WO2023145521A1 - Tungsten oxide powder - Google Patents

Tungsten oxide powder Download PDF

Info

Publication number
WO2023145521A1
WO2023145521A1 PCT/JP2023/001052 JP2023001052W WO2023145521A1 WO 2023145521 A1 WO2023145521 A1 WO 2023145521A1 JP 2023001052 W JP2023001052 W JP 2023001052W WO 2023145521 A1 WO2023145521 A1 WO 2023145521A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tungsten oxide
oxide powder
tungsten
pore
Prior art date
Application number
PCT/JP2023/001052
Other languages
French (fr)
Japanese (ja)
Inventor
志賢 青木
貴彦 牧野
直樹 岩井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023145521A1 publication Critical patent/WO2023145521A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides

Definitions

  • the disclosed embodiments relate to tungsten oxide powder.
  • tungsten is a component that constitutes cemented carbide and cemented carbide such as cermet, and is used together with cobalt, niobium, etc., and is widely used in cutting tools and the like.
  • tungsten since tungsten has a high melting point, it is used in various applications such as heating elements, structural members, catalysts for the petrochemical industry, environmental equipment, wiring for ceramic wiring boards, and heat dissipation members. In order to effectively utilize these resources, a method of recycling tungsten from waste materials (scrap) has been devised (see Patent Document 1).
  • the tungsten oxide powder of the present disclosure includes a powder mainly composed of tungsten oxide crystal grains. Further, when the pore distribution of the powder is measured by a mercury intrusion method, the cumulative pore volume of the powder is 0.35 (ml / g) to 0.45 (ml / g), and the powder The bulk density of the powder is 1.7 (g/ml) to 2.1 (g/ml), and the average pore radius of the powder is 0.2 ( ⁇ m) or more. Further, the specific surface area of the powder measured by the BET method is 3 (m 2 /g) to 5.5 (m 2 /g).
  • FIG. 1 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide according to an embodiment.
  • FIG. 2 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide in a reference example.
  • FIG. 3 is a diagram showing the results of pore size distribution measurement of the tungsten oxide powder according to the embodiment by mercury porosimetry.
  • FIG. 4 is a diagram showing the results of pore size distribution measurement by mercury porosimetry of tungsten oxide powder in Reference Example.
  • FIG. 5 is a diagram showing an SEM observation photograph of the tungsten oxide powder according to the embodiment.
  • FIG. 6 is a diagram showing an SEM observation photograph of tungsten oxide powder in Reference Example.
  • the tungsten oxide powder according to the embodiment contains powder containing tungsten oxide crystal grains as a main component.
  • the tungsten oxide powder according to the embodiment contains powder composed of tungsten oxide crystal grains and unavoidable impurities.
  • the powder contained in the tungsten oxide powder according to the embodiment may have a cumulative pore volume of 0.35 (ml/g) to 0.45 (ml/g).
  • the tungsten oxide powder a powder having a cumulative pore volume of 0.35 (ml/g) or more, metal tungsten, which is an intermediate in producing tungsten carbide from the tungsten oxide powder, is produced.
  • metal tungsten which is an intermediate in producing tungsten carbide from the tungsten oxide powder.
  • diffusion of hydrogen gas into the powder can be promoted.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the metal tungsten generated by the reduction treatment spontaneously ignites due to the powder being too fine. can be reduced to return to tungsten oxide.
  • tungsten carbide can be stably produced from tungsten oxide powder.
  • the cumulative pore volume is a value obtained by accumulating the volume of pores having a size equal to or larger than a predetermined size (pore diameter).
  • pore diameter a predetermined size
  • the cumulative pore volume at a pore diameter of 0.1 ⁇ m is a value obtained by accumulating the volume of pores having a pore diameter of 0.1 ⁇ m or more.
  • the bulk density of the powder contained in the tungsten oxide powder may be 1.7 (g/ml) to 2.1 (g/ml).
  • the tungsten oxide powder a powder with a low bulk density of 2.1 (g/ml) or less and large gaps, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, of hydrogen gas can be promoted.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the surface area of the metallic tungsten tends to increase, and there is a risk that the metallic tungsten produced by the reduction treatment will spontaneously ignite and easily return to tungsten oxide.
  • the tungsten oxide powder has a bulk density of 1.7 (g/ml) or more, the gaps in the powder can be reduced.
  • tungsten carbide can be stably produced from tungsten oxide powder.
  • the powder contained in the tungsten oxide powder may have a porosity of 65(%) to 85(%).
  • the tungsten oxide powder a powder with a large porosity of 65 (%) or more and large gaps, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, hydrogen gas is introduced into the powder. Diffusion can be facilitated.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the tungsten oxide powder a powder having a porosity of 85 (%) or less, excessive increase in the surface area of the tungsten oxide powder can be avoided, and metallic tungsten produced by the reduction treatment returns to tungsten oxide. hard to get rid of.
  • tungsten carbide can be stably produced from tungsten oxide powder.
  • the powder contained in the tungsten oxide powder may have an average pore radius of 0.2 ( ⁇ m) or more.
  • the tungsten oxide powder into a powder having an average pore radius of 0.2 ( ⁇ m) or more, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, diffusion of hydrogen gas into the powder can promote In addition, when the tungsten oxide powder is directly reduced and carbonized with the carbon powder, an efficient solid-phase reaction tends to occur.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the pore diameter with the highest frequency in the powder contained in the tungsten oxide powder may be 0.01 ( ⁇ m) to 1 ( ⁇ m).
  • the tungsten oxide powder a powder having a mode pore diameter of 1 ( ⁇ m) or less, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, diffusion of hydrogen gas into the powder is promoted. can do.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the tungsten oxide powder a powder having a mode pore diameter of 0.01 ( ⁇ m) or more, the pores inside the powder are too fine, resulting in metal tungsten generated by the reduction treatment. , spontaneous ignition in the pores and returning to tungsten oxide can be reduced.
  • tungsten carbide can be stably produced from tungsten oxide powder.
  • the specific surface area of the powder contained in the tungsten oxide powder may be 3 (m 2 /g) to 5.5 (m 2 /g).
  • the specific surface area of the powder in the present disclosure is the specific surface area determined by the BET method.
  • the tungsten oxide powder a powder having a specific surface area of 3 (m 2 /g) or more, contact between the powder and hydrogen gas can be prevented in the hydrogen reduction treatment for producing metallic tungsten from the tungsten oxide powder. can be promoted.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the tungsten oxide powder a powder having a specific surface area of 5.5 (m 2 /g) or less, it is possible to reduce the spontaneous ignition of metal tungsten generated by the reduction treatment and return to tungsten oxide. be able to.
  • tungsten carbide can be stably produced from tungsten oxide powder.
  • the average particle size of the powder contained in the tungsten oxide powder may be 100 (nm) to 1000 (nm).
  • the contact between the powder and hydrogen gas is promoted in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder. can do.
  • tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
  • the tungsten oxide powder a powder having an average particle size of 100 (nm) or more, the specific surface area tends to be small. Therefore, it is possible to reduce the spontaneous ignition of metal tungsten produced in the reduction treatment and return to tungsten oxide due to too fine powder.
  • tungsten carbide can be stably produced from tungsten oxide powder.
  • FIG. 1 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide according to an embodiment. As shown in FIG. 1, in the step of producing tungsten oxide powder and tungsten carbide according to the embodiment, first, cemented carbide scrap was prepared.
  • Cemented carbide which is a kind of cemented carbide, is mainly composed of composite carbides such as metal tungsten and tungsten carbide, and has iron, nickel, cobalt, etc. as a binding phase, and if necessary, as additive components TiC, TaC, NbC, VC, Cr 3 C 2 and the like.
  • Materials to be treated containing cemented carbide are, for example, cutting tools (cutting inserts, drills, end mills, etc.), molds (forming rolls, molds, etc.), civil engineering and mining tools (oil drilling tools, rock crushing tools, etc.).
  • the prepared cemented carbide scrap was then oxidatively roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the resulting mixture was refluxed with an aqueous sodium hydroxide (NaOH) solution and then extracted to obtain a tungsten compound solution containing sodium tungstate (Na 2 WO 4 ).
  • the adsorbent in the present disclosure is not limited to containing lysine, Alanine, Cystine, Methionine, Tyrosine, Valine, Glutamic acid, Histidine ( Histidine, Proline, Threonine, Asparagine, Glycine, Isoleucine, Ornithine, Arginine, Serine, Citrulline and Cystathionine ( Cystathionine).
  • the total addition amount of the salt of the first amino acid in the adsorbent is 0.2 (mol) to 1.1 (mol) with respect to 1 (mol) of the metal component of the tungsten compound. Add in proportion. As a result, a large amount of tungsten compound can be adsorbed with a small amount of adsorbent.
