JP2006001779A - Method for producing sic nanoparticles by nitrogen plasma - Google Patents

Method for producing sic nanoparticles by nitrogen plasma Download PDF

Info

Publication number
JP2006001779A
JP2006001779A JP2004178941A JP2004178941A JP2006001779A JP 2006001779 A JP2006001779 A JP 2006001779A JP 2004178941 A JP2004178941 A JP 2004178941A JP 2004178941 A JP2004178941 A JP 2004178941A JP 2006001779 A JP2006001779 A JP 2006001779A
Authority
JP
Japan
Prior art keywords
sic
nanoparticles
plasma
nitrogen
nitrogen plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004178941A
Other languages
Japanese (ja)
Other versions
JP4649586B2 (en
JP2006001779A5 (en
Inventor
Hideo Okuyama
Sho Saito
Yoshio Sakka
Masahiro Uda
秀男 奥山
雅広 宇田
義雄 目
祥 齋藤
Original Assignee
National Institute For Materials Science
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, 独立行政法人物質・材料研究機構 filed Critical National Institute For Materials Science
Priority to JP2004178941A priority Critical patent/JP4649586B2/en
Publication of JP2006001779A publication Critical patent/JP2006001779A/en
Publication of JP2006001779A5 publication Critical patent/JP2006001779A5/ja
Application granted granted Critical
Publication of JP4649586B2 publication Critical patent/JP4649586B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing SiC nanoparticles by using nitrogen plasma, by which the SiC nanoparticles can be produced in a high efficiency. <P>SOLUTION: The SiC nanoparticles are formed by generating arc plasma in a nitrogen atmosphere and irradiating massive SiC or a formed body of a mixed powder of Si and C with the arc plasma. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、窒素プラズマによるSiCナノ粒子の製造法に関するものである。 The invention of this application relates to a method of producing SiC nanoparticles by nitrogen plasma. さらに詳しくは、この出願の発明は、SiCナノ粒子を高効率で製造することのできる窒素プラズマによるSiCナノ粒子の製造法に関するものである。 More particularly, the invention of this application relates to the preparation of SiC nanoparticles by nitrogen plasma capable of producing a SiC nanoparticles with high efficiency.

SiC粉末の製造法には、大別して以下の2つのプロセスがある(たとえば、非特許文献1、2参照)。 The manufacturing method of the SiC powder, the following two processes are roughly classified into (e.g., see Non-Patent Documents 1 and 2).
1)固体SiCを機械的にボールミル、振動ミルなどにより微粉砕した後、化学的精製処理、脱酸・解砕して、平均粒径400-700nmのSiC粒子を得る。 1) solid SiC mechanically ball mill, subjected to fine grinding due to vibration mill, chemical purification treatment, and deoxidation-pulverized to obtain a SiC particles having an average particle size of 400-700 nm.
2)有機ケイ素系ポリマーの熱分解およびSiH 4 ,SiCl 4と炭化水素との反応などを利用した気相中での合成である。 2) the synthesis of organic silicon-based pyrolysis and SiH 4 of polymer, SiCl 4 and gas phase using, reaction with the hydrocarbon.

しかしながら、従来技術により作製されるSiCナノ粒子の生成効率、純度、平均粒径は必ずしも満足することのできるものとなってはいない。 However, the generation efficiency of the SiC nanoparticles produced by the prior art, purity, average particle diameter is not is necessarily those which can be satisfied.

この出願の発明は、このような事情に鑑みてなされたものであり、SiCナノ粒子を高効率で製造することのできる窒素プラズマによるSiCナノ粒子の製造法を提供することを解決すべき課題としている。 The invention of this application has been made in view of these circumstances, as a problem to be solved is to provide a manufacturing method of the SiC nanoparticles by nitrogen plasma capable of producing a SiC nanoparticles with high efficiency there.

この出願の発明は、上記の課題を解決するものとして、第1には、窒素雰囲気中でアークプラズマを発生させ、アークプラズマを塊状SiCに照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法を提供する。 The invention of this application, as to solve the above problems, the first, and characterized in that to generate an arc plasma in a nitrogen atmosphere, and irradiating the arc plasma in bulk SiC to produce nanoparticles of SiC to provide a manufacturing method of the SiC nanoparticles by nitrogen plasma.

