JP2014088292A5 - - Google Patents

Download PDF

Info

Publication number
JP2014088292A5
JP2014088292A5 JP2012239813A JP2012239813A JP2014088292A5 JP 2014088292 A5 JP2014088292 A5 JP 2014088292A5 JP 2012239813 A JP2012239813 A JP 2012239813A JP 2012239813 A JP2012239813 A JP 2012239813A JP 2014088292 A5 JP2014088292 A5 JP 2014088292A5
Authority
JP
Japan
Prior art keywords
powder
silicon oxide
silicon
oxide powder
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012239813A
Other languages
Japanese (ja)
Other versions
JP5994573B2 (en
JP2014088292A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012239813A priority Critical patent/JP5994573B2/en
Priority claimed from JP2012239813A external-priority patent/JP5994573B2/en
Publication of JP2014088292A publication Critical patent/JP2014088292A/en
Publication of JP2014088292A5 publication Critical patent/JP2014088292A5/ja
Application granted granted Critical
Publication of JP5994573B2 publication Critical patent/JP5994573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の第1の観点は、無電極型の高周波誘電法により発生した高周波プラズマ中で、二酸化珪素粉末及び金属珪素粉末の混合物を原料として非晶質のSiOxで表される酸化珪素粉末を製造する方法であって、酸化珪素粉末の酸素含有量Xが0.2以上1.0未満の範囲にあり、酸化珪素粉末の不純物濃度が最大で11.5ppmであることを特徴とする酸化珪素粉末の製造方法である。 A first aspect of the present invention is to produce amorphous silicon oxide powder represented by SiOx using a mixture of silicon dioxide powder and metal silicon powder as a raw material in high frequency plasma generated by an electrodeless high frequency dielectric method. An oxidation method characterized in that the oxygen content X of the silicon oxide powder is in the range of 0.2 to less than 1.0 and the impurity concentration of the silicon oxide powder is 11.5 pp m at the maximum. This is a method for producing silicon powder.

一方、ステンレス鋼、モリブデン、タングステン等の基板上に析出した酸化珪素を掻き取り等により回収したり、或いはこの回収した酸化珪素をボールミル等により粉砕して粒度を調整している従来の酸化珪素粉末の製造方法等と比較して、本発明では、不純物濃度が最大で11.5ppmと低い。上記不純物を含む酸化珪素(珪素低級酸化物)を蒸着材として用いた場合、ガスバリアフィルムに酸化珪素膜を成膜させる際に、異常放電(アークスポット)の原因となり、この異常放電(アークスポット)が発生すると、ガス化していない酸化珪素がガスバリアフィルムに付着するため、ガスフィルムに凸部やピンホール等の酸化珪素の不均一面が生成されてしまい、これによりガスバリア性が低下してしまう問題点があった従来のケイ素低級酸化物粒子の製造方法と比較して、本発明では、酸化珪素粉末の不純物濃度が最大で11.5ppmであるので、酸化珪素粉末をガスバリアフィルムとして使用した場合、良好なガスバリア性を有する蒸着膜を形成できる。また上記不純物を含む酸化珪素(珪素低級酸化物)をリチウムイオン二次電池の負極活物質として用いた場合、酸化珪素中の鉄やタングステンにより初回充放電時の不可逆容量が大きくなってしまい、サイクル特性が劣化する問題点があった従来のケイ素低級酸化物粒子の製造方法と比較して、本発明では、酸化珪素粉末の不純物濃度が最大で11.5ppmであるので、酸化珪素粉末をリチウムイオン二次電池の負極活性物質として用いた場合、初期充放電時の不可容量を小さくすることができ、これによりサイクル特性を向上できる。 On the other hand, a conventional silicon oxide powder in which the silicon oxide deposited on a substrate such as stainless steel, molybdenum, or tungsten is collected by scraping or the like, or the collected silicon oxide is pulverized by a ball mill or the like to adjust the particle size. In the present invention, the impurity concentration is as low as 11.5 ppm at the maximum, compared with the manufacturing method. When silicon oxide containing the above impurities (silicon lower oxide) is used as a vapor deposition material, it causes abnormal discharge (arc spot) when forming a silicon oxide film on the gas barrier film, and this abnormal discharge (arc spot) When gas is generated, non-gasified silicon oxide adheres to the gas barrier film, so that a non-uniform surface of silicon oxide such as a convex portion or a pinhole is generated on the gas film, thereby reducing gas barrier properties. Compared with the conventional method for producing silicon lower oxide particles, the present invention uses silicon oxide powder as a gas barrier film because the impurity concentration of silicon oxide powder is 11.5 pp m at the maximum. In this case, a deposited film having a good gas barrier property can be formed. Further, when silicon oxide containing the above impurities (silicon lower oxide) is used as the negative electrode active material of a lithium ion secondary battery, the irreversible capacity at the first charge / discharge is increased due to iron or tungsten in the silicon oxide, resulting in a cycle. characteristics as compared to the conventional method of manufacturing a silicon lower oxide particles problem had to be degraded, in the present invention, since the impurity concentration of the silicon oxide powder is at most 11.5 pp m, a silicon oxide powder When used as a negative electrode active material for a lithium ion secondary battery, it is possible to reduce the unacceptable capacity during initial charge / discharge, thereby improving cycle characteristics.

本発明の第3の観点の酸化珪素粉末の製造方法では、酸化珪素粉末の平均粒径が体積基準で0.002〜1μmの範囲にあるため、ステンレス鋼等の基板上に析出した酸化珪素を掻き取り等によって回収する必要がなく、また回収した酸化珪素をボールミル等により粉砕して粒度を調整する必要がなく、酸化珪素粉末への不純物の混入が少なくなる。この結果、酸化珪素粉末中の不純物濃度が最大で11.5ppmと低くなる。 In the method for producing silicon oxide powder according to the third aspect of the present invention, since the average particle size of the silicon oxide powder is in the range of 0.002 to 1 μm on a volume basis, silicon oxide deposited on a substrate such as stainless steel is used. There is no need to collect by scraping or the like, and there is no need to adjust the particle size by pulverizing the collected silicon oxide with a ball mill or the like, so that impurities are not mixed into the silicon oxide powder. As a result, the impurity concentration in the silicon oxide powder is as low as 11.5 ppm at maximum.

上記高周波プラズマ装置10では、ガス導入管18から石英管13a内にアルゴンガス、ヘリウムガス、水素ガス、窒素ガス及び酸素ガスからなる群より選ばれた1種又は2種以上の混合ガスを導入して、高周波誘導コイル13bに所定の高周波電力を供給すると、石英管13a内からチャンバ14内にかけて高周波プラズマ12を発生し、原料粉末である二酸化珪素粉末及び金属珪素粉末の混合物は原料供給管17を通って高周波プラズマ40中に供給されるようになっている。また上記高周波プラズマ12の高周波出力をA(W)とし、二酸化珪素粉末及び金属珪素粉末の混合物の供給速度をB(kg/時)とするとき、A/Bが1.0×104(W・時/kg)以上になるように調整して、高周波プラズマ12を発生させる。ここで、A/Bを1.0×104(W・時/kg)以上に限定したのは、1.0×104(W・時/kg)より小さいと、二酸化珪素粉末と金属珪素粉末に与える高周波プラズマのエネルギが少ないため、二酸化珪素粉末及び金属珪素粉末の反応速度が遅くなるという理由に基づく。また高周波プラズマ12の発生雰囲気の圧力は、全圧(混合ガス全体の圧力)で0.05〜0.12MPaの範囲、好ましくは0.07〜0.10MPaの範囲に調整される。ここで、高周波プラズマ12の発生雰囲気の圧力の下限値を全圧で0.05MPaに限定したのは、電子だけではなく、イオンや原子等の重粒子も高温になるため、高周波プラズマ12のエネルギ密度が大きくなり、二酸化珪素粉末及び金属珪素粉末を短時間で効率良く加熱でき、また高温領域における二酸化珪素粉末及び金属珪素粉末の反応速度の指数関数的な増大が期待できるからである。また、高周波プラズマ12の発生雰囲気の圧力の上限値を全圧で0.12MPaに限定したのは、0.12MPaより大きくなると、高周波プラズマにより加熱される混合ガスの温度が高くなり過ぎ、チャンバ14の表面を融解させてしまうからである。 In the high-frequency plasma apparatus 10, one or more mixed gases selected from the group consisting of argon gas, helium gas, hydrogen gas, nitrogen gas and oxygen gas are introduced from the gas introduction tube 18 into the quartz tube 13a. When a predetermined high-frequency power is supplied to the high-frequency induction coil 13b, a high-frequency plasma 12 is generated from the quartz tube 13a to the chamber 14, and a mixture of silicon dioxide powder and metal silicon powder, which are raw material powder, is supplied to the raw material supply tube 17. It is supplied to the high frequency plasma 40 through. When the high-frequency output of the high-frequency plasma 12 is A (W) and the supply rate of the mixture of silicon dioxide powder and metal silicon powder is B (kg / hour), A / B is 1.0 × 10 4 (W Adjust the frequency so that it becomes more than hour / kg) to generate the high-frequency plasma 12. Here, when A / B is limited to 1.0 × 10 4 (W · hour / kg) or more, if it is smaller than 1.0 × 10 4 (W · hour / kg), silicon dioxide powder and metallic silicon This is based on the reason that the reaction rate of the silicon dioxide powder and the metal silicon powder is slow because the energy of the high frequency plasma applied to the powder is small. The pressure of the atmosphere in which the high-frequency plasma 12 is generated is adjusted to a range of 0.05 to 0.12 MPa, preferably 0.07 to 0.10 MPa, in terms of total pressure (pressure of the entire mixed gas). Here, the reason why the lower limit value of the pressure of the atmosphere in which the high-frequency plasma 12 is generated is limited to 0.05 MPa in terms of the total pressure is that not only electrons but also heavy particles such as ions and atoms become high temperature. This is because the density increases, the silicon dioxide powder and the metal silicon powder can be efficiently heated in a short time, and an exponential increase in the reaction rate of the silicon dioxide powder and the metal silicon powder in a high temperature region can be expected. The upper limit of the pressure of the atmosphere in which the high-frequency plasma 12 is generated is limited to 0.12 MPa as the total pressure. If the pressure exceeds 0.12 MPa, the temperature of the mixed gas heated by the high-frequency plasma becomes too high, and the chamber 14 This is because the surface of the material is melted.

このようにして製造された酸化珪素粉末では、平均粒径が体積基準で0.002〜1μmの範囲にあるため、ステンレス鋼等の基板上に析出した酸化珪素を掻き取り等によって回収する必要がなく、また回収した酸化珪素をボールミル等により粉砕して粒度を調整する必要がなく、酸化珪素粉末への不純物の混入が少ない。この結果、酸化珪素粉末中の不純物濃度が最大で11.5ppmと低くなる。なお、酸化珪素粉末の平均粒径は体積基準で0.05〜0.5μmの範囲にあることが好ましく、酸化珪素粉末中の不純物濃度は最大で1ppm未満であることが好ましい。 In the silicon oxide powder produced in this way, the average particle size is in the range of 0.002 to 1 μm on a volume basis, so it is necessary to collect silicon oxide deposited on a stainless steel substrate by scraping or the like. In addition, there is no need to adjust the particle size by pulverizing the recovered silicon oxide with a ball mill or the like, and there is little mixing of impurities into the silicon oxide powder. As a result, the impurity concentration in the silicon oxide powder is as low as 11.5 ppm at maximum. In addition, it is preferable that the average particle diameter of silicon oxide powder exists in the range of 0.05-0.5 micrometer on a volume basis, and it is preferable that the impurity concentration in silicon oxide powder is less than 1 ppm at maximum.

Figure 2014088292
なお、表1において、(注1)には、『加熱してガス化した後に、析出させて粉砕することにより、酸化珪素粉末を作製した。』という文が挿入される。また、表1において、(注2)には、『比較例1の酸化珪素粉末と金属珪素粉末とを別々にガス化して反応させた後に、この反応ガスを析出させて粉砕することにより、酸化珪素粉末を作製した。』という文が挿入される。
Figure 2014088292
In Table 1, (Note 1) indicates “Silicon oxide powder was produced by heating and gasifying, then precipitating and grinding. Is inserted. In Table 1, (Note 2) indicates that “the silicon oxide powder and the metal silicon powder of Comparative Example 1 were separately gasified and reacted, and then the reaction gas was deposited and pulverized to oxidize. Silicon powder was produced. Is inserted.

Claims (5)

無電極型の高周波誘電法により発生した高周波プラズマ中で、二酸化珪素粉末及び金属珪素粉末の混合物を原料として非晶質のSiOxで表される酸化珪素粉末を製造する方法であって、
前記酸化珪素粉末の酸素含有量Xが0.2以上1.0未満の範囲にあり、
前記酸化珪素粉末の不純物濃度が最大で11.5ppmである
ことを特徴とする酸化珪素粉末の製造方法。
In a high-frequency plasma generated by an electrodeless high-frequency dielectric method, a method for producing an amorphous silicon oxide powder represented by SiOx using a mixture of silicon dioxide powder and metal silicon powder as a raw material,
The oxygen content X of the silicon oxide powder is in the range of 0.2 or more and less than 1.0,
Method for producing a silicon oxide powder in which the impurity concentration of the silicon oxide powder is characterized in that it is a 11.5 pp m at maximum.
前記高周波プラズマの発生雰囲気の圧力を0.05〜0.12MPaの範囲に調整し、かつ前記高周波プラズマの高周波出力をA(W)とし、前記二酸化珪素粉末及び前記金属珪素粉末の混合物の供給速度をB(kg/時)とするとき、A/Bが1.0×104(W・時/kg)以上になるように調整して、前記高周波プラズマを発生させる請求項1記載の酸化珪素粉末の製造方法。 The pressure of the atmosphere in which the high-frequency plasma is generated is adjusted to a range of 0.05 to 0.12 MPa, the high-frequency output of the high-frequency plasma is A (W), and the supply rate of the mixture of the silicon dioxide powder and the metal silicon powder 2. The silicon oxide according to claim 1, wherein the high frequency plasma is generated by adjusting A / B to be 1.0 × 10 4 (W · hour / kg) or more when B is kg (kg / hour). Powder manufacturing method. 前記酸化珪素粉末の平均粒径が体積基準で0.002〜1μmの範囲にある請求項1記載の酸化珪素粉末の製造方法。   The method for producing a silicon oxide powder according to claim 1, wherein an average particle diameter of the silicon oxide powder is in a range of 0.002 to 1 µm on a volume basis. 前記二酸化珪素粉末が、ヒュームドシリカであるか、或いはこのヒュームドシリカを原料としかつ平均粒径が体積基準で0.1〜80μmの範囲にある造粒粉である請求項1記載の酸化珪素粉末の製造方法。   2. The silicon oxide according to claim 1, wherein the silicon dioxide powder is fumed silica or a granulated powder using the fumed silica as a raw material and having an average particle diameter in the range of 0.1 to 80 μm on a volume basis. Powder manufacturing method. 前記造粒粉が、ヒュームドシリカをスラリー化又はゲル化した後、100〜1100℃の範囲の温度で乾燥して得られる請求項4記載の酸化珪素粉末の製造方法。   The manufacturing method of the silicon oxide powder of Claim 4 obtained by drying the said granulated powder at the temperature of the range of 100-1100 degreeC after slurrying or gelatinizing fumed silica.
JP2012239813A 2012-10-31 2012-10-31 Method for producing silicon oxide powder Expired - Fee Related JP5994573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239813A JP5994573B2 (en) 2012-10-31 2012-10-31 Method for producing silicon oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239813A JP5994573B2 (en) 2012-10-31 2012-10-31 Method for producing silicon oxide powder

Publications (3)

Publication Number Publication Date
JP2014088292A JP2014088292A (en) 2014-05-15
JP2014088292A5 true JP2014088292A5 (en) 2016-04-28
JP5994573B2 JP5994573B2 (en) 2016-09-21

Family

ID=50790561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239813A Expired - Fee Related JP5994573B2 (en) 2012-10-31 2012-10-31 Method for producing silicon oxide powder

Country Status (1)

Country Link
JP (1) JP5994573B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015795A1 (en) * 2013-07-30 2015-02-05 東京印刷機材トレーディング株式会社 Siox powder manufacturing process and siox powder manufacturing apparatus
JP2017061411A (en) * 2016-12-01 2017-03-30 株式会社日清製粉グループ本社 Manufacturing method of nonstoichiometric oxide particle
SG11202006013VA (en) * 2018-01-26 2020-07-29 Denka Company Ltd Amorphous silica powder, production method therefor, and use thereof
WO2023074217A1 (en) * 2021-10-27 2023-05-04 三菱ケミカル株式会社 Silicon oxide particles and method for producing same, particles and method for producing same, and secondary battery and method for producing same
CN114349011B (en) * 2022-01-14 2023-04-11 宁波广新纳米材料有限公司 Preparation method of nano-sized silicon monoxide powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900573B2 (en) * 2006-04-24 2012-03-21 信越化学工業株式会社 Method for producing silicon oxide powder
JP2011079724A (en) * 2009-10-09 2011-04-21 Osaka Titanium Technologies Co Ltd METHOD FOR PRODUCING SiOx (x<1)
JP5362614B2 (en) * 2010-02-16 2013-12-11 日清エンジニアリング株式会社 Method for producing silicon monoxide fine particles and silicon monoxide fine particles

Similar Documents

Publication Publication Date Title
JP5618113B2 (en) Submicron size silicon powder with low oxygen content
JP4749502B2 (en) SiOx, barrier film deposition material using the same, and negative electrode active material for lithium ion secondary battery
US11312633B2 (en) Silicon-carbon composite powder
JP2014088292A5 (en)
JP4649586B2 (en) Production method of SiC nanoparticles by nitrogen plasma
JP2011530473A (en) Plasma process for producing silanes and their derivatives
JPWO2018074175A1 (en) Silicon oxide based negative electrode material and method for manufacturing the same
KR101290659B1 (en) Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby
JP2023041673A (en) Silicon-based powder, and electrode and battery comprising such powder
WO2015156080A1 (en) Nickel powder
WO2014048063A1 (en) Process for thermally treating tantalum powder for capacitor with heat source
JP2014088291A5 (en)
JP2011108635A (en) Negative electrode active material for lithium ion secondary battery
JP5994573B2 (en) Method for producing silicon oxide powder
KR20130069190A (en) Synthetic method for tungsten metal nanopowder using rf plasma
Lee et al. Ultrananocrystalline diamond film deposition by direct-current plasma assisted chemical vapor deposition using hydrogen-rich precursor gas in the absence of the positive column
KR101409160B1 (en) Manufacturing method of aluminum nitride nano powder
JP2011079724A (en) METHOD FOR PRODUCING SiOx (x&lt;1)
JP6236022B2 (en) Method for producing silicon-containing powder
JP5994572B2 (en) Method for producing silicon oxide powder
KR101371555B1 (en) Method for manufacturing silicon-carbon nano composite for anode active material of lithium secondary batteries
KR101153961B1 (en) Manufacturing method of a tantalum powder using eutectic composition
KR101478555B1 (en) Nickel nano powder and method of manufacturing the same using high temperature plasma
JP2005325448A (en) Tantalum powder, and solid electrolyte capacitor using it
Ilyin et al. Production and characterization of molybdenum nanopowders obtained by electrical explosion of wires