JP2014088291A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2014088291A5 JP2014088291A5 JP2012239811A JP2012239811A JP2014088291A5 JP 2014088291 A5 JP2014088291 A5 JP 2014088291A5 JP 2012239811 A JP2012239811 A JP 2012239811A JP 2012239811 A JP2012239811 A JP 2012239811A JP 2014088291 A5 JP2014088291 A5 JP 2014088291A5
- Authority
- JP
- Japan
- Prior art keywords
- silicon oxide
- powder
- oxide powder
- range
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 68
- 239000000843 powder Substances 0.000 claims description 42
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 16
- 210000002381 Plasma Anatomy 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 5
- 229910020230 SIOx Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 229910021485 fumed silica Inorganic materials 0.000 claims 3
- 238000001035 drying Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium Ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052904 quartz Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atoms Chemical group 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium(0) Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Description
本発明の第1の観点は、無電極型の高周波誘電法により発生した高周波プラズマ中で、二酸化珪素粉末を原料として非晶質のSiOxで表される酸化珪素粉末を製造する方法であって、酸化珪素粉末の酸素含有量Xが1以上1.8以下の範囲にあり、酸化珪素粉末の不純物濃度が最大で11ppmであることを特徴とする酸化珪素粉末の製造方法である。 A first aspect of the present invention is a method for producing silicon oxide powder represented by amorphous SiOx using silicon dioxide powder as a raw material in high-frequency plasma generated by an electrodeless high-frequency dielectric method, in the range of oxygen content X is 1 to 1.8 of silicon oxide powder, a method for producing a silicon oxide powder, wherein the impurity concentration of the silicon oxide powder is at most 11 pp m.
一方、ステンレス鋼、モリブデン、タングステン等の基板上に析出した酸化珪素を掻き取り等により回収したり、或いはこの回収した酸化珪素をボールミル等により粉砕して粒度を調整している従来の酸化珪素粉末の製造方法と比較して、本発明では、不純物濃度が最大で11ppmと低い。上記不純物を含む酸化珪素(珪素低級酸化物)を蒸着材として用いた場合、ガスバリアフィルムに酸化珪素膜を成膜させる際に、異常放電(アークスポット)の原因となり、この異常放電(アークスポット)が発生すると、ガス化していない酸化珪素がガスバリアフィルムに付着するため、ガスフィルムに凸部やピンホール等の酸化珪素の不均一面が生成されてしまい、これによりガスバリア性が低下してしまう問題点があった従来のケイ素低級酸化物粒子の製造方法と比較して、本発明では、酸化珪素粉末の不純物濃度が最大で11ppmであるので、酸化珪素粉末をガスバリアフィルムとして使用した場合、良好なガスバリア性を有する蒸着膜を形成できる。また上記不純物を含む酸化珪素(珪素低級酸化物)をリチウムイオン二次電池の負極活物質として用いた場合、酸化珪素中の鉄やタングステンにより初回充放電時の不可逆容量が大きくなってしまい、サイクル特性が劣化する問題点があった従来のケイ素低級酸化物粒子の製造方法と比較して、本発明では、酸化珪素粉末の不純物濃度が最大で11ppmであるので、酸化珪素粉末をリチウムイオン二次電池の負極活性物質として用いた場合、初期充放電時の不可容量を小さくすることができ、これによりサイクル特性を向上できる。更に二酸化珪素との反応性を上げるために用いられる金属珪素の粒径を1μm以下に調整する必要があり、金属珪素をミリサイズの粗粒から1μm以下の微粒に効率良く粒度調整するために、幾つかの粒度調整の工程を経る必要があり、金属珪素の粒度を調整するのに比較的多くの工数を要する問題点があった従来の酸化珪素粉末の製造方法と比較して、本発明では、金属珪素を用いずに済むので、金属珪素の粒度を調整する工数を不要にすることができる。 On the other hand, a conventional silicon oxide powder in which the silicon oxide deposited on a substrate such as stainless steel, molybdenum, or tungsten is collected by scraping or the like, or the collected silicon oxide is pulverized by a ball mill or the like to adjust the particle size. Compared with this manufacturing method, in the present invention, the impurity concentration is as low as 11 pp m at the maximum. When silicon oxide containing the above impurities (silicon lower oxide) is used as a vapor deposition material, it causes abnormal discharge (arc spot) when forming a silicon oxide film on the gas barrier film, and this abnormal discharge (arc spot) When gas is generated, non-gasified silicon oxide adheres to the gas barrier film, so that a non-uniform surface of silicon oxide such as a convex portion or a pinhole is generated on the gas film, thereby reducing gas barrier properties. Compared with the conventional method for producing silicon lower oxide particles having a point, since the impurity concentration of silicon oxide powder is 11 pp m at the maximum in the present invention, when silicon oxide powder is used as a gas barrier film, A deposited film having good gas barrier properties can be formed. Further, when silicon oxide containing the above impurities (silicon lower oxide) is used as the negative electrode active material of a lithium ion secondary battery, the irreversible capacity at the first charge / discharge is increased due to iron or tungsten in the silicon oxide, resulting in a cycle. Compared with the conventional method for producing silicon lower oxide particles having a problem that the characteristics deteriorate, in the present invention, since the impurity concentration of the silicon oxide powder is 11 pp m at the maximum, the silicon oxide powder is replaced with lithium ion. When used as a negative electrode active material for a secondary battery, it is possible to reduce the incapacity during initial charge / discharge, thereby improving cycle characteristics. Furthermore, it is necessary to adjust the particle size of the metal silicon used to increase the reactivity with silicon dioxide to 1 μm or less, and in order to efficiently adjust the particle size of the metal silicon from millimeter-sized coarse particles to 1 μm or less, Compared with the conventional method for producing silicon oxide powder, which requires a number of steps for adjusting the particle size and requires a relatively large number of steps to adjust the particle size of the metal silicon, Since it is not necessary to use metallic silicon, the man-hour for adjusting the particle size of metallic silicon can be eliminated.
本発明の第3の観点の酸化珪素粉末の製造方法では、酸化珪素粉末の平均粒径が体積基準で0.002〜1μmの範囲にあるため、ステンレス鋼等の基板上に析出した酸化珪素を掻き取り等によって回収する必要がなく、また回収した酸化珪素をボールミル等により粉砕して粒度を調整する必要がなく、酸化珪素粉末への不純物の混入が少なくなる。この結果、酸化珪素粉末中の不純物濃度が最大で11ppmと低くなる。 In the method for producing silicon oxide powder according to the third aspect of the present invention, since the average particle size of the silicon oxide powder is in the range of 0.002 to 1 μm on a volume basis, silicon oxide deposited on a substrate such as stainless steel is used. There is no need to collect by scraping or the like, and there is no need to adjust the particle size by pulverizing the collected silicon oxide with a ball mill or the like, so that impurities are not mixed into the silicon oxide powder. As a result, the impurity concentration in the silicon oxide powder is as low as 11 pp m at the maximum.
上記高周波プラズマ装置10では、ガス導入管18から石英管13a内にアルゴンガス、ヘリウムガス、水素ガス、窒素ガス及び酸素ガスからなる群より選ばれた1種又は2種以上の混合ガスを導入して、高周波誘導コイル13bに所定の高周波電力を供給すると、石英管13a内からチャンバ14内にかけて高周波プラズマ12を発生し、原料粉末である二酸化珪素粉末は原料供給管17を通って高周波プラズマ40中に供給されるようになっている。また上記高周波プラズマ12の高周波出力をA(W)とし、二酸化珪素粉末の供給速度をB(kg/時)とするとき、A/Bが1.0×104(W・時/kg)以上になるように調整して、高周波プラズマ12を発生させる。ここで、A/Bを1.0×104(W・時/kg)以上に限定したのは、A/Bが1.0×104(W・時/kg)より小さいと、二酸化珪素粉末に与える高周波プラズマのエネルギが少ないため、SiOxで表される酸化珪素粉末の酸素含有量Xが安定せず1.8より大きくなってしまうからである。また高周波プラズマ12の発生雰囲気の圧力は、全圧(混合ガス全体の圧力)で0.05〜0.12MPaの範囲、好ましくは0.07〜0.10MPaの範囲に調整される。ここで、高周波プラズマ12の発生雰囲気の圧力を全圧で0.05MPa以上に限定したのは、電子だけではなく、イオンや原子等の重粒子も高温になるため、高周波プラズマ12のエネルギ密度が大きくなり、二酸化珪素粉末を短時間で効率良く加熱でき、また高温領域における二酸化珪素粉末の反応速度の指数関数的な増大が期待できるからである。また、高周波プラズマ12の発生雰囲気の圧力を全圧で0.12MPa以下に限定したのは、A/Bが0.12MPaより大きくなると、高周波プラズマにより加熱される混合ガスの温度が高くなり過ぎ、チャンバ14の表面を融解させてしまうからである。 In the high-frequency plasma apparatus 10, one or more mixed gases selected from the group consisting of argon gas, helium gas, hydrogen gas, nitrogen gas and oxygen gas are introduced from the gas introduction tube 18 into the quartz tube 13a. When a predetermined high frequency power is supplied to the high frequency induction coil 13b, the high frequency plasma 12 is generated from the quartz tube 13a to the chamber 14, and the silicon dioxide powder as the raw material powder passes through the raw material supply tube 17 in the high frequency plasma 40. To be supplied. When the high frequency output of the high frequency plasma 12 is A (W) and the supply rate of the silicon dioxide powder is B (kg / hour), A / B is 1.0 × 10 4 (W · hour / kg) or more. Then, the high frequency plasma 12 is generated. Here, the A / B is limited to 1.0 × 10 4 (W · hour / kg) or more when the A / B is smaller than 1.0 × 10 4 (W · hour / kg). This is because the oxygen content X of the silicon oxide powder represented by SiOx becomes unstable and becomes higher than 1.8 because the energy of the high-frequency plasma applied to the powder is small. The pressure of the atmosphere in which the high-frequency plasma 12 is generated is adjusted to a range of 0.05 to 0.12 MPa, preferably 0.07 to 0.10 MPa, in terms of total pressure (pressure of the entire mixed gas). Here, the reason why the pressure of the atmosphere in which the high-frequency plasma 12 is generated is limited to 0.05 MPa or more in terms of the total pressure is that not only electrons but also heavy particles such as ions and atoms become high temperature. This is because the silicon dioxide powder can be heated efficiently in a short time, and an exponential increase in the reaction rate of the silicon dioxide powder in a high temperature region can be expected. In addition, the pressure of the atmosphere in which the high-frequency plasma 12 is generated is limited to 0.12 MPa or less in terms of the total pressure. When A / B exceeds 0.12 MPa, the temperature of the mixed gas heated by the high-frequency plasma becomes too high, This is because the surface of the chamber 14 is melted.
このようにして製造された酸化珪素粉末では、平均粒径が体積基準で0.002〜1μmの範囲にあるため、ステンレス鋼等の基板上に析出した酸化珪素を掻き取り等によって回収する必要がなく、また回収した酸化珪素をボールミル等により粉砕して粒度を調整する必要がなく、酸化珪素粉末への不純物の混入が少ない。この結果、酸化珪素粉末中の不純物濃度が最大で11ppmと低くなる。なお、酸化珪素粉末の平均粒径は体積基準で0.05〜0.5μmの範囲にあることが好ましく、酸化珪素粉末中の不純物濃度は最大で1ppm未満であることが好ましい。 In the silicon oxide powder produced in this way, the average particle size is in the range of 0.002 to 1 μm on a volume basis, so it is necessary to collect silicon oxide deposited on a stainless steel substrate by scraping or the like. In addition, there is no need to adjust the particle size by pulverizing the recovered silicon oxide with a ball mill or the like, and there is little mixing of impurities into the silicon oxide powder. As a result, the impurity concentration in the silicon oxide powder is as low as 11 pp m at the maximum. In addition, it is preferable that the average particle diameter of silicon oxide powder exists in the range of 0.05-0.5 micrometer on a volume basis, and it is preferable that the impurity concentration in silicon oxide powder is less than 1 ppm at maximum.
Claims (5)
前記酸化珪素粉末の酸素含有量Xが1以上1.8以下の範囲にあり、
前記酸化珪素粉末の不純物濃度が最大で11ppmである
ことを特徴とする酸化珪素粉末の製造方法。 In a high-frequency plasma generated by an electrodeless high-frequency dielectric method, a silicon oxide powder represented by amorphous SiOx is produced using silicon dioxide powder as a raw material,
The oxygen content X of the silicon oxide powder is in the range of 1 to 1.8,
Method for producing a silicon oxide powder in which the impurity concentration of the silicon oxide powder is characterized in that it is a maximum of 11 pp m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012239811A JP5994572B2 (en) | 2012-10-31 | 2012-10-31 | Method for producing silicon oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012239811A JP5994572B2 (en) | 2012-10-31 | 2012-10-31 | Method for producing silicon oxide powder |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014088291A JP2014088291A (en) | 2014-05-15 |
JP2014088291A5 true JP2014088291A5 (en) | 2016-04-28 |
JP5994572B2 JP5994572B2 (en) | 2016-09-21 |
Family
ID=50790560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012239811A Expired - Fee Related JP5994572B2 (en) | 2012-10-31 | 2012-10-31 | Method for producing silicon oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5994572B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045333A1 (en) * | 2018-08-27 | 2020-03-05 | 株式会社大阪チタニウムテクノロジーズ | SiO POWDER PRODUCTION METHOD, AND SPHERICAL PARTICULATE SiO POWDER |
JP7477889B2 (en) * | 2019-08-28 | 2024-05-02 | 学校法人 工学院大学 | Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate |
JPWO2023074217A1 (en) * | 2021-10-27 | 2023-05-04 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4900573B2 (en) * | 2006-04-24 | 2012-03-21 | 信越化学工業株式会社 | Method for producing silicon oxide powder |
JP5370055B2 (en) * | 2009-10-06 | 2013-12-18 | 住友大阪セメント株式会社 | Method for producing silicon lower oxide particles and dispersion of the particles |
JP5362614B2 (en) * | 2010-02-16 | 2013-12-11 | 日清エンジニアリング株式会社 | Method for producing silicon monoxide fine particles and silicon monoxide fine particles |
-
2012
- 2012-10-31 JP JP2012239811A patent/JP5994572B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11312633B2 (en) | Silicon-carbon composite powder | |
JP4749502B2 (en) | SiOx, barrier film deposition material using the same, and negative electrode active material for lithium ion secondary battery | |
JP2014088292A5 (en) | ||
JP2011530473A (en) | Plasma process for producing silanes and their derivatives | |
WO2021083034A1 (en) | Negative electrode material and preparation method therefor, lithium ion battery, and terminal | |
JPWO2018074175A1 (en) | Silicon oxide based negative electrode material and method for manufacturing the same | |
JP2006001779A (en) | Method for producing sic nanoparticles by nitrogen plasma | |
JP2014088291A5 (en) | ||
KR20120089073A (en) | Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby | |
WO2014048063A1 (en) | Process for thermally treating tantalum powder for capacitor with heat source | |
JP5662485B2 (en) | Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor | |
JP2011108635A (en) | Negative electrode active material for lithium ion secondary battery | |
JP5994573B2 (en) | Method for producing silicon oxide powder | |
KR20130069190A (en) | Synthetic method for tungsten metal nanopowder using rf plasma | |
JP2011079724A (en) | METHOD FOR PRODUCING SiOx (x<1) | |
KR101409160B1 (en) | Manufacturing method of aluminum nitride nano powder | |
KR101371555B1 (en) | Method for manufacturing silicon-carbon nano composite for anode active material of lithium secondary batteries | |
KR101537216B1 (en) | A making process of silicon powder Using Plasma Arc Discharge | |
JP5994572B2 (en) | Method for producing silicon oxide powder | |
KR101942922B1 (en) | Anode active material for lithium secondary battery comprising silicon nanoparticles and method for manufacturing the same | |
KR101153961B1 (en) | Manufacturing method of a tantalum powder using eutectic composition | |
Ilyin et al. | Production and characterization of molybdenum nanopowders obtained by electrical explosion of wires | |
KR101395578B1 (en) | Thermal plasma apparatus for manufacturing aluminum nitride powder | |
KR20120089905A (en) | Synthetic method for molybdenum metal nanopowder using rf plasma | |
KR101370631B1 (en) | Method for manufacturing ferro titan silicide nano composite for anode active material of lithium secondary batteries |