  • the total added amount of the salt of the first amino acid is, for example, 10 (g/l) to 300 (g/l) with respect to the tungsten compound solution.
  • the viscosity of the solution does not increase, and the recovery efficiency of the metal compound is less likely to decrease.
  • the adsorbent consists of an amino acid salt, the viscosity of the solution is less likely to increase, resulting in good workability.
  • the temperature may be adjusted according to the activity of free amino acids, and usually room temperature is fine.
  • the tungsten compound solution to which the adsorbent has been added may be adjusted using hydrochloric acid or the like so that the zeta potential of free amino acids is positive. This allows the adsorbent to adsorb tungsten compound ions, which are anions.
  • the pH of the solution may be less than 7 (acidic).
  • the free amino acid is glutamic acid, the preferred pH is 1.5 or less.
  • the recovery efficiency of the adsorbent is higher if the adsorption reaction is within 1 hour. That is, when the adsorption reaction exceeds 1 hour, part of the adsorbed metal compound may be desorbed from the free amino acid.
  • the adsorbent with the tungsten compound ions adsorbed was dehydrated by centrifugation or other means. Then, if necessary, the adsorbent is washed in the order of acid washing and pure water washing. Instead of acid cleaning, hot water of 40 (° C.) or more may be used for cleaning. Impurities were removed by washing with pure water until the electric conductivity of the washing filtrate became 500 ( ⁇ S/m) or less. As a result, the tungsten compound can be improved in quality and recovered.
  • the adsorbent with the tungsten compound ions adsorbed thereon was incinerated, for example, at a temperature of 300 (° C.) or higher in the atmosphere to oxidize the tungsten compound and remove organic components including the adsorbent.
  • a tungsten oxide powder (WO 3 ) according to the embodiment was obtained.
  • the obtained tungsten oxide powder is heat-treated at a temperature of 800 (° C.) to 950 (° C.) in a reducing atmosphere (eg, hydrogen gas atmosphere) to reduce the tungsten oxide compound.
  • a reducing atmosphere eg, hydrogen gas atmosphere
  • metallic tungsten (W) can be obtained.
  • tungsten carbide (WC) By carbonizing the obtained metal tungsten, it is possible to obtain tungsten carbide (WC) as a raw material of cemented carbide.
  • FIG. 2 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide in a reference example. As shown in FIG. 2, in the step of producing tungsten oxide powder and tungsten carbide in the reference example, first, cemented carbide scrap was prepared.
  • the prepared cemented carbide scrap was then oxidatively roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the resulting mixture was extracted with an aqueous sodium hydroxide (NaOH) solution to obtain a tungsten compound solution containing sodium tungstate (Na2WO 4 ). Since each process up to this point is the same as the above-described embodiment, detailed description thereof is omitted.
  • the resulting tungsten compound solution was ion-exchanged with an ion exchange resin or the like to produce an aqueous solution of ammonium tungstate ((NH 4 ) 2 WO 4 ). Then, the resulting aqueous solution was heated and concentrated to crystallize the tungsten compound as ammonium paratungstate (APT).
  • ammonium tungstate (NH 4 ) 2 WO 4 ).
  • metal tungsten (W) can be obtained by heat-treating the obtained tungsten oxide powder in a reducing atmosphere to reduce the tungsten oxide compound.
  • tungsten carbide (WC) By carbonizing the obtained metal tungsten, it is possible to obtain tungsten carbide (WC) as a raw material of cemented carbide.
  • the measurement conditions for pore size distribution measurement by the mercury intrusion method are as follows.
  • FIG. 3 is a diagram showing the results of pore distribution measurement of the tungsten oxide powder according to the embodiment by mercury porosimetry.
  • FIG. 4 is a view showing the results of pore size distribution measurement by mercury porosimetry of tungsten oxide powder in the reference example.
  • Table 1 shows the cumulative pore volume, average pore radius, bulk density and porosity of the tungsten oxide powder obtained by the mercury intrusion method.
  • the powder contained in the tungsten oxide powder according to the embodiment has a cumulative pore volume of 0.42 (mL/g), which is larger than that of the reference example. This result is also supported by the SEM observation photographs of the tungsten oxide powder in the embodiment and reference example shown in FIGS.
  • tungsten carbide can be efficiently produced from the tungsten oxide powder.
  • the mode pore diameter (the pore diameter with the largest log differential pore volume) is 0.2, which is smaller than that of the reference example. ( ⁇ m).
  • tungsten carbide can be efficiently produced from the tungsten oxide powder.
  • the powder contained in the tungsten oxide powder according to the embodiment has an average pore radius of 0.26 ( ⁇ m), which is larger than that of the reference example.
  • the powder having a large average pore radius it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder.
  • the tungsten oxide powder is directly reduced and carbonized with the carbon powder, an efficient solid phase reaction can be achieved.
  • tungsten carbide can be efficiently produced from the tungsten oxide powder.
  • the powder contained in the tungsten oxide powder according to the embodiment has a bulk density of 1.82 (g/mL), which is smaller than that of the reference example. In this way, by using a powder having a low bulk density, it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metallic tungsten from the tungsten oxide powder.
  • tungsten carbide can be efficiently produced from the tungsten oxide powder.
  • the porosity of the powder contained in the tungsten oxide powder according to the embodiment is 76 (%), which is higher than that of the reference example.
  • tungsten carbide can be efficiently produced from the tungsten oxide powder.
  • the maximum peak of the Log differential pore volume is in the range of 0.01 ( ⁇ m) or more and 1 ( ⁇ m) or less of the pore diameter. exist.
  • the peak value is Ip
  • the value of the Log differential pore volume in the pore diameter range of 1 ( ⁇ m) or more and 100 ( ⁇ m) or less is 0.1 times or more of the peak value Ip. I know there is.
  • the peak value having a log differential pore volume of 0.2 (mL / g) or more and 1 (mL / g) or less exists in the range of pore diameters from 0.01 ( ⁇ m) to 1 ( ⁇ m).
  • the value of the Log differential pore volume is 0.05 (mL/g) or more in the pore diameter range of 1 ( ⁇ m) or more and 100 ( ⁇ m) or less.
  • the tungsten oxide powder of the present disclosure has the characteristic of contributing to an effective synthesis method in synthesizing tungsten carbide, which is the main raw material of cutting tools.
  • the process of producing tungsten carbide from tungsten oxide powder includes an indirect process of reducing with hydrogen gas and then carbonizing with carbon powder, and a direct process of reducing and carbonizing with carbon powder.
  • the direct process is an essential technology for synthesizing fine tungsten carbide and has been attracting attention in recent years.
  • the hydrogen reduction treatment in the indirect process is a gas phase reaction between powder and gas, the higher the gas diffusion, the more efficient the reaction. Therefore, it is desirable to have fine pores so that small hydrogen gas molecules can diffuse.
  • the solid-phase reaction between the powders causes the carbon powder to successfully enter the inside of the tungsten oxide powder (or metal tungsten powder) with only fine pores. It does not enter, and it is difficult to become an efficient solid-phase reaction.
  • fine pores pore diameter of 0.01 ( ⁇ m) or more and 1 ( ⁇ m) or less
  • relatively large pores pore diameter of 1 ( ⁇ m) or more and 100 ( ⁇ m) below
  • the specific surface areas of the tungsten oxide powders in the obtained embodiments and reference examples were measured by the BET method.
  • the measurement conditions of the BET method are as follows.
  • a Macsorb HM model-1220 manufactured by Mountec was used as a measuring device.
  • the measurement conditions were the BET 1-point method (according to JIS R 1626-1996) using a flow system, and the samples were heated at 200 (° C.) for 10 minutes or longer before being measured.
  • Nitrogen N 2 : mixed concentration 30.2 (%) flow rate 25 (ml/min) was used as the adsorption gas.
  • Table 2 shows the specific surface areas of the tungsten oxide powders in the embodiments and reference examples obtained by the BET method.
  • the powder contained in the tungsten oxide powder according to the embodiment has a specific surface area of 4.22 (m 2 /g), which is larger than that of the reference example.
  • tungsten carbide can be efficiently produced from the tungsten oxide powder.
  • the average particle size of the powder contained in the obtained tungsten oxide powder according to the embodiment was evaluated by SEM observation. As a result, it was found that the average particle size of the powder contained in the tungsten oxide powder according to the embodiment was 100 (nm) to 1000 (nm).
  • the particle size of the metal tungsten powder after reduction becomes moderately coarse, so that the intended tungsten carbide synthesis becomes possible without causing the spontaneous ignition phenomenon peculiar to the metal powder.
  • the present invention is not limited to the above embodiments, and various modifications are possible without departing from the spirit of the present invention.
  • the above embodiment shows the case of producing (recycling) tungsten oxide powder and tungsten carbide from cemented carbide scrap, but the present disclosure is not limited to such examples, and tungsten oxide powder and tungsten carbide are produced from ore. It can also be applied when generating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

