. 1 to 7.
  • FIG. 1 Example 1 of the automatic analysis device and the automatic analysis method will be described with reference to FIGS. 1 to 7.
  • FIG. 1 is a diagram showing an example of a configuration diagram of an automatic analyzer.
  • the automatic analyzer 1 is a device for analyzing a specimen using reagents according to predetermined analysis items, and is composed of an analysis unit 2 and a control unit 3.
  • the analysis unit 2 includes a sample holding unit 12, a sample dispensing mechanism 50, a reagent holding unit 23, a first reagent dispensing mechanism 51, a second reagent dispensing mechanism 52, a first incubator 41, a reagent stirring mechanism 53, a first transport Equipped with a mechanism 34, a second incubator 42, a second stirring mechanism 44, a reaction vessel tray 33, a second transport mechanism 35, a second measuring section 62, a first stirring mechanism 43, a first measuring section 61, a cleaning mechanism 45, and the like.
  • the specimen holding unit 12 has a structure capable of holding a plurality of annular specimen containers 11 containing specimens to be analyzed in the first analysis process and the second analysis process. During sample dispensing, the sample holder 12 rotates and transports the sample container 11 to the access position of the sample dispensing mechanism 50 .
  • the sample holding unit 12 has a sample aspirating position 13, and the sample holding unit 12 rotates to transport the sample container 11 to the sample aspirating position 13 immediately before the sample dispensing mechanism 50 aspirates the sample to be analyzed. do.
  • the specimen holding section 12 may be configured so that two specimen holding sections 12 can be physically exchanged for use.
  • a configuration in which two sample holding units 12 can be alternately replaced, or a configuration in which a sample can be added/exchanged midway through a small window provided in the sample holding unit 12 may be employed.
  • the device may be transferred using a transfer mechanism or the like.
  • the present invention is not limited to the disk system in which sample containers are transported by rotating motion as shown, but may be a rack system in which a plurality of sample containers are collectively transported.
  • a sample information acquiring unit 14 for acquiring (reading) sample information attached to the sample container 11 is provided near the sample holding unit 12, and the sample information is acquired immediately before the sample is dispensed, thereby reading the sample container. may be collated as to whether or not is the object of analysis.
  • the specimen pipetting mechanism 50 has a rotary driving mechanism and a vertical driving mechanism so that the respective positions can be accessed. It consists of a mechanism and a dispensing probe.
  • the sample is dispensed at the sample aspirating position 13 and discharged into the first reaction container 31 and the second reaction container 32 by moving between the sample aspirating position and the sample discharging position by the rotation driving mechanism and the vertical driving mechanism.
  • each position may be accessed by a rotary motion, or may be accessed by a linear motion.
  • the reagent holding part 23 contains the first reagent container 21 containing the reagent used in the first analysis step, which is reacted in the first reaction container 31, and the second reaction container 32, which is used in the second analysis step. It is a mechanism for holding a plurality of second reagent containers 22 containing reagents, and has a reagent disk and a reagent container holding portion (both are omitted for convenience of illustration).
  • the reagent holding part 23 has a cooling function.
  • the reagent-container holders are arranged in a double loop on the reagent disk, and are configured to hold a plurality of first reagent containers 21 and second reagent containers 22 .
  • the reagent disk has a rotation drive mechanism, and rotates to move each of the first reagent container 21 and the second reagent container 22 to predetermined positions on the circumference.
  • the reagent holding unit 23 when the reagent holding unit 23 is of a disc type, the reagent holding unit 23 rotates before reagent dispensing, and an appropriate reagent container is transported to the first reagent aspirating position 24 or the second reagent aspirating position 25.
  • the first reagent dispensing mechanism 51 and the second reagent dispensing mechanism 52 can aspirate reagents necessary for analysis.
  • Each of the first reagent container 21 and the second reagent container 22 may be composed of a plurality of different reagent bottles. When the shapes of the first reagent container 21 and the second reagent container 22 are different, dedicated positions for holding the respective reagent containers may be provided, or the shape may be such that one position can hold both reagent containers. may
  • the first reagent dispensing mechanism 51 is for biochemical analysis and dispenses the reagent from the first reagent container 21 into the first reaction container 31, and the first reagent dispensing mechanism 51 is for immunological analysis.
  • a second reagent dispensing mechanism 52 for dispensing the reagent from the two-reagent container 22 to the second reaction container 32 is individually provided.
  • the configuration of each of the first reagent dispensing mechanism 51 and the second reagent dispensing mechanism 52 is common, and is composed of a rotation driving mechanism, a vertical driving mechanism, and a dispensing probe.
  • the first reagent dispensing mechanism 51 and the second reagent dispensing mechanism 52 are rotated and lowered to the position of the first reagent container 21 and the second reagent container 22 of the predetermined type in the reagent holding unit 23, and a predetermined amount of reagent is supplied. Suction. After the reagent is aspirated, the first reagent dispensing mechanism 51 and the second reagent dispensing mechanism 52 are lifted. Next, the reagent discharge destination, for example, the first reaction container 31 on the first incubator 41 in the case of the first reagent dispensing mechanism 51 for biochemical analysis, or the second reagent dispensing mechanism 52 in the immunological analysis. For example, it rotates and descends to the second reaction container 32 for the analysis of immune items installed at the reagent ejection position, and each reagent is ejected.
  • the reagent discharge destination for example, the first reaction container 31 on the first incubator 41 in the case of the first reagent dispensing mechanism 51 for biochemical analysis, or the second
  • a reagent stirring mechanism 53 (also referred to as a stiller) for stirring the reagent contained in the second reagent container 22 is set on the reagent holding portion 23 as a stirring means.
  • This reagent stirring mechanism 53 moves to the upper region of the first reagent container 21 or the second reagent container 22 containing the magnetic particle solution to be stirred, lowers the magnetic particle stirring element of the reagent stirring mechanism 53, and this stirring element Agitate the magnetic particle solution by rotating the
  • the reagent stirring mechanism 53 stirs the magnetic particles immediately before the reagent is dispensed so that the magnetic particles in the solution do not spontaneously precipitate.
  • the first transport mechanism 34 has an X-axis, Y-axis and Z-axis drive mechanism, and a reaction container gripping mechanism, and includes a reaction container disposal hole, a second incubator 42, a second stirring mechanism 44, and a reaction container. It moves above the tray 33 .
  • the second transport mechanism 35 has a rotation drive mechanism, a vertical drive mechanism, and a reaction container gripping mechanism, and rotates the second reaction container 32 containing the reaction liquid obtained by mixing the sample and the reagent in the second analysis step. It has a function of moving to each reaction vessel installation position such as the second stirring mechanism 44 provided above and the specimen ejection position.
  • the first transport mechanism 34 moves the second reaction container 32 from the reaction container tray 33 accommodating the plurality of second reaction containers 32 to the sample discharge position.
  • the specimen dispensing mechanism 50 dispenses a predetermined amount of specimen to the second reaction container 32 placed at the specimen dispensing position. After that, the second reaction container 32 into which the specimen has been discharged is moved to the reagent discharge position by the second transport mechanism 35 .
  • the second reagent dispensing mechanism 52 dispenses a predetermined amount of reagent to the second reaction container 32 installed at the reagent dispensing position. After that, the second reaction vessel 32 is moved to the position of the second stirring mechanism 44 by the second transport mechanism 35, and the liquid mixture in the second reaction vessel 32 is stirred.
  • the second reaction container 32 After stirring the reaction liquid, the second reaction container 32 is moved to the second incubator 42 by the first transport mechanism 34 .
  • the second incubator 42 holds the second reaction container 32 and is temperature-controlled to an appropriate temperature for the purpose of promoting the reaction between the specimen and the reagent.
  • the second reaction container 32 is moved to the sample discharge position by the first transport mechanism 34 .
  • the second reaction container 32 is moved by the second transport mechanism 35 to the reaction liquid aspiration position provided below the second measuring unit 62 for measuring the reaction liquid in the second analysis step in order to analyze the immunity item of the sample. move. After that, the reaction liquid is sucked into the detection section in the second measurement section 62, and the reaction signal is measured.
  • the second reaction container 32 is moved to the sample discharge position by the second transport mechanism 35, and subsequently discarded into the reaction container disposal hole by the first transport mechanism 34.
  • the first incubator 41 is a mechanism that holds the reaction liquid for analysis by the first measurement unit 61 that measures the reaction liquid in the first analysis step, that is, the first reaction vessel 31, and, like the second incubator 42, The temperature is controlled at an appropriate temperature for the purpose of promoting the reaction with the reagent.
  • the sample dispensing mechanism 50 dispenses a predetermined amount of sample into a predetermined first reaction container 31 on the first incubator 41, which contains a reaction liquid obtained by mixing a sample and a reagent in the first analysis step. note.
  • the first incubator 41 rotates to move the first reaction container 31 into which the sample has been discharged to the access position of the first reagent pipetting mechanism 51, and the first reagent pipetting mechanism 51 moves the first reaction container 31 into which the sample has been discharged.
