JP2014088291A5 - - Google Patents

Download PDF

Info

Publication number
JP2014088291A5
JP2014088291A5 JP2012239811A JP2012239811A JP2014088291A5 JP 2014088291 A5 JP2014088291 A5 JP 2014088291A5 JP 2012239811 A JP2012239811 A JP 2012239811A JP 2012239811 A JP2012239811 A JP 2012239811A JP 2014088291 A5 JP2014088291 A5 JP 2014088291A5
Authority
JP
Japan
Prior art keywords
silicon oxide
powder
oxide powder
range
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012239811A
Other languages
Japanese (ja)
Other versions
JP2014088291A (en
JP5994572B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012239811A priority Critical patent/JP5994572B2/en
Priority claimed from JP2012239811A external-priority patent/JP5994572B2/en
Publication of JP2014088291A publication Critical patent/JP2014088291A/en
Publication of JP2014088291A5 publication Critical patent/JP2014088291A5/ja
Application granted granted Critical
Publication of JP5994572B2 publication Critical patent/JP5994572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の第1の観点は、無電極型の高周波誘電法により発生した高周波プラズマ中で、二酸化珪素粉末を原料として非晶質のSiOxで表される酸化珪素粉末を製造する方法であって、酸化珪素粉末の酸素含有量Xが1以上1.8以下の範囲にあり、酸化珪素粉末の不純物濃度が最大で11ppmであることを特徴とする酸化珪素粉末の製造方法である。 A first aspect of the present invention is a method for producing silicon oxide powder represented by amorphous SiOx using silicon dioxide powder as a raw material in high-frequency plasma generated by an electrodeless high-frequency dielectric method, in the range of oxygen content X is 1 to 1.8 of silicon oxide powder, a method for producing a silicon oxide powder, wherein the impurity concentration of the silicon oxide powder is at most 11 pp m.

一方、ステンレス鋼、モリブデン、タングステン等の基板上に析出した酸化珪素を掻き取り等により回収したり、或いはこの回収した酸化珪素をボールミル等により粉砕して粒度を調整している従来の酸化珪素粉末の製造方法と比較して、本発明では、不純物濃度が最大で11ppmと低い。上記不純物を含む酸化珪素(珪素低級酸化物)を蒸着材として用いた場合、ガスバリアフィルムに酸化珪素膜を成膜させる際に、異常放電(アークスポット)の原因となり、この異常放電(アークスポット)が発生すると、ガス化していない酸化珪素がガスバリアフィルムに付着するため、ガスフィルムに凸部やピンホール等の酸化珪素の不均一面が生成されてしまい、これによりガスバリア性が低下してしまう問題点があった従来のケイ素低級酸化物粒子の製造方法と比較して、本発明では、酸化珪素粉末の不純物濃度が最大で11ppmであるので、酸化珪素粉末をガスバリアフィルムとして使用した場合、良好なガスバリア性を有する蒸着膜を形成できる。また上記不純物を含む酸化珪素(珪素低級酸化物)をリチウムイオン二次電池の負極活物質として用いた場合、酸化珪素中の鉄やタングステンにより初回充放電時の不可逆容量が大きくなってしまい、サイクル特性が劣化する問題点があった従来のケイ素低級酸化物粒子の製造方法と比較して、本発明では、酸化珪素粉末の不純物濃度が最大で11ppmであるので、酸化珪素粉末をリチウムイオン二次電池の負極活性物質として用いた場合、初期充放電時の不可容量を小さくすることができ、これによりサイクル特性を向上できる。更に二酸化珪素との反応性を上げるために用いられる金属珪素の粒径を1μm以下に調整する必要があり、金属珪素をミリサイズの粗粒から1μm以下の微粒に効率良く粒度調整するために、幾つかの粒度調整の工程を経る必要があり、金属珪素の粒度を調整するのに比較的多くの工数を要する問題点があった従来の酸化珪素粉末の製造方法と比較して、本発明では、金属珪素を用いずに済むので、金属珪素の粒度を調整する工数を不要にすることができる。 On the other hand, a conventional silicon oxide powder in which the silicon oxide deposited on a substrate such as stainless steel, molybdenum, or tungsten is collected by scraping or the like, or the collected silicon oxide is pulverized by a ball mill or the like to adjust the particle size. Compared with this manufacturing method, in the present invention, the impurity concentration is as low as 11 pp m at the maximum. When silicon oxide containing the above impurities (silicon lower oxide) is used as a vapor deposition material, it causes abnormal discharge (arc spot) when forming a silicon oxide film on the gas barrier film, and this abnormal discharge (arc spot) When gas is generated, non-gasified silicon oxide adheres to the gas barrier film, so that a non-uniform surface of silicon oxide such as a convex portion or a pinhole is generated on the gas film, thereby reducing gas barrier properties. Compared with the conventional method for producing silicon lower oxide particles having a point, since the impurity concentration of silicon oxide powder is 11 pp m at the maximum in the present invention, when silicon oxide powder is used as a gas barrier film, A deposited film having good gas barrier properties can be formed. Further, when silicon oxide containing the above impurities (silicon lower oxide) is used as the negative electrode active material of a lithium ion secondary battery, the irreversible capacity at the first charge / discharge is increased due to iron or tungsten in the silicon oxide, resulting in a cycle. Compared with the conventional method for producing silicon lower oxide particles having a problem that the characteristics deteriorate, in the present invention, since the impurity concentration of the silicon oxide powder is 11 pp m at the maximum, the silicon oxide powder is replaced with lithium ion. When used as a negative electrode active material for a secondary battery, it is possible to reduce the incapacity during initial charge / discharge, thereby improving cycle characteristics. Furthermore, it is necessary to adjust the particle size of the metal silicon used to increase the reactivity with silicon dioxide to 1 μm or less, and in order to efficiently adjust the particle size of the metal silicon from millimeter-sized coarse particles to 1 μm or less, Compared with the conventional method for producing silicon oxide powder, which requires a number of steps for adjusting the particle size and requires a relatively large number of steps to adjust the particle size of the metal silicon, Since it is not necessary to use metallic silicon, the man-hour for adjusting the particle size of metallic silicon can be eliminated.

本発明の第3の観点の酸化珪素粉末の製造方法では、酸化珪素粉末の平均粒径が体積基準で0.002〜1μmの範囲にあるため、ステンレス鋼等の基板上に析出した酸化珪素を掻き取り等によって回収する必要がなく、また回収した酸化珪素をボールミル等により粉砕して粒度を調整する必要がなく、酸化珪素粉末への不純物の混入が少なくなる。この結果、酸化珪素粉末中の不純物濃度が最大で11ppmと低くなる。 In the method for producing silicon oxide powder according to the third aspect of the present invention, since the average particle size of the silicon oxide powder is in the range of 0.002 to 1 μm on a volume basis, silicon oxide deposited on a substrate such as stainless steel is used. There is no need to collect by scraping or the like, and there is no need to adjust the particle size by pulverizing the collected silicon oxide with a ball mill or the like, so that impurities are not mixed into the silicon oxide powder. As a result, the impurity concentration in the silicon oxide powder is as low as 11 pp m at the maximum.

上記高周波プラズマ装置10では、ガス導入管18から石英管13a内にアルゴンガス、ヘリウムガス、水素ガス、窒素ガス及び酸素ガスからなる群より選ばれた1種又は2種以上の混合ガスを導入して、高周波誘導コイル13bに所定の高周波電力を供給すると、石英管13a内からチャンバ14内にかけて高周波プラズマ12を発生し、原料粉末である二酸化珪素粉末は原料供給管17を通って高周波プラズマ40中に供給されるようになっている。また上記高周波プラズマ12の高周波出力をA(W)とし、二酸化珪素粉末の供給速度をB(kg/時)とするとき、A/Bが1.0×104(W・時/kg)以上になるように調整して、高周波プラズマ12を発生させる。ここで、A/Bを1.0×104(W・時/kg)以上に限定したのは、A/Bが1.0×104(W・時/kg)より小さいと、二酸化珪素粉末に与える高周波プラズマのエネルギが少ないため、SiOxで表される酸化珪素粉末の酸素含有量Xが安定せず1.8より大きくなってしまうからである。また高周波プラズマ12の発生雰囲気の圧力は、全圧(混合ガス全体の圧力)で0.05〜0.12MPaの範囲、好ましくは0.07〜0.10MPaの範囲に調整される。ここで、高周波プラズマ12の発生雰囲気の圧力を全圧で0.05MPa以上に限定したのは、電子だけではなく、イオンや原子等の重粒子も高温になるため、高周波プラズマ12のエネルギ密度が大きくなり、二酸化珪素粉末を短時間で効率良く加熱でき、また高温領域における二酸化珪素粉末の反応速度の指数関数的な増大が期待できるからである。また、高周波プラズマ12の発生雰囲気の圧力を全圧で0.12MPa以下に限定したのは、A/Bが0.12MPaより大きくなると、高周波プラズマにより加熱される混合ガスの温度が高くなり過ぎ、チャンバ14の表面を融解させてしまうからである。 In the high-frequency plasma apparatus 10, one or more mixed gases selected from the group consisting of argon gas, helium gas, hydrogen gas, nitrogen gas and oxygen gas are introduced from the gas introduction tube 18 into the quartz tube 13a. When a predetermined high frequency power is supplied to the high frequency induction coil 13b, the high frequency plasma 12 is generated from the quartz tube 13a to the chamber 14, and the silicon dioxide powder as the raw material powder passes through the raw material supply tube 17 in the high frequency plasma 40. To be supplied. When the high frequency output of the high frequency plasma 12 is A (W) and the supply rate of the silicon dioxide powder is B (kg / hour), A / B is 1.0 × 10 4 (W · hour / kg) or more. Then, the high frequency plasma 12 is generated. Here, the A / B is limited to 1.0 × 10 4 (W · hour / kg) or more when the A / B is smaller than 1.0 × 10 4 (W · hour / kg). This is because the oxygen content X of the silicon oxide powder represented by SiOx becomes unstable and becomes higher than 1.8 because the energy of the high-frequency plasma applied to the powder is small. The pressure of the atmosphere in which the high-frequency plasma 12 is generated is adjusted to a range of 0.05 to 0.12 MPa, preferably 0.07 to 0.10 MPa, in terms of total pressure (pressure of the entire mixed gas). Here, the reason why the pressure of the atmosphere in which the high-frequency plasma 12 is generated is limited to 0.05 MPa or more in terms of the total pressure is that not only electrons but also heavy particles such as ions and atoms become high temperature. This is because the silicon dioxide powder can be heated efficiently in a short time, and an exponential increase in the reaction rate of the silicon dioxide powder in a high temperature region can be expected. In addition, the pressure of the atmosphere in which the high-frequency plasma 12 is generated is limited to 0.12 MPa or less in terms of the total pressure. When A / B exceeds 0.12 MPa, the temperature of the mixed gas heated by the high-frequency plasma becomes too high, This is because the surface of the chamber 14 is melted.

このようにして製造された酸化珪素粉末では、平均粒径が体積基準で0.002〜1μmの範囲にあるため、ステンレス鋼等の基板上に析出した酸化珪素を掻き取り等によって回収する必要がなく、また回収した酸化珪素をボールミル等により粉砕して粒度を調整する必要がなく、酸化珪素粉末への不純物の混入が少ない。この結果、酸化珪素粉末中の不純物濃度が最大で11ppmと低くなる。なお、酸化珪素粉末の平均粒径は体積基準で0.05〜0.5μmの範囲にあることが好ましく、酸化珪素粉末中の不純物濃度は最大で1ppm未満であることが好ましい。 In the silicon oxide powder produced in this way, the average particle size is in the range of 0.002 to 1 μm on a volume basis, so it is necessary to collect silicon oxide deposited on a stainless steel substrate by scraping or the like. In addition, there is no need to adjust the particle size by pulverizing the recovered silicon oxide with a ball mill or the like, and there is little mixing of impurities into the silicon oxide powder. As a result, the impurity concentration in the silicon oxide powder is as low as 11 pp m at the maximum. In addition, it is preferable that the average particle diameter of silicon oxide powder exists in the range of 0.05-0.5 micrometer on a volume basis, and it is preferable that the impurity concentration in silicon oxide powder is less than 1 ppm at maximum.

Figure 2014088291
なお、表1において、(注1)には、『加熱してガス化した後に、析出させて粉砕することにより、酸化珪素粉末を作製した。』という文が挿入される。
Figure 2014088291
In Table 1, (Note 1) indicates “Silicon oxide powder was produced by heating and gasifying, then precipitating and grinding. Is inserted.

Claims (5)

無電極型の高周波誘電法により発生した高周波プラズマ中で、二酸化珪素粉末を原料として非晶質のSiOxで表される酸化珪素粉末を製造する方法であって、
前記酸化珪素粉末の酸素含有量Xが1以上1.8以下の範囲にあり、
前記酸化珪素粉末の不純物濃度が最大で11ppmである
ことを特徴とする酸化珪素粉末の製造方法。
In a high-frequency plasma generated by an electrodeless high-frequency dielectric method, a silicon oxide powder represented by amorphous SiOx is produced using silicon dioxide powder as a raw material,
The oxygen content X of the silicon oxide powder is in the range of 1 to 1.8,
Method for producing a silicon oxide powder in which the impurity concentration of the silicon oxide powder is characterized in that it is a maximum of 11 pp m.
前記高周波プラズマの発生雰囲気の圧力を0.05〜0.12MPaの範囲に調整し、かつ前記高周波プラズマの高周波出力をA(W)とし、前記二酸化珪素粉末の供給速度をB(kg/時)とするとき、A/Bが1.0×104(W・時/kg)以上になるように調整して、前記高周波プラズマを発生させる請求項1記載の酸化珪素粉末の製造方法。 The pressure of the high-frequency plasma generation atmosphere is adjusted to a range of 0.05 to 0.12 MPa, the high-frequency output of the high-frequency plasma is A (W), and the supply rate of the silicon dioxide powder is B (kg / hour). The method for producing silicon oxide powder according to claim 1, wherein the high-frequency plasma is generated by adjusting A / B to be 1.0 × 10 4 (W · hour / kg) or more. 前記酸化珪素粉末の平均粒径が体積基準で0.002〜1μmの範囲にある請求項1記載の酸化珪素粉末の製造方法。   The method for producing a silicon oxide powder according to claim 1, wherein an average particle diameter of the silicon oxide powder is in a range of 0.002 to 1 µm on a volume basis. 前記二酸化珪素粉末が、ヒュームドシリカであるか、或いはこのヒュームドシリカを原料としかつ平均粒径が体積基準で0.1〜80μmの範囲にある造粒粉である請求項1記載の酸化珪素粉末の製造方法。   2. The silicon oxide according to claim 1, wherein the silicon dioxide powder is fumed silica or a granulated powder using the fumed silica as a raw material and having an average particle diameter in the range of 0.1 to 80 μm on a volume basis. Powder manufacturing method. 前記造粒粉が、ヒュームドシリカをスラリー化又はゲル化した後、100〜1100℃の範囲の温度で乾燥して得られる請求項4記載の酸化珪素粉末の製造方法。   The manufacturing method of the silicon oxide powder of Claim 4 obtained by drying the said granulated powder at the temperature of the range of 100-1100 degreeC after slurrying or gelatinizing fumed silica.
JP2012239811A 2012-10-31 2012-10-31 Method for producing silicon oxide powder Expired - Fee Related JP5994572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239811A JP5994572B2 (en) 2012-10-31 2012-10-31 Method for producing silicon oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239811A JP5994572B2 (en) 2012-10-31 2012-10-31 Method for producing silicon oxide powder

Publications (3)

Publication Number Publication Date
JP2014088291A JP2014088291A (en) 2014-05-15
JP2014088291A5 true JP2014088291A5 (en) 2016-04-28
JP5994572B2 JP5994572B2 (en) 2016-09-21

Family

ID=50790560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239811A Expired - Fee Related JP5994572B2 (en) 2012-10-31 2012-10-31 Method for producing silicon oxide powder

Country Status (1)

Country Link
JP (1) JP5994572B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045333A1 (en) * 2018-08-27 2020-03-05 株式会社大阪チタニウムテクノロジーズ SiO POWDER PRODUCTION METHOD, AND SPHERICAL PARTICULATE SiO POWDER
JP7477889B2 (en) * 2019-08-28 2024-05-02 学校法人 工学院大学 Functional film, functional film laminate, composition for forming functional film, method for producing composition for forming functional film, and method for producing functional film laminate
JPWO2023074217A1 (en) * 2021-10-27 2023-05-04

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900573B2 (en) * 2006-04-24 2012-03-21 信越化学工業株式会社 Method for producing silicon oxide powder
JP5370055B2 (en) * 2009-10-06 2013-12-18 住友大阪セメント株式会社 Method for producing silicon lower oxide particles and dispersion of the particles
JP5362614B2 (en) * 2010-02-16 2013-12-11 日清エンジニアリング株式会社 Method for producing silicon monoxide fine particles and silicon monoxide fine particles

Similar Documents

Publication Publication Date Title
US11312633B2 (en) Silicon-carbon composite powder
JP4749502B2 (en) SiOx, barrier film deposition material using the same, and negative electrode active material for lithium ion secondary battery
JP2014088292A5 (en)
JP2011530473A (en) Plasma process for producing silanes and their derivatives
WO2021083034A1 (en) Negative electrode material and preparation method therefor, lithium ion battery, and terminal
JPWO2018074175A1 (en) Silicon oxide based negative electrode material and method for manufacturing the same
JP2006001779A (en) Method for producing sic nanoparticles by nitrogen plasma
JP2014088291A5 (en)
KR20120089073A (en) Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby
WO2014048063A1 (en) Process for thermally treating tantalum powder for capacitor with heat source
JP5662485B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP2011108635A (en) Negative electrode active material for lithium ion secondary battery
JP5994573B2 (en) Method for producing silicon oxide powder
KR20130069190A (en) Synthetic method for tungsten metal nanopowder using rf plasma
JP2011079724A (en) METHOD FOR PRODUCING SiOx (x<1)
KR101409160B1 (en) Manufacturing method of aluminum nitride nano powder
KR101371555B1 (en) Method for manufacturing silicon-carbon nano composite for anode active material of lithium secondary batteries
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
JP5994572B2 (en) Method for producing silicon oxide powder
KR101942922B1 (en) Anode active material for lithium secondary battery comprising silicon nanoparticles and method for manufacturing the same
KR101153961B1 (en) Manufacturing method of a tantalum powder using eutectic composition
Ilyin et al. Production and characterization of molybdenum nanopowders obtained by electrical explosion of wires
KR101395578B1 (en) Thermal plasma apparatus for manufacturing aluminum nitride powder
KR20120089905A (en) Synthetic method for molybdenum metal nanopowder using rf plasma
KR101370631B1 (en) Method for manufacturing ferro titan silicide nano composite for anode active material of lithium secondary batteries