This tungsten oxide powder comprises a powder containing tungsten oxide crystal grains as a main component. When the pore size distribution of the powder is measured by mercury porosimetry, the cumulative pore volume of the powder is 0.35 (ml/g) to 0.45 (ml/g), the bulk density of the powder is 1.7 (g/ml) to 2.1 (g/ml), and the average pore radius of the powder is 0.2 (μm) or more. When the powder is measured by a BET method, the specific surface area of the powder is 3 (m2/g) to 5.5 (m2/g).

Description

酸化タングステン粉末tungsten oxide powder
 開示の実施形態は、酸化タングステン粉末に関する。 The disclosed embodiments relate to tungsten oxide powder.
 近年、金属または金属化合物のリサイクル技術の開発が進められている。たとえば、タングステンは、超硬合金やサーメットなどの超硬質合金を構成する成分であり、コバルト、ニオブなどとともに用いられ、切削工具などに多く使用されている。 In recent years, the development of recycling technology for metals or metal compounds has progressed. For example, tungsten is a component that constitutes cemented carbide and cemented carbide such as cermet, and is used together with cobalt, niobium, etc., and is widely used in cutting tools and the like.
 また、タングステンは、高融点であることから、発熱体、構造部材、石油化学工業用の触媒、環境機器、セラミック配線基板の配線、放熱部材などの種々の用途に用いられている。これらの資源を有効活用するため、廃材(スクラップ)からタングステンをリサイクルする方法が考案されている(特許文献1を参照)。 In addition, since tungsten has a high melting point, it is used in various applications such as heating elements, structural members, catalysts for the petrochemical industry, environmental equipment, wiring for ceramic wiring boards, and heat dissipation members. In order to effectively utilize these resources, a method of recycling tungsten from waste materials (scrap) has been devised (see Patent Document 1).
特開2004-002927号公報JP 2004-002927 A
 本開示の酸化タングステン粉末は、酸化タングステン結晶粒を主成分とする粉体を含む。また、前記粉体の細孔分布を水銀圧入法により測定したとき、前記粉体の累積細孔容積は、0.35(ml/g)~0.45(ml/g)であり、前記粉体の嵩密度は、1.7(g/ml)~2.1(g/ml)であり、前記粉体の平均細孔半径は、0.2(μm)以上である。また、前記粉体をBET法により測定したときの比表面積は、3(m/g)~5.5(m/g)である。 The tungsten oxide powder of the present disclosure includes a powder mainly composed of tungsten oxide crystal grains. Further, when the pore distribution of the powder is measured by a mercury intrusion method, the cumulative pore volume of the powder is 0.35 (ml / g) to 0.45 (ml / g), and the powder The bulk density of the powder is 1.7 (g/ml) to 2.1 (g/ml), and the average pore radius of the powder is 0.2 (μm) or more. Further, the specific surface area of the powder measured by the BET method is 3 (m 2 /g) to 5.5 (m 2 /g).
図1は、実施形態に係る酸化タングステン粉末および炭化タングステンの生成工程の手順の一例を示すフローチャートである。FIG. 1 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide according to an embodiment. 図2は、参考例における酸化タングステン粉末および炭化タングステンの生成工程の手順の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide in a reference example. 図3は、実施形態に係る酸化タングステン粉末の水銀圧入法による細孔分布測定の結果を示す図である。FIG. 3 is a diagram showing the results of pore size distribution measurement of the tungsten oxide powder according to the embodiment by mercury porosimetry. 図4は、参考例における酸化タングステン粉末の水銀圧入法による細孔分布測定の結果を示す図である。FIG. 4 is a diagram showing the results of pore size distribution measurement by mercury porosimetry of tungsten oxide powder in Reference Example. 図5は、実施形態に係る酸化タングステン粉末のSEM観察写真を示す図である。FIG. 5 is a diagram showing an SEM observation photograph of the tungsten oxide powder according to the embodiment. 図6は、参考例における酸化タングステン粉末のSEM観察写真を示す図である。FIG. 6 is a diagram showing an SEM observation photograph of tungsten oxide powder in Reference Example.
 従来技術では、タングステンのリサイクル工程において、中間体である酸化タングステン粉末から、超硬合金の原料となる炭化タングステンを効率よく生成するという点でさらなる改善の余地があった。 With the conventional technology, there is room for further improvement in terms of efficiently producing tungsten carbide, which is a raw material for cemented carbide, from the intermediate tungsten oxide powder in the tungsten recycling process.
 そこで、上記の課題を解決し、炭化タングステンを効率よく生成することができる酸化タングステン粉末を提供することができる技術の実現が期待されている。 Therefore, it is expected to realize a technology that can solve the above problems and provide tungsten oxide powder that can efficiently produce tungsten carbide.
 以下、添付図面を参照して、本願の開示する酸化タングステン粉末の実施形態について説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the tungsten oxide powder disclosed in the present application will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
 実施形態に係る酸化タングステン粉末は、酸化タングステン結晶粒を主成分とする粉体を含む。たとえば、実施形態に係る酸化タングステン粉末は、酸化タングステン結晶粒および不可避不純物からなる粉体を含む。 The tungsten oxide powder according to the embodiment contains powder containing tungsten oxide crystal grains as a main component. For example, the tungsten oxide powder according to the embodiment contains powder composed of tungsten oxide crystal grains and unavoidable impurities.
 そして、実施形態に係る酸化タングステン粉末に含まれる粉体は、累積細孔容積が0.35(ml/g)~0.45(ml/g)であってもよい。 The powder contained in the tungsten oxide powder according to the embodiment may have a cumulative pore volume of 0.35 (ml/g) to 0.45 (ml/g).
 このように、酸化タングステン粉末を累積細孔容積が0.35(ml/g)以上の粉体とすることで、酸化タングステン粉末から炭化タングステンを生成する際の中間体である金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 Thus, by making the tungsten oxide powder a powder having a cumulative pore volume of 0.35 (ml/g) or more, metal tungsten, which is an intermediate in producing tungsten carbide from the tungsten oxide powder, is produced. In the hydrogen reduction treatment, diffusion of hydrogen gas into the powder can be promoted.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 また、酸化タングステン粉末を累積細孔容積が0.45(ml/g)以下の粉体とすることで、粉体が細かすぎることに起因して、還元処理で生成された金属タングステンが自然発火して酸化タングステンに戻ってしまうことを低減することができる。 In addition, by making the tungsten oxide powder a powder having a cumulative pore volume of 0.45 (ml / g) or less, the metal tungsten generated by the reduction treatment spontaneously ignites due to the powder being too fine. can be reduced to return to tungsten oxide.
 したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを安定して生成することができる。 Therefore, according to the embodiment, tungsten carbide can be stably produced from tungsten oxide powder.
 なお、累積細孔容積とは、所定の大きさ(細孔径)以上のサイズにおける細孔の容積を積算した値である。例えば、細孔径0.1μmにおける累積細孔容積とは、0.1μm以上の細孔径を有する細孔の容積を積算した値である。 It should be noted that the cumulative pore volume is a value obtained by accumulating the volume of pores having a size equal to or larger than a predetermined size (pore diameter). For example, the cumulative pore volume at a pore diameter of 0.1 μm is a value obtained by accumulating the volume of pores having a pore diameter of 0.1 μm or more.
 酸化タングステン粉末には様々なサイズの細孔が存在することから、細孔径の設定値が小さくなるほど累積細孔容積は大きくなる。ただし、細孔のサイズには物理的に下限が存在することから、細孔径の設定値を小さくするほどに累積細孔容積は特定の値に収束する。 Since there are pores of various sizes in the tungsten oxide powder, the smaller the set value of the pore diameter, the larger the cumulative pore volume. However, since there is a physical lower limit to the pore size, the cumulative pore volume converges to a specific value as the set value of the pore diameter is decreased.
 また、実施形態では、酸化タングステン粉末に含まれる粉体の嵩密度が、1.7(g/ml)~2.1(g/ml)であってもよい。 Further, in the embodiment, the bulk density of the powder contained in the tungsten oxide powder may be 1.7 (g/ml) to 2.1 (g/ml).
 このように、酸化タングステン粉末を嵩密度が2.1(g/ml)以下と小さく、隙間の大きい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 In this way, by making the tungsten oxide powder a powder with a low bulk density of 2.1 (g/ml) or less and large gaps, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, of hydrogen gas can be promoted.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 粉体における隙間が多すぎる場合には、金属タングステンの表面積が大きくなりやすく、還元処理で生成された金属タングステンが自然発火して酸化タングステンに戻りやすくなる恐れがある。酸化タングステン粉末を嵩密度が1.7(g/ml)以上の粉体とした場合には、粉体における隙間を小さくできる。 If there are too many gaps in the powder, the surface area of the metallic tungsten tends to increase, and there is a risk that the metallic tungsten produced by the reduction treatment will spontaneously ignite and easily return to tungsten oxide. When the tungsten oxide powder has a bulk density of 1.7 (g/ml) or more, the gaps in the powder can be reduced.
 したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを安定して生成することができる。 Therefore, according to the embodiment, tungsten carbide can be stably produced from tungsten oxide powder.
 また、実施形態では、酸化タングステン粉末に含まれる粉体の気孔率が、65(%)~85(%)であってもよい。 In addition, in the embodiment, the powder contained in the tungsten oxide powder may have a porosity of 65(%) to 85(%).
 このように、酸化タングステン粉末を気孔率が65(%)以上と大きく、隙間の大きい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 In this way, by making the tungsten oxide powder a powder with a large porosity of 65 (%) or more and large gaps, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, hydrogen gas is introduced into the powder. Diffusion can be facilitated.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 また、酸化タングステン粉末を気孔率が85(%)以下の粉体とすることで、酸化タングステン粉末の表面積が過度に大きくなることが避けられ、還元処理で生成された金属タングステンが酸化タングステンに戻ってしまいにくい。 In addition, by making the tungsten oxide powder a powder having a porosity of 85 (%) or less, excessive increase in the surface area of the tungsten oxide powder can be avoided, and metallic tungsten produced by the reduction treatment returns to tungsten oxide. hard to get rid of.
 したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを安定して生成することができる。 Therefore, according to the embodiment, tungsten carbide can be stably produced from tungsten oxide powder.