  • a predetermined amount of reagent is dispensed to the reaction vessel 31 .
  • the first incubator 41 rotates to move the first reaction container 31 into which the sample and the reagent have been discharged to the first stirring mechanism 43 installation position, and the sample and reagent in the first reaction container 31 move to the first stirring mechanism 43. agitated by
  • the first incubator 41 rotates, and the first reaction container 31 containing the reaction solution after the completion of the reaction is placed in the first chamber for analyzing the biochemical items of the sample. Move to the installation position of the measurement unit 61 .
  • the detection section in the first measurement section 61 measures the reaction signal. After signal measurement, the reaction liquid is discharged from the first reaction container 31 of the first incubator 41 by the cleaning mechanism 45 .
  • the mechanism described above in the automatic analyzer 1 is called an analysis operation unit.
  • the automatic analyzer 1 includes, in addition to the analysis operation section, a control section 3 that controls the operation of each device in the automatic analyzer 1 including the sample holding section 12 and the sample dispensing mechanism 50 .
  • the control unit 3 can be configured by a computer having a display unit such as a liquid crystal display, an input device, a storage device, a CPU, a memory, and the like. It is not particularly limited.
  • control unit 3 controls the first time period or the second time period of the first time chart. shall perform the operation of the common analysis unit on The details will be described later.
  • the control of the operation of each device by the control unit 3 is executed based on various programs recorded in the storage device.
  • the control processing of the operation executed by the control unit 3 may be integrated into one program, may be divided into a plurality of programs, or may be a combination thereof. Also, part or all of the program may be realized by dedicated hardware, or may be modularized.
  • the configuration of the automatic analyzer is not limited to the configuration using different reaction vessels for the first reaction vessel 31 for the first analysis step and the second reaction vessel 32 for the second analysis step as shown in FIG.
  • a common reaction vessel may be used for the first analysis step and the second analysis step.
  • biochemical items are used as the first analysis step and immunological items are used as the second analysis step, but other analysis items may be used as long as they are different.
  • first reagent container 21 and second reagent container 22 are used in the first analysis process and the second analysis process, they may be common reagents and are not particularly limited.
  • the automatic analyzer is not limited to the configuration of a single analysis module as shown in FIG. It is good also as a structure which connects two or more.
  • the automatic analyzer 1 is configured so that a first analysis process and a second analysis process with different items can be performed in parallel.
  • Units used as common analysis units in the first analysis process and the second analysis process include the sample holding section 12, the reagent holding section 23, the sample dispensing mechanism 50, and the like.
  • the first analysis unit basically corresponds to a unit other than the common analysis unit among the mechanisms described in the biochemical analysis flow section described above
  • the second analysis unit corresponds to the above-described immune analysis unit. Basically, the units other than the common analysis unit among the mechanisms mentioned in the explanation in the flow section are applicable.
  • Fig. 2 is a diagram showing the analysis cycle of biochemical analysis.
  • the cycle time of the biochemical analysis is the first cycle time T1, and the operation of each analysis unit is repeated using this first cycle time T1 as a basic unit.
  • the specimen dispensing mechanism 50 aspirates the specimen from the specimen container 11 (S501), and discharges the specimen into the first reaction container 31 held in the first incubator 41 (S502). At this time, the sample dispensing mechanism 50 is used during the time slot 101 and the sample holding unit 12 is used during the time slot 102 .
  • the first incubator 41 rotates so that the first reaction container 31 moves to the reagent ejection position, and the first reagent dispensing mechanism 51 moves the first reagent container 21 to the first position.
  • the reagent is sucked (S511), and the reagent is discharged into the first reaction container 31 (S512).
  • the reagent holder 23 is used during the time period 111 .
  • the number of elapsed cycles can be set arbitrarily, it is preferably 0 cycles or as few cycles as possible in order to initiate the reaction between the specimen and the reagent as soon as possible.
  • the first incubator 41 rotates so that the first reaction container 31 moves to the reagent discharge position, and the first reagent dispensing mechanism 51 dispenses the second reagent from the first reagent container 21. Suction is performed (S521), and the reagent is discharged into the first reaction container 31 (S522). At this time, the reagent holder 23 is used during the time period 112 .
  • time period 111 and the time period 112 be configured so as not to overlap.
  • the first incubator 41 appropriately repeats the rotation operation, stirs the first reaction container 31 by the first stirring mechanism 43, and performs the first reaction by the first measurement unit 61. An absorbance measurement in the container 31 is performed. After the measurement is completed, the cleaning mechanism 45 cleans the used first reaction container 31 . After cleaning, the first reaction container 31 is used again for the next analysis operation.
  • FIG. 3 is a diagram showing the analysis cycle of immunoassay.
  • the cycle time of the immune analysis is the second cycle time T2, and the operation of each analysis unit related to the immune item is repeated using this second cycle time T2 as a basic unit.
  • the specimen pipetting mechanism 50 aspirates the specimen from the specimen container 11 (S601), and discharges the specimen from the reaction container tray 33 into the second reaction container 32 previously transported to the specimen discharge position by the first transport mechanism 34 ( S602).
  • the sample dispensing mechanism 50 is used during the time period 201 and the sample holding unit 12 is used during the time period 202 .
  • the second transport mechanism 35 transports the second reaction container 32 to the reagent ejection position, and the second reagent dispensing mechanism 52 aspirates the first reagent in the second reagent container 22. (S611), and the reagent is discharged into the second reaction vessel 32 (S612). At this time, the reagent holder 23 is used during the time period 211 .
  • the number of elapsed cycles can be set arbitrarily, it is preferably 0 cycles or as few cycles as possible in order to initiate the reaction between the specimen and the reagent as soon as possible.
  • the second transport mechanism 35 transports the second reaction container 32 to the reagent ejection position, and the second reagent dispensing mechanism 52 aspirates the second reagent from the second reagent container 22 ( S621), the reagent is discharged into the second reaction vessel 32 (S622). At this time, the reagent holder 23 is used during the time period 212 .
  • the second transport mechanism 35 transports the second reaction container 32 to the reagent ejection position, and the second reagent dispensing mechanism 52 sucks the third reagent from the second reagent container 22 ( S631), the reagent is discharged into the second reaction vessel 32 (S632).
  • the reagent holder 23 is used during the time period 213 .
  • the reagent stirring mechanism 53 stirs the third reagent as necessary.
  • the time period 211, the time period 212, and the time period 213 are desirably configured so as not to overlap within the frame of the second cycle time T2.
  • the first transport mechanism 34 and the second transport mechanism 35 transport the second reaction container 32 to the second stirring mechanism 44 and the second incubator 42, and the reaction solution is Carry out mixing and reaction acceleration.
  • the second reaction container 32 is transported to the second measurement unit 62 and optical measurement is performed. After the measurement is completed, the second reaction vessel 32 is discarded.
  • FIG. 4 is a diagram showing an analysis cycle when biochemical analysis and immunological analysis are performed simultaneously.
  • the second cycle time T2 for immunological analysis is configured to be a positive integer multiple of the first cycle time T1 for biochemical analysis.
  • sample pipetting mechanism 50 when the first cycle time T1 of biochemical analysis is used as a reference, the sample pipetting mechanism 50 is used every cycle in biochemical analysis, but in immunoassay, biochemical analysis is performed.
  • the sample dispensing mechanism 50 is used only once every five cycles.
  • the time required to use the specimen pipetting mechanism 50 in each process is The period 101 and the time period 201 are configured so as not to overlap. This prevents the sample dispensing operation for biochemical analysis and the sample dispensing operation for immunological analysis from overlapping even if the analysis is repeated. Therefore, in the biochemical analysis and the immunological analysis, the specimen dispensing operation can be performed completely independently.
  • sample holding unit 12 and the reagent holding unit 23 are configured so that the time periods used for both the biochemical analysis and the immunological analysis do not overlap.
  • the mechanism corresponding to the first reagent dispensing mechanism 51 is basically the same chart as the reagent holding unit 23, and the mechanism corresponding to the first incubator 41 and the first stirring mechanism 43 is basically the specimen dispensing mechanism 50. Since the chart is the same as , the details are omitted.
  • time periods 211, 212, and 213 correspond to the first reagent, second reagent, and third reagent dispensing operations of immunoassay, respectively, but all operate at the same timing within the frame of the first cycle time T1. It is desirable to This is because the time zone 210 used for the immunoassay reagent dispensing operation in FIG.
  • the common analysis unit for the operation peculiar to the biochemical analysis which is the first analysis step, is performed. and operate the common analysis unit for operations specific to the second analysis process in the second time periods 201, 202, 211, 212, and 213.
  • FIG. 4 in the first time chart, in time zones 101, 102, 111, and 112, which are the first time zones, the common analysis unit for the operation peculiar to the biochemical analysis, which is the first analysis step, is performed. and operate the common analysis unit for operations specific to the second analysis process in the second time periods 201, 202, 211, 212, and 213.
