JP2006001779A - Method for producing sic nanoparticles by nitrogen plasma - Google Patents

Method for producing sic nanoparticles by nitrogen plasma Download PDF

Info

Publication number
JP2006001779A
JP2006001779A JP2004178941A JP2004178941A JP2006001779A JP 2006001779 A JP2006001779 A JP 2006001779A JP 2004178941 A JP2004178941 A JP 2004178941A JP 2004178941 A JP2004178941 A JP 2004178941A JP 2006001779 A JP2006001779 A JP 2006001779A
Authority
JP
Japan
Prior art keywords
sic
nanoparticles
plasma
nitrogen
sic nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004178941A
Other languages
Japanese (ja)
Other versions
JP4649586B2 (en
JP2006001779A5 (en
Inventor
Hideo Okuyama
秀男 奥山
Masahiro Uda
雅広 宇田
Yoshio Sakka
義雄 目
Sho Saito
祥 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004178941A priority Critical patent/JP4649586B2/en
Publication of JP2006001779A publication Critical patent/JP2006001779A/en
Publication of JP2006001779A5 publication Critical patent/JP2006001779A5/ja
Application granted granted Critical
Publication of JP4649586B2 publication Critical patent/JP4649586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing SiC nanoparticles by using nitrogen plasma, by which the SiC nanoparticles can be produced in a high efficiency. <P>SOLUTION: The SiC nanoparticles are formed by generating arc plasma in a nitrogen atmosphere and irradiating massive SiC or a formed body of a mixed powder of Si and C with the arc plasma. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、窒素プラズマによるSiCナノ粒子の製造法に関するものである。さらに詳しくは、この出願の発明は、SiCナノ粒子を高効率で製造することのできる窒素プラズマによるSiCナノ粒子の製造法に関するものである。   The invention of this application relates to a method for producing SiC nanoparticles by nitrogen plasma. More specifically, the invention of this application relates to a method for producing SiC nanoparticles using nitrogen plasma, which can produce SiC nanoparticles with high efficiency.

SiC粉末の製造法には、大別して以下の2つのプロセスがある(たとえば、非特許文献1、2参照)。
1)固体SiCを機械的にボールミル、振動ミルなどにより微粉砕した後、化学的精製処理、脱酸・解砕して、平均粒径400-700nmのSiC粒子を得る。
2)有機ケイ素系ポリマーの熱分解およびSiH4,SiCl4と炭化水素との反応などを利用した気相中での合成である。
阿諏訪 守,SiC系セラミックス新材料,内田老鶴圃,日本学術振興会他・第124委員会編,p.122-123 (2001) 伊藤 淳,SiC系セラミックス新材料,内田老鶴圃,日本学術振興会他・第124委員会編,p.147-149 (2001)
There are roughly the following two processes for producing SiC powder (see, for example, Non-Patent Documents 1 and 2).
1) Solid SiC is mechanically pulverized by a ball mill, vibration mill or the like, and then chemically refined, deoxidized and crushed to obtain SiC particles having an average particle size of 400-700 nm.
2) Synthesis in the gas phase using thermal decomposition of organosilicon polymer and reaction of SiH 4 , SiCl 4 and hydrocarbons.
Mamoru Asuwa, New SiC-Based Ceramic Materials, Uchida Otsukuru, Japan Society for the Promotion of Science, et al., 124th Committee, p. 122-123 (2001) Satoshi Ito, SiC-based ceramic new material, Uchida Otsukuru, Japan Society for the Promotion of Science and others, 124th edition, p. 147-149 (2001)

しかしながら、従来技術により作製されるSiCナノ粒子の生成効率、純度、平均粒径は必ずしも満足することのできるものとなってはいない。   However, the production efficiency, purity, and average particle diameter of SiC nanoparticles produced by conventional techniques are not always satisfactory.

この出願の発明は、このような事情に鑑みてなされたものであり、SiCナノ粒子を高効率で製造することのできる窒素プラズマによるSiCナノ粒子の製造法を提供することを解決すべき課題としている。   The invention of this application has been made in view of such circumstances, and it is an issue to be solved to provide a method for producing SiC nanoparticles by nitrogen plasma that can produce SiC nanoparticles with high efficiency. Yes.