 また、実施形態では、酸化タングステン粉末に含まれる粉体の平均細孔半径が、0.2(μm)以上であってもよい。 In addition, in the embodiment, the powder contained in the tungsten oxide powder may have an average pore radius of 0.2 (μm) or more.
 このように、酸化タングステン粉末を平均細孔半径が0.2(μm)以上の粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。また、酸化タングステン粉末を炭素粉末で直接還元および炭化を行う際に効率的な固相反応となりやすい。 In this way, by making the tungsten oxide powder into a powder having an average pore radius of 0.2 (μm) or more, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, diffusion of hydrogen gas into the powder can promote In addition, when the tungsten oxide powder is directly reduced and carbonized with the carbon powder, an efficient solid-phase reaction tends to occur.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 また、実施形態では、酸化タングステン粉末に含まれる粉体において最も頻度が高い細孔径が、0.01(μm)~1(μm)であってもよい。 In addition, in the embodiment, the pore diameter with the highest frequency in the powder contained in the tungsten oxide powder may be 0.01 (μm) to 1 (μm).
 このように、酸化タングステン粉末を最頻細孔径が1(μm)以下の粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 Thus, by making the tungsten oxide powder a powder having a mode pore diameter of 1 (μm) or less, in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder, diffusion of hydrogen gas into the powder is promoted. can do.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 また、酸化タングステン粉末を最頻細孔径が0.01(μm)以上の粉体とすることで、粉体内部の細孔が細かすぎることに起因して、還元処理で生成された金属タングステンが、細孔内において自然発火して酸化タングステンに戻ってしまうことを低減することができる。 In addition, by making the tungsten oxide powder a powder having a mode pore diameter of 0.01 (μm) or more, the pores inside the powder are too fine, resulting in metal tungsten generated by the reduction treatment. , spontaneous ignition in the pores and returning to tungsten oxide can be reduced.
 したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを安定して生成することができる。 Therefore, according to the embodiment, tungsten carbide can be stably produced from tungsten oxide powder.
 また、実施形態では、酸化タングステン粉末に含まれる粉体の比表面積が、3(m/g)~5.5(m/g)であってもよい。なお、本開示における粉体の比表面積は、BET法によって求めた比表面積である。 Further, in embodiments, the specific surface area of the powder contained in the tungsten oxide powder may be 3 (m 2 /g) to 5.5 (m 2 /g). In addition, the specific surface area of the powder in the present disclosure is the specific surface area determined by the BET method.
 このように、酸化タングステン粉末を比表面積が3(m/g)以上の粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体と水素ガスとの接触を促進することができる。 Thus, by making the tungsten oxide powder a powder having a specific surface area of 3 (m 2 /g) or more, contact between the powder and hydrogen gas can be prevented in the hydrogen reduction treatment for producing metallic tungsten from the tungsten oxide powder. can be promoted.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 また、酸化タングステン粉末を比表面積が5.5(m/g)以下の粉体とすることで、還元処理で生成された金属タングステンが自然発火して酸化タングステンに戻ってしまうことを低減することができる。 In addition, by making the tungsten oxide powder a powder having a specific surface area of 5.5 (m 2 /g) or less, it is possible to reduce the spontaneous ignition of metal tungsten generated by the reduction treatment and return to tungsten oxide. be able to.
 したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを安定して生成することができる。 Therefore, according to the embodiment, tungsten carbide can be stably produced from tungsten oxide powder.
 また、実施形態では、酸化タングステン粉末に含まれる粉体の平均粒子径が、100(nm)~1000(nm)であってもよい。 Further, in the embodiment, the average particle size of the powder contained in the tungsten oxide powder may be 100 (nm) to 1000 (nm).
 このように、酸化タングステン粉末を平均粒子径が1000(nm)以下の細かい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体と水素ガスとの接触を促進することができる。 In this way, by making the tungsten oxide powder into a fine powder having an average particle size of 1000 (nm) or less, the contact between the powder and hydrogen gas is promoted in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder. can do.
 すなわち、実施形態では、酸化タングステン粉末を効率よく還元処理することができる。したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 That is, in the embodiment, tungsten oxide powder can be efficiently reduced. Therefore, according to the embodiment, tungsten carbide can be efficiently produced from tungsten oxide powder.
 また、酸化タングステン粉末を平均粒子径が100(nm)以上の粉体とすることで、比表面積が小さくなりやすい。そのため、粉体が細かすぎることに起因して、還元処理で生成された金属タングステンが自然発火して酸化タングステンに戻ってしまうことを低減することができる。 Also, by making the tungsten oxide powder a powder having an average particle size of 100 (nm) or more, the specific surface area tends to be small. Therefore, it is possible to reduce the spontaneous ignition of metal tungsten produced in the reduction treatment and return to tungsten oxide due to too fine powder.
 したがって、実施形態によれば、酸化タングステン粉末から炭化タングステンを安定して生成することができる。 Therefore, according to the embodiment, tungsten carbide can be stably produced from tungsten oxide powder.
 以下、本開示の実施例を具体的に説明する。図1は、実施形態に係る酸化タングステン粉末および炭化タングステンの生成工程の手順の一例を示すフローチャートである。図1に示すように、実施形態に係る酸化タングステン粉末および炭化タングステンの生成工程では、まず、超硬合金のスクラップを準備した。 Examples of the present disclosure will be specifically described below. FIG. 1 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide according to an embodiment. As shown in FIG. 1, in the step of producing tungsten oxide powder and tungsten carbide according to the embodiment, first, cemented carbide scrap was prepared.
 超硬質合金の一種である超硬合金は、金属タングステンや炭化タングステンなどの複合炭化物を主体とし、鉄、ニッケル、コバルトなどを結合相とし、必要に応じて添加物成分としてTiC、TaC、NbC、VC、Crなどを含む。 Cemented carbide, which is a kind of cemented carbide, is mainly composed of composite carbides such as metal tungsten and tungsten carbide, and has iron, nickel, cobalt, etc. as a binding phase, and if necessary, as additive components TiC, TaC, NbC, VC, Cr 3 C 2 and the like.
 対象となる超硬合金を含んだ被処理材は、たとえば、切削工具(切削インサート、ドリル、エンドミル等)、金型(成形ロール、成形型等)、土木鉱山用工具(石油掘削用工具、岩石粉砕用工具等)などである。 Materials to be treated containing cemented carbide are, for example, cutting tools (cutting inserts, drills, end mills, etc.), molds (forming rolls, molds, etc.), civil engineering and mining tools (oil drilling tools, rock crushing tools, etc.).
 次に、準備された超硬合金スクラップを酸化焙焼し、酸化タングステン(WO)およびタングステン酸コバルト(CoWO)の混合体を得た。そして、得られた混合体に対して水酸化ナトリウム(NaOH)水溶液で還流後、抽出することで、タングステン酸ナトリウム(NaWO)を含有するタングステン化合物溶液を得た。 The prepared cemented carbide scrap was then oxidatively roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the resulting mixture was refluxed with an aqueous sodium hydroxide (NaOH) solution and then extracted to obtain a tungsten compound solution containing sodium tungstate (Na 2 WO 4 ).
 次に、得られたタングステン化合物溶液にリジン(Lysine)を含む吸着剤を添加して、タングステン化合物イオンをリジンに吸着させた(図ではリジン-WOと記載)。 Next, an adsorbent containing lysine was added to the obtained tungsten compound solution to adsorb tungsten compound ions to lysine (denoted as lysine-WO 4 in the figure).
 なお、本開示における吸着剤は、リジンを含む場合に限られず、アラニン(Alanine)、シスチン(Cystine)、メチオニン(Methionine)、チロシン(Tyrosine)、バリン(Valine)、グルタミン酸(Glutamic acid)、ヒスチジン(Histidine)、プロリン(Proline)、トレオニン(Threonine)、アスパラギン(Asparagine)、グリシン(Glycine)、イソロイシン(Isoleucine)、オルニチン(Ornithine)、アルギニン(Arginine)、セリン(Serine)、シトルリン(Citrulline)およびシスタチオニン(Cystathionine)のうちの少なくとも一種の第1アミノ酸を含んでいてもよい。 Note that the adsorbent in the present disclosure is not limited to containing lysine, Alanine, Cystine, Methionine, Tyrosine, Valine, Glutamic acid, Histidine ( Histidine, Proline, Threonine, Asparagine, Glycine, Isoleucine, Ornithine, Arginine, Serine, Citrulline and Cystathionine ( Cystathionine).
 かかる吸着処理では、たとえば、吸着剤中の第1アミノ酸の塩の合計添加量が、タングステン化合物の金属成分1(mol)に対して、0.2(mol)~1.1(mol)の含有比率で添加する。これによって、少量の吸着剤で多量のタングステン化合物を吸着させることができる。 In such adsorption treatment, for example, the total addition amount of the salt of the first amino acid in the adsorbent is 0.2 (mol) to 1.1 (mol) with respect to 1 (mol) of the metal component of the tungsten compound. Add in proportion. As a result, a large amount of tungsten compound can be adsorbed with a small amount of adsorbent.
 また、第1アミノ酸の塩の合計添加量は、たとえば、タングステン化合物溶液に対して、10(g/l)~300(g/l)である。これによって、溶液の粘性が高くならず、金属化合物の回収効率が低下しにくくなる。特に、吸着剤がアミノ酸の塩からなる場合、溶液の粘性が上がりにくく、作業性がよい。 Also, the total added amount of the salt of the first amino acid is, for example, 10 (g/l) to 300 (g/l) with respect to the tungsten compound solution. As a result, the viscosity of the solution does not increase, and the recovery efficiency of the metal compound is less likely to decrease. In particular, when the adsorbent consists of an amino acid salt, the viscosity of the solution is less likely to increase, resulting in good workability.
 温度は遊離アミノ酸の活性に応じて調整すればよく、通常は室温で構わない。吸着剤を添加したタングステン化合物溶液を、塩酸などを用いて遊離アミノ酸のゼータ電位が正となるように調整してもよい。これによって、吸着剤にアニオンであるタングステン化合物イオンを吸着させることができる。 The temperature may be adjusted according to the activity of free amino acids, and usually room temperature is fine. The tungsten compound solution to which the adsorbent has been added may be adjusted using hydrochloric acid or the like so that the zeta potential of free amino acids is positive. This allows the adsorbent to adsorb tungsten compound ions, which are anions.
