WO2019009136A1 - Metal powder and method for producing same - Google Patents

Metal powder and method for producing same Download PDF

Info

Publication number
WO2019009136A1
WO2019009136A1 PCT/JP2018/024121 JP2018024121W WO2019009136A1 WO 2019009136 A1 WO2019009136 A1 WO 2019009136A1 JP 2018024121 W JP2018024121 W JP 2018024121W WO 2019009136 A1 WO2019009136 A1 WO 2019009136A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
gas
metal
particles
diameter
Prior art date
Application number
PCT/JP2018/024121
Other languages
French (fr)
Japanese (ja)
Inventor
広介 六角
友則 宇野
浅井 剛
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to CN201880042882.4A priority Critical patent/CN110799285B/en
Priority to JP2018561747A priority patent/JP6553313B2/en
Priority to KR1020207002838A priority patent/KR102278500B1/en
Publication of WO2019009136A1 publication Critical patent/WO2019009136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile

Definitions

  • One aspect of the present invention relates to a metal powder suitable for conductive paste applications used for electronic parts and the like, for example, conductive paste applications for internal electrodes of multilayer ceramic capacitors, and a method for producing the same.
  • the number of electronic components tends to increase as portable information terminals represented by smartphones and tablet terminals become multifunctional and sophisticated. For this reason, in order to mount on the main board of a limited area, the miniaturization and capacity increase of the ceramic capacitor mounted on the board are required.
  • the metal powder used for the internal electrode is an ultrafine powder having an average particle diameter of primary particles of 300 nm or less, 200 nm or less, and even 100 nm or less.
  • the problem that the capacitance of the capacitor is reduced becomes remarkable. This is because the dispersibility of the small particle size metal powder used for the thin layer electrode in the paste is poor, and a region in which the filling rate of the metal powder is low is generated in the electrode, and the shrinkage at the time of firing is large in that region It is considered that the volume of the electrode is reduced as a result of the generation of a large number of voids in the electrode layer.
  • Patent Document 1 sulfur is contained in nickel powder, and among sulfur present on the surface of nickel particles, sulfur present as sulfate ion and sulfur present as sulfide ion A nickel powder is disclosed that has improved sintering characteristics and dispersibility by defining its molar ratio.
  • Patent Document 2 discloses a nickel powder in which the residual magnetization is reduced by adding a nonmagnetic metal element to nickel to make the a-axis length of the nickel crystal within a specific range, thereby suppressing aggregation.
  • one aspect of the present invention aims to provide a metal powder suitable for the conductive paste of the inner electrode, which can improve the capacity reduction of the capacitor due to the thinning of the inner electrode of the laminated ceramic capacitor.
  • the present inventors have intensively studied to solve the above problems, and the proportion of particles of a specific shape in the metal powder is determined by the behavior of the metal powder, in particular, the dispersibility, the sintering start temperature, and the like. It has been found that the filling rate and the like are greatly affected, and one aspect of the present invention has been completed.
  • the aspect ratio is 1.2 or more, the degree of circularity is 0.675 or less, and the major diameter is 50% the number of metal powders
  • the metal powder is characterized in that the proportion of connected particles that are three or more times in the metal powder is 500 ppm or less on a number basis.
  • the dispersibility of the metal particles in the electrode paste can be improved by setting the ratio of the connected particles having the above shape to 500 ppm or less, and the filling rate of the metal powder in the electrode Can be raised.
  • FIG. 2 is a view showing a metal powder production apparatus used in Example 1; It is a SEM image of the dry nickel powder obtained in Example 1.
  • the metal powder is an aggregate of metal particles, and as a metal constituting the metal particles, silicon, copper, nickel, silver, molybdenum, iron, chromium, tungsten, tantalum, Cobalt, rhenium, platinum, palladium and the like, and alloys thereof can be mentioned.
  • nickel, molybdenum, silver, tungsten, copper, platinum, palladium and their alloys are particularly preferable.
  • nickel, copper, silver and their alloys are most preferred.
  • These metal powders are suitably used as paste fillers, particularly fillers for conductive pastes.
  • the upper and lower limits of the number 50% diameter of the metal powder are not particularly limited, but for example, it is preferably 400 nm or less from the use as a filler of the conductive paste for internal electrodes of multilayer ceramic capacitors
  • the thickness is more preferably 300 nm or less, still more preferably 200 nm or less, and most preferably 100 nm or less. Further, from the viewpoint of the production cost of the metal powder and the ignitability, it is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 25 nm or more, and most preferably 50 nm or more.
  • the number 50% diameter means the diameter of the particle
  • the number 50% diameter of metal powder take a picture of metal powder with a scanning electron microscope, measure the particle size of about 1,000 metal particles from the picture using image analysis software, and obtain the metal The number 50% diameter can be calculated from the particle size distribution of the powder.
  • the "particle size” is the diameter of the smallest circle circumscribed to the projected image obtained by the image analysis of the metal particles.
  • the metal powder may include secondary particles in which primary particles are aggregated, in addition to independent primary particles without aggregation.
  • “connected particles” are secondary particles remaining in the metal powder even after being crushed by a known crusher such as, for example, a jet mill, and typically, It means secondary particles in which primary particles are fused to each other.
  • particles having low sphericity also referred to as sphericity
  • connected particles having an elongated shape exceeding a specific reference length in which a plurality of primary particles are connected in a line It has been found that the proportion of the metal powder significantly affects the behavior of the metal powder in the paste, such as the sintering start temperature and the filling rate.
  • connected particles are, for convenience, “connected particles” in particles of a metal powder taken with a scanning electron microscope, in which “aspect ratio” is 1. 2 or more, refers to connected particles that are metal particles having a “roundness” of 0.675 or less and a “major axis” of three or more times the number 50% diameter of the metal powder.
  • the “long diameter” is the length of the long side of the rectangle having the smallest area circumscribed to the projected image of the metal particle
  • the “aspect ratio” is the length of the long side of the rectangle being the short side. Divided by
  • Circularity is a value calculated
  • Circularity (4 ⁇ ⁇ [projected area of metal particles]) / [projected perimeter of metal particles] 2 (1)
  • the circularity is 1, the projected image of the particle is a true circle, and the three-dimensional shape of the particle can be expected to be close to a true sphere.
  • the degree of circularity approaches 0, the three-dimensional shape of the taken image has many irregularities, which can be expected to be a complicated shape.
  • the proportion of "connected particles” in the metal powder was determined by taking a picture of the metal powder with a scanning electron microscope and using image analysis software from about 40,000 pieces of metal particles taken in the picture.
  • the number ratio obtained by measuring the number of metal particles having a circularity of 0.65 or less and a major diameter of 3 times or more of the number 50% diameter of the metal powder (hereinafter referred to as “connected particles” It is sometimes expressed as "rate”.
  • the proportion of connected particles contained in the metal powder is preferably 500 ppm or less, and more preferably 300 ppm or less, on a number basis.
  • the proportion of the connecting particles is in this range, it is possible to improve the dispersibility of the metal powder in the electrode paste and to obtain the effect of increasing the filling rate of the metal powder in the electrode.
  • the above effects can be obtained even if the metal powder is ultrafine powder with a number 50% diameter of 400 nm or less, 300 nm or less, 200 nm or less, and 100 nm or less. Therefore, by using this metal powder as a filler of the conductive paste for internal electrodes, it is possible to prevent a decrease in capacity of the capacitor due to a defect of the electrode.
  • the ratio (crystallite diameter / number 50% diameter) of the crystallite diameter of the metal powder to the number 50% diameter of the metal powder is preferably 0.50 or more, more preferably 0.55. It is more preferable that it is more than.
  • the metal powder having a connected particle ratio of 500 ppm or less when the ratio of the crystallite diameter to the number 50% diameter is 0.50 or more, the sintering characteristics of the metal powder, particularly the smoothness of the sintered coating film is further improved can do.
  • crystallite diameter of a metal powder calculates
  • Crystallite diameter (0.9 ⁇ [X-ray wavelength]) / ([peak half width] ⁇ cos [diffraction angle])
  • the crystallite diameter of the Ni powder is determined from the half value width of the diffraction peak of the (111) plane, the (200) plane, and the (220) plane.
  • the metal powder can include coarse particles.
  • the coarse particles are spherical or substantially spherical particles having an aspect ratio of less than 1.2 or a circularity of more than 0.675, and a metal whose major axis is at least three times the number 50% diameter of the metal powder. It means particles. That is, the coarse particles are primary particles or secondary particles having a large major diameter and a near spherical shape like the connected particles although the aspect ratio or the degree of circularity does not satisfy the requirements of the connected particles.
  • the proportion of coarse particles contained in the metal powder is preferably 15 ppm or less on a number basis, and more preferably 5 ppm or less.
  • the electrode layer can be smoothed when used as a conductive paste filler of the internal electrode of the multilayer ceramic capacitor, It is possible to prevent a defect such as a short circuit between them.
  • the ratio of "coarse particles" in the metal powder was determined by taking a picture of the metal powder with a scanning electron microscope and using image analysis software from about 60,000 pieces of metal particles taken in the picture. Number ratio obtained by measuring the number of metal particles less than 1.2 or having a circularity of 0.675 or more and having a major axis of at least three times the number 50% diameter of metal powder (hereinafter referred to as “coarse particle percentage It may be written as ".
  • the metal powder according to an aspect of the present invention can be produced, for example, by a known method such as a gas phase method or a liquid phase method.
  • gas phase reduction methods such as vapor phase reduction method in which metal powder is produced by contacting metal halide gas with reducing gas, or spray pyrolysis method in which pyrolyzable metal compounds are sprayed and pyrolyzed are It is easy to control the particle size of the produced metal fine powder, and spherical particles can be produced efficiently. For this reason, it is easy to control the number of 50% diameter of the metal powder, the connected particle ratio and the coarse particle ratio to be in the suitable range.
  • a vapor phase reduction method will be described as one embodiment of a particularly preferable method for producing a metal powder.
  • the gas phase reduction method In the gas phase reduction method, the gas of vaporized metal halide is reacted with a reducing gas such as hydrogen.
  • a reducing gas such as hydrogen.
  • the gas phase reduction method is a more preferable method of producing a metal powder from the viewpoint of being able to precisely control the particle size of the metal powder to be produced, and further to prevent the generation of coarse particles.
  • a known method can be used as a method of obtaining a metal halide gas in the vapor phase reduction method.
  • a solid metal halide such as anhydrous cobalt chloride is heated, sublimated and transported to a reduction part by an inert gas.
  • a method can be adopted in which a halogen gas is brought into contact with a solid metal as a raw material to continuously generate a metal halide gas.
  • halogen gas is brought into contact with solid metal as raw material to continuously generate metal halide gas, and this metal It is preferable to introduce the halide gas directly to the reduction unit.
  • FIG. 1 An example of the apparatus which manufactures a metal powder by a gaseous-phase reduction method is shown in FIG.
  • the reactor containing the reduction reaction zone c has a bottomed cylindrical shape, and a metal halide gas nozzle a is attached to one end of the reactor, whereby metal halide gas and A mixed gas with an inert gas is supplied.
  • the reducing gas nozzle b is attached to the same end in the said reaction apparatus.
  • the metal halide is reduced in the reduction reaction area c by the reducing gas supplied from the reducing gas nozzle b into the reactor, whereby the metal powder d is generated (reduction reaction step).
  • a cooling gas nozzle e is attached to the other end of the reactor, and the metal powder d generated by the cooling gas supplied from the cooling gas nozzle e into the reactor is rapidly cooled to prevent aggregation of the metal particles.
  • the recovery pipe f is attached to the reactor, and the metal powder d is sent to the recovery device through the recovery pipe f.
  • Metal halide gas As metal halide gas, silicon chloride (III) gas, silicon (IV) chloride gas, copper (I) chloride gas, copper (II) chloride gas, nickel chloride gas, silver chloride gas, molybdenum chloride gas (III) gas Molybdenum (V) gas, iron (II) gas, iron (III) gas, chromium (III) gas, chromium (VI) gas, tungsten (II) gas, tungsten (III) gas, Tungsten (IV) gas, tungsten (V) gas, tungsten (VI) gas, tantalum (III) gas, tantalum (V) gas, cobalt chloride gas, rhenium (III) gas, rhenium chloride (IV ) Gas, and rhenium chloride (V) gas, platinum fluoride (VI) gas, palladium fluoride (II) gas and mixtures thereof Gas and the like. Most preferably, they are nickel chloride gas, copper (I) chloride gas, copper
  • the metal halide gas can be generated by reacting a solid metal charged in a chlorination furnace (not shown) with a halogen gas.
  • the temperature in the chlorination furnace is a temperature at which the raw material metal is halogenated, and may be equal to or lower than the melting point of the raw material metal.
  • the temperature should be 800 ° C. or higher to sufficiently proceed the reaction, and be 1483 ° C. or lower, which is the melting point of nickel, considering the reaction rate and the durability of the chlorination furnace.
  • a range of 900 ° C. to 1200 ° C. is preferred.
  • the partial pressure of the metal halide gas by appropriately diluting the generated metal halide gas with an inert gas such as helium, argon, neon and nitrogen.
  • an inert gas such as helium, argon, neon and nitrogen.
  • the amount of metal halide gas generated is adjusted by adjusting the amount of halogen gas supplied in the halogenation furnace, and the amount of mixing is adjusted by adjusting the amount of inert gas supplied to the generated metal halide gas.
  • the partial pressure of the metal halide gas in the gas (in other words, the mol% concentration of the metal halide gas in the mixed gas) is adjusted.
  • the partial pressure of the metal halide gas when the partial pressure of the metal halide gas is high, the particle size of the metal powder formed is large, and as the partial pressure is reduced, the particle size decreases, the metal powder formed by the partial pressure of the metal halide gas Particle size distribution can be controlled. While being able to set arbitrarily the quality of the metal powder produced
  • the partial pressure of the metal halide gas in the mixed gas of the metal halide gas and the inert gas is set to 1.0 when the total pressure of the mixed gas is 1.0.
  • metal halide gas may also include the meaning of "metal halide gas containing an inert gas (that is, mixed gas)".
  • the reducing gas for reducing the metal halide gas includes hydrogen gas, hydrogen sulfide gas, ammonia gas, carbon monoxide gas, methane gas, and a mixed gas thereof. Particularly preferred are hydrogen gas, hydrogen sulfide gas, ammonia gas, and mixed gas thereof.
  • hydrogen gas When hydrogen sulfide gas is contained in the reducing gas, metal particles in the obtained metal powder may contain sulfur as a component.
  • the supply amount of the reducing gas supplied from the reducing gas nozzle b into the reactor is limited, and is limited
  • the “reduction reaction area” is an area that occupies a part in the reactor, and is located in the vicinity of the tip of the metal halide gas nozzle a, and the generation of metal particles by the reaction of the metal halide gas and the reducing gas is performed It is an area.
  • the “reduction reaction area” is also an area including at least a point at which the metal halide gas supplied into the reactor starts to contact with the reducing gas, and a point at which metal particles begin to be generated, In such a case, a bright flame similar to a combustion flame emitted by gaseous fuel such as hydrocarbon is generated by black body radiation.
  • the metal generated in the reduction reaction region forms a nucleus, and passes through the reduction reaction region while growing the nucleus.
  • the average temperature in the reduction reaction zone is set to a temperature at which the supplied metal halide gas can be rapidly reduced.
  • the average temperature of the reduction reaction zone c shown in FIG. 1 is usually 900 to 2,000 ° C., preferably 1,000 to 1,800 ° C., more preferably Is 1,200-1,600.degree.
  • the temperature of the metal particles is about 100 to 600 ° C. higher than the atmospheric temperature (average temperature) in the reduction reaction zone by the heat of reaction of the metal halide gas.
  • This “maximum temperature” may cause variations in the metal particles formed in the reduction reaction zone.
  • the atmospheric temperature in the reduction reaction region is different depending on the place, the “highest reachable temperature” reached by the metal particles is different depending on the position where the metal particles are generated. If the variation in the maximum temperature reached is large, coupled particles and coarse particles are likely to be generated.
  • variation with the highest achieved temperature by the heat of reaction which a metal particle emits is 80 degrees C or less, and it is more preferable that it is 50 degrees C or less. If the variation in the maximum temperature reached at the time of particle formation is large, coarse particles are likely to be generated in places where the temperature is higher than the ambient temperature, and fine particles that cause connected particles in locations where the temperature is lower than the ambient temperature Is easy to generate.
  • the connected particle rate is reduced to 500 ppm or less by setting the width of the highest attainable temperature at which particles are generated, that is, the difference between the highest value and the lowest value of the highest reachable temperature, to less than 80 ° C. And the coarse particle rate can be reduced to 15 ppm or less.
  • Each of the metal particles having reached the “maximum reached temperature” is then discharged from the reduction reaction zone and cooled.
  • the temperature change at the time of particle generation in the reduction reaction region of the reactor can be determined by calculation by fluid simulation.
  • fluid simulation software (manufactured by ANSYS, Inc., trade name ANSYS CFX) is used to create a simulation model including a reducing portion, divided into hexahedral meshes about 2 mm apart, gas flow rate and temperature, And calculation is performed by giving the wall surface temperature of the device as the boundary condition.
  • the k- ⁇ model is used for the turbulent flow model and the vortex dissipation model is used for the reaction model.
  • heating means for example, microwave heating device, electric heater
  • microwave heating device for example, microwave heating device, electric heater
  • electric heater The method of heating uniformly by laser heating, a gas burner, or these combination etc.
  • the gas containing the metal powder generated in the above reduction reaction zone flows out of the reduction reaction zone, contacts with the cooling gas, and mixes. Thereby, the metal powder is rapidly cooled to a temperature of 400 ° C. or less (cooling step). It is possible to further suppress that the particles of the metal powder are joined together to be connected particles by rapid cooling.
  • the above-mentioned cooling gas is an inert gas, and nitrogen gas, helium gas, argon gas, neon gas, hydrogen gas and their mixed gas may be mentioned.
  • the temperature of the cooling gas is usually 0 to 100 ° C., preferably 0 to 50 ° C., more preferably 0 to 30 ° C.
  • the flow rate of the cooling gas is 50 to 300 times the flow rate of the metal powder per hour. Thereby, the cooling rate for cooling the metal powder can be made faster than 10,000 ° C./sec, and the connected particle rate can be reduced.
  • the metal powder obtained by the above method preferably removes residual metal halide (washing step).
  • the method of removing the metal halide is not particularly limited.
  • the volatile metal halide can be vaporized and removed by maintaining the temperature at a high temperature below the sintering temperature of the metal powder in a reduced pressure environment.
  • the metal powder is preferably washed by using an aqueous carbonic acid solution adjusted to a pH range of 4.0 to 6.5 as a washing solution. Unreacted metal halide gas can be suitably removed.
  • the metal powder can be deaggregated by replacing the cleaning solution containing the metal powder with pure water or removing the carbonic acid by heating, and the metal powder can be redispersed. Therefore, the content of connecting particles can be further suitably reduced.
  • the metal powder slurry is dried (drying step).
  • the drying method is not particularly limited, and known methods can be used. Specific examples thereof include flash drying, heating and drying, vacuum drying, etc., in which the catalyst is brought into contact with a high temperature gas for drying. Among these, air flow drying is preferable because it can suppress aggregation of particles.
  • the metal powder may break up the aggregation of particles generated by the drying (grinding process).
  • the method for breaking up the aggregation of the metal powder is not particularly limited, and known methods can be used. As a specific example, a jet mill, a bead mill, etc. which make particles collide with each other by a high pressure gas flow can be mentioned.
  • a jet mill, a bead mill, etc. which make particles collide with each other by a high pressure gas flow can be mentioned.
  • Adjustment is necessary. That is, it is preferable to adjust the number of times the metal powder is passed through the crusher so that the ratio of the crystallite diameter to the number 50% diameter of the metal powder is maintained at 0.5 or more.
  • the metal powder according to one aspect can be suitably produced by the production method described above.
  • the invention of this application does not exclude the aspect which reduces the ratio of the connection particle
  • Example 1 The apparatus shown in FIG. 2 was heated to an atmosphere temperature of 1,100 ° C. by an electric heater, and a mixed gas of nickel chloride gas and nitrogen gas was introduced from the metal halide gas nozzle a.
  • the partial pressure of the nickel chloride gas was 0.037, assuming that the total pressure of the mixed gas was 1.0.
  • hydrogen gas was introduced into the reactor from the reducing gas nozzle b, and nickel chloride gas was reduced in the reactor to obtain a metal powder (nickel powder) d.
  • the nickel powder produced by the heat of reaction is heated to about 1,400 ° C., and the gas flow containing the produced nickel powder is gaseous fuel such as hydrocarbon by black body radiation of the nickel powder. It was observed as a luminous flame resembling a burning flame.
  • the wall surface around the region where this luminous flame is generated (that is, the reduction reaction region c) is heated with a microwave heating device g at a frequency of 2.45 GHz and an output of 4.9 kW to bring nickel chloride gas and hydrogen gas into contact. Temperature variations in the area were reduced.
  • a microwave heating device g at a frequency of 2.45 GHz and an output of 4.9 kW to bring nickel chloride gas and hydrogen gas into contact. Temperature variations in the area were reduced.
  • the dispersion of the highest attainable temperature of nickel particles at the time of particle formation is determined using fluid simulation software (ANSYS, Inc., product name ANSYS CFX)
  • the range of the highest reachable temperature at the time of particle generation is the largest It was 40 ° C.
  • a simulation model including a reducing portion was prepared, divided into hexahedral meshes of about 2 mm intervals, and calculation was performed with the flow rate of the gas, the temperature of the gas, and the wall temperature of the apparatus as boundary conditions.
  • the k- ⁇ model was used for the turbulent flow model, and the vortex dissipation model was used for the reaction model.
  • the produced metal powder (nickel powder) d is mixed with nitrogen gas of 25 ° C. introduced from the two cooling gas nozzles e, cooled to 400 ° C. or less, and led to a bag filter (not shown) by a recovery pipe f The nickel powder was separated and collected.
  • the recovered nickel powder is dispersed and precipitated five times in water (in the washing solution) whose pH and temperature are properly controlled. After removing the remaining nickel chloride, the water content is 0.5 with a flash dryer. The drying process was performed so that it became% or less. Furthermore, disintegration by a jet mill was performed for one pass. The obtained nickel powder is apply
  • Example 2 In the reactor in the same manner as in Example 1, except that the partial pressure of nickel chloride gas in the mixed gas of nickel chloride gas and nitrogen gas is 0.15, and the output of the microwave heating device is 2.8 kW. The nickel chloride gas was reduced to produce a nickel powder. The temperature difference in the region where the nickel particles are formed was 45 ° C. at maximum.
  • Example 3 The reaction was performed in the same manner as in Example 1, except that the partial pressure of nickel chloride gas in the mixed gas of nickel chloride gas and nitrogen gas was 0.29, and the output of the microwave heating device was 3.2 kW. The nickel chloride gas was reduced to produce a nickel powder. The maximum temperature range of the nickel particles at particle formation was at most 65 ° C.
  • Comparative Example 1 A nickel powder was produced in the same manner as in Example 1 except that the output of the microwave heating device g was changed to 0.
  • the maximum temperature range of the nickel particles at the time of particle formation was 84 ° C. at the maximum.
  • Comparative Example 2 A nickel powder was produced in the same manner as in Example 2 except that the output of the microwave heating device g was changed to 0 and crushing by a jet mill was performed in three passes. The maximum temperature range of the nickel particles at particle formation was 95 ° C. at the maximum.
  • Comparative Example 3 A nickel powder was produced in the same manner as in Example 3 except that the output of the microwave heating device g was changed to 0 and the partial pressure of nickel chloride gas was changed to 0.33.
  • the maximum temperature range of the nickel particles at the time of particle formation was 90 ° C. at the maximum.
  • the dispersibility to a solvent, the sintering characteristic, the filling rate, and the smoothness of the coating film were evaluated by the following methods.
  • connection Particle Rate Photograph a picture of metallic nickel powder with a scanning electron microscope (product name JSM-7800F, manufactured by Nippon Denshi Co., Ltd.), and use the image analysis software (product name: MacView 4.0, product name, manufactured by Mountech Co., Ltd.) from the photograph.
  • the number of connected particles with an aspect ratio of 1.2 or more and a circularity of 0.675 or less among about 40,000 particles, the major axis of which is at least three times the number 50% of the number determined above was calculated.
  • the length of the long side of the rectangle having the smallest area circumscribed to the metal particle projection image is taken as the long diameter
  • the value of (long side length ⁇ short side length) is taken as the aspect ratio.
  • the value of (4 ⁇ ⁇ [projected area of metal particle]) / [projected circumferential length of metal particle] 2 is taken as the degree of circularity.
  • the measurement conditions were such that the accelerating voltage of the X-ray tube was 45 kV and the current value was 40 mA, and the wavelength of the X-ray was Cu-K ⁇ .
  • the incident side of the X-ray was 0.04 radian for the solar slit, 15 mm for the mask, 1/2 ° for the divergence slit, and 1 ° for the antiscatter slit.
  • the detector side had a solar slit of 0.04 radian and a scattering prevention slit of 5.5 mm.
  • the scan rate was 0.04 ° / s.
  • Dispersibility 100ml of 5wt% aqueous solution of polycarboxylic acid dispersant was added to 0.5g of nickel powder and dispersed for 60 seconds with an output of 600W and an amplitude width of 30 ⁇ m using an ultrasonic dispersator (brand name GSD600AT, manufactured by Ginsen Co., Ltd.) did. After dispersion, suction filtration is performed at a suction pressure of 0.1 MPa using a membrane filter (pore diameter: 1 ⁇ m, filter diameter: 25 mm) (manufactured by GE Healthcare Bio-Sciences Co., Ltd., trade name Nucripore membrane). The aggregation behavior of the nickel powder was evaluated as shown in Table 1.
  • the filling rate of the fired body was determined from the shrinkage rate when heated to 700 ° C. by the formula (density of fired body ⁇ ⁇ bulk density of nickel), and was evaluated as shown in Table 3. As the filling rate is higher, shrinkage due to firing when applied to the electrode is less likely to occur.
  • a nickel coating on a quartz plate is heated in an atmosphere of 1.5 volume% hydrogen-nitrogen reducing gas at a heating rate of 5 ° C. using an electric furnace (trade name SLT-2035 D, manufactured by Motoyama Co., Ltd.) The temperature was raised under the conditions of 1 / minute, and firing was performed at 1,000 ° C. for 1 hour.
  • the surface roughness (Sz: maximum height; height between the highest peak and the deepest valley) of the fired coating is measured with a digital microscope (trade name VHX-1000, manufactured by Keyence Corporation), The smoothness was evaluated as (Sz value / number of 50% diameter of nickel powder) as shown in Table 4.
  • Table 5 shows the 50% diameter, linked particle ratio, crystallite diameter, and coarse particle ratio of nickel powder of Examples and Comparative Examples in Table 5, and evaluation of dispersibility, sintering characteristics, filling ratio, and smoothness of coating film. The results are shown in Table 6.
  • Example 1 no coarse particle was found in the photographed particles, so the evaluation result was set to be less than the detection limit.
  • the nickel powder of Example 1 has the same number of 50% diameter as that of Comparative Example 1, the percentage of connected particles and the ratio of coarse particles are low. It can be seen that the dispersibility, the sintering characteristics, the filling rate and the smoothness of the fired coating film are excellent.
  • the nickel powder of Example 2 has the same number of 50% diameter as that of Comparative Example 2, the crystallite diameter is large and the number of connected particles is small, so the dispersibility, sintering characteristics and filling rate Is excellent.
  • the metal powder of the present invention has excellent dispersibility, sintering characteristics, filling rate and smoothness of the fired coating film in the manufacturing process of the multilayer ceramic capacitor, and as a result, the generation of voids in the electrode layer is suppressed. It has been proved to be effective for preventing the decrease in capacity of the capacitor.
  • the present invention can be suitably used as a metal powder for the conductive paste of the internal electrode of a laminated ceramic capacitor.

Abstract

Provided is a metal powder suitable for a conductive paste of an internal electrode, the metal powder being capable of improving reduction in the capacity of a capacitor associated with thinning of the internal electrode of a multi-layered ceramic capacitor. In the metal powder, the proportion, contained in the metal powder, of connected particles having an aspect ratio of 1.2 or more, a circularity of 0.675 or less, and a long diameter of three times or more the diameter of 50% of the metal powder among the connected particles formed by connecting metal particles is 500 ppm or less on a number basis.

Description

金属粉末、及びその製造方法Metal powder and method for producing the same
 本発明の一態様は、電子部品などに使用される導電ペースト用途、例えば、積層セラミックコンデンサの内部電極の導電ペースト用途に好適な金属粉末、及びその製造方法に関する。 One aspect of the present invention relates to a metal powder suitable for conductive paste applications used for electronic parts and the like, for example, conductive paste applications for internal electrodes of multilayer ceramic capacitors, and a method for producing the same.
 スマートフォンやタブレット端末に代表される携帯情報端末は、多機能化、高機能化に伴い、電子部品の数が増える傾向にある。このため、限られた面積のメイン基板に搭載するため、基板に搭載されるセラミックコンデンサは小型化、大容量化が求められている。 The number of electronic components tends to increase as portable information terminals represented by smartphones and tablet terminals become multifunctional and sophisticated. For this reason, in order to mount on the main board of a limited area, the miniaturization and capacity increase of the ceramic capacitor mounted on the board are required.
 積層セラミックコンデンサの小型化、大容量化に伴い、積層セラミックコンデンサの内部電極も薄層化・低抵抗化等が要求されている。そのためには内部電極に使用される金属粉末は、一次粒子の平均粒径が300nm以下は勿論のこと、200nm以下、さらには100nm以下の超微粉であることが要望されている。 With the miniaturization and increase in capacity of multilayer ceramic capacitors, thinning of internal electrodes of multilayer ceramic capacitors and reduction in resistance are required. For that purpose, it is required that the metal powder used for the internal electrode is an ultrafine powder having an average particle diameter of primary particles of 300 nm or less, 200 nm or less, and even 100 nm or less.
 しかし、内部電極の膜厚が薄くなるにつれて、コンデンサの容量が低下する問題が顕著になる。これは、薄層電極に使用される小粒径の金属粉末のペースト中における分散性が悪く、電極中に金属粉末の充填率が低くなる領域が発生し、その領域では焼成時の収縮が大きくなり、電極層の空隙が多く発生することによる結果として電極の容積が小さくなることが原因と考えられる。 However, as the film thickness of the internal electrode becomes thinner, the problem that the capacitance of the capacitor is reduced becomes remarkable. This is because the dispersibility of the small particle size metal powder used for the thin layer electrode in the paste is poor, and a region in which the filling rate of the metal powder is low is generated in the electrode, and the shrinkage at the time of firing is large in that region It is considered that the volume of the electrode is reduced as a result of the generation of a large number of voids in the electrode layer.
 上記のような問題に対処する手段として、例えば特許文献1にはニッケル粉に硫黄を含有させ、ニッケル粒子の表面に存在する硫黄のうち、硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄とのモル比を規定することで焼結特性及び分散性を改善したニッケル粉が開示されている。 As a means to cope with the above problems, for example, in Patent Document 1, sulfur is contained in nickel powder, and among sulfur present on the surface of nickel particles, sulfur present as sulfate ion and sulfur present as sulfide ion A nickel powder is disclosed that has improved sintering characteristics and dispersibility by defining its molar ratio.
 また特許文献2には、ニッケルに非磁性金属元素を添加してニッケル結晶のa軸長を特定の範囲にすることで残留磁化を低くし、凝集を抑制したニッケル粉が開示されている。 Further, Patent Document 2 discloses a nickel powder in which the residual magnetization is reduced by adding a nonmagnetic metal element to nickel to make the a-axis length of the nickel crystal within a specific range, thereby suppressing aggregation.
国際公開公報「WO2015/156080号」(2015年10月15日公開)International Publication Gazette "WO 2015/156080" (released on October 15, 2015) 国際公開公報「WO2014/080600号」(2014年5月30日公開)International Publication "WO2014 / 080600" (released on May 30, 2014)
 しかしながら、内部電極の薄層化に伴うコンデンサの容量低下を改善する、さらなる解決策が求められている。 However, there is a need for further solutions that improve the reduction in capacitance of the capacitor due to the thinning of the internal electrode.
 したがって、本発明の一態様は、積層セラミックコンデンサの内部電極の薄層化に伴うコンデンサの容量低下を改善し得る、内部電極の導電ペーストに好適な金属粉末を提供することを目的とする。 Therefore, one aspect of the present invention aims to provide a metal powder suitable for the conductive paste of the inner electrode, which can improve the capacity reduction of the capacitor due to the thinning of the inner electrode of the laminated ceramic capacitor.
 本発明者らは、上記課題を解決するために鋭意研究し、金属粉末中の特定の形状の粒子の割合が、金属粉末の或る種の挙動、特に、分散性、焼結開始温度、及び充填率等に大きな影響を与えることを見出し、本発明の一態様を完成するに至った。 The present inventors have intensively studied to solve the above problems, and the proportion of particles of a specific shape in the metal powder is determined by the behavior of the metal powder, in particular, the dispersibility, the sintering start temperature, and the like. It has been found that the filling rate and the like are greatly affected, and one aspect of the present invention has been completed.
 すなわち、本発明の一態様は、金属粒子が連結してなる連結粒子のうち、アスペクト比が1.2以上であり、円形度が0.675以下であり、長径が金属粉末の個数50%径の3倍以上である連結粒子が上記金属粉末に含まれる割合が、個数基準で500ppm以下であることを特徴とする金属粉末に関する。 That is, in one aspect of the present invention, among connected particles formed by connecting metal particles, the aspect ratio is 1.2 or more, the degree of circularity is 0.675 or less, and the major diameter is 50% the number of metal powders The metal powder is characterized in that the proportion of connected particles that are three or more times in the metal powder is 500 ppm or less on a number basis.
 本発明の一態様によれば、上記形状の連結粒子が含まれる割合を500ppm以下にすることで、電極ペースト中の金属粒子の分散性を改善することができ、電極中の金属粉末の充填率を高くすることができる。 According to one aspect of the present invention, the dispersibility of the metal particles in the electrode paste can be improved by setting the ratio of the connected particles having the above shape to 500 ppm or less, and the filling rate of the metal powder in the electrode Can be raised.
気相還元法により金属粉末を製造する装置の一例を示す図である。It is a figure which shows an example of the apparatus which manufactures a metal powder by a gaseous-phase reduction method. 実施例1で使用した金属粉末製造装置を示す図である。FIG. 2 is a view showing a metal powder production apparatus used in Example 1; 実施例1で得られた乾燥ニッケル粉末のSEM画像である。It is a SEM image of the dry nickel powder obtained in Example 1.
 <金属粉末>
 (構成金属)
 本発明の一態様において、金属粉末とは、金属粒子の集合体のことであり、該金属粒子を構成する金属としては、珪素、銅、ニッケル、銀、モリブデン、鉄、クロム、タングステン、タンタル、コバルト、レニウム、白金、パラジウム等、及びこれらの合金が挙げられる。これらの中でも、ニッケル、モリブデン、銀、タングステン、銅、白金、パラジウム及びこれらの合金が特に好ましい。特に、ニッケル、銅、銀、及びこれらの合金が最も好ましい。これらの金属粉末は、ペーストフィラー、特に導電ペーストのフィラーに好適に使用される。
<Metal powder>
(Component metals)
In one aspect of the present invention, the metal powder is an aggregate of metal particles, and as a metal constituting the metal particles, silicon, copper, nickel, silver, molybdenum, iron, chromium, tungsten, tantalum, Cobalt, rhenium, platinum, palladium and the like, and alloys thereof can be mentioned. Among these, nickel, molybdenum, silver, tungsten, copper, platinum, palladium and their alloys are particularly preferable. In particular, nickel, copper, silver and their alloys are most preferred. These metal powders are suitably used as paste fillers, particularly fillers for conductive pastes.
 (個数50%径)
 本発明の一態様において、金属粉末の個数50%径の上下限は特に制限はされないが、例えば、積層セラミックコンデンサの内部電極用導電ペーストのフィラーとしての用途から、400nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましく、100nm以下であることが最も好ましい。また、金属粉末の生産コストや発火性の観点から、10nm以上であることが好ましく、20nm以上であることがより好ましく、25nm以上であることがさらに好ましく、50nm以上であることが最も好ましい。
(Number 50% diameter)
In one aspect of the present invention, the upper and lower limits of the number 50% diameter of the metal powder are not particularly limited, but for example, it is preferably 400 nm or less from the use as a filler of the conductive paste for internal electrodes of multilayer ceramic capacitors The thickness is more preferably 300 nm or less, still more preferably 200 nm or less, and most preferably 100 nm or less. Further, from the viewpoint of the production cost of the metal powder and the ignitability, it is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 25 nm or more, and most preferably 50 nm or more.
 なお、「個数50%径」とは、金属粉末を構成する金属粒子の個数基準における粒度分布において頻度(又は累積)50%に相当する粒子の径のことを意味する。金属粉末の個数50%径は、走査電子顕微鏡により金属粉末の写真を撮影し、画像解析ソフトを使用して、その写真から金属粒子約1,000個の粒径を測定し、得られた金属粉末の粒度分布より、その個数50%径を算出することができる。この場合において、「粒径」とは、金属粒子の画像解析で求められる投影像に外接する最小円の直径である。 In addition, "the number 50% diameter" means the diameter of the particle | grains corresponded to 50% of frequency (or accumulation) in the particle size distribution in the number-based basis of the metal particle which comprises metal powder. As for the number 50% diameter of metal powder, take a picture of metal powder with a scanning electron microscope, measure the particle size of about 1,000 metal particles from the picture using image analysis software, and obtain the metal The number 50% diameter can be calculated from the particle size distribution of the powder. In this case, the "particle size" is the diameter of the smallest circle circumscribed to the projected image obtained by the image analysis of the metal particles.
 (連結粒子)
 金属粉末には、凝集のない独立した一次粒子に加え、一次粒子が凝集した二次粒子も含まれ得る。この二次粒子のうち、「連結粒子」とは、例えば、ジェットミル等の公知の解砕装置によって解砕してもなお、金属粉末中に残留する二次粒子であり、典型的には、一次粒子同士が互いに融着してなる二次粒子のことを意味する。このような、「連結粒子」のなかでも、球形度(真球度ともいう)が低い粒子、特に、複数の一次粒子が一列に連なった、特定の基準の長さを超える細長い形状の連結粒子の割合が、金属粉末のペースト中での分散性、焼結開始温度、及び充填率等の挙動に大きな影響を与えることが分かった。
(Connected particles)
The metal powder may include secondary particles in which primary particles are aggregated, in addition to independent primary particles without aggregation. Among the secondary particles, “connected particles” are secondary particles remaining in the metal powder even after being crushed by a known crusher such as, for example, a jet mill, and typically, It means secondary particles in which primary particles are fused to each other. Among such "connected particles", particles having low sphericity (also referred to as sphericity), in particular, connected particles having an elongated shape exceeding a specific reference length in which a plurality of primary particles are connected in a line It has been found that the proportion of the metal powder significantly affects the behavior of the metal powder in the paste, such as the sintering start temperature and the filling rate.
 なお、本明細書中では、特に説明がない限り、便宜上「連結粒子」とは、金属粉末を走査電子顕微鏡により撮影した写真に映っている粒子のうち、当該写真において「アスペクト比」が1.2以上であり、「円形度」が0.675以下であり、「長径」が金属粉末の個数50%径の3倍以上である金属粒子である連結粒子のことを指す。 In the present specification, unless otherwise specified, “connected particles” are, for convenience, “connected particles” in particles of a metal powder taken with a scanning electron microscope, in which “aspect ratio” is 1. 2 or more, refers to connected particles that are metal particles having a “roundness” of 0.675 or less and a “major axis” of three or more times the number 50% diameter of the metal powder.
 ここで、「長径」は、金属粒子の投影像に外接する最小面積の長方形の長辺の長さであり、「アスペクト比」は、当該長方形における長辺の長さを短辺の長さにて割った値である。 Here, the “long diameter” is the length of the long side of the rectangle having the smallest area circumscribed to the projected image of the metal particle, and the “aspect ratio” is the length of the long side of the rectangle being the short side. Divided by
 また、「円形度」は、下記式(1)により求められる値である。
円形度=(4π×〔金属粒子の投影面積〕)/〔金属粒子の投影周長〕 (1)
 円形度が1のとき、粒子の投影像は真円であり、当該粒子の立体形状は真球状に近いと予想できる。また、円形度が0に近づくにつれて、撮影された粒子の立体形状には、凹凸が多く存在し、複雑な形状であると予想できる。
Moreover, "circularity" is a value calculated | required by following formula (1).
Circularity = (4π × [projected area of metal particles]) / [projected perimeter of metal particles] 2 (1)
When the circularity is 1, the projected image of the particle is a true circle, and the three-dimensional shape of the particle can be expected to be close to a true sphere. In addition, as the degree of circularity approaches 0, the three-dimensional shape of the taken image has many irregularities, which can be expected to be a complicated shape.
 金属粉末中の「連結粒子」の割合は、走査電子顕微鏡により金属粉末の写真を撮影し、その写真に撮影された金属粒子約40,000個から、画像解析ソフトを使用して、アスペクト比が1.2以上であり、円形度が0.675以下であり、長径が金属粉末の個数50%径の3倍以上である金属粒子の数を計測して得られる個数率(以下、「連結粒子率」と表記することもある)を意味する。なお、金属粉末の画像を撮影するための試料を調製する条件等は、後述する実施例を参照するとよい。 The proportion of "connected particles" in the metal powder was determined by taking a picture of the metal powder with a scanning electron microscope and using image analysis software from about 40,000 pieces of metal particles taken in the picture. The number ratio obtained by measuring the number of metal particles having a circularity of 0.65 or less and a major diameter of 3 times or more of the number 50% diameter of the metal powder (hereinafter referred to as “connected particles” It is sometimes expressed as "rate". In addition, it is good to refer to the Example mentioned later for the conditions etc. which prepare the sample for imaging | photography of the image of metal powder.
 本発明の一態様において、金属粉末に含まれる連結粒子の割合は、個数基準で500ppm以下であることが好ましく、300ppm以下であることがより好ましい。連結粒子の割合がこの範囲であることにより、金属粉末の電極ペースト中での分散性を改善し、電極中の金属粉末の充填率を高くするという効果を得ることができる。金属粉末の個数50%径が400nm以下、300nm以下、さらには200nm以下、及び100nm以下の超微粉であっても、上記の効果が得られる。したがって、この金属粉末を内部電極用導電ペーストのフィラーとして用いることにより、電極の欠陥によるコンデンサの容量の低下を防ぐことができる。 In one aspect of the present invention, the proportion of connected particles contained in the metal powder is preferably 500 ppm or less, and more preferably 300 ppm or less, on a number basis. When the proportion of the connecting particles is in this range, it is possible to improve the dispersibility of the metal powder in the electrode paste and to obtain the effect of increasing the filling rate of the metal powder in the electrode. The above effects can be obtained even if the metal powder is ultrafine powder with a number 50% diameter of 400 nm or less, 300 nm or less, 200 nm or less, and 100 nm or less. Therefore, by using this metal powder as a filler of the conductive paste for internal electrodes, it is possible to prevent a decrease in capacity of the capacitor due to a defect of the electrode.
 (結晶子径)
 本発明の一態様において、金属粉末における個数50%径に対する、金属粉末の結晶子径の比(結晶子径/個数50%径)は0.50以上であることが好ましく、さらには0.55以上であることがより好ましい。連結粒子率が500ppm以下である金属粉末において、結晶子径の個数50%径に対する比が0.50以上であることにより、金属粉末の焼結特性、特に焼結塗膜の平滑性を一層改善することができる。
(Crystallite diameter)
In one embodiment of the present invention, the ratio (crystallite diameter / number 50% diameter) of the crystallite diameter of the metal powder to the number 50% diameter of the metal powder is preferably 0.50 or more, more preferably 0.55. It is more preferable that it is more than. In the metal powder having a connected particle ratio of 500 ppm or less, when the ratio of the crystallite diameter to the number 50% diameter is 0.50 or more, the sintering characteristics of the metal powder, particularly the smoothness of the sintered coating film is further improved can do.
 なお、金属粉末の結晶子径は、X線回折装置により回折ピークの半値幅を求め、以下に示すScherrerの式により算出される。 In addition, the crystallite diameter of a metal powder calculates | requires the half value width of a diffraction peak with X-ray-diffraction apparatus, and is computed by the formula of Scherrer shown below.
 (数1)
 結晶子径=(0.9×〔X線波長〕)/(〔ピーク半値幅〕×cos〔回折角〕)
(1)
Crystallite diameter = (0.9 × [X-ray wavelength]) / ([peak half width] × cos [diffraction angle])
 例えば、Ni粉末の結晶子径は、(111)面、(200)面、(220)面の回折ピークの半値幅から求める。 For example, the crystallite diameter of the Ni powder is determined from the half value width of the diffraction peak of the (111) plane, the (200) plane, and the (220) plane.
 (粗大粒子)
 本発明の一態様において、金属粉末には粗大粒子が含まれ得る。ここで、粗大粒子とは、アスペクト比が1.2未満、又は円形度が0.675を超える球状又は略球状粒子であって、長径が金属粉末の個数50%径の3倍以上である金属粒子ことを意味する。つまり、粗大粒子とは、アスペクト比、又は円形度が連結粒子の要件を満たしていないが、連結粒子と同様に長径が大きく、球形状に近い一次粒子、又は二次粒子である。金属粉末中に含まれる粗大粒子の割合は、個数基準で15ppm以下であることが好ましく、さらには5ppm以下であることがより好ましい。連結粒子率が500ppm以下である金属粉末において、粗大粒子の割合がこの範囲であることにより、積層セラミックコンデンサの内部電極の導電ペーストフィラーとして用いるときに、電極層を平滑にすることができ、電極間のショート等の不良を防止することができる。
(Coarse particles)
In one aspect of the invention, the metal powder can include coarse particles. Here, the coarse particles are spherical or substantially spherical particles having an aspect ratio of less than 1.2 or a circularity of more than 0.675, and a metal whose major axis is at least three times the number 50% diameter of the metal powder. It means particles. That is, the coarse particles are primary particles or secondary particles having a large major diameter and a near spherical shape like the connected particles although the aspect ratio or the degree of circularity does not satisfy the requirements of the connected particles. The proportion of coarse particles contained in the metal powder is preferably 15 ppm or less on a number basis, and more preferably 5 ppm or less. In a metal powder having a connected particle ratio of 500 ppm or less, when the ratio of coarse particles is in this range, the electrode layer can be smoothed when used as a conductive paste filler of the internal electrode of the multilayer ceramic capacitor, It is possible to prevent a defect such as a short circuit between them.
 金属粉末中の「粗大粒子」の割合は、走査電子顕微鏡により金属粉末の写真を撮影し、その写真に撮影された金属粒子約60,000個から、画像解析ソフトを使用して、アスペクト比が1.2未満又は、円形度が0.675以上であり、長径が金属粉末の個数50%径の3倍以上である金属粒子の数を計測して得られる個数率(以下、「粗大粒子率」と表記することもある)を意味する。 The ratio of "coarse particles" in the metal powder was determined by taking a picture of the metal powder with a scanning electron microscope and using image analysis software from about 60,000 pieces of metal particles taken in the picture. Number ratio obtained by measuring the number of metal particles less than 1.2 or having a circularity of 0.675 or more and having a major axis of at least three times the number 50% diameter of metal powder (hereinafter referred to as “coarse particle percentage It may be written as ".
 <金属粉末の製造方法>
 本発明一態様に係る金属粉末は、例えば、気相法や液相法等の既知の方法で製造することができる。特に、金属ハロゲン化物ガスと還元性ガスとを接触させることにより金属粉末を生成する気相還元法、あるいは熱分解性の金属化合物を噴霧して熱分解する噴霧熱分解法等の気相法は、生成する金属微粉末の粒径を制御し易くさらに球状の粒子を効率よく製造することができる。このため、金属粉末の個数50%径、連結粒子率及び粗大粒子率を好適な範囲となるように制御しやすい。以下に、特に好ましい金属粉末の製造方法の一態様として、気相還元法について説明する。
<Method of producing metal powder>
The metal powder according to an aspect of the present invention can be produced, for example, by a known method such as a gas phase method or a liquid phase method. In particular, gas phase reduction methods such as vapor phase reduction method in which metal powder is produced by contacting metal halide gas with reducing gas, or spray pyrolysis method in which pyrolyzable metal compounds are sprayed and pyrolyzed are It is easy to control the particle size of the produced metal fine powder, and spherical particles can be produced efficiently. For this reason, it is easy to control the number of 50% diameter of the metal powder, the connected particle ratio and the coarse particle ratio to be in the suitable range. Hereinafter, a vapor phase reduction method will be described as one embodiment of a particularly preferable method for producing a metal powder.
 (気相還元法)
 気相還元法においては、気化させた金属ハロゲン化物のガスと水素等の還元性ガスとを反応させる。特に、気相還元法は、生成する金属粉末の粒径を精密に制御することができ、さらに粗大粒子の発生を防止できる点からより好ましい金属粉末の製造方法である。
(Gas phase reduction method)
In the gas phase reduction method, the gas of vaporized metal halide is reacted with a reducing gas such as hydrogen. In particular, the gas phase reduction method is a more preferable method of producing a metal powder from the viewpoint of being able to precisely control the particle size of the metal powder to be produced, and further to prevent the generation of coarse particles.
 気相還元法において金属ハロゲン化物ガスを得る方法については公知の方法を使用することができる。例えば、無水塩化コバルト等の固体金属ハロゲン化物を加熱、昇華させて不活性ガスにより還元部に運搬する方法を採ることもできる。あるいは、原料となる固体金属にハロゲンガスを接触させて金属ハロゲン化物ガスを連続的に発生させる方法を採ることもできる。特に、粒度分布等の品質の安定性、及び生成した金属粉末への汚染の防止の点から、原料となる固体金属にハロゲンガスを接触させて金属ハロゲン化物ガスを連続的に発生させ、この金属ハロゲン化物ガスを直接還元部に導く方法が好ましい。 A known method can be used as a method of obtaining a metal halide gas in the vapor phase reduction method. For example, it is possible to adopt a method in which a solid metal halide such as anhydrous cobalt chloride is heated, sublimated and transported to a reduction part by an inert gas. Alternatively, a method can be adopted in which a halogen gas is brought into contact with a solid metal as a raw material to continuously generate a metal halide gas. In particular, from the point of stability of quality such as particle size distribution and prevention of contamination to the formed metal powder, halogen gas is brought into contact with solid metal as raw material to continuously generate metal halide gas, and this metal It is preferable to introduce the halide gas directly to the reduction unit.
 気相還元法により金属粉末を製造する装置の一例を図1に示す。図1に示す装置において、還元反応領域cを内包する反応装置は有底円筒状をなし、その一端には金属ハロゲン化物ガスノズルaが取り付けられており、これにより反応装置内に金属ハロゲン化物ガスと不活性ガスとの混合ガスが供給されるようになっている。また、当該反応装置における同じ一端には還元性ガスノズルbが取り付けられている。還元性ガスノズルbから反応装置内に供給される還元性ガスにより、金属ハロゲン化物が還元反応領域cにて還元されて金属粉末dが生成される(還元反応工程)。反応装置のもう一つの端には、冷却ガスノズルeが取り付けられており、冷却ガスノズルeから反応装置内に供給される冷却ガスにより生成した金属粉末dが迅速に冷却され、金属粒子の凝集を防止する。反応装置には回収管fが取り付けられており、金属粉末dは回収管fを流通して回収装置に送られる。 An example of the apparatus which manufactures a metal powder by a gaseous-phase reduction method is shown in FIG. In the apparatus shown in FIG. 1, the reactor containing the reduction reaction zone c has a bottomed cylindrical shape, and a metal halide gas nozzle a is attached to one end of the reactor, whereby metal halide gas and A mixed gas with an inert gas is supplied. Moreover, the reducing gas nozzle b is attached to the same end in the said reaction apparatus. The metal halide is reduced in the reduction reaction area c by the reducing gas supplied from the reducing gas nozzle b into the reactor, whereby the metal powder d is generated (reduction reaction step). A cooling gas nozzle e is attached to the other end of the reactor, and the metal powder d generated by the cooling gas supplied from the cooling gas nozzle e into the reactor is rapidly cooled to prevent aggregation of the metal particles. Do. The recovery pipe f is attached to the reactor, and the metal powder d is sent to the recovery device through the recovery pipe f.
 (金属ハロゲン化物ガス)
 金属ハロゲン化物ガスとしては、塩化珪素(III)ガス、塩化珪素(IV)ガス、塩化銅(I)ガス、塩化銅(II)ガス、塩化ニッケルガス、塩化銀ガス、塩化モリブデンガス(III)ガス、塩化モリブデン(V)ガス、塩化鉄(II)ガス、塩化鉄(III)ガス、塩化クロム(III)ガス、塩化クロム(VI)ガス、塩化タングステン(II)ガス、塩化タングステン(III)ガス、塩化タングステン(IV)ガス、塩化タングステン(V)ガス、塩化タングステン(VI)ガス、塩化タンタル(III)ガス、塩化タンタル(V)ガス、塩化コバルトガス、塩化レニウム(III)ガス、塩化レニウム(IV)ガス、及び塩化レニウム(V)ガス、フッ化白金(VI)ガス、フッ化パラジウム(II)ガス並びにこれらの混合ガスが挙げられる。最も好ましくは、塩化ニッケルガス、塩化銅(I)ガス、塩化銅(II)ガス、塩化銀ガス、及びこれらの混合ガスである。
(Metal halide gas)
As metal halide gas, silicon chloride (III) gas, silicon (IV) chloride gas, copper (I) chloride gas, copper (II) chloride gas, nickel chloride gas, silver chloride gas, molybdenum chloride gas (III) gas Molybdenum (V) gas, iron (II) gas, iron (III) gas, chromium (III) gas, chromium (VI) gas, tungsten (II) gas, tungsten (III) gas, Tungsten (IV) gas, tungsten (V) gas, tungsten (VI) gas, tantalum (III) gas, tantalum (V) gas, cobalt chloride gas, rhenium (III) gas, rhenium chloride (IV ) Gas, and rhenium chloride (V) gas, platinum fluoride (VI) gas, palladium fluoride (II) gas and mixtures thereof Gas and the like. Most preferably, they are nickel chloride gas, copper (I) chloride gas, copper (II) chloride gas, silver chloride gas, and a mixed gas thereof.
 なお、金属ハロゲン化物ガスは、塩化炉(不図示)に充填された固体金属にハロゲンガスを反応させることによって生成することができる。塩化炉内の温度は、原料金属がハロゲン化される温度であり、当該原料金属の融点以下であればよい。例えば、金属ニッケルから塩化ニッケルガスを生成する場合、反応を十分進めるために800℃以上とし、ニッケルの融点である1483℃以下とし、反応速度と塩化炉の耐久性を考慮すると、実用的には900℃~1200℃の範囲が好ましい。 The metal halide gas can be generated by reacting a solid metal charged in a chlorination furnace (not shown) with a halogen gas. The temperature in the chlorination furnace is a temperature at which the raw material metal is halogenated, and may be equal to or lower than the melting point of the raw material metal. For example, when producing nickel chloride gas from metallic nickel, the temperature should be 800 ° C. or higher to sufficiently proceed the reaction, and be 1483 ° C. or lower, which is the melting point of nickel, considering the reaction rate and the durability of the chlorination furnace. A range of 900 ° C. to 1200 ° C. is preferred.
 また、生成した金属ハロゲン化物ガスは、適宜ヘリウム、アルゴン、ネオン、及び窒素等の不活性ガスで希釈することで金属ハロゲン化物ガスの分圧を制御することがより好ましい。具体的には、ハロゲン化炉におけるハロゲンガスの供給量を調整することで金属ハロゲン化物ガスの発生量を調整し、発生した金属ハロゲン化物ガスに対する不活性ガスの供給量を調整することによって、混合ガスにおける金属ハロゲン化物ガスの分圧(言い換えれば、混合ガス中における金属ハロゲン化物ガスのモル%濃度)を調整する。ここで、金属ハロゲン化物ガスの分圧が高い条件では生成する金属粉末の粒径が大きくなり、分圧を下げるに従って粒径が小さくなるため、金属ハロゲン化物ガスの分圧により生成する金属粉末の粒度分布を制御することができる。これにより生成する金属粉末の品質を任意に設定できるとともに、品質を安定させることができる。図1に示す金属ハロゲン化物ガスノズルaを通過するときにおいて、金属ハロゲン化物ガスと不活性ガスとの混合ガスにおける金属ハロゲン化物ガスの分圧は、混合ガスの全圧を1.0としたときに、0.01~0.95(Pa/Pa)、より好ましくは0.01~0.7、さらに好ましくは0.01~0.6、最も好ましくは0.01~0.5である。このような分圧の範囲は、金属粉末の生産効率を高く維持しながら、粒径、粒度分布、粒子の形状、その結晶性、及び焼結性などの品質を備えた目的の金属の超微粉を製造する上で好ましい態様である。 Further, it is more preferable to control the partial pressure of the metal halide gas by appropriately diluting the generated metal halide gas with an inert gas such as helium, argon, neon and nitrogen. Specifically, the amount of metal halide gas generated is adjusted by adjusting the amount of halogen gas supplied in the halogenation furnace, and the amount of mixing is adjusted by adjusting the amount of inert gas supplied to the generated metal halide gas. The partial pressure of the metal halide gas in the gas (in other words, the mol% concentration of the metal halide gas in the mixed gas) is adjusted. Here, when the partial pressure of the metal halide gas is high, the particle size of the metal powder formed is large, and as the partial pressure is reduced, the particle size decreases, the metal powder formed by the partial pressure of the metal halide gas Particle size distribution can be controlled. While being able to set arbitrarily the quality of the metal powder produced | generated by this, quality can be stabilized. When passing through the metal halide gas nozzle a shown in FIG. 1, the partial pressure of the metal halide gas in the mixed gas of the metal halide gas and the inert gas is set to 1.0 when the total pressure of the mixed gas is 1.0. 0.01 to 0.95 (Pa / Pa), more preferably 0.01 to 0.7, still more preferably 0.01 to 0.6, and most preferably 0.01 to 0.5. Such partial pressure range maintains the production efficiency of the metal powder high, while the particle size, particle size distribution, particle shape, its crystallinity, and the quality of the sinterability and the like of the target metal ultrafine powder Is a preferred embodiment for producing
 なお、以下の説明において、便宜上、「金属ハロゲン化物ガス」とは、「不活性ガスを含んでいる金属ハロゲン化物ガス(つまり、混合ガス)」の意味も含み得る。 In the following description, for convenience, the term "metal halide gas" may also include the meaning of "metal halide gas containing an inert gas (that is, mixed gas)".
 (還元性ガス)
 金属ハロゲン化物ガスを還元するための還元性ガスには、水素ガス、硫化水素ガス、アンモニアガス、一酸化炭素ガス、メタンガス及びこれらの混合ガスが挙げられる。特に好ましくは、水素ガス、硫化水素ガス、アンモニアガス、及びこれらの混合ガスである。なお、還元性ガスに硫化水素ガスが含まれる場合、得られた金属粉末における金属粒子は硫黄を成分として含み得る。
(Reducing gas)
The reducing gas for reducing the metal halide gas includes hydrogen gas, hydrogen sulfide gas, ammonia gas, carbon monoxide gas, methane gas, and a mixed gas thereof. Particularly preferred are hydrogen gas, hydrogen sulfide gas, ammonia gas, and mixed gas thereof. When hydrogen sulfide gas is contained in the reducing gas, metal particles in the obtained metal powder may contain sulfur as a component.
 また、還元性ガスノズルbから反応装置内に供給される還元性ガスの供給量は、金属ハロゲン化物ガスの還元に必要な理論量(化学当量)もしくはそれ以上を導入することが好ましく、限定されるものではないが、理論量の300~10000モル%、より好ましくは1000~6000モル%に相当する還元性ガスを供給するとよい。 In addition, it is preferable to introduce the theoretical amount (chemical equivalent) or more necessary for reduction of the metal halide gas, and the supply amount of the reducing gas supplied from the reducing gas nozzle b into the reactor is limited, and is limited Although not preferred, it is preferable to supply a reducing gas equivalent to 300 to 10000 mol%, more preferably 1000 to 6000 mol% of the theoretical amount.
 (還元反応領域)
 「還元反応領域」は、反応装置内の一部を占める領域であり、金属ハロゲン化物ガスノズルaの先端の近傍に位置し、金属ハロゲン化物ガスと還元性ガスの反応による金属粒子の生成が行われる領域のことである。また、「還元反応領域」は、少なくとも、反応装置内に供給された金属ハロゲン化物ガスと還元性ガスとが接触し始める地点と、金属粒子が生成し始める地点とを含む領域でもあり、当該領域では黒体輻射によって炭化水素等の気体燃料が発する燃焼炎に似た輝炎が生じる。また、還元反応領域内にて生成した金属は核を成し、当該核を成長させつつ、当該還元反応領域内を通過する。
(Reduction reaction area)
The “reduction reaction area” is an area that occupies a part in the reactor, and is located in the vicinity of the tip of the metal halide gas nozzle a, and the generation of metal particles by the reaction of the metal halide gas and the reducing gas is performed It is an area. The “reduction reaction area” is also an area including at least a point at which the metal halide gas supplied into the reactor starts to contact with the reducing gas, and a point at which metal particles begin to be generated, In such a case, a bright flame similar to a combustion flame emitted by gaseous fuel such as hydrocarbon is generated by black body radiation. In addition, the metal generated in the reduction reaction region forms a nucleus, and passes through the reduction reaction region while growing the nucleus.
 還元反応領域における平均温度は、供給される金属ハロゲン化物ガスを速やかに還元することができる温度に設定する。一例として、金属ハロゲン化物ガスとして塩化ニッケルガスを使用する場合、図1に示す還元反応領域cの平均温度は、通常900~2,000℃、好ましくは1,000~1,800℃、さらに好ましくは1,200~1,600℃である。 The average temperature in the reduction reaction zone is set to a temperature at which the supplied metal halide gas can be rapidly reduced. As an example, when nickel chloride gas is used as the metal halide gas, the average temperature of the reduction reaction zone c shown in FIG. 1 is usually 900 to 2,000 ° C., preferably 1,000 to 1,800 ° C., more preferably Is 1,200-1,600.degree.
 還元反応領域内において金属粒子が生成する際、金属粒子の温度は、金属ハロゲン化ガスの反応熱によって、還元反応領域内の雰囲気温度(平均温度)よりも100~600℃程度高い「最高到達温度」に到達する。この「最高到達温度」は、還元反応領域内において生成する金属粒子毎にバラつきを生じ得る。ここで、還元反応領域内の雰囲気温度が場所によって異なると、金属粒子が生成する位置によって金属粒子が達する「最高到達温度」が異なることとなる。この最高到達温度のバラつきが大きいと、連結粒子や粗大粒子が発生し易くなる。このため、金属粒子が発する反応熱による最高到達温度のバラつきの幅は80℃以下であることが好ましく、さらには50℃以下であることがより好ましい。粒子が生成する際の最高到達温度のバラつきが大きい場合、周囲よりも温度が高い場所では粗大粒子が生成し易く、また周囲よりも温度が低い場所では連結粒子が生成する原因となる微小な粒子が生成し易い。ここで、粒子が生成する際の最高到達温度の幅、つまり、最高到達温度の最高値と最低値との差を、80℃未満にすることによって、連結粒子率を500ppm以下にまで低減することができ、粗大粒子率を15ppm以下にまで低減させることができる。なお、「最高到達温度」に達した金属粒子のそれぞれは、その後、還元反応領域から排出され、冷却される。 When metal particles are formed in the reduction reaction zone, the temperature of the metal particles is about 100 to 600 ° C. higher than the atmospheric temperature (average temperature) in the reduction reaction zone by the heat of reaction of the metal halide gas. To reach This "maximum temperature" may cause variations in the metal particles formed in the reduction reaction zone. Here, when the atmospheric temperature in the reduction reaction region is different depending on the place, the “highest reachable temperature” reached by the metal particles is different depending on the position where the metal particles are generated. If the variation in the maximum temperature reached is large, coupled particles and coarse particles are likely to be generated. For this reason, it is preferable that the range of the dispersion | variation with the highest achieved temperature by the heat of reaction which a metal particle emits is 80 degrees C or less, and it is more preferable that it is 50 degrees C or less. If the variation in the maximum temperature reached at the time of particle formation is large, coarse particles are likely to be generated in places where the temperature is higher than the ambient temperature, and fine particles that cause connected particles in locations where the temperature is lower than the ambient temperature Is easy to generate. Here, the connected particle rate is reduced to 500 ppm or less by setting the width of the highest attainable temperature at which particles are generated, that is, the difference between the highest value and the lowest value of the highest reachable temperature, to less than 80 ° C. And the coarse particle rate can be reduced to 15 ppm or less. Each of the metal particles having reached the “maximum reached temperature” is then discharged from the reduction reaction zone and cooled.
 反応装置の還元反応領域内における粒子生成時の温度変化は、流体シミュレーションによる計算で求めることができる。 The temperature change at the time of particle generation in the reduction reaction region of the reactor can be determined by calculation by fluid simulation.
 流体シミュレーションには、流体シミュレーションソフト(ANSYS,Inc.製、商品名ANSYS CFX)を使用し、還元部を含むシミュレーションモデルを作製し、約2mm間隔の六面体メッシュに分割し、ガスの流量と温度、及び装置の壁面温度を境界条件として与えて計算を行う。乱流モデルにはk-εモデルを使用し、反応モデルには渦消散モデルを使用する。 For fluid simulation, fluid simulation software (manufactured by ANSYS, Inc., trade name ANSYS CFX) is used to create a simulation model including a reducing portion, divided into hexahedral meshes about 2 mm apart, gas flow rate and temperature, And calculation is performed by giving the wall surface temperature of the device as the boundary condition. The k-ε model is used for the turbulent flow model and the vortex dissipation model is used for the reaction model.
 なお、還元反応領域が占有する反応装置内の場所の違いによる温度のバラつきを低減させる方法としては、例えば、還元反応領域を囲む壁面全体を既知の加熱手段、例えば、マイクロ波加熱装置、電気ヒーター、レーザー加熱、ガスバーナー、又はこれらの組み合わせ等によって均一に加熱する方法が挙げられる。また、これらのうち、マイクロ波加熱装置を用いることが、不純物の混入防止及びエネルギー効率の観点からより好ましい。 In addition, as a method of reducing the temperature variation due to the difference in the place in the reaction apparatus which the reduction reaction area occupies, for example, the whole wall surface surrounding the reduction reaction area is known heating means, for example, microwave heating device, electric heater The method of heating uniformly by laser heating, a gas burner, or these combination etc. is mentioned. Moreover, it is more preferable to use a microwave heating device among these from the viewpoint of contamination prevention of an impurity, and energy efficiency.
 以上の還元反応領域で生成した金属粉末を含むガスは還元反応領域外へと流れ、冷却ガスと接触し、混合する。これにより、金属粉末を400℃以下の温度まで急速に冷却する(冷却工程)。急速な冷却により金属粉末の粒子同士が接合して連結粒子になることをさらに抑制することができる。 The gas containing the metal powder generated in the above reduction reaction zone flows out of the reduction reaction zone, contacts with the cooling gas, and mixes. Thereby, the metal powder is rapidly cooled to a temperature of 400 ° C. or less (cooling step). It is possible to further suppress that the particles of the metal powder are joined together to be connected particles by rapid cooling.
 上記冷却ガスは、不活性ガスであり、窒素ガス、ヘリウムガス、アルゴンガス、ネオンガス、水素ガス及びそれらの混合ガスが挙げられる。冷却ガスの温度は、通常、0~100℃、好ましくは0~50℃、より好ましくは0~30℃である。また、冷却ガスの流量は、金属粉末の時間あたりの生成量の50倍から300倍の流量である。これにより、金属粉末を冷却する冷却速度を10,000℃/秒よりも速くすることができ、連結粒子率を小さくすることができる。 The above-mentioned cooling gas is an inert gas, and nitrogen gas, helium gas, argon gas, neon gas, hydrogen gas and their mixed gas may be mentioned. The temperature of the cooling gas is usually 0 to 100 ° C., preferably 0 to 50 ° C., more preferably 0 to 30 ° C. The flow rate of the cooling gas is 50 to 300 times the flow rate of the metal powder per hour. Thereby, the cooling rate for cooling the metal powder can be made faster than 10,000 ° C./sec, and the connected particle rate can be reduced.
 以上の気相還元法による金属粉末の製造方法では、金属ハロゲン化物ガスの濃度(分圧)、流速、還元反応領域の温度分布、及び生成した金属粉末の冷却速度等を調整することで、所望の個数50%径、連結粒子率、及び粗大粒子率をもつ金属粉末を得ることができる。 In the method of producing metal powder by the above vapor phase reduction method, it is desirable to adjust the concentration (partial pressure) of metal halide gas, flow rate, temperature distribution of reduction reaction area, cooling rate of generated metal powder, etc. A metal powder having a 50% diameter, a connected particle rate, and a coarse particle rate can be obtained.
 以上の方法で得られた金属粉末は、残留する金属ハロゲン化物を除去することが好ましい(洗浄工程)。金属ハロゲン化物の除去方法は特に限定されるものではなく、例えば、金属粉末を、pHや温度を制御した特定の条件を満たす液体中に懸濁させることで易溶性の金属ハロゲン化物を除去する方法や、減圧環境下で金属粉末の焼結温度以下の高温で保持することで揮発性の金属ハロゲン化物を気化させて除去する方法をとることができる。一例として、金属粉末は、pH4.0~6.5の範囲に調整された炭酸水溶液を洗浄液として使用することによって洗浄することが好ましい。未反応の金属ハロゲン化物ガスを好適に除去することができる。また、金属粉末が含まれている洗浄液を純水で置換するか、あるいは、加熱をして炭酸を除去することにより金属粉末の凝集を解くことができ、金属粉末を再分散することができる。よって、連結粒子の含有量をさらに好適に減少することができる。 The metal powder obtained by the above method preferably removes residual metal halide (washing step). The method of removing the metal halide is not particularly limited. For example, a method of removing the easily soluble metal halide by suspending the metal powder in a liquid satisfying specific conditions of controlled pH and temperature. Alternatively, the volatile metal halide can be vaporized and removed by maintaining the temperature at a high temperature below the sintering temperature of the metal powder in a reduced pressure environment. As one example, the metal powder is preferably washed by using an aqueous carbonic acid solution adjusted to a pH range of 4.0 to 6.5 as a washing solution. Unreacted metal halide gas can be suitably removed. In addition, the metal powder can be deaggregated by replacing the cleaning solution containing the metal powder with pure water or removing the carbonic acid by heating, and the metal powder can be redispersed. Therefore, the content of connecting particles can be further suitably reduced.
 金属ハロゲン化物を除去した後において、液相中で処理を行った場合は、金属粉末スラリーを乾燥する(乾燥工程)。乾燥方法は特に限定されるものではなく、既知の方法を使用することができる。具体的には高温のガスと接触させ乾燥する気流乾燥、加熱乾燥、真空乾燥等が挙げられる。このうち、気流乾燥は粒子同士が凝集することを抑制することができるため好ましい。 If the treatment is performed in the liquid phase after removing the metal halide, the metal powder slurry is dried (drying step). The drying method is not particularly limited, and known methods can be used. Specific examples thereof include flash drying, heating and drying, vacuum drying, etc., in which the catalyst is brought into contact with a high temperature gas for drying. Among these, air flow drying is preferable because it can suppress aggregation of particles.
 金属粉末を乾燥した後、当該金属粉末は、乾燥することにより発生した粒子同士の凝集を解砕してもよい(解砕工程)。金属粉末の凝集を解砕するための方法は特に限定されるものではなく、既知の方法を使用することができる。具体例としては、高圧のガス流により粒子同士を衝突させるジェットミルやビーズミル等が挙げられる。1パスの解砕で凝集の除去が十分ではない場合、複数パスの解砕を行っても良いが、過度の解砕により結晶子径が小さくなり、焼結特性が悪化する場合があるため適宜調整が必要である。すなわち、金属粉末の解砕は、当該金属粉末の個数50%径に対する結晶子径の比が、0.5以上に維持されるよう、解砕機を通過させる回数を調整することが好ましい。 After drying the metal powder, the metal powder may break up the aggregation of particles generated by the drying (grinding process). The method for breaking up the aggregation of the metal powder is not particularly limited, and known methods can be used. As a specific example, a jet mill, a bead mill, etc. which make particles collide with each other by a high pressure gas flow can be mentioned. When removal of aggregation is not sufficient in one pass of crushing, multiple passes of crushing may be performed, but the diameter of the crystallite may be reduced by excessive crushing and the sintering characteristics may be deteriorated. Adjustment is necessary. That is, it is preferable to adjust the number of times the metal powder is passed through the crusher so that the ratio of the crystallite diameter to the number 50% diameter of the metal powder is maintained at 0.5 or more.
 以上に説明した製造方法によって、一態様に係る金属粉末を好適に製造ることができる。しかしながら、本願の発明は、金属粉末を分級することにより、当該金属粉末に含まれている連結粒子、及び粗大粒子の割合を低減する態様を除外するものではない。 The metal powder according to one aspect can be suitably produced by the production method described above. However, the invention of this application does not exclude the aspect which reduces the ratio of the connection particle | grains and the coarse particle which are contained in the said metal powder by classifying metal powder.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。 Examples will be shown below, and the embodiment of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it is needless to say that various aspects are possible as to details.
 [実施例1]
 図2に示す装置を電気ヒーターにより1,100℃の雰囲気温度に加熱し、金属ハロゲン化物ガスノズルaより、塩化ニッケルガス、及び窒素ガスの混合ガスを導入した。ここで、塩化ニッケルガスの分圧は混合ガスの全圧を1.0として0.037であった。同時に還元性ガスノズルbから水素ガスを反応装置内に導入し、反応装置内で塩化ニッケルガスを還元して金属粉末(ニッケル粉末)dを得た。
Example 1
The apparatus shown in FIG. 2 was heated to an atmosphere temperature of 1,100 ° C. by an electric heater, and a mixed gas of nickel chloride gas and nitrogen gas was introduced from the metal halide gas nozzle a. Here, the partial pressure of the nickel chloride gas was 0.037, assuming that the total pressure of the mixed gas was 1.0. At the same time, hydrogen gas was introduced into the reactor from the reducing gas nozzle b, and nickel chloride gas was reduced in the reactor to obtain a metal powder (nickel powder) d.
 なお、ニッケル生成反応の際、反応熱により生成するニッケル粉末は約1,400℃まで加熱され、生成したニッケル粉末を含むガス流は、ニッケル粉末の黒体輻射により、炭化水素等の気体燃料が発する燃焼炎に似た輝炎として観察された。 During the nickel formation reaction, the nickel powder produced by the heat of reaction is heated to about 1,400 ° C., and the gas flow containing the produced nickel powder is gaseous fuel such as hydrocarbon by black body radiation of the nickel powder. It was observed as a luminous flame resembling a burning flame.
 また、この輝炎が発生する領域(すなわち還元反応領域c)の周囲の壁面をマイクロ波加熱装置gによって周波数2.45GHz、出力4.9kWで加熱し、塩化ニッケルガスと水素ガスとを接触させる領域における温度のバラつきを低減した。この際、粒子生成時のニッケル粒子の最高到達温度のバラつきを流体シミュレーションソフト(ANSYS,Inc.製、商品名ANSYS CFX)を使用して求めたところ、粒子生成時の最高到達温度の幅は最大で40℃であった。 In addition, the wall surface around the region where this luminous flame is generated (that is, the reduction reaction region c) is heated with a microwave heating device g at a frequency of 2.45 GHz and an output of 4.9 kW to bring nickel chloride gas and hydrogen gas into contact. Temperature variations in the area were reduced. At this time, when the dispersion of the highest attainable temperature of nickel particles at the time of particle formation is determined using fluid simulation software (ANSYS, Inc., product name ANSYS CFX), the range of the highest reachable temperature at the time of particle generation is the largest It was 40 ° C.
 流体シミュレーションでは還元部を含むシミュレーションモデルを作製し、約2mm間隔の六面体メッシュに分割し、ガスの流量と当該ガスの温度、及び装置の壁面温度を境界条件として与えて計算を行った。乱流モデルにはk-εモデルを使用し、反応モデルには渦消散モデルを使用した。 In the fluid simulation, a simulation model including a reducing portion was prepared, divided into hexahedral meshes of about 2 mm intervals, and calculation was performed with the flow rate of the gas, the temperature of the gas, and the wall temperature of the apparatus as boundary conditions. The k-ε model was used for the turbulent flow model, and the vortex dissipation model was used for the reaction model.
 生成された金属粉末(ニッケル粉末)dは、2つの冷却ガスノズルeから導入される25℃の窒素ガスと混合され、400℃以下まで冷却された後、回収管fにより図示しないバグフィルタに導き、ニッケル粉末を分離し、回収した。 The produced metal powder (nickel powder) d is mixed with nitrogen gas of 25 ° C. introduced from the two cooling gas nozzles e, cooled to 400 ° C. or less, and led to a bag filter (not shown) by a recovery pipe f The nickel powder was separated and collected.
 回収したニッケル粉末はpHと温度を適切に管理した水中(洗浄液中)に分散、沈降する洗浄工程を5回繰り返して残留する塩化ニッケルを取り除いた後に、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った。さらに、ジェットミルによる解砕を1パス行った。得られたニッケル粉末を、厚み約1μmになるようにガラス板上に塗布して撮影した、乾燥ニッケル粉末のSEM画像を図3に示す。 The recovered nickel powder is dispersed and precipitated five times in water (in the washing solution) whose pH and temperature are properly controlled. After removing the remaining nickel chloride, the water content is 0.5 with a flash dryer. The drying process was performed so that it became% or less. Furthermore, disintegration by a jet mill was performed for one pass. The obtained nickel powder is apply | coated and photographed on a glass plate so that it may become thickness about 1 micrometer, and the SEM image of dry nickel powder is shown in FIG.
 [実施例2]
 塩化ニッケルガス及び窒素ガスの混合ガス中における塩化ニッケルガスの分圧を0.15とし、マイクロ波加熱装置の出力を2.8kWとした以外は、実施例1と同様にして、反応装置内で塩化ニッケルガスを還元してニッケル粉末を製造した。ニッケル粒子が生成する領域内の温度差は最大で45℃であった。
Example 2
In the reactor in the same manner as in Example 1, except that the partial pressure of nickel chloride gas in the mixed gas of nickel chloride gas and nitrogen gas is 0.15, and the output of the microwave heating device is 2.8 kW. The nickel chloride gas was reduced to produce a nickel powder. The temperature difference in the region where the nickel particles are formed was 45 ° C. at maximum.
 [実施例3]
 塩化ニッケルガス及び窒素ガスの混合ガス中の塩化ニッケルガスの分圧を0.29とし、マイクロ波加熱装置の出力を3.2kWとした以外は、実施例1と同様にして、反応装置内で塩化ニッケルガスを還元してニッケル粉末を製造した。粒子生成時のニッケル粒子の最高到達温度の幅は最大で65℃であった。
[Example 3]
The reaction was performed in the same manner as in Example 1, except that the partial pressure of nickel chloride gas in the mixed gas of nickel chloride gas and nitrogen gas was 0.29, and the output of the microwave heating device was 3.2 kW. The nickel chloride gas was reduced to produce a nickel powder. The maximum temperature range of the nickel particles at particle formation was at most 65 ° C.
 [比較例1]
 マイクロ波加熱装置gの出力を0に変更した以外は、実施例1と同様にしてニッケル粉を製造した。粒子生成時のニッケル粒子の最高到達温度の幅は最大で84℃であった。
Comparative Example 1
A nickel powder was produced in the same manner as in Example 1 except that the output of the microwave heating device g was changed to 0. The maximum temperature range of the nickel particles at the time of particle formation was 84 ° C. at the maximum.
 [比較例2]
 マイクロ波加熱装置gの出力を0に変更し、ジェットミルによる解砕を3パスにした以外は、実施例2と同様にしてニッケル粉を製造した。粒子生成時のニッケル粒子の最高到達温度の幅は最大で95℃であった。
Comparative Example 2
A nickel powder was produced in the same manner as in Example 2 except that the output of the microwave heating device g was changed to 0 and crushing by a jet mill was performed in three passes. The maximum temperature range of the nickel particles at particle formation was 95 ° C. at the maximum.
 [比較例3]
 マイクロ波加熱装置gの出力を0に変更し、塩化ニッケルガスの分圧を0.33にした以外は、実施例3と同様にしてニッケル粉を製造した。粒子生成時のニッケル粒子の最高到達温度の幅は最大で90℃であった。
Comparative Example 3
A nickel powder was produced in the same manner as in Example 3 except that the output of the microwave heating device g was changed to 0 and the partial pressure of nickel chloride gas was changed to 0.33. The maximum temperature range of the nickel particles at the time of particle formation was 90 ° C. at the maximum.
 [評価]
 実施例1~2及び比較例1~2で得られた乾燥ニッケル粉末について、個数50%径、連結粒子率、結晶子径、粗大粒子率を以下の方法で測定した。
[Evaluation]
With respect to the dried nickel powders obtained in Examples 1 and 2 and Comparative Examples 1 and 2, the number 50% diameter, the connected particle ratio, the crystallite diameter, and the coarse particle ratio were measured by the following methods.
 また、溶媒への分散性、焼結特性、充填率、及び塗膜の平滑性を以下の方法で評価した。 Moreover, the dispersibility to a solvent, the sintering characteristic, the filling rate, and the smoothness of the coating film were evaluated by the following methods.
 a.個数50%径
 走査電子顕微鏡(株式会社日本電子製、商品名JSM-7800F)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約1,000個の粒径を測定してその個数50%径を算出した。なお、粒径は金属粒子投影像に外接する最小円の直径とした。
a. Take a picture of metal nickel powder with a 50% diameter scanning electron microscope (product name: JSM-7800F, manufactured by Nippon Denshi Co., Ltd.), and use the image analysis software (product name: MacView 4.0, product name made by Mountech Co., Ltd.) from the photograph Then, the particle diameter of about 1,000 particles was measured to calculate the number 50% number of particles. The particle diameter is the diameter of the smallest circle circumscribed to the metal particle projection image.
 b.連結粒子率
 走査電子顕微鏡(株式会社日本電子製、商品名JSM-7800F)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約40,000個のうち、アスペクト比が1.2以上かつ円形度が0.675以下の連結粒子で、長径が前記で求めた個数50%径の3倍以上である粒子の数を数えて算出した。この場合において、金属粒子投影像に外接する最小面積の長方形の長辺の長さを長径とし、(長辺の長さ÷短辺の長さ)の値をアスペクト比とする。また、(4π×〔金属粒子の投影面積〕)/〔金属粒子の投影周長〕の値を円形度とする。
b. Connection Particle Rate Photograph a picture of metallic nickel powder with a scanning electron microscope (product name JSM-7800F, manufactured by Nippon Denshi Co., Ltd.), and use the image analysis software (product name: MacView 4.0, product name, manufactured by Mountech Co., Ltd.) from the photograph. The number of connected particles with an aspect ratio of 1.2 or more and a circularity of 0.675 or less among about 40,000 particles, the major axis of which is at least three times the number 50% of the number determined above Was calculated. In this case, the length of the long side of the rectangle having the smallest area circumscribed to the metal particle projection image is taken as the long diameter, and the value of (long side length × short side length) is taken as the aspect ratio. Further, the value of (4π × [projected area of metal particle]) / [projected circumferential length of metal particle] 2 is taken as the degree of circularity.
 c.結晶子径
 結晶子径はX線回折装置(スペクトリス株式会社パナリティカル事業部製、商品名X’Pert PRO)によりニッケル結晶の(111)面、(200)面、(220)面の回折ピークの半値幅を求め、Scherrerの式 結晶子径=(0.9×X線波長)/(ピーク半値幅×cos〔回折角〕) により算出した結晶子径の値を、金属粒子における結晶子径の平均値とした。測定条件はX線管の加速電圧を45kV、電流値を40mAとし、X線の波長はCu―Kα線を使用した。X線の入射側はソーラースリットを0.04ラジアン、マスクを15mm、発散スリットを1/2°、散乱防止スリットを1°とした。検出器側はソーラースリット0.04ラジアン、散乱防止スリットを5.5mmとした。スキャン速度は0.04°/sとした。
c. Crystallite diameter The crystallite diameter is the diffraction peak of the (111), (200), and (220) planes of the nickel crystal measured with an X-ray diffractometer (Spectroly Co., Ltd. Panalical Division, trade name X'Pert PRO). The half width is determined, and the value of the crystallite diameter calculated by Scherrer's formula crystallite diameter = (0.9 × X-ray wavelength) / (peak half width × cos [diffraction angle)] Average value. The measurement conditions were such that the accelerating voltage of the X-ray tube was 45 kV and the current value was 40 mA, and the wavelength of the X-ray was Cu-Kα. The incident side of the X-ray was 0.04 radian for the solar slit, 15 mm for the mask, 1/2 ° for the divergence slit, and 1 ° for the antiscatter slit. The detector side had a solar slit of 0.04 radian and a scattering prevention slit of 5.5 mm. The scan rate was 0.04 ° / s.
 d.粗大粒子率
 走査電子顕微鏡(株式会社日本電子製、商品名JSM-7800F)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約600,000個のうち、アスペクト比が1.2未満又は円形度が0.675を超える球状又は略球状粒子で、個数50%径の3倍以上の長径を持つ粒子の数を算出した。
d. Coarse particle rate Photograph a picture of metallic nickel powder with a scanning electron microscope (Nihon Denshi Co., Ltd., trade name JSM-7800F), and use the image analysis software (Mauntech Co., Ltd. trade name MacView 4.0) from the photograph Spherical particles or spherical particles having an aspect ratio of less than 1.2 or a circularity of more than 0.675 among about 600,000 particles, and having a major diameter equal to or more than three times the 50% diameter number. Calculated.
 e.分散性
 ニッケル粉末0.5gにポリカルボン酸系分散剤5重量%水溶液100mlを加え、超音波分散機(株式会社ギンセン製、商品名GSD600AT)を使用して出力600W、振幅幅30μmで60秒分散した。分散後、メンブレンフィルター(孔径1μm、フィルター径25mm)(GEヘルスケアバイオサイエンス株式会社製、商品名ニュークリポアメンブレン)を使用して吸引圧0.1MPaで吸引ろ過を行い、その際の通過時間からニッケル粉末の凝集挙動を表1のように評価した。
e. Dispersibility 100ml of 5wt% aqueous solution of polycarboxylic acid dispersant was added to 0.5g of nickel powder and dispersed for 60 seconds with an output of 600W and an amplitude width of 30μm using an ultrasonic dispersator (brand name GSD600AT, manufactured by Ginsen Co., Ltd.) did. After dispersion, suction filtration is performed at a suction pressure of 0.1 MPa using a membrane filter (pore diameter: 1 μm, filter diameter: 25 mm) (manufactured by GE Healthcare Bio-Sciences Co., Ltd., trade name Nucripore membrane). The aggregation behavior of the nickel powder was evaluated as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 f.焼結特性、及び充填率
 ニッケル粉末1g、樟脳3重量%、及びアセトン3重量%を混合し、この混合物を内径5mm、長さ10mmの円柱状金属容器に充填し、500MPaで圧縮して試験ペレットを作製した。この試験ペレットの熱収縮挙動を、熱機械分析装置(株式会社リガク製、商品名TMA8310)を使用し、1.5体積%水素‐窒素の還元性ガス雰囲気下、大気圧、昇温速度5℃/分の条件で測定した。
f. Sintering properties and packing ratio 1 g of nickel powder, 3% by weight of camphor and 3% by weight of acetone are mixed, this mixture is filled into a cylindrical metal container with an inner diameter of 5 mm and a length of 10 mm and compressed at 500 MPa to give test pellets Was produced. The thermal contraction behavior of this test pellet is measured using a thermomechanical analyzer (trade name TMA 8310, manufactured by Rigaku Corporation) under a 1.5% by volume hydrogen-nitrogen reducing gas atmosphere at atmospheric pressure, a temperature rise rate of 5 ° C. It measured on the conditions of / min.
 測定結果から焼結開始温度として5%収縮温度を求め、ニッケル粉末の焼結特性を表2のように評価した。焼結開始温度が高いほど、耐熱性に優れる傾向を示す。 From the measurement results, 5% shrinkage temperature was determined as the sintering start temperature, and the sintering characteristics of the nickel powder were evaluated as shown in Table 2. The higher the sintering start temperature, the better the heat resistance.
 また、700℃まで加熱した際の収縮率から焼成体の充填率を(焼成体の密度÷ニッケルのバルク密度)の式で求め、表3のように評価した。充填率が高いほど、電極に適用する際における焼成による収縮が発生しにくい。 Further, the filling rate of the fired body was determined from the shrinkage rate when heated to 700 ° C. by the formula (density of fired body 焼 成 bulk density of nickel), and was evaluated as shown in Table 3. As the filling rate is higher, shrinkage due to firing when applied to the electrode is less likely to occur.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 g.塗膜の平滑性
 ニッケル粉末0.5gにポリカルボン酸系分散剤5重量%水溶液100mlを加え、超音波分散機(株式会社ギンセン製、商品名GSD600AT)を使用して出力600W、振幅幅30μmで60秒分散した。分散したスラリーを10分間静置して沈降させた後、上澄みを捨て、沈降したスラリー約100mgを5μmのアプリケータで石英板上に塗布した。石英板上のニッケル塗膜を電気炉(株式会社モトヤマ製、商品名SLT-2035D)を使用して、1.5体積%水素‐窒素の還元性ガス雰囲気下、大気圧、昇温速度5℃/分の条件で昇温し、1,000℃で1時間焼成した。焼成した塗膜の表面粗さ(Sz:最大高さ;最高ピークと最深谷との間の高さ)をデジタルマイクロスコープ(株式会社キーエンス製、商品名VHX-1000)で測定し、塗膜の平滑性を(Sz値÷ニッケル粉の個数50%径)の値で表4のように評価した。
g. Smoothness of the coating 100 ml of a 5% by weight aqueous solution of polycarboxylic acid dispersant is added to 0.5 g of nickel powder, and an output of 600 W and an amplitude of 30 μm are obtained using an ultrasonic dispersion machine (manufactured by Ginsen Co., Ltd., trade name GSD 600 AT). It dispersed for 60 seconds. After the dispersed slurry was allowed to settle for 10 minutes to sediment, the supernatant was discarded, and about 100 mg of the sedimented slurry was applied on a quartz plate with a 5 μm applicator. A nickel coating on a quartz plate is heated in an atmosphere of 1.5 volume% hydrogen-nitrogen reducing gas at a heating rate of 5 ° C. using an electric furnace (trade name SLT-2035 D, manufactured by Motoyama Co., Ltd.) The temperature was raised under the conditions of 1 / minute, and firing was performed at 1,000 ° C. for 1 hour. The surface roughness (Sz: maximum height; height between the highest peak and the deepest valley) of the fired coating is measured with a digital microscope (trade name VHX-1000, manufactured by Keyence Corporation), The smoothness was evaluated as (Sz value / number of 50% diameter of nickel powder) as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例及び比較例のニッケル粉の個数50%径、連結粒子率、結晶子径、及び粗大粒子率を表5に示し、分散性、焼結特性、充填率、及び塗膜の平滑性の評価結果を表6に示す。 Table 5 shows the 50% diameter, linked particle ratio, crystallite diameter, and coarse particle ratio of nickel powder of Examples and Comparative Examples in Table 5, and evaluation of dispersibility, sintering characteristics, filling ratio, and smoothness of coating film. The results are shown in Table 6.
 なお、実施例1は撮影した粒子中に粗大粒子が1個も発見できなかったため、評価結果を検出限界未満とした。 In Example 1, no coarse particle was found in the photographed particles, so the evaluation result was set to be less than the detection limit.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5、表6から明らかなように、実施例1のニッケル粉は、比較例1と比較して個数50%径が同程度であるにもかかわらず、連結粒子率及び粗大粒子率が低いために、分散性、焼結特性、充填率及び焼成塗膜の平滑性が優れていることがわかる。また実施例2のニッケル粉は、比較例2と比較して個数50%径が同程度であるにもかかわらず、結晶子径が大きく連結粒子が少ないため、分散性、焼結特性及び充填率が優れていることがわかる。 As is apparent from Tables 5 and 6, although the nickel powder of Example 1 has the same number of 50% diameter as that of Comparative Example 1, the percentage of connected particles and the ratio of coarse particles are low. It can be seen that the dispersibility, the sintering characteristics, the filling rate and the smoothness of the fired coating film are excellent. In addition, although the nickel powder of Example 2 has the same number of 50% diameter as that of Comparative Example 2, the crystallite diameter is large and the number of connected particles is small, so the dispersibility, sintering characteristics and filling rate Is excellent.
 以上の結果から、本発明の金属粉末は積層セラミックコンデンサの製造工程において優れた分散性、焼結特性、充填率及び焼成塗膜の平滑性を有し、結果として電極層の空隙の発生を抑制しコンデンサの容量の低下の防止に対して有効なものであることが実証された。 From the above results, the metal powder of the present invention has excellent dispersibility, sintering characteristics, filling rate and smoothness of the fired coating film in the manufacturing process of the multilayer ceramic capacitor, and as a result, the generation of voids in the electrode layer is suppressed. It has been proved to be effective for preventing the decrease in capacity of the capacitor.
 本発明は、積層セラミックコンデンサの内部電極の導電ペースト用の金属粉末として好適に利用することができる。 The present invention can be suitably used as a metal powder for the conductive paste of the internal electrode of a laminated ceramic capacitor.
a…金属ハロゲン化物ガスノズル
b…還元性ガスノズル
c…還元反応領域
d…金属粉末
e…冷却ガスノズル
f…回収管
g…マイクロ波加熱装置

 
a metal halide gas nozzle b reducing gas nozzle c reduction reaction area d metal powder e cooling gas nozzle f collection pipe g microwave heating device

Claims (6)

  1.  金属粒子が連結してなる連結粒子のうち、アスペクト比が1.2以上であり、円形度が0.675以下であり、長径が金属粉末の個数50%径の3倍以上である連結粒子が上記金属粉末に含まれる割合が、個数基準で500ppm以下であることを特徴とする金属粉末。 Among connected particles formed by connecting metal particles, connected particles having an aspect ratio of 1.2 or more, a circularity of 0.675 or less, and a major axis of 3 times or more of the number 50% diameter of metal powder A metal powder, wherein the proportion contained in the metal powder is 500 ppm or less on a number basis.
  2.  アスペクト比が1.2未満であるか、又は円形度が0.675を超え、長径が上記金属粉末の個数50%径の3倍以上である粗大粒子が当該金属粉末に含まれる割合が、個数基準で15ppm以下であることを特徴とする請求項1に記載の金属粉末。 The number of coarse particles having an aspect ratio of less than 1.2 or a circularity of more than 0.675 and a major axis of at least three times the 50% diameter of the metal powder is contained in the metal powder in a ratio of the number The metal powder according to claim 1, which is 15 ppm or less on the basis of the standard.
  3.  上記個数50%径は、10nm以上、400nm以下の範囲内であることを特徴とする請求項1または2に記載の金属粉末。 The metal powder according to claim 1 or 2, wherein the number 50% diameter is in the range of 10 nm or more and 400 nm or less.
  4.  上記金属粉末の個数50%径に対する結晶子径の比が、0.50以上であることを特徴とする請求項1~3の何れか1項に記載の金属粉末。 The metal powder according to any one of claims 1 to 3, wherein the ratio of the crystallite diameter to the number 50% diameter of the metal powder is 0.50 or more.
  5.  金属粉末の製造方法であって、金属ハロゲン化物ガスと還元性ガスとを反応させる還元反応工程を含み、
     上記還元反応工程において、金属ハロゲン化物ガスが通過する還元反応領域の平均温度は、上記金属粉末の融点以下の温度であり、金属粒子が生成する際の最高到達温度の幅が、80℃以下であることを特徴とする金属粉末の製造方法。
    A method for producing a metal powder, comprising a reduction reaction step of reacting a metal halide gas with a reducing gas,
    In the reduction reaction step, the average temperature of the reduction reaction zone through which the metal halide gas passes is a temperature not higher than the melting point of the metal powder, and the width of the maximum temperature reached when forming metal particles is 80 ° C. or less A method of producing a metal powder, characterized in that
  6.  上記還元反応工程後、上記金属粉末を400℃以下の温度まで冷却する冷却工程を含んでいることを特徴とする請求項5に記載の金属粉末の製造方法。

     
    The method for producing a metal powder according to claim 5, comprising a cooling step of cooling the metal powder to a temperature of 400 ° C or less after the reduction reaction step.

PCT/JP2018/024121 2017-07-05 2018-06-26 Metal powder and method for producing same WO2019009136A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880042882.4A CN110799285B (en) 2017-07-05 2018-06-26 Metal powder and method for producing same
JP2018561747A JP6553313B2 (en) 2017-07-05 2018-06-26 Metal powder and method for producing the same
KR1020207002838A KR102278500B1 (en) 2017-07-05 2018-06-26 Metal powder and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017132246 2017-07-05
JP2017-132246 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019009136A1 true WO2019009136A1 (en) 2019-01-10

Family

ID=64950848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024121 WO2019009136A1 (en) 2017-07-05 2018-06-26 Metal powder and method for producing same

Country Status (5)

Country Link
JP (2) JP6553313B2 (en)
KR (1) KR102278500B1 (en)
CN (1) CN110799285B (en)
TW (1) TWI690381B (en)
WO (1) WO2019009136A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180329A (en) * 2019-04-24 2020-11-05 東邦チタニウム株式会社 Method for producing copper powder
JP2020180328A (en) * 2019-04-24 2020-11-05 東邦チタニウム株式会社 Method for producing copper powder
JP2021080549A (en) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 Copper powder and method for manufacturing the same
JP7448446B2 (en) 2020-09-18 2024-03-12 東邦チタニウム株式会社 copper powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046666A1 (en) * 2010-10-06 2012-04-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
JP2014019599A (en) * 2012-07-17 2014-02-03 Japan Health Sciences Foundation Method for preparing highly-dispersible nanomaterial
WO2015156080A1 (en) * 2014-04-08 2015-10-15 東邦チタニウム株式会社 Nickel powder

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020128A1 (en) * 2002-08-28 2004-03-11 Toho Titanium Co., Ltd. Metallic nickel powder and method for production thereof
EP1579936A4 (en) * 2002-09-30 2007-06-27 Toho Titanium Co Ltd Method and apparatus for producing metal powder
CN100372639C (en) * 2004-07-08 2008-03-05 三井化学株式会社 Aluminum nitride powder, method for producing the same and use thereof
JP4942333B2 (en) * 2005-11-29 2012-05-30 住友金属鉱山株式会社 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder
JP2009079239A (en) * 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
JP2010043345A (en) * 2008-08-18 2010-02-25 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor
JP5526856B2 (en) * 2010-02-23 2014-06-18 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP5768322B2 (en) * 2010-03-19 2015-08-26 住友金属鉱山株式会社 Nickel fine powder and method for producing the same
TWI597112B (en) * 2012-04-06 2017-09-01 東邦鈦股份有限公司 Nickel metal powder and process for production thereof
JP2014070255A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Metal flat plate particle dispersion, its manufacturing method and heat-ray shielding material
KR101689491B1 (en) 2012-11-20 2016-12-23 제이에프이미네라르 가부시키가이샤 Nickel powder, conductive paste, and laminated ceramic electronic component
JP6135935B2 (en) * 2014-03-28 2017-05-31 住友金属鉱山株式会社 Method for producing wet nickel powder
US20180029121A1 (en) * 2015-02-27 2018-02-01 Hitachi Chemical Company, Ltd. Copper-containing particles, conductor-forming composition, method of producing conductior, conductor, and apparatus
JPWO2017056741A1 (en) * 2015-09-29 2018-07-19 東邦チタニウム株式会社 Nickel powder and nickel paste
KR102091143B1 (en) * 2015-10-19 2020-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 Method for manufacturing nickel powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046666A1 (en) * 2010-10-06 2012-04-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
JP2014019599A (en) * 2012-07-17 2014-02-03 Japan Health Sciences Foundation Method for preparing highly-dispersible nanomaterial
WO2015156080A1 (en) * 2014-04-08 2015-10-15 東邦チタニウム株式会社 Nickel powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180329A (en) * 2019-04-24 2020-11-05 東邦チタニウム株式会社 Method for producing copper powder
JP2020180328A (en) * 2019-04-24 2020-11-05 東邦チタニウム株式会社 Method for producing copper powder
JP2021080549A (en) * 2019-11-22 2021-05-27 東邦チタニウム株式会社 Copper powder and method for manufacturing the same
JP7448446B2 (en) 2020-09-18 2024-03-12 東邦チタニウム株式会社 copper powder

Also Published As

Publication number Publication date
CN110799285A (en) 2020-02-14
JP6553313B2 (en) 2019-07-31
JP7080856B2 (en) 2022-06-06
KR102278500B1 (en) 2021-07-15
JP2019173179A (en) 2019-10-10
TW201906675A (en) 2019-02-16
CN110799285B (en) 2022-04-29
JPWO2019009136A1 (en) 2019-07-04
TWI690381B (en) 2020-04-11
KR20200023442A (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP7080856B2 (en) Metal powder and its manufacturing method
TWI580800B (en) Copper powder
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
TWI638051B (en) Nickel powder
TWI716526B (en) Nickel powder
JP2006210214A (en) Metal powder for conductive paste and conductive paste
TWI803486B (en) Copper particle and its manufacturing method
TW201509820A (en) Method for manufacturing cuprous oxide particles, cuprous oxide particles, and method for manufacturing conductive film
JP2020111477A (en) Method for producing spherical AlN particles and spherical AlN particles
JP6425367B1 (en) Nickel powder and nickel paste
TW201936933A (en) Method for producing silver fine particles and fine silver particles
JPWO2017056741A1 (en) Nickel powder and nickel paste
JP7390198B2 (en) Glass particles, conductive composition using the same, and method for producing glass particles
JP4540364B2 (en) Nickel powder, and conductive paste and multilayer ceramic capacitor using the same
JP6016729B2 (en) Metal powder manufacturing method and manufacturing apparatus
JP2022007624A (en) Production method for copper powder
JP2022083703A (en) Method for producing copper powder
JP7448446B2 (en) copper powder
WO2020158685A1 (en) Sn particles, conductive composition using the same, and method for producing sn particles
CN117043111A (en) Barium titanate powder, process for producing the same, and filler for sealing material
CN117083244A (en) Barium titanate powder, process for producing the same, and filler for sealing material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018561747

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207002838

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18828537

Country of ref document: EP

Kind code of ref document: A1