この出願の発明は、上記の課題を解決するものとして、第1には、窒素雰囲気中でアークプラズマを発生させ、アークプラズマを塊状SiCに照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法を提供する。   In order to solve the above problems, the invention of this application is characterized in that, first, arc plasma is generated in a nitrogen atmosphere, and the SiC is irradiated with the arc plasma to generate SiC nanoparticles. A method for producing SiC nanoparticles using nitrogen plasma is provided.

この出願の発明は、第2には、窒素雰囲気中でアークプラズマを発生させ、アークプラズマを、粉末Siと粉末Cの混合粉末成形体に照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法を提供する。   The invention of this application is characterized in that, secondly, an arc plasma is generated in a nitrogen atmosphere, and the mixed powder compact of powder Si and powder C is irradiated with the arc plasma to generate SiC nanoparticles. A method for producing SiC nanoparticles using nitrogen plasma is provided.

この出願の発明の窒素プラズマによるSiCナノ粒子の製造法によれば、塊状SiCまたはSiとCの混合粉末成形体に窒素プラズマを照射することにより、一種の強制蒸発、昇華現象が誘起され、直接SiCナノ粒子が高効率で製造される。得られるSiCナノ粒子は、純度が高く、平均粒径が小さい。   According to the method of producing SiC nanoparticles using nitrogen plasma of the invention of this application, a kind of forced evaporation and sublimation phenomenon is induced by irradiating the bulk SiC or the mixed powder compact of Si and C with nitrogen plasma. SiC nanoparticles are produced with high efficiency. The obtained SiC nanoparticles have high purity and a small average particle size.

以下、実施例を示し、この出願の発明の窒素プラズマによるSiCナノ粒子の製造法についてさらに詳しく説明する。   Hereinafter, an Example is shown and the manufacturing method of the SiC nanoparticle by the nitrogen plasma of invention of this application is demonstrated in more detail.

図1は、ナノ粒子作製装置の概略図である。   FIG. 1 is a schematic view of a nanoparticle production apparatus.

ナノ粒子作製装置は、熱プラズマ炉、アーク放電用直流電源、ナノ粒子捕集用フィルター(日本精線、60φ×200L、細孔径約3μm)、真空ポンプ、循環ポンプなどから構成されている。 The nanoparticle production apparatus is composed of a thermal plasma furnace, a DC power source for arc discharge, a nanoparticle collection filter (Nippon Seisen, 60φ × 200 L , pore diameter of about 3 μm), a vacuum pump, a circulation pump, and the like.

アーク放電は、陽極の水冷銅ハース上の試料、陰極のタングステン電極間に発生するが、試料のサーマルショックの予防と水冷銅ハースによる試料への熱効率低下を抑制するために、水冷銅ハース上にカーボンるつぼを置き、その上に試料を置く。炉内で発生するナノ粒子は循環ポンプによるガス流により冷却されながら運ばれ、ナノ粒子捕集用フィルターで捕集される。   Arc discharge occurs between the sample on the anode water-cooled copper hearth and the tungsten electrode on the cathode. Place the carbon crucible and place the sample on it. The nanoparticles generated in the furnace are transported while being cooled by a gas flow by a circulation pump, and are collected by a filter for collecting nanoparticles.

出発原料として、SiC(高純度化学研究所、純度99.99%以上)の塊状体と混合粉末
成形体を用いた。混合粉末成形体は、粉末C(高純度化学研究所、純度99.9%以上、粒径20μm)と粉末Si(高純度化学研究所、純度99.9%以上、粒径150μm)をmol比C/Si=1/1およびC/Si=6/4で混合し、結合剤であるPVB(ポリビニルブチラール)を約7.5wt%添加して240kg/cm2で一軸成形した均一な混合粉末成形体である。
As starting materials, a lump of SiC (High Purity Chemical Laboratory, purity 99.99% or more) and a mixed powder compact were used. The mixed powder compact is composed of powder C (high purity chemical laboratory, purity 99.9% or more, particle size 20 μm) and powder Si (high purity chemical laboratory, purity 99.9% or more, particle size 150 μm) in mol ratio C / Si = This is a uniform mixed powder molded body obtained by mixing at 1/1 and C / Si = 6/4, adding about 7.5 wt% of PVB (polyvinyl butyral) as a binder, and uniaxially molding at 240 kg / cm 2 .

雰囲気は、50vol%N2−Arおよび100vol%N2とした。 Atmosphere, was 50 vol% N 2 -Ar and 100 vol% N 2.

塊状SiCについては、前述のナノ粒子作製装置のカーボンるつぼの上に載せ、真空ポンプで炉内を0.13Pa以下の真空とした。この後、各雰囲気ガスを導入し、炉の圧力を0.1MPaに保ち、循環ポンプを作動させた。電流を150Aに設定し、陰極と陽極である水冷銅ハースおよびカーボンるつぼ間にアークプラズマを発生させた。アークプラズマは初期にはカーボンるつぼに照射し、塊状SiCが加熱した後にアークプラズマを塊状SiCに照射した。   The bulk SiC was placed on the carbon crucible of the above-described nanoparticle production apparatus, and the inside of the furnace was evacuated to 0.13 Pa or less with a vacuum pump. Thereafter, each atmospheric gas was introduced, the pressure of the furnace was kept at 0.1 MPa, and the circulation pump was operated. The current was set at 150 A, and arc plasma was generated between the water-cooled copper hearth and the carbon crucible as the cathode and the anode. The arc plasma was initially applied to the carbon crucible, and after the massive SiC was heated, the arc plasma was applied to the massive SiC.

粉末Cと粉末Siの混合粉末成形体については、カーボンるつぼの上に載せ、真空ポンプで炉内を0.13Pa以下の真空にした後、PVBの除去とアークプラズマによる粉末の飛散を抑制するために、雰囲気に100vol%Arを用いてArプラズマを発生させ、混合粉末成形体に照射し、加熱した。加熱時間は10sec程度とし、加熱後すぐに炉内を真空にし
た。この後の操作は、塊状SiCのときと同様にした。
For the mixed powder compact of powder C and powder Si, place it on a carbon crucible, and after vacuuming the inside of the furnace with a vacuum pump to 0.13 Pa or less, to suppress PVB removal and powder scattering due to arc plasma Then, Ar plasma was generated using 100 vol% Ar in the atmosphere, and the mixed powder compact was irradiated and heated. The heating time was about 10 seconds, and the furnace was evacuated immediately after heating. The subsequent operation was the same as that for bulk SiC.

窒素プラズマを出発原料に照射するのと同時にプラズマフレームの周辺から煙状のナノ粒子が激しく噴出する様子が観察された。このような特異現象は100vol%Ar雰囲気下では観察されなかった。   At the same time that the starting material was irradiated with nitrogen plasma, smoke-like nanoparticles erupted vigorously from the periphery of the plasma flame. Such a specific phenomenon was not observed under a 100 vol% Ar atmosphere.

発生したナノ粒子について、X線回折測定(日本電子、JDX−3500)による相の同定、BET法による平均粒径の算出およびナノ粒子の発生速度の測定を行った。   About the produced | generated nanoparticle, the identification of the phase by X-ray-diffraction measurement (JEOL, JDX-3500), calculation of the average particle diameter by BET method, and the generation rate of the nanoparticle were performed.

図2(a)(b)に、出発原料に塊状SiCを、図2(c)(d)に、出発原料にC/Si=1/1の混合粉末成形体を用いたときに発生したナノ粒子の50vol%N2−Arおよび100vol%N2雰囲気におけるX線回折測定の結果を示した。全般的にSiCのピーク
が主体であり、50vol%N2−Ar雰囲気では僅少のSiピークが生成している。
2 (a) and 2 (b), lump SiC generated as a starting material, and FIGS. 2 (c) and 2 (d), nano particles generated when a mixed powder compact of C / Si = 1/1 was used as a starting material. shows the results of X-ray diffraction measurement in 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere particles. In general, a SiC peak is mainly used, and a slight Si peak is generated in a 50 vol% N 2 —Ar atmosphere.

なお、C/Si=6/4の混合粉末成形体を用いたときに発生したナノ粒子は、SiCと不純物Si、Cを含んだものであった。出発材料をCリッチ状態にしても不純物Siの生成を抑制することはできなかった。   The nanoparticles generated when using a mixed powder compact with C / Si = 6/4 contained SiC and impurities Si and C. Even when the starting material was in a C-rich state, the generation of impurity Si could not be suppressed.