 また、溶液のpHは7未満(酸性)であってもよい。遊離アミノ酸がリジンおよびアルギニンの場合、好適なpHは4以下、好ましくは0.5~3、望ましくはpH=0.8~2.3である。遊離アミノ酸がグルタミン酸の場合、好適なpHは1.5以下である。 Also, the pH of the solution may be less than 7 (acidic). When the free amino acids are lysine and arginine, a suitable pH is 4 or less, preferably 0.5-3, desirably pH=0.8-2.3. When the free amino acid is glutamic acid, the preferred pH is 1.5 or less.
 これによって、タングステン化合物の回収率を高めることができる。なお、溶液のpHを調整する工程と、金属化合物が含有される溶液中に吸着剤を添加する工程とは、どちらが先でもよい。 By doing so, it is possible to increase the recovery rate of the tungsten compound. Either the step of adjusting the pH of the solution or the step of adding the adsorbent to the solution containing the metal compound may be performed first.
 吸着剤が第1アミノ酸の塩である場合、吸着反応は1時間以内であるほうが、吸着剤の回収効率が高い。すなわち、吸着反応が1時間を越えると、吸着していた金属化合物の一部が遊離アミノ酸から脱離することがある。 When the adsorbent is a salt of the first amino acid, the recovery efficiency of the adsorbent is higher if the adsorption reaction is within 1 hour. That is, when the adsorption reaction exceeds 1 hour, part of the adsorbed metal compound may be desorbed from the free amino acid.
 リジンへの吸着工程につづいて、タングステン化合物イオンが吸着した吸着剤を、遠心分離等の手段により脱水した。そして、必要に応じて、酸洗浄と純水洗浄の順に吸着剤を洗浄する。酸洗浄の代わりに40(℃)以上の温水で洗浄してもよい。そして洗浄ろ液の電気伝導度が500(μS/m)以下になるまで純水洗浄をするなどして不純物を除去した。これによって、タングステン化合物を高品位化し、回収することができる。 Following the adsorption step to lysine, the adsorbent with the tungsten compound ions adsorbed was dehydrated by centrifugation or other means. Then, if necessary, the adsorbent is washed in the order of acid washing and pure water washing. Instead of acid cleaning, hot water of 40 (° C.) or more may be used for cleaning. Impurities were removed by washing with pure water until the electric conductivity of the washing filtrate became 500 (μS/m) or less. As a result, the tungsten compound can be improved in quality and recovered.
 次に、タングステン化合物イオンが吸着した吸着剤を、たとえば大気中で300(℃)以上の温度で焼却してタングステン化合物を酸化するとともに、吸着剤を含む有機物成分を除去した。これにより、実施形態に係る酸化タングステン粉末(WO)が得られた。 Next, the adsorbent with the tungsten compound ions adsorbed thereon was incinerated, for example, at a temperature of 300 (° C.) or higher in the atmosphere to oxidize the tungsten compound and remove organic components including the adsorbent. As a result, a tungsten oxide powder (WO 3 ) according to the embodiment was obtained.
 なお、図1に示すように、得られた酸化タングステン粉末を、還元雰囲気(たとえば、水素ガス雰囲気)にて800(℃)~950(℃)の温度で熱処理し、酸化タングステン化合物を還元する。これにより、金属タングステン(W)を得ることができる。そして、得られた金属タングステンを炭化することで、超硬合金の原料となる炭化タングステン(WC)を得ることができる。 Note that, as shown in FIG. 1, the obtained tungsten oxide powder is heat-treated at a temperature of 800 (° C.) to 950 (° C.) in a reducing atmosphere (eg, hydrogen gas atmosphere) to reduce the tungsten oxide compound. Thereby, metallic tungsten (W) can be obtained. By carbonizing the obtained metal tungsten, it is possible to obtain tungsten carbide (WC) as a raw material of cemented carbide.
 図2は、参考例における酸化タングステン粉末および炭化タングステンの生成工程の手順の一例を示すフローチャートである。図2に示すように、参考例における酸化タングステン粉末および炭化タングステンの生成工程では、まず、超硬合金のスクラップを準備した。 FIG. 2 is a flow chart showing an example of a procedure for producing tungsten oxide powder and tungsten carbide in a reference example. As shown in FIG. 2, in the step of producing tungsten oxide powder and tungsten carbide in the reference example, first, cemented carbide scrap was prepared.
 次に、準備された超硬合金スクラップを酸化焙焼し、酸化タングステン(WO)およびタングステン酸コバルト(CoWO)の混合体を得た。そして、得られた混合体に対して水酸化ナトリウム(NaOH)水溶液で抽出することで、タングステン酸ナトリウム(Na2WO)を含有するタングステン化合物溶液を得た。ここまでの各工程は上述の実施形態と同様であるため、詳細な説明は省略する。 The prepared cemented carbide scrap was then oxidatively roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the resulting mixture was extracted with an aqueous sodium hydroxide (NaOH) solution to obtain a tungsten compound solution containing sodium tungstate (Na2WO 4 ). Since each process up to this point is the same as the above-described embodiment, detailed description thereof is omitted.
 次に、得られたタングステン化合物溶液をイオン交換樹脂などでイオン交換し、タングステン酸アンモニウム((NHWO)の水溶液を生成した。そして、得られた水溶液を加熱濃縮することで、タングステン化合物をパラタングステン酸アンモニウム(APT)として晶析させた。 Next, the resulting tungsten compound solution was ion-exchanged with an ion exchange resin or the like to produce an aqueous solution of ammonium tungstate ((NH 4 ) 2 WO 4 ). Then, the resulting aqueous solution was heated and concentrated to crystallize the tungsten compound as ammonium paratungstate (APT).
 次に、得られたAPTを熱分解することでAPTを酸化し、参考例の酸化タングステン粉末(WO)が得られた。 Next, the obtained APT was thermally decomposed to oxidize the APT, and a tungsten oxide powder (WO 3 ) of Reference Example was obtained.
 なお、図2に示すように、得られた酸化タングステン粉末を還元雰囲気で熱処理し、酸化タングステン化合物を還元することで、金属タングステン(W)を得ることができる。そして、得られた金属タングステンを炭化することで、超硬合金の原料となる炭化タングステン(WC)を得ることができる。 As shown in FIG. 2, metal tungsten (W) can be obtained by heat-treating the obtained tungsten oxide powder in a reducing atmosphere to reduce the tungsten oxide compound. By carbonizing the obtained metal tungsten, it is possible to obtain tungsten carbide (WC) as a raw material of cemented carbide.
 次に、得られた実施形態および参考例の酸化タングステン粉末に対して、水銀圧入法による細孔分布測定を行った。水銀圧入法による細孔分布測定の測定条件は以下の通りである。 Next, the obtained tungsten oxide powders of the embodiment and reference example were subjected to pore size distribution measurement by mercury porosimetry. The measurement conditions for pore size distribution measurement by the mercury intrusion method are as follows.
 前処理として、120(℃)―4時間の条件で恒温乾燥を実施した。その後、水銀圧入法により、細孔半径約0.0018(μm)~100(μm)の細孔分布を求めた。測定装置はオートポアV9620(micromeritics社製)を用いた。細孔径は、下記のWashburnの式を用い算出した。
Washburnの式:PD=-4σ・cosθ
P:圧力
D:細孔直径
σ:水銀の表面張力(480(dynes/cm))
θ:水銀と試料の接触角(140(°))
As a pretreatment, constant temperature drying was performed under the conditions of 120 (° C.) and 4 hours. After that, a pore distribution with a pore radius of about 0.0018 (μm) to 100 (μm) was obtained by a mercury intrusion method. Autopore V9620 (manufactured by Micromeritics) was used as a measuring device. The pore diameter was calculated using the following Washburn formula.
Washburn's formula: PD = -4σ · cos θ
P: pressure D: pore diameter σ: surface tension of mercury (480 (dynes/cm))
θ: contact angle between mercury and sample (140 (°))
 図3は、実施形態に係る酸化タングステン粉末の水銀圧入法による細孔分布測定の結果を示す図である。また、図4は、参考例における酸化タングステン粉末の水銀圧入法による細孔分布測定の結果を示す図である。 FIG. 3 is a diagram showing the results of pore distribution measurement of the tungsten oxide powder according to the embodiment by mercury porosimetry. Moreover, FIG. 4 is a view showing the results of pore size distribution measurement by mercury porosimetry of tungsten oxide powder in the reference example.
 また、かかる水銀圧入法によって求められた酸化タングステン粉末の累積細孔容積、平均細孔半径、嵩密度および気孔率を表1に示す。 In addition, Table 1 shows the cumulative pore volume, average pore radius, bulk density and porosity of the tungsten oxide powder obtained by the mercury intrusion method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3、4および表1に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、累積細孔容積が参考例よりも大きい0.42(mL/g)であることがわかる。なおこの結果は、図5および図6に示す実施形態および参考例における酸化タングステン粉末のSEM観察写真からも支持される。  As shown in Figures 3 and 4 and Table 1, the powder contained in the tungsten oxide powder according to the embodiment has a cumulative pore volume of 0.42 (mL/g), which is larger than that of the reference example. This result is also supported by the SEM observation photographs of the tungsten oxide powder in the embodiment and reference example shown in FIGS.
 このように、累積細孔容積の大きい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 By making the powder with a large cumulative pore volume in this way, it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder.
 したがって、実施形態によれば、酸化タングステン粉末を効率よく還元処理することができるため、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 Therefore, according to the embodiment, since the tungsten oxide powder can be efficiently reduced, tungsten carbide can be efficiently produced from the tungsten oxide powder.
 また、図3、4に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、最頻細孔径(log微分細孔容積が最も大きい細孔径)が参考例よりも小さい0.2(μm)程度であることがわかる。 In addition, as shown in FIGS. 3 and 4, in the powder contained in the tungsten oxide powder according to the embodiment, the mode pore diameter (the pore diameter with the largest log differential pore volume) is 0.2, which is smaller than that of the reference example. (μm).
 このように、最頻細孔径の小さい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 In this way, by using a powder with a small mode pore diameter, it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder.
 したがって、実施形態によれば、酸化タングステン粉末を効率よく還元処理することができるため、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 Therefore, according to the embodiment, since the tungsten oxide powder can be efficiently reduced, tungsten carbide can be efficiently produced from the tungsten oxide powder.
 また、表1に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、平均細孔半径が参考例よりも大きい0.26(μm)であることがわかる。このように、平均細孔半径の大きい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。また、酸化タングステン粉末を炭素粉末で直接還元および炭化を行う際に効率的な固相反応とさせることができる。 Also, as shown in Table 1, the powder contained in the tungsten oxide powder according to the embodiment has an average pore radius of 0.26 (μm), which is larger than that of the reference example. In this way, by using a powder having a large average pore radius, it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metal tungsten from the tungsten oxide powder. Also, when the tungsten oxide powder is directly reduced and carbonized with the carbon powder, an efficient solid phase reaction can be achieved.