この出願の発明は、第2には、窒素雰囲気中でアークプラズマを発生させ、アークプラズマを、粉末Siと粉末Cの混合粉末成形体に照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法を提供する。 The invention of this application, in the second, to generate an arc plasma in a nitrogen atmosphere, the arc plasma is irradiated to the mixed powder compact of powder Si powder C and characterized in that to produce the nanoparticles of SiC to provide a manufacturing method of the SiC nanoparticles by nitrogen plasma.

この出願の発明の窒素プラズマによるSiCナノ粒子の製造法によれば、塊状SiCまたはSiとCの混合粉末成形体に窒素プラズマを照射することにより、一種の強制蒸発、昇華現象が誘起され、直接SiCナノ粒子が高効率で製造される。 According to the preparation of SiC nanoparticles by nitrogen plasma of the invention of this application, by irradiating the nitrogen plasma to the mixed powder compact bulk SiC or Si and C, and a kind of forced evaporation, sublimation phenomenon is induced, directly SiC nanoparticles are produced with high efficiency. 得られるSiCナノ粒子は、純度が高く、平均粒径が小さい。 Resulting SiC nanoparticles, high purity, having an average particle size less.

以下、実施例を示し、この出願の発明の窒素プラズマによるSiCナノ粒子の製造法についてさらに詳しく説明する。 Hereinafter, Examples will be described in more detail the preparation of SiC nanoparticles by nitrogen plasma of the invention of this application.

図1は、ナノ粒子作製装置の概略図である。 Figure 1 is a schematic diagram of a nano-particle manufacturing apparatus.

ナノ粒子作製装置は、熱プラズマ炉、アーク放電用直流電源、ナノ粒子捕集用フィルター(日本精線、60φ×200 L 、細孔径約3μm)、真空ポンプ、循環ポンプなどから構成されている。 Nanoparticles manufactured devices, thermal plasma furnace, arc discharge DC power supply, the nanoparticles trapped filter (Nippon Seisen, 60mm × 200 L, pore size of about 3 [mu] m), and a vacuum pump, the circulating pump.

アーク放電は、陽極の水冷銅ハース上の試料、陰極のタングステン電極間に発生するが、試料のサーマルショックの予防と水冷銅ハースによる試料への熱効率低下を抑制するために、水冷銅ハース上にカーボンるつぼを置き、その上に試料を置く。 Arc discharge, sample on a water-cooled copper hearth in the anode and generated between the tungsten electrode on the cathode, in order to suppress the thermal efficiency degradation of the sample by preventing the water-cooled copper hearth in the sample of the thermal shock, on a water-cooled copper hearth place the carbon crucible, placing the sample on it. 炉内で発生するナノ粒子は循環ポンプによるガス流により冷却されながら運ばれ、ナノ粒子捕集用フィルターで捕集される。 Nanoparticles generated in the furnace is transported while being cooled by the gas flow by the circulation pump and collected in a filter for trapping nanoparticles.

出発原料として、SiC(高純度化学研究所、純度99.99%以上)の塊状体と混合粉末成形体を用いた。 As a starting material, SiC (Kojundo Chemical Laboratory Co., purity of 99.99% or more) the massive body and the mixed powder molded body was used. 混合粉末成形体は、粉末C(高純度化学研究所、純度99.9%以上、粒径20μm)と粉末Si(高純度化学研究所、純度99.9%以上、粒径150μm)をmol比C/Si=1/1およびC/Si=6/4で混合し、結合剤であるPVB(ポリビニルブチラール)を約7.5wt%添加して240kg/cm 2で一軸成形した均一な混合粉末成形体である。 Mixed powder compacts, powder C (Kojundo Chemical Laboratory, purity 99.9%, particle size 20 [mu] m) and powder Si (Kojundo Chemical Laboratory, purity 99.9%, particle size 150 [mu] m) the mol ratio C / Si = mixed with 1/1 and C / Si = 6/4, a uniform mixed powder molded body uniaxially molded PVB (polyvinyl butyral) which is a binder was added to about 7.5 wt% at 240 kg / cm 2.