  • FIG. 5 shows a case where the biochemical analysis operation and the immunological analysis operation are performed in parallel at the first cycle time T1 of the first time chart.
  • FIG. 6 shows a case where only the biochemical analysis operation is performed and the immunological analysis operation is not performed in the first cycle time T1.
  • FIG. 4 the operations of the sample dispensing mechanism 50, the sample holding unit 12, and the reagent holding unit 23 are collectively illustrated as a first time chart. Which of the operation and the operation for immunological analysis is to be performed can be appropriately selected according to the analysis situation.
  • the operation timings of the common analysis units can be prevented from interfering with each other, thereby reducing the throughput. can be avoided.
  • FIG. 7 is a diagram showing a second time chart for each common analysis unit.
  • control unit 3 does not perform the first analysis step that requires the use of the first time chart during the time period during which the second time chart is executed. It is desirable to
  • FIG. 7 shows an example in which a time zone 203 and a time zone 204 in which only immunological analysis is available are assigned to the sample dispensing mechanism 50 and the sample holding unit 12, respectively.
  • the time slot 203 includes the time slots 101 and 201, and similarly the time slot 204 includes the time slots 102 and 202. This indicates a special operation that also uses the time allotted for biochemical analysis to perform the immunoanalytical operation.
  • the second time chart should be carried out instead of the first time chart, and any biochemical analysis that overlaps the action timing should be canceled or the action should not be assigned in advance.
  • the automatic analyzer 1 of the first embodiment described above is an apparatus capable of concurrently performing a first analysis step and a second analysis step with different items, and is common to the first analysis step and the second analysis step. and a control unit 3 for controlling the operation of the common analysis unit, the first analysis step can be repeatedly performed every first cycle time, and the second analysis The process can be performed repeatedly every second cycle time, the second cycle time being a positive integer multiple of the first cycle time, the first cycle time being the first time period and overlapping the first time period.
  • the common analysis unit is operated for the operation specific to the first analysis process in the first time period, and the common analysis unit is operated for the operation specific to the second analysis process in the second time period. has a first time chart configured to operate the
  • control unit 3 performs the common analysis in the first time zone or the second time zone of the first time chart when there is a measurement request for the measurement item in the first analysis process or the measurement item in the second analysis process. Since it executes the operation of the unit, unnecessary operation can be prevented, wear of each mechanism can be suppressed, the frequency of maintenance of the device can be reduced, and consumption of consumables can be suppressed.
  • a second time chart configured to use the common analysis unit for operations specific to the second analysis step in both the first time period and the second time period, in particular the control unit 3 If the second time chart is used, a longer operation time is required by not performing the first analysis step that requires the use of the first time chart during the time period in which the second time chart is executed. A decrease in throughput can be minimized while performing the special operation with priority.
  • Example 2 An automatic analysis apparatus and an automatic analysis method of Example 2 will be described with reference to FIGS. 8 to 12.
  • FIG. 8 An automatic analysis apparatus and an automatic analysis method of Example 2 will be described with reference to FIGS. 8 to 12.
  • FIG. 8 is a diagram showing the automatic analyzer of Example 2
  • FIG. 9 is a diagram showing the connection relationship between the cleaning liquid supply unit 74 and the cleaning tanks 70, 71, 72, and 73. As shown in FIG.
  • An automatic analyzer 1A shown in FIGS. 8 and 9 is composed of an analysis section 2A and a control section 3A, like the automatic analyzer 1 of the first embodiment.
  • the analysis unit 2A includes, in addition to the analysis unit 2 of the automatic analyzer 1 shown in FIG. A vacuum tank 91, a cleaning tank 72 and vacuum tank 92 for the second reagent dispensing mechanism 52, a cleaning tank 73 for the reagent stirring mechanism 53, and a cleaning liquid supply unit that supplies cleaning liquid to these cleaning tanks 70, 71, 72, and 73. 74 and a vacuum supply unit 93 for reducing the pressure inside the vacuum chambers 90 , 91 , 92 .
  • the control unit 3A basically has the same configuration as the control unit 3, except that the stored first time chart and second time chart are different.
  • the cleaning liquid supply unit 74 and the cleaning tanks 70, 71, 72, 73 are connected by flow paths, and solenoid valves 80, 81, 82, 83 and pumps 84 are arranged in the connecting flow paths. is provided.
  • the outer surfaces thereof are washed by discharging the washing liquid to the dispensing nozzles and stirring rods in the corresponding analysis section 2A.
  • the cleaning liquid discharged by the cleaning liquid supply unit 74 may be sucked by the dispensing nozzle to clean the inside of the dispensing nozzle.
  • the cleaning liquid supply unit 74 may be directly connected to the channel inside the dispensing nozzle to clean the inside of the dispensing nozzle.
  • the discharge operation of the cleaning liquid in the cleaning tanks 70, 71, 72, and 73 can be controlled by opening and closing the electromagnetic valves 80, 81, 82, and 83, respectively.
  • the pressure from the pump 84 is used as the driving force for discharging the cleaning liquid.
  • the operating principle of the pump does not matter.
  • the washing liquid the water used in the analysis section may be used, or it may be separately supplied from a reagent bottle or the like.
  • Vacuum chambers 90, 91, and 92 for performing vacuum drying are provided near the cleaning chambers 70, 71, and 72, respectively.
  • the vacuum tanks 90, 91, 92 are connected to a vacuum supply unit 93, and like the cleaning tanks 70, 71, 72, 73, vacuum suction and stop can be controlled by opening and closing electromagnetic valves 95, 96, 97. ing.
  • the structures of the vacuum chambers 90, 91, 92 and the vacuum supply unit 93 are similar to those of the cleaning chambers 70, 71, 72, 73 and the cleaning liquid supply unit 74.
  • the cleaning chamber will be described as an example. The effect of the invention similar to is obtained.
  • FIG. 10 is a diagram showing an analysis cycle when biochemical analysis and immunological analysis are performed simultaneously.
  • the second cycle time T2 for immunological analysis is configured to be a positive integer multiple of the first cycle time T1 for biochemical analysis.
  • the cleaning tank 70 discharges the cleaning liquid and cleans the specimen dispensing mechanism 50 .
  • the cleaning tank 71 discharges cleaning liquid to clean the first reagent dispensing mechanism 51 .
  • cleaning tank 72 discharges cleaning liquid to clean second reagent dispensing mechanism 52 .
  • the cleaning tank 73 discharges cleaning liquid to clean the reagent stirring mechanism 53 .
  • FIG. 11 shows a case where the cleaning operation for biochemical analysis and the cleaning operation for immunological analysis are performed in parallel at the first cycle time T1 of the first time chart.
  • FIG. 12 shows a case where only the cleaning operation for biochemical analysis is performed and the cleaning operation for immunological analysis is not performed at the first cycle time T1 of the first time chart.
  • the cleaning tank 72 discharges cleaning liquid to clean the second reagent dispensing mechanism 52, and the cleaning tank 73 discharges cleaning liquid to clean the reagent stirring mechanism 53. Therefore, these times are significant. The timing is determined so that it does not occur.
  • the cleaning liquid is discharged, that is, the timing of using the cleaning liquid supply unit 74 is the time period 300 and the time period 301, and the timing of using the cleaning liquid supply unit 74 in the immunological analysis is the time period 300 and the time period. 302 and time period 303 .
  • Time periods 300, 301, 302, and 303 are configured so as not to overlap each other. Therefore, in the biochemical analysis and the immunological analysis, it is possible to perform the required washing liquid ejection operation completely independently.
  • the timing at which each of the vacuum chambers 90, 91, and 92 is used is in the second half or immediately after the timing at which the cleaning chambers 70, 71, and 72 are used. Since they are substantially the same as 71 and 72, the details are omitted.
  • the time zone 300 is configured to be shared by both biochemical analysis and immunological analysis. This is because the sample dispensing mechanism 50 is used as a common analysis unit, so the same cleaning operation can be applied.
  • the time period 300 may be divided or the timing may be changed so that the cleaning of the specimen dispensing mechanism 50 is used only for each analysis. In that case, as described above, it is sufficient that the time periods during which the cleaning liquid is discharged for each analysis do not overlap.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

第1分析工程、及び第2分析工程で共通して使用される1つ以上の共通分析ユニットと、共通分析ユニットの動作を制御する制御部3と、を備え、第1分析工程は第1サイクル時間ごとに繰り返し実施可能であり、第2分析工程は第2サイクル時間ごとに繰り返し実施可能であり、第2サイクル時間は第1サイクル時間の正の整数倍で構成され、第1サイクル時間は、第1時間帯、及び第1時間帯と重複しない第2時間帯を含み、第1時間帯において第1分析工程に特有の動作に対して共通分析ユニットを動作させ、第2時間帯において第2分析工程に特有の動作に対して共通分析ユニットを動作させるように構成された第1タイムチャートを有する。

Description

自動分析装置及び自動分析方法
 本発明は、自動分析装置及び自動分析方法に関する。
 血液等の検体中の測定対象成分と特異的に反応する分析試薬と当該検体とを反応させ、生成した反応物を主に分光学的手法により測定する自動分析装置の一例として、特許文献1には、生化学検査と免疫検査とを一台で実施し、分析に使用する機構の一部を生化学分析と免疫分析工程とで共通して使用することで、装置構成の単純化を図る旨が記載されている。
国際公開2010/117044号
 特許文献1によれば、前処理が必要な生化学検査と免疫検査の分析工程を中間ディスク上で実施し、前処理分注機構と免疫分析試薬分注機構を共通化することにより、装置構成を単純化している。
 しかし、前処理済み検体の生化学分析部への再サンプリングと免疫分析部への再サンプリングとを同時に実施することができないため、実施タイミングが重複しないようにスケジューリングする必要があり、これらの分析工程を同時に実施した場合にスループットが低下するという課題がある。
 本発明は、装置構成の単純化を図りつつ、複数項目の検査を効率的に実施し、かつ分析性能の低下を防ぐことが可能な自動分析装置及び自動分析方法を提供する。
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、それぞれ項目が異なる第1分析工程、及び第2分析工程を並行して実施可能な自動分析装置であって、前記第1分析工程、及び前記第2分析工程で共通して使用される1つ以上の共通分析ユニットと、前記共通分析ユニットの動作を制御する制御部と、を備え、前記第1分析工程は第1サイクル時間ごとに繰り返し実施可能であり、前記第2分析工程は第2サイクル時間ごとに繰り返し実施可能であり、前記第2サイクル時間は前記第1サイクル時間の正の整数倍で構成され、前記第1サイクル時間は、第1時間帯、及び前記第1時間帯と重複しない第2時間帯を含み、前記第1時間帯において前記第1分析工程に特有の動作に対して前記共通分析ユニットを動作させ、前記第2時間帯において前記第2分析工程に特有の動作に対して前記共通分析ユニットを動作させるように構成された第1タイムチャートを有することを特徴とする。
 本発明によれば、装置構成の単純化を図りつつ、複数項目の検査を効率的に実施し、かつ分析性能の低下を防ぐことができる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
実施例1の自動分析装置の概略構成を示す図。 実施例1の自動分析装置における第1分析工程の分析サイクルを示す図。 実施例1の自動分析装置における第2分析工程の分析サイクルを示す図。 実施例1の自動分析装置における第1タイムチャートを示す図。 実施例1の自動分析装置における第1タイムチャートのうち、第1分析工程及び第2分析工程を実行する場合のタイムチャートを示す図。 実施例1の自動分析装置における第1タイムチャートのうち、第1分析工程のみを実行する場合のタイムチャートを示す図。 実施例1の自動分析装置における第2タイムチャートを示す図。 実施例2の自動分析装置の概略構成を示す図。 実施例2の自動分析装置における流路構成を示す図。 実施例2の自動分析装置における第1タイムチャートを示す図。 実施例2の自動分析装置における第1タイムチャートのうち、第1分析工程及び第2分析工程を実行する場合のタイムチャートを示す図。 実施例2の自動分析装置における第1タイムチャートのうち、第1分析工程のみを実行する場合のタイムチャートを示す図。
 以下に自動分析装置及び自動分析方法の実施例を、図面を用いて説明する。
 なお、以下に説明する実施例は一例であり、要旨を逸脱しない範囲で変形実施することが可能である。また、1つの例示的な態様と共に図示または記述される特色を、他の態様の特色と組み合わせてもよい。
 また、本明細書で用いる図面において、同一のまたは対応する構成要素には同一、または類似の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。
 <実施例1> 
 自動分析装置及び自動分析方法の実施例1について図1乃至図7を用いて説明する。
 最初に、自動分析装置の全体構成について図1を用いて説明する。図1は、自動分析装置の構成図の一例を示す図である。
 自動分析装置1は、検体を所定の分析項目に応じた試薬を用いて分析するための装置であり、分析部2と制御部3とから構成される。
 分析部2は、検体保持部12、検体分注機構50、試薬保持部23、第1試薬分注機構51、第2試薬分注機構52、第1インキュベータ41、試薬撹拌機構53、第1搬送機構34、第2インキュベータ42、第2撹拌機構44、反応容器トレイ33、第2搬送機構35、第2測定部62、第1撹拌機構43、第1測定部61、洗浄機構45等を備えている。
 検体保持部12は、第1分析工程及び第2分析工程において分析対象となる検体を収容する検体容器11を環状に複数保持可能な構造となっている。検体分注の際に検体保持部12が回転し、検体分注機構50のアクセスポジションへ検体容器11を輸送する。この検体保持部12は検体吸引位置13を備えており、検体分注機構50が分析対象の検体を吸引する直前に、検体保持部12が回転し、検体容器11を検体吸引位置13へと搬送する。
 なお、検体保持部12は物理的に2つの検体保持部12を入れ替えて使用可能に構成されていてもよい。例えば、2つの検体保持部12を交互に入れ替え可能な構成、あるいは、検体保持部12に設けられた小窓を介して検体の途中追加・交換可能な構成でもよい。但し、ユーザが自ら架設する形態である必要は無く、搬送機構などを用いて搬送する形式としてもよい。また、図示されているような回転動作によって検体容器を搬送するディスク方式に限られず、複数の検体容器をまとめて搬送するラック方式であってもよい。更に、検体保持部12の近傍に検体容器11に付与された検体情報を取得する(読み取る)ための検体情報取得部14を備え、検体分注の直前に検体情報を取得することで当該検体容器が分析対象であるか否かを照合してもよい。
 検体分注機構50は、第1反応容器31及び第2反応容器32が検体分注を実施するための所定の位置にある場合に、それぞれの位置にアクセスできるように、回転駆動機構、上下駆動機構、及び分注プローブから構成されている。回転駆動機構及び上下駆動機構により検体吸引位置と検体吐出位置との間を移動して、検体吸引位置13において検体を分注し、第1反応容器31及び第2反応容器32に吐出する。なお、図示されているように、回転動作によって各位置にアクセスする構成であってもよいし、直線動作によって各位置にアクセスする構成であってもよい。
 試薬保持部23は、第1反応容器31で反応させる、第1分析工程に使用する試薬が収容された第1試薬容器21や、第2反応容器32で反応させる、第2分析工程に使用する試薬が収容された第2試薬容器22を複数保持するための機構であり、試薬ディスク及び試薬容器保持部(いずれも図示の都合上省略)を有する。試薬保持部23は、保冷機能を備えている。
 試薬ディスク上には試薬容器保持部が二重環状に並んでおり、複数の第1試薬容器21や第2試薬容器22を保持できるように構成されている。試薬ディスクは回転駆動機構を有し、回転運動によって各々の第1試薬容器21や第2試薬容器22を円周部上の所定位置へ移動させる。
 試薬保持部23では、試薬保持部23がディスク方式の場合、試薬分注前に試薬保持部23が回転し、第1試薬吸引位置24もしくは第2試薬吸引位置25に適切な試薬容器を搬送することで、第1試薬分注機構51及び第2試薬分注機構52が分析に必要な試薬を吸引することができる。第1試薬容器21及び第2試薬容器22は、それぞれ複数の異なる試薬ボトルから構成されていてもよい。第1試薬容器21と第2試薬容器22の形状が異なる場合、それぞれの試薬容器を保持する専用のポジションを設けても良いし、1つのポジションで両方の試薬容器を保持できるような形状であってもよい。
 本実施形態の自動分析装置1では、生化学分析用であり、第1試薬容器21から試薬を第1反応容器31に分注する第1試薬分注機構51と、免疫分析用であり、第2試薬容器22から試薬を第2反応容器32に分注する第2試薬分注機構52とをそれぞれ個別に備えている。第1試薬分注機構51、第2試薬分注機構52の各々の構成は共通しており、回転駆動機構、上下駆動機構、及び分注プローブから構成されている。
 試薬保持部23の所定の種類の第1試薬容器21や第2試薬容器22位置へ第1試薬分注機構51、第2試薬分注機構52が回転及び下降動作し、所定の量の試薬を吸引する。試薬吸引後、第1試薬分注機構51、第2試薬分注機構52は上昇する。次に試薬吐出先、例えば、生化学分析用の第1試薬分注機構51であれば第1インキュベータ41上の所定の第1反応容器31、免疫分析用の第2試薬分注機構52であれば試薬吐出ポジションに設置された免疫項目の分析用である第2反応容器32へ回転及び下降動作し、各々の試薬を吐出する。
 試薬保持部23上には、撹拌手段として、第2試薬容器22に収容された試薬を撹拌するための試薬撹拌機構53(スティラーとも称される)がセットされている。この試薬撹拌機構53は、撹拌するべき磁性粒子溶液が入っている第1試薬容器21や第2試薬容器22の上部領域へ移動し、試薬撹拌機構53の磁性粒子撹拌要素を下げ、この撹拌要素を回転させることによって磁性粒子溶液を撹拌する。溶液内の磁性粒子が自然沈殿しないように、試薬撹拌機構53は、試薬が分注される直前に磁性粒子を撹拌する。
 以下、免疫分析フローを処理の順に説明する。
 第1搬送機構34は、X軸、Y軸及びZ軸方向の駆動機構、及び反応容器把持機構を有しており、反応容器廃棄孔、第2インキュベータ42、第2撹拌機構44、及び反応容器トレイ33の上方を移動する。
 第2搬送機構35は、回転駆動機構、上下駆動機構、及び反応容器把持機構を有しており、第2分析工程において検体と試薬を混合した反応液を収容する第2反応容器32を回転軌道上に設けられた第2撹拌機構44や検体吐出ポジション等の各反応容器設置ポジションに移動させる機能を備えている。
 第1搬送機構34は、複数の第2反応容器32を収容する反応容器トレイ33から第2反応容器32を検体吐出ポジションへ移動させる。検体分注機構50は、検体吐出ポジションに設置された第2反応容器32に対し、所定の量の検体を分注する。その後、検体が吐出された第2反応容器32を、第2搬送機構35によって試薬吐出ポジションに移動させる。
 第2試薬分注機構52は、試薬吐出ポジションに設置された第2反応容器32に対し、所定の量の試薬を分注する。その後、第2反応容器32を第2搬送機構35によって第2撹拌機構44の位置に移動させ、第2反応容器32内の混合液が撹拌される。
 反応液撹拌後、第2反応容器32を第1搬送機構34によって第2インキュベータ42に移動させる。第2インキュベータ42は第2反応容器32を保持して検体と試薬との反応を促進する目的で適温に温調されており、第2インキュベータ42上での検体と試薬との反応プロセスが完了すると、第2反応容器32を第1搬送機構34によって検体吐出ポジションに移動させる。
 その後、第2反応容器32を第2搬送機構35によって、検体の免疫項目を分析するために第2分析工程において反応液を測定する第2測定部62の下方に設けられた反応液吸引ポジションに移動させる。その後、反応液は第2測定部62内の検出部に吸引され、反応シグナルの測定が実施される。
 シグナル測定後、第2反応容器32を第2搬送機構35によって検体吐出ポジションに移動させて、続けて第1搬送機構34によって反応容器廃棄孔に廃棄される。
 次に、生化学分析フローを処理の順に説明する。
 第1インキュベータ41は、第1分析工程において反応液を測定する第1測定部61による分析用の反応液、すなわち第1反応容器31を保持する機構であり、第2インキュベータ42と同様に検体と試薬との反応を促進する目的で適温に温調されている。
 最初に、検体分注機構50は、第1分析工程において検体と試薬を混合した反応液を収容する、第1インキュベータ41上の所定の第1反応容器31に対して所定の量の検体を分注する。その後、第1インキュベータ41が回転し、検体が吐出された第1反応容器31を第1試薬分注機構51のアクセスポジションに移動させ、第1試薬分注機構51は検体が吐出された第1反応容器31に対して所定の量の試薬を分注する。
 次いで、第1インキュベータ41が回転し、検体及び試薬が吐出された第1反応容器31を第1撹拌機構43設置ポジションに移動させ、第1反応容器31内の検体及び試薬は第1撹拌機構43によって撹拌される。
 第1インキュベータ41上での検体と試薬の反応プロセスが完了すると、第1インキュベータ41が回転し、反応完了後の反応液が入った第1反応容器31を検体の生化学項目を分析する第1測定部61の設置ポジションに移動させる。
 その後、第1測定部61内の検出部により反応シグナルの測定が実施される。シグナル測定後、反応液は洗浄機構45により第1インキュベータ41の第1反応容器31から排出される。
 自動分析装置1のうち、以上説明した機構を分析動作部と称する。
 さらに、自動分析装置1は、分析動作部に加えて、検体保持部12や検体分注機構50を始めとした自動分析装置1内の各機器の動作を制御する制御部3を備えている。
 制御部3は、液晶ディスプレイ等の表示部や入力機器、記憶装置、CPU、メモリなどを有するコンピュータで構成されるものとすることができ、1つのコンピュータで構成されるものとして別のコンピュータで構成されるものとしてもよく、特に限定されない。
 本実施例では、制御部3は、第1分析工程における測定項目、あるいは第2分析工程における測定項目の測定依頼があった場合に、第1タイムチャートの第1時間帯、あるいは第2時間帯に共通分析ユニットの動作を実行するものとする。その詳細は後述する。
 制御部3による各機器の動作の制御は、記憶装置に記録された各種プログラムに基づき実行される。なお、制御部3で実行される動作の制御処理は、1つのプログラムにまとめられていても、それぞれが複数のプログラムに別れていてもよく、それらの組み合わせでもよい。また、プログラムの一部または全ては専用ハードウェアで実現してもよく、モジュール化されていてもよい。
 以上が本実施形態の自動分析装置1の構成である。
 なお、自動分析装置の構成は図1に示すような第1分析工程用の第1反応容器31と第2分析工程用の第2反応容器32とで異なる反応容器を用いる構成に限られず、第1分析工程用と第2分析工程用とで共通の反応容器を用いる構成としてもよい。
 また、第1分析工程が生化学項目、第2分析工程が免疫項目としたが、各々が異なる限り他の分析項目としてもよい。
 更に、第1分析工程と第2分析工程とで異なる試薬(第1試薬容器21と第2試薬容器22)が使用されるものとしたが、共通の試薬としてもよく、特に限定されない。
 また、自動分析装置は図1に示すような単一の分析モジュール構成とする形態に限られず、様々な同一あるいは異なる分析項目を測定可能な分析モジュールや前処理を行う前処理モジュールを搬送装置で2つ以上接続する構成としてもよい。
 次に、本実施例の特徴的な構成について図2以降を用いて説明する。
 自動分析装置1は、それぞれ項目が異なる第1分析工程、及び第2分析工程を並行して実施可能に構成されている。
 その構成内の各機構を分類すると、第1分析工程のみで使用される第1分析ユニットと、第2分析工程のみで使用される第2分析ユニットと、第1分析工程、及び第2分析工程で共通して使用される共通分析ユニットと、に分類される。
 第1分析工程及び第2分析工程で共通分析ユニットとして使用されるユニットとしては、検体保持部12、試薬保持部23、検体分注機構50等が該当する。また、第1分析ユニットは上述の生化学分析フローの欄での説明の際に出てきた各機構のうち共通分析ユニット以外のユニットが基本的に該当し、第2分析ユニットは上述の免疫分析フローの欄での説明の際に出てきた各機構のうち共通分析ユニット以外のユニットが基本的に該当する。
 なお、装置構成を最適化するために、いずれの分析ユニットを共通化するかは必要に応じて自由に選択することができ、本実施例の構成に限定されない。
 例えば、上述のように第1分析工程と第2分析工程とで共通の反応容器を用いる形態の自動分析装置の場合は、図1に示す自動分析装置の各機構のうち、検体保持部12、試薬保持部23、検体分注機構50に加えて、第1試薬分注機構51や第1インキュベータ41、第1撹拌機構43に相当する機構が更に共通分析ユニットに分類される。
 以下に、第1分析工程を生化学分析、第2分析工程を免疫分析として、共通分析ユニットの動作を中心に分析フローの詳細を説明する。
 図2は、生化学分析の分析サイクルを示す図である。生化学分析のサイクル時間は第1サイクル時間T1であり、この第1サイクル時間T1を基本単位として各分析ユニットの動作を繰り返し実施する。
 まず、検体分注機構50が検体容器11から検体を吸引し(S501)、第1インキュベータ41に保持された第1反応容器31に検体を吐出する(S502)。このとき、時間帯101において検体分注機構50が使用され、時間帯102において検体保持部12が使用されることになる。
 次に、所定のサイクル数が経過したのち、第1反応容器31が試薬吐出位置に移動するように第1インキュベータ41が回転し、第1試薬分注機構51が第1試薬容器21の第1試薬を吸引し(S511)、第1反応容器31に試薬を吐出する(S512)。このとき、時間帯111において試薬保持部23が使用される。上記の経過サイクル数は任意に設定できるが、できるだけ早く検体と試薬との反応を開始させるため、0サイクルもしくは可能な限り少ないサイクル数であることが好ましい。
 さらに所定のサイクル数が経過したのち、第1反応容器31が試薬吐出位置に移動するように第1インキュベータ41が回転し、第1試薬分注機構51が第1試薬容器21の第2試薬を吸引し(S521)、第1反応容器31に試薬を吐出する(S522)。このとき、時間帯112において試薬保持部23が使用される。
 ここで、時間帯111と時間帯112とは、重複しないように構成されることが望ましい。
 上記のような検体及び試薬の分注を実施しながら、第1インキュベータ41は適宜回転動作を繰り返し、第1撹拌機構43による第1反応容器31の撹拌や、第1測定部61による第1反応容器31内の吸光度測定を実施する。測定が完了すると、洗浄機構45が使用済みの第1反応容器31を洗浄する。洗浄後、第1反応容器31は再び次の分析動作に利用される。
 図3は、免疫分析の分析サイクルを示す図である。免疫分析のサイクル時間は第2サイクル時間T2であり、この第2サイクル時間T2を基本単位として免疫項目に関係する各分析ユニットの動作を繰り返し実施する。
 まず、検体分注機構50が検体容器11から検体を吸引し(S601)、反応容器トレイ33から予め第1搬送機構34によって検体吐出ポジションに搬送された第2反応容器32に検体を吐出する(S602)。このとき、時間帯201において検体分注機構50が使用され、時間帯202において検体保持部12が使用されることになる。
 次に、所定のサイクル数が経過したのち、第2搬送機構35が第2反応容器32を試薬吐出位置に搬送し、第2試薬分注機構52が第2試薬容器22の第1試薬を吸引し(S611)、第2反応容器32に試薬を吐出する(S612)。このとき、時間帯211において試薬保持部23が使用される。上記の経過サイクル数は任意に設定できるが、できるだけ早く検体と試薬との反応を開始させるため、0サイクルもしくは可能な限り少ないサイクル数であることが好ましい。
 さらに所定のサイクル数が経過したのち、第2搬送機構35が第2反応容器32を試薬吐出位置に搬送し、第2試薬分注機構52が第2試薬容器22の第2試薬を吸引し(S621)、第2反応容器32に試薬を吐出する(S622)。このとき、時間帯212において試薬保持部23が使用される。
 さらに所定のサイクル数が経過したのち、第2搬送機構35が第2反応容器32を試薬吐出位置に搬送し、第2試薬分注機構52が第2試薬容器22の第3試薬を吸引し(S631)、第2反応容器32に試薬を吐出する(S632)。このとき、時間帯213において試薬保持部23が使用される。分注動作の直前に、必要に応じて試薬撹拌機構53が第3試薬の撹拌を実施する。上記の時間帯211、時間帯212、及び時間帯213は、第2サイクル時間T2の枠内において重複しないように構成されることが望ましい。
 上記のような検体及び試薬の分注を実施しながら、第1搬送機構34及び第2搬送機構35が第2反応容器32を第2撹拌機構44や第2インキュベータ42に搬送し、反応液の混合や反応の促進を実施する。所定のサイクル数が経過し、反応過程が完了すると、第2反応容器32は第2測定部62へと搬送され、光学的な測定が実施される。測定完了後は、第2反応容器32は破棄される。
 図4は、生化学分析と免疫分析を同時に実施した場合の分析サイクルを示す図である。
 免疫分析の第2サイクル時間T2は、生化学分析の第1サイクル時間T1の正の整数倍となるように構成される。図4では、T1=T2/5、すなわち第2サイクル時間T2が第1サイクル時間T1の5倍の場合を示しており、図2の分析サイクルを5回繰り返したものを図3の分析サイクルと重ね合わせたものである。
 ここで、多数の分析を連続的に実施する場合の共通分析ユニットの動作について説明する。
 検体分注機構50を例にとると、生化学分析の第1サイクル時間T1を基準にした場合に、生化学分析では検体分注機構50を毎サイクル使用するが、免疫分析では、生化学分析の第1サイクルを5サイクルに1回のみ検体分注機構50を使用することになる。
 ここで、第1サイクル換算で5サイクルに1回は両方の分析で検体分注機構50を使用する可能性があるサイクルが生じることから、それぞれの工程での検体分注機構50を使用する時間帯101及び時間帯201を重ならないように構成する。これにより、分析を繰り返しても生化学分析のための検体分注動作と免疫分析のための検体分注動作とが重なることを防ぐ。したがって、生化学分析と免疫分析において、検体分注動作を完全に独立して実施することができる。
 検体保持部12及び試薬保持部23についても、同様に生化学分析と免疫分析の両工程に対して、使用する時間帯が重ならないように構成される。
 これは第1分析工程と第2分析工程とで共通の反応容器を用いる形態の自動分析装置における第1試薬分注機構51や、第1インキュベータ41、第1撹拌機構43に相当する構成に対しても同様である。例えば、第1試薬分注機構51に相当する機構は基本的に試薬保持部23と同じチャートであり、第1インキュベータ41や第1撹拌機構43に相当する機構では基本的に検体分注機構50と同じチャートとなるため、その詳細は省略する。
 なお、時間帯211,212,213は、それぞれ免疫分析の第1試薬、第2試薬、及び第3試薬分注動作に対応するが、第1サイクル時間T1の枠内においては全て同じタイミングで動作することが望ましい。これは、後述する図5で免疫分析の試薬分注動作に使用する時間帯210が、時間帯211,212,213の全てを包含するように構成する必要があるためである。
 この図4に示すように、第1タイムチャートでは、第1時間帯である時間帯101,102,111,112においては第1分析工程である生化学分析に特有の動作に対して共通分析ユニットを動作させ、第2時間帯である時間帯201,202,211,212,213において第2分析工程に特有の動作に対して共通分析ユニットを動作させるように構成されたものとする。
 図5は、第1タイムチャートの第1サイクル時間T1において、生化学分析の動作と免疫分析の動作とを並行して実施する場合を示している。一方、図6は、第1サイクル時間T1において、生化学分析の動作のみ実施し、免疫分析の動作を実施しない場合を示している。
 なお、図4では、検体分注機構50、検体保持部12、及び試薬保持部23の動作をまとめて第1タイムチャートとして図示しているが、各共通分析ユニットに対して生化学分析用の動作と免疫分析用の動作のどれを実施するかは、分析状況に応じて適宜選択することができる。
 例えば、図4の第1サイクル時間T1における3サイクル目と4サイクル目とでは、検体分注機構50と検体保持部12に対しては生化学分析の動作のみを実施し、試薬保持部23に対しては生化学分析と免疫分析の両方の動作を実施することで、両方の分析に必要な動作を問題なく実施することができる。
 また、上記では多数の分析を連続的に実施する場合について説明したが、断続的に分析を実施する場合において、ある分析ユニットの動作が不要な場合は、単に動作を実施しなければよい。
 以上のように第1タイムチャートを構成することで、生化学分析と免疫分析を同時に連続的に実施した場合においても、共通分析ユニットの動作タイミングが相互に干渉することを防ぎ、スループットの低下を回避することができる。
 更に、第1時間帯と第2時間帯の両方において、第2分析工程に特有の動作に対して共通分析ユニットを使用するように構成された第2タイムチャートを更に有するものとすることが望ましい。図7は、それぞれの共通分析ユニットに対する第2タイムチャートを示す図である。
 図7に示すように、制御部3は、第2タイムチャートを使用する場合は、第2タイムチャートを実行する時間帯で第1タイムチャートを使用する必要がある第1分析工程を実施しないものとすることが望ましい。
 図7では、検体分注機構50及び検体保持部12に対して、免疫分析のみ使用可能な時間帯203及び時間帯204がそれぞれ割り当てられた例を示している。
 時間帯203は時間帯101と時間帯201を包含しており、同様に時間帯204は時間帯102と時間帯202を包含している。これは、生化学分析に割り当てられた時間も用いて免疫分析の動作を実施する特殊動作を示している。
 この一例として、検体分注量が多く設定された免疫項目に対して、2回に分けて検体分注を実施する場合が挙げられる。
 このような特殊動作を実施する場合は、第1タイムチャートの代わりに第2タイムチャートを実施し、動作タイミングが重なるような生化学分析はキャンセルするか、予め動作を割り当てなければよい。
 次に、本実施例の効果について説明する。
 上述した実施例1の自動分析装置1は、それぞれ項目が異なる第1分析工程、及び第2分析工程を並行して実施可能な装置であって、第1分析工程、及び第2分析工程で共通して使用される1つ以上の共通分析ユニットと、共通分析ユニットの動作を制御する制御部3と、を備え、第1分析工程は第1サイクル時間ごとに繰り返し実施可能であり、第2分析工程は第2サイクル時間ごとに繰り返し実施可能であり、第2サイクル時間は第1サイクル時間の正の整数倍で構成され、第1サイクル時間は、第1時間帯、及び第1時間帯と重複しない第2時間帯を含み、第1時間帯において第1分析工程に特有の動作に対して共通分析ユニットを動作させ、第2時間帯において第2分析工程に特有の動作に対して共通分析ユニットを動作させるように構成された第1タイムチャートを有する。
 これによって、異なる分析工程に対して使用する機構を共通化することで装置構成の単純化を図ることができるとともに、複数項目の検査を同時に実施した場合においてもそれぞれの分析工程で共通機構を使用するタイミングの干渉を回避することができ、複数項目の検査を効率的に実施することができるようになる。
 また、制御部3は、第1分析工程における測定項目、あるいは第2分析工程における測定項目の測定依頼があった場合に、第1タイムチャートの第1時間帯、あるいは第2時間帯に共通分析ユニットの動作を実行するため、不要な動作を実行することを防げ、各機構の摩耗などを抑制し、装置のメンテナンスの頻度を減らすことや消耗品などの消費を抑制することができる。
 更に、第1時間帯と第2時間帯の両方において、第2分析工程に特有の動作に対して共通分析ユニットを使用するように構成された第2タイムチャートを更に有すること、特に制御部3は、第2タイムチャートを使用する場合は、第2タイムチャートを実行する時間帯で第1タイムチャートを使用する必要がある第1分析工程を実施しないことで、より長い動作時間を必要とする特殊動作を優先して実施しつつ、スループットの低下を最小限に抑えることができる。
 <実施例2> 
 実施例2の自動分析装置及び自動分析方法について図8乃至図12を用いて説明する。
 まず、本実施例の自動分析装置の概要について図8及び図9を用いて説明する。図8は、実施例2の自動分析装置を示す図、図9は、洗浄液供給部74と洗浄槽70,71,72,73の接続関係を示す図である。
 図8及び図9に示す自動分析装置1Aは、実施例1の自動分析装置1と同様に分析部2A及び制御部3Aとから構成される。
 分析部2Aは、図1に示した自動分析装置1の分析部2に加えて、検体分注機構50用の洗浄槽70及び真空槽90、第1試薬分注機構51用の洗浄槽71及び真空槽91、第2試薬分注機構52用の洗浄槽72及び真空槽92、試薬撹拌機構53用の洗浄槽73、これらの洗浄槽70,71,72,73に洗浄液を供給する洗浄液供給部74、真空槽90,91,92の内部を低圧化する真空供給部93を備える。
 制御部3Aは、記憶されている第1タイムチャートや第2タイムチャートが異なる以外は基本的に制御部3と同じ構成である。
 図9に示すように、洗浄液供給部74と洗浄槽70,71,72,73は、流路によって接続されており、接続流路の途中には電磁弁80,81,82,83及びポンプ84が設けられている。各々の洗浄槽70,71,72,73においては、対応する分析部2A内の分注ノズルや撹拌棒に対して洗浄液を吐出することで、それらの外部表面を洗浄する。また、洗浄液供給部74が吐出した洗浄液を分注ノズルで吸引し、分注ノズルの内部を洗浄する構成となっていてもよい。さらに、洗浄液供給部74が分注ノズル内部の流路に直接的に接続されており、分注ノズル内部を洗浄する構成となっていてもよい。
 洗浄槽70,71,72,73における洗浄液の吐出動作は、電磁弁80,81,82,83を夫々開閉することで吐出と停止とを制御できる。洗浄液を吐出する駆動力はポンプ84による圧力を使用する。ここで、ポンプの動作原理は問わない。洗浄液として、分析部で使用する水を使用してもよいし、別途試薬ボトル等で供給してもよい。
 洗浄槽70,71,72の近傍には、真空乾燥を実施するための真空槽90,91,92がそれぞれ設けられている。真空槽90,91,92は真空供給部93に接続されており、洗浄槽70,71,72,73と同様に電磁弁95,96,97の開閉により真空吸引と停止を制御できるようになっている。真空槽90,91,92及び真空供給部93の構造は、洗浄槽70,71,72,73及び洗浄液供給部74と類似の流路構造から構成され、以下で洗浄槽を例として説明する場合と同様の発明の効果が得られる。
 一般的に、特に分注ノズル等の外部表面を洗浄する場合には、十分な洗浄液の吐出流量を確保する必要がある。したがって、複数の洗浄槽70,71,72,73で同時に洗浄液を吐出すると、それぞれの洗浄槽70,71,72,73で洗浄液の吐出流量が減少し、洗浄効率が低下する懸念がある。一方、吐出流量の減少を見越して予め吐出量を増やしておくこともできるが、単一の洗浄槽70,71,72,73しか使用しない場合においては過剰に洗浄液を吐出することになり、洗浄液の使用が非効率になる。また、洗浄槽70,71,72,73の構造によっては、洗浄液が溢れてしまう要因となる。
 図10は、生化学分析と免疫分析を同時に実施した場合の分析サイクルを示す図である。ここで、免疫分析の第2サイクル時間T2は、生化学分析の第1サイクル時間T1の正の整数倍となるように構成される。図10では、実施例1と同様、T1=T2/5の場合を示している。
 時間帯300において、洗浄槽70は洗浄液を吐出し、検体分注機構50を洗浄する。時間帯301において、洗浄槽71は洗浄液を吐出し、第1試薬分注機構51を洗浄する。時間帯302において、洗浄槽72は洗浄液を吐出し、第2試薬分注機構52を洗浄する。時間帯303において、洗浄槽73は洗浄液を吐出し、試薬撹拌機構53を洗浄する。
 図11は、第1タイムチャートの第1サイクル時間T1において、生化学分析の洗浄動作と免疫分析の洗浄動作を並行して実施する場合を示している。一方、図12は、第1タイムチャートの第1サイクル時間T1において、生化学分析の洗浄動作のみ実施し、免疫分析の洗浄動作を実施しない場合を示している。
 時間帯304においては、洗浄槽72は洗浄液を吐出して第2試薬分注機構52を洗浄するとともに洗浄槽73は洗浄液を吐出して試薬撹拌機構53を洗浄することから、これらの時間が重ならないようにタイミングが決定されている。
 ここで、生化学分析において洗浄液を吐出する、すなわち洗浄液供給部74を使用するタイミングは時間帯300と時間帯301であり、免疫分析において洗浄液供給部74を使用するタイミングは時間帯300と時間帯302と時間帯303である。時間帯300,301,302,303は、それぞれ重ならないように構成されている。したがって、生化学分析と免疫分析において、必要な洗浄液吐出動作を完全に独立して実施することができる。
 真空槽90,91,92においても同様であり、それぞれが使用されるタイミングは基本的に洗浄槽70,71,72が使用されるタイミングの後半あるいはその直後であり、タイムチャートは洗浄槽70,71,72と略同じであることから、詳細は省略する。
 また、本実施例では時間帯300を生化学分析と免疫分析との両方で共用するように構成している。これは、検体分注機構50を共通分析ユニットとして使用しているため、同一の洗浄動作を適用できるためである。一方、検体分注機構50の洗浄をそれぞれの分析のみに対して用いるように、時間帯300を分割したり、タイミングを変更したりしてもよい。その場合には、上述のようにぞれぞれの分析で洗浄液を吐出する時間帯が重なり合わないように構成すればよい。
 なお、実施例1と同様に、各々の共通分析ユニットに対して生化学分析用の動作と免疫分析用の動作のどれを実施するかは、分析状況に応じて適宜選択することができる。また、断続的に分析を実施する場合において、洗浄動作が不要な場合は単に動作を実施しなければよい。
 その他の構成・動作は前述した実施例1の自動分析装置及び自動分析方法と略同じ構成・動作であり、詳細は省略する。
 実施例2の自動分析装置及び自動分析方法においても、前述した実施例1の自動分析装置及び自動分析方法とほぼ同様な効果が得られ、生化学分析と免疫分析を同時に連続的に実施した場合においても、洗浄液供給部74の使用タイミングが相互に干渉することによる洗浄効率の低下を防ぎ、分析性能への悪影響を抑制することができる。
 <その他> 
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
1,1A:自動分析装置
2,2A:分析部
3,3A:制御部
11:検体容器
12:検体保持部
13:検体吸引位置
14:検体情報取得部
21:第1試薬容器
22:第2試薬容器
23:試薬保持部
24:第1試薬吸引位置
25:第2試薬吸引位置
31:第1反応容器
32:第2反応容器
33:反応容器トレイ
34:第1搬送機構
35:第2搬送機構
41:第1インキュベータ
42:第2インキュベータ
43:第1撹拌機構
44:第2撹拌機構
45:洗浄機構
50:検体分注機構(第1分注機構、第2分注機構)
51:第1試薬分注機構(第1分注機構)
52:第2試薬分注機構(第2分注機構)
53:試薬撹拌機構
61:第1測定部
62:第2測定部
70:検体分注機構用の洗浄槽(第1洗浄槽、第2洗浄槽)
71:第1試薬分注機構用の洗浄槽(第1洗浄槽)
72:第2試薬分注機構用の洗浄槽(第2洗浄槽)
73:試薬撹拌機構用の洗浄槽
74:洗浄液供給部
80,81,82,83,95,96,97:電磁弁
84:ポンプ
90:検体分注機構用の真空槽(第1真空槽、第2真空槽)
91:第1試薬分注機構用の真空槽(第1真空槽)
92:第2試薬分注機構用の真空槽(第2真空槽)
93:真空供給部
101:生化学分析において検体分注機構を使用する時間帯
102:生化学分析において検体保持部を使用する時間帯
111:生化学分析の第1試薬分注動作において試薬保持部を使用する時間帯
112:生化学分析の第2試薬分注動作において試薬保持部を使用する時間帯
201:免疫分析において検体分注機構を使用する時間帯
202:免疫分析において検体保持部を使用する時間帯
203:免疫分析の特殊動作において検体分注機構を使用する時間帯
204:免疫分析の特殊動作において検体保持部を使用する時間帯
210:免疫分析の第1試薬、第2試薬、第3試薬分注動作のいずれかにおいて試薬保持部を使用する時間帯
211:免疫分析の第1試薬分注動作において試薬保持部を使用する時間帯
212:免疫分析の第2試薬分注動作において試薬保持部を使用する時間帯
213:免疫分析の第3試薬分注動作において試薬保持部を使用する時間帯
300:検体分注機構用の洗浄槽において洗浄液を使用する時間帯
301:第1試薬分注機構用の洗浄槽において洗浄液を使用する時間帯
302:第2試薬分注機構の洗浄槽において洗浄液を使用する時間帯
303:試薬撹拌機構用の洗浄槽において洗浄液を使用する時間帯
304:第2試薬分注機構及び試薬撹拌機構用の洗浄槽において洗浄液を使用する時間帯

Claims (17)

  1.  それぞれ項目が異なる第1分析工程、及び第2分析工程を並行して実施可能な自動分析装置であって、
     前記第1分析工程、及び前記第2分析工程で共通して使用される1つ以上の共通分析ユニットと、
     前記共通分析ユニットの動作を制御する制御部と、を備え、
     前記第1分析工程は第1サイクル時間ごとに繰り返し実施可能であり、
     前記第2分析工程は第2サイクル時間ごとに繰り返し実施可能であり、
     前記第2サイクル時間は前記第1サイクル時間の正の整数倍で構成され、
     前記第1サイクル時間は、第1時間帯、及び前記第1時間帯と重複しない第2時間帯を含み、
     前記第1時間帯において前記第1分析工程に特有の動作に対して前記共通分析ユニットを動作させ、前記第2時間帯において前記第2分析工程に特有の動作に対して前記共通分析ユニットを動作させるように構成された第1タイムチャートを有する
     ことを特徴とする自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     前記制御部は、前記第1分析工程における測定項目、あるいは前記第2分析工程における測定項目の測定依頼があった場合に、前記第1タイムチャートの前記第1時間帯、あるいは前記第2時間帯に前記共通分析ユニットの動作を実行する
     ことを特徴とする自動分析装置。
  3.  請求項1または2に記載の自動分析装置において、
     前記第1時間帯と前記第2時間帯の両方において、前記第2分析工程に特有の動作に対して前記共通分析ユニットを使用するように構成された第2タイムチャートを更に有する
     ことを特徴とする自動分析装置。
  4.  請求項3に記載の自動分析装置において、
     前記制御部は、前記第2タイムチャートを使用する場合は、前記第2タイムチャートを実行する時間帯で前記第1タイムチャートを使用する必要がある前記第1分析工程を実施しない
     ことを特徴とする自動分析装置。
  5.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程で使用する反応容器に検体を分注する検体分注機構を更に備える
     ことを特徴とする自動分析装置。
  6.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程で使用する反応容器を保持するインキュベータ機構を更に備える
     ことを特徴とする自動分析装置。
  7.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程で使用する反応容器内の反応液を撹拌する撹拌機構を更に備える
     ことを特徴とする自動分析装置。
  8.  請求項5乃至7のいずれか1項に記載の自動分析装置において、
     前記反応容器は、前記第1分析工程と前記第2分析工程とで異なる容器が使用される
     ことを特徴とする自動分析装置。
  9.  請求項5乃至7のいずれか1項に記載の自動分析装置において、
     前記反応容器は、前記第1分析工程と前記第2分析工程とで同じ容器が使用される
     ことを特徴とする自動分析装置。
  10.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程において分析対象となる検体を収容する検体容器を保持する検体保持部を更に備える
     ことを特徴とする自動分析装置。
  11.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程において分析対象となる検体を収容する検体容器に付与された検体情報を取得する検体情報取得部を更に備える
     ことを特徴とする自動分析装置。
  12.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程で使用する試薬容器から試薬を分取する試薬分注機構を更に備える
     ことを特徴とする自動分析装置。
  13.  請求項1に記載の自動分析装置において、
     前記共通分析ユニットとして、前記第1分析工程及び前記第2分析工程で使用する試薬容器を保持する試薬保持部を更に備える
     ことを特徴とする自動分析装置。
  14.  請求項12または13に記載の自動分析装置において、
     前記第1分析工程と前記第2分析工程とで異なる試薬が使用される
     ことを特徴とする自動分析装置。
  15.  請求項1に記載の自動分析装置において、
     前記第1分析工程で使用する第1分注機構と、
     前記第2分析工程で使用する第2分注機構と、
     前記第1分注機構を洗浄する第1洗浄槽と、
     前記第2分注機構を洗浄する第2洗浄槽と、
     前記共通分析ユニットとして、前記第1洗浄槽及び前記第2洗浄槽に洗浄液を供給する洗浄液供給部と、を更に備える
     ことを特徴とする自動分析装置。
  16.  請求項1に記載の自動分析装置において、
     前記第1分析工程で使用する第1分注機構と、
     前記第2分析工程で使用する第2分注機構と、
     前記第1分注機構を真空乾燥する第1真空槽と、
     前記第2分注機構を真空乾燥する第2真空槽と、
     前記共通分析ユニットとして、前記第1真空槽及び前記第2真空槽の内部を低圧化する真空供給部と、を更に備える
     ことを特徴とする自動分析装置。
  17.  それぞれ項目が異なる第1分析工程、及び第2分析工程を並行して実施することができる自動分析方法であって、
     前記第1分析工程は第1サイクル時間ごとに繰り返し実施可能であり、
     前記第2分析工程は第2サイクル時間ごとに繰り返し実施可能であり、
     前記第2サイクル時間は前記第1サイクル時間の正の整数倍で構成され、
     前記第1サイクル時間は、第1時間帯、及び前記第1時間帯と重複しない第2時間帯を含み、
     前記第1時間帯において前記第1分析工程に特有の動作に対して前記第1分析工程、及び前記第2分析工程で共通して使用される1つ以上の共通分析ユニットを動作させ、前記第2時間帯において前記第2分析工程に特有の動作に対して前記共通分析ユニットを動作させる
     ことを特徴とする自動分析方法。
PCT/JP2023/001411 2022-01-28 2023-01-18 自動分析装置及び自動分析方法 WO2023145582A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011909 2022-01-28
JP2022-011909 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145582A1 true WO2023145582A1 (ja) 2023-08-03

Family

ID=87471806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001411 WO2023145582A1 (ja) 2022-01-28 2023-01-18 自動分析装置及び自動分析方法

Country Status (1)

Country Link
WO (1) WO2023145582A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146987A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 自動分析装置及び自動分析方法
WO2010117044A1 (ja) * 2009-04-09 2010-10-14 株式会社日立ハイテクノロジーズ 自動分析装置および分注装置
WO2020217636A1 (ja) * 2019-04-26 2020-10-29 株式会社日立ハイテク 自動分析装置
WO2021070546A1 (ja) * 2019-10-09 2021-04-15 株式会社日立ハイテク 自動分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146987A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 自動分析装置及び自動分析方法
WO2010117044A1 (ja) * 2009-04-09 2010-10-14 株式会社日立ハイテクノロジーズ 自動分析装置および分注装置
WO2020217636A1 (ja) * 2019-04-26 2020-10-29 株式会社日立ハイテク 自動分析装置
WO2021070546A1 (ja) * 2019-10-09 2021-04-15 株式会社日立ハイテク 自動分析装置

Similar Documents

Publication Publication Date Title
US10775398B2 (en) Automated diagnostic analyzers having vertically arranged carousels and related methods
JP3553540B2 (ja) 自動化学分析方法および装置
CA2650258C (en) Automated continuous and random access analytical system
EP2546655B1 (en) Instrument and process for the automated processing of liquid samples
US5580524A (en) Assay or reaction apparatus with agitating device
JP5193408B2 (ja) 自動分析装置
JP3914837B2 (ja) 自動分析装置
JP6877520B2 (ja) 体外診断分析方法およびシステム
KR20060035770A (ko) 자동화된 다중 탐지 분석기
JPH06207944A (ja) 洗浄機能付き自動分析装置
JP2003083992A (ja) 移送ユニットおよびその移送ユニットを備える自動分析装置
JP2004522979A (ja) タイプに従って分析を仕分けることによって臨床検査用自動分析装置の処理能力を向上させること
CN111033263A (zh) 一种自动分析装置及其工作方法
JP5337600B2 (ja) 自動分析装置及び自動分析装置の制御方法
US20020182640A1 (en) Immunological analyzing apparatus and immunological analyzing method
WO2023145582A1 (ja) 自動分析装置及び自動分析方法
US20220341956A1 (en) Automatic analyzer
JP7225382B2 (ja) 自動分析装置
JP4408404B2 (ja) 自動分析装置
WO2020152991A1 (ja) 自動分析システムおよび検体の搬送方法
WO2023127182A1 (ja) 自動分析装置及び自動分析方法
WO2024135279A1 (ja) 自動分析装置
JP6745407B2 (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746796

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)