 したがって、実施形態によれば、酸化タングステン粉末を効率よく還元処理することができるため、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 Therefore, according to the embodiment, since the tungsten oxide powder can be efficiently reduced, tungsten carbide can be efficiently produced from the tungsten oxide powder.
 また、表1に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、嵩密度が参考例よりも小さい1.82(g/mL)であることがわかる。このように、嵩密度の小さい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 Also, as shown in Table 1, the powder contained in the tungsten oxide powder according to the embodiment has a bulk density of 1.82 (g/mL), which is smaller than that of the reference example. In this way, by using a powder having a low bulk density, it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metallic tungsten from the tungsten oxide powder.
 したがって、実施形態によれば、酸化タングステン粉末を効率よく還元処理することができるため、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 Therefore, according to the embodiment, since the tungsten oxide powder can be efficiently reduced, tungsten carbide can be efficiently produced from the tungsten oxide powder.
 また、表1に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、気孔率が参考例よりも大きい76(%)であることがわかる。このように、気孔率の大きい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体内への水素ガスの拡散を促進することができる。 Also, as shown in Table 1, the porosity of the powder contained in the tungsten oxide powder according to the embodiment is 76 (%), which is higher than that of the reference example. By forming the powder with a large porosity in this way, it is possible to promote the diffusion of hydrogen gas into the powder in the hydrogen reduction treatment for producing metallic tungsten from the tungsten oxide powder.
 したがって、実施形態によれば、酸化タングステン粉末を効率よく還元処理することができるため、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 Therefore, according to the embodiment, since the tungsten oxide powder can be efficiently reduced, tungsten carbide can be efficiently produced from the tungsten oxide powder.
 また、図3に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、細孔径0.01(μm)以上1(μm)以下の範囲に、Log微分細孔容積の最大ピークが存在する。そして、実施形態では、かかるピークの値をIpとしたとき、細孔径1(μm)以上100(μm)以下の範囲におけるLog微分細孔容積の値が、ピーク値Ipの0.1倍以上であることがわかる。 Further, as shown in FIG. 3, in the powder contained in the tungsten oxide powder according to the embodiment, the maximum peak of the Log differential pore volume is in the range of 0.01 (μm) or more and 1 (μm) or less of the pore diameter. exist. In the embodiment, when the peak value is Ip, the value of the Log differential pore volume in the pore diameter range of 1 (μm) or more and 100 (μm) or less is 0.1 times or more of the peak value Ip. I know there is.
 また、図3に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、Log微分細孔容積0.2(mL/g)以上1(mL/g)以下のピーク値を有するピークが、細孔径0.01(μm)以上1(μm)以下の範囲で存在する。そして、実施形態では、細孔径1(μm)以上100(μm)以下の範囲におけるLog微分細孔容積の値が、0.05(mL/g)以上であることがわかる。 Further, as shown in FIG. 3, in the powder contained in the tungsten oxide powder according to the embodiment, the peak value having a log differential pore volume of 0.2 (mL / g) or more and 1 (mL / g) or less exists in the range of pore diameters from 0.01 (μm) to 1 (μm). In the embodiment, the value of the Log differential pore volume is 0.05 (mL/g) or more in the pore diameter range of 1 (μm) or more and 100 (μm) or less.
 本開示の酸化タングステン粉末は、切削工具の主原料である炭化タングステンを合成する上で、効果的な合成法に寄与するという特徴を有する。また、酸化タングステン粉末から炭化タングステンを生成するプロセスには、水素ガスで還元した後に炭素粉末で炭化する間接プロセスと、炭素粉末で還元および炭化を行う直接プロセスとがある。 The tungsten oxide powder of the present disclosure has the characteristic of contributing to an effective synthesis method in synthesizing tungsten carbide, which is the main raw material of cutting tools. The process of producing tungsten carbide from tungsten oxide powder includes an indirect process of reducing with hydrogen gas and then carbonizing with carbon powder, and a direct process of reducing and carbonizing with carbon powder.
 市場では間接プロセスが一般的であるが、直接プロセスは微細な炭化タングステンを合成する上で必須の技術であり、近年注目されている。 Although the indirect process is common in the market, the direct process is an essential technology for synthesizing fine tungsten carbide and has been attracting attention in recent years.
 間接プロセスにおける水素還元処理は、粉末とガスの気相反応であるため、ガスの拡散が高い方が効率的な反応となる。そのため、小さな水素ガス分子が拡散できるように、微小な細孔があったほうが望ましい。 Since the hydrogen reduction treatment in the indirect process is a gas phase reaction between powder and gas, the higher the gas diffusion, the more efficient the reaction. Therefore, it is desirable to have fine pores so that small hydrogen gas molecules can diffuse.
 一方で、直接プロセスにおける炭素還元処理、および両プロセスにおける炭化処理の場合、粉末同士の固相反応であるため、微小な細孔のみでは炭素粉末がうまく酸化タングステン粉末(または金属タングステン粉末)内部に入り込まず、効率的な固相反応となりにくい。 On the other hand, in the case of the carbon reduction treatment in the direct process and the carbonization treatment in both processes, the solid-phase reaction between the powders causes the carbon powder to successfully enter the inside of the tungsten oxide powder (or metal tungsten powder) with only fine pores. It does not enter, and it is difficult to become an efficient solid-phase reaction.
 そこで、実施形態に係る酸化タングステン粉末では、微細な細孔(細孔径0.01(μm)以上1(μm)以下)と、比較的大きな細孔(細孔径1(μm)以上100(μm)以下)とを併せ持たせることで、間接プロセスおよび直接プロセス両方に対応可能であるという優れた特徴を有している。 Therefore, in the tungsten oxide powder according to the embodiment, fine pores (pore diameter of 0.01 (μm) or more and 1 (μm) or less) and relatively large pores (pore diameter of 1 (μm) or more and 100 (μm) below), it has the excellent feature of being able to handle both indirect and direct processes.
 また、得られた実施形態および参考例における酸化タングステン粉末の比表面積を、BET法によって測定した。BET法の測定条件は以下の通りである。 In addition, the specific surface areas of the tungsten oxide powders in the obtained embodiments and reference examples were measured by the BET method. The measurement conditions of the BET method are as follows.
 測定装置はマウンテック社製Macsorb HM model-1220を用いた。測定条件は流動式によるBET1点法(JIS R 1626-1996に準拠)とし、試料を200(℃)にて10分以上加熱後、実施した。吸着ガスとして窒素(N:混合濃度30.2(%) 流量25(ml/分))を用いた。 A Macsorb HM model-1220 manufactured by Mountec was used as a measuring device. The measurement conditions were the BET 1-point method (according to JIS R 1626-1996) using a flow system, and the samples were heated at 200 (° C.) for 10 minutes or longer before being measured. Nitrogen (N 2 : mixed concentration 30.2 (%) flow rate 25 (ml/min)) was used as the adsorption gas.
 BET法によって求められた実施形態および参考例における酸化タングステン粉末の比表面積を表2に示す。 Table 2 shows the specific surface areas of the tungsten oxide powders in the embodiments and reference examples obtained by the BET method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施形態に係る酸化タングステン粉末に含まれる粉体では、比表面積が参考例よりも大きい4.22(m/g)であることがわかる。 As shown in Table 2, the powder contained in the tungsten oxide powder according to the embodiment has a specific surface area of 4.22 (m 2 /g), which is larger than that of the reference example.
 このように、比表面積の大きい粉体とすることで、酸化タングステン粉末から金属タングステンを生成する水素還元処理において、粉体と水素ガスとの接触を促進することができる。 By making the powder with a large specific surface area in this way, it is possible to promote the contact between the powder and hydrogen gas in the hydrogen reduction treatment for producing metallic tungsten from the tungsten oxide powder.
 したがって、実施形態によれば、酸化タングステン粉末を効率よく還元処理することができるため、酸化タングステン粉末から炭化タングステンを効率よく生成することができる。 Therefore, according to the embodiment, since the tungsten oxide powder can be efficiently reduced, tungsten carbide can be efficiently produced from the tungsten oxide powder.
 また、得られた実施形態に係る酸化タングステン粉末に含まれる粉体の平均粒子径を、SEM観察によって評価した。その結果、実施形態に係る酸化タングステン粉末に含まれる粉体の平均粒子径は、100(nm)~1000(nm)であることがわかった。 In addition, the average particle size of the powder contained in the obtained tungsten oxide powder according to the embodiment was evaluated by SEM observation. As a result, it was found that the average particle size of the powder contained in the tungsten oxide powder according to the embodiment was 100 (nm) to 1000 (nm).
 これにより、実施形態では、還元後の金属タングステン粉末の粒径が適度に粗くなるため、金属粉末特有の自然発火現象を招くことなく、目的の炭化タングステン合成が可能となる。 As a result, in the embodiment, the particle size of the metal tungsten powder after reduction becomes moderately coarse, so that the intended tungsten carbide synthesis becomes possible without causing the spontaneous ignition phenomenon peculiar to the metal powder.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、超硬合金のスクラップから酸化タングステン粉末および炭化タングステンを生成(リサイクル)する場合について示しているが、本開示はかかる例に限られず、鉱石から酸化タングステン粉末および炭化タングステンを生成する際などにも適用することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible without departing from the spirit of the present invention. For example, the above embodiment shows the case of producing (recycling) tungsten oxide powder and tungsten carbide from cemented carbide scrap, but the present disclosure is not limited to such examples, and tungsten oxide powder and tungsten carbide are produced from ore. It can also be applied when generating
 さらなる効果や他の態様は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and other aspects can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments so shown and described. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.

Claims (4)

  1.  酸化タングステン結晶粒を主成分とする粉体を含み、
     前記粉体の細孔分布を水銀圧入法により測定したとき、
     前記粉体の累積細孔容積は、0.35(ml/g)~0.45(ml/g)であり、
     前記粉体の嵩密度は、1.7(g/ml)~2.1(g/ml)であり、
     前記粉体の平均細孔半径は、0.2(μm)以上であり、
     前記粉体をBET法により測定したときの比表面積は、3(m/g)~5.5(m/g)である
     酸化タングステン粉末。
    Containing powder mainly composed of tungsten oxide crystal grains,
    When the pore distribution of the powder is measured by a mercury intrusion method,
    The cumulative pore volume of the powder is 0.35 (ml / g) to 0.45 (ml / g),
    The bulk density of the powder is 1.7 (g/ml) to 2.1 (g/ml),
    The average pore radius of the powder is 0.2 (μm) or more,
    The tungsten oxide powder has a specific surface area of 3 (m 2 /g) to 5.5 (m 2 /g) when measured by the BET method.
  2.  前記粉体の細孔分布を水銀圧入法により測定したときの細孔径とLog微分細孔容積との関係を示す細孔分布曲線において、
     細孔径0.01(μm)以上1(μm)以下の範囲に、Log微分細孔容積の最大ピークが存在し、そのピーク値をIpとしたとき、
     細孔径1(μm)以上100(μm)以下の範囲におけるLog微分細孔容積の値が、前記ピーク値Ipの0.1倍以上である
     請求項1に記載の酸化タングステン粉末。
    In the pore distribution curve showing the relationship between the pore diameter and the Log differential pore volume when the pore distribution of the powder is measured by the mercury intrusion method,
    When the maximum peak of the log differential pore volume exists in the range of pore diameters of 0.01 (μm) or more and 1 (μm) or less, and the peak value is Ip,
    The tungsten oxide powder according to claim 1, wherein the log differential pore volume in the pore diameter range of 1 (μm) or more and 100 (μm) or less is 0.1 times or more the peak value Ip.
  3.  前記粉体の細孔分布を水銀圧入法により測定したときの細孔径とLog微分細孔容積との関係を示す細孔分布曲線において、
     Log微分細孔容積0.2(mL/g)以上1(mL/g)以下のピーク値を有するピークが、細孔径0.01(μm)以上1(μm)以下の範囲で存在し、
     細孔径1(μm)以上100(μm)以下の範囲におけるLog微分細孔容積の値が、0.05(mL/g)以上である
     請求項1または2に記載の酸化タングステン粉末。
    In the pore distribution curve showing the relationship between the pore diameter and the Log differential pore volume when the pore distribution of the powder is measured by the mercury intrusion method,
    A peak having a log differential pore volume of 0.2 (mL/g) or more and 1 (mL/g) or less exists in a pore diameter range of 0.01 (μm) or more and 1 (μm) or less,
    The tungsten oxide powder according to claim 1 or 2, wherein the log differential pore volume in a pore diameter range of 1 (μm) or more and 100 (μm) or less is 0.05 (mL/g) or more.
  4.  前記粉体の細孔分布を水銀圧入法により測定したとき、
     前記粉体の気孔率は、65(%)~85(%)であり、
     前記粉体において最も頻度が高い細孔径は、0.01(μm)~1(μm)の範囲に存在し、
     前記粉体の平均粒子径は、100(nm)~1000(nm)である
     請求項1~3のいずれか一つに記載の酸化タングステン粉末。
    When the pore distribution of the powder is measured by a mercury intrusion method,
    The powder has a porosity of 65 (%) to 85 (%),
    The pore diameter with the highest frequency in the powder exists in the range of 0.01 (μm) to 1 (μm),
    The tungsten oxide powder according to any one of claims 1 to 3, wherein the powder has an average particle size of 100 (nm) to 1000 (nm).
PCT/JP2023/001052 2022-01-28 2023-01-16 Tungsten oxide powder WO2023145521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022012409 2022-01-28
JP2022-012409 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145521A1 true WO2023145521A1 (en) 2023-08-03

Family

ID=87471406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001052 WO2023145521A1 (en) 2022-01-28 2023-01-16 Tungsten oxide powder

Country Status (1)

Country Link
WO (1) WO2023145521A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018503A (en) * 2008-07-14 2010-01-28 Hokkaido Univ Tungsten oxide exhibiting high photocatalytic activity
JP2015224225A (en) * 2014-05-28 2015-12-14 京セラ株式会社 Metallic compound adsorbent and recovery method for metallic compound using the same
JP2018119197A (en) * 2017-01-27 2018-08-02 京セラ株式会社 Method of recovering tungsten compound
CN108862392A (en) * 2018-08-09 2018-11-23 浙江大学 A kind of tungstic acid and its preparation method and application with micron order beam banded structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018503A (en) * 2008-07-14 2010-01-28 Hokkaido Univ Tungsten oxide exhibiting high photocatalytic activity
JP2015224225A (en) * 2014-05-28 2015-12-14 京セラ株式会社 Metallic compound adsorbent and recovery method for metallic compound using the same
JP2018119197A (en) * 2017-01-27 2018-08-02 京セラ株式会社 Method of recovering tungsten compound
CN108862392A (en) * 2018-08-09 2018-11-23 浙江大学 A kind of tungstic acid and its preparation method and application with micron order beam banded structure

Similar Documents

Publication Publication Date Title
Alhajri et al. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution
Zheng et al. Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts
CN104583119B (en) Activated carbon having basic functional group and method for producing same
Zhu et al. Carbon transmission of CO 2 activated nano-MgO carbon composites enhances phosphate immobilization
JP6559118B2 (en) Nickel powder
JP2006001779A (en) Method for producing sic nanoparticles by nitrogen plasma
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
Jiang et al. Synthesis of oxygen-doped graphitic carbon nitride and its application for the degradation of organic pollutants via dark Fenton-like reactions
Jia et al. Electrochemical probing of carbon quantum dots: not suitable for a single electrode material
WO2023145521A1 (en) Tungsten oxide powder
Reyhani et al. Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition
Tamargo-Martínez et al. Surface modification of high-surface area graphites by oxygen plasma treatments
Jiang et al. Efficient three-phase electrocatalytic CO 2 reduction to formate on superhydrophobic Bi–C interfaces
Haluska et al. Plant-based nanostructured silicon carbide modified with bisphosphonates for metal adsorption
JP2009137795A (en) Method for producing nickel oxide
JP2007136283A (en) Nitrogen-containing carbon type electrode catalyst
KR20160101297A (en) Tungsten Trioxide Fine Particle and Preparation Method Thereof
JP2019147709A (en) Method for producing aluminum nitride powder
EP4304982B1 (en) Method for producing microporous carbon material
WO2023145520A1 (en) Tungsten oxide powder
CN106892663B (en) Lamellar nitride ceramic particles and preparation method thereof
WO2024005036A1 (en) Tungsten carbide powder
JP2015160780A (en) Method of producing nickel oxide, and nickel oxide fine powder obtainable therefrom
WO2024005100A1 (en) Tungsten carbide powder
JP4718303B2 (en) Method for producing activated carbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746735

Country of ref document: EP

Kind code of ref document: A1