雰囲気は、50vol%N 2 −Arおよび100vol%N 2とした。 Atmosphere, was 50 vol% N 2 -Ar and 100 vol% N 2.

塊状SiCについては、前述のナノ粒子作製装置のカーボンるつぼの上に載せ、真空ポンプで炉内を0.13Pa以下の真空とした。 The bulk SiC, placed on a carbon crucible nanoparticles production apparatus described above, and the furnace with the following vacuum 0.13Pa by a vacuum pump. この後、各雰囲気ガスを導入し、炉の圧力を0.1MPaに保ち、循環ポンプを作動させた。 Thereafter, introducing the atmospheric gas, maintaining the pressure of the furnace 0.1 MPa, was operated circulating pump. 電流を150Aに設定し、陰極と陽極である水冷銅ハースおよびカーボンるつぼ間にアークプラズマを発生させた。 Sets the current to 150A, it was generated arc plasma between water-cooled copper hearth and a carbon crucible as a cathode and an anode. アークプラズマは初期にはカーボンるつぼに照射し、塊状SiCが加熱した後にアークプラズマを塊状SiCに照射した。 Arc plasma in the initial irradiated in a carbon crucible, and the arc plasma is irradiated to the bulk SiC after the bulk SiC is heated.

粉末Cと粉末Siの混合粉末成形体については、カーボンるつぼの上に載せ、真空ポンプで炉内を0.13Pa以下の真空にした後、PVBの除去とアークプラズマによる粉末の飛散を抑制するために、雰囲気に100vol%Arを用いてArプラズマを発生させ、混合粉末成形体に照射し、加熱した。 The mixed powder compact of powder C powder Si, placed on a carbon crucible, after the furnace below the vacuum 0.13Pa by a vacuum pump, in order to suppress scattering of the powder by removing the arc plasma of PVB , to generate Ar plasma using a 100 vol% Ar atmosphere, is irradiated to the mixed powder compact was heated. 加熱時間は10sec程度とし、加熱後すぐに炉内を真空にした。 The heating time is about 10sec, was the furnace immediately after heating in vacuum. この後の操作は、塊状SiCのときと同様にした。 Operation after this, was in the same manner as in the case of bulk SiC.

窒素プラズマを出発原料に照射するのと同時にプラズマフレームの周辺から煙状のナノ粒子が激しく噴出する様子が観察された。 How smoky nanoparticles from the periphery at the same time the plasma flame and to illuminate the nitrogen plasma as a starting material is ejected violently it was observed. このような特異現象は100vol%Ar雰囲気下では観察されなかった。 Such specific phenomenon under 100 vol% Ar atmosphere was not observed.

発生したナノ粒子について、X線回折測定(日本電子、JDX−3500)による相の同定、BET法による平均粒径の算出およびナノ粒子の発生速度の測定を行った。 The generated nano-particles were carried out X-ray diffraction measurement (JEOL, JDX-3500) for phase identification by the calculation and measurement of the rate of evolution of nanoparticles with an average particle diameter by BET method.

図2(a)(b)に、出発原料に塊状SiCを、図2(c)(d)に、出発原料にC/Si=1/1の混合粉末成形体を用いたときに発生したナノ粒子の50vol%N 2 −Arおよび100vol%N 2雰囲気におけるX線回折測定の結果を示した。 Figure 2 (a) (b), the nano bulk SiC as a starting material, in FIG. 2 (c) (d), which occurs when using a mixed powder compact of C / Si = 1/1 as the starting material It shows the results of X-ray diffraction measurement in 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere particles. 全般的にSiCのピークが主体であり、50vol%N 2 −Ar雰囲気では僅少のSiピークが生成している。 Overall peak of SiC is mainly in the 50 vol% N 2 -Ar atmosphere is generated by Si peak of significant.

なお、C/Si=6/4の混合粉末成形体を用いたときに発生したナノ粒子は、SiCと不純物Si、Cを含んだものであった。 Incidentally, nanoparticles occurs when using a mixed powder compact of C / Si = 6/4 were those containing SiC and impurity Si, a C. 出発材料をCリッチ状態にしても不純物Siの生成を抑制することはできなかった。 The starting material was not possible to suppress the formation of impurities Si even in the C-rich state.

図3に、得られたナノ粒子のBET比表面積測定の結果から得られる平均粒径を示した。 Figure 3 shows the average particle diameter obtained from the results of BET specific surface area measurement of the obtained nanoparticles. 図3(a)(b)は、出発原料が塊状SiCの場合で、図3(c)(d)は、出発原料がC/Si=1/1の混合粉末成形体の場合である。 Figure 3 (a) (b) shows a case starting material bulk SiC, FIG 3 (c) (d), the starting material is a case of a mixed powder compact of C / Si = 1/1.

ナノ粒子の平均粒径D(m)は次式で求められる。 The average particle diameter D of the nanoparticles (m) is obtained by the following equation.

D=6/S・ρ・10 6 D = 6 / S · ρ · 10 6
ここで、Sは比表面積(m 2 /g)、ρはナノ粒子の密度(g/cm 3 )である。 Here, S is a specific surface area (m 2 / g), ρ is the density of the nanoparticles (g / cm 3).

いずれの場合も、窒素を有する雰囲気中で発生したナノ粒子は、平均粒径が十分小さいことが確認される。 In either case, the nano-particles generated in an atmosphere having a nitrogen average particle diameter is sufficiently small is confirmed.

図4は、塊状SiCを100vol%N 2でプラズマ照射して得られたナノ粒子の透過電子顕微鏡(TEM)写真である。 Figure 4 is a transmission electron microscope (TEM) photograph of the obtained nanoparticles to plasma irradiation bulk SiC at 100 vol% N 2.

形状は多角形状を示し、10〜80nm程度の大きさの粒子が混在しているのが認められる。 Shape indicates a polygonal shape, observed that 10~80nm about sized particles are mixed. このサイズは、前述のBET法による平均粒径とよく一致している。 This size is in good agreement with the average particle size measured by the above-mentioned BET method.

図5に、50vol%N 2 −Arおよび100vol%N 2雰囲気で塊状SiCに窒素プラズマを照射したときに発生したナノ粒子の発生速度を示した。 Figure 5 shows the generation rate of the nanoparticles occurs when irradiated with nitrogen plasma bulk SiC with 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere. 発生速度は、窒素プラズマ照射前と照射後の出発原料の質量損失量をアークプラズマ照射時間で除して算出したものである。 Generation rate is obtained by a mass loss of starting material after irradiation before and nitrogen plasma exposure was calculated by dividing the arc plasma irradiation time. 図5から確認されるように、雰囲気中の窒素濃度の増大とともに発生速度が比例して増大しているのがわかる。 5 as confirmed from Understandably, generation rate with increasing nitrogen concentration in the atmosphere has increased proportionally. この現象は、SiC混合粉末成形体についても同様の結果を得ている。 This phenomenon is obtained similar results for SiC mixed powder compact. これらの結果は、出発原料を金属に置き換えて行った際に見られる現象と酷似しており、窒素ガスが熱プラズマにより活性化されることによる一種の強制蒸発現象であると考えられる。 These results are very similar to the phenomenon observed when went replacing the starting material to the metal is believed that the nitrogen gas is forced evaporation phenomenon of a kind due to be activated by thermal plasma.

以上から明らかにされるように、この出願の発明の窒素プラズマによるSiCナノ粒子の製造方法は、不純物の少ない、平均粒径の小さなSiCナノ粒子の製造を可能にする。 As apparent from the above method for producing a nitrogen plasma by SiC nanoparticles of the invention of this application, less impurities, it allows the production of Do SiC nanoparticles small average particle size. また、窒素プラズマを用いることから、安全であり、経済的に優れたSiCナノ粒子の製造法であると考えられる。 Further, since the use of nitrogen plasma, safe, is considered to be the preparation of economically superior SiC nanoparticles.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。 Of course, the invention of this application is not limited above examples.

以上詳しく説明したとおり、この出願の発明によって、高純度で平均粒径の小さなSiCナノ粒子が高効率に製造される。 As described above in detail, the invention of this application, small SiC nanoparticles with an average particle size in high purity is produced in high efficiency. 比較的簡便なアーク溶解炉を基本とした熱プラズマ炉を用い、窒素ガスを用いることから、経済的であるとともに、安全性において優れており、波及効果は大きいと考えられる。 Basic thermal plasma reactor used was relatively simple arc melting furnace, since the use of nitrogen gas, with is economical, excellent in safety, ripple effect is considered large.

ナノ粒子作製装置の概略図である。 It is a schematic diagram of a nano-particle manufacturing apparatus. 塊状SiCおよびC/Si=1/1の混合粉末成形体に窒素プラズマを照射して得られたナノ粒子のX線回折結果である。 A mixed powder compact bulk SiC and C / Si = 1/1 by irradiating nitrogen plasma is a X-ray diffraction results of the obtained nanoparticles. SiCナノ粒子のBET比表面積測定の結果から得られる平均粒径を示したグラフである。 Is a graph showing the mean particle diameter obtained from the results of BET specific surface area measurement of the SiC nanoparticles. 塊状SiCに100vol%N 2プラズマを照射して得られたナノ粒子の透過顕微鏡写真である。 A transmission microscope photograph of the obtained nanoparticles is irradiated with 100 vol% N 2 plasma bulk SiC. 50vol%N 2 −Arおよび100vol%N 2雰囲気で塊状SiCに窒素プラズマを照射して発生したSiCナノ粒子の発生速度を示したグラフである。 It is a graph showing the occurrence rate of 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere by irradiating nitrogen plasma bulk SiC generated in the SiC nanoparticles.

Claims (2)

  1. 窒素雰囲気中でアークプラズマを発生させ、アークプラズマを塊状SiCに照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法。 In a nitrogen atmosphere to generate an arc plasma, the preparation of SiC nanoparticles by nitrogen plasma for causing the arc plasma by irradiating the bulk SiC produced nanoparticles SiC.
  2. 窒素雰囲気中でアークプラズマを発生させ、アークプラズマを、粉末Siと粉末Cの混合粉末成形体に照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法。 In a nitrogen atmosphere to generate an arc plasma, the arc plasma, the preparation of SiC nanoparticles by nitrogen plasma, characterized in that by irradiating the mixed powder compact of powder Si powder C to produce nanoparticles of SiC.

JP2004178941A 2004-06-16 2004-06-16 The process of SiC nanoparticles by nitrogen plasma Expired - Fee Related JP4649586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178941A JP4649586B2 (en) 2004-06-16 2004-06-16 The process of SiC nanoparticles by nitrogen plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178941A JP4649586B2 (en) 2004-06-16 2004-06-16 The process of SiC nanoparticles by nitrogen plasma

Publications (3)

Publication Number Publication Date
JP2006001779A true JP2006001779A (en) 2006-01-05
JP2006001779A5 JP2006001779A5 (en) 2006-01-05
JP4649586B2 JP4649586B2 (en) 2011-03-09

Family

ID=35770487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178941A Expired - Fee Related JP4649586B2 (en) 2004-06-16 2004-06-16 The process of SiC nanoparticles by nitrogen plasma

Country Status (1)

Country Link
JP (1) JP4649586B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330796C (en) * 2006-03-02 2007-08-08 浙江理工大学 Method of synthetizing two kinds of different shaped silicon carbid nano wire
JP2010095442A (en) * 2009-12-10 2010-04-30 National Institute For Materials Science Nanoparticle production apparatus and nanoparticle production method using the same
JP2010526664A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Particle production system and fluid recirculation method
WO2012148034A1 (en) * 2011-04-26 2012-11-01 주식회사 네오플랜트 Production method for nano silicon carbide using a thermal plasma
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
KR101641839B1 (en) 2015-12-03 2016-07-22 전북대학교산학협력단 Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423635A (en) * 2018-03-22 2018-08-21 清华大学 Three-dimensional spherical silicon carbide assembling nanomaterial and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227765A (en) * 1983-06-04 1984-12-21 Kagaku Gijutsucho Kinzoku Manufacture of ceramic super fine particle
JPS63195168A (en) * 1986-03-25 1988-08-12 Kennecott Corp Method of preventing decomposition of silicon carbide products during sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227765A (en) * 1983-06-04 1984-12-21 Kagaku Gijutsucho Kinzoku Manufacture of ceramic super fine particle
JPS63195168A (en) * 1986-03-25 1988-08-12 Kennecott Corp Method of preventing decomposition of silicon carbide products during sintering

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
CN1330796C (en) * 2006-03-02 2007-08-08 浙江理工大学 Method of synthetizing two kinds of different shaped silicon carbid nano wire
US8524631B2 (en) 2007-05-11 2013-09-03 SDCmaterials, Inc. Nano-skeletal catalyst
JP2010526664A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Particle production system and fluid recirculation method
JP2016027940A (en) * 2007-05-11 2016-02-25 エスディーシーマテリアルズ, インコーポレイテッド Particle production system and fluid recirculation method
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8663571B2 (en) 2007-05-11 2014-03-04 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8574408B2 (en) 2007-05-11 2013-11-05 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8604398B1 (en) 2007-05-11 2013-12-10 SDCmaterials, Inc. Microwave purification process
US8956574B2 (en) 2007-05-11 2015-02-17 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8507402B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8759248B2 (en) 2007-10-15 2014-06-24 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
JP2010095442A (en) * 2009-12-10 2010-04-30 National Institute For Materials Science Nanoparticle production apparatus and nanoparticle production method using the same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8828328B1 (en) 2009-12-15 2014-09-09 SDCmaterails, Inc. Methods and apparatuses for nano-materials powder treatment and preservation
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8821786B1 (en) 2009-12-15 2014-09-02 SDCmaterials, Inc. Method of forming oxide dispersion strengthened alloys
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
WO2012148034A1 (en) * 2011-04-26 2012-11-01 주식회사 네오플랜트 Production method for nano silicon carbide using a thermal plasma
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
KR101641839B1 (en) 2015-12-03 2016-07-22 전북대학교산학협력단 Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition

Also Published As

Publication number Publication date
JP4649586B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
Chen et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique
EP2537801B1 (en) Method for producing a carbon material
Pichot et al. An efficient purification method for detonation nanodiamonds
US8420042B2 (en) Process for the production of carbon graphenes and other nanomaterials
Kang et al. Synthesis of structure-controlled carbon nano spheres by solution plasma process
JP4031397B2 (en) Enhanced ceramic nanocomposite powder and its manufacturing method of carbon nanotubes
Van Khai et al. Significant enhancement of blue emission and electrical conductivity of N-doped graphene
JP4754488B2 (en) Methods for the synthesis and separation and purification of powder material
JP5706671B2 (en) A silicon carbide single crystal for producing silicon carbide powder and a manufacturing method thereof according to the sublimation recrystallization method
JP2013028497A (en) Polycrystalline diamond and method for producing the same
CN102574684B (en) Hexagonal boron nitride powder and method for producing same
CN1479810B (en) Method for producing intermetallic compounds
US8163264B2 (en) Expanded graphite and process for producing the expanded graphite
Chen et al. Synthesis and oxidation of nanocrystalline HfB2
JP2007169159A (en) Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
WO2010143585A1 (en) Carbon nanotubes and process for producing same
Zhao et al. Study on purification and tip-opening of CNTs fabricated by CVD
CN103339154B (en) Method for producing flake graphite-polymer composite material
JP2006001779A5 (en)
Hong et al. Urchin-like CuO microspheres: Synthesis, characterization, and properties
US3166380A (en) Process for the production of submicron silicon carbide
Omurzak et al. Synthesis method of nanomaterials by pulsed plasma in liquid
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC
JP5424481B2 (en) Purification method for a carbon material containing carbon nanotubes
Lee et al. Preparation of silver nanopowder by thermal plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees