WO2015156080A1 - Nickel powder - Google Patents

Nickel powder Download PDF

Info

Publication number
WO2015156080A1
WO2015156080A1 PCT/JP2015/057325 JP2015057325W WO2015156080A1 WO 2015156080 A1 WO2015156080 A1 WO 2015156080A1 JP 2015057325 W JP2015057325 W JP 2015057325W WO 2015156080 A1 WO2015156080 A1 WO 2015156080A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nickel powder
nickel
sulfur
powder
Prior art date
Application number
PCT/JP2015/057325
Other languages
French (fr)
Japanese (ja)
Inventor
広介 六角
浅井 剛
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to CN201580017072.XA priority Critical patent/CN106457379B/en
Priority to JP2016512640A priority patent/JP6559118B2/en
Priority to KR1020167028221A priority patent/KR102292897B1/en
Publication of WO2015156080A1 publication Critical patent/WO2015156080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt

Definitions

  • the present invention relates to a nickel powder suitable for use as a conductive paste used in electronic parts and the like, and more particularly to a nickel powder suitable for use as a conductive paste for internal electrodes of multilayer ceramic capacitors.
  • Mobile communication terminals represented by smartphones and tablet terminals increase power consumption and increase battery capacity with multifunctionality and high functionality, so the main substrate on which electronic components are mounted in a limited case Tends to be smaller.
  • the number of electronic components mounted on the main substrate tends to increase. Therefore, the multilayer ceramic capacitor mounted on the main substrate is required to be small and have a large capacity.
  • the nickel powder used for the internal electrode ultrafine powder having a number of 50% primary particles of 0.3 ⁇ m or less as well as 0.2 ⁇ m or less, and further 0.1 ⁇ m or less is demanded.
  • nickel powder has a lower sintering start temperature and larger thermal contraction than ceramic powders used for dielectrics of multilayer ceramic capacitors. For this reason, there is a problem that defects such as peeling between the electrode layer and the dielectric layer and generation of cracks in the electrode layer are easily generated when firing in the manufacturing process of the multilayer ceramic capacitor.
  • defects such as peeling between the electrode layer and the dielectric layer and generation of cracks in the electrode layer are easily generated when firing in the manufacturing process of the multilayer ceramic capacitor.
  • coarse particles exceeding 3 times the number 50% diameter of primary particles or agglomerated particles in which particles are coagulated exist in the nickel powder the irregularities on the surface of the electrode layer become large, and shorts between electrode layers and resistance to multilayer ceramic capacitors It causes a drop in voltage.
  • Patent Document 1 discloses a nickel powder having a sulfur content of 0.02 to 1.0% by weight as a means for coping with the occurrence of defects as described above.
  • Patent Document 2 discloses a nickel powder in which a coating film of nickel sulfide or nickel sulfate is formed on the surface.
  • JP-A-11-80817 (claims) JP 2008-223145 A (claims)
  • the present invention has excellent sintering characteristics in the manufacturing process of the multilayer ceramic capacitor, and can prevent generation of defects such as peeling between the electrode layer and the dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer.
  • the object is to obtain a nickel powder having a number 50% diameter smaller than 0.1 ⁇ m.
  • the present invention can suppress the occurrence of agglomerated particles in the manufacturing process of the multilayer ceramic capacitor, can prevent the occurrence of defects such as a short between electrode layers and a reduction in withstand voltage, and the number 50% diameter is 0.1 ⁇ m
  • the aim is to provide a smaller nickel powder.
  • the nickel powder of the present invention is characterized by containing 1.0 to 5.0% by mass of sulfur and having a number 50% diameter of not more than 0.09 ⁇ m.
  • the sintering behavior of the nickel powder can be improved even if the number 50% diameter is not more than 0.09 ⁇ m. It is possible to solve the problems such as the characteristic deterioration of the multilayer ceramic capacitor due to the bonding.
  • the sintered powder is superior to the nickel powder of the present invention in the manufacturing process of the multilayer ceramic capacitor, and the occurrence of defects such as peeling between the electrode layer and dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer is prevented.
  • the nickel powder of the present invention can suppress the generation of agglomerated particles, and can suppress the generation of defects such as a short between electrode layers and a reduction in withstand voltage.
  • the nickel powder of the present invention includes nickel powder produced by various production methods and nickel alloy powder containing nickel as a main component.
  • a nickel alloy powder there is an alloy powder in which chromium is added with chromium, silicon, boron, phosphorus, a rare earth element, a noble metal element or the like in order to impart oxidation resistance or the like and improve the electric conductivity.
  • the number 50% diameter of the nickel powder of the present invention is 0.09 ⁇ m or less.
  • the lower limit of the number 50% diameter of the nickel powder of the present invention is not particularly limited, but is preferably 0.01 ⁇ m or more from the viewpoint of the production cost and use of the usual nickel powder.
  • the number 50% diameter of the nickel powder of the present invention can be obtained by taking a picture of the nickel powder with a scanning electron microscope and measuring the particle size of about 1,000 particles from the picture using image analysis software. From the particle size distribution of the nickel powder, the number 50% of the number is calculated. In this case, the particle size is the diameter of the smallest circle that encloses the particle.
  • the nickel powder of the present invention contains 1.0 to 5.0% by weight of sulfur. By making the sulfur concentration 1.0% by weight or more, the sintering behavior of the nickel powder can be improved. On the other hand, if the sulfur concentration exceeds 5.0% by weight, problems such as generation of corrosive gas at the time of sintering to deteriorate the characteristics of the laminated ceramic capacitor occur.
  • the sulfur concentration in the nickel powder is more preferably 1.2 to 4.0% by weight, still more preferably 1.5 to 3.0% by weight.
  • the molar ratio of sulfur present as sulfate ion to sulfur present as sulfide is 0.10 or less Is preferable, and 0.05 or less is more preferable.
  • the ratio of sulfur present as sulfate ion to sulfur present as sulfide ion (sulfate ion / sulfide ion ratio) of the nickel powder surface is 168 eV of the S 2p spectrum measured using an X-ray photoelectron spectrometer. Calculated from the intensity ratio of the peak to the peak of 162 eV.
  • the abundance ratio of particles having a particle diameter three times or more the number of 50% diameter in the nickel powder (hereinafter sometimes referred to as "coarse particles") is on a number basis. 100 ppm or less is preferable, and 50 ppm or less is more preferable.
  • the electrode layer can be smoothed in the production of the multilayer ceramic capacitor.
  • the evaluation of the abundance ratio of coarse particles is carried out by taking a picture of the nickel powder with a scanning electron microscope in the same manner as described above, and using the image analysis software from the picture, the particle size is about 100,000 particles. The number of particles exceeding 3 times the number 50% diameter obtained above is counted and calculated.
  • the nickel powder of the present invention can be produced, for example, by a known method such as a gas phase method or a liquid phase method.
  • a gas phase method in which nickel powder is produced by contacting nickel chloride gas with a reducing gas
  • a spray pyrolysis method in which a pyrolytic nickel compound is sprayed and pyrolyzed
  • the particle size can be easily controlled, and spherical particles can be produced efficiently.
  • the gas phase reduction method by bringing nickel chloride gas into contact with a reducing gas is preferable from the viewpoint of being able to precisely control the particle size of the nickel powder to be produced and of preventing the generation of coarse particles.
  • the vaporized nickel chloride gas is reacted with a reducing gas such as hydrogen.
  • a reducing gas such as hydrogen.
  • solid nickel chloride may be heated and evaporated to produce nickel chloride gas.
  • metal nickel is brought into contact with chlorine gas to continuously generate nickel chloride gas, and this nickel chloride gas is directly supplied to the reduction step and then reduced.
  • a method of producing nickel fine powder by continuously reducing nickel chloride gas by contacting with a hydrogen chloride gas is preferred.
  • Gases other than nickel chloride gas when used in a method of producing an alloy powder containing nickel as a main component include silicon trichloride (III) gas, silicon tetrachloride (IV) gas, monosilane gas, copper (I) chloride gas, Copper chloride (II) gas, silver chloride gas, molybdenum chloride gas (III) gas, molybdenum chloride (V) gas, iron chloride (II) gas, iron chloride (III) gas, chromium chloride (III) gas, chromium chloride VI) Gas, tungsten chloride (II) gas, tungsten chloride (III) gas, tungsten chloride (IV) gas, tungsten chloride (V) gas, tungsten chloride (VI) gas, tantalum chloride (III) gas, tantalum chloride (V) ) Gas, cobalt chloride gas, rhenium chloride (III) gas, rhenium chloride (IV) gas, rhenium chloride (V
  • reducing gas hydrogen gas, hydrogen sulfide gas, ammonia gas, carbon monoxide gas, methane gas and a mixed gas thereof can be mentioned.
  • Particularly preferred are hydrogen gas, hydrogen sulfide gas, ammonia gas, and a mixed gas thereof.
  • nickel atoms are formed at the moment of contact between nickel chloride gas and reducing gas, and nickel particles are formed and grown by collision and aggregation of nickel atoms. Then, the particle diameter of the nickel powder to be produced is determined by the conditions such as the partial pressure of nickel chloride gas and the temperature in the reduction step. According to the above-described nickel powder production method, an amount of nickel chloride gas corresponding to the amount of chlorine gas supplied is generated. Therefore, by controlling the amount of chlorine gas supplied, the amount of nickel chloride gas supplied to the reduction step is The amount can be adjusted, which can control the particle size of the nickel powder produced.
  • nickel chloride gas is generated by the reaction of chlorine gas and metal, it is possible not only to reduce the use of carrier gas, unlike the method of generating nickel chloride gas by heating and evaporation of solid nickel chloride. Depending on the manufacturing conditions, it is also possible not to use. Therefore, in the gas phase reduction reaction, the manufacturing cost can be reduced by the reduction of the amount of use of the carrier gas and the reduction of the heating energy associated therewith.
  • the partial pressure of nickel chloride gas in the reduction step can be controlled by mixing an inert gas with the nickel chloride gas generated in the chlorination step.
  • the particle size of the nickel powder can be controlled, and the variation in particle size can be suppressed.
  • the particle size can be set arbitrarily.
  • the production conditions of the nickel powder by the above-mentioned vapor phase reduction method are arbitrarily set so that the number 50% diameter becomes 0.09 ⁇ m or less, for example, the particle diameter of the starting material metallic nickel is about 5 to Granules, lumps, plates and the like of 20 mm are preferable, and the purity thereof is generally preferably 99.5% or more.
  • This metallic nickel is first reacted with chlorine gas to produce nickel chloride gas, the temperature at that time is made 800 ° C. or more to sufficiently proceed the reaction, and 1453 ° C. or less, which is the melting point of nickel.
  • the range of 900 ° C. to 1100 ° C. is practically preferable.
  • the nickel chloride gas is directly supplied to the reduction step, and is brought into catalytic reaction with a reducing gas such as hydrogen gas.
  • a reducing gas such as hydrogen gas.
  • the partial pressure of the nickel chloride gas can be controlled by diluting the nickel chloride gas with an inert gas such as argon or nitrogen as appropriate.
  • the partial pressure of the nickel chloride gas it is possible to control the quality such as the particle size distribution of the metal powder produced in the reducing portion. While being able to set arbitrarily the quality of the metal powder produced
  • the partial pressure of nickel chloride gas is controlled to 30 kPa or less.
  • the temperature of the reduction reaction may be a temperature sufficient to complete the reaction. It is preferable that the solid nickel powder is produced, because it is easy to handle, so the melting point or less of nickel is preferable, and 900 ° C. to 1100 ° C. is practical in consideration of economics.
  • the produced nickel powder is cooled.
  • the reduction reaction is carried out by blowing in an inert gas such as nitrogen gas in order to prevent the formation of secondary particles due to aggregation of the primary particles of the formed nickel and obtain a nickel powder of a desired particle size. It is desirable to rapidly cool the finished gas flow around 1000 ° C. to about 400-800 ° C. Thereafter, the produced nickel powder is separated and recovered by, for example, a bag filter.
  • a pyrolytic nickel compound is used as a raw material. Specifically, one or more kinds of nitrate, sulfate, oxynitrate, oxysulfate, chloride, ammonium complex, phosphate, carboxylate, alkoxy compound and the like are included.
  • the solution containing the nickel compound is sprayed to form fine droplets.
  • water, alcohol, acetone, ether or the like is used as .
  • the method of spraying is performed by the spraying methods, such as an ultrasonic wave or a double jet nozzle.
  • the heating temperature at this time is equal to or higher than the temperature at which the specific nickel compound to be used is thermally decomposed, and is preferably near the melting point of the metal.
  • nickel hydroxide is obtained by contacting nickel sulfate, nickel chloride or nickel aqueous solution containing nickel complex by adding to alkali metal hydroxide such as sodium hydroxide. Then, the nickel hydroxide is reduced with a reducing agent such as hydrazine to obtain metallic nickel powder. The metallic nickel powder thus produced is subjected to a crushing treatment as necessary to obtain uniform particles.
  • the nickel powder obtained by the above method is preferably dispersed in a liquid phase and washed to remove the remaining raw material.
  • the nickel powder obtained by the above method is suspended in a carbonated aqueous solution under specific conditions of controlled pH and temperature for treatment.
  • impurities such as chlorine adhering to the surface of the nickel powder are sufficiently removed, and at the same time, the friction between hydroxides and particles such as nickel hydroxide present on the surface of the nickel powder As a result, fine particles formed away from the surface are removed, so that a uniform nickel oxide film can be formed on the surface.
  • a treatment method with a carbonic acid aqueous solution a method of mixing nickel powder and carbonic acid solution, carbon dioxide gas is blown into an aqueous slurry after the nickel powder is once washed with pure water, or the nickel powder is once washed with pure water. It is also possible to treat by adding an aqueous solution of carbonic acid to the water slurry after the treatment.
  • the method of incorporating sulfur into the nickel powder of the present invention is not particularly limited, and, for example, the following method can be adopted.
  • (1) Method of adding sulfur-containing gas during the reduction reaction (2) Method of contacting nickel powder with sulfur-containing gas (3) method of dry mixing nickel powder and solid sulfur-containing compound (4) nickel Method of adding sulfur-containing compound solution to slurry in which powder is dispersed in liquid phase (5) Method of bubbling sulfur-containing gas in slurry in which nickel powder is dispersed in liquid phase
  • the methods (1) and (4) are preferable from the viewpoint that the sulfur content can be precisely controlled and the sulfur can be uniformly added.
  • the sulfur-containing gas used in the methods (1), (2) and (5) is not particularly limited, and sulfur vapor, sulfur dioxide gas, hydrogen sulfide gas, etc. are gases at the temperature of the reduction step. A certain gas can be used as it is or after dilution. Among these, sulfur dioxide gas and hydrogen sulfide gas are advantageous from the point of being gas at normal temperature and easy to control the flow rate and low in the possibility of mixing of impurities.
  • sulfur can be uniformly contained in the nickel powder produced by the reduction reaction by mixing these gases with any of nickel chloride gas, inert gas and reducing gas.
  • the sulfur content of the nickel powder can be controlled by controlling the flow ratio of the nickel chloride gas and the sulfur-containing gas.
  • the sulfur-containing compound used in the methods (3) and (4) is not particularly limited, and sulfur-containing compounds such as triazine thiol, 2-mercaptobenzothiazole, thiourea and the like can be used. Among them, the method using thiourea is most effective.
  • the method (4) after the nickel slurry and the solution of the sulfur-containing compound are mixed, stirring, ultrasonic treatment or the like is performed.
  • the liquid temperature range in the above treatment is 20 to 60.degree. C., more preferably 20 to 40.degree.
  • the sulfur content of the nickel powder can be arbitrarily adjusted by adjusting the addition amount of the sulfur-containing compound.
  • the nickel powder slurry is dried.
  • the drying method is not particularly limited, and known methods can be used. Specific examples thereof include flash drying, heating and drying, vacuum drying, etc., which are brought into contact with a high temperature gas for drying. Among these, flash drying is preferable because there is no destruction of the sulfur-containing layer due to collision of particles.
  • the nickel powder of the present invention is subjected to heat treatment under atmosphere control after the above-mentioned drying step.
  • the heat treatment is performed at a temperature of 100 to 400 ° C., preferably 100 to 250 ° C., more preferably 150 to 250 ° C. in a reducing atmosphere for 0.5 to 10 hours.
  • the reducing atmosphere may be, for example, an atmosphere of a mixed gas of an inert gas such as nitrogen and argon and hydrogen gas.
  • the hydrogen partial pressure in the reducing atmosphere is 0.001 to 0.01 MPa.
  • the sulfate ion present on the surface of the nickel powder is converted to sulfide ion, and the sulfur present as sulfate ion on the surface of the nickel powder and the molar ratio of sulfur present as sulfide ion (sulfate ion / sulfide ion ratio ) Can be made stable to 0.10 or less.
  • FIG. 1 is a view showing an apparatus for producing nickel powder.
  • reference numeral 10 is a reduction furnace.
  • the reduction furnace 10 has a bottomed cylindrical shape, and a nickel chloride gas nozzle 11 is attached on the upstream side thereof, and the reduction furnace 10 is supplied with nickel chloride gas, sulfur dioxide gas, and nitrogen gas for concentration adjustment. It has become so.
  • a hydrogen gas nozzle 12 is attached to the upstream side wall of the reduction furnace 10. The nickel chloride is reduced by the hydrogen gas supplied from the hydrogen gas nozzle 12 into the reduction furnace 10 to produce nickel powder P.
  • a cooling gas nozzle 13 is attached to the downstream side wall of the reduction furnace 10, and the nickel powder P generated by the inert gas such as nitrogen gas supplied from the cooling gas nozzle 13 into the reduction furnace 10 is rapidly cooled. The coarsening of the nickel powder P is prevented.
  • a recovery pipe 14 is attached to the downstream side of the reduction furnace 10, and the nickel powder P flows through the recovery pipe 14 and is sent to a recovery device.
  • Examples 1 and 2 Comparative Examples 1 to 3
  • a nickel powder having a 50% diameter diameter of about 0.03 ⁇ m and variously changed sulfur contents was manufactured by a vapor phase reduction method using the nickel powder manufacturing apparatus shown in FIG.
  • a mixed gas of nickel chloride gas, sulfur dioxide gas, and nitrogen gas is supplied from the nickel chloride gas nozzle 11 into the reduction furnace 10 at an atmosphere temperature of 1,100 ° C. by a heater at a flow rate of 2.8 m / sec (1,100 ° C. Introduced in At the same time, hydrogen gas was introduced from a hydrogen gas nozzle 12 into the reduction furnace 10 at a flow velocity of 2.2 m / sec (1,100 ° C. conversion), and nickel chloride gas was reduced in the reduction furnace 10 to obtain nickel powder P.
  • the sulfur content of the nickel powder was adjusted by controlling the flow ratio of nickel chloride gas and sulfur dioxide gas.
  • the nickel powder produced by the heat of reaction is heated to 1,200 ° C., and the gas flow containing the produced nickel powder is a combustion flame of gaseous fuel such as hydrocarbon by black body radiation of the nickel powder. It was observed as a similar luminous flame F.
  • the produced nickel powder P is mixed with 25 ° C. nitrogen gas introduced from the cooling gas nozzle 13 at a mass flow rate of 200 times the amount of nickel powder produced per unit time, cooled to 400 ° C. or less, and then recovered. It led to the bag filter which is not shown in figure by 14, and isolate
  • Comparative Example 3 a nickel powder was prepared without adding sulfur dioxide gas to nickel chloride gas.
  • the recovered nickel powder was subjected to a washing step of dispersing and settling in water five times to remove the remaining nickel chloride, and then dried by means of a flash dryer so that the water content would be 0.5% or less.
  • heat treatment was performed at 150 ° C. for 3 hours under a reducing atmosphere of 2 vol% hydrogen-argon (hydrogen partial pressure: 2 kPa) to obtain nickel powders of Examples 1, 2 and Comparative Examples 1 to 3.
  • the number 50% diameter, the sulfur concentration, the sulfate ion / sulfide ion ratio on the surface of the nickel powder, the coarse particle ratio, the sintering behavior, and the aggregation behavior were evaluated by the following methods.
  • Sulfur concentration was measured using an inductively coupled plasma emission spectrometer (manufactured by SII Nano Technology Co., Ltd., trade name SPS3100).
  • Sulfate ion / sulfide ion ratio of the surface of nickel powder Nickel was obtained from the intensity ratio of the peak of 168 eV and the peak of 162 eV in the S 2 p spectrum measured using an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI, trade name QVuantum 2000) The sulfate ion / sulfide ion ratio of the powder surface was calculated.
  • Agglomerated particles 100 g of a 5 wt% aqueous solution of a polycarboxylic acid-based dispersant is added to 0.5 g of nickel powder and dispersed for 60 seconds with an output of 600 W and an amplitude width of 30 ⁇ m using an ultrasonic dispersing machine did. After dispersion, suction filtration is performed at a suction pressure of 0.1 MPa using a membrane filter (pore diameter: 1 ⁇ m, filter diameter: 25 mm) (manufactured by GE Healthcare Bio-Sciences Co., Ltd., trade name Nucripore membrane). The aggregation behavior of the nickel powder was evaluated as shown in Table 2.
  • Example 5 A nickel powder was produced in which the state of sulfur on the surface was variously changed so that the number 50% diameter was about 0.09 ⁇ m, and the sulfur content was about 1.5%.
  • the washing step of dispersing and settling in water is repeated five times for the sulfur-free nickel powder produced without adding sulfur dioxide gas to nickel chloride gas.
  • the nickel chloride was removed.
  • an ethanol solution of thiourea was added so that the sulfur content was 1.5% with respect to the nickel powder, and the mixture was stirred at 35 ° C. for 30 minutes. Then, after performing a drying treatment so that the water content is 0.5% or less with a flash dryer, heat treatment at 200 ° C.
  • the number 50% diameter, the sulfur concentration, the sulfate ion / sulfide ion ratio on the surface of the nickel powder, the coarse particle ratio, the sintering behavior, and the aggregated particles were evaluated by the aforementioned method.
  • the results are shown in Table 3.
  • the nickel powders of Examples 1 and 2 have a sulfur concentration of 1.0 to 5 in spite of the 50% number diameter being comparable as compared with Comparative Examples 1 to 3. Since it is in the range of 0% by weight, it can be seen that the sintering behavior is excellent.
  • the nickel powders of Examples 3 and 4 have the same sulfur concentration as the above-mentioned range despite the fact that the number 50% diameter is similar to that of Example 5 and Comparative Example 4, and the sulfate ion is As the sulfide ion ratio is 0.10 or less, it can be seen that the generation of agglomerated particles is small.
  • the evaluation of the aggregation behavior was “ ⁇ ” in Example 5
  • the evaluation of the more important sintering behavior was “o”, which is sufficient as the performance of the present invention.
  • the nickel powder of the present invention has excellent sintering characteristics in the manufacturing process of the multilayer ceramic capacitor, and as a result, defects such as peeling between the electrode layer and dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer was proven to be effective in preventing the occurrence of Furthermore, it was proved to be effective in preventing generation of defects such as shorts between electrode layers and a reduction in withstand voltage as it has an effect of preventing the generation of aggregated particles.
  • the present invention is useful as a nickel powder for a conductive paste in internal electrode applications of multilayer ceramic capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a nickel powder having excellent sintering properties in a manufacturing process for laminated ceramic capacitors, and capable of preventing the occurrence of defects in laminated ceramic capacitors such as cracking in an electrode layer and separating between the electrode layer and a dielectric layer. The nickel powder contains 1.0-5.0 mass% of sulfur, and 50% of particles therein have a size of less than or equal to 0.09 µm.

Description

ニッケル粉末Nickel powder
 本発明は、電子部品などに使用される導電ペースト用途に適したニッケル粉末に係り、特に積層セラミックコンデンサの内部電極用途の導電ペーストに用いて好適なニッケル粉末に関する。 The present invention relates to a nickel powder suitable for use as a conductive paste used in electronic parts and the like, and more particularly to a nickel powder suitable for use as a conductive paste for internal electrodes of multilayer ceramic capacitors.
 スマートフォンやタブレット端末に代表される携帯通信端末は、多機能化、高機能化に伴い消費電力が大きくなり、バッテリーの容量も大きくなるため、限られた筐体内で電子部品が搭載されるメイン基板は小さくなる傾向がある。一方、メイン基板に搭載される電子部品の数は増加する傾向にある。このため、メイン基板に搭載される積層セラミックコンデンサは小型かつ大容量であることが求められる。 Mobile communication terminals represented by smartphones and tablet terminals increase power consumption and increase battery capacity with multifunctionality and high functionality, so the main substrate on which electronic components are mounted in a limited case Tends to be smaller. On the other hand, the number of electronic components mounted on the main substrate tends to increase. Therefore, the multilayer ceramic capacitor mounted on the main substrate is required to be small and have a large capacity.
 積層セラミックコンデンサの小型化、大容量化に伴い、積層セラミックコンデンサの内部電極も薄層化・低抵抗化等が要求されている。このため、内部電極に使用されるニッケル粉末は、一次粒子の個数50%径が0.3μm以下は勿論のこと、0.2μm以下、更には0.1μm以下の超微粉が要望されている。 With the miniaturization and increase in capacity of multilayer ceramic capacitors, thinning of internal electrodes of multilayer ceramic capacitors and reduction in resistance are required. For this reason, as for the nickel powder used for the internal electrode, ultrafine powder having a number of 50% primary particles of 0.3 μm or less as well as 0.2 μm or less, and further 0.1 μm or less is demanded.
 一般に、ニッケル粉末は積層セラミックコンデンサの誘電体に用いられるセラミック粉末よりも焼結開始温度が低く、熱収縮が大きい。このため、積層セラミックコンデンサの製造工程で焼成する際、電極層と誘電体層の間の剥離や電極層でのクラックの発生といった欠陥が発生し易いという問題がある。また、ニッケル粉末中に一次粒子の個数50%径の3倍を超える粗大粒子や粒子どうしが凝結した凝集粒子が存在すると電極層表面の凹凸が大きくなり、電極層間のショートや積層セラミックコンデンサの耐電圧の低下の原因となる。 In general, nickel powder has a lower sintering start temperature and larger thermal contraction than ceramic powders used for dielectrics of multilayer ceramic capacitors. For this reason, there is a problem that defects such as peeling between the electrode layer and the dielectric layer and generation of cracks in the electrode layer are easily generated when firing in the manufacturing process of the multilayer ceramic capacitor. In addition, when coarse particles exceeding 3 times the number 50% diameter of primary particles or agglomerated particles in which particles are coagulated exist in the nickel powder, the irregularities on the surface of the electrode layer become large, and shorts between electrode layers and resistance to multilayer ceramic capacitors It causes a drop in voltage.
 上記のような焼成時の欠陥の発生に対応する手段として、例えば特許文献1には、硫黄含有率が0.02~1.0重量%であるニッケル粉末が開示されている。また、特許文献2には、表面に硫化ニッケル又は硫酸ニッケルの被覆膜が形成されているニッケル粉末が開示されている。 For example, Patent Document 1 discloses a nickel powder having a sulfur content of 0.02 to 1.0% by weight as a means for coping with the occurrence of defects as described above. Further, Patent Document 2 discloses a nickel powder in which a coating film of nickel sulfide or nickel sulfate is formed on the surface.
 しかしながら、上記のような従来技術では、ニッケル粉末の個数50%径が0.1μmよりも小さくなるとニッケル粉末の焼成時の欠陥発生の防止効果が十分ではなく、さらなる改善が求められていた。 However, in the prior art as described above, when the number 50% diameter of the nickel powder is smaller than 0.1 μm, the effect of preventing the occurrence of defects at the time of firing of the nickel powder is not sufficient, and further improvement is required.
特開平11-80817号公報(特許請求の範囲)JP-A-11-80817 (claims) 特開2008-223145号公報(特許請求の範囲)JP 2008-223145 A (claims)
 したがって、本発明は積層セラミックコンデンサの製造工程において優れた焼結特性を有し、積層セラミックコンデンサの電極層と誘電体層の間の剥離や電極層のクラックといった欠陥の発生を防止することができる個数50%径が0.1μmよりも小さいニッケル粉末を得ることを目的としている。 Therefore, the present invention has excellent sintering characteristics in the manufacturing process of the multilayer ceramic capacitor, and can prevent generation of defects such as peeling between the electrode layer and the dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer. The object is to obtain a nickel powder having a number 50% diameter smaller than 0.1 μm.
 さらに、本発明は積層セラミックコンデンサの製造工程において凝集粒子の発生を抑制することができ、電極層間のショートや耐電圧の低下といった不良の発生を防止することができる個数50%径が0.1μmよりも小さいニッケル粉末を提供することを目的としている。 Furthermore, the present invention can suppress the occurrence of agglomerated particles in the manufacturing process of the multilayer ceramic capacitor, can prevent the occurrence of defects such as a short between electrode layers and a reduction in withstand voltage, and the number 50% diameter is 0.1 μm The aim is to provide a smaller nickel powder.
 本発明のニッケル粉末は、1.0~5.0質量%の硫黄を含有し、個数50%径が0.09μm以下であることを特徴とする。 The nickel powder of the present invention is characterized by containing 1.0 to 5.0% by mass of sulfur and having a number 50% diameter of not more than 0.09 μm.
 本発明によれば、1.0~5.0質量%の硫黄を含有することにより、個数50%径が0.09μm以下であってもニッケル粉末の焼結挙動を改善することができ、焼結による積層セラクミックコンデンサの特性劣化等の問題点を解決することができる。 According to the present invention, by containing 1.0 to 5.0% by mass of sulfur, the sintering behavior of the nickel powder can be improved even if the number 50% diameter is not more than 0.09 μm. It is possible to solve the problems such as the characteristic deterioration of the multilayer ceramic capacitor due to the bonding.
 本発明のニッケル粉末より、積層セラミックコンデンサの製造工程において優れた焼結特性を有し、積層セラミックコンデンサの電極層と誘電体層の間の剥離や電極層のクラックといった欠陥の発生を防止することができる。さらに、本発明のニッケル粉末は、凝集粒子の発生を抑制することができ、電極層間のショートや耐電圧の低下といった不良の発生を抑制することができる。 The sintered powder is superior to the nickel powder of the present invention in the manufacturing process of the multilayer ceramic capacitor, and the occurrence of defects such as peeling between the electrode layer and dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer is prevented. Can. Furthermore, the nickel powder of the present invention can suppress the generation of agglomerated particles, and can suppress the generation of defects such as a short between electrode layers and a reduction in withstand voltage.
実施例及び比較例で使用したニッケル粉末製造装置を示す概略図である。It is the schematic which shows the nickel powder manufacturing apparatus used by the Example and the comparative example.
 本発明のニッケル粉末には、種々の製造方法によって製造されたニッケル粉末とニッケルを主成分とするニッケル合金粉末が含まれる。ニッケル合金粉末としてはニッケルに耐酸化性等の付与や電気伝導率向上のためクロム、珪素、ホウ素、リンや希土類元素、貴金属元素等が添加された合金粉末がある。 The nickel powder of the present invention includes nickel powder produced by various production methods and nickel alloy powder containing nickel as a main component. As a nickel alloy powder, there is an alloy powder in which chromium is added with chromium, silicon, boron, phosphorus, a rare earth element, a noble metal element or the like in order to impart oxidation resistance or the like and improve the electric conductivity.
 本発明のニッケル粉末の個数50%径は、0.09μm以下である。本発明のニッケル粉末の個数50%径の下限については、特に制限されるものではないが、通常のニッケル粉末の生産コストや用途の観点から0.01μm以上であることが好ましい。 The number 50% diameter of the nickel powder of the present invention is 0.09 μm or less. The lower limit of the number 50% diameter of the nickel powder of the present invention is not particularly limited, but is preferably 0.01 μm or more from the viewpoint of the production cost and use of the usual nickel powder.
 本発明のニッケル粉末の個数50%径は、走査電子顕微鏡によりニッケル粉末の写真を撮影し、その写真から画像解析ソフトを使用して、粒子約1,000個の粒径を測定し、得られたニッケル粉末の粒度分布より、その個数50%径を算出したものである。この場合において、粒径は粒子を包み込む最小円の直径である。 The number 50% diameter of the nickel powder of the present invention can be obtained by taking a picture of the nickel powder with a scanning electron microscope and measuring the particle size of about 1,000 particles from the picture using image analysis software. From the particle size distribution of the nickel powder, the number 50% of the number is calculated. In this case, the particle size is the diameter of the smallest circle that encloses the particle.
 本発明のニッケル粉末は、硫黄を1.0~5.0重量%含有する。硫黄濃度を1.0重量%以上にすることにより、ニッケル粉末の焼結挙動を改善することができる。一方、硫黄濃度が、5.0重量%を超えると、焼結時に腐食性ガスを発生して積層セラミックコンデンサの特性を劣化させる等の問題が生じる。ニッケル粉末中の硫黄濃度は、より好ましくは1.2~4.0重量%、さらに好ましくは1.5~3.0重量%である。 The nickel powder of the present invention contains 1.0 to 5.0% by weight of sulfur. By making the sulfur concentration 1.0% by weight or more, the sintering behavior of the nickel powder can be improved. On the other hand, if the sulfur concentration exceeds 5.0% by weight, problems such as generation of corrosive gas at the time of sintering to deteriorate the characteristics of the laminated ceramic capacitor occur. The sulfur concentration in the nickel powder is more preferably 1.2 to 4.0% by weight, still more preferably 1.5 to 3.0% by weight.
 また、本発明のニッケル粉末は、粉末の表面に存在する硫黄の内、硫酸イオンとして存在する硫黄と硫化物として存在する硫黄のモル比(硫酸イオン/硫化物イオン比)が、0.10以下であることが好ましく、0.05以下であればより好ましい。硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄のモル比を上記範囲にすることで、ニッケル粉末ペースト製造時の凝集粒子の発生を防止することができる。なお、ニッケル粉末表面の硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄の比(硫酸イオン/硫化物イオン比)は、X線光電子分光装置を使用して測定したS2pスペクトルの168eVのピークと162eVのピークの強度比から算出する。 In the nickel powder of the present invention, among the sulfur present on the surface of the powder, the molar ratio of sulfur present as sulfate ion to sulfur present as sulfide (sulfate ion / sulfide ion ratio) is 0.10 or less Is preferable, and 0.05 or less is more preferable. By setting the molar ratio of the sulfur present as sulfate ion to the sulfur present as sulfide ion in the above-mentioned range, it is possible to prevent the generation of agglomerated particles during the production of the nickel powder paste. The ratio of sulfur present as sulfate ion to sulfur present as sulfide ion (sulfate ion / sulfide ion ratio) of the nickel powder surface is 168 eV of the S 2p spectrum measured using an X-ray photoelectron spectrometer. Calculated from the intensity ratio of the peak to the peak of 162 eV.
 また、本発明のニッケル粉末は、ニッケル粉末中に含まれる個数50%径の3倍以上の粒径を有する粒子(以下、「粗大粒子」と記載することもある)の存在率は個数基準で100ppm以下が好ましく、50ppm以下であればより好ましい。粒度分布をこの範囲とすることで、積層セラミックコンデンサの製造時に電極層を平滑にすることができる。なお、粗大粒子の存在率の評価は、前記と同様に走査電子顕微鏡によりニッケル粉末の写真を撮影し、その写真から画像解析ソフトを使用して、粒子約100,000個のうち、粒径が前記で求めた個数50%径の3倍を超える粒子の数を数えて算出する。 Further, in the nickel powder of the present invention, the abundance ratio of particles having a particle diameter three times or more the number of 50% diameter in the nickel powder (hereinafter sometimes referred to as "coarse particles") is on a number basis. 100 ppm or less is preferable, and 50 ppm or less is more preferable. By setting the particle size distribution in this range, the electrode layer can be smoothed in the production of the multilayer ceramic capacitor. In addition, the evaluation of the abundance ratio of coarse particles is carried out by taking a picture of the nickel powder with a scanning electron microscope in the same manner as described above, and using the image analysis software from the picture, the particle size is about 100,000 particles. The number of particles exceeding 3 times the number 50% diameter obtained above is counted and calculated.
 本発明のニッケル粉末は例えば、気相法や液相法など既知の方法で製造することができる。特に塩化ニッケルガスと還元性ガスとを接触させることによりニッケル粉末を生成する気相還元法、あるいは熱分解性のニッケル化合物を噴霧して熱分解する噴霧熱分解法は、生成する金属微粉末の粒径を容易に制御することができ、さらに球状の粒子を効率よく製造することができるという点において好ましい。特に、塩化ニッケルガスを還元性ガスと接触させることによる気相還元法は、生成するニッケル粉末の粒径を精密に制御でき、さらに粗大粒子の発生を防止できる点から好ましい。 The nickel powder of the present invention can be produced, for example, by a known method such as a gas phase method or a liquid phase method. In particular, a vapor phase reduction method in which nickel powder is produced by contacting nickel chloride gas with a reducing gas, or a spray pyrolysis method in which a pyrolytic nickel compound is sprayed and pyrolyzed It is preferable in that the particle size can be easily controlled, and spherical particles can be produced efficiently. In particular, the gas phase reduction method by bringing nickel chloride gas into contact with a reducing gas is preferable from the viewpoint of being able to precisely control the particle size of the nickel powder to be produced and of preventing the generation of coarse particles.
 気相還元法においては、気化させた塩化ニッケルのガスと水素等の還元性ガスとを反応させる。この場合に固体の塩化ニッケルを加熱し蒸発させて塩化ニッケルガスを生成してもよい。しかしながら、塩化ニッケルの酸化または吸湿防止、およびエネルギー効率を考慮すると、金属ニッケルに塩素ガスを接触させて塩化ニッケルガスを連続的に発生させ、この塩化ニッケルガスを還元工程に直接供給し、次いで還元性ガスと接触させ塩化ニッケルガスを連続的に還元してニッケル微粉末を製造する方法が有利である。 In the gas phase reduction method, the vaporized nickel chloride gas is reacted with a reducing gas such as hydrogen. In this case, solid nickel chloride may be heated and evaporated to produce nickel chloride gas. However, considering oxidation or moisture absorption prevention of nickel chloride and energy efficiency, metal nickel is brought into contact with chlorine gas to continuously generate nickel chloride gas, and this nickel chloride gas is directly supplied to the reduction step and then reduced. A method of producing nickel fine powder by continuously reducing nickel chloride gas by contacting with a hydrogen chloride gas is preferred.
 ニッケルを主成分とする合金粉末の製造方法に使用される場合の塩化ニッケルガス以外のガスは、三塩化珪素(III)ガス、四塩化珪素(IV)ガス、モノシランガス、塩化銅(I)ガス、塩化銅(II)ガス、塩化銀ガス、塩化モリブデンガス(III)ガス、塩化モリブデン(V)ガス、塩化鉄(II)ガス、塩化鉄(III)ガス、塩化クロム(III)ガス、塩化クロム(VI)ガス、塩化タングステン(II)ガス、塩化タングステン(III)ガス、塩化タングステン(IV)ガス、塩化タングステン(V)ガス、塩化タングステン(VI)ガス、塩化タンタル(III)ガス、塩化タンタル(V)ガス、塩化コバルトガス、塩化レニウム(III)ガス、塩化レニウム(IV)ガス、塩化レニウム(V)ガス、ジボランガス、ホスフィンガス等及びこれらの混合ガスが挙げられる。 Gases other than nickel chloride gas when used in a method of producing an alloy powder containing nickel as a main component include silicon trichloride (III) gas, silicon tetrachloride (IV) gas, monosilane gas, copper (I) chloride gas, Copper chloride (II) gas, silver chloride gas, molybdenum chloride gas (III) gas, molybdenum chloride (V) gas, iron chloride (II) gas, iron chloride (III) gas, chromium chloride (III) gas, chromium chloride VI) Gas, tungsten chloride (II) gas, tungsten chloride (III) gas, tungsten chloride (IV) gas, tungsten chloride (V) gas, tungsten chloride (VI) gas, tantalum chloride (III) gas, tantalum chloride (V) ) Gas, cobalt chloride gas, rhenium chloride (III) gas, rhenium chloride (IV) gas, rhenium chloride (V) gas, diborane gas Include phosphine gas or the like, and a mixed gas thereof.
 また還元性ガスには、水素ガス、硫化水素ガス、アンモニアガス、一酸化炭素ガス、メタンガスおよびこれらの混合ガスが挙げられる。特に好ましくは、水素ガス、硫化水素ガス、アンモニアガス、およびこれらの混合ガスである。 Further, as the reducing gas, hydrogen gas, hydrogen sulfide gas, ammonia gas, carbon monoxide gas, methane gas and a mixed gas thereof can be mentioned. Particularly preferred are hydrogen gas, hydrogen sulfide gas, ammonia gas, and a mixed gas thereof.
 気相還元反応によるニッケル粉末の製造過程では、塩化ニッケルガスと還元性ガスとが接触した瞬間にニッケル原子が生成し、ニッケル原子どうしが衝突・凝集することによってニッケル粒子が生成し、成長する。そして、還元工程での塩化ニッケルガスの分圧や温度等の条件によって、生成するニッケル粉末の粒径が決まる。上記のようなニッケル粉末の製造方法によれば、塩素ガスの供給量に応じた量の塩化ニッケルガスが発生するから、塩素ガスの供給量を制御することで還元工程へ供給する塩化ニッケルガスの量を調整することができ、これによって生成するニッケル粉末の粒径を制御することができる。 In the process of producing nickel powder by vapor phase reduction reaction, nickel atoms are formed at the moment of contact between nickel chloride gas and reducing gas, and nickel particles are formed and grown by collision and aggregation of nickel atoms. Then, the particle diameter of the nickel powder to be produced is determined by the conditions such as the partial pressure of nickel chloride gas and the temperature in the reduction step. According to the above-described nickel powder production method, an amount of nickel chloride gas corresponding to the amount of chlorine gas supplied is generated. Therefore, by controlling the amount of chlorine gas supplied, the amount of nickel chloride gas supplied to the reduction step is The amount can be adjusted, which can control the particle size of the nickel powder produced.
 さらに、塩化ニッケルガスは、塩素ガスと金属との反応で発生するから、固体塩化ニッケルの加熱蒸発により塩化ニッケルガスを発生させる方法とは異なり、キャリアガスの使用を少なくすることができるばかりでなく、製造条件によっては使用しないことも可能である。したがって、気相還元反応の方が、キャリアガスの使用量低減とそれに伴う加熱エネルギーの低減により、製造コストの削減を図ることができる。 Furthermore, since nickel chloride gas is generated by the reaction of chlorine gas and metal, it is possible not only to reduce the use of carrier gas, unlike the method of generating nickel chloride gas by heating and evaporation of solid nickel chloride. Depending on the manufacturing conditions, it is also possible not to use. Therefore, in the gas phase reduction reaction, the manufacturing cost can be reduced by the reduction of the amount of use of the carrier gas and the reduction of the heating energy associated therewith.
 また、塩化工程で発生した塩化ニッケルガスに不活性ガスを混合することにより、還元工程における塩化ニッケルガスの分圧を制御することができる。このように、塩素ガスの供給量もしくは還元工程に供給する塩化ニッケルガスの分圧を制御することにより、ニッケル粉末の粒径を制御することができ、粒径のばらつきを抑えることができるとともに、粒径を任意に設定することができる。 In addition, the partial pressure of nickel chloride gas in the reduction step can be controlled by mixing an inert gas with the nickel chloride gas generated in the chlorination step. Thus, by controlling the supply amount of chlorine gas or the partial pressure of nickel chloride gas supplied to the reduction step, the particle size of the nickel powder can be controlled, and the variation in particle size can be suppressed. The particle size can be set arbitrarily.
 上記のような気相還元法によるニッケル粉末の製造条件は、個数50%径が0.09μm以下になるように任意に設定するが、例えば、出発原料である金属ニッケルの粒径は約5~20mmの粒状、塊状、板状等が好ましく、また、その純度は概して99.5%以上が好ましい。この金属ニッケルを、まず塩素ガスと反応させて塩化ニッケルガスを生成させるが、その際の温度は、反応を十分進めるために800℃以上とし、かつニッケルの融点である1453℃以下とする。反応速度と塩化炉の耐久性を考慮すると、実用的には900℃~1100℃の範囲が好ましい。 The production conditions of the nickel powder by the above-mentioned vapor phase reduction method are arbitrarily set so that the number 50% diameter becomes 0.09 μm or less, for example, the particle diameter of the starting material metallic nickel is about 5 to Granules, lumps, plates and the like of 20 mm are preferable, and the purity thereof is generally preferably 99.5% or more. This metallic nickel is first reacted with chlorine gas to produce nickel chloride gas, the temperature at that time is made 800 ° C. or more to sufficiently proceed the reaction, and 1453 ° C. or less, which is the melting point of nickel. In consideration of the reaction rate and the durability of the chlorination furnace, the range of 900 ° C. to 1100 ° C. is practically preferable.
 次いで、この塩化ニッケルガスを還元工程に直接供給し、水素ガス等の還元性ガスと接触反応させる。その際に、塩化ニッケルガスを適宜アルゴン、窒素等の不活性ガスで希釈して塩化ニッケルガスの分圧を制御することができる。塩化ニッケルガスの分圧を制御することにより、還元部で生成する金属粉末の粒度分布等の品質を制御することができる。これにより生成する金属粉末の品質を任意に設定できるとともに、品質を安定させることができる。通常、個数50%径が0.09μm以下のニッケル粉末を得るためには塩化ニッケルガスの分圧を30kPa以下に制御する。還元反応の温度は反応完結に十分な温度以上であればよい。固体状のニッケル粉末を生成する方が、取扱いが容易であるので、ニッケルの融点以下が好ましく、経済性を考慮すると900℃~1100℃が実用的である。 Next, the nickel chloride gas is directly supplied to the reduction step, and is brought into catalytic reaction with a reducing gas such as hydrogen gas. At this time, the partial pressure of the nickel chloride gas can be controlled by diluting the nickel chloride gas with an inert gas such as argon or nitrogen as appropriate. By controlling the partial pressure of the nickel chloride gas, it is possible to control the quality such as the particle size distribution of the metal powder produced in the reducing portion. While being able to set arbitrarily the quality of the metal powder produced | generated by this, quality can be stabilized. Usually, in order to obtain a nickel powder having a number of 50% diameter of 0.09 μm or less, the partial pressure of nickel chloride gas is controlled to 30 kPa or less. The temperature of the reduction reaction may be a temperature sufficient to complete the reaction. It is preferable that the solid nickel powder is produced, because it is easy to handle, so the melting point or less of nickel is preferable, and 900 ° C. to 1100 ° C. is practical in consideration of economics.
 このように還元反応を行なったニッケル粉末を生成したら、生成したニッケル粉末を冷却する。冷却の際、生成したニッケルの一次粒子同士の凝集による二次粒子の生成を防止して所望の粒径のニッケル粉末を得るために、窒素ガス等の不活性ガスを吹き込むことにより、還元反応を終えた1000℃付近のガス流を400~800℃程度までに急速冷却することが望ましい。その後、生成したニッケル粉末を、例えばバグフィルタ等により分離、回収する。 After producing the nickel powder subjected to the reduction reaction in this way, the produced nickel powder is cooled. During cooling, the reduction reaction is carried out by blowing in an inert gas such as nitrogen gas in order to prevent the formation of secondary particles due to aggregation of the primary particles of the formed nickel and obtain a nickel powder of a desired particle size. It is desirable to rapidly cool the finished gas flow around 1000 ° C. to about 400-800 ° C. Thereafter, the produced nickel powder is separated and recovered by, for example, a bag filter.
 噴霧熱分解法によるニッケル粉末の製造方法では、熱分解性のニッケル化合物を原料とする。具体的には、硝酸塩、硫酸塩、オキシ硝酸塩、オキシ硫酸塩、塩化物、アンモニウム錯体、リン酸塩、カルボン酸塩、アルコキシ化合物などの1種または2種以上が含まれる。このニッケル化合物を含む溶液を噴霧して、微細な液滴を作る。このときの溶媒としては、水、アルコール、アセトン、エーテル等が用いられる。また、噴霧の方法は、超音波または二重ジェットノズル等の噴霧方法により行う。このようにして微細な液滴とし、高温で加熱して金属化合物を熱分解し、ニッケル粉末を生成する。このときの加熱温度は、使用される特定のニッケル化合物が熱分解する温度以上であり、好ましくは金属の融点付近である。 In the method of producing a nickel powder by a spray pyrolysis method, a pyrolytic nickel compound is used as a raw material. Specifically, one or more kinds of nitrate, sulfate, oxynitrate, oxysulfate, chloride, ammonium complex, phosphate, carboxylate, alkoxy compound and the like are included. The solution containing the nickel compound is sprayed to form fine droplets. As a solvent at this time, water, alcohol, acetone, ether or the like is used. Moreover, the method of spraying is performed by the spraying methods, such as an ultrasonic wave or a double jet nozzle. In this way, it is made into fine droplets and heated at high temperature to pyrolyze the metal compound to form nickel powder. The heating temperature at this time is equal to or higher than the temperature at which the specific nickel compound to be used is thermally decomposed, and is preferably near the melting point of the metal.
 液相法によるニッケル粉末の製造方法では、硫酸ニッケル、塩化ニッケルあるいはニッケル錯体を含むニッケル水溶液を、水酸化ナトリウムなどのアルカリ金属水酸化物中に添加するなどして接触させてニッケル水酸化物を生成し、次いでヒドラジンなどの還元剤でニッケル水酸化物を還元し金属ニッケル粉末を得る。このようにして生成した金属ニッケル粉末は、均一な粒子を得るために必要に応じて解砕処理を行う。 In the method of producing nickel powder by the liquid phase method, nickel hydroxide is obtained by contacting nickel sulfate, nickel chloride or nickel aqueous solution containing nickel complex by adding to alkali metal hydroxide such as sodium hydroxide. Then, the nickel hydroxide is reduced with a reducing agent such as hydrazine to obtain metallic nickel powder. The metallic nickel powder thus produced is subjected to a crushing treatment as necessary to obtain uniform particles.
 以上の方法で得られたニッケル粉末は、残留する原料を除去するため、液相中に分散させ、洗浄を行うことが好ましい。たとえば、以上の方法で得られたニッケル粉末を、pHや温度を制御した特定の条件で炭酸水溶液中に懸濁させて処理を行う。炭酸水溶液で処理することにより、ニッケル粉末の表面に付着している塩素などの不純物が十分に除去されるとともに、ニッケル粉末の表面に存在する水酸化ニッケルなどの水酸化物や粒子同士の摩擦などにより表面から離間して形成された微粒子が除去されるため、表面に均一な酸化ニッケルの被膜を形成することができる。炭酸水溶液での処理方法としては、ニッケル粉末と炭酸水溶液を混合する方法、あるいはニッケル粉末を純水で一旦洗浄した後の水スラリー中に炭酸ガスを吹き込むか、あるいはニッケル粉末を純水で一旦洗浄した後の水スラリー中に炭酸水溶液を添加して処理することもできる。 The nickel powder obtained by the above method is preferably dispersed in a liquid phase and washed to remove the remaining raw material. For example, the nickel powder obtained by the above method is suspended in a carbonated aqueous solution under specific conditions of controlled pH and temperature for treatment. By treating with a carbonic acid aqueous solution, impurities such as chlorine adhering to the surface of the nickel powder are sufficiently removed, and at the same time, the friction between hydroxides and particles such as nickel hydroxide present on the surface of the nickel powder As a result, fine particles formed away from the surface are removed, so that a uniform nickel oxide film can be formed on the surface. As a treatment method with a carbonic acid aqueous solution, a method of mixing nickel powder and carbonic acid solution, carbon dioxide gas is blown into an aqueous slurry after the nickel powder is once washed with pure water, or the nickel powder is once washed with pure water. It is also possible to treat by adding an aqueous solution of carbonic acid to the water slurry after the treatment.
 本発明のニッケル粉末に硫黄を含有させる方法は、特に限定されるものではなく、例えば以下の方法を採用することができる。
(1)上記還元反応中に硫黄含有ガスを添加する方法
(2)ニッケル粉末を硫黄含有ガスと接触処理する方法
(3)ニッケル粉末と固体の硫黄含有化合物を乾式で混合する方法
(4)ニッケル粉末を液相中に分散させたスラリー中に硫黄含有化合物溶液を添加する方法
(5)ニッケル粉末を液相中に分散させたスラリー中に硫黄含有ガスをバブリングする方法
The method of incorporating sulfur into the nickel powder of the present invention is not particularly limited, and, for example, the following method can be adopted.
(1) Method of adding sulfur-containing gas during the reduction reaction (2) Method of contacting nickel powder with sulfur-containing gas (3) method of dry mixing nickel powder and solid sulfur-containing compound (4) nickel Method of adding sulfur-containing compound solution to slurry in which powder is dispersed in liquid phase (5) Method of bubbling sulfur-containing gas in slurry in which nickel powder is dispersed in liquid phase
 特に、硫黄含有量を精密に制御できる点や硫黄を均一に添加できる観点から(1)および(4)の方法が好ましい。(1)、(2)、(5)の方法において使用される硫黄含有ガスは、特に限定されるものではなく、硫黄蒸気、二酸化硫黄ガス、硫化水素ガス等、還元工程の温度下において気体であるガスをそのまま、あるいは希釈して使用することができる。この中でも常温で気体であり流量の制御が容易な点や不純物の混入のおそれの低い点から二酸化硫黄ガス、および硫化水素ガスが有利である。 In particular, the methods (1) and (4) are preferable from the viewpoint that the sulfur content can be precisely controlled and the sulfur can be uniformly added. The sulfur-containing gas used in the methods (1), (2) and (5) is not particularly limited, and sulfur vapor, sulfur dioxide gas, hydrogen sulfide gas, etc. are gases at the temperature of the reduction step. A certain gas can be used as it is or after dilution. Among these, sulfur dioxide gas and hydrogen sulfide gas are advantageous from the point of being gas at normal temperature and easy to control the flow rate and low in the possibility of mixing of impurities.
 (1)の方法では、これらのガスを塩化ニッケルガス、不活性ガス、還元性ガスのいずれかに混合することにより還元反応で生成するニッケル粉末に硫黄を均一に含有させることができる。また、塩化ニッケルガスと硫黄含有ガスの流量比を制御することでニッケル粉末の硫黄含有量を制御することができる。 In the method (1), sulfur can be uniformly contained in the nickel powder produced by the reduction reaction by mixing these gases with any of nickel chloride gas, inert gas and reducing gas. In addition, the sulfur content of the nickel powder can be controlled by controlling the flow ratio of the nickel chloride gas and the sulfur-containing gas.
 (3)、(4)の方法において使用される硫黄含有化合物は、特に限定されるのではなく、トリアジンチオール、2-メルカプトベンゾチアゾール、チオ尿素等の硫黄含有化合物を使用することができる。中でもチオ尿素を使用する方法が最も効果的である。 The sulfur-containing compound used in the methods (3) and (4) is not particularly limited, and sulfur-containing compounds such as triazine thiol, 2-mercaptobenzothiazole, thiourea and the like can be used. Among them, the method using thiourea is most effective.
 (4)の方法では、ニッケルスラリーと硫黄含有化合物の溶液を混合した後、撹拌、あるいは超音波処理等を行う。上記の処理の際の液温の範囲は20~60℃、より好ましくは20~40℃である。硫黄含有化合物の添加量を調整することでニッケル粉末の硫黄含有量を任意に調整することができる。気相還元法により得られたニッケル粉末に(4)の方法を適用する場合、前述の洗浄工程の後に硫黄添加処理を行うことが好ましい。 In the method (4), after the nickel slurry and the solution of the sulfur-containing compound are mixed, stirring, ultrasonic treatment or the like is performed. The liquid temperature range in the above treatment is 20 to 60.degree. C., more preferably 20 to 40.degree. The sulfur content of the nickel powder can be arbitrarily adjusted by adjusting the addition amount of the sulfur-containing compound. When applying the method of (4) to the nickel powder obtained by a vapor-phase reduction method, it is preferable to perform a sulfur addition process after the above-mentioned washing | cleaning process.
 前述の洗浄工程および硫黄添加工程の後、ニッケル粉末スラリーを乾燥する。乾燥方法は特に限定されるものではなく、既知の方法を使用することができる。具体的には高温のガスと接触させ乾燥する気流乾燥、加熱乾燥、真空乾燥などが挙げられる。このうち、気流乾燥は粒子どうしの衝突による硫黄含有層の破壊がないため好ましい。 After the aforementioned washing and sulfur addition steps, the nickel powder slurry is dried. The drying method is not particularly limited, and known methods can be used. Specific examples thereof include flash drying, heating and drying, vacuum drying, etc., which are brought into contact with a high temperature gas for drying. Among these, flash drying is preferable because there is no destruction of the sulfur-containing layer due to collision of particles.
 本発明のニッケル粉末は上述の乾燥工程の後、雰囲気制御下で加熱処理を行う。加熱処理は、還元雰囲気中で100~400℃、好ましくは100~250℃、より好ましくは150~250℃の温度下において0.5~10時間の加熱処理を行う。還元雰囲気は、例えば窒素、アルゴン等の不活性ガスと水素ガスの混合ガスの雰囲気があげられる。還元雰囲気中の水素分圧は0.001~0.01MPaである。この処理により、ニッケル粉末の表面に存在する硫酸イオンを硫化物イオンに変換し、ニッケル粉末表面の硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄のモル比(硫酸イオン/硫化物イオン比)を安定して0.10以下にすることができる。 The nickel powder of the present invention is subjected to heat treatment under atmosphere control after the above-mentioned drying step. The heat treatment is performed at a temperature of 100 to 400 ° C., preferably 100 to 250 ° C., more preferably 150 to 250 ° C. in a reducing atmosphere for 0.5 to 10 hours. The reducing atmosphere may be, for example, an atmosphere of a mixed gas of an inert gas such as nitrogen and argon and hydrogen gas. The hydrogen partial pressure in the reducing atmosphere is 0.001 to 0.01 MPa. By this treatment, the sulfate ion present on the surface of the nickel powder is converted to sulfide ion, and the sulfur present as sulfate ion on the surface of the nickel powder and the molar ratio of sulfur present as sulfide ion (sulfate ion / sulfide ion ratio ) Can be made stable to 0.10 or less.
 図1はニッケル粉末を製造するための装置を示す図である。図1において符号10は還元炉である。還元炉10は有底円筒状をなし、その上流側には塩化ニッケルガスノズル11が取り付けられており、還元炉10内に塩化ニッケルガス、二酸化硫黄ガス、および濃度調整のための窒素ガスが供給されるようになっている。また、還元炉10の上流側側壁には水素ガスノズル12が取り付けられている。水素ガスノズル12から還元炉10内に供給される水素ガスにより塩化ニッケルが還元されてニッケル粉末Pが生成される。還元炉10の下流側側壁には、冷却ガスノズル13が取り付けられており、冷却ガスノズル13から還元炉10内に供給される窒素ガスなどの不活性ガスにより生成したニッケル粉末Pが迅速に冷却され、ニッケル粉末Pの粗大化を防止する。還元炉10の下流側には回収管14が取り付けられており、ニッケル粉末Pは回収管14を流通して回収装置に送られる。 FIG. 1 is a view showing an apparatus for producing nickel powder. In FIG. 1, reference numeral 10 is a reduction furnace. The reduction furnace 10 has a bottomed cylindrical shape, and a nickel chloride gas nozzle 11 is attached on the upstream side thereof, and the reduction furnace 10 is supplied with nickel chloride gas, sulfur dioxide gas, and nitrogen gas for concentration adjustment. It has become so. Further, a hydrogen gas nozzle 12 is attached to the upstream side wall of the reduction furnace 10. The nickel chloride is reduced by the hydrogen gas supplied from the hydrogen gas nozzle 12 into the reduction furnace 10 to produce nickel powder P. A cooling gas nozzle 13 is attached to the downstream side wall of the reduction furnace 10, and the nickel powder P generated by the inert gas such as nitrogen gas supplied from the cooling gas nozzle 13 into the reduction furnace 10 is rapidly cooled. The coarsening of the nickel powder P is prevented. A recovery pipe 14 is attached to the downstream side of the reduction furnace 10, and the nickel powder P flows through the recovery pipe 14 and is sent to a recovery device.
 (実施例1,2、比較例1~3)
 個数50%径が0.03μm程度で硫黄含有率を種々変化させたニッケル粉末を図1に示すニッケル粉末製造装置を用いて気相還元法で作製した。
(Examples 1 and 2, Comparative Examples 1 to 3)
A nickel powder having a 50% diameter diameter of about 0.03 μm and variously changed sulfur contents was manufactured by a vapor phase reduction method using the nickel powder manufacturing apparatus shown in FIG.
 ヒーターにより1,100℃の雰囲気温度とした還元炉10内に、塩化ニッケルガスノズル11より、塩化ニッケルガス、二酸化硫黄ガス、および窒素ガスの混合ガスを、流速2.8m/秒(1,100℃換算)で導入した。同時に水素ガスノズル12から水素ガスを流速2.2m/秒(1,100℃換算)で還元炉10内に導入し、還元炉10内で塩化ニッケルガスを還元してニッケル粉末Pを得た。 A mixed gas of nickel chloride gas, sulfur dioxide gas, and nitrogen gas is supplied from the nickel chloride gas nozzle 11 into the reduction furnace 10 at an atmosphere temperature of 1,100 ° C. by a heater at a flow rate of 2.8 m / sec (1,100 ° C. Introduced in At the same time, hydrogen gas was introduced from a hydrogen gas nozzle 12 into the reduction furnace 10 at a flow velocity of 2.2 m / sec (1,100 ° C. conversion), and nickel chloride gas was reduced in the reduction furnace 10 to obtain nickel powder P.
 この場合において、塩化ニッケルガスと二酸化硫黄ガスの流量比を制御することで、ニッケル粉末の硫黄含有量を調整した。なお、ニッケル生成反応の際、反応熱により生成するニッケル粉末は1,200℃まで加熱され、生成したニッケル粉末を含むガス流はニッケル粉末の黒体輻射により炭化水素等の気体燃料の燃焼炎に似た輝炎Fとして観察された。生成されたニッケル粉末Pは、冷却ガスノズル13からニッケル粉末の単位時間あたり生成量の200倍の質量流量で導入される25℃の窒素ガスと混合され、400℃以下まで冷却された後、回収管14により図示しないバグフィルタに導き、ニッケル粉末を分離、回収した。比較例3については塩化ニッケルガスに二酸化硫黄ガスを添加せずにニッケル粉末を作製した。 In this case, the sulfur content of the nickel powder was adjusted by controlling the flow ratio of nickel chloride gas and sulfur dioxide gas. During the nickel formation reaction, the nickel powder produced by the heat of reaction is heated to 1,200 ° C., and the gas flow containing the produced nickel powder is a combustion flame of gaseous fuel such as hydrocarbon by black body radiation of the nickel powder. It was observed as a similar luminous flame F. The produced nickel powder P is mixed with 25 ° C. nitrogen gas introduced from the cooling gas nozzle 13 at a mass flow rate of 200 times the amount of nickel powder produced per unit time, cooled to 400 ° C. or less, and then recovered. It led to the bag filter which is not shown in figure by 14, and isolate | separated and collect | recovered nickel powder. In Comparative Example 3, a nickel powder was prepared without adding sulfur dioxide gas to nickel chloride gas.
 回収したニッケル粉末は水中に分散、沈降する洗浄工程を5回繰り返して残留する塩化ニッケルを取り除いた後に、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った。次いで2体積%水素‐アルゴンの還元雰囲気下(水素分圧:2kPa)で150℃の熱処理を3時間行い、実施例1,2、および比較例1~3のニッケル粉末を得た。 The recovered nickel powder was subjected to a washing step of dispersing and settling in water five times to remove the remaining nickel chloride, and then dried by means of a flash dryer so that the water content would be 0.5% or less. Next, heat treatment was performed at 150 ° C. for 3 hours under a reducing atmosphere of 2 vol% hydrogen-argon (hydrogen partial pressure: 2 kPa) to obtain nickel powders of Examples 1, 2 and Comparative Examples 1 to 3.
 得られたニッケル粉末につき、個数50%径、硫黄濃度、ニッケル粉末表面の硫酸イオン/硫化物イオン比、粗大粒子率、焼結挙動、および凝集挙動を以下の方法で評価した。 With respect to the obtained nickel powder, the number 50% diameter, the sulfur concentration, the sulfate ion / sulfide ion ratio on the surface of the nickel powder, the coarse particle ratio, the sintering behavior, and the aggregation behavior were evaluated by the following methods.
a.個数50%径
 走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名S-4700)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約1,000個の粒径を測定してその個数50%径を算出した。なお、粒径は粒子を包み込む最小円の直径とした。
a. Photograph of metal nickel powder with a 50% diameter scanning electron microscope (made by Hitachi High-Technologies, Inc., trade name S-4700), and image analysis software (made by Mountech, Inc., trade name MacView 4.0) from the photograph The particle diameter of about 1,000 particles was measured to calculate the number 50% number of particles. The particle size is the diameter of the smallest circle that encloses the particles.
b.硫黄濃度
 誘導結合プラズマ発光分光分析装置(SIIナノテクノロジー株式会社製、商品名SPS3100)を使用して測定した。
b. Sulfur concentration was measured using an inductively coupled plasma emission spectrometer (manufactured by SII Nano Technology Co., Ltd., trade name SPS3100).
c.ニッケル粉末表面の硫酸イオン/硫化物イオン比
 X線光電子分光装置(アルバック・ファイ株式会社製、商品名QVuantum2000)を使用して測定したS2pスペクトルの168eVのピークと162eVのピークの強度比からニッケル粉末表面の硫酸イオン/硫化物イオン比を算出した。
c. Sulfate ion / sulfide ion ratio of the surface of nickel powder Nickel was obtained from the intensity ratio of the peak of 168 eV and the peak of 162 eV in the S 2 p spectrum measured using an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI, trade name QVuantum 2000) The sulfate ion / sulfide ion ratio of the powder surface was calculated.
d.粗大粒子率
 走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名S-4700)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約100,000個のうち、粒径が個数50%径の3倍以上の粗大粒子の数を測定して粗大粒子率を求めた。
d. Coarse particle rate Photograph a picture of metallic nickel powder with a scanning electron microscope (made by Hitachi High-Technologies, Inc., trade name S-4700), and use the image analysis software (made by Mt. Tech, trade name MacView 4.0) from the photograph Then, out of about 100,000 particles, the number of coarse particles having a particle size of 3 times or more of the number 50% diameter was measured to determine the ratio of coarse particles.
e.焼結挙動
 ニッケル粉末1g、樟脳3重量%、及びアセトン3重量%を混合し、この混合物を内径5mm、長さ10mmの円柱状金属容器に充填し、500MPaで圧縮して試験ペレットを作製した。この試験ペレットの熱収縮挙動を、熱機械分析装置(株式会社リガク製、商品名TMA8310)を使用して1.5体積%水素‐窒素の還元雰囲気下で昇温速度5℃/分の条件で測定した。測定結果から5%収縮温度を求め、ニッケル粉末の焼結挙動を表1のように評価した。
e. Sintering behavior 1 g of nickel powder, 3% by weight of camphor and 3% by weight of acetone were mixed, this mixture was filled in a cylindrical metal container with an inner diameter of 5 mm and a length of 10 mm and compressed at 500 MPa to prepare test pellets. The thermal shrinkage behavior of this test pellet was measured using a thermomechanical analyzer (Rigaku Co., Ltd., trade name TMA 8310) under a 1.5% by volume hydrogen-nitrogen reducing atmosphere at a heating rate of 5 ° C./min. It was measured. The 5% shrinkage temperature was determined from the measurement results, and the sintering behavior of the nickel powder was evaluated as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
f.凝集粒子
 ニッケル粉末0.5gにポリカルボン酸系分散剤5重量%水溶液100mlを加え、超音波分散機(株式会社ギンセン製、商品名GSD600AT)を使用して出力600W、振幅幅30μmで60秒分散した。分散後、メンブレンフィルター(孔径1μm、フィルター径25mm)(GEヘルスケアバイオサイエンス株式会社製、商品名ニュークリポアメンブレン)を使用して吸引圧0.1MPaで吸引ろ過を行い、その際の通過時間からニッケル粉末の凝集挙動を表2のように評価した。
f. Agglomerated particles 100 g of a 5 wt% aqueous solution of a polycarboxylic acid-based dispersant is added to 0.5 g of nickel powder and dispersed for 60 seconds with an output of 600 W and an amplitude width of 30 μm using an ultrasonic dispersing machine did. After dispersion, suction filtration is performed at a suction pressure of 0.1 MPa using a membrane filter (pore diameter: 1 μm, filter diameter: 25 mm) (manufactured by GE Healthcare Bio-Sciences Co., Ltd., trade name Nucripore membrane). The aggregation behavior of the nickel powder was evaluated as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1,2、比較例1~3の測定結果および評価結果を表3に示す。なお比較例3は硫黄濃度が検出限界以下であり、ニッケル粉末表面の硫黄の状態についても評価することができなかった。 The measurement results and the evaluation results of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in Table 3. In Comparative Example 3, the sulfur concentration was below the detection limit, and it was not possible to evaluate the state of sulfur on the surface of the nickel powder.
(実施例3~5)
 個数50%径が0.09μm程度、硫黄含有率1.5%程度で、表面の硫黄の状態を種々変化させたニッケル粉末を作製した。図1に示すニッケル粉末製造装置を用いて、塩化ニッケルガスに二酸化硫黄ガスを加えずに製造した硫黄を含まないニッケル粉末に対して、水中に分散、沈降する洗浄工程を5回繰り返して残留する塩化ニッケルを取り除いた。その後、ニッケル粉末に対して硫黄含有率が1.5%になるよう、チオ尿素のエタノール溶液を添加し、35℃で30分撹拌処理をした。次いで、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った後、2体積%水素‐アルゴンの還元雰囲気下(水素分圧:2kPa)、200℃の熱処理を、ニッケル粉末表面の硫黄の状態を変えるため処理時間を0.5~3時間に変化させて行い、実施例3~5のニッケル粉末を得た。実施例3~5の測定結果および評価結果を表3に示す。
(Examples 3 to 5)
A nickel powder was produced in which the state of sulfur on the surface was variously changed so that the number 50% diameter was about 0.09 μm, and the sulfur content was about 1.5%. Using the nickel powder production apparatus shown in FIG. 1, the washing step of dispersing and settling in water is repeated five times for the sulfur-free nickel powder produced without adding sulfur dioxide gas to nickel chloride gas. The nickel chloride was removed. Thereafter, an ethanol solution of thiourea was added so that the sulfur content was 1.5% with respect to the nickel powder, and the mixture was stirred at 35 ° C. for 30 minutes. Then, after performing a drying treatment so that the water content is 0.5% or less with a flash dryer, heat treatment at 200 ° C. in a reducing atmosphere of 2 vol% hydrogen-argon (hydrogen partial pressure: 2 kPa), In order to change the state of sulfur on the surface of the nickel powder, the treatment time was changed to 0.5 to 3 hours to obtain nickel powders of Examples 3 to 5. The measurement results and the evaluation results of Examples 3 to 5 are shown in Table 3.
(比較例4)
 実施例3の洗浄工程後のチオ尿素のエタノール溶液中での攪拌処理以降の工程を、洗浄工程後、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った後、石英反応管中で1.5体積%水素-5体積%硫化水素-窒素雰囲気下(水素分圧:1.5kPa、硫化水素分圧:5kPa)、230℃で10分間の硫化処理を行ったこと以外は、実施例3と同様にニッケル粉末を得た。比較例4の測定結果および評価結果を表3に示す。
(Comparative example 4)
Step after the stirring process in the ethanol solution of thiourea after the washing process of Example 3 is subjected to a drying process so that the water content becomes 0.5% or less by the flash drying apparatus after the washing process Sulfurization treatment was performed at 230 ° C. for 10 minutes in a quartz reaction tube under a 1.5 vol% hydrogen-5 vol% hydrogen sulfide-nitrogen atmosphere (hydrogen partial pressure: 1.5 kPa, hydrogen sulfide partial pressure: 5 kPa) Nickel powder was obtained in the same manner as in Example 3 except for the above. The measurement results and the evaluation results of Comparative Example 4 are shown in Table 3.
 得られたニッケル粉末につき、個数50%径、硫黄濃度、ニッケル粉末表面の硫酸イオン/硫化物イオン比、粗大粒子率、焼結挙動、および凝集粒子を先述の方法で評価した。その結果を表3に併記する。 With respect to the obtained nickel powder, the number 50% diameter, the sulfur concentration, the sulfate ion / sulfide ion ratio on the surface of the nickel powder, the coarse particle ratio, the sintering behavior, and the aggregated particles were evaluated by the aforementioned method. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例1、2のニッケル粉は、比較例1~3と比較して個数50%径が同程度であるにもかかわらず、硫黄濃度が1.0~5.0重量%の範囲内であるため、焼結挙動が優れていることが分かる。また実施例3、4のニッケル粉は、実施例5、比較例4と比較して個数50%径が同程度であるのにもかかわらず、硫黄濃度が上記範囲内であり、かつ、硫酸イオン/硫化物イオン比が0.10以下であるため、凝集粒子の発生が少ないことが分かる。なお、実施例5は凝集挙動の評価が「△」であったが、より重要な焼結挙動の評価が「○」であったため、本発明の性能としては充分である。 As is clear from Table 3, the nickel powders of Examples 1 and 2 have a sulfur concentration of 1.0 to 5 in spite of the 50% number diameter being comparable as compared with Comparative Examples 1 to 3. Since it is in the range of 0% by weight, it can be seen that the sintering behavior is excellent. In addition, the nickel powders of Examples 3 and 4 have the same sulfur concentration as the above-mentioned range despite the fact that the number 50% diameter is similar to that of Example 5 and Comparative Example 4, and the sulfate ion is As the sulfide ion ratio is 0.10 or less, it can be seen that the generation of agglomerated particles is small. In addition, although the evaluation of the aggregation behavior was “Δ” in Example 5, the evaluation of the more important sintering behavior was “o”, which is sufficient as the performance of the present invention.
 以上の結果から、本発明のニッケル粉末は積層セラミックコンデンサの製造工程において優れた焼結特性を有し、結果として積層セラミックコンデンサの電極層と誘電体層の間の剥離や電極層のクラックといった欠陥の発生の防止に有効なものであることが実証された。さらに、凝集粒子の発生防止効果を有し、結果として電極層間のショートや耐電圧の低下といった不良の発生の防止に有効なものであることが実証された。 From the above results, the nickel powder of the present invention has excellent sintering characteristics in the manufacturing process of the multilayer ceramic capacitor, and as a result, defects such as peeling between the electrode layer and dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer Was proven to be effective in preventing the occurrence of Furthermore, it was proved to be effective in preventing generation of defects such as shorts between electrode layers and a reduction in withstand voltage as it has an effect of preventing the generation of aggregated particles.
 本発明は、積層セラミックコンデンサの内部電極用途の導電ペースト用のニッケル粉末として有用である。
 
 
The present invention is useful as a nickel powder for a conductive paste in internal electrode applications of multilayer ceramic capacitors.

Claims (3)

  1.  1.0~5.0質量%の硫黄を含有し、個数50%径が0.09μm以下であることを特徴とするニッケル粉末。 A nickel powder comprising 1.0 to 5.0% by mass of sulfur and having a number 50% diameter of not more than 0.09 μm.
  2.  前記ニッケル粉末の表面に存在する硫黄のうち、硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄のモル比が0.10以下であることを特徴とする請求項1に記載のニッケル粉末。 2. The nickel powder according to claim 1, wherein the molar ratio of sulfur present as sulfate ion to sulfur present as sulfide ion among sulfur present on the surface of said nickel powder is 0.10 or less.
  3.  前記ニッケル粉末の個数50%径の3倍以上の粒径を持つ粗大粒子の存在率が個数基準で100ppm以下であることを特徴とする請求項1または2に記載のニッケル粉末。
     
    The nickel powder according to claim 1 or 2, wherein the abundance ratio of coarse particles having a particle diameter three or more times the number 50% diameter of the nickel powder is 100 ppm or less on a number basis.
PCT/JP2015/057325 2014-04-08 2015-03-12 Nickel powder WO2015156080A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580017072.XA CN106457379B (en) 2014-04-08 2015-03-12 Nickel powder
JP2016512640A JP6559118B2 (en) 2014-04-08 2015-03-12 Nickel powder
KR1020167028221A KR102292897B1 (en) 2014-04-08 2015-03-12 Nickel powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014079126 2014-04-08
JP2014-079126 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015156080A1 true WO2015156080A1 (en) 2015-10-15

Family

ID=54287661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057325 WO2015156080A1 (en) 2014-04-08 2015-03-12 Nickel powder

Country Status (5)

Country Link
JP (1) JP6559118B2 (en)
KR (1) KR102292897B1 (en)
CN (1) CN106457379B (en)
TW (1) TWI638051B (en)
WO (1) WO2015156080A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179551A (en) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 Nickel particle, conductive paste, internal electrode and laminate ceramic capacitor
WO2018163823A1 (en) * 2017-03-10 2018-09-13 東邦チタニウム株式会社 Nickel powder and nickel paste
WO2019009136A1 (en) * 2017-07-05 2019-01-10 東邦チタニウム株式会社 Metal powder and method for producing same
WO2020004105A1 (en) * 2018-06-28 2020-01-02 東邦チタニウム株式会社 Metal powder, production method therefor, and sintering temperature prediction method
JP2020100858A (en) * 2018-12-20 2020-07-02 住友金属鉱山株式会社 Nickel powder and method for producing the same
KR20240000452A (en) 2021-04-26 2024-01-02 미쓰이금속광업주식회사 Method for producing nickel powder and nickel particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716526B (en) * 2016-01-12 2021-01-21 日商東邦鈦股份有限公司 Nickel powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180817A (en) * 1997-09-05 1999-03-26 Kawatetsu Mining Co Ltd Nickel ultrafine powder
JP2008223068A (en) * 2007-03-12 2008-09-25 Shoei Chem Ind Co Nickel powder and its manufacturing method, and conductive paste and multilayer ceramic electronic component using it
JP2009144185A (en) * 2007-12-12 2009-07-02 Toho Titanium Co Ltd Nickel powder, and method for manufacturing nickel powder
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168773B2 (en) * 2003-02-12 2008-10-22 住友金属鉱山株式会社 Method for producing nickel powder with excellent sinterability
JP4740839B2 (en) * 2004-06-16 2011-08-03 東邦チタニウム株式会社 Nickel powder and method for producing the same
JP5060227B2 (en) * 2007-09-19 2012-10-31 東邦チタニウム株式会社 Method for producing nickel powder
JP4844589B2 (en) 2008-05-08 2011-12-28 住友金属鉱山株式会社 Nickel powder with excellent sinterability
CN102665969B (en) * 2009-09-24 2015-03-04 住友金属矿山株式会社 Nickel powder and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180817A (en) * 1997-09-05 1999-03-26 Kawatetsu Mining Co Ltd Nickel ultrafine powder
JP2008223068A (en) * 2007-03-12 2008-09-25 Shoei Chem Ind Co Nickel powder and its manufacturing method, and conductive paste and multilayer ceramic electronic component using it
JP2009144185A (en) * 2007-12-12 2009-07-02 Toho Titanium Co Ltd Nickel powder, and method for manufacturing nickel powder
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179551A (en) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 Nickel particle, conductive paste, internal electrode and laminate ceramic capacitor
WO2018163823A1 (en) * 2017-03-10 2018-09-13 東邦チタニウム株式会社 Nickel powder and nickel paste
JP6425367B1 (en) * 2017-03-10 2018-11-21 東邦チタニウム株式会社 Nickel powder and nickel paste
TWI813559B (en) * 2017-03-10 2023-09-01 日商東邦鈦股份有限公司 Nickel powder and nickel paste
JP7080856B2 (en) 2017-07-05 2022-06-06 東邦チタニウム株式会社 Metal powder and its manufacturing method
WO2019009136A1 (en) * 2017-07-05 2019-01-10 東邦チタニウム株式会社 Metal powder and method for producing same
JPWO2019009136A1 (en) * 2017-07-05 2019-07-04 東邦チタニウム株式会社 Metal powder and method for producing the same
JP2019173179A (en) * 2017-07-05 2019-10-10 東邦チタニウム株式会社 Metal powder, and process for producing same
KR20200023442A (en) 2017-07-05 2020-03-04 도호 티타늄 가부시키가이샤 Metal powder and its manufacturing method
JP7193534B2 (en) 2018-06-28 2022-12-20 東邦チタニウム株式会社 Nickel powder and its production method
JPWO2020004105A1 (en) * 2018-06-28 2021-08-05 東邦チタニウム株式会社 Metal powder, its manufacturing method, and method for predicting sintering temperature
KR20210019547A (en) * 2018-06-28 2021-02-22 도호 티타늄 가부시키가이샤 Metal powder, its manufacturing method, and sintering temperature prediction method
KR102484793B1 (en) 2018-06-28 2023-01-05 도호 티타늄 가부시키가이샤 Metal powder, manufacturing method thereof, and method for predicting sintering temperature
WO2020004105A1 (en) * 2018-06-28 2020-01-02 東邦チタニウム株式会社 Metal powder, production method therefor, and sintering temperature prediction method
JP2020100858A (en) * 2018-12-20 2020-07-02 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP7314507B2 (en) 2018-12-20 2023-07-26 住友金属鉱山株式会社 Nickel powder and its manufacturing method
KR20240000452A (en) 2021-04-26 2024-01-02 미쓰이금속광업주식회사 Method for producing nickel powder and nickel particles

Also Published As

Publication number Publication date
JP6559118B2 (en) 2019-08-14
JPWO2015156080A1 (en) 2017-04-13
TW201542832A (en) 2015-11-16
KR102292897B1 (en) 2021-08-24
CN106457379A (en) 2017-02-22
CN106457379B (en) 2020-12-08
TWI638051B (en) 2018-10-11
KR20160142842A (en) 2016-12-13

Similar Documents

Publication Publication Date Title
WO2015156080A1 (en) Nickel powder
CA2570216C (en) Nickel powder and production method therefor
TWI716526B (en) Nickel powder
JP5318463B2 (en) Fine particle production method and production apparatus used therefor
KR102278500B1 (en) Metal powder and its manufacturing method
JP6282648B2 (en) Method for producing cuprous oxide fine particles
WO2004020128A1 (en) Metallic nickel powder and method for production thereof
TWI683789B (en) Silver nanoparticles
TW201841702A (en) Copper particles and manufacturing method therefor
WO2017056741A1 (en) Nickel powder and nickel paste
CN110461503B (en) Nickel powder and nickel paste
JP5008377B2 (en) Method for producing true spherical tin fine powder
JPWO2019146414A1 (en) Copper fine particles
JP7488832B2 (en) Microparticles and method for producing the same
JP5354398B2 (en) True spherical fine powder
JP2004263205A (en) Metallic impalpable powder, manufacturing method therefor, and conductive paste using the metallic impalpable powder
JP2006037195A (en) Method for producing nickel powder
JP2005076074A (en) Titanium compound-coated nickel powder, and electrically conductive paste obtained by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028221

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15777431

Country of ref document: EP

Kind code of ref document: A1