図3に、得られたナノ粒子のBET比表面積測定の結果から得られる平均粒径を示した。図3(a)(b)は、出発原料が塊状SiCの場合で、図3(c)(d)は、出発原料
がC/Si=1/1の混合粉末成形体の場合である。
In FIG. 3, the average particle diameter obtained from the result of the BET specific surface area measurement of the obtained nanoparticle was shown. FIGS. 3A and 3B show the case where the starting material is bulk SiC, and FIGS. 3C and 3D show the case where the starting material is a mixed powder compact with C / Si = 1/1.

ナノ粒子の平均粒径D(m)は次式で求められる。   The average particle diameter D (m) of the nanoparticles is obtained by the following formula.

D=6/S・ρ・106
ここで、Sは比表面積(m2/g)、ρはナノ粒子の密度(g/cm3)である。
D = 6 / S · ρ · 10 6
Here, S is the specific surface area (m 2 / g), and ρ is the density of the nanoparticles (g / cm 3 ).

いずれの場合も、窒素を有する雰囲気中で発生したナノ粒子は、平均粒径が十分小さいことが確認される。   In any case, it is confirmed that the nanoparticles generated in the atmosphere containing nitrogen have a sufficiently small average particle diameter.

図4は、塊状SiCを100vol%N2でプラズマ照射して得られたナノ粒子の透過電子顕微鏡(TEM)写真である。 FIG. 4 is a transmission electron microscope (TEM) photograph of nanoparticles obtained by plasma irradiation of massive SiC with 100 vol% N 2 .

形状は多角形状を示し、10〜80nm程度の大きさの粒子が混在しているのが認められる。このサイズは、前述のBET法による平均粒径とよく一致している。   The shape shows a polygonal shape, and it is recognized that particles having a size of about 10 to 80 nm are mixed. This size is in good agreement with the average particle size according to the BET method described above.

図5に、50vol%N2−Arおよび100vol%N2雰囲気で塊状SiCに窒素プラズマを
照射したときに発生したナノ粒子の発生速度を示した。発生速度は、窒素プラズマ照射前と照射後の出発原料の質量損失量をアークプラズマ照射時間で除して算出したものである。図5から確認されるように、雰囲気中の窒素濃度の増大とともに発生速度が比例して増大しているのがわかる。この現象は、SiC混合粉末成形体についても同様の結果を得ている。これらの結果は、出発原料を金属に置き換えて行った際に見られる現象と酷似しており、窒素ガスが熱プラズマにより活性化されることによる一種の強制蒸発現象であると考えられる。
Figure 5 shows the generation rate of the nanoparticles occurs when irradiated with nitrogen plasma bulk SiC with 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere. The generation rate is calculated by dividing the mass loss amount of the starting material before and after the nitrogen plasma irradiation by the arc plasma irradiation time. As can be seen from FIG. 5, it can be seen that the generation rate increases in proportion to the increase in the nitrogen concentration in the atmosphere. This phenomenon has obtained the same result also about the SiC mixed powder compact. These results are very similar to those observed when the starting material is replaced with metal, and are considered to be a kind of forced evaporation phenomenon due to activation of nitrogen gas by thermal plasma.

以上から明らかにされるように、この出願の発明の窒素プラズマによるSiCナノ粒子の製造方法は、不純物の少ない、平均粒径の小さなSiCナノ粒子の製造を可能にする。また、窒素プラズマを用いることから、安全であり、経済的に優れたSiCナノ粒子の製造法であると考えられる。   As is apparent from the above, the method for producing SiC nanoparticles using nitrogen plasma according to the invention of this application enables the production of SiC nanoparticles having a small average particle size with few impurities. Further, since nitrogen plasma is used, it is considered to be a safe and economical method for producing SiC nanoparticles.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。   Of course, the invention of this application is not limited by the above embodiments.

以上詳しく説明したとおり、この出願の発明によって、高純度で平均粒径の小さなSiCナノ粒子が高効率に製造される。比較的簡便なアーク溶解炉を基本とした熱プラズマ炉を用い、窒素ガスを用いることから、経済的であるとともに、安全性において優れており、波及効果は大きいと考えられる。   As explained in detail above, according to the invention of this application, SiC nanoparticles having high purity and a small average particle diameter are produced with high efficiency. Since a thermal plasma furnace based on a relatively simple arc melting furnace is used and nitrogen gas is used, it is economical and excellent in safety, and is considered to have a great ripple effect.

ナノ粒子作製装置の概略図である。It is the schematic of a nanoparticle preparation apparatus. 塊状SiCおよびC/Si=1/1の混合粉末成形体に窒素プラズマを照射して得られたナノ粒子のX線回折結果である。It is an X-ray-diffraction result of the nanoparticle obtained by irradiating nitrogen plasma to the mixed powder compact | molding | casting of lump SiC and C / Si = 1/1. SiCナノ粒子のBET比表面積測定の結果から得られる平均粒径を示したグラフである。It is the graph which showed the average particle diameter obtained from the result of the BET specific surface area measurement of a SiC nanoparticle. 塊状SiCに100vol%N2プラズマを照射して得られたナノ粒子の透過顕微鏡写真である。A transmission microscope photograph of the obtained nanoparticles is irradiated with 100 vol% N 2 plasma bulk SiC. 50vol%N2−Arおよび100vol%N2雰囲気で塊状SiCに窒素プラズマを照射して発生したSiCナノ粒子の発生速度を示したグラフである。It is a graph showing the occurrence rate of 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere by irradiating nitrogen plasma bulk SiC generated in the SiC nanoparticles.

Claims (2)

窒素雰囲気中でアークプラズマを発生させ、アークプラズマを塊状SiCに照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法。   A method for producing SiC nanoparticles by nitrogen plasma, characterized in that arc plasma is generated in a nitrogen atmosphere, and the bulk plasma is irradiated with the arc plasma to generate SiC nanoparticles. 窒素雰囲気中でアークプラズマを発生させ、アークプラズマを、粉末Siと粉末Cの混合粉末成形体に照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法。

A method for producing SiC nanoparticles by nitrogen plasma, characterized in that arc plasma is generated in a nitrogen atmosphere, and the mixed powder compact of powder Si and powder C is irradiated with the arc plasma to generate SiC nanoparticles.

JP2004178941A 2004-06-16 2004-06-16 Production method of SiC nanoparticles by nitrogen plasma Expired - Fee Related JP4649586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178941A JP4649586B2 (en) 2004-06-16 2004-06-16 Production method of SiC nanoparticles by nitrogen plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178941A JP4649586B2 (en) 2004-06-16 2004-06-16 Production method of SiC nanoparticles by nitrogen plasma

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009280039A Division JP2010095442A (en) 2009-12-10 2009-12-10 Nanoparticle production apparatus and nanoparticle production method using the same
JP2010224452A Division JP5252460B2 (en) 2010-10-04 2010-10-04 Production method of SiC nanoparticles by nitrogen plasma

Publications (3)

Publication Number Publication Date
JP2006001779A true JP2006001779A (en) 2006-01-05
JP2006001779A5 JP2006001779A5 (en) 2007-07-26
JP4649586B2 JP4649586B2 (en) 2011-03-09

Family

ID=35770487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178941A Expired - Fee Related JP4649586B2 (en) 2004-06-16 2004-06-16 Production method of SiC nanoparticles by nitrogen plasma

Country Status (1)

Country Link
JP (1) JP4649586B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330796C (en) * 2006-03-02 2007-08-08 浙江理工大学 Method of synthetizing two kinds of different shaped silicon carbid nano wire
CN100338266C (en) * 2006-03-02 2007-09-19 浙江大学 Method of synthetizing silicon carbide nano rods
JP2010095442A (en) * 2009-12-10 2010-04-30 National Institute For Materials Science Nanoparticle production apparatus and nanoparticle production method using the same
JP2010526664A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Particle production system and fluid recirculation method
WO2012148034A1 (en) * 2011-04-26 2012-11-01 주식회사 네오플랜트 Production method for nano silicon carbide using a thermal plasma
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
KR101641839B1 (en) 2015-12-03 2016-07-22 전북대학교산학협력단 Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN114351254A (en) * 2022-01-13 2022-04-15 青岛科技大学 Preparation method of nanoscale silicon carbide single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423635B (en) * 2018-03-22 2019-09-20 清华大学 A kind of three-dimensional spherical nanometer silicon carbide assembled material and its preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227765A (en) * 1983-06-04 1984-12-21 科学技術庁金属材料技術研究所長 Manufacture of ceramic super fine particle
JPS63195168A (en) * 1986-03-25 1988-08-12 ケネコツト・コ−ポレ−シヨン Method of preventing decomposition of silicon carbide products during sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227765A (en) * 1983-06-04 1984-12-21 科学技術庁金属材料技術研究所長 Manufacture of ceramic super fine particle
JPS63195168A (en) * 1986-03-25 1988-08-12 ケネコツト・コ−ポレ−シヨン Method of preventing decomposition of silicon carbide products during sintering

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
CN100338266C (en) * 2006-03-02 2007-09-19 浙江大学 Method of synthetizing silicon carbide nano rods
CN1330796C (en) * 2006-03-02 2007-08-08 浙江理工大学 Method of synthetizing two kinds of different shaped silicon carbid nano wire
US8604398B1 (en) 2007-05-11 2013-12-10 SDCmaterials, Inc. Microwave purification process
JP2016027940A (en) * 2007-05-11 2016-02-25 エスディーシーマテリアルズ, インコーポレイテッド Particle production system and fluid recirculation method
US8956574B2 (en) 2007-05-11 2015-02-17 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8574408B2 (en) 2007-05-11 2013-11-05 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2010526664A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Particle production system and fluid recirculation method
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8524631B2 (en) 2007-05-11 2013-09-03 SDCmaterials, Inc. Nano-skeletal catalyst
US8663571B2 (en) 2007-05-11 2014-03-04 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8759248B2 (en) 2007-10-15 2014-06-24 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8507402B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
JP2010095442A (en) * 2009-12-10 2010-04-30 National Institute For Materials Science Nanoparticle production apparatus and nanoparticle production method using the same
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8828328B1 (en) 2009-12-15 2014-09-09 SDCmaterails, Inc. Methods and apparatuses for nano-materials powder treatment and preservation
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8821786B1 (en) 2009-12-15 2014-09-02 SDCmaterials, Inc. Method of forming oxide dispersion strengthened alloys
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
WO2012148034A1 (en) * 2011-04-26 2012-11-01 주식회사 네오플랜트 Production method for nano silicon carbide using a thermal plasma
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
KR101641839B1 (en) 2015-12-03 2016-07-22 전북대학교산학협력단 Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition
CN114351254A (en) * 2022-01-13 2022-04-15 青岛科技大学 Preparation method of nanoscale silicon carbide single crystal

Also Published As

Publication number Publication date
JP4649586B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4649586B2 (en) Production method of SiC nanoparticles by nitrogen plasma
JPS6330062B2 (en)
Dash et al. Preparation of multi-phase composite of tungsten carbide, tungsten boride and carbon by arc plasma melting: characterization of melt-cast product
Bača et al. Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors
Ko et al. Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma
AU2017299217A1 (en) Manufacture of tungsten monocarbide (WC) spherical powder
CN102689903A (en) Method for preparing silicon carbide nanometer particle and composite material thereof by evaporating solid raw materials
JP2006001779A5 (en)
Li et al. Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C
JP2013071864A (en) Silicon nitride powder for mold releasing agent, and method for producing the same
JP5896968B2 (en) Zirconium carbide ingot and method for producing powder
US20150210616A1 (en) Preparation method for edge-fluorinated graphite via mechanic-chemical process
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter
JP5252460B2 (en) Production method of SiC nanoparticles by nitrogen plasma
JP2014088292A5 (en)
Park et al. Synthesis of silicon carbide nanocrystals using waste poly (vinyl butyral) sheet
Liu et al. In situ synthesis of AlN nanoparticles by solid state reaction from plasma assisted ball milling Al and diaminomaleonitrile mixture
JP2014019584A (en) Lanthanum hexaboride sintered body, production method thereof, lanthanum hexaboride film and organic semiconductor device
JP2013532626A (en) Silicon carbide and method for producing the same
JP4695173B2 (en) Method for preparing titanium nitride powder
JP2007084369A (en) TiC ULTRAFINE PARTICLE-SUPPORTED OR TiO2 ULTRAFINE PARTICLE-SUPPORTED CARBON NANOTUBE, TiC NANOTUBE, AND METHOD FOR PRODUCING THEM
JP2011063487A (en) Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
JP2010095442A (en) Nanoparticle production apparatus and nanoparticle production method using the same
TW201609536A (en) Novel process and product
KR101641839B1 (en) Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees