WO2023074217A1 - Silicon oxide particles and method for producing same, particles and method for producing same, and secondary battery and method for producing same - Google Patents
Silicon oxide particles and method for producing same, particles and method for producing same, and secondary battery and method for producing same Download PDFInfo
- Publication number
- WO2023074217A1 WO2023074217A1 PCT/JP2022/035677 JP2022035677W WO2023074217A1 WO 2023074217 A1 WO2023074217 A1 WO 2023074217A1 JP 2022035677 W JP2022035677 W JP 2022035677W WO 2023074217 A1 WO2023074217 A1 WO 2023074217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon oxide
- less
- particles
- oxide particles
- graphite
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 368
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 185
- 229910052814 silicon oxide Inorganic materials 0.000 title claims abstract description 180
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 140
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 120
- 239000010439 graphite Substances 0.000 claims abstract description 120
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 66
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims abstract description 66
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 66
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 66
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 64
- 239000011572 manganese Substances 0.000 claims abstract description 61
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 60
- 239000007773 negative electrode material Substances 0.000 claims abstract description 46
- 239000003792 electrolyte Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 52
- 238000010298 pulverizing process Methods 0.000 claims description 28
- 238000002156 mixing Methods 0.000 claims description 23
- 239000003575 carbonaceous material Substances 0.000 description 43
- 239000011230 binding agent Substances 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 25
- 229910001416 lithium ion Inorganic materials 0.000 description 24
- -1 lithium ions Chemical class 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 239000008151 electrolyte solution Substances 0.000 description 18
- 239000010410 layer Substances 0.000 description 18
- 230000008961 swelling Effects 0.000 description 17
- 239000002002 slurry Substances 0.000 description 16
- 238000004438 BET method Methods 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 230000000704 physical effect Effects 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000007599 discharging Methods 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 239000003979 granulating agent Substances 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000005563 spheronization Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 229910003002 lithium salt Inorganic materials 0.000 description 8
- 159000000002 lithium salts Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910021382 natural graphite Inorganic materials 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000019198 oils Nutrition 0.000 description 8
- 239000007774 positive electrode material Substances 0.000 description 8
- 239000007833 carbon precursor Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 229910052723 transition metal Inorganic materials 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910003481 amorphous carbon Inorganic materials 0.000 description 6
- 239000006258 conductive agent Substances 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 6
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000002427 irreversible effect Effects 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010079 rubber tapping Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000009831 deintercalation Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000009830 intercalation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000002050 diffraction method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000010692 aromatic oil Substances 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000010332 dry classification Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000010336 energy treatment Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011302 mesophase pitch Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000010690 paraffinic oil Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000009700 powder processing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000001238 wet grinding Methods 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- QYGBYAQGBVHMDD-XQRVVYSFSA-N (z)-2-cyano-3-thiophen-2-ylprop-2-enoic acid Chemical compound OC(=O)C(\C#N)=C/C1=CC=CS1 QYGBYAQGBVHMDD-XQRVVYSFSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZMXIYERNXPIYFR-UHFFFAOYSA-N 1-ethylnaphthalene Chemical compound C1=CC=C2C(CC)=CC=CC2=C1 ZMXIYERNXPIYFR-UHFFFAOYSA-N 0.000 description 1
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 1
- HMAMGXMFMCAOPV-UHFFFAOYSA-N 1-propylnaphthalene Chemical compound C1=CC=C2C(CCC)=CC=CC2=C1 HMAMGXMFMCAOPV-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- MBNVSWHUJDDZRH-UHFFFAOYSA-N 2-methylthiirane Chemical compound CC1CS1 MBNVSWHUJDDZRH-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 description 1
- AANMVENRNJYEMK-UHFFFAOYSA-N 4-propan-2-ylcyclohex-2-en-1-one Chemical compound CC(C)C1CCC(=O)C=C1 AANMVENRNJYEMK-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OTYYBJNSLLBAGE-UHFFFAOYSA-N CN1C(CCC1)=O.[N] Chemical compound CN1C(CCC1)=O.[N] OTYYBJNSLLBAGE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910019825 Cr0.25V0.75S2 Inorganic materials 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000134253 Lanka Species 0.000 description 1
- 229910013378 LiBrO4 Inorganic materials 0.000 description 1
- 229910013454 LiC4 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910016040 MoV2O8 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 241000282941 Rangifer tarandus Species 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000000833 X-ray absorption fine structure spectroscopy Methods 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KSECJOPEZIAKMU-UHFFFAOYSA-N [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] Chemical compound [S--].[S--].[S--].[S--].[S--].[V+5].[V+5] KSECJOPEZIAKMU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- IPTNXMGXEGQYSY-UHFFFAOYSA-N acetic acid;1-methoxybutan-1-ol Chemical compound CC(O)=O.CCCC(O)OC IPTNXMGXEGQYSY-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004703 alkoxides Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- RJTJVVYSTUQWNI-UHFFFAOYSA-N beta-ethyl naphthalene Natural products C1=CC=CC2=CC(CC)=CC=C21 RJTJVVYSTUQWNI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000011333 coal pitch coke Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- BPFOYPDHLJUICH-UHFFFAOYSA-N ethenyl ethyl carbonate Chemical compound CCOC(=O)OC=C BPFOYPDHLJUICH-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- ZKVLEFBKBNUQHK-UHFFFAOYSA-N helium;molecular nitrogen;molecular oxygen Chemical compound [He].N#N.O=O ZKVLEFBKBNUQHK-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910001506 inorganic fluoride Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- XTBFPVLHGVYOQH-UHFFFAOYSA-N methyl phenyl carbonate Chemical compound COC(=O)OC1=CC=CC=C1 XTBFPVLHGVYOQH-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920003257 polycarbosilane Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- VOVUARRWDCVURC-UHFFFAOYSA-N thiirane Chemical compound C1CS1 VOVUARRWDCVURC-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OCDVSJMWGCXRKO-UHFFFAOYSA-N titanium(4+);disulfide Chemical class [S-2].[S-2].[Ti+4] OCDVSJMWGCXRKO-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to silicon oxide particles and particles useful as a negative electrode active material for secondary batteries, a method for producing the same, a secondary battery using the particles as a negative electrode active material, and a method for producing the same.
- non-aqueous secondary batteries especially lithium-ion secondary batteries
- nickel-cadmium batteries and nickel-hydrogen batteries have been attracting attention because of their higher energy density and superior rapid charge/discharge characteristics than nickel-cadmium batteries and nickel-hydrogen batteries.
- a lithium ion secondary battery comprising a positive electrode and a negative electrode capable of intercalating and deintercalating lithium ions and a non-aqueous electrolytic solution in which a lithium salt such as LiPF 6 or LiBF 4 is dissolved has been developed and put into practical use.
- the negative electrode material for this battery Various materials have been proposed as the negative electrode material for this battery.
- a negative electrode material natural graphite, artificial graphite obtained by graphitizing coke or the like, graphitized mesophase pitch, graphite such as graphitized carbon fiber are used because of their high capacity and excellent discharge potential flatness. quality carbon materials are used.
- non-aqueous secondary batteries especially lithium-ion secondary batteries.
- it is used not only for conventional notebook computers, mobile communication devices, portable cameras, portable game machines, etc., but also for power tools, electric vehicles, and the like. Therefore, there is a demand for rapid charge/discharge performance that is higher than before. Furthermore, a lithium ion secondary battery having both high capacity and high cycle characteristics is desired.
- the average particle diameter (D50) of the active material is 1 to 1. 40 ⁇ m, a specific surface area of 0.5 to 45 m 2 /g, an average pore diameter of 10 to 40 nm, and an open pore volume of 0.06 cm 3 /g or less”. Proposed.
- Patent Document 1 The silicon oxide particles disclosed in Patent Document 1 are obtained by wet pulverization, and are likely to be contaminated with impurities through a medium in the pulverization process. expensive. According to the studies of the present inventors, when these silicon oxide particles containing a large amount of metal components are used as a negative electrode active material, the battery characteristics of the obtained secondary battery are poor, and in particular, the problem of electrode swelling occurs. There was found.
- An object of the present invention is to provide particles having a low total content of zirconium, yttrium, hafnium and manganese and having excellent battery characteristics, particularly an effect of suppressing electrode swelling, by using them as a negative electrode active material for secondary batteries. do.
- the inventors of the present invention have found that particles containing specific silicon oxide particles and graphite have a low total content of zirconium, yttrium, hafnium and manganese, and that a secondary battery using this as a negative electrode active material has battery characteristics, particularly The inventors have found that the effect of suppressing electrode swelling is excellent, and have completed the present invention. That is, the gist of the present invention is as follows.
- Silicon oxide particles having a total content of zirconium, yttrium, hafnium and manganese of 1000 ppm or less and a d50 of 1 ⁇ m or less.
- [8] A method for producing silicon oxide particles according to any one of [1] to [7], including a step of dry pulverizing the silicon oxide particles.
- [14] A method for producing particles according to any one of [9] to [13], including a step of combining silicon oxide particles and graphite.
- a secondary battery including a positive electrode, a negative electrode and an electrolyte, wherein the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, the negative electrode active material layer comprising [9] A secondary battery comprising the particles according to any one of [13].
- a method for manufacturing a secondary battery containing a positive electrode, a negative electrode and an electrolyte comprising forming a negative electrode active material layer containing the particles according to any one of [9] to [13] on a current collector.
- a method for manufacturing a secondary battery comprising the step of obtaining a negative electrode.
- the silicon oxide particles of the present invention which have a low total content of zirconium, yttrium, hafnium and manganese, and have a d50 of a predetermined value or less, when used together with graphite as a negative electrode active material for a secondary battery, battery characteristics, In particular, it is possible to provide a secondary battery that is excellent in the effect of suppressing electrode swelling.
- the particles of the present invention containing silicon oxide particles having a d50 of a predetermined value or less and graphite, and having a low total content of zirconium, yttrium, hafnium and manganese the particles can be used as a negative electrode active material for secondary batteries.
- the particles of the present invention containing silicon oxide particles having a d50 of a predetermined value or less and graphite, and having a low total content of zirconium, yttrium, hafnium and manganese, the particles can be used as a negative electrode active material for secondary batteries.
- d 50 is the volume average particle diameter, which is the volume-based median diameter measured by laser diffraction/scattering particle size distribution measurement.
- d 90 is defined as a particle diameter corresponding to cumulative 90% from the smaller particle side in the particle size distribution obtained during the measurement of d 50 .
- d max is the largest particle size measured for particles in the particle size distribution obtained during the measurement of d 50 .
- the silicon oxide particles of the present invention are characterized in that the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less and d50 is 1 ⁇ m or less.
- the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less, and silicon oxide particles having d50 of 1 ⁇ m or less are combined with graphite to improve battery characteristics, particularly to suppress electrode swelling.
- silicon oxide particles having d50 of 1 ⁇ m or less are combined with graphite to improve battery characteristics, particularly to suppress electrode swelling.
- the total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles of the present invention is 1000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 200 ppm or less, and particularly preferably 100 ppm or less.
- the total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles is 1000 ppm or less, a secondary battery with excellent battery characteristics can be obtained, and in particular, the occurrence of electrode swelling can be suppressed.
- the total content of zirconium, yttrium, hafnium and manganese is usually 10 ppm or more.
- the method for producing the silicon oxide particles of the present invention having a low total content of zirconium, yttrium, hafnium and manganese includes: , a method of performing dry grinding instead of wet grinding; a method of wet grinding using equipment that does not contain zirconium, yttrium, hafnium and manganese as constituent elements; using equipment that contains zirconium, yttrium, hafnium and manganese as constituent elements and a method of washing silicon oxide particles obtained by wet pulverization with a washing liquid such as a diluted alkaline aqueous solution that dissolves zirconium, yttrium, hafnium and manganese.
- a washing liquid such as a diluted alkaline aqueous solution that dissolves zirconium, yttrium, hafnium and manganese.
- the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 500 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less.
- the lower limit of the zirconium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better.
- the zirconium content of the silicon oxide particles of the present invention is usually 0.1 ppm or more.
- the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less.
- the lower limit of the yttrium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better.
- the yttrium content of the silicon oxide particles of the present invention is usually 0.01 ppm or more.
- the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less.
- the lower limit of the hafnium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better.
- the hafnium content of the silicon oxide particles of the present invention is usually 0.01 ppm or more.
- the content of metal elements is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. , preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less.
- the lower limit of the manganese content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better.
- the manganese content of the silicon oxide particles of the present invention is usually 0.1 ppm or more.
- the contents of zirconium, yttrium, hafnium and manganese in silicon oxide particles are values obtained by quantifying the elements in the prepared sample solution by the ICP-AES method.
- the volume average particle diameter (d 50 ) of the silicon oxide particles of the present invention is 1 ⁇ m or less, preferably 0.1 ⁇ m or more and 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less.
- d50 of the silicon oxide particles is within the above range, the volume expansion due to charge/discharge is reduced, and good cycle characteristics can be obtained while maintaining the charge/discharge capacity.
- the maximum particle diameter (d max ) of the silicon oxide particles of the present invention is usually 0.02 ⁇ m or more and 20 ⁇ m or less, preferably 0.03 ⁇ m or more and 5 ⁇ m or less, more preferably 0.04 ⁇ m or more and 2 ⁇ m or less.
- d max is equal to or higher than the above lower limit, the capacity tends to be high.
- d max is equal to or less than the above upper limit, there is a tendency that silicon oxide particles insufficiently combined with graphite, which will be described later, can be reduced.
- the ratio d max /d 50 between the maximum particle diameter (d max ) and the volume average particle diameter (d 50 ) of the silicon oxide particles of the present invention is preferably 2 to 10, more preferably 2.5 to 8. Yes, more preferably 3-6.
- d max /d 50 is at least the above lower limit, it is easy to increase the weighting ratio of the electrode.
- d max /d 50 is equal to or less than the above upper limit, the difference in volume expansion between silicon oxide particles is less likely to increase.
- the crystal state of the silicon oxide particles of the present invention may be single crystal or polycrystal.
- the silicon oxide particles are preferably polycrystalline or amorphous because the particle size can be easily reduced and the rate characteristics can be improved.
- Silicon oxide is represented by the general formula SiOx and is obtained using silicon dioxide (SiO 2 ) and metal Si (Si) as raw materials.
- the value of x is usually greater than 0 and 2 or less, preferably 0.1 or more and 1.8 or less, more preferably 0.5 or more and 1.5 or less, still more preferably 0.8 or more and 1 .2 or less.
- x is within the above range, it is possible to reduce the irreversible capacity due to the combination of Li and oxygen while achieving a high capacity.
- the value of x in SiOx is measured by measuring the oxygen content of silicon oxide particles by impulse furnace heating extraction under an inert gas atmosphere-IR detection method, and measuring the silicon content of silicon oxide particles by ICP emission spectrometry. It is a value obtained by calculating the ratio of the amount of oxygen to silicon.
- SiOx has a larger theoretical capacity than graphite, and amorphous Si or nano-sized Si crystals facilitate the entry and exit of alkali ions such as lithium ions, making it possible to obtain a high capacity.
- the silicon oxide particles of the present invention preferably exhibit the following physical properties.
- the measuring method in the present invention is not particularly limited, but unless there are special circumstances, the measuring method described in the Examples applies.
- the specific surface area of the silicon oxide particles by the BET method is usually 0.5 m 2 /g or more and 120 m 2 /g or less, preferably 1 m 2 /g or more and 100 m 2 /g or less.
- the specific surface area of the silicon oxide particles as determined by the BET method is within the above range, the charge/discharge efficiency and discharge capacity of the battery are high, lithium is quickly taken in and out during high-speed charge/discharge, and the rate characteristics are excellent, which is preferable.
- the specific surface area is a value measured by the BET method using nitrogen adsorption.
- the oxygen content of the silicon oxide particles is usually 0.01% by mass or more and 50% by mass or less, preferably 0.05% by mass or more and 45% by mass or less, based on 100% by mass of the silicon oxide particles.
- the state of oxygen distribution in the silicon oxide particles may be in the vicinity of the surface, in the interior of the particles, or uniformly within the particles, but preferably in the vicinity of the surface. .
- the oxygen content of the silicon oxide particles is within the above range, the strong bond between Si and O suppresses the volume expansion associated with charging and discharging, resulting in excellent cycle characteristics, which is preferable.
- the oxygen content of silicon oxide particles is a value obtained by measuring the amount of oxygen in silicon oxide particles by an impulse furnace heating extraction-IR detection method under an inert gas atmosphere.
- Silicon oxide particles may contain a crystalline structure or may be amorphous.
- ) plane is usually 0.05 nm or more and 100 nm or less, preferably 1 nm or more and 50 nm or less.
- silicon oxide particles Commercially available silicon oxide particles may be used after being subjected to purification treatment and pulverization treatment.
- the silicon oxide particles may be produced by subjecting silicon oxide particles having a large particle size to mechanical energy treatment using a ball mill or the like described later and washing the particles with an alkaline washing solution for a short period of time.
- silicon oxide particles produced by the method described in Japanese Patent No. 3952118 can also be used.
- SiO 2 powder and metal Si powder are mixed in a specific ratio, and after filling this mixture into a reactor, the pressure is reduced to normal pressure or a specific pressure, and the temperature is raised to 1000 ° C. or higher and held.
- Silicon oxide particles can be obtained by generating SiOx gas and cooling and depositing it (sputtering process).
- the precipitate can also be made into particles by applying a pulverization treatment (dynamic energy treatment) and used.
- the pulverization step when the pulverization step is performed, if the pulverization is performed in a wet process, impurities are likely to be mixed in through the medium. can't get For this reason, dry pulverization is preferably used for the pulverization.
- a raw material filled in a reactor and a moving body that does not react with the raw material are placed, and vibrated, It can be done by a method that imparts motion by rotation or a combination thereof.
- Dry pulverization treatment time is usually 3 minutes or more, preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 15 minutes or more, usually 5 hours or less, preferably 4 hours. or less, more preferably 3 hours or less, and still more preferably 1 hour or less.
- the dry pulverization treatment temperature is preferably above the freezing point and below the boiling point of the solvent in view of the process.
- the particles of the present invention are particles containing silicon oxide particles having a d50 of 1 ⁇ m or less and graphite, wherein the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less.
- Particles containing silicon oxide particles having a d50 of 1 ⁇ m or less and graphite, and having a total content of zirconium, yttrium, hafnium and manganese of 600 ppm or less have an excellent effect in improving battery characteristics, particularly in suppressing electrode swelling. Although the details of the mechanism are not clear, it is presumed as follows. When the total content of zirconium, yttrium, hafnium and manganese exceeds 600 ppm, the above elements tend to exist locally non-uniformly within the particles. Locations in the particles where the above elements exist non-uniformly impede charging and discharging reactions in the battery, and induce non-uniform volumetric changes in the particles.
- the total content of zirconium, yttrium, hafnium and manganese in the particles of the present invention is 600 ppm or less, preferably 300 ppm or less, more preferably 120 ppm or less, still more preferably 60 ppm or less.
- the total content of zirconium, yttrium, hafnium, and manganese in the particles is 600 ppm or less, a secondary battery with excellent battery characteristics can be obtained, and in particular, the occurrence of electrode swelling can be suppressed.
- the total content of zirconium, yttrium, hafnium and manganese is usually 6 ppm or more.
- the silicon oxide particles of the present invention having a low total content of zirconium, yttrium, hafnium and manganese can be used as a method for producing the particles of the present invention having a low total content of zirconium, yttrium, hafnium and manganese. and the silicon oxide particles of the present invention are combined with graphite.
- a method of mixing the silicon oxide particles and graphite and then performing a spheroidizing treatment is preferred.
- the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less. It is preferably 300 ppm or less, more preferably 60 ppm or less, still more preferably 30 ppm or less.
- the lower limit of the zirconium content of the particles of the present invention is not particularly limited, and the smaller the better.
- the zirconium content of the particles of the invention is usually 0.06 ppm or more.
- the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the yttrium content is It is preferably 60 ppm or less, more preferably 6 ppm or less, and still more preferably 0.06 ppm or less.
- the yttrium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
- the lower limit of the yttrium content of the particles of the present invention is not particularly limited, and the smaller the better.
- the yttrium content of the particles of the invention is usually 0.006 ppm or more.
- the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the hafnium content is It is preferably 60 ppm or less, more preferably 6 ppm or less, and still more preferably 0.6 ppm or less.
- the hafnium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
- the lower limit of the hafnium content of the particles of the present invention is not particularly limited, and the smaller the better.
- the hafnium content of the particles of the invention is usually 0.006 ppm or more.
- the content of metal elements is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the manganese content is preferably is 180 ppm or less, more preferably 120 ppm or less, and still more preferably 60 ppm or less.
- the lower limit of the manganese content of the particles of the present invention is not particularly limited, and the smaller the better.
- the manganese content of the particles of the invention is usually 0.06 ppm or more.
- the contents of zirconium, yttrium, hafnium and manganese in the particles are the values obtained by quantifying the elements in the prepared sample solution by the ICP-AES method.
- Graphite which is one of the constituents of the particles of the present invention, is shown below as an example.
- a publicly known product or a commercially available product may be used as the graphite.
- graphite for example, scale-like, block-like or plate-like natural graphite, petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. are heated to 2500 ° C. or higher to produce scale-like, block-like or plate-like artificial graphite.
- Graphite can be obtained by removing impurities, pulverizing, sieving, and classifying, if necessary.
- natural graphite in the form of flakes, lumps or plates is preferred, and natural graphite in the form of flakes is more preferred, because of its low cost and high capacity.
- Natural graphite is classified into Flake Graphite, Crystal Line (Vein) Graphite, and Amorphous Graphite according to its properties ("Powder and Granule Process Technology Shusei” (Sangyo Co., Ltd.) Technical Center, published in 1974) and "Handbook of Carbon, Graphic, Diamond and Full Renes” (published by Noyes Publications)).
- the degree of graphitization is highest for flake graphite at 100%, followed by flake graphite at 99.9%. Therefore, it is preferable to use these graphites.
- Flake graphite which is natural graphite, is produced in Madagascar, China, Brazil, Ukraine, Canada, etc. Sri Lanka is the main source of flake graphite.
- the main production areas of earthy graphite are the Korean Peninsula, China, Mexico, etc.
- flake graphite and flake graphite have advantages such as a high degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
- a visual method for confirming that graphite is scale-like, particle surface observation by a scanning electron microscope A cross-section of the coating film is prepared by a cross-section polisher, the cross-section of the particle is cut out, and then the cross-section of the particle is observed with a scanning electron microscope;
- Flaky graphite and flaky graphite include natural graphite that has been highly purified so as to exhibit nearly perfect crystallinity, and artificially formed graphite. Of these, natural graphite is preferable because it is soft and easy to produce a folded structure.
- the d50 of graphite is usually 1 ⁇ m or more and 120 ⁇ m or less, preferably 3 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 90 ⁇ m or less.
- d50 is within the above range, particles with high properties can be produced by combining with silicon oxide particles.
- the d50 of graphite is equal to or higher than the above lower limit, it is possible to produce particles having a particle size within a range that allows an electrode to be formed with an appropriate amount of binder.
- the d50 of graphite is equal to or less than the above upper limit, streaks and unevenness caused by large particles are eliminated in the process of adding a binder, water, and an organic solvent to the particles and applying them as a slurry in the production of a secondary battery. You can prevent it from happening.
- the d90 of graphite is usually 1.5 to 150 ⁇ m, preferably 4 to 120 ⁇ m, more preferably 6 to 100 ⁇ m. If the d90 of the graphite is equal to or higher than the above lower limit, the silicon oxide particles and graphite can be combined efficiently. When the d90 of graphite is equal to or less than the above upper limit, it is possible to suppress the formation of coarse particles when silicon oxide particles and graphite are combined.
- the average aspect ratio which is the ratio of the length of the major axis to the minor axis of graphite, is usually 2.1 or more and 10 or less, preferably 2.3 or more and 9 or less, and more preferably 2.5 or more. 8 or less.
- the aspect ratio is within the above range, it is possible to efficiently produce spherical particles, and minute voids are formed in the obtained particles, which alleviates volume expansion due to charging and discharging, and improves cycle characteristics. can contribute to improvement.
- the aspect ratio is defined by A/B, which is the longest diameter A of the particles when observed three-dimensionally using a scanning electron microscope, and the shortest diameter B among the diameters perpendicular to it. It is calculated by The average aspect ratio is the average value of the aspect ratios of any 50 particles.
- the tap density of graphite is usually 0.1 g/cm 3 or more and 1.0 g/cm 3 or less, preferably 0.13 g/cm 3 or more and 0.8 g/cm 3 or less, more preferably 0 .15 g/cm 3 or more and 0.6 g/cm 3 or less.
- minute voids are likely to be formed in the obtained particles.
- the tap density is measured by filling a cylindrical tap cell with a diameter of 1.5 cm and a volume capacity of 20 cm 3 to the end using a powder density measuring instrument, then tapping with a stroke length of 10 mm 1000 times. is the density calculated from the volume of the sample and the mass of the sample.
- the specific surface area of graphite by the BET method is usually 1 m 2 /g or more and 40 m 2 /g or less, preferably 2 m 2 / g or more and 35 m 2 /g or less, more preferably 3 m 2 /g. g or more and 30 m 2 /g or less.
- the specific surface area of graphite determined by the BET method is reflected in the specific surface area of the obtained particles.
- the specific surface area of the graphite is at least the above lower limit value, the battery output can be improved due to the increased lithium ion absorption capacity of the particles.
- the specific surface area of graphite is equal to or less than the above upper limit, it is possible to prevent a decrease in battery capacity due to an increase in the irreversible capacity of the particles.
- the specific surface area is a value measured by the BET method using nitrogen adsorption.
- the interplanar spacing (d 002 ) of the (002) plane of graphite by wide-angle X-ray diffraction is usually 0.335 nm or more and 0.337 nm or less.
- Lc of graphite measured by wide-angle X-ray diffraction is usually 90 nm or more, preferably 95 nm or more.
- the interplanar spacing (d 002 ) of the (002) plane is 0.337 nm or less, the crystallinity of the graphite is high, and a high-capacity secondary battery negative electrode active material particle can be obtained.
- Lc is 90 nm or more, the crystallinity of graphite is high, and a negative electrode active material with high capacity can be obtained.
- the interplanar spacing of the (002) plane and Lc are values measured by the X-ray wide-angle diffraction method.
- the length of the major axis of graphite is usually 100 ⁇ m or less, preferably 90 ⁇ m or less, and more preferably 80 ⁇ m or less.
- the minor axis length of graphite is usually 0.9 ⁇ m or more, preferably 1.0 ⁇ m or more, and more preferably 1.2 ⁇ m or more.
- the content ratio of graphite and silicon oxide particles in the particles of the present invention is 10 to 95% by mass of the total 100% by mass of the graphite, silicon oxide particles, and carbonaceous material used as necessary.
- the content of silicon oxide particles is preferably 3 to 60% by mass
- the content of graphite is 30 to 90% by mass
- the content of silicon oxide particles is more preferably 5 to 50% by mass
- the content of graphite is 50 to 85% by mass and the content of silicon oxide particles is 8 to 40% by mass.
- the content of graphite is at least the lower limit and the content of silicon oxide particles is at most the upper limit, it is easy to form a composite of graphite and silicon oxide particles.
- the graphite content is equal to or less than the above upper limit and the silicon oxide particle content is equal to or more than the above lower limit
- the particles of the present invention can have a high capacity.
- the particles of the present invention may contain carbonaceous substances other than graphite.
- the particles of the present invention may contain a carbonaceous material other than graphite, it is possible to reduce the influence of the size and shape of the graphite and silicon oxide particles when the graphite and silicon oxide particles are combined, which is preferable.
- amorphous carbon is preferable as the carbonaceous material because of its excellent ability to accept lithium ions.
- the carbonaceous material can be obtained by heat-treating the carbon precursor as described later.
- the carbon precursor the carbon materials described in (i) and/or (ii) below are preferable.
- ii A carbonizable organic substance dissolved in a low-molecular-weight organic solvent
- the content of the carbonaceous material is preferably 2 to 30% by mass, preferably 5 to 25% by mass, based on the total 100% by mass of graphite, silicon oxide particles and carbonaceous material. is more preferable, and 7 to 20% by mass is even more preferable.
- the content of the carbonaceous material is at least the above lower limit, the specific surface area of the particles of the present invention is reduced, and the initial charge/discharge efficiency is improved.
- the content of the carbonaceous material is equal to or less than the above upper limit, the particles of the present invention can have a high capacity.
- Preferred physical properties of the particles of the present invention are as follows.
- the interplanar spacing (d 002 ) of the (002) plane of the graphite (A) contained in the particles of the present invention is usually 0.335 nm or more and 0.337 nm or less as determined by wide-angle X-ray diffraction.
- the Lc of the particles of the present invention determined by wide-angle X-ray diffraction is usually 90 nm or more, preferably 95 nm or more.
- the particles for a secondary battery negative electrode active material become a high-capacity electrode.
- the tap density of the particles of the present invention is usually 0.5 g/cm 3 or more, preferably 0.6 g/cm 3 or more, and more preferably 0.8 g/cm 3 or more.
- the particles are spherical, sufficient continuous gaps are secured in the electrode, and the mobility of Li ions in the electrolytic solution held in the gaps is improved. Increase. This tends to improve rapid charge/discharge characteristics.
- the Raman R value of the particles of the present invention is generally 0.05 or more and 0.4 or less, preferably 0.1 or more and 0.35 or less. When the Raman R value of the particles of the present invention is within the above range, the surface crystallinity of the particles is in order and a high capacity can be expected.
- the Raman R value is obtained by measuring the intensity IA of the peak PA near 1580 cm -1 and the intensity IB of the peak PB near 1360 cm -1 in the Raman spectrum obtained by Raman spectroscopy, and measuring the intensity ratio ( It is a value calculated as IB/IA).
- “Around 1580 cm ⁇ 1 ” means the range of 1580 to 1620 cm ⁇ 1
- “around 1360 cm ⁇ 1 ” means the range of 1350 to 1370 cm ⁇ 1 .
- Raman spectra can be measured with a Raman spectrometer. Specifically, the particles to be measured are allowed to fall freely into the measurement cell to fill the sample, and while the measurement cell is irradiated with argon ion laser light, the measurement cell is rotated in a plane perpendicular to the laser light. take measurements.
- the specific surface area of the particles of the present invention by the BET method is usually 0.1 m 2 /g or more and 40 m 2 /g or less, preferably 0.7 m 2 / g or more and 35 m 2 /g or less and more preferably 1 m 2 /g or more and 30 m 2 /g or less.
- the specific surface area of the particles according to the present invention as determined by the BET method is at least the above lower limit, there is a tendency that the acceptability of lithium ions during charging when used as an active material for a negative electrode is improved.
- the specific surface area of the particles of the present invention as determined by the BET method is equal to or less than the above upper limit, the area of contact between the particles and the non-aqueous electrolytic solution can be suppressed when used as a negative electrode active material, resulting in reduced reactivity. As a result, the generation of gas tends to be suppressed, and a favorable battery tends to be obtained.
- the d50 of the particles of the present invention is usually 1 ⁇ m to 50 ⁇ m, preferably 4 ⁇ m to 40 ⁇ m, more preferably 6 ⁇ m to 30 ⁇ m.
- the d50 of the particles of the present invention is at least the above lower limit, it is possible to produce particles having a particle size within a range that allows an electrode to be formed with an appropriate amount of binder. If the d50 of the particles of the present invention is equal to or less than the above upper limit, streaking due to large particles may occur in the step of applying the particles in a slurry form by adding a binder, water, or an organic solvent in the production of a secondary battery. It is possible to suppress the occurrence of unevenness and unevenness.
- the particles of the present invention can be produced according to the method of producing particles of the present invention, preferably by mixing graphite and silicon oxide particles and then subjecting the mixture to a spheronization treatment to form a composite.
- the carbonaceous material described above may be further mixed.
- the mixing ratio of graphite, silicon oxide particles, and optionally used carbonaceous material may be set according to the aforementioned content ratio.
- a preferred method for producing the particles of the present invention includes at least steps 1 and 2 below.
- Step 1 Obtaining a mixture containing at least graphite and silicon oxide particles
- Step 2 Applying mechanical energy to the mixture of Step 1 to spheroidize it
- Step 1 Step of obtaining a mixture containing at least graphite and silicon oxide particles
- the mixture obtained in this step may be in the form of powder, solidification, mass, slurry, etc., but the mass is preferred from the viewpoint of ease of handling.
- the method of mixing graphite and silicon oxide particles is not particularly limited as long as a mixture containing at least graphite and silicon oxide particles is obtained.
- graphite and silicon oxide particles may be added together and mixed, or may be mixed while adding each of them successively.
- a preferred method for obtaining the mixture is, for example, a method of using wet silicon oxide particles and mixing them with graphite so as not to dry the silicon oxide particles.
- the silicon oxide particles obtained while the above-described silicon oxide particles are produced in a wet process may be used, or the silicon oxide particles produced in a dry process are mixed with graphite before being mixed. It may be dispersed in a dispersion solvent and wetted.
- the silicon oxide particles that are wet in this way suppress aggregation of the silicon oxide particles, so that they can be uniformly dispersed during mixing, and the silicon oxide particles can be easily fixed on the surface of the graphite, which is preferable.
- an excess amount of the dispersing solvent used in the wet pulverization of the silicon oxide particles may be added during mixing.
- the solid content of the silicon oxide particles is usually 10% by mass or more and 90% by mass or less in 100% by mass of the slurry. , preferably 15% by mass or more and 85% by mass or less, more preferably 20% by mass or more and 80% by mass or less.
- the solid content of the silicon oxide particles is at least the above lower limit, there is a tendency that the process is easy to handle.
- the solid content of the silicon oxide particles is equal to or less than the above upper limit, the fluidity of the slurry is excellent, and the silicon oxide particles tend to be easily dispersed in the graphite.
- the dispersion solvent After mixing, it is preferable to evaporate and remove the dispersion solvent using an evaporator, a dryer, or the like, and to fix the silicon oxide particles on the graphite. Alternatively, without adding an excessive amount of the dispersing solvent, it is preferable to mix while heating in a high-speed stirrer while evaporating the dispersing solvent to immobilize the silicon oxide particles on the graphite.
- a carbon precursor or the like which will be described later, may be mixed in order to suppress the reactivity between the silicon oxide particles and the electrolytic solution.
- a resin or the like may be mixed as a pore-forming material in order to reduce the breakage of the silicon oxide particles due to the expansion and contraction of the particles.
- resins that can be used as the void-forming material in step 1 include polyvinyl alcohol, polyethylene glycol, polycarbosilane, polyacrylic acid, and cellulose-based polymers.
- Polyvinyl alcohol and polyethylene glycol are preferred because they have a small amount of residual carbon during firing and a relatively low decomposition temperature.
- Mixing is usually carried out under normal pressure, but can also be carried out under reduced pressure or increased pressure. Mixing can be carried out either batchwise or continuously. In any case, the mixing efficiency can be improved by combining a device suitable for coarse mixing and a device suitable for precise mixing. Alternatively, a device that performs mixing and fixing (drying) at the same time may be used. Drying is usually carried out under reduced pressure or increased pressure. Drying under reduced pressure is preferred.
- the drying time is usually 5 minutes or more and 2 hours or less, preferably 10 minutes or more and 1.5 hours or less, more preferably 20 minutes or more and 1 hour or less.
- the drying temperature varies depending on the solvent, it is preferable that the drying temperature is a time that can achieve the above time. Moreover, it is preferable that the temperature is below the temperature at which the resin is not denatured.
- a mixer with a structure in which two frames revolve while rotating A device with a structure for stirring and dispersing; a so-called kneader type device that has a structure in which stirring blades such as a sigma type rotate along the side of a semi-cylindrical mixing tank; a trimix type device with three stirring blades a device of the so-called bead mill type having a rotating disk and a dispersing medium in a vessel; and the like.
- the container has a paddle inside which is rotated by a shaft, the inner wall surface of the container is preferably formed in a long catamaran substantially along the outermost line of rotation of the paddle, and the paddles slide on opposite sides.
- a device with a structure in which many pairs are arranged in the axial direction of the shaft so as to be movably engaged for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Cermac, TEX-K manufactured by Japan Steel Works, etc. ); has a single shaft inside, and a container in which a plurality of plow-shaped or saw-toothed paddles fixed to the shaft are arranged in different phases, the inner wall surface of which is substantially on the outermost line of rotation of the paddles.
- the (external heating) device e.g. Loedige mixer manufactured by Loedige, Flowshare mixer manufactured by Pacific Machinery Co., Ltd., DT dryer manufactured by Tsukishima Kikai Co., Ltd., etc.
- a pipeline mixer, a continuous bead mill, or the like may be used. It is also possible to homogenize by means such as ultrasonic dispersion.
- the mixture obtained in this step may be appropriately subjected to powder processing such as pulverization, pulverization, and classification.
- Examples of coarse pulverizers include shear mills, jaw crushers, impact crushers, cone crushers and the like.
- Examples of intermediate pulverizers include roll crushers and hammer mills.
- Examples of fine pulverizers include ball mills, vibration mills, pin mills, stirring mills, jet mills, and the like.
- the device used for classification in the case of dry sieving, rotary sieves, rocking sieves, turning sieves, vibrating sieves, etc. can be used.
- a gravity classifier, an inertial force classifier, or a centrifugal force classifier can be used in the case of dry airflow classification.
- Wet sieving, mechanical wet classifier, hydraulic classifier, sedimentation classifier, centrifugal wet classifier and the like can be used.
- Step 2 Step of applying mechanical energy to the mixture of Step 1 to spheronize
- Step 2 the degree of compositing of graphite and silicon oxide particles is greatly improved, and the particles of the present invention can be produced.
- a mixture also referred to herein as a mixture
- silicon oxide particles are mixed on the surface of the graphite obtained in the above step 1 is subjected to a spheronization treatment.
- the spheroidization process is basically a process that uses mechanical energy (mechanical actions such as impact compression, friction, and shear force). Specifically, treatment using a hybridization system is preferred.
- the system has a rotor with many blades that exert mechanical actions such as impact compression, friction and shear, and rotation of the rotor generates a large airflow.
- a large centrifugal force is applied to the graphite in the mixture obtained in the above step 1, and the graphite in the mixture obtained in the above step 1 and the graphite in the mixture obtained in the above step 1 collide with the walls and blades. By doing so, the graphite and silicon oxide particles in the mixture obtained in the above step 1 can be efficiently combined.
- the apparatus used for the spheronization treatment has, for example, a rotor with a large number of blades installed inside the casing, and the rotor rotates at a high speed so that the graphite in the mixture obtained in the step 1 introduced into the interior is
- a device or the like can be used to apply a mechanical action such as impact compression, friction, shear force, etc., to surface treatment.
- Hybridization System manufactured by Nara Machinery Co., Ltd.
- Cryptotron manufactured by Crypton Orb
- CF Mill manufactured by Ube Industries
- Mechanofusion System Nobilta, Faculty (manufactured by Hosokawa Micron)
- Theta Composer manufactured by Tokuju Kosakusho Co., Ltd.
- COMPOSI manufactured by Nippon Coke Kogyo Co., Ltd.
- the hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
- the peripheral speed of the rotating rotor is usually 30 to 100 m/sec, preferably 40 to 100 m/sec, and more preferably 50 to 100 m/sec.
- the treatment can be carried out by simply passing the carbonaceous material through, but it is preferable to circulate or retain the carbonaceous material in the apparatus for 30 seconds or more, and more preferably to circulate or retain the carbonaceous material in the apparatus for 1 minute or more. .
- the spheronization treatment may be performed in the presence of a granulating agent.
- a granulating agent increases the adhesion between carbon materials, making it possible to manufacture a spherical carbon material in which the carbon materials are more strongly adhered.
- the granulating agent used in the present embodiment does not contain an organic solvent, or if it contains an organic solvent, at least one of the organic solvents does not have a flash point, or if it has a flash point, the flash point is 5. °C or higher is preferred. As a result, it is possible to prevent the risk of ignition, fire and explosion of the organic compound induced by impact or heat when granulating the carbon material in the subsequent process. Therefore, the manufacturing can be stably and efficiently carried out.
- Examples of granulating agents include coal tar, heavy petroleum oils, paraffinic oils such as liquid paraffin, synthetic oils such as olefinic oils, naphthenic oils, and aromatic oils; vegetable oils and fats, and animal fats. Natural oils such as family oils, esters, and higher alcohols; organic compounds such as resin binder solutions in which a resin binder is dissolved in an organic solvent having a flash point of 5°C or higher, preferably 21°C or higher; aqueous systems such as water solvents; mixtures thereof;
- Organic solvents with a flash point of 5°C or higher include alkylbenzenes such as xylene, isopropylbenzene, ethylbenzene and propylbenzene; alkylnaphthalenes such as methylnaphthalene, ethylnaphthalene and propylnaphthalene; allylbenzenes such as styrene; Hydrogens; aliphatic hydrocarbons such as octane, nonane and decane; ketones such as methyl isobutyl ketone, diisobutyl ketone and cyclohexanone; esters such as propyl acetate, butyl acetate, isobutyl acetate and amyl acetate; , butanol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol,
- resin binders examples include cellulose-based resin binders such as ethyl cellulose, methyl cellulose, and salts thereof; acrylic resin binders such as polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyacrylic acid, and salts thereof; Methacrylic resin binders such as methyl methacrylate, polyethyl methacrylate and polybutyl methacrylate; phenolic resin binders and the like.
- cellulose-based resin binders such as ethyl cellulose, methyl cellulose, and salts thereof
- acrylic resin binders such as polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyacrylic acid, and salts thereof
- Methacrylic resin binders such as methyl methacrylate, polyethyl methacrylate and polybutyl methacrylate
- phenolic resin binders and the like As the granulating agent, coal tar, heavy petroleum
- the granulating agent preferably has properties that can be removed efficiently and that do not adversely affect battery characteristics such as capacity, output characteristics, storage and cycle characteristics. Specifically, when heated to 700° C. in an inert atmosphere, it is usually 50% by mass or more, preferably 80% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and particularly preferably 99% by mass. It is possible to select one that reduces the mass by 9% by mass or more.
- the graphite (A) in the mixture obtained in Step 1 above, which is subjected to spheronization treatment, may have already undergone a certain spheronization treatment under the conditions of a conventional method.
- the composite obtained in the above step 1 may be subjected to repeated mechanical action by circulating or passing through this step multiple times.
- the rotation speed of the rotor is usually 2000 rpm to 9000 rpm, preferably 4000 rpm to 8000 rpm, more preferably 5000 rpm to 7500 rpm, still more preferably 6000 rpm to 7200 rpm, for usually 30 seconds to 60 minutes. , preferably 1 minute or more and 30 minutes or less, more preferably 1 minute and 30 seconds or more and 10 minutes or less, still more preferably 2 minutes or more and 5 minutes or less.
- the spherical processing is weak and the tapping density may not increase sufficiently. If the number of rotations of the rotor is too high, the pulverization effect becomes stronger than the spheroidizing treatment, and the particles may collapse and the tapping density may decrease. If the spheronization treatment time is too short, a high tapping density cannot be achieved while sufficiently reducing the particle size. If the spheronization treatment time is too long, the graphite in the mixture obtained in the above step 1 will be shattered, possibly failing to achieve the object of the present invention.
- the obtained particles may be classified. If the obtained particles do not fall within the specified range of physical properties of the present invention, they are subjected to classification treatment repeatedly (usually 2 to 10 times, preferably 2 to 5 times) to bring the physical properties into the desired range. can be done. Examples of classification include dry classification (air classification, sieve), wet classification, and the like. Dry classification, particularly air classification, is preferred from the viewpoint of cost and productivity.
- the particles of the present invention can be produced by the production method as described above.
- the particles of the present invention obtained as described above preferably contain a carbonaceous material.
- it is more preferable to coat at least part of the surface of the particles with a carbonaceous material hereinafter also referred to as "carbonaceous material-coated particles” or “carbonaceous material-coated particles of the present invention”).
- the carbonaceous material-coated particles can be produced by performing the following step 3 after step 2 described above.
- Step 3 Step of Coating the Particles Spheronized in Step 2 with a Carbonaceous Material Step 3 will be described in detail below.
- Step 3 Step of coating the particles spheroidized in Step 2 with a carbonaceous material
- the carbonaceous material include amorphous carbon and graphitized material depending on the difference in heating temperature in the manufacturing method described below. Among these, amorphous carbon is preferable from the viewpoint of lithium ion acceptance.
- the carbonaceous material can be obtained by heat-treating the carbon precursor as described later.
- the carbon precursor the carbon material described in (i) and/or (ii) above is preferable.
- a carbon precursor for obtaining a carbonaceous material is used as a coating raw material for the particles obtained in step 2 described above, and these are mixed and fired to obtain coated particles.
- the firing temperature is usually 600° C. or higher, preferably 700° C. or higher, more preferably 900° C. or higher, and usually 2000° C. or lower, preferably 1500° C. or lower, more preferably 1200° C. or lower
- amorphous carbon is produced as the carbonaceous material. can get.
- Graphitized carbon can be obtained as a carbonaceous material by performing heat treatment at a firing temperature of usually 2000° C. or higher, preferably 2500° C. or higher, and usually 3200° C. or lower.
- the amorphous carbon is carbon with low crystallinity.
- the graphitized carbon is carbon with high crystallinity.
- the particles described above are used as the core material, and the carbon precursor for obtaining the carbonaceous material is used as the coating raw material, and these are mixed and fired to obtain the carbonaceous material-coated particles.
- Metal particles and carbon microparticles that can be alloyed may be contained in the coating layer.
- the shape of the fine carbon particles is not particularly limited, and may be granular, spherical, chain-like, needle-like, fibrous, plate-like, scale-like, or the like.
- Carbon fine particles are not particularly limited, but specific examples include coal fine powder, vapor phase carbon powder, carbon black, ketjen black, and carbon nanofiber. Among these, carbon black is particularly preferred. Carbon black has the advantage that it has high input/output characteristics even at low temperatures and is readily available at low cost.
- the volume average particle diameter (d 50 ) of the carbon fine particles is usually 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.05 ⁇ m or more and 8 ⁇ m or less, more preferably 0.07 ⁇ m or more and 5 ⁇ m or less, still more preferably 0 .1 ⁇ m or more and 1 ⁇ m or less.
- the carbon fine particles have a secondary structure in which primary particles aggregate and aggregate
- other physical properties and types are not particularly limited as long as the primary particle diameter is 3 nm or more and 500 nm or less.
- the primary particle diameter is preferably 3 nm or more and 500 nm or less, more preferably 15 nm or more and 200 nm or less, still more preferably 30 nm or more and 100 nm or less, and particularly preferably 40 nm or more and 70 nm or less.
- Step 1 Particles that have undergone the above steps may be subjected to powder processing such as pulverization, pulverization, and classification described in Step 1.
- the carbonaceous material-coated particles of the present invention can be produced by the production method as described above.
- the particles of the present invention are useful as a negative electrode active material for secondary batteries.
- a secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector.
- the active material layer contains the particles of the present invention.
- the secondary battery of the present invention is generally manufactured by the method for manufacturing a secondary battery of the present invention, which includes the step of forming a negative electrode active material layer containing the particles of the present invention on a current collector to obtain a negative electrode.
- negative electrode of the present invention In order to prepare a negative electrode using the particles of the present invention (hereinafter sometimes referred to as "negative electrode of the present invention"), the particles of the present invention mixed with a binder (binder resin) are dispersed in a dispersion medium. to form a slurry, which is applied to a current collector and dried to form a negative electrode active material layer on the current collector.
- a binder binder resin
- the binder use one that has an olefinic unsaturated bond in the molecule.
- the type is not particularly limited. Specific examples include styrene-butadiene rubber, styrene/isoprene/styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene/propylene/diene copolymer.
- styrene-butadiene rubber is preferable because of its easy availability.
- a binder having olefinic unsaturated bonds in the molecule it is desirable to have a large molecular weight or a high proportion of unsaturated bonds.
- a binder having a high molecular weight preferably has a weight-average molecular weight of usually 10,000 or more, preferably 50,000 or more, and usually 1,000,000 or less, preferably 300,000 or less.
- the number of moles of olefinic unsaturated bonds per 1 g of the total binder is usually 2.5 ⁇ 10 -7 or more, preferably 8 ⁇ 10 -7 or more, and usually 5 x10 -6 or less, preferably 1 x 10 -6 or less.
- the binder should satisfy at least one of the regulations regarding the molecular weight and the regulations regarding the ratio of unsaturated bonds, but it is more preferable to satisfy both regulations at the same time. If the molecular weight of the binder having olefinically unsaturated bonds is too small, the mechanical strength is poor. If the molecular weight of the binder is too large, the flexibility is poor. On the other hand, if the proportion of olefinic unsaturated bonds in the binder is too low, the effect of improving the strength will be weak, and if it is too high, the flexibility will be poor.
- the binder having olefinic unsaturated bonds has a degree of unsaturation of usually 15% or more, preferably 20% or more, more preferably 40% or more, usually 90% or less, preferably 80% or less. desirable.
- the degree of unsaturation represents the ratio (%) of double bonds to the repeating units of the polymer.
- binders having no olefinic unsaturated bonds can also be used in combination with binders having the above-mentioned olefinic unsaturated bonds as long as the effects of the present invention are not lost.
- the mixing ratio of the binder having no olefinically unsaturated bonds to the amount of the binder having olefinically unsaturated bonds is usually 150% by mass or less, preferably 120% by mass or less.
- binders having no olefinic unsaturated bonds include polysaccharides such as methylcellulose, carboxymethylcellulose and starch; thickening polysaccharides such as carrageenan, pullulan, guar gum and xanthan gum; polyethylene oxide, polypropylene oxide and the like.
- the mass ratio (the particles of the present invention / binder) is usually 90/10 or more, preferably 95/5 or more, usually 99.9/0.1 or less, preferably 99.5/0.5 It is below. If the proportion of the binder is too high, the capacity tends to decrease and the resistance increases. If the proportion of the binder is too small, the strength of the negative electrode plate will deteriorate.
- An organic solvent such as alcohol or water can be used as a dispersion medium for forming a slurry in which the particles of the present invention and the binder are dispersed.
- a conductive agent may be added to the slurry.
- the conductive agent include carbon black such as acetylene black, ketjen black, and furnace black, and fine powders of Cu, Ni, or alloys thereof having an average particle size of 1 ⁇ m or less.
- the amount of the conductive agent added is usually 10% by mass or less relative to the particles of the present invention.
- a conventionally known current collector can be used as the current collector to which the slurry is applied.
- Specific examples include metal thin films such as rolled copper foil, electrolytic copper foil, and stainless steel foil.
- the thickness of the current collector is usually 4 ⁇ m or more, preferably 6 ⁇ m or more, and usually 30 ⁇ m or less, preferably 20 ⁇ m or less.
- the above slurry is applied onto a current collector using a doctor blade or the like, dried, and then pressed using a roll press or the like to form a negative electrode active material layer.
- the slurry is preferably applied so that the amount of the particles of the present invention attached to the current collector is 5 to 15 mg/cm 2 .
- the drying after coating the slurry on the current collector is usually carried out at a temperature of 60°C or higher, preferably 80°C or higher, and usually 200°C or lower, preferably 195°C or lower, in dry air or an inert atmosphere.
- the thickness of the negative electrode active material layer obtained by coating and drying the slurry is usually 5 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and usually 200 ⁇ m or less in the state after pressing. , preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less. If the negative electrode active material layer is too thin, it lacks practicality as a negative electrode active material layer due to the balance with the particle diameter of the particles of the present invention which are the negative electrode active material. If the negative electrode active material layer is too thick, it is difficult to obtain a sufficient Li ion intercalation/deintercalation function for a high-density current value.
- the density of the particles of the present invention in the negative electrode active material layer varies depending on the application . 3 or more, and particularly preferably 1.7 g/cm 3 or more. If the density is too low, the battery capacity per unit volume is not necessarily sufficient. If the density is too high, the rate characteristics deteriorate, so the density of graphite is preferably 1.9 g/cm 3 or less.
- the method and selection of other materials are not particularly limited.
- a secondary battery is produced using this negative electrode, there are no particular restrictions on the selection of members necessary for the battery configuration, such as the positive electrode and the electrolytic solution that constitute the secondary battery.
- the basic configuration of the secondary battery of the present invention is the same as that of conventionally known lithium ion secondary batteries, and usually includes a positive electrode and a negative electrode capable of intercalating and deintercalating lithium ions, and an electrolyte.
- the negative electrode the negative electrode of the present invention described above is used.
- the positive electrode is formed by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector.
- positive electrode active materials include metal chalcogen compounds capable of intercalating and deintercalating alkali metal cations such as lithium ions during charging and discharging.
- Metal chalcogen compounds include transition metal oxides such as vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, tungsten oxide; vanadium sulfide, molybdenum sulfide transition metal sulfides such as sulfides, titanium sulfides, and CuS; transition metal phosphorus-sulfur compounds such as NiPS 3 and FePS 3 ; transition metal selenium compounds such as VSe 2 and NbSe 3 ; transition metal composite oxides such as 75 S 2 and Na 0.1 CrS 2 ; transition metal composite sulfides such as LiCoS 2 and LiNiS 2 ;
- V2O5 , V5O13 , VO2 , Cr2O5 , MnO2 , TiO , MoV2O8 , LiCoO2 , LiNiO2 , LiMn2O4 , TiS2 , V2S5 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2 and the like are preferable, and LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and a part of these transition metals are particularly preferable. It is a lithium transition metal composite oxide substituted with other metals.
- These positive electrode active materials may be used singly or in combination.
- any known binder can be selected and used.
- examples thereof include inorganic compounds such as silicate and water glass, and resins having no unsaturated bonds such as Teflon (registered trademark) and polyvinylidene fluoride. Among these, resins having no unsaturated bonds are preferred. If a resin having an unsaturated bond is used as the resin that binds the positive electrode active material, it may decompose during an oxidation reaction (during charging).
- the weight average molecular weight of these resins is usually 10,000 or more, preferably 100,000 or more, and usually 3,000,000 or less, preferably 1,000,000 or less.
- a conductive agent may be contained in the positive electrode active material layer in order to improve the conductivity of the electrode.
- the conductive agent is not particularly limited as long as it can be mixed with the active material in an appropriate amount to impart conductivity.
- Examples of conductive agents generally include carbon powders such as acetylene black, carbon black, and graphite, and fibers, powders, and foils of various metals.
- the positive electrode plate is formed by slurrying the positive electrode active material and binder with a dispersant, applying it on the current collector, and drying it, in the same manner as in the manufacturing of the negative electrode of the present invention described above.
- Aluminum, nickel, stainless steel (SUS), or the like is used as the current collector of the positive electrode, but is not limited at all.
- a non-aqueous electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent, or a non-aqueous electrolytic solution made into a gel, rubber, or solid sheet by using an organic polymer compound or the like is used.
- the non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, and can be appropriately selected and used from known non-aqueous solvents that have been conventionally proposed as solvents for non-aqueous electrolytes.
- chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate
- cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate
- chain ethers such as 1,2-dimethoxyethane
- tetrahydrofuran, 2-methyl Cyclic ethers such as tetrahydrofuran, sulfolane and 1,3-dioxolane
- chain esters such as methyl formate, methyl acetate and methyl propionate
- cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone.
- any one of these non-aqueous solvents may be used alone, or two or more may be used in combination.
- a mixed solvent a combination of a mixed solvent containing a cyclic carbonate and a chain carbonate is preferred.
- the cyclic carbonate is a mixed solvent of ethylene carbonate and propylene carbonate, since high ionic conductivity can be expressed even at low temperatures and low-temperature charging load characteristics are improved.
- the content of propylene carbonate is preferably in the range of 2% by mass to 80% by mass, more preferably 5% by mass to 70% by mass, and 10% by mass to 60% by mass with respect to the entire non-aqueous solvent. A range is more preferred. If the content of propylene carbonate is lower than the above lower limit, the ionic conductivity at low temperatures decreases. If the content of propylene carbonate is higher than the above upper limit, propylene carbonate solvated with Li ions co-inserts between the graphite phases of the negative electrode, causing delamination and deterioration of the graphite-based negative electrode active material, resulting in insufficient capacity. I have a missing problem.
- the lithium salt used in the non-aqueous electrolytic solution is also not particularly limited, and can be appropriately selected and used from known lithium salts known to be usable for this purpose.
- Li halides such as Cl, LiBr; perhalogenates such as LiClO4 , LiBrO4 , LiClO4 ; inorganic lithium salts such as inorganic fluoride salts such as LiPF6 , LiBF4 , LiAsF6 ; LiCF3SO3 , LiC4 perfluoroalkanesulfonate such as F 9 SO 3 ; fluorine-containing organic lithium salt such as perfluoroalkanesulfonimide salt such as Li trifluorosulfonimide ((CF 3 SO 2 ) 2 NLi);
- LiClO 4 , LiPF 6 and LiBF 4 are preferred.
- the lithium salt may be used alone or in combination of two or more.
- concentration of the lithium salt in the non-aqueous electrolytic solution is usually in the range of 0.5 mol/L or more and 2.0 mol/L or less.
- the organic polymer compound include poly(ethylene oxide, polypropylene oxide, etc.).
- Ether-based polymer compound Crosslinked polymer of polyether-based polymer compound; Vinyl alcohol-based polymer compound such as polyvinyl alcohol and polyvinyl butyral; Insolubilized vinyl alcohol-based polymer compound; Polyepichlorohydrin; vinyl-based polymer compounds such as polyvinylpyrrolidone, polyvinylidene carbonate, and polyacrylonitrile; poly( ⁇ -methoxyoligooxyethylene methacrylate), poly( ⁇ -methoxyoligooxyethylene methacrylate-co-methyl methacrylate), poly(hexafluoropropylene) -vinylidene fluoride) and the like.
- the non-aqueous electrolytic solution described above may further contain a film-forming agent.
- film-forming agents include carbonate compounds such as vinylene carbonate, vinyl ethyl carbonate and methylphenyl carbonate; alkene sulfides such as ethylene sulfide and propylene sulfide; sultone compounds such as 1,3-propanesultone and 1,4-butanesultone. and acid anhydrides such as maleic anhydride and succinic anhydride.
- the non-aqueous electrolytic solution may contain an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene.
- the content in the non-aqueous electrolytic solution is usually 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less. If the content of the additive is too large, other battery characteristics may be adversely affected, such as an increase in initial irreversible capacity, deterioration in low-temperature characteristics and rate characteristics.
- a polymer solid electrolyte which is a conductor of alkali metal cations such as lithium ions
- examples of polymer solid electrolytes include those obtained by dissolving Li salts in the aforementioned polyether-based polymer compounds, and polymers in which terminal hydroxyl groups of polyethers are substituted with alkoxides.
- a porous separator such as a porous membrane or non-woven fabric is usually interposed between the positive electrode and the negative electrode to prevent a short circuit between the electrodes.
- the non-aqueous electrolytic solution is used by impregnating a porous separator.
- polyolefin such as polyethylene and polypropylene, polyethersulfone, and the like are used, and polyolefin is preferable.
- the form of the lithium ion secondary battery to which the present invention is applied is not particularly limited. Examples include a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type in which a pellet electrode and a separator are combined to form an inside-out structure, and a coin type in which a pellet electrode and a separator are laminated.
- a cylinder type in which a sheet electrode and a separator are formed in a spiral shape
- a cylinder type in which a pellet electrode and a separator are combined to form an inside-out structure
- a coin type in which a pellet electrode and a separator are laminated.
- a negative electrode is placed on an exterior case, an electrolytic solution and a separator are provided thereon, a positive electrode is placed so as to face the negative electrode, and a gasket and a sealing plate are crimped together to form a battery.
- the secondary battery of the present invention uses the particles of the present invention containing the silicon oxide particles of the present invention and graphite as a negative electrode active material, the secondary battery is excellent in battery characteristics, particularly in the effect of suppressing electrode swelling. Specifically, it is preferable that the discharge capacity at the 50th cycle measured by the method described in Examples below is 400 mAh/g or more and the charge/discharge efficiency is 99.8% or more.
- the secondary battery of the present invention preferably has an electrode swelling of 1.4 or less as measured by the method described in Examples below.
- ⁇ Zirconium, Yttrium, Hafnium and Manganese Contents in Silicon Oxide Particles The contents of zirconium (Zr), yttrium (Y), hafnium (Hf), and manganese (Mn) in silicon oxide particles were measured by the following method.
- the sample was dissolved by heating with a mixed acid (hydrofluoric acid, nitric acid) to volatilize the silicon oxide particles, and after dissolving in sulfuric acid, water was added to a constant volume.
- the metal impurities in the decomposed solution were quantified by the acid matrix matching calibration curve method using ICP-AES (iCAP7600DuO manufactured by Thermo Fisher Scientific). Detection limits in this measurement method are zirconium: 0.1 ppm, yttrium: 0.1 ppm, hafnium: 0.3 ppm, and manganese: 0.1 ppm.
- ⁇ Zirconium, Yttrium, Hafnium and Manganese Contents in Negative Electrode Active Material Particles The content of zirconium, yttrium, hafnium and manganese in the particles is calculated from the content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles used in the production of the particles and the content of silicon oxide particles in the particles. asked.
- the particle diameter (d 90 ) was defined as the particle diameter corresponding to cumulative 90% from the small particle side in the particle size distribution obtained by the measurement of the volume average particle diameter (d 50 ).
- ⁇ Maximum particle size (d max )> The maximum diameter in the particle size distribution obtained by measuring the volume average particle diameter (d 50 ) was defined as the maximum particle diameter (d max ).
- ⁇ Value of x in SiOx> The value of x in SiOx of the silicon oxide particles was calculated from the value measured by impulse furnace heat extraction under an inert gas atmosphere-IR detection method and ICP emission spectrometry. Specifically, the sample was alkali-fused, and after constant volume, the amount of silicon in the diluted sample solution was measured using ICP-AES (manufactured by Thermo Fisher Scientific, model name “iCAP7600Duo”). Separately, the oxygen content of the sample was measured using an oxygen nitrogen hydrogen analyzer (manufactured by LECO, model name "TCH600”). The amount of oxygen relative to silicon was calculated and used as the value of x in SiOx.
- ⁇ Tap density> Using a powder density measuring instrument (model name "Tap Denser KYT-5000", manufactured by Seishin Enterprise Co., Ltd.), a cylindrical tap cell with a diameter of 1.5 cm and a volume capacity of 20 cm 3 is passed through a sieve with an opening of 300 ⁇ m, and the sample is dropped. to allow the cell to fill to the brim. After that, tapping with a stroke length of 10 mm was performed 1000 times, and the density calculated from the volume at that time and the mass of the sample was taken as the tap density.
- a powder density measuring instrument model name "Tap Denser KYT-5000", manufactured by Seishin Enterprise Co., Ltd.
- Example 1-1 Silicon and silicon dioxide are used as raw materials, and after being synthesized by a reduced-pressure vapor deposition method, the silicon oxide powder obtained through a coarse pulverization process is dry-pulverized in a jet mill for fine pulverization (manufactured by Aisin Nano Technologies) equipped with a classifier. According to the results, silicon oxide particles No. 1 having a value of x in SiOx of 0.9, d 50 , d max , and the content of each metal element having the values shown in Table 1 are obtained. 1 was produced.
- Example I-1 In Example I-1, instead of dry pulverization, wet pulverization was performed using a bead mill (manufactured by Asada Iron Works Co., Ltd.) using 2-propanol as a dispersion medium. Silicon oxide particle no . 2 was produced.
- Example II-1 and 2 the silicon oxide particles No. 2 synthesized in Example I-1 were used as the silicon oxide particles. 1, and the silicon oxide particles No. 1 synthesized in Comparative Example I-1 in Comparative Example II-1. 2 was used.
- graphite graphite No. 2 was used in Example II-1 and Comparative Example II-1. 1 was replaced with graphite No. 1 in Example II-2. 2 was used.
- Graphite and silicon oxide particles were mixed at a ratio of 70% by mass of graphite and 16% by mass of silicon oxide particles, 9% by mass of liquid oil was added as a granulating agent, and the mixture was stirred and mixed with a stirring granulator.
- the obtained mixture was put into a hybridization system, and granulated and spheroidized by mechanical action for 5 minutes at a rotor peripheral speed of 85 m/sec. Furthermore, the liquid oil used as a granulating agent was removed by heat treatment to obtain spherical composite particles.
- the resulting spheroidized composite particles were mixed with pitch having an ash content of 0.02% by mass, a metal impurity amount of 20% by mass, and a Qi of 1% by mass as a graphite material precursor, and heat-treated at 1000°C in an inert gas. to obtain a baked product.
- pitch having an ash content of 0.02% by mass, a metal impurity amount of 20% by mass, and a Qi of 1% by mass as a graphite material precursor, and heat-treated at 1000°C in an inert gas. to obtain a baked product.
- negative electrode active material particles in which graphite, silicon oxide particles, and amorphous carbon were combined in the proportions shown in Table 2A were obtained.
- the negative electrode active material layer was roll-pressed with a 250 m ⁇ roll press equipped with a load cell so that the density of the negative electrode active material layer was 1.6 to 1.7 g/cm 3 , and punched into a circular shape with a diameter of 12.5 mm, at 90° C. for 8 hours. It was vacuum-dried and used as a negative electrode for evaluation.
- This negative electrode and a Li foil serving as a counter electrode were stacked via a separator impregnated with an electrolytic solution to prepare a battery for a charge/discharge test.
- Table 2B shows the total content of zirconium, yttrium, hafnium, and manganese in the silicon oxide particles used (referred to as "total metal content” in Table 2B) and the content of each metal element in the negative electrode active material particles. The content rate and the total content rate of these are written together.
- the positive electrode and the negative electrode of the battery for the charge/discharge test were charged to 5 mV at a current density of 0.08 mA/cm 2 , and then charged at a constant voltage of 5 mV until the current value reached 0.03 mA. After doping with lithium, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.2 mA/cm 2 (initial first cycle). Thereafter, charging and discharging were repeated four times under the same conditions as above except that the current density during charging was 0.2 mA/cm 2 and the current density during discharging was 0.3 mA/cm 2 (initial 2 cycle to initial 5th cycle).
- the initial discharge capacity was determined as follows. First, the mass of the negative electrode active material is obtained by subtracting the mass of a copper foil punched into the same area as the negative electrode from the mass of the negative electrode. asked for capacity.
- the charge/discharge efficiency was determined by the following formula.
- the mass of the negative electrode active material was determined by subtracting the mass of a copper foil punched into the same area as the negative electrode from the mass of the negative electrode.
- Charge-discharge efficiency (%) ⁇ Discharge capacity of initial 3rd cycle (mAh / g) / (Charge capacity of initial 1st cycle (mAh / g) + Charge capacity of initial 2nd cycle (mAh / g) - Initial 2 Cycle discharge capacity (mAh / g) + initial 3rd cycle charge capacity (mAh / g) - initial 3rd cycle discharge capacity (mAh / g) ⁇ ⁇ 100
- the battery After repeating 50 cycles of charging and discharging, the battery is disassembled, the negative electrode is taken out, the thickness of the negative electrode is measured with a thickness measuring instrument (manufactured by Mitutoyo), and the thickness of the copper foil punched into the same area as the negative electrode is subtracted from this.
- a thickness measuring instrument manufactured by Mitutoyo
- the thickness of the copper foil punched into the same area as the negative electrode is subtracted from this.
- the thickness of the negative electrode was obtained and divided by the value of the thickness of the negative electrode at the time of battery fabrication to obtain an index value of electrode swelling.
- the present invention having a total content of zirconium, yttrium, hafnium and manganese of 600 ppm or less, containing graphite and silicon oxide particles of the present invention having a total content of zirconium, yttrium, hafnium and manganese of 1000 ppm or less.
- a negative electrode active material it is possible to provide a secondary battery having excellent battery characteristics, particularly an excellent effect of suppressing electrode swelling.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
Silicon oxide particles in which the total amount of zirconium, yttrium, hafnium, and manganese is 1000 ppm or less and d50 is 1 μm or less. Particles containing silicon oxide particles having a d50 of 1 μm or less and graphite, wherein the total amount of zirconium, yttrium, hafnium, and manganese is 600 ppm or less. A secondary battery including a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode includes a current collector and negative electrode active material layer formed on the current collector, and the negative electrode active material layer contains the aforementioned particles.
Description
本発明は、二次電池の負極活物質として有用な酸化珪素粒子及び粒子並びにその製造方法と、この粒子を負極活物質として用いた二次電池及びその製造方法に関する。
The present invention relates to silicon oxide particles and particles useful as a negative electrode active material for secondary batteries, a method for producing the same, a secondary battery using the particles as a negative electrode active material, and a method for producing the same.
近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。
特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。 In recent years, with the miniaturization of electronic devices, the demand for high-capacity secondary batteries has increased.
In particular, non-aqueous secondary batteries, especially lithium-ion secondary batteries, have been attracting attention because of their higher energy density and superior rapid charge/discharge characteristics than nickel-cadmium batteries and nickel-hydrogen batteries.
特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。 In recent years, with the miniaturization of electronic devices, the demand for high-capacity secondary batteries has increased.
In particular, non-aqueous secondary batteries, especially lithium-ion secondary batteries, have been attracting attention because of their higher energy density and superior rapid charge/discharge characteristics than nickel-cadmium batteries and nickel-hydrogen batteries.
リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPF6やLiBF4等のリチウム塩を溶解させた非水系電解液からなるリチウムイオン二次電池が開発され、実用に供されている。
A lithium ion secondary battery comprising a positive electrode and a negative electrode capable of intercalating and deintercalating lithium ions and a non-aqueous electrolytic solution in which a lithium salt such as LiPF 6 or LiBF 4 is dissolved has been developed and put into practical use.
この電池の負極材料としては種々のものが提案されている。負極材料としては、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛、コークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材料が用いられている。
Various materials have been proposed as the negative electrode material for this battery. As a negative electrode material, natural graphite, artificial graphite obtained by graphitizing coke or the like, graphitized mesophase pitch, graphite such as graphitized carbon fiber are used because of their high capacity and excellent discharge potential flatness. quality carbon materials are used.
昨今、非水系二次電池、とりわけリチウムイオン二次電池の用途展開が図られている。例えば、従来のノート型パソコンや、移動通信機器、携帯型カメラ、携帯型ゲーム機等向けだけでなく、電動工具、電気自動車向け等にも用途展開されている。このため、従来にも増した急速充放電性を要求される。更には、高容量であり、かつ、高サイクル特性を併せ持つリチウムイオン二次電池が望まれている。
In recent years, efforts have been made to develop applications for non-aqueous secondary batteries, especially lithium-ion secondary batteries. For example, it is used not only for conventional notebook computers, mobile communication devices, portable cameras, portable game machines, etc., but also for power tools, electric vehicles, and the like. Therefore, there is a demand for rapid charge/discharge performance that is higher than before. Furthermore, a lithium ion secondary battery having both high capacity and high cycle characteristics is desired.
しかし、炭素中心の負極では、炭素の理論容量が372mAhであるため、これ以上の容量を望むことが不可能である。そこで、様々な理論容量の高い負極材料、特に金属粒子の負極への適用が検討されている。
However, in the carbon-centered negative electrode, the theoretical capacity of carbon is 372 mAh, so it is impossible to expect a higher capacity. Therefore, application of various negative electrode materials having a high theoretical capacity, particularly metal particles, to the negative electrode has been investigated.
特許文献1には、「SiまたはSi合金と、炭素質物または炭素質物と黒鉛成分とを、含んでなるリチウム二次電池用複合活物質において、該活物質の平均粒子径(D50)が1~40μm、比表面積が0.5~45m2/g、平均細孔径が10~40nm、開気孔体積が0.06cm3/g以下であることを特徴とするリチウム二次電池用複合活物質」が提案されている。
In Patent Document 1, "In a composite active material for a lithium secondary battery containing Si or a Si alloy, a carbonaceous material or a carbonaceous material and a graphite component, the average particle diameter (D50) of the active material is 1 to 1. 40 μm, a specific surface area of 0.5 to 45 m 2 /g, an average pore diameter of 10 to 40 nm, and an open pore volume of 0.06 cm 3 /g or less”. Proposed.
特許文献1で開示されている酸化珪素粒子は、湿式粉砕して得られたものであり、粉砕工程において媒体を介して不純物が混入しやすいため、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が高い。
本発明者の検討によれば、これらの金属成分の多い酸化珪素粒子は、これを負極活物質として用いた場合に、得られる二次電池の電池特性が悪く、特に電極膨れの問題が起こることが判明した。 The silicon oxide particles disclosed in Patent Document 1 are obtained by wet pulverization, and are likely to be contaminated with impurities through a medium in the pulverization process. expensive.
According to the studies of the present inventors, when these silicon oxide particles containing a large amount of metal components are used as a negative electrode active material, the battery characteristics of the obtained secondary battery are poor, and in particular, the problem of electrode swelling occurs. There was found.
本発明者の検討によれば、これらの金属成分の多い酸化珪素粒子は、これを負極活物質として用いた場合に、得られる二次電池の電池特性が悪く、特に電極膨れの問題が起こることが判明した。 The silicon oxide particles disclosed in Patent Document 1 are obtained by wet pulverization, and are likely to be contaminated with impurities through a medium in the pulverization process. expensive.
According to the studies of the present inventors, when these silicon oxide particles containing a large amount of metal components are used as a negative electrode active material, the battery characteristics of the obtained secondary battery are poor, and in particular, the problem of electrode swelling occurs. There was found.
本発明は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が低く、二次電池の負極活物質として用いることで、電池特性、特に、電極膨れの抑制効果に優れる粒子を提供することを課題とする。
An object of the present invention is to provide particles having a low total content of zirconium, yttrium, hafnium and manganese and having excellent battery characteristics, particularly an effect of suppressing electrode swelling, by using them as a negative electrode active material for secondary batteries. do.
本発明者は、特定の酸化珪素粒子と黒鉛とを含む粒子が、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が低く、これを負極活物質として用いた二次電池は、電池特性、特に、電極膨れの抑制効果に優れることを見出し、本発明に至った。
即ち、本発明は以下を要旨とする。 The inventors of the present invention have found that particles containing specific silicon oxide particles and graphite have a low total content of zirconium, yttrium, hafnium and manganese, and that a secondary battery using this as a negative electrode active material has battery characteristics, particularly The inventors have found that the effect of suppressing electrode swelling is excellent, and have completed the present invention.
That is, the gist of the present invention is as follows.
即ち、本発明は以下を要旨とする。 The inventors of the present invention have found that particles containing specific silicon oxide particles and graphite have a low total content of zirconium, yttrium, hafnium and manganese, and that a secondary battery using this as a negative electrode active material has battery characteristics, particularly The inventors have found that the effect of suppressing electrode swelling is excellent, and have completed the present invention.
That is, the gist of the present invention is as follows.
[1] ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であり、d50が、1μm以下である、酸化珪素粒子。
[1] Silicon oxide particles having a total content of zirconium, yttrium, hafnium and manganese of 1000 ppm or less and a d50 of 1 μm or less.
[2] ジルコニウムの含有率が、500ppm以下である、[1]に記載の酸化珪素粒子。
[2] The silicon oxide particles according to [1], having a zirconium content of 500 ppm or less.
[3] イットリウムの含有率が、100ppm以下である、[1]又は[2]に記載の酸化珪素粒子。
[3] The silicon oxide particles according to [1] or [2], which have an yttrium content of 100 ppm or less.
[4] ハフニウムの含有率が、100ppm以下である、[1]~[3]のいずれかに記載の酸化珪素粒子。
[4] The silicon oxide particles according to any one of [1] to [3], which have a hafnium content of 100 ppm or less.
[5] マンガンの含有率が、300ppm以下である、[1]~[4]のいずれかに記載の酸化珪素粒子。
[5] The silicon oxide particles according to any one of [1] to [4], having a manganese content of 300 ppm or less.
[6] dmax/d50が、2~10である、[1]~[5]のいずれかに記載の酸化珪素粒子。
[6] The silicon oxide particles according to any one of [1] to [5], wherein d max / d50 is 2-10.
[7] 二次電池に用いる、[1]~[6]のいずれかに記載の酸化珪素粒子。
[7] The silicon oxide particles according to any one of [1] to [6], which are used in secondary batteries.
[8] 酸化珪素粒子を乾式粉砕する工程を含む、[1]~[7]のいずれかに記載の酸化珪素粒子の製造方法。
[8] A method for producing silicon oxide particles according to any one of [1] to [7], including a step of dry pulverizing the silicon oxide particles.
[9] d50が1μm以下である酸化珪素粒子と、黒鉛とを含む粒子であって、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下である、粒子。
[9] Particles containing silicon oxide particles having a d50 of 1 μm or less and graphite, wherein the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less.
[10] ジルコニウムの含有率が、300ppm以下である、[9]に記載の粒子。
[10] The particles according to [9], having a zirconium content of 300 ppm or less.
[11] イットリウムの含有率が、60ppm以下である、[9]又は[10]に記載の粒子。
[11] The particles according to [9] or [10], which have an yttrium content of 60 ppm or less.
[12] ハフニウムの含有率が、60ppm以下である、[9]~[11]のいずれかに記載の粒子。
[12] The particles according to any one of [9] to [11], which have a hafnium content of 60 ppm or less.
[13] マンガンの含有率が、180ppm以下である、[9]~[12]のいずれかに記載の粒子。
[13] The particles according to any one of [9] to [12], having a manganese content of 180 ppm or less.
[14] 酸化珪素粒子と黒鉛とを複合する工程を含む、[9]~[13]のいずれかに記載の粒子の製造方法。
[14] A method for producing particles according to any one of [9] to [13], including a step of combining silicon oxide particles and graphite.
[15] 酸化珪素粒子と黒鉛との複合方法が、酸化珪素粒子と黒鉛とを混合した後に球形化処理する方法である、[14]に記載の粒子の製造方法。
[15] The method for producing particles according to [14], wherein the method of combining silicon oxide particles and graphite is a method of mixing the silicon oxide particles and graphite and then performing a spheroidization treatment.
[16] 正極、負極及び電解質を含む二次電池であって、負極が、集電体と、集電体上に形成された負極活物質層とを含み、負極活物質層が、[9]~[13]のいずれかに記載の粒子を含む、二次電池。
[16] A secondary battery including a positive electrode, a negative electrode and an electrolyte, wherein the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, the negative electrode active material layer comprising [9] A secondary battery comprising the particles according to any one of [13].
[17] 正極、負極及び電解質を含む二次電池の製造方法であって、集電体上に、[9]~[13]のいずれかに記載の粒子を含む負極活物質層を形成して負極を得る工程を含む、二次電池の製造方法。
[17] A method for manufacturing a secondary battery containing a positive electrode, a negative electrode and an electrolyte, comprising forming a negative electrode active material layer containing the particles according to any one of [9] to [13] on a current collector. A method for manufacturing a secondary battery, comprising the step of obtaining a negative electrode.
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の低く、d50が所定値以下の本発明の酸化珪素粒子によれば、これを黒鉛と共に二次電池の負極活物質として用いることで、電池特性、特に電極膨れの抑制効果に優れた二次電池を提供することができる。
また、d50が所定値以下の酸化珪素粒子と黒鉛とを含み、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の低い本発明の粒子によれば、これを二次電池の負極活物質として用いることで、電池特性、特に電極膨れの抑制効果に優れた二次電池を提供することができる。 According to the silicon oxide particles of the present invention, which have a low total content of zirconium, yttrium, hafnium and manganese, and have a d50 of a predetermined value or less, when used together with graphite as a negative electrode active material for a secondary battery, battery characteristics, In particular, it is possible to provide a secondary battery that is excellent in the effect of suppressing electrode swelling.
In addition, according to the particles of the present invention containing silicon oxide particles having a d50 of a predetermined value or less and graphite, and having a low total content of zirconium, yttrium, hafnium and manganese, the particles can be used as a negative electrode active material for secondary batteries. Thus, it is possible to provide a secondary battery having excellent battery characteristics, particularly an effect of suppressing electrode swelling.
また、d50が所定値以下の酸化珪素粒子と黒鉛とを含み、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の低い本発明の粒子によれば、これを二次電池の負極活物質として用いることで、電池特性、特に電極膨れの抑制効果に優れた二次電池を提供することができる。 According to the silicon oxide particles of the present invention, which have a low total content of zirconium, yttrium, hafnium and manganese, and have a d50 of a predetermined value or less, when used together with graphite as a negative electrode active material for a secondary battery, battery characteristics, In particular, it is possible to provide a secondary battery that is excellent in the effect of suppressing electrode swelling.
In addition, according to the particles of the present invention containing silicon oxide particles having a d50 of a predetermined value or less and graphite, and having a low total content of zirconium, yttrium, hafnium and manganese, the particles can be used as a negative electrode active material for secondary batteries. Thus, it is possible to provide a secondary battery having excellent battery characteristics, particularly an effect of suppressing electrode swelling.
以下、本発明を詳細に説明する。本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
本発明において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 The present invention will be described in detail below. The present invention is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention.
In the present invention, when a numerical value or a physical property value is sandwiched before and after the "~", it is used to include the values before and after it.
本発明において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 The present invention will be described in detail below. The present invention is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention.
In the present invention, when a numerical value or a physical property value is sandwiched before and after the "~", it is used to include the values before and after it.
本発明において、「d50」は、体積平均粒子径であり、レーザー回折・散乱式粒度分布測定により測定した体積基準のメジアン径とする。
本発明において、「d90」は、このd50の測定の際に得られた粒度分布において、小さい粒子側から累積90%に相当する粒子径とする。
本発明において、「dmax」は、このd50の測定の際に得られた粒度分布において、粒子が測定された最も大きい粒子径とする。 In the present invention, “d 50 ” is the volume average particle diameter, which is the volume-based median diameter measured by laser diffraction/scattering particle size distribution measurement.
In the present invention, “d 90 ” is defined as a particle diameter corresponding to cumulative 90% from the smaller particle side in the particle size distribution obtained during the measurement of d 50 .
In the present invention, “d max ” is the largest particle size measured for particles in the particle size distribution obtained during the measurement of d 50 .
本発明において、「d90」は、このd50の測定の際に得られた粒度分布において、小さい粒子側から累積90%に相当する粒子径とする。
本発明において、「dmax」は、このd50の測定の際に得られた粒度分布において、粒子が測定された最も大きい粒子径とする。 In the present invention, “d 50 ” is the volume average particle diameter, which is the volume-based median diameter measured by laser diffraction/scattering particle size distribution measurement.
In the present invention, “d 90 ” is defined as a particle diameter corresponding to cumulative 90% from the smaller particle side in the particle size distribution obtained during the measurement of d 50 .
In the present invention, “d max ” is the largest particle size measured for particles in the particle size distribution obtained during the measurement of d 50 .
[酸化珪素粒子]
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であり、d50が、1μm以下であることを特徴とする。 [Silicon oxide particles]
The silicon oxide particles of the present invention are characterized in that the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less and d50 is 1 μm or less.
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であり、d50が、1μm以下であることを特徴とする。 [Silicon oxide particles]
The silicon oxide particles of the present invention are characterized in that the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less and d50 is 1 μm or less.
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であり、d50が、1μm以下である酸化珪素粒子が、黒鉛と複合化した粒子として、電池特性の向上、特に電極膨れの抑制に優れた効果を奏するメカニズムの詳細は明らかではないが、以下のように推定される。
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppmを超えると、酸化珪素粒子内に上記元素が局所的に不均一に存在する状態となる傾向がある。酸化珪素粒子内の上記元素が不均一に存在する箇所は、電池内において充放電反応が阻害され、酸化珪素粒子内に不均一な体積変化を誘発する。その結果、粒子の割れや増大した酸化珪素粒子の体積が減少しない等、電極内において酸化珪素粒子に不可逆的な変化が生じ、電極の膨れを発生させる。ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であると、上記の変化を抑制することができる。 The total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less, and silicon oxide particles having d50 of 1 μm or less are combined with graphite to improve battery characteristics, particularly to suppress electrode swelling. Although the details of the mechanism of the excellent effect are not clear, it is presumed as follows.
When the total content of zirconium, yttrium, hafnium and manganese exceeds 1000 ppm, the above elements tend to exist locally non-uniformly within the silicon oxide particles. Locations in the silicon oxide particles where the above elements exist non-uniformly impede charge-discharge reactions in the battery and induce non-uniform volume changes in the silicon oxide particles. As a result, irreversible changes occur in the silicon oxide particles within the electrode, such as cracking of the particles and no decrease in the volume of the increased silicon oxide particles, resulting in swelling of the electrode. When the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less, the above changes can be suppressed.
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppmを超えると、酸化珪素粒子内に上記元素が局所的に不均一に存在する状態となる傾向がある。酸化珪素粒子内の上記元素が不均一に存在する箇所は、電池内において充放電反応が阻害され、酸化珪素粒子内に不均一な体積変化を誘発する。その結果、粒子の割れや増大した酸化珪素粒子の体積が減少しない等、電極内において酸化珪素粒子に不可逆的な変化が生じ、電極の膨れを発生させる。ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であると、上記の変化を抑制することができる。 The total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less, and silicon oxide particles having d50 of 1 μm or less are combined with graphite to improve battery characteristics, particularly to suppress electrode swelling. Although the details of the mechanism of the excellent effect are not clear, it is presumed as follows.
When the total content of zirconium, yttrium, hafnium and manganese exceeds 1000 ppm, the above elements tend to exist locally non-uniformly within the silicon oxide particles. Locations in the silicon oxide particles where the above elements exist non-uniformly impede charge-discharge reactions in the battery and induce non-uniform volume changes in the silicon oxide particles. As a result, irreversible changes occur in the silicon oxide particles within the electrode, such as cracking of the particles and no decrease in the volume of the increased silicon oxide particles, resulting in swelling of the electrode. When the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less, the above changes can be suppressed.
<ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率>
本発明の酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は1000ppm以下であり、好ましくは500ppm以下であり、より好ましくは300ppm以下であり、更に好ましくは200ppm以下であり、特に好ましくは100ppm以下である。
酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であると、電池特性に優れた二次電池を得ることができ、特に電極膨れの発生を抑制できる。
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は、通常、10ppm以上である。 <Total content of zirconium, yttrium, hafnium and manganese>
The total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles of the present invention is 1000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 200 ppm or less, and particularly preferably 100 ppm or less.
When the total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles is 1000 ppm or less, a secondary battery with excellent battery characteristics can be obtained, and in particular, the occurrence of electrode swelling can be suppressed.
There is no particular lower limit for the total content of zirconium, yttrium, hafnium and manganese, and the lower the better. The total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles of the present invention is usually 10 ppm or more.
本発明の酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は1000ppm以下であり、好ましくは500ppm以下であり、より好ましくは300ppm以下であり、更に好ましくは200ppm以下であり、特に好ましくは100ppm以下である。
酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であると、電池特性に優れた二次電池を得ることができ、特に電極膨れの発生を抑制できる。
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は、通常、10ppm以上である。 <Total content of zirconium, yttrium, hafnium and manganese>
The total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles of the present invention is 1000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 200 ppm or less, and particularly preferably 100 ppm or less.
When the total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles is 1000 ppm or less, a secondary battery with excellent battery characteristics can be obtained, and in particular, the occurrence of electrode swelling can be suppressed.
There is no particular lower limit for the total content of zirconium, yttrium, hafnium and manganese, and the lower the better. The total content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles of the present invention is usually 10 ppm or more.
上記の通り、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の少ない本発明の酸化珪素粒子を製造する方法としては、後述の酸化珪素粒子の製造方法に説明する通り、酸化珪素粒子の粉砕工程において、湿式粉砕ではなく乾式粉砕を行う方法;ジルコニウム、イットリウム、ハフニウム及びマンガンを構成元素として全く含まない設備を用いて湿式粉砕する方法;ジルコニウム、イットリウム、ハフニウム及びマンガンを構成元素として含む設備を用いて湿式粉砕を行って得られた酸化珪素粒子を、希薄アルカリ性水溶液等のジルコニウム、イットリウム、ハフニウム及びマンガンを溶解する洗浄液を用いて洗浄する方法;等が挙げられる。
As described above, the method for producing the silicon oxide particles of the present invention having a low total content of zirconium, yttrium, hafnium and manganese includes: , a method of performing dry grinding instead of wet grinding; a method of wet grinding using equipment that does not contain zirconium, yttrium, hafnium and manganese as constituent elements; using equipment that contains zirconium, yttrium, hafnium and manganese as constituent elements and a method of washing silicon oxide particles obtained by wet pulverization with a washing liquid such as a diluted alkaline aqueous solution that dissolves zirconium, yttrium, hafnium and manganese.
<ジルコニウム含有率>
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ジルコニウム含有率は、好ましくは500ppm以下であり、より好ましくは100ppm以下であり、更に好ましくは50ppm以下である。ジルコニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のジルコニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のジルコニウム含有率は、通常0.1ppm以上である。 <Zirconium content>
In the silicon oxide particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 500 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less. When the zirconium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the zirconium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The zirconium content of the silicon oxide particles of the present invention is usually 0.1 ppm or more.
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ジルコニウム含有率は、好ましくは500ppm以下であり、より好ましくは100ppm以下であり、更に好ましくは50ppm以下である。ジルコニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のジルコニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のジルコニウム含有率は、通常0.1ppm以上である。 <Zirconium content>
In the silicon oxide particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 500 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less. When the zirconium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the zirconium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The zirconium content of the silicon oxide particles of the present invention is usually 0.1 ppm or more.
<イットリウム含有率>
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、イットリウム含有率は、好ましくは100ppm以下であり、より好ましくは10ppm以下であり、更に好ましくは1ppm以下である。イットリウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のイットリウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のイットリウム含有率は、通常0.01ppm以上である。 <Yttrium content>
In the silicon oxide particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less. When the yttrium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the yttrium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The yttrium content of the silicon oxide particles of the present invention is usually 0.01 ppm or more.
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、イットリウム含有率は、好ましくは100ppm以下であり、より好ましくは10ppm以下であり、更に好ましくは1ppm以下である。イットリウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のイットリウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のイットリウム含有率は、通常0.01ppm以上である。 <Yttrium content>
In the silicon oxide particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less. When the yttrium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the yttrium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The yttrium content of the silicon oxide particles of the present invention is usually 0.01 ppm or more.
<ハフニウム含有率>
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ハフニウム含有率は、好ましくは100ppm以下であり、より好ましくは10ppm以下であり、更に好ましくは1ppm以下である。ハフニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のハフニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のハフニウム含有率は、通常0.01ppm以上である。 <Hafnium content>
In the silicon oxide particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less. When the hafnium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the hafnium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The hafnium content of the silicon oxide particles of the present invention is usually 0.01 ppm or more.
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ハフニウム含有率は、好ましくは100ppm以下であり、より好ましくは10ppm以下であり、更に好ましくは1ppm以下である。ハフニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のハフニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のハフニウム含有率は、通常0.01ppm以上である。 <Hafnium content>
In the silicon oxide particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less. When the hafnium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the hafnium content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The hafnium content of the silicon oxide particles of the present invention is usually 0.01 ppm or more.
<マンガン含有率>
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、金属元素の含有率には特に制限はないが、これらの金属元素のうち、マンガン含有率は、好ましくは300ppm以下であり、より好ましくは200ppm以下であり、更に好ましくは100ppm以下である。マンガン含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のマンガン含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のマンガン含有率は、通常0.1ppm以上である。 <Manganese content>
In the silicon oxide particles of the present invention, the content of metal elements is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. , preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less. When the manganese content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the manganese content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The manganese content of the silicon oxide particles of the present invention is usually 0.1 ppm or more.
本発明の酸化珪素粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下であれば、金属元素の含有率には特に制限はないが、これらの金属元素のうち、マンガン含有率は、好ましくは300ppm以下であり、より好ましくは200ppm以下であり、更に好ましくは100ppm以下である。マンガン含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の酸化珪素粒子のマンガン含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の酸化珪素粒子のマンガン含有率は、通常0.1ppm以上である。 <Manganese content>
In the silicon oxide particles of the present invention, the content of metal elements is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 1000 ppm or less. , preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less. When the manganese content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the manganese content of the silicon oxide particles of the present invention is not particularly limited, and the smaller the better. The manganese content of the silicon oxide particles of the present invention is usually 0.1 ppm or more.
本明細書において、酸化珪素粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率は、調製した試料の溶液中の元素をICP-AES法にて定量した値である。
In this specification, the contents of zirconium, yttrium, hafnium and manganese in silicon oxide particles are values obtained by quantifying the elements in the prepared sample solution by the ICP-AES method.
<d50>
本発明の酸化珪素粒子の体積平均粒子径(d50)は、1μm以下であり、好ましくは0.1μm以上0.9μm以下であり、より好ましくは0.2μm以上0.8μm以下である。酸化珪素粒子のd50が上記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。 <d50>
The volume average particle diameter (d 50 ) of the silicon oxide particles of the present invention is 1 μm or less, preferably 0.1 μm or more and 0.9 μm or less, more preferably 0.2 μm or more and 0.8 μm or less. When the d50 of the silicon oxide particles is within the above range, the volume expansion due to charge/discharge is reduced, and good cycle characteristics can be obtained while maintaining the charge/discharge capacity.
本発明の酸化珪素粒子の体積平均粒子径(d50)は、1μm以下であり、好ましくは0.1μm以上0.9μm以下であり、より好ましくは0.2μm以上0.8μm以下である。酸化珪素粒子のd50が上記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。 <d50>
The volume average particle diameter (d 50 ) of the silicon oxide particles of the present invention is 1 μm or less, preferably 0.1 μm or more and 0.9 μm or less, more preferably 0.2 μm or more and 0.8 μm or less. When the d50 of the silicon oxide particles is within the above range, the volume expansion due to charge/discharge is reduced, and good cycle characteristics can be obtained while maintaining the charge/discharge capacity.
<dmax>
本発明の酸化珪素粒子の最大粒子径(dmax)は、通常0.02μm以上20μm以下であり、好ましくは0.03μm以上5μm以下であり、より好ましくは0.04μm以上2μm以下である。dmaxが上記下限値以上であると、高容量となる傾向にある。dmaxが上記上限値以下であると、後述の黒鉛との複合化が不十分な酸化珪素粒子を低減できる傾向にある。 <dmax>
The maximum particle diameter (d max ) of the silicon oxide particles of the present invention is usually 0.02 μm or more and 20 μm or less, preferably 0.03 μm or more and 5 μm or less, more preferably 0.04 μm or more and 2 μm or less. When d max is equal to or higher than the above lower limit, the capacity tends to be high. When d max is equal to or less than the above upper limit, there is a tendency that silicon oxide particles insufficiently combined with graphite, which will be described later, can be reduced.
本発明の酸化珪素粒子の最大粒子径(dmax)は、通常0.02μm以上20μm以下であり、好ましくは0.03μm以上5μm以下であり、より好ましくは0.04μm以上2μm以下である。dmaxが上記下限値以上であると、高容量となる傾向にある。dmaxが上記上限値以下であると、後述の黒鉛との複合化が不十分な酸化珪素粒子を低減できる傾向にある。 <dmax>
The maximum particle diameter (d max ) of the silicon oxide particles of the present invention is usually 0.02 μm or more and 20 μm or less, preferably 0.03 μm or more and 5 μm or less, more preferably 0.04 μm or more and 2 μm or less. When d max is equal to or higher than the above lower limit, the capacity tends to be high. When d max is equal to or less than the above upper limit, there is a tendency that silicon oxide particles insufficiently combined with graphite, which will be described later, can be reduced.
<dmax/d50>
本発明の酸化珪素粒子の最大粒子径(dmax)と体積平均粒子径(d50)との比dmax/d50は、好ましくは2~10であり、より好ましくは2.5~8であり、更に好ましくは3~6である。dmax/d50が上記下限値以上であると、電極の重点率を高めやすい。dmax/d50が上記上限値以下であると、酸化珪素粒子毎の体積膨張の差が大きくなりにくい。 < dmax / d50 >
The ratio d max /d 50 between the maximum particle diameter (d max ) and the volume average particle diameter (d 50 ) of the silicon oxide particles of the present invention is preferably 2 to 10, more preferably 2.5 to 8. Yes, more preferably 3-6. When d max /d 50 is at least the above lower limit, it is easy to increase the weighting ratio of the electrode. When d max /d 50 is equal to or less than the above upper limit, the difference in volume expansion between silicon oxide particles is less likely to increase.
本発明の酸化珪素粒子の最大粒子径(dmax)と体積平均粒子径(d50)との比dmax/d50は、好ましくは2~10であり、より好ましくは2.5~8であり、更に好ましくは3~6である。dmax/d50が上記下限値以上であると、電極の重点率を高めやすい。dmax/d50が上記上限値以下であると、酸化珪素粒子毎の体積膨張の差が大きくなりにくい。 < dmax / d50 >
The ratio d max /d 50 between the maximum particle diameter (d max ) and the volume average particle diameter (d 50 ) of the silicon oxide particles of the present invention is preferably 2 to 10, more preferably 2.5 to 8. Yes, more preferably 3-6. When d max /d 50 is at least the above lower limit, it is easy to increase the weighting ratio of the electrode. When d max /d 50 is equal to or less than the above upper limit, the difference in volume expansion between silicon oxide particles is less likely to increase.
<酸化珪素粒子の種類>
本発明の酸化珪素粒子の結晶状態、単結晶であってもよく、多結晶であってもよい。小粒子径化しやすくレート特性を高くできる点から、酸化珪素粒子は、好ましくは多結晶又はアモルファスである。 <Types of Silicon Oxide Particles>
The crystal state of the silicon oxide particles of the present invention may be single crystal or polycrystal. The silicon oxide particles are preferably polycrystalline or amorphous because the particle size can be easily reduced and the rate characteristics can be improved.
本発明の酸化珪素粒子の結晶状態、単結晶であってもよく、多結晶であってもよい。小粒子径化しやすくレート特性を高くできる点から、酸化珪素粒子は、好ましくは多結晶又はアモルファスである。 <Types of Silicon Oxide Particles>
The crystal state of the silicon oxide particles of the present invention may be single crystal or polycrystal. The silicon oxide particles are preferably polycrystalline or amorphous because the particle size can be easily reduced and the rate characteristics can be improved.
酸化珪素は、一般式SiOxで表され、二酸化珪素(SiO2)と金属Si(Si)とを原料として得られる。そのxの値は、通常0より大きく2以下であり、好ましくは0.1以上1.8以下であり、より好ましくは0.5以上1.5以下であり、更に好ましくは0.8以上1.2以下である。xが上記範囲内であると、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
Silicon oxide is represented by the general formula SiOx and is obtained using silicon dioxide (SiO 2 ) and metal Si (Si) as raw materials. The value of x is usually greater than 0 and 2 or less, preferably 0.1 or more and 1.8 or less, more preferably 0.5 or more and 1.5 or less, still more preferably 0.8 or more and 1 .2 or less. When x is within the above range, it is possible to reduce the irreversible capacity due to the combination of Li and oxygen while achieving a high capacity.
本明細書において、SiOxにおけるxの値は、酸化珪素粒子の酸素量を不活性ガス雰囲気下インパルス炉加熱抽出-IR検出法によって測定し、酸化珪素粒子のケイ素量をICP発光分光分析法によって測定し、ケイ素に対する酸素の量の比を算出した値である。
In this specification, the value of x in SiOx is measured by measuring the oxygen content of silicon oxide particles by impulse furnace heating extraction under an inert gas atmosphere-IR detection method, and measuring the silicon content of silicon oxide particles by ICP emission spectrometry. It is a value obtained by calculating the ratio of the amount of oxygen to silicon.
SiOxは、黒鉛と比較して理論容量が大きく、非晶質Si又はナノサイズのSi結晶は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
SiOx has a larger theoretical capacity than graphite, and amorphous Si or nano-sized Si crystals facilitate the entry and exit of alkali ions such as lithium ions, making it possible to obtain a high capacity.
<その他の物性>
本発明の酸化珪素粒子は、以下の物性を示すことが好ましい。本発明における測定方法は特に制限はないが、特段の事情がない限り実施例に記載の測定方法に準じる。 <Other physical properties>
The silicon oxide particles of the present invention preferably exhibit the following physical properties. The measuring method in the present invention is not particularly limited, but unless there are special circumstances, the measuring method described in the Examples applies.
本発明の酸化珪素粒子は、以下の物性を示すことが好ましい。本発明における測定方法は特に制限はないが、特段の事情がない限り実施例に記載の測定方法に準じる。 <Other physical properties>
The silicon oxide particles of the present invention preferably exhibit the following physical properties. The measuring method in the present invention is not particularly limited, but unless there are special circumstances, the measuring method described in the Examples applies.
・BET法による比表面積
酸化珪素粒子のBET法による比表面積は、通常0.5m2/g以上120m2/g以下であり、好ましくは1m2/g以上100m2/g以下である。酸化珪素粒子のBET法による比表面積が上記範囲内であると、電池の充放電効率及び放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。 - Specific Surface Area by BET Method The specific surface area of the silicon oxide particles by the BET method is usually 0.5 m 2 /g or more and 120 m 2 /g or less, preferably 1 m 2 /g or more and 100 m 2 /g or less. When the specific surface area of the silicon oxide particles as determined by the BET method is within the above range, the charge/discharge efficiency and discharge capacity of the battery are high, lithium is quickly taken in and out during high-speed charge/discharge, and the rate characteristics are excellent, which is preferable.
酸化珪素粒子のBET法による比表面積は、通常0.5m2/g以上120m2/g以下であり、好ましくは1m2/g以上100m2/g以下である。酸化珪素粒子のBET法による比表面積が上記範囲内であると、電池の充放電効率及び放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。 - Specific Surface Area by BET Method The specific surface area of the silicon oxide particles by the BET method is usually 0.5 m 2 /g or more and 120 m 2 /g or less, preferably 1 m 2 /g or more and 100 m 2 /g or less. When the specific surface area of the silicon oxide particles as determined by the BET method is within the above range, the charge/discharge efficiency and discharge capacity of the battery are high, lithium is quickly taken in and out during high-speed charge/discharge, and the rate characteristics are excellent, which is preferable.
本明細書において、比表面積は、窒素吸着によるBET法により測定した値である。
As used herein, the specific surface area is a value measured by the BET method using nitrogen adsorption.
・含有酸素率
酸化珪素粒子の含有酸素率は、酸化珪素粒子100質量%中、通常0.01質量%以上50質量%以下であり、好ましくは0.05質量%以上45質量%以下である。酸化珪素粒子内の酸素分布状態は、表面近傍に存在してもよく、粒子内部に存在してもよく、粒子内一様に存在してもよいが、表面近傍に存在していることが好ましい。酸化珪素粒子の含有酸素率が上記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。 -Oxygen Content The oxygen content of the silicon oxide particles is usually 0.01% by mass or more and 50% by mass or less, preferably 0.05% by mass or more and 45% by mass or less, based on 100% by mass of the silicon oxide particles. The state of oxygen distribution in the silicon oxide particles may be in the vicinity of the surface, in the interior of the particles, or uniformly within the particles, but preferably in the vicinity of the surface. . When the oxygen content of the silicon oxide particles is within the above range, the strong bond between Si and O suppresses the volume expansion associated with charging and discharging, resulting in excellent cycle characteristics, which is preferable.
酸化珪素粒子の含有酸素率は、酸化珪素粒子100質量%中、通常0.01質量%以上50質量%以下であり、好ましくは0.05質量%以上45質量%以下である。酸化珪素粒子内の酸素分布状態は、表面近傍に存在してもよく、粒子内部に存在してもよく、粒子内一様に存在してもよいが、表面近傍に存在していることが好ましい。酸化珪素粒子の含有酸素率が上記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。 -Oxygen Content The oxygen content of the silicon oxide particles is usually 0.01% by mass or more and 50% by mass or less, preferably 0.05% by mass or more and 45% by mass or less, based on 100% by mass of the silicon oxide particles. The state of oxygen distribution in the silicon oxide particles may be in the vicinity of the surface, in the interior of the particles, or uniformly within the particles, but preferably in the vicinity of the surface. . When the oxygen content of the silicon oxide particles is within the above range, the strong bond between Si and O suppresses the volume expansion associated with charging and discharging, resulting in excellent cycle characteristics, which is preferable.
本明細書において、酸化珪素粒子の含有酸素率は、酸化珪素粒子の酸素量を不活性ガス雰囲気下インパルス炉加熱抽出-IR検出法によって測定した値である。
In this specification, the oxygen content of silicon oxide particles is a value obtained by measuring the amount of oxygen in silicon oxide particles by an impulse furnace heating extraction-IR detection method under an inert gas atmosphere.
・結晶子サイズ
酸化珪素粒子は、結晶構造を含有していてもよく、アモルファスでもよいが、酸化珪素粒子が結晶構造を含有する場合は、酸化珪素粒子のX線回折法により算出される(111)面の結晶子サイズは、通常0.05nm以上100nm以下であり、好ましくは1nm以上50nm以下である。酸化珪素粒子の結晶子サイズが上記範囲内であると、SiとLiイオンの反応が迅速に進み、入出力に優れるので好ましい。 ・Crystallite size Silicon oxide particles may contain a crystalline structure or may be amorphous. ) plane is usually 0.05 nm or more and 100 nm or less, preferably 1 nm or more and 50 nm or less. When the crystallite size of the silicon oxide particles is within the above range, the reaction between Si and Li ions proceeds rapidly, and the input/output is excellent, which is preferable.
酸化珪素粒子は、結晶構造を含有していてもよく、アモルファスでもよいが、酸化珪素粒子が結晶構造を含有する場合は、酸化珪素粒子のX線回折法により算出される(111)面の結晶子サイズは、通常0.05nm以上100nm以下であり、好ましくは1nm以上50nm以下である。酸化珪素粒子の結晶子サイズが上記範囲内であると、SiとLiイオンの反応が迅速に進み、入出力に優れるので好ましい。 ・Crystallite size Silicon oxide particles may contain a crystalline structure or may be amorphous. ) plane is usually 0.05 nm or more and 100 nm or less, preferably 1 nm or more and 50 nm or less. When the crystallite size of the silicon oxide particles is within the above range, the reaction between Si and Li ions proceeds rapidly, and the input/output is excellent, which is preferable.
本明細書において、結晶子サイズは、X線広角回折法により観測される2θ=28.4°付近を中心としたSi(111)面に帰属される回折ピークからデバイ=シェラー法によって求めた値である。
In this specification, the crystallite size is a value obtained by the Debye-Scherrer method from the diffraction peak attributed to the Si (111) plane centered around 2θ = 28.4 ° observed by the X-ray wide-angle diffraction method. is.
[酸化珪素粒子の製造方法]
酸化珪素粒子は、市販されている酸化珪素粒子に精製処理と粉砕処理を行って用いてもよい。酸化珪素粒子は、粒子径の大きな酸化珪素粒子を、後述するボールミル等により力学的エネルギー処理を加えると共にアルカリ性の洗浄液で短時間洗浄処理することにより製造したものであってもよい。 [Method for producing silicon oxide particles]
As the silicon oxide particles, commercially available silicon oxide particles may be used after being subjected to purification treatment and pulverization treatment. The silicon oxide particles may be produced by subjecting silicon oxide particles having a large particle size to mechanical energy treatment using a ball mill or the like described later and washing the particles with an alkaline washing solution for a short period of time.
酸化珪素粒子は、市販されている酸化珪素粒子に精製処理と粉砕処理を行って用いてもよい。酸化珪素粒子は、粒子径の大きな酸化珪素粒子を、後述するボールミル等により力学的エネルギー処理を加えると共にアルカリ性の洗浄液で短時間洗浄処理することにより製造したものであってもよい。 [Method for producing silicon oxide particles]
As the silicon oxide particles, commercially available silicon oxide particles may be used after being subjected to purification treatment and pulverization treatment. The silicon oxide particles may be produced by subjecting silicon oxide particles having a large particle size to mechanical energy treatment using a ball mill or the like described later and washing the particles with an alkaline washing solution for a short period of time.
また、特に製法は問わないが、例えば、特許第3952118号公報に記載の方法によって製造された酸化珪素粒子を使用することもできる。
例えば、SiO2粉末と、金属Si粉末を特定の割合で混合し、この混合物を反応器に充填した後、常圧又は特定の圧力に減圧し、1000℃以上に昇温し、保持することでSiOxガスを発生させ、冷却析出させて、酸化珪素粒子を得ることができる(スパッタ処理)。析出物は、粉砕処理(力学的エネルギー処理)を与えることで粒子とし、これを用いることもできる。 In addition, although the production method is not particularly limited, silicon oxide particles produced by the method described in Japanese Patent No. 3952118, for example, can also be used.
For example, SiO 2 powder and metal Si powder are mixed in a specific ratio, and after filling this mixture into a reactor, the pressure is reduced to normal pressure or a specific pressure, and the temperature is raised to 1000 ° C. or higher and held. Silicon oxide particles can be obtained by generating SiOx gas and cooling and depositing it (sputtering process). The precipitate can also be made into particles by applying a pulverization treatment (dynamic energy treatment) and used.
例えば、SiO2粉末と、金属Si粉末を特定の割合で混合し、この混合物を反応器に充填した後、常圧又は特定の圧力に減圧し、1000℃以上に昇温し、保持することでSiOxガスを発生させ、冷却析出させて、酸化珪素粒子を得ることができる(スパッタ処理)。析出物は、粉砕処理(力学的エネルギー処理)を与えることで粒子とし、これを用いることもできる。 In addition, although the production method is not particularly limited, silicon oxide particles produced by the method described in Japanese Patent No. 3952118, for example, can also be used.
For example, SiO 2 powder and metal Si powder are mixed in a specific ratio, and after filling this mixture into a reactor, the pressure is reduced to normal pressure or a specific pressure, and the temperature is raised to 1000 ° C. or higher and held. Silicon oxide particles can be obtained by generating SiOx gas and cooling and depositing it (sputtering process). The precipitate can also be made into particles by applying a pulverization treatment (dynamic energy treatment) and used.
本発明の酸化珪素粒子の製造に当たり、粉砕工程を経る場合、粉砕を湿式で行うと媒体を介して不純物が混入しやすいため、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の低い酸化珪素粒子を得ることができない。
このため、粉砕は乾式粉砕で行うことが好ましい。 In the production of the silicon oxide particles of the present invention, when the pulverization step is performed, if the pulverization is performed in a wet process, impurities are likely to be mixed in through the medium. can't get
For this reason, dry pulverization is preferably used for the pulverization.
このため、粉砕は乾式粉砕で行うことが好ましい。 In the production of the silicon oxide particles of the present invention, when the pulverization step is performed, if the pulverization is performed in a wet process, impurities are likely to be mixed in through the medium. can't get
For this reason, dry pulverization is preferably used for the pulverization.
乾式粉砕処理は、例えば、ボールミル、振動ボールミル、遊星ボールミル、転動ボールミル、ビーズミル等の装置を用いて、反応器に充填した原料と、この原料と反応しない運動体を入れて、これに振動、回転又はこれらが組み合わされた動きを与える方法によって行うことができる。
In the dry pulverization process, for example, using an apparatus such as a ball mill, a vibrating ball mill, a planetary ball mill, a rolling ball mill, a bead mill, etc., a raw material filled in a reactor and a moving body that does not react with the raw material are placed, and vibrated, It can be done by a method that imparts motion by rotation or a combination thereof.
乾式粉砕処理時間は、通常3分以上であり、好ましくは5分以上であり、より好ましくは10分以上であり、更に好ましくは15分以上であり、通常5時間以下であり、好ましくは4時間以下であり、より好ましくは3時間以下であり、更に好ましくは1時間以下である。乾式粉砕処理時間が上記範囲内であると、生産性の向上と製品物性の安定性を両立できる。
乾式粉砕処理温度は、溶媒の凝固点以上沸点以下の温度であることが、プロセス上好ましい。 Dry pulverization treatment time is usually 3 minutes or more, preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 15 minutes or more, usually 5 hours or less, preferably 4 hours. or less, more preferably 3 hours or less, and still more preferably 1 hour or less. When the dry pulverization treatment time is within the above range, both improvement in productivity and stability of product properties can be achieved.
The dry pulverization treatment temperature is preferably above the freezing point and below the boiling point of the solvent in view of the process.
乾式粉砕処理温度は、溶媒の凝固点以上沸点以下の温度であることが、プロセス上好ましい。 Dry pulverization treatment time is usually 3 minutes or more, preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 15 minutes or more, usually 5 hours or less, preferably 4 hours. or less, more preferably 3 hours or less, and still more preferably 1 hour or less. When the dry pulverization treatment time is within the above range, both improvement in productivity and stability of product properties can be achieved.
The dry pulverization treatment temperature is preferably above the freezing point and below the boiling point of the solvent in view of the process.
<酸化珪素粒子の窒化処理>
酸化珪素粒子が表面に窒素原子との結合を有することで、充放電に寄与することできない該酸化珪素粒子の酸化物の存在が抑制され、該酸化珪素粒子の重量あたりの容量が向上する点、酸化珪素粒子表面の反応性を低減し、充放電効率が向上させることができる点から、酸化珪素粒子と窒素原子との結合を形成させることが好ましい。
酸化珪素粒子と窒素原子との結合は、XPS、IR、XAFS等々の方法によって分析可能である。
酸化珪素粒子と窒素原子との結合を形成させるために、上記スパッタ処理あるいは乾式粉砕処理中に窒素原子を有するガスを混合する方法がある。 <Nitriding Treatment of Silicon Oxide Particles>
Since the silicon oxide particles have bonds with nitrogen atoms on their surfaces, the presence of oxides of the silicon oxide particles that cannot contribute to charging and discharging is suppressed, and the capacity per weight of the silicon oxide particles is improved. It is preferable to form a bond between the silicon oxide particles and the nitrogen atoms in order to reduce the reactivity of the surface of the silicon oxide particles and improve the charge/discharge efficiency.
Bonds between silicon oxide particles and nitrogen atoms can be analyzed by methods such as XPS, IR, XAFS, and the like.
In order to form bonds between silicon oxide particles and nitrogen atoms, there is a method of mixing a gas containing nitrogen atoms during the above-described sputtering treatment or dry pulverization treatment.
酸化珪素粒子が表面に窒素原子との結合を有することで、充放電に寄与することできない該酸化珪素粒子の酸化物の存在が抑制され、該酸化珪素粒子の重量あたりの容量が向上する点、酸化珪素粒子表面の反応性を低減し、充放電効率が向上させることができる点から、酸化珪素粒子と窒素原子との結合を形成させることが好ましい。
酸化珪素粒子と窒素原子との結合は、XPS、IR、XAFS等々の方法によって分析可能である。
酸化珪素粒子と窒素原子との結合を形成させるために、上記スパッタ処理あるいは乾式粉砕処理中に窒素原子を有するガスを混合する方法がある。 <Nitriding Treatment of Silicon Oxide Particles>
Since the silicon oxide particles have bonds with nitrogen atoms on their surfaces, the presence of oxides of the silicon oxide particles that cannot contribute to charging and discharging is suppressed, and the capacity per weight of the silicon oxide particles is improved. It is preferable to form a bond between the silicon oxide particles and the nitrogen atoms in order to reduce the reactivity of the surface of the silicon oxide particles and improve the charge/discharge efficiency.
Bonds between silicon oxide particles and nitrogen atoms can be analyzed by methods such as XPS, IR, XAFS, and the like.
In order to form bonds between silicon oxide particles and nitrogen atoms, there is a method of mixing a gas containing nitrogen atoms during the above-described sputtering treatment or dry pulverization treatment.
[粒子]
本発明の粒子は、d50が1μm以下である酸化珪素粒子と、黒鉛とを含む粒子であって、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下であることを特徴とする。 [particle]
The particles of the present invention are particles containing silicon oxide particles having a d50 of 1 μm or less and graphite, wherein the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less.
本発明の粒子は、d50が1μm以下である酸化珪素粒子と、黒鉛とを含む粒子であって、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下であることを特徴とする。 [particle]
The particles of the present invention are particles containing silicon oxide particles having a d50 of 1 μm or less and graphite, wherein the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less.
d50が1μm以下である酸化珪素粒子と黒鉛を含み、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下である粒子が、電池特性の向上、特に電極膨れの抑制に優れた効果を奏するメカニズムの詳細は明らかではないが、以下のように推定される。
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppmを超えると、粒子内に上記元素が局所的に不均一に存在する状態となる傾向がある。粒子内の上記元素が不均一に存在する箇所は、電池内において充放電反応が阻害され、粒子内に不均一な体積変化を誘発する。その結果、粒子の割れや増大した粒子の体積が減少しない等、電極内において粒子に不可逆的な変化が生じ、電極の膨れを発生させる。ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下であると、上記の変化を抑制することができる。 Particles containing silicon oxide particles having a d50 of 1 μm or less and graphite, and having a total content of zirconium, yttrium, hafnium and manganese of 600 ppm or less have an excellent effect in improving battery characteristics, particularly in suppressing electrode swelling. Although the details of the mechanism are not clear, it is presumed as follows.
When the total content of zirconium, yttrium, hafnium and manganese exceeds 600 ppm, the above elements tend to exist locally non-uniformly within the particles. Locations in the particles where the above elements exist non-uniformly impede charging and discharging reactions in the battery, and induce non-uniform volumetric changes in the particles. As a result, irreversible changes occur in the particles within the electrode, such as cracking of the particles and no reduction in the volume of the increased particles, resulting in swelling of the electrode. When the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, the above change can be suppressed.
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppmを超えると、粒子内に上記元素が局所的に不均一に存在する状態となる傾向がある。粒子内の上記元素が不均一に存在する箇所は、電池内において充放電反応が阻害され、粒子内に不均一な体積変化を誘発する。その結果、粒子の割れや増大した粒子の体積が減少しない等、電極内において粒子に不可逆的な変化が生じ、電極の膨れを発生させる。ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下であると、上記の変化を抑制することができる。 Particles containing silicon oxide particles having a d50 of 1 μm or less and graphite, and having a total content of zirconium, yttrium, hafnium and manganese of 600 ppm or less have an excellent effect in improving battery characteristics, particularly in suppressing electrode swelling. Although the details of the mechanism are not clear, it is presumed as follows.
When the total content of zirconium, yttrium, hafnium and manganese exceeds 600 ppm, the above elements tend to exist locally non-uniformly within the particles. Locations in the particles where the above elements exist non-uniformly impede charging and discharging reactions in the battery, and induce non-uniform volumetric changes in the particles. As a result, irreversible changes occur in the particles within the electrode, such as cracking of the particles and no reduction in the volume of the increased particles, resulting in swelling of the electrode. When the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, the above change can be suppressed.
<ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率>
本発明の粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は600ppm以下であり、好ましくは300ppm以下であり、より好ましくは120ppm以下であり、更に好ましくは60ppm以下である。
粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であると、電池特性に優れた二次電池を得ることができ、特に電極膨れの発生を抑制できる。
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は、通常、6ppm以上である。 <Total content of zirconium, yttrium, hafnium and manganese>
The total content of zirconium, yttrium, hafnium and manganese in the particles of the present invention is 600 ppm or less, preferably 300 ppm or less, more preferably 120 ppm or less, still more preferably 60 ppm or less.
When the total content of zirconium, yttrium, hafnium, and manganese in the particles is 600 ppm or less, a secondary battery with excellent battery characteristics can be obtained, and in particular, the occurrence of electrode swelling can be suppressed.
There is no particular lower limit for the total content of zirconium, yttrium, hafnium and manganese, and the lower the better. The total content of zirconium, yttrium, hafnium and manganese in the particles of the invention is usually 6 ppm or more.
本発明の粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は600ppm以下であり、好ましくは300ppm以下であり、より好ましくは120ppm以下であり、更に好ましくは60ppm以下である。
粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であると、電池特性に優れた二次電池を得ることができ、特に電極膨れの発生を抑制できる。
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率は、通常、6ppm以上である。 <Total content of zirconium, yttrium, hafnium and manganese>
The total content of zirconium, yttrium, hafnium and manganese in the particles of the present invention is 600 ppm or less, preferably 300 ppm or less, more preferably 120 ppm or less, still more preferably 60 ppm or less.
When the total content of zirconium, yttrium, hafnium, and manganese in the particles is 600 ppm or less, a secondary battery with excellent battery characteristics can be obtained, and in particular, the occurrence of electrode swelling can be suppressed.
There is no particular lower limit for the total content of zirconium, yttrium, hafnium and manganese, and the lower the better. The total content of zirconium, yttrium, hafnium and manganese in the particles of the invention is usually 6 ppm or more.
上記の通り、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の少ない本発明の粒子を製造する方法としては、酸化珪素粒子として、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率の少ない前述の本発明の酸化珪素粒子を用い、本発明の酸化珪素粒子と黒鉛とを複合化する方法が挙げられる。特に、この酸化珪素粒子と黒鉛との複合工程において、酸化珪素粒子と黒鉛とを混合した後に球形化処理する方法が好ましい。
As described above, as a method for producing the particles of the present invention having a low total content of zirconium, yttrium, hafnium and manganese, the silicon oxide particles of the present invention having a low total content of zirconium, yttrium, hafnium and manganese can be used. and the silicon oxide particles of the present invention are combined with graphite. In particular, in the step of combining the silicon oxide particles and graphite, a method of mixing the silicon oxide particles and graphite and then performing a spheroidizing treatment is preferred.
<ジルコニウム含有率>
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ジルコニウム含有率は、好ましくは300ppm以下であり、より好ましくは60ppm以下であり、更に好ましくは30ppm以下である。ジルコニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のジルコニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のジルコニウム含有率は、通常0.06ppm以上である。 <Zirconium content>
In the particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less. It is preferably 300 ppm or less, more preferably 60 ppm or less, still more preferably 30 ppm or less. When the zirconium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the zirconium content of the particles of the present invention is not particularly limited, and the smaller the better. The zirconium content of the particles of the invention is usually 0.06 ppm or more.
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ジルコニウム含有率は、好ましくは300ppm以下であり、より好ましくは60ppm以下であり、更に好ましくは30ppm以下である。ジルコニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のジルコニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のジルコニウム含有率は、通常0.06ppm以上である。 <Zirconium content>
In the particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less. It is preferably 300 ppm or less, more preferably 60 ppm or less, still more preferably 30 ppm or less. When the zirconium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the zirconium content of the particles of the present invention is not particularly limited, and the smaller the better. The zirconium content of the particles of the invention is usually 0.06 ppm or more.
<イットリウム含有率>
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、イットリウム含有率は、好ましくは60ppm以下であり、より好ましくは6ppm以下であり、更に好ましくは0.06ppm以下である。イットリウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のイットリウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のイットリウム含有率は、通常0.006ppm以上である。 <Yttrium content>
In the particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the yttrium content is It is preferably 60 ppm or less, more preferably 6 ppm or less, and still more preferably 0.06 ppm or less. When the yttrium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the yttrium content of the particles of the present invention is not particularly limited, and the smaller the better. The yttrium content of the particles of the invention is usually 0.006 ppm or more.
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、イットリウム含有率は、好ましくは60ppm以下であり、より好ましくは6ppm以下であり、更に好ましくは0.06ppm以下である。イットリウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のイットリウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のイットリウム含有率は、通常0.006ppm以上である。 <Yttrium content>
In the particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the yttrium content is It is preferably 60 ppm or less, more preferably 6 ppm or less, and still more preferably 0.06 ppm or less. When the yttrium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the yttrium content of the particles of the present invention is not particularly limited, and the smaller the better. The yttrium content of the particles of the invention is usually 0.006 ppm or more.
<ハフニウム含有率>
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ハフニウム含有率は、好ましくは60ppm以下であり、より好ましくは6ppm以下であり、更に好ましくは0.6ppm以下である。ハフニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のハフニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のハフニウム含有率は、通常0.006ppm以上である。 <Hafnium content>
In the particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the hafnium content is It is preferably 60 ppm or less, more preferably 6 ppm or less, and still more preferably 0.6 ppm or less. When the hafnium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the hafnium content of the particles of the present invention is not particularly limited, and the smaller the better. The hafnium content of the particles of the invention is usually 0.006 ppm or more.
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、各金属元素の含有率には特に制限はないが、これらの金属元素のうち、ハフニウム含有率は、好ましくは60ppm以下であり、より好ましくは6ppm以下であり、更に好ましくは0.6ppm以下である。ハフニウム含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のハフニウム含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のハフニウム含有率は、通常0.006ppm以上である。 <Hafnium content>
In the particles of the present invention, the content of each metal element is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the hafnium content is It is preferably 60 ppm or less, more preferably 6 ppm or less, and still more preferably 0.6 ppm or less. When the hafnium content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the hafnium content of the particles of the present invention is not particularly limited, and the smaller the better. The hafnium content of the particles of the invention is usually 0.006 ppm or more.
<マンガン含有率>
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、金属元素の含有率には特に制限はないが、これらの金属元素のうち、マンガン含有率は、好ましくは180ppm以下であり、より好ましくは120ppm以下であり、更に好ましくは60ppm以下である。マンガン含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のマンガン含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のマンガン含有率は、通常0.06ppm以上である。 <Manganese content>
In the particles of the present invention, the content of metal elements is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the manganese content is preferably is 180 ppm or less, more preferably 120 ppm or less, and still more preferably 60 ppm or less. When the manganese content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the manganese content of the particles of the present invention is not particularly limited, and the smaller the better. The manganese content of the particles of the invention is usually 0.06 ppm or more.
本発明の粒子は、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下であれば、金属元素の含有率には特に制限はないが、これらの金属元素のうち、マンガン含有率は、好ましくは180ppm以下であり、より好ましくは120ppm以下であり、更に好ましくは60ppm以下である。マンガン含有率が上記上限値以下であると、電池内での析出物の発生を抑制する傾向がある。
本発明の粒子のマンガン含有率の下限値は、特に制限はなく、小さいほど好ましい。本発明の粒子のマンガン含有率は、通常0.06ppm以上である。 <Manganese content>
In the particles of the present invention, the content of metal elements is not particularly limited as long as the total content of zirconium, yttrium, hafnium and manganese is 600 ppm or less, but among these metal elements, the manganese content is preferably is 180 ppm or less, more preferably 120 ppm or less, and still more preferably 60 ppm or less. When the manganese content is equal to or less than the above upper limit, there is a tendency to suppress the generation of deposits within the battery.
The lower limit of the manganese content of the particles of the present invention is not particularly limited, and the smaller the better. The manganese content of the particles of the invention is usually 0.06 ppm or more.
本明細書において、粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率は、調製した試料の溶液中の元素をICP-AES法にて定量した値である。
In this specification, the contents of zirconium, yttrium, hafnium and manganese in the particles are the values obtained by quantifying the elements in the prepared sample solution by the ICP-AES method.
<黒鉛>
本発明の粒子の構成成分の一つである黒鉛を、一例として下記に示す。黒鉛は、公知物や市販品を用いてもよい。 <Graphite>
Graphite, which is one of the constituents of the particles of the present invention, is shown below as an example. A publicly known product or a commercially available product may be used as the graphite.
本発明の粒子の構成成分の一つである黒鉛を、一例として下記に示す。黒鉛は、公知物や市販品を用いてもよい。 <Graphite>
Graphite, which is one of the constituents of the particles of the present invention, is shown below as an example. A publicly known product or a commercially available product may be used as the graphite.
(黒鉛の種類)
黒鉛としては、例えば、鱗片状、塊状又は板状の天然黒鉛、石油コークス、石炭ピッチコークス、石炭ニードルコークス、メソフェーズピッチ等を2500℃以上に加熱して製造した鱗片状、塊状又は板状の人造黒鉛を、必要により、不純物除去、粉砕、篩い分けや分級処理を行うことで得ることができる。これらの黒鉛の中でも、低コストで高容量となることから、好ましくは鱗片状、塊状又は板状の天然黒鉛であり、より好ましくは鱗片状の天然黒鉛である。 (type of graphite)
As graphite, for example, scale-like, block-like or plate-like natural graphite, petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. are heated to 2500 ° C. or higher to produce scale-like, block-like or plate-like artificial graphite. Graphite can be obtained by removing impurities, pulverizing, sieving, and classifying, if necessary. Among these graphites, natural graphite in the form of flakes, lumps or plates is preferred, and natural graphite in the form of flakes is more preferred, because of its low cost and high capacity.
黒鉛としては、例えば、鱗片状、塊状又は板状の天然黒鉛、石油コークス、石炭ピッチコークス、石炭ニードルコークス、メソフェーズピッチ等を2500℃以上に加熱して製造した鱗片状、塊状又は板状の人造黒鉛を、必要により、不純物除去、粉砕、篩い分けや分級処理を行うことで得ることができる。これらの黒鉛の中でも、低コストで高容量となることから、好ましくは鱗片状、塊状又は板状の天然黒鉛であり、より好ましくは鱗片状の天然黒鉛である。 (type of graphite)
As graphite, for example, scale-like, block-like or plate-like natural graphite, petroleum coke, coal pitch coke, coal needle coke, mesophase pitch, etc. are heated to 2500 ° C. or higher to produce scale-like, block-like or plate-like artificial graphite. Graphite can be obtained by removing impurities, pulverizing, sieving, and classifying, if necessary. Among these graphites, natural graphite in the form of flakes, lumps or plates is preferred, and natural graphite in the form of flakes is more preferred, because of its low cost and high capacity.
天然黒鉛は、その性状によって、鱗片状黒鉛(FlakeGraphite)、鱗状黒鉛(CrystalLine(Vein) Graphite)、土状黒鉛(Amorphous Graphite)に分類される(「粉粒体プロセス技術集成」((株)産業技術センター、昭和49年発行)の黒鉛の項及び「HANDBOOKOFCARBON,GRAPHITE, DIAMOND AND FULLERENES」(NoyesPubLications発行)参照)。黒鉛化度は、鱗状黒鉛が100%で最も高く、これに次いで鱗片状黒鉛が99.9%で高い。従って、これらの黒鉛を用いることが好ましい。
Natural graphite is classified into Flake Graphite, Crystal Line (Vein) Graphite, and Amorphous Graphite according to its properties ("Powder and Granule Process Technology Shusei" (Sangyo Co., Ltd.) Technical Center, published in 1974) and "Handbook of Carbon, Graphic, Diamond and Full Renes" (published by Noyes Publications)). The degree of graphitization is highest for flake graphite at 100%, followed by flake graphite at 99.9%. Therefore, it is preferable to use these graphites.
天然黒鉛である鱗片状黒鉛の産地は、マダガスカル、中国、ブラジル、ウクライナ、カナダ等である。鱗状黒鉛の産地は、主にスリランカである。土状黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。
Flake graphite, which is natural graphite, is produced in Madagascar, China, Brazil, Ukraine, Canada, etc. Sri Lanka is the main source of flake graphite. The main production areas of earthy graphite are the Korean Peninsula, China, Mexico, etc.
これらの天然黒鉛の中で、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度が高く不純物量が低い等の長所があるため、本発明において好ましく使用することができる。
黒鉛が鱗片状であることを確認するための視覚的手法としては、走査電子顕微鏡による粒子表面観察;粒子を樹脂に包埋させて樹脂の薄片を作製し粒子断面を切り出す又は粒子からなる塗布膜をクロスセクションポリッシャーによる塗布膜断面を作製し粒子断面を切り出した後、走査電子顕微鏡による粒子断面観察方法;などが挙げられる。
鱗片状黒鉛や鱗状黒鉛は、黒鉛の結晶性が完全に近い結晶を示すように高純度化した天然黒鉛と、人工的に形成した黒鉛とがある。このうち、天然黒鉛が、やわらかく、折り畳まれた構造を作製しやすいという点で好ましい。 Among these natural graphites, flake graphite and flake graphite have advantages such as a high degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
As a visual method for confirming that graphite is scale-like, particle surface observation by a scanning electron microscope; A cross-section of the coating film is prepared by a cross-section polisher, the cross-section of the particle is cut out, and then the cross-section of the particle is observed with a scanning electron microscope;
Flaky graphite and flaky graphite include natural graphite that has been highly purified so as to exhibit nearly perfect crystallinity, and artificially formed graphite. Of these, natural graphite is preferable because it is soft and easy to produce a folded structure.
黒鉛が鱗片状であることを確認するための視覚的手法としては、走査電子顕微鏡による粒子表面観察;粒子を樹脂に包埋させて樹脂の薄片を作製し粒子断面を切り出す又は粒子からなる塗布膜をクロスセクションポリッシャーによる塗布膜断面を作製し粒子断面を切り出した後、走査電子顕微鏡による粒子断面観察方法;などが挙げられる。
鱗片状黒鉛や鱗状黒鉛は、黒鉛の結晶性が完全に近い結晶を示すように高純度化した天然黒鉛と、人工的に形成した黒鉛とがある。このうち、天然黒鉛が、やわらかく、折り畳まれた構造を作製しやすいという点で好ましい。 Among these natural graphites, flake graphite and flake graphite have advantages such as a high degree of graphitization and a low amount of impurities, and therefore can be preferably used in the present invention.
As a visual method for confirming that graphite is scale-like, particle surface observation by a scanning electron microscope; A cross-section of the coating film is prepared by a cross-section polisher, the cross-section of the particle is cut out, and then the cross-section of the particle is observed with a scanning electron microscope;
Flaky graphite and flaky graphite include natural graphite that has been highly purified so as to exhibit nearly perfect crystallinity, and artificially formed graphite. Of these, natural graphite is preferable because it is soft and easy to produce a folded structure.
(黒鉛の物性)
本発明における黒鉛の好ましい物性は以下の通りである。 (Physical properties of graphite)
Preferred physical properties of graphite in the present invention are as follows.
本発明における黒鉛の好ましい物性は以下の通りである。 (Physical properties of graphite)
Preferred physical properties of graphite in the present invention are as follows.
・体積平均粒子径(d50)
黒鉛のd50は、通常1μm以上120μm以下であり、好ましくは3μm以上100μm以下であり、より好ましくは5μm以上90μm以下である。d50が上記範囲内であると、酸化珪素粒子との複合化で高特性の粒子を製造することができる。黒鉛のd50が上記下限値以上であると、適度なバインダ量で電極を構成できるような範囲の粒度を持った粒子を製造することができる。黒鉛のd50が上記上限値以下であると、二次電池の製造に当たり、この粒子にバインダや水、有機溶媒を加えてスラリー状として塗布する工程で、大粒子に起因したスジ引きや凹凸を生じることを抑制できる。 ・Volume average particle size (d 50 )
The d50 of graphite is usually 1 μm or more and 120 μm or less, preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 90 μm or less. When d50 is within the above range, particles with high properties can be produced by combining with silicon oxide particles. When the d50 of graphite is equal to or higher than the above lower limit, it is possible to produce particles having a particle size within a range that allows an electrode to be formed with an appropriate amount of binder. If the d50 of graphite is equal to or less than the above upper limit, streaks and unevenness caused by large particles are eliminated in the process of adding a binder, water, and an organic solvent to the particles and applying them as a slurry in the production of a secondary battery. You can prevent it from happening.
黒鉛のd50は、通常1μm以上120μm以下であり、好ましくは3μm以上100μm以下であり、より好ましくは5μm以上90μm以下である。d50が上記範囲内であると、酸化珪素粒子との複合化で高特性の粒子を製造することができる。黒鉛のd50が上記下限値以上であると、適度なバインダ量で電極を構成できるような範囲の粒度を持った粒子を製造することができる。黒鉛のd50が上記上限値以下であると、二次電池の製造に当たり、この粒子にバインダや水、有機溶媒を加えてスラリー状として塗布する工程で、大粒子に起因したスジ引きや凹凸を生じることを抑制できる。 ・Volume average particle size (d 50 )
The d50 of graphite is usually 1 μm or more and 120 μm or less, preferably 3 μm or more and 100 μm or less, more preferably 5 μm or more and 90 μm or less. When d50 is within the above range, particles with high properties can be produced by combining with silicon oxide particles. When the d50 of graphite is equal to or higher than the above lower limit, it is possible to produce particles having a particle size within a range that allows an electrode to be formed with an appropriate amount of binder. If the d50 of graphite is equal to or less than the above upper limit, streaks and unevenness caused by large particles are eliminated in the process of adding a binder, water, and an organic solvent to the particles and applying them as a slurry in the production of a secondary battery. You can prevent it from happening.
・粒子径(d90)
黒鉛のd90は、通常1.5μm以上150μm以下であり、好ましくは4μm以上120μm以下であり、より好ましくは6μm以上100μm以下である。黒鉛のd90が上記下限値以上であると、酸化珪素粒子と黒鉛とを複合化する際に複合化を効率よく進めることができる。黒鉛のd90が上記上限値以下であると、酸化珪素粒子と黒鉛とを複合化した際に粗大粒子の生成を抑制することができる。 ・Particle size (d 90 )
The d90 of graphite is usually 1.5 to 150 μm, preferably 4 to 120 μm, more preferably 6 to 100 μm. If the d90 of the graphite is equal to or higher than the above lower limit, the silicon oxide particles and graphite can be combined efficiently. When the d90 of graphite is equal to or less than the above upper limit, it is possible to suppress the formation of coarse particles when silicon oxide particles and graphite are combined.
黒鉛のd90は、通常1.5μm以上150μm以下であり、好ましくは4μm以上120μm以下であり、より好ましくは6μm以上100μm以下である。黒鉛のd90が上記下限値以上であると、酸化珪素粒子と黒鉛とを複合化する際に複合化を効率よく進めることができる。黒鉛のd90が上記上限値以下であると、酸化珪素粒子と黒鉛とを複合化した際に粗大粒子の生成を抑制することができる。 ・Particle size (d 90 )
The d90 of graphite is usually 1.5 to 150 μm, preferably 4 to 120 μm, more preferably 6 to 100 μm. If the d90 of the graphite is equal to or higher than the above lower limit, the silicon oxide particles and graphite can be combined efficiently. When the d90 of graphite is equal to or less than the above upper limit, it is possible to suppress the formation of coarse particles when silicon oxide particles and graphite are combined.
・平均アスペクト比
黒鉛の短径に対する長径の長さの比である平均アスペクト比は、通常2.1以上10以下であり、好ましくは2.3以上9以下であり、より好ましくは2.5以上8以下である。アスペクト比が上記範囲内であると、効率よく球状の粒子を製造することが可能であり、かつ、得られる粒子内に微小な空隙が形成され、充放電に伴う体積膨張を緩和させ、サイクル特性向上に寄与することができる。 ・Average aspect ratio The average aspect ratio, which is the ratio of the length of the major axis to the minor axis of graphite, is usually 2.1 or more and 10 or less, preferably 2.3 or more and 9 or less, and more preferably 2.5 or more. 8 or less. When the aspect ratio is within the above range, it is possible to efficiently produce spherical particles, and minute voids are formed in the obtained particles, which alleviates volume expansion due to charging and discharging, and improves cycle characteristics. can contribute to improvement.
黒鉛の短径に対する長径の長さの比である平均アスペクト比は、通常2.1以上10以下であり、好ましくは2.3以上9以下であり、より好ましくは2.5以上8以下である。アスペクト比が上記範囲内であると、効率よく球状の粒子を製造することが可能であり、かつ、得られる粒子内に微小な空隙が形成され、充放電に伴う体積膨張を緩和させ、サイクル特性向上に寄与することができる。 ・Average aspect ratio The average aspect ratio, which is the ratio of the length of the major axis to the minor axis of graphite, is usually 2.1 or more and 10 or less, preferably 2.3 or more and 9 or less, and more preferably 2.5 or more. 8 or less. When the aspect ratio is within the above range, it is possible to efficiently produce spherical particles, and minute voids are formed in the obtained particles, which alleviates volume expansion due to charging and discharging, and improves cycle characteristics. can contribute to improvement.
本明細書において、アスペクト比は、走査型電子顕微鏡を用いて3次元的に観察したときの粒子の最長となる径Aと、それと直交する径のうち最短となる径Bとにより、A/Bで算出したものである。平均アスペクト比は、任意の50個の粒子のアスペクト比の平均値である。
In the present specification, the aspect ratio is defined by A/B, which is the longest diameter A of the particles when observed three-dimensionally using a scanning electron microscope, and the shortest diameter B among the diameters perpendicular to it. It is calculated by The average aspect ratio is the average value of the aspect ratios of any 50 particles.
・タップ密度
黒鉛のタップ密度は、通常0.1g/cm3以上1.0g/cm3以下であり、好ましくは0.13g/cm3以上0.8g/cm3以下であり、より好ましくは0.15g/cm3以上0.6g/cm3以下である。タップ密度が上記範囲内であると、得られる粒子内に、微小な空隙が形成されやすくなる。 ・Tap density The tap density of graphite is usually 0.1 g/cm 3 or more and 1.0 g/cm 3 or less, preferably 0.13 g/cm 3 or more and 0.8 g/cm 3 or less, more preferably 0 .15 g/cm 3 or more and 0.6 g/cm 3 or less. When the tap density is within the above range, minute voids are likely to be formed in the obtained particles.
黒鉛のタップ密度は、通常0.1g/cm3以上1.0g/cm3以下であり、好ましくは0.13g/cm3以上0.8g/cm3以下であり、より好ましくは0.15g/cm3以上0.6g/cm3以下である。タップ密度が上記範囲内であると、得られる粒子内に、微小な空隙が形成されやすくなる。 ・Tap density The tap density of graphite is usually 0.1 g/cm 3 or more and 1.0 g/cm 3 or less, preferably 0.13 g/cm 3 or more and 0.8 g/cm 3 or less, more preferably 0 .15 g/cm 3 or more and 0.6 g/cm 3 or less. When the tap density is within the above range, minute voids are likely to be formed in the obtained particles.
本明細書において、タップ密度は、粉体密度測定器を用いて、直径1.5cm、体積容量20cm3の円筒状タップセルに満杯に充填した後、ストローク長10mmのタップを1000回行って、その時の体積と試料の質量から算出した密度である。
In this specification, the tap density is measured by filling a cylindrical tap cell with a diameter of 1.5 cm and a volume capacity of 20 cm 3 to the end using a powder density measuring instrument, then tapping with a stroke length of 10 mm 1000 times. is the density calculated from the volume of the sample and the mass of the sample.
・BET法による比表面積
黒鉛のBET法による比表面積は、通常1m2/g以上40m2/g以下であり、好ましくは2m2/g以上35m2/g以下であり、より好ましくは3m2/g以上30m2/g以下である。黒鉛のBET法による比表面積は、得られる粒子の比表面積に反映される。
黒鉛の比表面積が上記下限値以上であると、粒子のリチウムイオン吸蔵能力の増大による電池出力向上が得られる。黒鉛の比表面積が上記上限値以下であると、粒子の不可逆容量の増加による電池容量の減少を防ぐことができる。 - Specific surface area by BET method The specific surface area of graphite by the BET method is usually 1 m 2 /g or more and 40 m 2 /g or less, preferably 2 m 2 / g or more and 35 m 2 /g or less, more preferably 3 m 2 /g. g or more and 30 m 2 /g or less. The specific surface area of graphite determined by the BET method is reflected in the specific surface area of the obtained particles.
When the specific surface area of the graphite is at least the above lower limit value, the battery output can be improved due to the increased lithium ion absorption capacity of the particles. When the specific surface area of graphite is equal to or less than the above upper limit, it is possible to prevent a decrease in battery capacity due to an increase in the irreversible capacity of the particles.
黒鉛のBET法による比表面積は、通常1m2/g以上40m2/g以下であり、好ましくは2m2/g以上35m2/g以下であり、より好ましくは3m2/g以上30m2/g以下である。黒鉛のBET法による比表面積は、得られる粒子の比表面積に反映される。
黒鉛の比表面積が上記下限値以上であると、粒子のリチウムイオン吸蔵能力の増大による電池出力向上が得られる。黒鉛の比表面積が上記上限値以下であると、粒子の不可逆容量の増加による電池容量の減少を防ぐことができる。 - Specific surface area by BET method The specific surface area of graphite by the BET method is usually 1 m 2 /g or more and 40 m 2 /g or less, preferably 2 m 2 / g or more and 35 m 2 /g or less, more preferably 3 m 2 /g. g or more and 30 m 2 /g or less. The specific surface area of graphite determined by the BET method is reflected in the specific surface area of the obtained particles.
When the specific surface area of the graphite is at least the above lower limit value, the battery output can be improved due to the increased lithium ion absorption capacity of the particles. When the specific surface area of graphite is equal to or less than the above upper limit, it is possible to prevent a decrease in battery capacity due to an increase in the irreversible capacity of the particles.
本明細書において、比表面積は、窒素吸着によるBET法により測定した値である。
As used herein, the specific surface area is a value measured by the BET method using nitrogen adsorption.
・(002)面の面間隔(d002)及びLc
黒鉛のX線広角回折法による(002)面の面間隔(d002)は、通常0.335nm以上0.337nm以下である。黒鉛のX線広角回折法によるLcは、通常90nm以上であり、好ましくは95nm以上である。(002)面の面間隔(d002)が0.337nm以下であると、黒鉛の結晶性が高いことを示し、高容量の二次電池負極活物質用粒子を得ることができる。Lcが90nm以上である場合にも、黒鉛の結晶性が高いことを示し、高容量となる負極活物質を得ることができる。 ・Plane spacing (d 002 ) and Lc of (002) plane
The interplanar spacing (d 002 ) of the (002) plane of graphite by wide-angle X-ray diffraction is usually 0.335 nm or more and 0.337 nm or less. Lc of graphite measured by wide-angle X-ray diffraction is usually 90 nm or more, preferably 95 nm or more. When the interplanar spacing (d 002 ) of the (002) plane is 0.337 nm or less, the crystallinity of the graphite is high, and a high-capacity secondary battery negative electrode active material particle can be obtained. When Lc is 90 nm or more, the crystallinity of graphite is high, and a negative electrode active material with high capacity can be obtained.
黒鉛のX線広角回折法による(002)面の面間隔(d002)は、通常0.335nm以上0.337nm以下である。黒鉛のX線広角回折法によるLcは、通常90nm以上であり、好ましくは95nm以上である。(002)面の面間隔(d002)が0.337nm以下であると、黒鉛の結晶性が高いことを示し、高容量の二次電池負極活物質用粒子を得ることができる。Lcが90nm以上である場合にも、黒鉛の結晶性が高いことを示し、高容量となる負極活物質を得ることができる。 ・Plane spacing (d 002 ) and Lc of (002) plane
The interplanar spacing (d 002 ) of the (002) plane of graphite by wide-angle X-ray diffraction is usually 0.335 nm or more and 0.337 nm or less. Lc of graphite measured by wide-angle X-ray diffraction is usually 90 nm or more, preferably 95 nm or more. When the interplanar spacing (d 002 ) of the (002) plane is 0.337 nm or less, the crystallinity of the graphite is high, and a high-capacity secondary battery negative electrode active material particle can be obtained. When Lc is 90 nm or more, the crystallinity of graphite is high, and a negative electrode active material with high capacity can be obtained.
本明細書において、(002)面の面間隔及びLcは、X線広角回折法により測定した値である。
In the present specification, the interplanar spacing of the (002) plane and Lc are values measured by the X-ray wide-angle diffraction method.
・長径・短径の長さ
黒鉛の長径の長さは、通常100μm以下であり、好ましくは90μm以下であり、より好ましくは80μm以下である。黒鉛の短径の長さは、通常0.9μm以上であり、好ましくは1.0μm以上であり、より好ましくは1.2μm以上である。黒鉛の長径及び短径の長さが上記範囲内であると、得られる粒子内に、微小な空隙が形成されやすくなり、充放電に伴う体積膨張を緩和させ、サイクル特性を向上することができる。 -Length of major axis and minor axis The length of the major axis of graphite is usually 100 µm or less, preferably 90 µm or less, and more preferably 80 µm or less. The minor axis length of graphite is usually 0.9 μm or more, preferably 1.0 μm or more, and more preferably 1.2 μm or more. When the major axis and minor axis of graphite are within the above range, microscopic voids are likely to be formed in the obtained particles, and volume expansion due to charging and discharging can be alleviated, and cycle characteristics can be improved. .
黒鉛の長径の長さは、通常100μm以下であり、好ましくは90μm以下であり、より好ましくは80μm以下である。黒鉛の短径の長さは、通常0.9μm以上であり、好ましくは1.0μm以上であり、より好ましくは1.2μm以上である。黒鉛の長径及び短径の長さが上記範囲内であると、得られる粒子内に、微小な空隙が形成されやすくなり、充放電に伴う体積膨張を緩和させ、サイクル特性を向上することができる。 -Length of major axis and minor axis The length of the major axis of graphite is usually 100 µm or less, preferably 90 µm or less, and more preferably 80 µm or less. The minor axis length of graphite is usually 0.9 μm or more, preferably 1.0 μm or more, and more preferably 1.2 μm or more. When the major axis and minor axis of graphite are within the above range, microscopic voids are likely to be formed in the obtained particles, and volume expansion due to charging and discharging can be alleviated, and cycle characteristics can be improved. .
<黒鉛と酸化珪素粒子の含有割合>
本発明の粒子における黒鉛と酸化珪素粒子の含有割合は、黒鉛と酸化珪素粒子と必要に応じて用いられる後述の炭素質物との合計100質量%中、黒鉛の含有割合が10~95質量%で、酸化珪素粒子の含有割合が3~60質量%であることが好ましく、黒鉛の含有割合が30~90質量%で、酸化珪素粒子の含有割合が5~50質量%であることがより好ましく、黒鉛の含有割合が50~85質量%で、酸化珪素粒子の含有割合が8~40質量%であることが更に好ましい。黒鉛の含有割合が上記下限値以上で酸化珪素粒子の含有割合が上記上限値以下であると、黒鉛と酸化珪素粒子の複合化を進めることが容易である。黒鉛の含有割合が上記上限値以下で酸化珪素粒子の含有割合が上記下限値以上であると、本発明の粒子が高い容量を持つことが可能である。 <Content Ratio of Graphite and Silicon Oxide Particles>
The content ratio of graphite and silicon oxide particles in the particles of the present invention is 10 to 95% by mass of the total 100% by mass of the graphite, silicon oxide particles, and carbonaceous material used as necessary. , the content of silicon oxide particles is preferably 3 to 60% by mass, the content of graphite is 30 to 90% by mass, and the content of silicon oxide particles is more preferably 5 to 50% by mass, More preferably, the content of graphite is 50 to 85% by mass and the content of silicon oxide particles is 8 to 40% by mass. When the content of graphite is at least the lower limit and the content of silicon oxide particles is at most the upper limit, it is easy to form a composite of graphite and silicon oxide particles. When the graphite content is equal to or less than the above upper limit and the silicon oxide particle content is equal to or more than the above lower limit, the particles of the present invention can have a high capacity.
本発明の粒子における黒鉛と酸化珪素粒子の含有割合は、黒鉛と酸化珪素粒子と必要に応じて用いられる後述の炭素質物との合計100質量%中、黒鉛の含有割合が10~95質量%で、酸化珪素粒子の含有割合が3~60質量%であることが好ましく、黒鉛の含有割合が30~90質量%で、酸化珪素粒子の含有割合が5~50質量%であることがより好ましく、黒鉛の含有割合が50~85質量%で、酸化珪素粒子の含有割合が8~40質量%であることが更に好ましい。黒鉛の含有割合が上記下限値以上で酸化珪素粒子の含有割合が上記上限値以下であると、黒鉛と酸化珪素粒子の複合化を進めることが容易である。黒鉛の含有割合が上記上限値以下で酸化珪素粒子の含有割合が上記下限値以上であると、本発明の粒子が高い容量を持つことが可能である。 <Content Ratio of Graphite and Silicon Oxide Particles>
The content ratio of graphite and silicon oxide particles in the particles of the present invention is 10 to 95% by mass of the total 100% by mass of the graphite, silicon oxide particles, and carbonaceous material used as necessary. , the content of silicon oxide particles is preferably 3 to 60% by mass, the content of graphite is 30 to 90% by mass, and the content of silicon oxide particles is more preferably 5 to 50% by mass, More preferably, the content of graphite is 50 to 85% by mass and the content of silicon oxide particles is 8 to 40% by mass. When the content of graphite is at least the lower limit and the content of silicon oxide particles is at most the upper limit, it is easy to form a composite of graphite and silicon oxide particles. When the graphite content is equal to or less than the above upper limit and the silicon oxide particle content is equal to or more than the above lower limit, the particles of the present invention can have a high capacity.
<炭素質物>
本発明の粒子は、黒鉛以外の炭素質物を含むものであってもよい。本発明の粒子が黒鉛以外の炭素質物を含むことで黒鉛と酸化珪素粒子の複合化を進行させる際に、黒鉛と酸化珪素粒子の大きさや形状による影響を低減することが可能であり、好ましい。この場合、炭素質物としては、リチウムイオンの受入性に優れる点で非晶質炭素が好ましい。 <Carbonaceous material>
The particles of the present invention may contain carbonaceous substances other than graphite. When the particles of the present invention contain a carbonaceous material other than graphite, it is possible to reduce the influence of the size and shape of the graphite and silicon oxide particles when the graphite and silicon oxide particles are combined, which is preferable. In this case, amorphous carbon is preferable as the carbonaceous material because of its excellent ability to accept lithium ions.
本発明の粒子は、黒鉛以外の炭素質物を含むものであってもよい。本発明の粒子が黒鉛以外の炭素質物を含むことで黒鉛と酸化珪素粒子の複合化を進行させる際に、黒鉛と酸化珪素粒子の大きさや形状による影響を低減することが可能であり、好ましい。この場合、炭素質物としては、リチウムイオンの受入性に優れる点で非晶質炭素が好ましい。 <Carbonaceous material>
The particles of the present invention may contain carbonaceous substances other than graphite. When the particles of the present invention contain a carbonaceous material other than graphite, it is possible to reduce the influence of the size and shape of the graphite and silicon oxide particles when the graphite and silicon oxide particles are combined, which is preferable. In this case, amorphous carbon is preferable as the carbonaceous material because of its excellent ability to accept lithium ions.
具体的には、前記炭素質物は、その炭素前駆体を後述するように加熱処理することで得ることができる。前記炭素前駆体として、以下の(i)及び/又は(ii)に記載の炭素材が好ましい。
(i)石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機物
(ii)炭化可能な有機物を低分子有機溶媒に溶解させたもの Specifically, the carbonaceous material can be obtained by heat-treating the carbon precursor as described later. As the carbon precursor, the carbon materials described in (i) and/or (ii) below are preferable.
(i) coal-based heavy oil, DC heavy oil, cracked petroleum heavy oil, aromatic hydrocarbons, N-ring compounds, S-ring compounds, polyphenylenes, organic synthetic polymers, natural polymers, thermoplastic resins and A carbonizable organic substance selected from the group consisting of thermosetting resins (ii) A carbonizable organic substance dissolved in a low-molecular-weight organic solvent
(i)石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機物
(ii)炭化可能な有機物を低分子有機溶媒に溶解させたもの Specifically, the carbonaceous material can be obtained by heat-treating the carbon precursor as described later. As the carbon precursor, the carbon materials described in (i) and/or (ii) below are preferable.
(i) coal-based heavy oil, DC heavy oil, cracked petroleum heavy oil, aromatic hydrocarbons, N-ring compounds, S-ring compounds, polyphenylenes, organic synthetic polymers, natural polymers, thermoplastic resins and A carbonizable organic substance selected from the group consisting of thermosetting resins (ii) A carbonizable organic substance dissolved in a low-molecular-weight organic solvent
本発明の粒子が炭素質物を含む場合、炭素質物の含有割合は、黒鉛と酸化珪素粒子と炭素質物との合計100質量%中、2~30質量%であることが好ましく、5~25質量%であることがより好ましく、7~20質量%であることが更に好ましい。炭素質物の含有割合が上記下限値以上であると、本発明の粒子の比表面積が低減され、初期充放電効率が向上する。炭素質物の含有割合が上記上限値以下であると、本発明の粒子が高い容量を持つことが可能である。
When the particles of the present invention contain a carbonaceous material, the content of the carbonaceous material is preferably 2 to 30% by mass, preferably 5 to 25% by mass, based on the total 100% by mass of graphite, silicon oxide particles and carbonaceous material. is more preferable, and 7 to 20% by mass is even more preferable. When the content of the carbonaceous material is at least the above lower limit, the specific surface area of the particles of the present invention is reduced, and the initial charge/discharge efficiency is improved. When the content of the carbonaceous material is equal to or less than the above upper limit, the particles of the present invention can have a high capacity.
<本発明の粒子の物性>
本発明の粒子の好ましい物性は、以下の通りである。 <Physical properties of the particles of the present invention>
Preferred physical properties of the particles of the present invention are as follows.
本発明の粒子の好ましい物性は、以下の通りである。 <Physical properties of the particles of the present invention>
Preferred physical properties of the particles of the present invention are as follows.
・粒子の(002)面の面間隔(d002)
本発明の粒子に含有される黒鉛(A)のX線広角回折法による(002)面の面間隔(d002)は、通常0.335nm以上0.337nm以下である。本発明の粒子のX線広角回折法によるLcは、通常90nm以上であり、好ましくは95nm以上である。X線広角回折法による(002)面の面間隔(d002)及びLcが上記範囲内であると、高容量電極となる二次電池負極活物質用粒子である。 ・Plane spacing (d 002 ) between (002) planes of particles
The interplanar spacing (d 002 ) of the (002) plane of the graphite (A) contained in the particles of the present invention is usually 0.335 nm or more and 0.337 nm or less as determined by wide-angle X-ray diffraction. The Lc of the particles of the present invention determined by wide-angle X-ray diffraction is usually 90 nm or more, preferably 95 nm or more. When the interplanar spacing (d 002 ) of the (002) plane and Lc by the X-ray wide-angle diffraction method are within the above ranges, the particles for a secondary battery negative electrode active material become a high-capacity electrode.
本発明の粒子に含有される黒鉛(A)のX線広角回折法による(002)面の面間隔(d002)は、通常0.335nm以上0.337nm以下である。本発明の粒子のX線広角回折法によるLcは、通常90nm以上であり、好ましくは95nm以上である。X線広角回折法による(002)面の面間隔(d002)及びLcが上記範囲内であると、高容量電極となる二次電池負極活物質用粒子である。 ・Plane spacing (d 002 ) between (002) planes of particles
The interplanar spacing (d 002 ) of the (002) plane of the graphite (A) contained in the particles of the present invention is usually 0.335 nm or more and 0.337 nm or less as determined by wide-angle X-ray diffraction. The Lc of the particles of the present invention determined by wide-angle X-ray diffraction is usually 90 nm or more, preferably 95 nm or more. When the interplanar spacing (d 002 ) of the (002) plane and Lc by the X-ray wide-angle diffraction method are within the above ranges, the particles for a secondary battery negative electrode active material become a high-capacity electrode.
・粒子のタップ密度
本発明の粒子のタップ密度は、通常0.5g/cm3以上であり、好ましくは0.6g/cm3以上であり、より好ましくは0.8g/cm3以上である。
本発明の粒子のタップ密度が上記下限値以上であると、粒子が球状を呈していて、電極内で充分な連続間隙が確保され、間隙に保持された電解液内のLiイオンの移動性が増す。これにより、急速充放電特性が向上する傾向がある。 - Tap density of particles The tap density of the particles of the present invention is usually 0.5 g/cm 3 or more, preferably 0.6 g/cm 3 or more, and more preferably 0.8 g/cm 3 or more.
When the tap density of the particles of the present invention is at least the above lower limit, the particles are spherical, sufficient continuous gaps are secured in the electrode, and the mobility of Li ions in the electrolytic solution held in the gaps is improved. Increase. This tends to improve rapid charge/discharge characteristics.
本発明の粒子のタップ密度は、通常0.5g/cm3以上であり、好ましくは0.6g/cm3以上であり、より好ましくは0.8g/cm3以上である。
本発明の粒子のタップ密度が上記下限値以上であると、粒子が球状を呈していて、電極内で充分な連続間隙が確保され、間隙に保持された電解液内のLiイオンの移動性が増す。これにより、急速充放電特性が向上する傾向がある。 - Tap density of particles The tap density of the particles of the present invention is usually 0.5 g/cm 3 or more, preferably 0.6 g/cm 3 or more, and more preferably 0.8 g/cm 3 or more.
When the tap density of the particles of the present invention is at least the above lower limit, the particles are spherical, sufficient continuous gaps are secured in the electrode, and the mobility of Li ions in the electrolytic solution held in the gaps is improved. Increase. This tends to improve rapid charge/discharge characteristics.
・粒子のラマンR値
本発明の粒子のラマンR値は、通常0.05以上0.4以下であり、好ましくは0.1以上0.35以下である。本発明の粒子のラマンR値が上記範囲内であると、粒子の表面の結晶性が整っており、高い容量が期待できる。 - Raman R value of particles The Raman R value of the particles of the present invention is generally 0.05 or more and 0.4 or less, preferably 0.1 or more and 0.35 or less. When the Raman R value of the particles of the present invention is within the above range, the surface crystallinity of the particles is in order and a high capacity can be expected.
本発明の粒子のラマンR値は、通常0.05以上0.4以下であり、好ましくは0.1以上0.35以下である。本発明の粒子のラマンR値が上記範囲内であると、粒子の表面の結晶性が整っており、高い容量が期待できる。 - Raman R value of particles The Raman R value of the particles of the present invention is generally 0.05 or more and 0.4 or less, preferably 0.1 or more and 0.35 or less. When the Raman R value of the particles of the present invention is within the above range, the surface crystallinity of the particles is in order and a high capacity can be expected.
本明細書において、ラマンR値は、ラマン分光法で求めたラマンスペクトルにおける1580cm-1付近のピークPAの強度IAと、1360cm-1付近のピークPBの強度IBとを測定し、その強度比(IB/IA)として算出した値である。「1580cm-1付近」とは1580~1620cm-1の範囲を、「1360cm-1付近」とは1350~1370cm-1の範囲を指す。
In this specification, the Raman R value is obtained by measuring the intensity IA of the peak PA near 1580 cm -1 and the intensity IB of the peak PB near 1360 cm -1 in the Raman spectrum obtained by Raman spectroscopy, and measuring the intensity ratio ( It is a value calculated as IB/IA). “Around 1580 cm −1 ” means the range of 1580 to 1620 cm −1 , and “around 1360 cm −1 ” means the range of 1350 to 1370 cm −1 .
ラマンスペクトルは、ラマン分光器で測定できる。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行う。
Raman spectra can be measured with a Raman spectrometer. Specifically, the particles to be measured are allowed to fall freely into the measurement cell to fill the sample, and while the measurement cell is irradiated with argon ion laser light, the measurement cell is rotated in a plane perpendicular to the laser light. take measurements.
・粒子のBET法による比表面積
本発明の粒子のBET法による比表面積は、通常0.1m2/g以上40m2/g以下であり、好ましくは0.7m2/g以上35m2/g以下であり、より好ましくは1m2/g以上30m2/g以下である。本発明の粒子のBET法による比表面積が上記下限値以上であると、負極用活物質として用いた場合の充電時にリチウムイオンの受け入れ性がよくなる傾向がある。本発明の粒子のBET法による比表面積が上記上限値以下であると、負極用活物質として用いた時に粒子と非水系電解液との接触する部分を抑制でき、反応性が減少する。これにより、ガス発生を抑制しやすく、好ましい電池が得られやすい傾向がある。 - Specific surface area of particles by BET method The specific surface area of the particles of the present invention by the BET method is usually 0.1 m 2 /g or more and 40 m 2 /g or less, preferably 0.7 m 2 / g or more and 35 m 2 /g or less and more preferably 1 m 2 /g or more and 30 m 2 /g or less. When the specific surface area of the particles according to the present invention as determined by the BET method is at least the above lower limit, there is a tendency that the acceptability of lithium ions during charging when used as an active material for a negative electrode is improved. If the specific surface area of the particles of the present invention as determined by the BET method is equal to or less than the above upper limit, the area of contact between the particles and the non-aqueous electrolytic solution can be suppressed when used as a negative electrode active material, resulting in reduced reactivity. As a result, the generation of gas tends to be suppressed, and a favorable battery tends to be obtained.
本発明の粒子のBET法による比表面積は、通常0.1m2/g以上40m2/g以下であり、好ましくは0.7m2/g以上35m2/g以下であり、より好ましくは1m2/g以上30m2/g以下である。本発明の粒子のBET法による比表面積が上記下限値以上であると、負極用活物質として用いた場合の充電時にリチウムイオンの受け入れ性がよくなる傾向がある。本発明の粒子のBET法による比表面積が上記上限値以下であると、負極用活物質として用いた時に粒子と非水系電解液との接触する部分を抑制でき、反応性が減少する。これにより、ガス発生を抑制しやすく、好ましい電池が得られやすい傾向がある。 - Specific surface area of particles by BET method The specific surface area of the particles of the present invention by the BET method is usually 0.1 m 2 /g or more and 40 m 2 /g or less, preferably 0.7 m 2 / g or more and 35 m 2 /g or less and more preferably 1 m 2 /g or more and 30 m 2 /g or less. When the specific surface area of the particles according to the present invention as determined by the BET method is at least the above lower limit, there is a tendency that the acceptability of lithium ions during charging when used as an active material for a negative electrode is improved. If the specific surface area of the particles of the present invention as determined by the BET method is equal to or less than the above upper limit, the area of contact between the particles and the non-aqueous electrolytic solution can be suppressed when used as a negative electrode active material, resulting in reduced reactivity. As a result, the generation of gas tends to be suppressed, and a favorable battery tends to be obtained.
・粒子の体積平均粒子径(d50)
本発明の粒子のd50は、通常1μm以上50μm以下であり、好ましくは4μm以上40μm以下であり、より好ましくは6μm以上30μm以下である。
本発明の粒子のd50が上記下限値以上であると、適度なバインダ量で電極を構成できるような範囲の粒度を持った粒子を製造することができる。本発明の粒子のd50が上記上限値以下であると、二次電池の製造に当たり、この粒子をバインダや水、有機溶媒を加えてスラリー状として塗布する工程で、大粒子に起因したスジ引きや凹凸を生じることを抑制できる。 ・Particle volume average particle diameter (d 50 )
The d50 of the particles of the present invention is usually 1 μm to 50 μm, preferably 4 μm to 40 μm, more preferably 6 μm to 30 μm.
When the d50 of the particles of the present invention is at least the above lower limit, it is possible to produce particles having a particle size within a range that allows an electrode to be formed with an appropriate amount of binder. If the d50 of the particles of the present invention is equal to or less than the above upper limit, streaking due to large particles may occur in the step of applying the particles in a slurry form by adding a binder, water, or an organic solvent in the production of a secondary battery. It is possible to suppress the occurrence of unevenness and unevenness.
本発明の粒子のd50は、通常1μm以上50μm以下であり、好ましくは4μm以上40μm以下であり、より好ましくは6μm以上30μm以下である。
本発明の粒子のd50が上記下限値以上であると、適度なバインダ量で電極を構成できるような範囲の粒度を持った粒子を製造することができる。本発明の粒子のd50が上記上限値以下であると、二次電池の製造に当たり、この粒子をバインダや水、有機溶媒を加えてスラリー状として塗布する工程で、大粒子に起因したスジ引きや凹凸を生じることを抑制できる。 ・Particle volume average particle diameter (d 50 )
The d50 of the particles of the present invention is usually 1 μm to 50 μm, preferably 4 μm to 40 μm, more preferably 6 μm to 30 μm.
When the d50 of the particles of the present invention is at least the above lower limit, it is possible to produce particles having a particle size within a range that allows an electrode to be formed with an appropriate amount of binder. If the d50 of the particles of the present invention is equal to or less than the above upper limit, streaking due to large particles may occur in the step of applying the particles in a slurry form by adding a binder, water, or an organic solvent in the production of a secondary battery. It is possible to suppress the occurrence of unevenness and unevenness.
[本発明の粒子の製造方法]
本発明の粒子は、本発明の粒子の製造方法に従って、好ましくは黒鉛と酸化珪素粒子とを混合した後に球形化処理することで複合化することにより製造することができる。ここで黒鉛と酸化珪素粒子とを混合する際には、更に前述の炭素質物を混合してもよい。 [Method for producing particles of the present invention]
The particles of the present invention can be produced according to the method of producing particles of the present invention, preferably by mixing graphite and silicon oxide particles and then subjecting the mixture to a spheronization treatment to form a composite. Here, when the graphite and the silicon oxide particles are mixed, the carbonaceous material described above may be further mixed.
本発明の粒子は、本発明の粒子の製造方法に従って、好ましくは黒鉛と酸化珪素粒子とを混合した後に球形化処理することで複合化することにより製造することができる。ここで黒鉛と酸化珪素粒子とを混合する際には、更に前述の炭素質物を混合してもよい。 [Method for producing particles of the present invention]
The particles of the present invention can be produced according to the method of producing particles of the present invention, preferably by mixing graphite and silicon oxide particles and then subjecting the mixture to a spheronization treatment to form a composite. Here, when the graphite and the silicon oxide particles are mixed, the carbonaceous material described above may be further mixed.
黒鉛、酸化珪素粒子及び必要に応じて用いられる炭素質物の混合割合は、前述の含有割合に応じて設定すればよい。
The mixing ratio of graphite, silicon oxide particles, and optionally used carbonaceous material may be set according to the aforementioned content ratio.
本発明の粒子の好ましい製造方法は、以下の工程1及び工程2を少なくとも含むものである。
工程1:黒鉛と酸化珪素粒子を少なくとも含む混合物を得る工程
工程2:工程1の混合物に力学的エネルギーを与え球形化処理を施す工程 A preferred method for producing the particles of the present invention includes at least steps 1 and 2 below.
Step 1: Obtaining a mixture containing at least graphite and silicon oxide particles Step 2: Applying mechanical energy to the mixture of Step 1 to spheroidize it
工程1:黒鉛と酸化珪素粒子を少なくとも含む混合物を得る工程
工程2:工程1の混合物に力学的エネルギーを与え球形化処理を施す工程 A preferred method for producing the particles of the present invention includes at least steps 1 and 2 below.
Step 1: Obtaining a mixture containing at least graphite and silicon oxide particles Step 2: Applying mechanical energy to the mixture of Step 1 to spheroidize it
以下、本発明の製造方法について詳しく説明する。
The manufacturing method of the present invention will be described in detail below.
(工程1:黒鉛と酸化珪素粒子を少なくとも含む混合物を得る工程)
本工程で得られる混合物は、粉粒状、固化状、塊状、スラリー状等の状態が挙げられるが、ハンドリングのしやすさの点から塊状物であることが好ましい。 (Step 1: Step of obtaining a mixture containing at least graphite and silicon oxide particles)
The mixture obtained in this step may be in the form of powder, solidification, mass, slurry, etc., but the mass is preferred from the viewpoint of ease of handling.
本工程で得られる混合物は、粉粒状、固化状、塊状、スラリー状等の状態が挙げられるが、ハンドリングのしやすさの点から塊状物であることが好ましい。 (Step 1: Step of obtaining a mixture containing at least graphite and silicon oxide particles)
The mixture obtained in this step may be in the form of powder, solidification, mass, slurry, etc., but the mass is preferred from the viewpoint of ease of handling.
本工程では、黒鉛と酸化珪素粒子を少なくとも含む混合物が得られれば、黒鉛と酸化珪素粒子の混合する方法については特に制限はない。混合方法としては、黒鉛と酸化珪素粒子を一括投入して混合してもよいし、それぞれを逐次投入しながら混合してもよい。
In this step, the method of mixing graphite and silicon oxide particles is not particularly limited as long as a mixture containing at least graphite and silicon oxide particles is obtained. As a mixing method, graphite and silicon oxide particles may be added together and mixed, or may be mixed while adding each of them successively.
混合物を得るための好ましい方法として、例えば、湿潤している酸化珪素粒子を用いて、酸化珪素粒子を乾燥させないように黒鉛と混合させる方法が挙げられる。
A preferred method for obtaining the mixture is, for example, a method of using wet silicon oxide particles and mixing them with graphite so as not to dry the silicon oxide particles.
湿潤している酸化珪素粒子としては、上述した酸化珪素粒子を湿式にて製造したまま得られた酸化珪素粒子を用いてもよいし、乾式にて製造した酸化珪素粒子を黒鉛と混合する前に分散溶媒に分散させ湿潤化してもよい。
このように湿潤した酸化珪素粒子は、酸化珪素粒子の凝集を抑制するので、混合する際に、均一に分散させることができ、黒鉛の表面に酸化珪素粒子を固定化しやすくなるため好ましい。 As the wet silicon oxide particles, the silicon oxide particles obtained while the above-described silicon oxide particles are produced in a wet process may be used, or the silicon oxide particles produced in a dry process are mixed with graphite before being mixed. It may be dispersed in a dispersion solvent and wetted.
The silicon oxide particles that are wet in this way suppress aggregation of the silicon oxide particles, so that they can be uniformly dispersed during mixing, and the silicon oxide particles can be easily fixed on the surface of the graphite, which is preferable.
このように湿潤した酸化珪素粒子は、酸化珪素粒子の凝集を抑制するので、混合する際に、均一に分散させることができ、黒鉛の表面に酸化珪素粒子を固定化しやすくなるため好ましい。 As the wet silicon oxide particles, the silicon oxide particles obtained while the above-described silicon oxide particles are produced in a wet process may be used, or the silicon oxide particles produced in a dry process are mixed with graphite before being mixed. It may be dispersed in a dispersion solvent and wetted.
The silicon oxide particles that are wet in this way suppress aggregation of the silicon oxide particles, so that they can be uniformly dispersed during mixing, and the silicon oxide particles can be easily fixed on the surface of the graphite, which is preferable.
酸化珪素粒子を黒鉛の表面に均一に分散させやすくなる点から、酸化珪素粒子を湿式粉砕する際に用いた分散溶媒を混合時に過剰に加えてもよい。
本明細書において、黒鉛に酸化珪素粒子を混合する際に酸化珪素粒子をスラリーとして混合する場合、酸化珪素粒子の固形分は、スラリー100質量%中、通常10質量%以上90質量%以下であり、好ましくは15質量%以上85質量%以下であり、より好ましくは20質量%以上80質量%以下である。酸化珪素粒子の固形分が上記下限値以上であると、工程上扱いやすい傾向がある。酸化珪素粒子の固形分が上記上限値以下であると、スラリーの流動性に優れ、酸化珪素粒子が黒鉛に分散しやすい傾向がある。 From the viewpoint of facilitating uniform dispersion of the silicon oxide particles on the surface of the graphite, an excess amount of the dispersing solvent used in the wet pulverization of the silicon oxide particles may be added during mixing.
In this specification, when the silicon oxide particles are mixed as a slurry when the silicon oxide particles are mixed with the graphite, the solid content of the silicon oxide particles is usually 10% by mass or more and 90% by mass or less in 100% by mass of the slurry. , preferably 15% by mass or more and 85% by mass or less, more preferably 20% by mass or more and 80% by mass or less. When the solid content of the silicon oxide particles is at least the above lower limit, there is a tendency that the process is easy to handle. When the solid content of the silicon oxide particles is equal to or less than the above upper limit, the fluidity of the slurry is excellent, and the silicon oxide particles tend to be easily dispersed in the graphite.
本明細書において、黒鉛に酸化珪素粒子を混合する際に酸化珪素粒子をスラリーとして混合する場合、酸化珪素粒子の固形分は、スラリー100質量%中、通常10質量%以上90質量%以下であり、好ましくは15質量%以上85質量%以下であり、より好ましくは20質量%以上80質量%以下である。酸化珪素粒子の固形分が上記下限値以上であると、工程上扱いやすい傾向がある。酸化珪素粒子の固形分が上記上限値以下であると、スラリーの流動性に優れ、酸化珪素粒子が黒鉛に分散しやすい傾向がある。 From the viewpoint of facilitating uniform dispersion of the silicon oxide particles on the surface of the graphite, an excess amount of the dispersing solvent used in the wet pulverization of the silicon oxide particles may be added during mixing.
In this specification, when the silicon oxide particles are mixed as a slurry when the silicon oxide particles are mixed with the graphite, the solid content of the silicon oxide particles is usually 10% by mass or more and 90% by mass or less in 100% by mass of the slurry. , preferably 15% by mass or more and 85% by mass or less, more preferably 20% by mass or more and 80% by mass or less. When the solid content of the silicon oxide particles is at least the above lower limit, there is a tendency that the process is easy to handle. When the solid content of the silicon oxide particles is equal to or less than the above upper limit, the fluidity of the slurry is excellent, and the silicon oxide particles tend to be easily dispersed in the graphite.
混合した後、エバポレーター、乾燥機等を用いて分散溶媒を蒸発除去・乾燥させ、黒鉛上に酸化珪素粒子を固定化することが好ましい。
又は、過剰の分散溶媒を加えることなく、そのまま高速撹拌機中で加温しながら分散溶媒を蒸発させながら混合し、黒鉛に酸化珪素粒子を固定化させることが好ましい。 After mixing, it is preferable to evaporate and remove the dispersion solvent using an evaporator, a dryer, or the like, and to fix the silicon oxide particles on the graphite.
Alternatively, without adding an excessive amount of the dispersing solvent, it is preferable to mix while heating in a high-speed stirrer while evaporating the dispersing solvent to immobilize the silicon oxide particles on the graphite.
又は、過剰の分散溶媒を加えることなく、そのまま高速撹拌機中で加温しながら分散溶媒を蒸発させながら混合し、黒鉛に酸化珪素粒子を固定化させることが好ましい。 After mixing, it is preferable to evaporate and remove the dispersion solvent using an evaporator, a dryer, or the like, and to fix the silicon oxide particles on the graphite.
Alternatively, without adding an excessive amount of the dispersing solvent, it is preferable to mix while heating in a high-speed stirrer while evaporating the dispersing solvent to immobilize the silicon oxide particles on the graphite.
この際、酸化珪素粒子と電解液との反応性を抑制できる点から後述する炭素前駆体等を混合してもよい。
更に、この際、酸化珪素粒子の膨張収縮による粒子の破壊を緩和させるために、空隙形成材として樹脂等を混合してもよい。 At this time, a carbon precursor or the like, which will be described later, may be mixed in order to suppress the reactivity between the silicon oxide particles and the electrolytic solution.
Furthermore, at this time, a resin or the like may be mixed as a pore-forming material in order to reduce the breakage of the silicon oxide particles due to the expansion and contraction of the particles.
更に、この際、酸化珪素粒子の膨張収縮による粒子の破壊を緩和させるために、空隙形成材として樹脂等を混合してもよい。 At this time, a carbon precursor or the like, which will be described later, may be mixed in order to suppress the reactivity between the silicon oxide particles and the electrolytic solution.
Furthermore, at this time, a resin or the like may be mixed as a pore-forming material in order to reduce the breakage of the silicon oxide particles due to the expansion and contraction of the particles.
本工程1の空隙形成材として用いることができる樹脂としては、ポリビニルアルコール、ポリエチレングリコール、ポリカルボシラン、ポリアクリル酸、セルロース系高分子等が挙げられる。焼成時の残炭量が少なく、分解温度が比較的低い点から、ポリビニルアルコール、ポリエチレングリコールが好ましい。
Examples of resins that can be used as the void-forming material in step 1 include polyvinyl alcohol, polyethylene glycol, polycarbosilane, polyacrylic acid, and cellulose-based polymers. Polyvinyl alcohol and polyethylene glycol are preferred because they have a small amount of residual carbon during firing and a relatively low decomposition temperature.
混合は、通常常圧下で行うが、減圧下又は加圧下で行うこともできる。混合は、回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。また、混合・固定化(乾燥)を同時に行う装置を利用してもよい。
乾燥は、通常減圧下又は加圧下で行う。好ましくは減圧下での乾燥である。 Mixing is usually carried out under normal pressure, but can also be carried out under reduced pressure or increased pressure. Mixing can be carried out either batchwise or continuously. In any case, the mixing efficiency can be improved by combining a device suitable for coarse mixing and a device suitable for precise mixing. Alternatively, a device that performs mixing and fixing (drying) at the same time may be used.
Drying is usually carried out under reduced pressure or increased pressure. Drying under reduced pressure is preferred.
乾燥は、通常減圧下又は加圧下で行う。好ましくは減圧下での乾燥である。 Mixing is usually carried out under normal pressure, but can also be carried out under reduced pressure or increased pressure. Mixing can be carried out either batchwise or continuously. In any case, the mixing efficiency can be improved by combining a device suitable for coarse mixing and a device suitable for precise mixing. Alternatively, a device that performs mixing and fixing (drying) at the same time may be used.
Drying is usually carried out under reduced pressure or increased pressure. Drying under reduced pressure is preferred.
乾燥時間は、通常5分以上2時間以下であり、好ましくは10分以上1時間半以下であり、より好ましくは20分以上1時間以下である。
乾燥温度は、溶媒によって異なるが、上記時間を実現できる時間であることが好ましい。また、樹脂が変性しない温度以下であることが好ましい。 The drying time is usually 5 minutes or more and 2 hours or less, preferably 10 minutes or more and 1.5 hours or less, more preferably 20 minutes or more and 1 hour or less.
Although the drying temperature varies depending on the solvent, it is preferable that the drying temperature is a time that can achieve the above time. Moreover, it is preferable that the temperature is below the temperature at which the resin is not denatured.
乾燥温度は、溶媒によって異なるが、上記時間を実現できる時間であることが好ましい。また、樹脂が変性しない温度以下であることが好ましい。 The drying time is usually 5 minutes or more and 2 hours or less, preferably 10 minutes or more and 1.5 hours or less, more preferably 20 minutes or more and 1 hour or less.
Although the drying temperature varies depending on the solvent, it is preferable that the drying temperature is a time that can achieve the above time. Moreover, it is preferable that the temperature is below the temperature at which the resin is not denatured.
回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散溶媒体を有するいわゆるビーズミル型式の装置;などが用いられる。
As a batch system mixing device, a mixer with a structure in which two frames revolve while rotating; A device with a structure for stirring and dispersing; a so-called kneader type device that has a structure in which stirring blades such as a sigma type rotate along the side of a semi-cylindrical mixing tank; a trimix type device with three stirring blades a device of the so-called bead mill type having a rotating disk and a dispersing medium in a vessel; and the like.
シャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX-Kなど);内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。
連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。また、超音波分散等の手段で均質化することも可能である。
本工程で得られた混合物を適宜、粉砕、解砕、分級処理等の粉体加工をしてもよい。 The container has a paddle inside which is rotated by a shaft, the inner wall surface of the container is preferably formed in a long catamaran substantially along the outermost line of rotation of the paddle, and the paddles slide on opposite sides. A device with a structure in which many pairs are arranged in the axial direction of the shaft so as to be movably engaged (for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Cermac, TEX-K manufactured by Japan Steel Works, etc. ); has a single shaft inside, and a container in which a plurality of plow-shaped or saw-toothed paddles fixed to the shaft are arranged in different phases, the inner wall surface of which is substantially on the outermost line of rotation of the paddles. along the (external heating) device (e.g. Loedige mixer manufactured by Loedige, Flowshare mixer manufactured by Pacific Machinery Co., Ltd., DT dryer manufactured by Tsukishima Kikai Co., Ltd., etc.) preferably formed in a cylindrical shape. can also be used.
For continuous mixing, a pipeline mixer, a continuous bead mill, or the like may be used. It is also possible to homogenize by means such as ultrasonic dispersion.
The mixture obtained in this step may be appropriately subjected to powder processing such as pulverization, pulverization, and classification.
連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。また、超音波分散等の手段で均質化することも可能である。
本工程で得られた混合物を適宜、粉砕、解砕、分級処理等の粉体加工をしてもよい。 The container has a paddle inside which is rotated by a shaft, the inner wall surface of the container is preferably formed in a long catamaran substantially along the outermost line of rotation of the paddle, and the paddles slide on opposite sides. A device with a structure in which many pairs are arranged in the axial direction of the shaft so as to be movably engaged (for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Cermac, TEX-K manufactured by Japan Steel Works, etc. ); has a single shaft inside, and a container in which a plurality of plow-shaped or saw-toothed paddles fixed to the shaft are arranged in different phases, the inner wall surface of which is substantially on the outermost line of rotation of the paddles. along the (external heating) device (e.g. Loedige mixer manufactured by Loedige, Flowshare mixer manufactured by Pacific Machinery Co., Ltd., DT dryer manufactured by Tsukishima Kikai Co., Ltd., etc.) preferably formed in a cylindrical shape. can also be used.
For continuous mixing, a pipeline mixer, a continuous bead mill, or the like may be used. It is also possible to homogenize by means such as ultrasonic dispersion.
The mixture obtained in this step may be appropriately subjected to powder processing such as pulverization, pulverization, and classification.
粉砕や解砕に用いる装置に特に制限はない。例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられる。中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられる。微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
There are no particular restrictions on the equipment used for crushing and crushing. Examples of coarse pulverizers include shear mills, jaw crushers, impact crushers, cone crushers and the like. Examples of intermediate pulverizers include roll crushers and hammer mills. Examples of fine pulverizers include ball mills, vibration mills, pin mills, stirring mills, jet mills, and the like.
分級処理に用いる装置としては、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができる。乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができる。湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
As for the device used for classification, in the case of dry sieving, rotary sieves, rocking sieves, turning sieves, vibrating sieves, etc. can be used. In the case of dry airflow classification, a gravity classifier, an inertial force classifier, or a centrifugal force classifier (classifier, cyclone, etc.) can be used. Wet sieving, mechanical wet classifier, hydraulic classifier, sedimentation classifier, centrifugal wet classifier and the like can be used.
(工程2:工程1の混合物に力学的エネルギーを与え球形化処理を施す工程)
本工程2を経ることにより、黒鉛と酸化珪素粒子の複合化の度合いが大きく向上した状態となり、本発明の粒子を製造することができる。
本発明の粒子を得るための製造方法は、上記工程1で得られた黒鉛の表面に酸化珪素粒子が混合された混合物(本明細書では、混合物ともいう)に対し球形化処理を施すことであるが、特に本発明では所定の範囲内の酸化珪素粒子を黒鉛の構造内の間隙に存在させるように、後述するような製造条件を適宜設定することが好ましい。 (Step 2: Step of applying mechanical energy to the mixture of Step 1 to spheronize)
Through this step 2, the degree of compositing of graphite and silicon oxide particles is greatly improved, and the particles of the present invention can be produced.
In the production method for obtaining the particles of the present invention, a mixture (also referred to herein as a mixture) in which silicon oxide particles are mixed on the surface of the graphite obtained in the above step 1 is subjected to a spheronization treatment. However, particularly in the present invention, it is preferable to appropriately set the manufacturing conditions as described later so that silicon oxide particles within a predetermined range are present in the gaps within the graphite structure.
本工程2を経ることにより、黒鉛と酸化珪素粒子の複合化の度合いが大きく向上した状態となり、本発明の粒子を製造することができる。
本発明の粒子を得るための製造方法は、上記工程1で得られた黒鉛の表面に酸化珪素粒子が混合された混合物(本明細書では、混合物ともいう)に対し球形化処理を施すことであるが、特に本発明では所定の範囲内の酸化珪素粒子を黒鉛の構造内の間隙に存在させるように、後述するような製造条件を適宜設定することが好ましい。 (Step 2: Step of applying mechanical energy to the mixture of Step 1 to spheronize)
Through this step 2, the degree of compositing of graphite and silicon oxide particles is greatly improved, and the particles of the present invention can be produced.
In the production method for obtaining the particles of the present invention, a mixture (also referred to herein as a mixture) in which silicon oxide particles are mixed on the surface of the graphite obtained in the above step 1 is subjected to a spheronization treatment. However, particularly in the present invention, it is preferable to appropriately set the manufacturing conditions as described later so that silicon oxide particles within a predetermined range are present in the gaps within the graphite structure.
球形化処理には、基本的には力学的エネルギー(衝撃圧縮、摩擦及びせん断力等の機械的作用)を利用した処理を行う。具体的には、ハイブリダイゼーションシステムを用いた処理が好ましい。該システムは、衝撃圧縮、摩擦及びせん断力等の機械的作用を加える多数のブレードを有するローターを有し、ローターの回転により、大きな気流が発生する。それにより上記工程1で得られた混合物中の黒鉛に大きな遠心力がかかり、上記工程1で得られた混合物中の黒鉛同士、上記工程1で得られた混合物中の黒鉛が壁やブレードに衝突することによって、上記工程1で得られた混合物中の黒鉛と酸化珪素粒子の複合化が効率よく進行させることができる。
The spheroidization process is basically a process that uses mechanical energy (mechanical actions such as impact compression, friction, and shear force). Specifically, treatment using a hybridization system is preferred. The system has a rotor with many blades that exert mechanical actions such as impact compression, friction and shear, and rotation of the rotor generates a large airflow. As a result, a large centrifugal force is applied to the graphite in the mixture obtained in the above step 1, and the graphite in the mixture obtained in the above step 1 and the graphite in the mixture obtained in the above step 1 collide with the walls and blades. By doing so, the graphite and silicon oxide particles in the mixture obtained in the above step 1 can be efficiently combined.
球形化処理に用いる装置は、例えば、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された上記工程1で得られた混合物中の黒鉛に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置等を用いることができる。
例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン、クリプトロンオーブ(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム、ノビルタ、ファカルティ(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)、COMPOSI(日本コークス工業製)等が挙げられる。これらの中でも、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。 The apparatus used for the spheronization treatment has, for example, a rotor with a large number of blades installed inside the casing, and the rotor rotates at a high speed so that the graphite in the mixture obtained in the step 1 introduced into the interior is A device or the like can be used to apply a mechanical action such as impact compression, friction, shear force, etc., to surface treatment.
For example, Hybridization System (manufactured by Nara Machinery Co., Ltd.), Cryptotron, Crypton Orb (manufactured by Earthtechnica), CF Mill (manufactured by Ube Industries), Mechanofusion System, Nobilta, Faculty (manufactured by Hosokawa Micron), Theta Composer (manufactured by Tokuju Kosakusho Co., Ltd.), COMPOSI (manufactured by Nippon Coke Kogyo Co., Ltd.), and the like. Among these, the hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン、クリプトロンオーブ(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム、ノビルタ、ファカルティ(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)、COMPOSI(日本コークス工業製)等が挙げられる。これらの中でも、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。 The apparatus used for the spheronization treatment has, for example, a rotor with a large number of blades installed inside the casing, and the rotor rotates at a high speed so that the graphite in the mixture obtained in the step 1 introduced into the interior is A device or the like can be used to apply a mechanical action such as impact compression, friction, shear force, etc., to surface treatment.
For example, Hybridization System (manufactured by Nara Machinery Co., Ltd.), Cryptotron, Crypton Orb (manufactured by Earthtechnica), CF Mill (manufactured by Ube Industries), Mechanofusion System, Nobilta, Faculty (manufactured by Hosokawa Micron), Theta Composer (manufactured by Tokuju Kosakusho Co., Ltd.), COMPOSI (manufactured by Nippon Coke Kogyo Co., Ltd.), and the like. Among these, the hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
前述の装置を用いて処理する場合、回転するローターの周速度は、通常30~100m/秒であり、好ましくは40~100m/秒であり、より好ましくは50~100m/秒である。処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
When processing using the apparatus described above, the peripheral speed of the rotating rotor is usually 30 to 100 m/sec, preferably 40 to 100 m/sec, and more preferably 50 to 100 m/sec. The treatment can be carried out by simply passing the carbonaceous material through, but it is preferable to circulate or retain the carbonaceous material in the apparatus for 30 seconds or more, and more preferably to circulate or retain the carbonaceous material in the apparatus for 1 minute or more. .
・造粒剤
球形化処理は、造粒剤の存在下で行ってもよい。造粒剤を用いることで、炭素材同士の付着力が増大し、炭素材がより強固に付着した球状炭素材を製造することが可能となる。 - Granulating agent The spheronization treatment may be performed in the presence of a granulating agent. The use of a granulating agent increases the adhesion between carbon materials, making it possible to manufacture a spherical carbon material in which the carbon materials are more strongly adhered.
球形化処理は、造粒剤の存在下で行ってもよい。造粒剤を用いることで、炭素材同士の付着力が増大し、炭素材がより強固に付着した球状炭素材を製造することが可能となる。 - Granulating agent The spheronization treatment may be performed in the presence of a granulating agent. The use of a granulating agent increases the adhesion between carbon materials, making it possible to manufacture a spherical carbon material in which the carbon materials are more strongly adhered.
本形態で用いる造粒剤は、有機溶剤を含まないか、有機溶剤を含む場合、有機溶剤の内、少なくとも1種は引火点を有さない、又は、引火点を有するときは引火点が5℃以上のものが好ましい。これにより、続く工程における炭素材を造粒する際に、衝撃や発熱に誘発される有機化合物の引火、火災及び爆発の危険を防止することができる。このため、安定的に効率よく製造を実施することができる。
The granulating agent used in the present embodiment does not contain an organic solvent, or if it contains an organic solvent, at least one of the organic solvents does not have a flash point, or if it has a flash point, the flash point is 5. °C or higher is preferred. As a result, it is possible to prevent the risk of ignition, fire and explosion of the organic compound induced by impact or heat when granulating the carbon material in the subsequent process. Therefore, the manufacturing can be stably and efficiently carried out.
造粒剤としては、例えば、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイル、オレフィン系オイル、ナフテン系オイル、芳香族系オイルなどの合成油;植物系油脂類、動物系脂肪族類、エステル類、高級アルコール類などの天然油;引火点5℃以上、好ましくは引火点21℃以上の有機溶媒中に樹脂バインダを溶解させた樹脂バインダ溶液などの有機化合物;水などの水系溶媒;それらの混合物などが挙げられる。
Examples of granulating agents include coal tar, heavy petroleum oils, paraffinic oils such as liquid paraffin, synthetic oils such as olefinic oils, naphthenic oils, and aromatic oils; vegetable oils and fats, and animal fats. Natural oils such as family oils, esters, and higher alcohols; organic compounds such as resin binder solutions in which a resin binder is dissolved in an organic solvent having a flash point of 5°C or higher, preferably 21°C or higher; aqueous systems such as water solvents; mixtures thereof;
引火点5℃以上の有機溶剤としては、キシレン、イソプロピルベンゼン、エチルベンゼン、プロピルベンゼンなどのアルキルベンゼン、メチルナフタレン、エチルナフタレン、プロピルナフタレンなどのアルキルナフタレン、スチレンなどのアリルベンゼン、アリルナフタレンなどの芳香族炭化水素類;オクタン、ノナン、デカンなどの脂肪族炭化水素類;メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどのケトン類;酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミルなどのエステル類;メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリンなどのアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、メトキシプロパノール、メトキシプロピル-2-アセテート、メトキシメチルブタノール、メトキシブチルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、エチレングリコールモノフェニルエーテルなどのグリコール類誘導体類;1,4-ジオキサンなどのエーテル類や、ジメチルホルムアミド、ピリジン、2-ピロリドン、N-メチル-2-ピロリドンなどの含窒素化合物;ジメチルスルホキシドなどの含硫黄化合物;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、クロロベンゼンなどの含ハロゲン化合物;それらの混合物などがあげられる。例えば、トルエンのような引火点が低い物は含まれない。これら有機溶剤は、単体で造粒剤としても用いることができる。
本明細書において、引火点は、公知の方法により測定できる。 Organic solvents with a flash point of 5°C or higher include alkylbenzenes such as xylene, isopropylbenzene, ethylbenzene and propylbenzene; alkylnaphthalenes such as methylnaphthalene, ethylnaphthalene and propylnaphthalene; allylbenzenes such as styrene; Hydrogens; aliphatic hydrocarbons such as octane, nonane and decane; ketones such as methyl isobutyl ketone, diisobutyl ketone and cyclohexanone; esters such as propyl acetate, butyl acetate, isobutyl acetate and amyl acetate; , butanol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, glycerin; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether , triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, methoxypropanol, methoxypropyl-2-acetate, methoxymethylbutanol, methoxybutyl acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol dimethyl ether, tri Glycol derivatives such as propylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, ethylene glycol monophenyl ether; ethers such as 1,4-dioxane, dimethylformamide, pyridine, 2-pyrrolidone, N-methyl-2-pyrrolidone nitrogen-containing compounds; sulfur-containing compounds such as dimethylsulfoxide; halogen-containing compounds such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane and chlorobenzene; and mixtures thereof. For example, substances with low flash points such as toluene are not included. These organic solvents can also be used alone as a granulating agent.
As used herein, the flash point can be measured by a known method.
本明細書において、引火点は、公知の方法により測定できる。 Organic solvents with a flash point of 5°C or higher include alkylbenzenes such as xylene, isopropylbenzene, ethylbenzene and propylbenzene; alkylnaphthalenes such as methylnaphthalene, ethylnaphthalene and propylnaphthalene; allylbenzenes such as styrene; Hydrogens; aliphatic hydrocarbons such as octane, nonane and decane; ketones such as methyl isobutyl ketone, diisobutyl ketone and cyclohexanone; esters such as propyl acetate, butyl acetate, isobutyl acetate and amyl acetate; , butanol, isopropyl alcohol, isobutyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, glycerin; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether , triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, methoxypropanol, methoxypropyl-2-acetate, methoxymethylbutanol, methoxybutyl acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, triethylene glycol dimethyl ether, tri Glycol derivatives such as propylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, ethylene glycol monophenyl ether; ethers such as 1,4-dioxane, dimethylformamide, pyridine, 2-pyrrolidone, N-methyl-2-pyrrolidone nitrogen-containing compounds; sulfur-containing compounds such as dimethylsulfoxide; halogen-containing compounds such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane and chlorobenzene; and mixtures thereof. For example, substances with low flash points such as toluene are not included. These organic solvents can also be used alone as a granulating agent.
As used herein, the flash point can be measured by a known method.
樹脂バインダとしては、例えば、エチルセルロース、メチルセルロース、それらの塩などのセルロース系の樹脂バインダ;ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート、ポリアクリル酸、それらの塩などのアクリル系の樹脂バインダ;ポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレートなどのメタクリル系の樹脂バインダ;フェノール樹脂バインダなどが挙げられる。
造粒剤としては、中でも、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイル、アルコール類、芳香族系オイルが、円形度が高く微粉が少ない球状炭素材を製造できるため好ましい。 Examples of resin binders include cellulose-based resin binders such as ethyl cellulose, methyl cellulose, and salts thereof; acrylic resin binders such as polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyacrylic acid, and salts thereof; Methacrylic resin binders such as methyl methacrylate, polyethyl methacrylate and polybutyl methacrylate; phenolic resin binders and the like.
As the granulating agent, coal tar, heavy petroleum oil, paraffinic oils such as liquid paraffin, alcohols, and aromatic oils are preferable because they can produce a spherical carbon material with high circularity and little fine powder.
造粒剤としては、中でも、コールタール、石油系重質油、流動パラフィンなどのパラフィン系オイル、アルコール類、芳香族系オイルが、円形度が高く微粉が少ない球状炭素材を製造できるため好ましい。 Examples of resin binders include cellulose-based resin binders such as ethyl cellulose, methyl cellulose, and salts thereof; acrylic resin binders such as polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyacrylic acid, and salts thereof; Methacrylic resin binders such as methyl methacrylate, polyethyl methacrylate and polybutyl methacrylate; phenolic resin binders and the like.
As the granulating agent, coal tar, heavy petroleum oil, paraffinic oils such as liquid paraffin, alcohols, and aromatic oils are preferable because they can produce a spherical carbon material with high circularity and little fine powder.
造粒剤としては、効率よく除去が可能であり、容量や出力特性や保存・サイクル特性などの電池特性への悪影響を与えることがない性状のものが好ましい。具体的には、不活性雰囲気下700℃に加熱した時に、通常50質量%以上、好ましくは80質量%以上、より好ましくは95質量%以上、更に好ましくは99質量%以上、特に好ましくは99.9質量%以上質量減少するものを選択することができる。
The granulating agent preferably has properties that can be removed efficiently and that do not adversely affect battery characteristics such as capacity, output characteristics, storage and cycle characteristics. Specifically, when heated to 700° C. in an inert atmosphere, it is usually 50% by mass or more, preferably 80% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and particularly preferably 99% by mass. It is possible to select one that reduces the mass by 9% by mass or more.
球形化処理に付する上記工程1で得られた混合物中の黒鉛(A)は、すでに従来法の条件で一定の球形化処理を受けたものであってもよい。また、上記工程1で得られた複合体を循環又は本工程を複数回経ることによって機械的作用を繰り返して与えてもよい。
The graphite (A) in the mixture obtained in Step 1 above, which is subjected to spheronization treatment, may have already undergone a certain spheronization treatment under the conditions of a conventional method. Moreover, the composite obtained in the above step 1 may be subjected to repeated mechanical action by circulating or passing through this step multiple times.
球形化処理の際には、ローターの回転数を通常2000rpm以上9000rpm以下、好ましくは4000rpm以上8000rpm以下、より好ましくは5000rpm以上7500rpm以下、更に好ましくは6000rpm以上7200rpm以下として、通常30秒以上60分以下、好ましくは1分以上30分以下、より好ましくは1分30秒以上10分以下、更に好ましくは2分以上5分以下の範囲で、球形化処理を行う。
During the spheronization treatment, the rotation speed of the rotor is usually 2000 rpm to 9000 rpm, preferably 4000 rpm to 8000 rpm, more preferably 5000 rpm to 7500 rpm, still more preferably 6000 rpm to 7200 rpm, for usually 30 seconds to 60 minutes. , preferably 1 minute or more and 30 minutes or less, more preferably 1 minute and 30 seconds or more and 10 minutes or less, still more preferably 2 minutes or more and 5 minutes or less.
ローターの回転数が小さすぎると球状になる処理が弱く、タッピング密度が十分に上昇しない可能性がある。ローターの回転数が大きすぎると球状になる処理よりも粉砕される効果が強くなり、粒子が崩壊してタッピング密度が低下してしまう可能性がある。球形化処理時間が短すぎると粒子径を十分に小さくしつつ、かつ高いタッピング密度を達成することができない。球形化処理時間が長すぎると、上記工程1で得られた混合物中の黒鉛が粉々になってしまい、本発明の目的を達成できない可能性がある。
If the rotation speed of the rotor is too low, the spherical processing is weak and the tapping density may not increase sufficiently. If the number of rotations of the rotor is too high, the pulverization effect becomes stronger than the spheroidizing treatment, and the particles may collapse and the tapping density may decrease. If the spheronization treatment time is too short, a high tapping density cannot be achieved while sufficiently reducing the particle size. If the spheronization treatment time is too long, the graphite in the mixture obtained in the above step 1 will be shattered, possibly failing to achieve the object of the present invention.
得られた粒子に対しては分級処理を行ってもよい。得られた粒子が本発明の規定の物性範囲にない場合には、繰り返し(通常2回以上10回以下、好ましくは2回以上5回以下)分級処理することによって、所望の物性範囲にすることができる。分級には、乾式(気力分級、篩)、湿式分級等が挙げられる。乾式分級、特に気力分級がコストや生産性の面から好ましい。
The obtained particles may be classified. If the obtained particles do not fall within the specified range of physical properties of the present invention, they are subjected to classification treatment repeatedly (usually 2 to 10 times, preferably 2 to 5 times) to bring the physical properties into the desired range. can be done. Examples of classification include dry classification (air classification, sieve), wet classification, and the like. Dry classification, particularly air classification, is preferred from the viewpoint of cost and productivity.
上述のような製造方法により、本発明の粒子を製造できる。
The particles of the present invention can be produced by the production method as described above.
<炭素質物被覆粒子の製造方法>
以上のようにして得られる本発明の粒子は、炭素質物を含有することが好ましい。より具体的な態様として、炭素質物で粒子の表面の少なくとも一部を被覆することがより好ましい(以下、「炭素質物被覆粒子」又は「本発明の炭素質物被覆粒子」ともいう)。 <Method for producing carbonaceous material-coated particles>
The particles of the present invention obtained as described above preferably contain a carbonaceous material. As a more specific embodiment, it is more preferable to coat at least part of the surface of the particles with a carbonaceous material (hereinafter also referred to as "carbonaceous material-coated particles" or "carbonaceous material-coated particles of the present invention").
以上のようにして得られる本発明の粒子は、炭素質物を含有することが好ましい。より具体的な態様として、炭素質物で粒子の表面の少なくとも一部を被覆することがより好ましい(以下、「炭素質物被覆粒子」又は「本発明の炭素質物被覆粒子」ともいう)。 <Method for producing carbonaceous material-coated particles>
The particles of the present invention obtained as described above preferably contain a carbonaceous material. As a more specific embodiment, it is more preferable to coat at least part of the surface of the particles with a carbonaceous material (hereinafter also referred to as "carbonaceous material-coated particles" or "carbonaceous material-coated particles of the present invention").
炭素質物被覆粒子は上述した工程2の後に、以下の工程3を経ることによって製造することができる。
工程3:工程2にて球形化処理された粒子を炭素質物で被覆する工程
以下、工程3について詳しく説明する。 The carbonaceous material-coated particles can be produced by performing the following step 3 after step 2 described above.
Step 3: Step of Coating the Particles Spheronized in Step 2 with a Carbonaceous Material Step 3 will be described in detail below.
工程3:工程2にて球形化処理された粒子を炭素質物で被覆する工程
以下、工程3について詳しく説明する。 The carbonaceous material-coated particles can be produced by performing the following step 3 after step 2 described above.
Step 3: Step of Coating the Particles Spheronized in Step 2 with a Carbonaceous Material Step 3 will be described in detail below.
(工程3:工程2にて球形化処理された粒子を炭素質物で被覆する工程)
・炭素質物
前記炭素質物としては、後述するその製造方法における加熱の温度の相違によって、非晶質炭素及び黒鉛化物が挙げられる。この中でもリチウムイオンの受入性の点から非晶質炭素が好ましい。 (Step 3: Step of coating the particles spheroidized in Step 2 with a carbonaceous material)
-Carbonaceous material Examples of the carbonaceous material include amorphous carbon and graphitized material depending on the difference in heating temperature in the manufacturing method described below. Among these, amorphous carbon is preferable from the viewpoint of lithium ion acceptance.
・炭素質物
前記炭素質物としては、後述するその製造方法における加熱の温度の相違によって、非晶質炭素及び黒鉛化物が挙げられる。この中でもリチウムイオンの受入性の点から非晶質炭素が好ましい。 (Step 3: Step of coating the particles spheroidized in Step 2 with a carbonaceous material)
-Carbonaceous material Examples of the carbonaceous material include amorphous carbon and graphitized material depending on the difference in heating temperature in the manufacturing method described below. Among these, amorphous carbon is preferable from the viewpoint of lithium ion acceptance.
具体的には、前記炭素質物は、その炭素前駆体を後述するように加熱処理することで得ることができる。前記炭素前駆体として、前述の(i)及び/又は(ii)に記載の炭素材が好ましい。
Specifically, the carbonaceous material can be obtained by heat-treating the carbon precursor as described later. As the carbon precursor, the carbon material described in (i) and/or (ii) above is preferable.
・被覆処理
被覆処理においては、上述した工程2で得られた粒子に対して、炭素質物を得るための炭素前駆体を被覆原料として用い、これらを混合、焼成することで、被覆粒子が得られる。
焼成温度を、通常600℃以上、好ましくは700℃以上、より好ましくは900℃以上、通常2000℃以下、好ましくは1500℃以下、より好ましくは1200℃以下とすると、炭素質物として非晶質炭素が得られる。焼成温度が通常2000℃以上、好ましくは2500℃以上、通常3200℃以下で熱処理を行うと、炭素質物として黒鉛化炭素が得られる。
前記非晶質炭素とは結晶性の低い炭素である。前記黒鉛化炭素とは結晶性の高い炭素である。
被覆処理においては、上述した粒子を芯材とし、炭素質物を得るための炭素前駆体を被覆原料として用い、これらを混合、焼成することで、炭素質物被覆粒子が得られる。 - Coating treatment In the coating treatment, a carbon precursor for obtaining a carbonaceous material is used as a coating raw material for the particles obtained in step 2 described above, and these are mixed and fired to obtain coated particles. .
When the firing temperature is usually 600° C. or higher, preferably 700° C. or higher, more preferably 900° C. or higher, and usually 2000° C. or lower, preferably 1500° C. or lower, more preferably 1200° C. or lower, amorphous carbon is produced as the carbonaceous material. can get. Graphitized carbon can be obtained as a carbonaceous material by performing heat treatment at a firing temperature of usually 2000° C. or higher, preferably 2500° C. or higher, and usually 3200° C. or lower.
The amorphous carbon is carbon with low crystallinity. The graphitized carbon is carbon with high crystallinity.
In the coating treatment, the particles described above are used as the core material, and the carbon precursor for obtaining the carbonaceous material is used as the coating raw material, and these are mixed and fired to obtain the carbonaceous material-coated particles.
被覆処理においては、上述した工程2で得られた粒子に対して、炭素質物を得るための炭素前駆体を被覆原料として用い、これらを混合、焼成することで、被覆粒子が得られる。
焼成温度を、通常600℃以上、好ましくは700℃以上、より好ましくは900℃以上、通常2000℃以下、好ましくは1500℃以下、より好ましくは1200℃以下とすると、炭素質物として非晶質炭素が得られる。焼成温度が通常2000℃以上、好ましくは2500℃以上、通常3200℃以下で熱処理を行うと、炭素質物として黒鉛化炭素が得られる。
前記非晶質炭素とは結晶性の低い炭素である。前記黒鉛化炭素とは結晶性の高い炭素である。
被覆処理においては、上述した粒子を芯材とし、炭素質物を得るための炭素前駆体を被覆原料として用い、これらを混合、焼成することで、炭素質物被覆粒子が得られる。 - Coating treatment In the coating treatment, a carbon precursor for obtaining a carbonaceous material is used as a coating raw material for the particles obtained in step 2 described above, and these are mixed and fired to obtain coated particles. .
When the firing temperature is usually 600° C. or higher, preferably 700° C. or higher, more preferably 900° C. or higher, and usually 2000° C. or lower, preferably 1500° C. or lower, more preferably 1200° C. or lower, amorphous carbon is produced as the carbonaceous material. can get. Graphitized carbon can be obtained as a carbonaceous material by performing heat treatment at a firing temperature of usually 2000° C. or higher, preferably 2500° C. or higher, and usually 3200° C. or lower.
The amorphous carbon is carbon with low crystallinity. The graphitized carbon is carbon with high crystallinity.
In the coating treatment, the particles described above are used as the core material, and the carbon precursor for obtaining the carbonaceous material is used as the coating raw material, and these are mixed and fired to obtain the carbonaceous material-coated particles.
・金属粒子や炭素微粒子との混合
当該被覆層の中に、合金化可能な金属粒子や炭素微粒子が含まれてもよい。炭素微粒子の形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状、鱗片状等の何れであってもよい。 - Mixing with Metal Particles and Carbon Microparticles Metal particles and carbon microparticles that can be alloyed may be contained in the coating layer. The shape of the fine carbon particles is not particularly limited, and may be granular, spherical, chain-like, needle-like, fibrous, plate-like, scale-like, or the like.
当該被覆層の中に、合金化可能な金属粒子や炭素微粒子が含まれてもよい。炭素微粒子の形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状、鱗片状等の何れであってもよい。 - Mixing with Metal Particles and Carbon Microparticles Metal particles and carbon microparticles that can be alloyed may be contained in the coating layer. The shape of the fine carbon particles is not particularly limited, and may be granular, spherical, chain-like, needle-like, fibrous, plate-like, scale-like, or the like.
炭素微粒子は特に限定されないが、具体的に、石炭微粉、気相炭素粉、カーボンブラック、ケッチェンブラック、カーボンナノファイバー等が挙げられる。この中でもカーボンブラックが特に好ましい。カーボンブラックであると、低温下においても入出力特性が高くなり、同時に安価・簡便に入手が可能という利点がある。
Carbon fine particles are not particularly limited, but specific examples include coal fine powder, vapor phase carbon powder, carbon black, ketjen black, and carbon nanofiber. Among these, carbon black is particularly preferred. Carbon black has the advantage that it has high input/output characteristics even at low temperatures and is readily available at low cost.
炭素微粒子の体積平均粒子径(d50)は、通常0.01μm以上10μm以下であり、好ましくは0.05μm以上8μm以下であり、より好ましくは0.07μm以上5μm以下であり、更に好ましくは0.1μm以上1μm以下である。
The volume average particle diameter (d 50 ) of the carbon fine particles is usually 0.01 μm or more and 10 μm or less, preferably 0.05 μm or more and 8 μm or less, more preferably 0.07 μm or more and 5 μm or less, still more preferably 0 .1 μm or more and 1 μm or less.
炭素微粒子が、1次粒子が集合・凝集した2次構造を有する場合、1次粒子径が3nm以上500nm以下であればその他の物性や種類は特に限定されない。1次粒子径は、好ましくは3nm以上500nm以下であり、より好ましくは15nm以上200nm以下であり、更に好ましくは30nm以上100nm以下であり、特に好ましくは40nm以上70nm以下である。
When the carbon fine particles have a secondary structure in which primary particles aggregate and aggregate, other physical properties and types are not particularly limited as long as the primary particle diameter is 3 nm or more and 500 nm or less. The primary particle diameter is preferably 3 nm or more and 500 nm or less, more preferably 15 nm or more and 200 nm or less, still more preferably 30 nm or more and 100 nm or less, and particularly preferably 40 nm or more and 70 nm or less.
・その他の工程
上記工程を経た粒子は、工程1に記載の粉砕、解砕、分級処理等の粉体加工をしてもよい。
上述のような製造方法により、本発明の炭素質物被覆粒子を製造できる。 -Other Steps Particles that have undergone the above steps may be subjected to powder processing such as pulverization, pulverization, and classification described in Step 1.
The carbonaceous material-coated particles of the present invention can be produced by the production method as described above.
上記工程を経た粒子は、工程1に記載の粉砕、解砕、分級処理等の粉体加工をしてもよい。
上述のような製造方法により、本発明の炭素質物被覆粒子を製造できる。 -Other Steps Particles that have undergone the above steps may be subjected to powder processing such as pulverization, pulverization, and classification described in Step 1.
The carbonaceous material-coated particles of the present invention can be produced by the production method as described above.
<用途>
本発明の粒子は、二次電池の負極活物質として用いることで、電池特性に優れた二次電池を実現することができる。このため、本発明の粒子は、二次電池の負極活物質として有用である。 <Application>
By using the particles of the present invention as a negative electrode active material for a secondary battery, a secondary battery with excellent battery characteristics can be realized. Therefore, the particles of the present invention are useful as a negative electrode active material for secondary batteries.
本発明の粒子は、二次電池の負極活物質として用いることで、電池特性に優れた二次電池を実現することができる。このため、本発明の粒子は、二次電池の負極活物質として有用である。 <Application>
By using the particles of the present invention as a negative electrode active material for a secondary battery, a secondary battery with excellent battery characteristics can be realized. Therefore, the particles of the present invention are useful as a negative electrode active material for secondary batteries.
[二次電池]
本発明の二次電池は、正極、負極及び電解質を含む二次電池であって、該負極が、集電体と、該集電体上に形成された負極活物質層とを含み、該負極活物質層に本発明の粒子を含むものである。本発明の二次電池は、通常、集電体上に、本発明の粒子を含む負極活物質層を形成して負極を得る工程を含む本発明の二次電池の製造方法により製造される。 [Secondary battery]
A secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector. The active material layer contains the particles of the present invention. The secondary battery of the present invention is generally manufactured by the method for manufacturing a secondary battery of the present invention, which includes the step of forming a negative electrode active material layer containing the particles of the present invention on a current collector to obtain a negative electrode.
本発明の二次電池は、正極、負極及び電解質を含む二次電池であって、該負極が、集電体と、該集電体上に形成された負極活物質層とを含み、該負極活物質層に本発明の粒子を含むものである。本発明の二次電池は、通常、集電体上に、本発明の粒子を含む負極活物質層を形成して負極を得る工程を含む本発明の二次電池の製造方法により製造される。 [Secondary battery]
A secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector. The active material layer contains the particles of the present invention. The secondary battery of the present invention is generally manufactured by the method for manufacturing a secondary battery of the present invention, which includes the step of forming a negative electrode active material layer containing the particles of the present invention on a current collector to obtain a negative electrode.
<負極>
本発明の粒子を用いて負極(以下、「本発明の負極」と称す場合がある。)を作製するには、本発明の粒子にバインダ(結着樹脂)を配合したものを分散媒に分散させてスラリーとし、これを集電体に塗布、乾燥して集電体上に負極活物質層を形成する。 <Negative Electrode>
In order to prepare a negative electrode using the particles of the present invention (hereinafter sometimes referred to as "negative electrode of the present invention"), the particles of the present invention mixed with a binder (binder resin) are dispersed in a dispersion medium. to form a slurry, which is applied to a current collector and dried to form a negative electrode active material layer on the current collector.
本発明の粒子を用いて負極(以下、「本発明の負極」と称す場合がある。)を作製するには、本発明の粒子にバインダ(結着樹脂)を配合したものを分散媒に分散させてスラリーとし、これを集電体に塗布、乾燥して集電体上に負極活物質層を形成する。 <Negative Electrode>
In order to prepare a negative electrode using the particles of the present invention (hereinafter sometimes referred to as "negative electrode of the present invention"), the particles of the present invention mixed with a binder (binder resin) are dispersed in a dispersion medium. to form a slurry, which is applied to a current collector and dried to form a negative electrode active material layer on the current collector.
バインダとしては、分子内にオレフィン性不飽和結合を有するものを用いる。その種類は特に制限されない。具体例としては、スチレン-ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル-ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。このようなオレフィン性不飽和結合を有するバインダを用いることにより、負極活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン-ブタジエンゴムが好ましい。
As the binder, use one that has an olefinic unsaturated bond in the molecule. The type is not particularly limited. Specific examples include styrene-butadiene rubber, styrene/isoprene/styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene/propylene/diene copolymer. By using a binder having such an olefinically unsaturated bond, swelling of the negative electrode active material layer with respect to the electrolytic solution can be reduced. Among them, styrene-butadiene rubber is preferable because of its easy availability.
分子内にオレフィン性不飽和結合を有するバインダとしては、その分子量が大きいものか、不飽和結合の割合が高いものが望ましい。
分子量が大きいバインダとしては、その重量平均分子量が通常1万以上、好ましくは5万以上、また、通常100万以下、好ましくは30万以下の範囲にあるものが望ましい。不飽和結合の割合が高いバインダとしては、全バインダの1g当たりのオレフィン性不飽和結合のモル数が、通常2.5×10-7以上、好ましくは8×10-7以上、また、通常5×10-6以下、好ましくは1×10-6以下の範囲にあるものが望ましい。 As the binder having olefinic unsaturated bonds in the molecule, it is desirable to have a large molecular weight or a high proportion of unsaturated bonds.
A binder having a high molecular weight preferably has a weight-average molecular weight of usually 10,000 or more, preferably 50,000 or more, and usually 1,000,000 or less, preferably 300,000 or less. As a binder with a high proportion of unsaturated bonds, the number of moles of olefinic unsaturated bonds per 1 g of the total binder is usually 2.5 × 10 -7 or more, preferably 8 × 10 -7 or more, and usually 5 x10 -6 or less, preferably 1 x 10 -6 or less.
分子量が大きいバインダとしては、その重量平均分子量が通常1万以上、好ましくは5万以上、また、通常100万以下、好ましくは30万以下の範囲にあるものが望ましい。不飽和結合の割合が高いバインダとしては、全バインダの1g当たりのオレフィン性不飽和結合のモル数が、通常2.5×10-7以上、好ましくは8×10-7以上、また、通常5×10-6以下、好ましくは1×10-6以下の範囲にあるものが望ましい。 As the binder having olefinic unsaturated bonds in the molecule, it is desirable to have a large molecular weight or a high proportion of unsaturated bonds.
A binder having a high molecular weight preferably has a weight-average molecular weight of usually 10,000 or more, preferably 50,000 or more, and usually 1,000,000 or less, preferably 300,000 or less. As a binder with a high proportion of unsaturated bonds, the number of moles of olefinic unsaturated bonds per 1 g of the total binder is usually 2.5 × 10 -7 or more, preferably 8 × 10 -7 or more, and usually 5 x10 -6 or less, preferably 1 x 10 -6 or less.
バインダとしては、これらの分子量に関する規定と不飽和結合の割合に関する規定のうち、少なくとも何れか一方を満たしていればよいが、両方の規定を同時に満たすものがより好ましい。オレフィン性不飽和結合を有するバインダの分子量が小さ過ぎると機械的強度に劣る。該バインダの分子量が大き過ぎると可撓性に劣る。また、バインダ中のオレフィン性不飽和結合の割合が低過ぎると強度向上効果が薄れ、高過ぎると可撓性に劣る。
The binder should satisfy at least one of the regulations regarding the molecular weight and the regulations regarding the ratio of unsaturated bonds, but it is more preferable to satisfy both regulations at the same time. If the molecular weight of the binder having olefinically unsaturated bonds is too small, the mechanical strength is poor. If the molecular weight of the binder is too large, the flexibility is poor. On the other hand, if the proportion of olefinic unsaturated bonds in the binder is too low, the effect of improving the strength will be weak, and if it is too high, the flexibility will be poor.
オレフィン性不飽和結合を有するバインダは、その不飽和度が、通常15%以上、好ましくは20%以上、より好ましくは40%以上、通常90%以下、好ましくは80%以下の範囲にあるものが望ましい。不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。
The binder having olefinic unsaturated bonds has a degree of unsaturation of usually 15% or more, preferably 20% or more, more preferably 40% or more, usually 90% or less, preferably 80% or less. desirable. The degree of unsaturation represents the ratio (%) of double bonds to the repeating units of the polymer.
本発明においては、オレフィン性不飽和結合を有さないバインダも、本発明の効果が失われない範囲において、上述のオレフィン性不飽和結合を有するバインダと併用することができる。オレフィン性不飽和結合を有するバインダ量に対する、オレフィン性不飽和結合を有さないバインダの混合比率は、通常150質量%以下、好ましくは120質量%以下である。
オレフィン性不飽和結合を有さないバインダを併用することにより、塗布性を向上することができるが、併用量が多すぎると活物質層の強度が低下する。 In the present invention, binders having no olefinic unsaturated bonds can also be used in combination with binders having the above-mentioned olefinic unsaturated bonds as long as the effects of the present invention are not lost. The mixing ratio of the binder having no olefinically unsaturated bonds to the amount of the binder having olefinically unsaturated bonds is usually 150% by mass or less, preferably 120% by mass or less.
By using a binder that does not have an olefinic unsaturated bond, coatability can be improved.
オレフィン性不飽和結合を有さないバインダを併用することにより、塗布性を向上することができるが、併用量が多すぎると活物質層の強度が低下する。 In the present invention, binders having no olefinic unsaturated bonds can also be used in combination with binders having the above-mentioned olefinic unsaturated bonds as long as the effects of the present invention are not lost. The mixing ratio of the binder having no olefinically unsaturated bonds to the amount of the binder having olefinically unsaturated bonds is usually 150% by mass or less, preferably 120% by mass or less.
By using a binder that does not have an olefinic unsaturated bond, coatability can be improved.
オレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉等の多糖類;カラギナン、プルラン、グアーガム、ザンサンガム(キサンタンガム)等の増粘多糖類;ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル類;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;ポリアクリル酸、ポリメタクリル酸等のポリ酸又はこれらポリマーの金属塩;ポリフッ化ビニリデン等の含フッ素ポリマー;ポリエチレン、ポリプロピレンなどのアルカン系ポリマー及びこれらの共重合体などが挙げられる。
Examples of binders having no olefinic unsaturated bonds include polysaccharides such as methylcellulose, carboxymethylcellulose and starch; thickening polysaccharides such as carrageenan, pullulan, guar gum and xanthan gum; polyethylene oxide, polypropylene oxide and the like. Polyethers; vinyl alcohols such as polyvinyl alcohol and polyvinyl butyral; polyacids such as polyacrylic acid and polymethacrylic acid, or metal salts of these polymers; fluorine-containing polymers such as polyvinylidene fluoride; alkane polymers such as polyethylene and polypropylene and copolymers thereof.
スラリー中の本発明の粒子と、バインダ(上述のように不飽和結合を有するバインダと、不飽和結合を有さないバインダとの混合物であってもよい。)との質量比率(本発明の粒子/バインダ)は、それぞれの乾燥質量比で、通常90/10以上であり、好ましくは95/5以上であり、通常99.9/0.1以下であり、好ましくは99.5/0.5以下である。
バインダの割合が高過ぎると容量の減少や、抵抗の増大を招きやすい。バインダの割合が少な過ぎると負極板強度が劣るものとなる。 The mass ratio (the particles of the present invention / binder) is usually 90/10 or more, preferably 95/5 or more, usually 99.9/0.1 or less, preferably 99.5/0.5 It is below.
If the proportion of the binder is too high, the capacity tends to decrease and the resistance increases. If the proportion of the binder is too small, the strength of the negative electrode plate will deteriorate.
バインダの割合が高過ぎると容量の減少や、抵抗の増大を招きやすい。バインダの割合が少な過ぎると負極板強度が劣るものとなる。 The mass ratio (the particles of the present invention / binder) is usually 90/10 or more, preferably 95/5 or more, usually 99.9/0.1 or less, preferably 99.5/0.5 It is below.
If the proportion of the binder is too high, the capacity tends to decrease and the resistance increases. If the proportion of the binder is too small, the strength of the negative electrode plate will deteriorate.
本発明の粒子とバインダとを分散させるスラリーとするための分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。
このスラリーには更に、所望により導電剤を加えてもよい。導電剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒子径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。導電剤の添加量は、本発明の粒子に対して通常10質量%以下である。 An organic solvent such as alcohol or water can be used as a dispersion medium for forming a slurry in which the particles of the present invention and the binder are dispersed.
Optionally, a conductive agent may be added to the slurry. Examples of the conductive agent include carbon black such as acetylene black, ketjen black, and furnace black, and fine powders of Cu, Ni, or alloys thereof having an average particle size of 1 μm or less. The amount of the conductive agent added is usually 10% by mass or less relative to the particles of the present invention.
このスラリーには更に、所望により導電剤を加えてもよい。導電剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒子径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。導電剤の添加量は、本発明の粒子に対して通常10質量%以下である。 An organic solvent such as alcohol or water can be used as a dispersion medium for forming a slurry in which the particles of the present invention and the binder are dispersed.
Optionally, a conductive agent may be added to the slurry. Examples of the conductive agent include carbon black such as acetylene black, ketjen black, and furnace black, and fine powders of Cu, Ni, or alloys thereof having an average particle size of 1 μm or less. The amount of the conductive agent added is usually 10% by mass or less relative to the particles of the present invention.
スラリーを塗布する集電体には、従来公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜が挙げられる。集電体の厚さは、通常4μm以上であり、好ましくは6μm以上であり、通常30μm以下であり、好ましくは20μm以下である。
A conventionally known current collector can be used as the current collector to which the slurry is applied. Specific examples include metal thin films such as rolled copper foil, electrolytic copper foil, and stainless steel foil. The thickness of the current collector is usually 4 μm or more, preferably 6 μm or more, and usually 30 μm or less, preferably 20 μm or less.
上記のスラリーは、ドクターブレード等を用いて集電体上に塗布して乾燥させた後、ロールプレス等でプレスして負極活物質層が形成される。この際、スラリーは集電体上の本発明の粒子の付着量が5~15mg/cm2となるように塗布することが好ましい。
The above slurry is applied onto a current collector using a doctor blade or the like, dried, and then pressed using a roll press or the like to form a negative electrode active material layer. At this time, the slurry is preferably applied so that the amount of the particles of the present invention attached to the current collector is 5 to 15 mg/cm 2 .
スラリーを集電体上に塗布した後の乾燥は、通常60℃以上、好ましくは80℃以上、通常200℃以下、好ましくは195℃以下の温度で、乾燥空気又は不活性雰囲気下で行われる。
The drying after coating the slurry on the current collector is usually carried out at a temperature of 60°C or higher, preferably 80°C or higher, and usually 200°C or lower, preferably 195°C or lower, in dry air or an inert atmosphere.
スラリーを塗布、乾燥して得られる負極活物質層の厚さは、プレス後の状態において、通常5μm以上であり、好ましくは20μm以上であり、更に好ましくは30μm以上であり、通常200μm以下であり、好ましくは100μm以下であり、更に好ましくは75μm以下である。負極活物質層が薄すぎると、負極活物質である本発明の粒子の粒子径との兼ね合いから負極活物質層としての実用性に欠ける。負極活物質層が厚すぎると、高密度の電流値に対する十分なLiイオンの吸蔵・放出の機能が得られにくい。
The thickness of the negative electrode active material layer obtained by coating and drying the slurry is usually 5 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 200 μm or less in the state after pressing. , preferably 100 μm or less, more preferably 75 μm or less. If the negative electrode active material layer is too thin, it lacks practicality as a negative electrode active material layer due to the balance with the particle diameter of the particles of the present invention which are the negative electrode active material. If the negative electrode active material layer is too thick, it is difficult to obtain a sufficient Li ion intercalation/deintercalation function for a high-density current value.
負極活物質層における本発明の粒子の密度は、用途により異なるが、容量を重視する用途では、好ましくは1.55g/cm3以上、とりわけ1.6g/cm3以上、更に1.65g/cm3以上、特に1.7g/cm3以上が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必ずしも充分ではない。密度が高すぎるとレート特性が低下するので、黒鉛の密度は1.9g/cm3以下が好ましい。
The density of the particles of the present invention in the negative electrode active material layer varies depending on the application . 3 or more, and particularly preferably 1.7 g/cm 3 or more. If the density is too low, the battery capacity per unit volume is not necessarily sufficient. If the density is too high, the rate characteristics deteriorate, so the density of graphite is preferably 1.9 g/cm 3 or less.
以上説明した本発明の粒子を用いて本発明の負極を作製する場合、その手法や他の材料の選択については、特に制限されない。
この負極を用いて二次電池を作製する場合も、二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。 When the negative electrode of the present invention is produced using the particles of the present invention described above, the method and selection of other materials are not particularly limited.
When a secondary battery is produced using this negative electrode, there are no particular restrictions on the selection of members necessary for the battery configuration, such as the positive electrode and the electrolytic solution that constitute the secondary battery.
この負極を用いて二次電池を作製する場合も、二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。 When the negative electrode of the present invention is produced using the particles of the present invention described above, the method and selection of other materials are not particularly limited.
When a secondary battery is produced using this negative electrode, there are no particular restrictions on the selection of members necessary for the battery configuration, such as the positive electrode and the electrolytic solution that constitute the secondary battery.
<二次電池>
以下、本発明の粒子を用いた負極を含む本発明の二次電池の詳細を、リチウムイオン二次電池を例示して説明する。本発明の二次電池に使用し得る材料や作製の方法等は以下の具体例に限定されるものではない。 <Secondary battery>
Hereinafter, the secondary battery of the present invention including a negative electrode using the particles of the present invention will be described in detail by taking a lithium ion secondary battery as an example. Materials that can be used in the secondary battery of the present invention, production methods, and the like are not limited to the following specific examples.
以下、本発明の粒子を用いた負極を含む本発明の二次電池の詳細を、リチウムイオン二次電池を例示して説明する。本発明の二次電池に使用し得る材料や作製の方法等は以下の具体例に限定されるものではない。 <Secondary battery>
Hereinafter, the secondary battery of the present invention including a negative electrode using the particles of the present invention will be described in detail by taking a lithium ion secondary battery as an example. Materials that can be used in the secondary battery of the present invention, production methods, and the like are not limited to the following specific examples.
本発明の二次電池、特にリチウムイオン二次電池の基本的構成は、従来公知のリチウムイオン二次電池と同様であり、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える。負極としては、上述した本発明の負極を用いる。
The basic configuration of the secondary battery of the present invention, particularly a lithium ion secondary battery, is the same as that of conventionally known lithium ion secondary batteries, and usually includes a positive electrode and a negative electrode capable of intercalating and deintercalating lithium ions, and an electrolyte. . As the negative electrode, the negative electrode of the present invention described above is used.
正極は、正極活物質及びバインダを含有する正極活物質層を、集電体上に形成したものである。
The positive electrode is formed by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector.
正極活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。金属カルコゲン化合物としては、バナジウムの酸化物、モリブデンの酸化物、マンガンの酸化物、クロムの酸化物、チタンの酸化物、タングステンの酸化物などの遷移金属酸化物;バナジウムの硫化物、モリブデンの硫化物、チタンの硫化物、CuSなどの遷移金属硫化物;NiPS3、FePS3等の遷移金属のリン-硫黄化合物;VSe2、NbSe3などの遷移金属のセレン化合物;Fe0.25V0.75S2、Na0.1CrS2などの遷移金属の複合酸化物;LiCoS2、LiNiS2などの遷移金属の複合硫化物等が挙げられる。
Examples of positive electrode active materials include metal chalcogen compounds capable of intercalating and deintercalating alkali metal cations such as lithium ions during charging and discharging. Metal chalcogen compounds include transition metal oxides such as vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, tungsten oxide; vanadium sulfide, molybdenum sulfide transition metal sulfides such as sulfides, titanium sulfides, and CuS; transition metal phosphorus-sulfur compounds such as NiPS 3 and FePS 3 ; transition metal selenium compounds such as VSe 2 and NbSe 3 ; transition metal composite oxides such as 75 S 2 and Na 0.1 CrS 2 ; transition metal composite sulfides such as LiCoS 2 and LiNiS 2 ;
これらの中でも、V2O5、V5O13、VO2、Cr2O5、MnO2、TiO、MoV2O8、LiCoO2、LiNiO2、LiMn2O4、TiS2、V2S5、Cr0.25V0.75S2、Cr0.5V0.5S2などが好ましく、特に好ましいのはLiCoO2、LiNiO2、LiMn2O4や、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物である。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
Among these: V2O5 , V5O13 , VO2 , Cr2O5 , MnO2 , TiO , MoV2O8 , LiCoO2 , LiNiO2 , LiMn2O4 , TiS2 , V2S5 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2 and the like are preferable, and LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and a part of these transition metals are particularly preferable. It is a lithium transition metal composite oxide substituted with other metals. These positive electrode active materials may be used singly or in combination.
正極活物質を結着するバインダとしては、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。これらの中でも好ましいのは、不飽和結合を有さない樹脂である。正極活物質を結着する樹脂として不飽和結合を有する樹脂を用いると酸化反応時(充電時)に分解するおそれがある。これらの樹脂の重量平均分子量は通常1万以上、好ましくは10万以上、通常300万以下、好ましくは100万以下の範囲である。
As the binder that binds the positive electrode active material, any known binder can be selected and used. Examples thereof include inorganic compounds such as silicate and water glass, and resins having no unsaturated bonds such as Teflon (registered trademark) and polyvinylidene fluoride. Among these, resins having no unsaturated bonds are preferred. If a resin having an unsaturated bond is used as the resin that binds the positive electrode active material, it may decompose during an oxidation reaction (during charging). The weight average molecular weight of these resins is usually 10,000 or more, preferably 100,000 or more, and usually 3,000,000 or less, preferably 1,000,000 or less.
正極活物質層中には、電極の導電性を向上させるために、導電剤を含有させてもよい。導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に制限はない。導電剤としては、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
A conductive agent may be contained in the positive electrode active material layer in order to improve the conductivity of the electrode. The conductive agent is not particularly limited as long as it can be mixed with the active material in an appropriate amount to impart conductivity. Examples of conductive agents generally include carbon powders such as acetylene black, carbon black, and graphite, and fibers, powders, and foils of various metals.
正極板は、前記した本発明の負極の製造と同様の手法で、正極活物質やバインダを分散剤でスラリー化し、集電体上に塗布、乾燥することにより形成する。正極の集電体としては、アルミニウム、ニッケル、ステンレススチール(SUS)などが用いられるが、何ら限定されない。
The positive electrode plate is formed by slurrying the positive electrode active material and binder with a dispersant, applying it on the current collector, and drying it, in the same manner as in the manufacturing of the negative electrode of the present invention described above. Aluminum, nickel, stainless steel (SUS), or the like is used as the current collector of the positive electrode, but is not limited at all.
電解質としては、非水系溶媒にリチウム塩を溶解させた非水系電解液や、この非水系電解液を有機高分子化合物等によりゲル状、ゴム状、固体シート状にしたものなどが用いられる。
As the electrolyte, a non-aqueous electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent, or a non-aqueous electrolytic solution made into a gel, rubber, or solid sheet by using an organic polymer compound or the like is used.
非水系電解液に使用される非水系溶媒は特に制限されず、従来から非水系電解液の溶媒として提案されている公知の非水系溶媒の中から、適宜選択して用いることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;1,2-ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、1,3-ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類などが挙げられる。
The non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, and can be appropriately selected and used from known non-aqueous solvents that have been conventionally proposed as solvents for non-aqueous electrolytes. For example, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate; cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate; chain ethers such as 1,2-dimethoxyethane; tetrahydrofuran, 2-methyl Cyclic ethers such as tetrahydrofuran, sulfolane and 1,3-dioxolane; chain esters such as methyl formate, methyl acetate and methyl propionate; and cyclic esters such as γ-butyrolactone and γ-valerolactone.
これらの非水系溶媒は、何れか1種を単独で用いてもよく、2種以上を混合して用いてもよい。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組合せが好ましい。該環状カーボネートが、エチレンカーボネートとプロピレンカーボネートの混合溶媒であることが、低温でも高いイオン電導度を発現でき、低温充電負荷特性が向上するという点で特に好ましい。
Any one of these non-aqueous solvents may be used alone, or two or more may be used in combination. In the case of a mixed solvent, a combination of a mixed solvent containing a cyclic carbonate and a chain carbonate is preferred. It is particularly preferable that the cyclic carbonate is a mixed solvent of ethylene carbonate and propylene carbonate, since high ionic conductivity can be expressed even at low temperatures and low-temperature charging load characteristics are improved.
中でもプロピレンカーボネートの含有率が非水系溶媒全体に対し、2質量%以上80質量%以下の範囲が好ましく、5質量%以上70質量%以下の範囲がより好ましく、10質量%以上60質量%以下の範囲が更に好ましい。プロピレンカーボネートの含有率が上記下限値より低いと低温でのイオン電導度が低下する。プロピレンカーボネートの含有率が上記上限値より高いと、Liイオンに溶媒和したプロピレンカーボネートが負極の黒鉛相間へ共挿入することにより黒鉛系負極活物質の層間剥離劣化が起こり、十分な容量が得られなくなる問題がある。
Among them, the content of propylene carbonate is preferably in the range of 2% by mass to 80% by mass, more preferably 5% by mass to 70% by mass, and 10% by mass to 60% by mass with respect to the entire non-aqueous solvent. A range is more preferred. If the content of propylene carbonate is lower than the above lower limit, the ionic conductivity at low temperatures decreases. If the content of propylene carbonate is higher than the above upper limit, propylene carbonate solvated with Li ions co-inserts between the graphite phases of the negative electrode, causing delamination and deterioration of the graphite-based negative electrode active material, resulting in insufficient capacity. I have a missing problem.
非水系電解液に使用されるリチウム塩も特に制限されず、この用途に用い得ることが知られている公知のリチウム塩の中から、適宜選択して用いることができる。例えば、Li
Cl、LiBrなどのハロゲン化物;LiClO4、LiBrO4、LiClO4などの過ハロゲン酸塩;LiPF6、LiBF4、LiAsF6などの無機フッ化物塩などの無機リチウム塩;LiCF3SO3、LiC4F9SO3などのパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CF3SO2)2NLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられる。この中でもLiClO4、LiPF6、LiBF4、が好ましい。 The lithium salt used in the non-aqueous electrolytic solution is also not particularly limited, and can be appropriately selected and used from known lithium salts known to be usable for this purpose. For example, Li
halides such as Cl, LiBr; perhalogenates such as LiClO4 , LiBrO4 , LiClO4 ; inorganic lithium salts such as inorganic fluoride salts such as LiPF6 , LiBF4 , LiAsF6 ; LiCF3SO3 , LiC4 perfluoroalkanesulfonate such as F 9 SO 3 ; fluorine-containing organic lithium salt such as perfluoroalkanesulfonimide salt such as Li trifluorosulfonimide ((CF 3 SO 2 ) 2 NLi); Among these, LiClO 4 , LiPF 6 and LiBF 4 are preferred.
Cl、LiBrなどのハロゲン化物;LiClO4、LiBrO4、LiClO4などの過ハロゲン酸塩;LiPF6、LiBF4、LiAsF6などの無機フッ化物塩などの無機リチウム塩;LiCF3SO3、LiC4F9SO3などのパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CF3SO2)2NLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられる。この中でもLiClO4、LiPF6、LiBF4、が好ましい。 The lithium salt used in the non-aqueous electrolytic solution is also not particularly limited, and can be appropriately selected and used from known lithium salts known to be usable for this purpose. For example, Li
halides such as Cl, LiBr; perhalogenates such as LiClO4 , LiBrO4 , LiClO4 ; inorganic lithium salts such as inorganic fluoride salts such as LiPF6 , LiBF4 , LiAsF6 ; LiCF3SO3 , LiC4 perfluoroalkanesulfonate such as F 9 SO 3 ; fluorine-containing organic lithium salt such as perfluoroalkanesulfonimide salt such as Li trifluorosulfonimide ((CF 3 SO 2 ) 2 NLi); Among these, LiClO 4 , LiPF 6 and LiBF 4 are preferred.
リチウム塩は、単独で用いても、2種以上を混合して用いてもよい。非水系電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上、2.0mol/L以下の範囲である。
The lithium salt may be used alone or in combination of two or more. The concentration of the lithium salt in the non-aqueous electrolytic solution is usually in the range of 0.5 mol/L or more and 2.0 mol/L or less.
上述の非水系電解液に有機高分子化合物を含ませ、ゲル状、ゴム状又は固体シート状にして電解質を使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω-メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω-メトキシオリゴオキシエチレンメタクリレート-co-メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン-フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
When the non-aqueous electrolytic solution described above contains an organic polymer compound and the electrolyte is used in the form of a gel, rubber or solid sheet, specific examples of the organic polymer compound include poly(ethylene oxide, polypropylene oxide, etc.). Ether-based polymer compound; Crosslinked polymer of polyether-based polymer compound; Vinyl alcohol-based polymer compound such as polyvinyl alcohol and polyvinyl butyral; Insolubilized vinyl alcohol-based polymer compound; Polyepichlorohydrin; vinyl-based polymer compounds such as polyvinylpyrrolidone, polyvinylidene carbonate, and polyacrylonitrile; poly(ω-methoxyoligooxyethylene methacrylate), poly(ω-methoxyoligooxyethylene methacrylate-co-methyl methacrylate), poly(hexafluoropropylene) -vinylidene fluoride) and the like.
上述の非水系電解液は、更に被膜形成剤を含んでいてもよい。被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物;エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3-プロパンスルトン、1,4-ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。
更に、非水系電解液には、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。 The non-aqueous electrolytic solution described above may further contain a film-forming agent. Specific examples of film-forming agents include carbonate compounds such as vinylene carbonate, vinyl ethyl carbonate and methylphenyl carbonate; alkene sulfides such as ethylene sulfide and propylene sulfide; sultone compounds such as 1,3-propanesultone and 1,4-butanesultone. and acid anhydrides such as maleic anhydride and succinic anhydride.
Furthermore, the non-aqueous electrolytic solution may contain an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene.
更に、非水系電解液には、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。 The non-aqueous electrolytic solution described above may further contain a film-forming agent. Specific examples of film-forming agents include carbonate compounds such as vinylene carbonate, vinyl ethyl carbonate and methylphenyl carbonate; alkene sulfides such as ethylene sulfide and propylene sulfide; sultone compounds such as 1,3-propanesultone and 1,4-butanesultone. and acid anhydrides such as maleic anhydride and succinic anhydride.
Furthermore, the non-aqueous electrolytic solution may contain an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene.
これらの添加剤を用いる場合、その非水系電解液中の含有率は通常10質量%以下、中でも8質量%以下、更には5質量%以下、特に2質量%以下が好ましい。上記添加剤の含有量が多過ぎると、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼすおそれがある。
When using these additives, the content in the non-aqueous electrolytic solution is usually 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less. If the content of the additive is too large, other battery characteristics may be adversely affected, such as an increase in initial irreversible capacity, deterioration in low-temperature characteristics and rate characteristics.
電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。高分子固体電解質としては、前述のポリエーテル系高
分子化合物にLiの塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。 As the electrolyte, a polymer solid electrolyte, which is a conductor of alkali metal cations such as lithium ions, can also be used. Examples of polymer solid electrolytes include those obtained by dissolving Li salts in the aforementioned polyether-based polymer compounds, and polymers in which terminal hydroxyl groups of polyethers are substituted with alkoxides.
分子化合物にLiの塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。 As the electrolyte, a polymer solid electrolyte, which is a conductor of alkali metal cations such as lithium ions, can also be used. Examples of polymer solid electrolytes include those obtained by dissolving Li salts in the aforementioned polyether-based polymer compounds, and polymers in which terminal hydroxyl groups of polyethers are substituted with alkoxides.
正極と負極との間には通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させる。この場合、非水系電解液は、多孔性のセパレータに含浸させて用いる。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
A porous separator such as a porous membrane or non-woven fabric is usually interposed between the positive electrode and the negative electrode to prevent a short circuit between the electrodes. In this case, the non-aqueous electrolytic solution is used by impregnating a porous separator. As a material for the separator, polyolefin such as polyethylene and polypropylene, polyethersulfone, and the like are used, and polyolefin is preferable.
本発明が適用されるリチウムイオン二次電池の形態は特に制限されない。例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。
これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状にして用いることができる。 The form of the lithium ion secondary battery to which the present invention is applied is not particularly limited. Examples include a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type in which a pellet electrode and a separator are combined to form an inside-out structure, and a coin type in which a pellet electrode and a separator are laminated.
By enclosing the battery of these forms in an arbitrary external case, it can be used in an arbitrary shape such as a coin shape, a cylindrical shape, a rectangular shape, and the like.
これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状にして用いることができる。 The form of the lithium ion secondary battery to which the present invention is applied is not particularly limited. Examples include a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type in which a pellet electrode and a separator are combined to form an inside-out structure, and a coin type in which a pellet electrode and a separator are laminated.
By enclosing the battery of these forms in an arbitrary external case, it can be used in an arbitrary shape such as a coin shape, a cylindrical shape, a rectangular shape, and the like.
リチウムイオン二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよい。例を挙げると、外装ケース上に負極を載せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を載せて、ガスケット、封口板と共にかしめて電池にすることができる。
There are no particular restrictions on the procedure for assembling the lithium-ion secondary battery, and it may be assembled in an appropriate procedure according to the structure of the battery. For example, a negative electrode is placed on an exterior case, an electrolytic solution and a separator are provided thereon, a positive electrode is placed so as to face the negative electrode, and a gasket and a sealing plate are crimped together to form a battery.
<二次電池の性能>
本発明の二次電池は、本発明の酸化珪素粒子と黒鉛とを含む本発明の粒子を負極活物質に用いたことで、電池特性、特に電極膨れの抑制効果に優れる。
具体的には、後掲の実施例の項に記載の方法で測定される50サイクル目の放電容量が400mAh/g以上で、充放電効率が99.8%以上であることが好ましい。
本発明の二次電池は、後掲の実施例の項に記載の方法で測定される電極膨れが1.4以下であることが好ましい。 <Secondary battery performance>
Since the secondary battery of the present invention uses the particles of the present invention containing the silicon oxide particles of the present invention and graphite as a negative electrode active material, the secondary battery is excellent in battery characteristics, particularly in the effect of suppressing electrode swelling.
Specifically, it is preferable that the discharge capacity at the 50th cycle measured by the method described in Examples below is 400 mAh/g or more and the charge/discharge efficiency is 99.8% or more.
The secondary battery of the present invention preferably has an electrode swelling of 1.4 or less as measured by the method described in Examples below.
本発明の二次電池は、本発明の酸化珪素粒子と黒鉛とを含む本発明の粒子を負極活物質に用いたことで、電池特性、特に電極膨れの抑制効果に優れる。
具体的には、後掲の実施例の項に記載の方法で測定される50サイクル目の放電容量が400mAh/g以上で、充放電効率が99.8%以上であることが好ましい。
本発明の二次電池は、後掲の実施例の項に記載の方法で測定される電極膨れが1.4以下であることが好ましい。 <Secondary battery performance>
Since the secondary battery of the present invention uses the particles of the present invention containing the silicon oxide particles of the present invention and graphite as a negative electrode active material, the secondary battery is excellent in battery characteristics, particularly in the effect of suppressing electrode swelling.
Specifically, it is preferable that the discharge capacity at the 50th cycle measured by the method described in Examples below is 400 mAh/g or more and the charge/discharge efficiency is 99.8% or more.
The secondary battery of the present invention preferably has an electrode swelling of 1.4 or less as measured by the method described in Examples below.
次に実施例により本発明の具体的態様を更に詳細に説明する。本発明はこれらの例によって限定されるものではない。
Next, specific embodiments of the present invention will be described in more detail by way of examples. The invention is not limited by these examples.
[測定方法]
以下の実施例及び比較例で用いた材料の物性の測定方法は以下の通りである。 [Measuring method]
Methods for measuring physical properties of materials used in the following examples and comparative examples are as follows.
以下の実施例及び比較例で用いた材料の物性の測定方法は以下の通りである。 [Measuring method]
Methods for measuring physical properties of materials used in the following examples and comparative examples are as follows.
<酸化珪素粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率>
酸化珪素粒子中のジルコニウム(Zr)、イットリウム(Y)、ハフニウム(Hf)、及びマンガン(Mn)の含有率は、以下の方法で測定した。
試料を混酸(フッ化水素酸、硝酸)で加熱溶解し、酸化珪素粒子を揮散させたのち、硫酸溶解後、水を加えて定容した。分解液中の当該金属不純物はICP-AES(サーモフィッシャーサイエンティフィック社製iCAP7600DuO)にて酸マトリックスマッチング検量線法にて定量した。
この測定方法における検出限界はジルコニウム:0.1ppm、イットリウム:0.1ppm、ハフニウム:0.3ppm、マンガン:0.1ppmである。 <Zirconium, Yttrium, Hafnium and Manganese Contents in Silicon Oxide Particles>
The contents of zirconium (Zr), yttrium (Y), hafnium (Hf), and manganese (Mn) in silicon oxide particles were measured by the following method.
The sample was dissolved by heating with a mixed acid (hydrofluoric acid, nitric acid) to volatilize the silicon oxide particles, and after dissolving in sulfuric acid, water was added to a constant volume. The metal impurities in the decomposed solution were quantified by the acid matrix matching calibration curve method using ICP-AES (iCAP7600DuO manufactured by Thermo Fisher Scientific).
Detection limits in this measurement method are zirconium: 0.1 ppm, yttrium: 0.1 ppm, hafnium: 0.3 ppm, and manganese: 0.1 ppm.
酸化珪素粒子中のジルコニウム(Zr)、イットリウム(Y)、ハフニウム(Hf)、及びマンガン(Mn)の含有率は、以下の方法で測定した。
試料を混酸(フッ化水素酸、硝酸)で加熱溶解し、酸化珪素粒子を揮散させたのち、硫酸溶解後、水を加えて定容した。分解液中の当該金属不純物はICP-AES(サーモフィッシャーサイエンティフィック社製iCAP7600DuO)にて酸マトリックスマッチング検量線法にて定量した。
この測定方法における検出限界はジルコニウム:0.1ppm、イットリウム:0.1ppm、ハフニウム:0.3ppm、マンガン:0.1ppmである。 <Zirconium, Yttrium, Hafnium and Manganese Contents in Silicon Oxide Particles>
The contents of zirconium (Zr), yttrium (Y), hafnium (Hf), and manganese (Mn) in silicon oxide particles were measured by the following method.
The sample was dissolved by heating with a mixed acid (hydrofluoric acid, nitric acid) to volatilize the silicon oxide particles, and after dissolving in sulfuric acid, water was added to a constant volume. The metal impurities in the decomposed solution were quantified by the acid matrix matching calibration curve method using ICP-AES (iCAP7600DuO manufactured by Thermo Fisher Scientific).
Detection limits in this measurement method are zirconium: 0.1 ppm, yttrium: 0.1 ppm, hafnium: 0.3 ppm, and manganese: 0.1 ppm.
<負極活物質粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率>
粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率を、粒子の製造に用いた酸化珪素粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率と、粒子中の酸化珪素粒子の含有割合から計算により求めた。 <Zirconium, Yttrium, Hafnium and Manganese Contents in Negative Electrode Active Material Particles>
The content of zirconium, yttrium, hafnium and manganese in the particles is calculated from the content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles used in the production of the particles and the content of silicon oxide particles in the particles. asked.
粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率を、粒子の製造に用いた酸化珪素粒子中のジルコニウム、イットリウム、ハフニウム及びマンガンの含有率と、粒子中の酸化珪素粒子の含有割合から計算により求めた。 <Zirconium, Yttrium, Hafnium and Manganese Contents in Negative Electrode Active Material Particles>
The content of zirconium, yttrium, hafnium and manganese in the particles is calculated from the content of zirconium, yttrium, hafnium and manganese in the silicon oxide particles used in the production of the particles and the content of silicon oxide particles in the particles. asked.
<体積平均粒子径(d50)>
ポリオキシエチレン(20)ソルビタンモノラウレートの2体積%水溶液約1mlに、粒子約20mgを加え、これをイオン交換水約200mlに分散させたものを、レーザー回折式粒度分布計(堀場製作所製、機種名「LA-920」)を用いて体積粒度分布を測定し、メジアン径(d50)を求めた。測定条件は、超音波分散1分間、超音波強度2、循環速度2、相対屈折率1.50である。 <Volume average particle size ( d50 )>
About 20 mg of particles were added to about 1 ml of a 2% by volume aqueous solution of polyoxyethylene (20) sorbitan monolaurate and dispersed in about 200 ml of deionized water. The volume particle size distribution was measured using a model name "LA-920") to determine the median diameter (d 50 ). The measurement conditions are ultrasonic dispersion for 1 minute, ultrasonic intensity of 2, circulation speed of 2, and relative refractive index of 1.50.
ポリオキシエチレン(20)ソルビタンモノラウレートの2体積%水溶液約1mlに、粒子約20mgを加え、これをイオン交換水約200mlに分散させたものを、レーザー回折式粒度分布計(堀場製作所製、機種名「LA-920」)を用いて体積粒度分布を測定し、メジアン径(d50)を求めた。測定条件は、超音波分散1分間、超音波強度2、循環速度2、相対屈折率1.50である。 <Volume average particle size ( d50 )>
About 20 mg of particles were added to about 1 ml of a 2% by volume aqueous solution of polyoxyethylene (20) sorbitan monolaurate and dispersed in about 200 ml of deionized water. The volume particle size distribution was measured using a model name "LA-920") to determine the median diameter (d 50 ). The measurement conditions are ultrasonic dispersion for 1 minute, ultrasonic intensity of 2, circulation speed of 2, and relative refractive index of 1.50.
<粒子径(d90)>
上記体積平均粒子径(d50)の測定で得られた粒度分布における小さい粒子側から累積90%に相当する粒子径を粒子径(d90)とした。 <Particle size ( d90 )>
The particle diameter (d 90 ) was defined as the particle diameter corresponding to cumulative 90% from the small particle side in the particle size distribution obtained by the measurement of the volume average particle diameter (d 50 ).
上記体積平均粒子径(d50)の測定で得られた粒度分布における小さい粒子側から累積90%に相当する粒子径を粒子径(d90)とした。 <Particle size ( d90 )>
The particle diameter (d 90 ) was defined as the particle diameter corresponding to cumulative 90% from the small particle side in the particle size distribution obtained by the measurement of the volume average particle diameter (d 50 ).
<最大粒子径(dmax)>
上記体積平均粒子径(d50)の測定で得られた粒度分布における最大径を最大粒子径(dmax)とした。 <Maximum particle size (d max )>
The maximum diameter in the particle size distribution obtained by measuring the volume average particle diameter (d 50 ) was defined as the maximum particle diameter (d max ).
上記体積平均粒子径(d50)の測定で得られた粒度分布における最大径を最大粒子径(dmax)とした。 <Maximum particle size (d max )>
The maximum diameter in the particle size distribution obtained by measuring the volume average particle diameter (d 50 ) was defined as the maximum particle diameter (d max ).
<SiOxにおけるxの値>
酸化珪素粒子のSiOxにおけるxの値は、不活性ガス雰囲気下インパルス炉加熱抽出-IR検出法及びICP発光分光分析法によって測定した値から算出した。
具体的には、試料をアルカリ溶融し、定容後希釈した試料溶液のケイ素量をICP-AES(サーモフィッシャーサイエンティフィック社製、機種名「iCAP7600Duo」)を用いて測定した。別途、試料の酸素含有量を、酸素窒素水素分析装置(LECO社製、機種名「TCH600型」)を用いて測定した。ケイ素に対する酸素の量を算出し、SiOxにおけるxの値とした。 <Value of x in SiOx>
The value of x in SiOx of the silicon oxide particles was calculated from the value measured by impulse furnace heat extraction under an inert gas atmosphere-IR detection method and ICP emission spectrometry.
Specifically, the sample was alkali-fused, and after constant volume, the amount of silicon in the diluted sample solution was measured using ICP-AES (manufactured by Thermo Fisher Scientific, model name “iCAP7600Duo”). Separately, the oxygen content of the sample was measured using an oxygen nitrogen hydrogen analyzer (manufactured by LECO, model name "TCH600"). The amount of oxygen relative to silicon was calculated and used as the value of x in SiOx.
酸化珪素粒子のSiOxにおけるxの値は、不活性ガス雰囲気下インパルス炉加熱抽出-IR検出法及びICP発光分光分析法によって測定した値から算出した。
具体的には、試料をアルカリ溶融し、定容後希釈した試料溶液のケイ素量をICP-AES(サーモフィッシャーサイエンティフィック社製、機種名「iCAP7600Duo」)を用いて測定した。別途、試料の酸素含有量を、酸素窒素水素分析装置(LECO社製、機種名「TCH600型」)を用いて測定した。ケイ素に対する酸素の量を算出し、SiOxにおけるxの値とした。 <Value of x in SiOx>
The value of x in SiOx of the silicon oxide particles was calculated from the value measured by impulse furnace heat extraction under an inert gas atmosphere-IR detection method and ICP emission spectrometry.
Specifically, the sample was alkali-fused, and after constant volume, the amount of silicon in the diluted sample solution was measured using ICP-AES (manufactured by Thermo Fisher Scientific, model name “iCAP7600Duo”). Separately, the oxygen content of the sample was measured using an oxygen nitrogen hydrogen analyzer (manufactured by LECO, model name "TCH600"). The amount of oxygen relative to silicon was calculated and used as the value of x in SiOx.
<BET法による比表面積>
比表面積測定装置(マウンテック社製、機種名「マックソーブHM Model-1210型」)を用い、試料を専用セルに充填し150℃に加熱して前処理を行った後、液体窒素温度まで冷却して正確に調整した約30%窒素、ヘリウムバランスのガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた吸着量からBET1点法解析により比表面積を算出した。 <Specific surface area by BET method>
Using a specific surface area measuring device (manufactured by Mountech, model name "Macsorb HM Model-1210"), the sample is filled in a dedicated cell and heated to 150 ° C. for pretreatment, and then cooled to liquid nitrogen temperature. Accurately adjusted about 30% nitrogen and helium balance gas was saturated and adsorbed, then heated to room temperature, the amount of desorbed gas was measured, and the specific surface area was calculated from the obtained adsorption amount by BET one-point analysis.
比表面積測定装置(マウンテック社製、機種名「マックソーブHM Model-1210型」)を用い、試料を専用セルに充填し150℃に加熱して前処理を行った後、液体窒素温度まで冷却して正確に調整した約30%窒素、ヘリウムバランスのガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた吸着量からBET1点法解析により比表面積を算出した。 <Specific surface area by BET method>
Using a specific surface area measuring device (manufactured by Mountech, model name "Macsorb HM Model-1210"), the sample is filled in a dedicated cell and heated to 150 ° C. for pretreatment, and then cooled to liquid nitrogen temperature. Accurately adjusted about 30% nitrogen and helium balance gas was saturated and adsorbed, then heated to room temperature, the amount of desorbed gas was measured, and the specific surface area was calculated from the obtained adsorption amount by BET one-point analysis.
<タップ密度>
粉体密度測定器(機種名「タップデンサーKYT-5000」、セイシン企業社製)を用いて、直径1.5cm、体積容量20cm3の円筒状タップセルに、目開き300μmの篩を通して、試料を落下させて、セルに満杯に充填した。その後、ストローク長10mmのタップを1000回行って、その時の体積と試料の質量から算出した密度をタップ密度とした。 <Tap density>
Using a powder density measuring instrument (model name "Tap Denser KYT-5000", manufactured by Seishin Enterprise Co., Ltd.), a cylindrical tap cell with a diameter of 1.5 cm and a volume capacity of 20 cm 3 is passed through a sieve with an opening of 300 μm, and the sample is dropped. to allow the cell to fill to the brim. After that, tapping with a stroke length of 10 mm was performed 1000 times, and the density calculated from the volume at that time and the mass of the sample was taken as the tap density.
粉体密度測定器(機種名「タップデンサーKYT-5000」、セイシン企業社製)を用いて、直径1.5cm、体積容量20cm3の円筒状タップセルに、目開き300μmの篩を通して、試料を落下させて、セルに満杯に充填した。その後、ストローク長10mmのタップを1000回行って、その時の体積と試料の質量から算出した密度をタップ密度とした。 <Tap density>
Using a powder density measuring instrument (model name "Tap Denser KYT-5000", manufactured by Seishin Enterprise Co., Ltd.), a cylindrical tap cell with a diameter of 1.5 cm and a volume capacity of 20 cm 3 is passed through a sieve with an opening of 300 μm, and the sample is dropped. to allow the cell to fill to the brim. After that, tapping with a stroke length of 10 mm was performed 1000 times, and the density calculated from the volume at that time and the mass of the sample was taken as the tap density.
[実施例1-1]
珪素と二酸化珪素を原料とし、減圧蒸着法により合成した後、粗粉砕工程を経て得られた酸化珪素粉末を、分級機を備えた微粉砕対応ジェットミル(アイシンナノテクノロジーズ製)で乾式粉砕することにより、SiOxにおけるxの値が0.9で、d50、dmax、各金属元素の含有率が表1に示す値である酸化珪素粒子No.1を製造した。 [Example 1-1]
Silicon and silicon dioxide are used as raw materials, and after being synthesized by a reduced-pressure vapor deposition method, the silicon oxide powder obtained through a coarse pulverization process is dry-pulverized in a jet mill for fine pulverization (manufactured by Aisin Nano Technologies) equipped with a classifier. According to the results, silicon oxide particles No. 1 having a value of x in SiOx of 0.9, d 50 , d max , and the content of each metal element having the values shown in Table 1 are obtained. 1 was produced.
珪素と二酸化珪素を原料とし、減圧蒸着法により合成した後、粗粉砕工程を経て得られた酸化珪素粉末を、分級機を備えた微粉砕対応ジェットミル(アイシンナノテクノロジーズ製)で乾式粉砕することにより、SiOxにおけるxの値が0.9で、d50、dmax、各金属元素の含有率が表1に示す値である酸化珪素粒子No.1を製造した。 [Example 1-1]
Silicon and silicon dioxide are used as raw materials, and after being synthesized by a reduced-pressure vapor deposition method, the silicon oxide powder obtained through a coarse pulverization process is dry-pulverized in a jet mill for fine pulverization (manufactured by Aisin Nano Technologies) equipped with a classifier. According to the results, silicon oxide particles No. 1 having a value of x in SiOx of 0.9, d 50 , d max , and the content of each metal element having the values shown in Table 1 are obtained. 1 was produced.
[比較例1-1]
実施例I-1において、乾式粉砕の代りに、2-プロパノールを分散媒としてビーズミル(浅田鉄工製)を用いて湿式粉砕すること以外は同様にして、SiOxにおけるxの値が0.9で、d50、dmax、各金属元素の含有率が表1に示す値である酸化珪素粒子No.2を製造した。 [Comparative Example 1-1]
In Example I-1, instead of dry pulverization, wet pulverization was performed using a bead mill (manufactured by Asada Iron Works Co., Ltd.) using 2-propanol as a dispersion medium. Silicon oxide particle no . 2 was produced.
実施例I-1において、乾式粉砕の代りに、2-プロパノールを分散媒としてビーズミル(浅田鉄工製)を用いて湿式粉砕すること以外は同様にして、SiOxにおけるxの値が0.9で、d50、dmax、各金属元素の含有率が表1に示す値である酸化珪素粒子No.2を製造した。 [Comparative Example 1-1]
In Example I-1, instead of dry pulverization, wet pulverization was performed using a bead mill (manufactured by Asada Iron Works Co., Ltd.) using 2-propanol as a dispersion medium. Silicon oxide particle no . 2 was produced.
[実施例II-1,2、比較例II-1]
<粒子の製造>
黒鉛としては下記物性の黒鉛を用いた。
(黒鉛No.1の物性)
d50:11.1μm
d90:21.1μm
BET法による比表面積:9.9m2/g
タップ密度:0.44g/cm3
(黒鉛No.2の物性)
d50:7.8μm
d90:14.1μm
BET法による比表面積:12.3m2/g
タップ密度:0.45g/cm3 [Examples II-1 and 2, Comparative Example II-1]
<Production of particles>
As the graphite, graphite having the following physical properties was used.
(Physical properties of graphite No. 1)
d50 : 11.1 μm
d90 : 21.1 μm
Specific surface area by BET method: 9.9 m 2 /g
Tap density: 0.44g/ cm3
(Physical properties of graphite No. 2)
d50 : 7.8 μm
d90 : 14.1 μm
Specific surface area by BET method: 12.3 m 2 /g
Tap density: 0.45g/ cm3
<粒子の製造>
黒鉛としては下記物性の黒鉛を用いた。
(黒鉛No.1の物性)
d50:11.1μm
d90:21.1μm
BET法による比表面積:9.9m2/g
タップ密度:0.44g/cm3
(黒鉛No.2の物性)
d50:7.8μm
d90:14.1μm
BET法による比表面積:12.3m2/g
タップ密度:0.45g/cm3 [Examples II-1 and 2, Comparative Example II-1]
<Production of particles>
As the graphite, graphite having the following physical properties was used.
(Physical properties of graphite No. 1)
d50 : 11.1 μm
d90 : 21.1 μm
Specific surface area by BET method: 9.9 m 2 /g
Tap density: 0.44g/ cm3
(Physical properties of graphite No. 2)
d50 : 7.8 μm
d90 : 14.1 μm
Specific surface area by BET method: 12.3 m 2 /g
Tap density: 0.45g/ cm3
酸化珪素粒子としては、実施例II-1,2では実施例I-1で合成した酸化珪素粒子No.1を、比較例II-1では比較例I-1で合成した酸化珪素粒子No.2を用いた。
黒鉛としては、実施例II-1、比較例II-1で黒鉛No.1を、実施例II-2で黒鉛No.2を用いた。 In Examples II-1 and 2, the silicon oxide particles No. 2 synthesized in Example I-1 were used as the silicon oxide particles. 1, and the silicon oxide particles No. 1 synthesized in Comparative Example I-1 in Comparative Example II-1. 2 was used.
As graphite, graphite No. 2 was used in Example II-1 and Comparative Example II-1. 1 was replaced with graphite No. 1 in Example II-2. 2 was used.
黒鉛としては、実施例II-1、比較例II-1で黒鉛No.1を、実施例II-2で黒鉛No.2を用いた。 In Examples II-1 and 2, the silicon oxide particles No. 2 synthesized in Example I-1 were used as the silicon oxide particles. 1, and the silicon oxide particles No. 1 synthesized in Comparative Example I-1 in Comparative Example II-1. 2 was used.
As graphite, graphite No. 2 was used in Example II-1 and Comparative Example II-1. 1 was replaced with graphite No. 1 in Example II-2. 2 was used.
黒鉛と酸化珪素粒子を、黒鉛:70質量%、酸化珪素粒子:16質量%の割合で混合し、そこに造粒剤として液状オイルを9質量%加え、撹拌造粒機によって撹拌混合した。得られた混合物をハイブリダイゼーションシステムに投入し、ローター周速度85m/秒の条件で5分間、機械的作用による造粒球形化処理を行った。更に、熱処理により造粒剤として用いた液状オイルを除去し、球形化複合粒子を得た。得られた球形化複合粒子と黒鉛質物前駆体として灰分が0.02質量%、金属不純物量が20質量ppm、Qiが1質量%のピッチを混合し、不活性ガス中、1000℃で熱処理を施し、焼成物を得る。この焼成物を解砕・分級処理することにより、表2Aに示す割合で、黒鉛、酸化珪素粒子、及び、非晶質炭素が複合化した負極活物質粒子を得た。
Graphite and silicon oxide particles were mixed at a ratio of 70% by mass of graphite and 16% by mass of silicon oxide particles, 9% by mass of liquid oil was added as a granulating agent, and the mixture was stirred and mixed with a stirring granulator. The obtained mixture was put into a hybridization system, and granulated and spheroidized by mechanical action for 5 minutes at a rotor peripheral speed of 85 m/sec. Furthermore, the liquid oil used as a granulating agent was removed by heat treatment to obtain spherical composite particles. The resulting spheroidized composite particles were mixed with pitch having an ash content of 0.02% by mass, a metal impurity amount of 20% by mass, and a Qi of 1% by mass as a graphite material precursor, and heat-treated at 1000°C in an inert gas. to obtain a baked product. By pulverizing and classifying the fired product, negative electrode active material particles in which graphite, silicon oxide particles, and amorphous carbon were combined in the proportions shown in Table 2A were obtained.
<リチウムイオン二次電池の作製>
各々の粒子を負極活物質として用いて、以下の通り、リチウムイオン二次電池を作製した。 <Production of lithium ion secondary battery>
Using each particle as a negative electrode active material, a lithium ion secondary battery was produced as follows.
各々の粒子を負極活物質として用いて、以下の通り、リチウムイオン二次電池を作製した。 <Production of lithium ion secondary battery>
Using each particle as a negative electrode active material, a lithium ion secondary battery was produced as follows.
各実施例及び比較例で得られた粒子95質量%と、導電材としてアセチレンブラック2.5重量%と、バインダとしてカルボキシメチルセルロース(CMC)1.5質量%及びスチレンブタジエンゴム(SBR)48質量%水性ディスパージョン3.1質量%とを、ハイブリダイズミキサーにて、混練し、スラリーとした。このスラリーを厚さ20μmの圧延銅箔上にブレード法で、目付け7~8mg/cm2となるように塗布し、乾燥させた。
その後、負極活物質層の密度1.6~1.7g/cm3となるようにロードセル付きの250mφロールプレスにてロールプレスし、直径12.5mmの円形状に打ち抜き、90℃で8時間、真空乾燥し、評価用の負極とした。 95% by mass of particles obtained in each example and comparative example, 2.5% by mass of acetylene black as a conductive material, 1.5% by mass of carboxymethyl cellulose (CMC) and 48% by mass of styrene-butadiene rubber (SBR) as binders 3.1% by mass of the aqueous dispersion was kneaded in a hybrid mixer to form a slurry. This slurry was applied to a rolled copper foil having a thickness of 20 μm by a blade method so as to have a basis weight of 7 to 8 mg/cm 2 and dried.
Thereafter, the negative electrode active material layer was roll-pressed with a 250 mφ roll press equipped with a load cell so that the density of the negative electrode active material layer was 1.6 to 1.7 g/cm 3 , and punched into a circular shape with a diameter of 12.5 mm, at 90° C. for 8 hours. It was vacuum-dried and used as a negative electrode for evaluation.
その後、負極活物質層の密度1.6~1.7g/cm3となるようにロードセル付きの250mφロールプレスにてロールプレスし、直径12.5mmの円形状に打ち抜き、90℃で8時間、真空乾燥し、評価用の負極とした。 95% by mass of particles obtained in each example and comparative example, 2.5% by mass of acetylene black as a conductive material, 1.5% by mass of carboxymethyl cellulose (CMC) and 48% by mass of styrene-butadiene rubber (SBR) as binders 3.1% by mass of the aqueous dispersion was kneaded in a hybrid mixer to form a slurry. This slurry was applied to a rolled copper foil having a thickness of 20 μm by a blade method so as to have a basis weight of 7 to 8 mg/cm 2 and dried.
Thereafter, the negative electrode active material layer was roll-pressed with a 250 mφ roll press equipped with a load cell so that the density of the negative electrode active material layer was 1.6 to 1.7 g/cm 3 , and punched into a circular shape with a diameter of 12.5 mm, at 90° C. for 8 hours. It was vacuum-dried and used as a negative electrode for evaluation.
この負極と、対極としてLi箔とを電解液を含浸させたセパレータを介して重ねて、充放電試験用の電池を作製した。電解液としてはエチレンカーボネート/エチルメチルカーボネート/モノフルオロエチレンカーボネート=3/6/1(体積比)混合液に、LiPF6を1モル/リットルとなるように溶解させたものを用いた。
This negative electrode and a Li foil serving as a counter electrode were stacked via a separator impregnated with an electrolytic solution to prepare a battery for a charge/discharge test. The electrolytic solution used was prepared by dissolving LiPF 6 in a mixed solution of ethylene carbonate/ethylmethyl carbonate/monofluoroethylene carbonate=3/6/1 (volume ratio) so as to be 1 mol/liter.
<電池特性の評価>
得られたリチウム二次電池について、以下の方法で電池特性の評価を行って、結果を表2Bに示した。なお、表2Bには、用いた酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率(表2B中、「金属総含有率」と記載する。)と負極活物質粒子の各金属元素の含有率及びこれらの合計含有率を併記する。 <Evaluation of battery characteristics>
The obtained lithium secondary battery was evaluated for battery characteristics by the following method, and the results are shown in Table 2B. Table 2B shows the total content of zirconium, yttrium, hafnium, and manganese in the silicon oxide particles used (referred to as "total metal content" in Table 2B) and the content of each metal element in the negative electrode active material particles. The content rate and the total content rate of these are written together.
得られたリチウム二次電池について、以下の方法で電池特性の評価を行って、結果を表2Bに示した。なお、表2Bには、用いた酸化珪素粒子のジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率(表2B中、「金属総含有率」と記載する。)と負極活物質粒子の各金属元素の含有率及びこれらの合計含有率を併記する。 <Evaluation of battery characteristics>
The obtained lithium secondary battery was evaluated for battery characteristics by the following method, and the results are shown in Table 2B. Table 2B shows the total content of zirconium, yttrium, hafnium, and manganese in the silicon oxide particles used (referred to as "total metal content" in Table 2B) and the content of each metal element in the negative electrode active material particles. The content rate and the total content rate of these are written together.
(放電容量・充放電効率)
先ず0.08mA/cm2の電流密度で前記充放電試験用の電池の正極及び負極に対して5mVまで充電し、更に5mVの一定電圧で電流値が0.03mAになるまで充電し、負極中にリチウムをドープした後、0.2mA/cm2の電流密度で前記正極及び負極に対して1.5Vまで放電を行った(初期1サイクル目)。その後、充電時の電流密度を0.2mA/cm2、放電時の電流密度を0.3mA/cm2としたこと以外は上記と同様の条件で4回、充電と放電を繰り返した(初期2サイクル目~初期5サイクル目)。評価用の負極にリチウムがドープされる方向に電流を流すことを「充電」、評価用の負極からリチウムが脱ドープされる方向に電流を流すことを「放電」と記載した。
初期放電容量は以下のように求めた。
まず、負極質量から負極と同面積に打ち抜いた銅箔の質量を差し引くことで負極活物質質量を求め、この負極活物質質量で初期5サイクル目の放電容量を除して、質量当りの初期放電容量を求めた。 (discharge capacity/charge/discharge efficiency)
First, the positive electrode and the negative electrode of the battery for the charge/discharge test were charged to 5 mV at a current density of 0.08 mA/cm 2 , and then charged at a constant voltage of 5 mV until the current value reached 0.03 mA. After doping with lithium, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.2 mA/cm 2 (initial first cycle). Thereafter, charging and discharging were repeated four times under the same conditions as above except that the current density during charging was 0.2 mA/cm 2 and the current density during discharging was 0.3 mA/cm 2 (initial 2 cycle to initial 5th cycle). Flowing current in the direction of lithium doping to the negative electrode for evaluation was described as "charging", and flowing current in the direction of dedoping lithium from the negative electrode for evaluation was described as "discharging".
The initial discharge capacity was determined as follows.
First, the mass of the negative electrode active material is obtained by subtracting the mass of a copper foil punched into the same area as the negative electrode from the mass of the negative electrode. asked for capacity.
先ず0.08mA/cm2の電流密度で前記充放電試験用の電池の正極及び負極に対して5mVまで充電し、更に5mVの一定電圧で電流値が0.03mAになるまで充電し、負極中にリチウムをドープした後、0.2mA/cm2の電流密度で前記正極及び負極に対して1.5Vまで放電を行った(初期1サイクル目)。その後、充電時の電流密度を0.2mA/cm2、放電時の電流密度を0.3mA/cm2としたこと以外は上記と同様の条件で4回、充電と放電を繰り返した(初期2サイクル目~初期5サイクル目)。評価用の負極にリチウムがドープされる方向に電流を流すことを「充電」、評価用の負極からリチウムが脱ドープされる方向に電流を流すことを「放電」と記載した。
初期放電容量は以下のように求めた。
まず、負極質量から負極と同面積に打ち抜いた銅箔の質量を差し引くことで負極活物質質量を求め、この負極活物質質量で初期5サイクル目の放電容量を除して、質量当りの初期放電容量を求めた。 (discharge capacity/charge/discharge efficiency)
First, the positive electrode and the negative electrode of the battery for the charge/discharge test were charged to 5 mV at a current density of 0.08 mA/cm 2 , and then charged at a constant voltage of 5 mV until the current value reached 0.03 mA. After doping with lithium, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.2 mA/cm 2 (initial first cycle). Thereafter, charging and discharging were repeated four times under the same conditions as above except that the current density during charging was 0.2 mA/cm 2 and the current density during discharging was 0.3 mA/cm 2 (initial 2 cycle to initial 5th cycle). Flowing current in the direction of lithium doping to the negative electrode for evaluation was described as "charging", and flowing current in the direction of dedoping lithium from the negative electrode for evaluation was described as "discharging".
The initial discharge capacity was determined as follows.
First, the mass of the negative electrode active material is obtained by subtracting the mass of a copper foil punched into the same area as the negative electrode from the mass of the negative electrode. asked for capacity.
下記式により充放電効率を求めた。負極活物質質量は、負極質量から負極と同面積に打ち抜いた銅箔の質量を差し引くことによって求めた。
充放電効率(%)={初期3サイクル目の放電容量(mAh/g)/(初期1サイクル目の充電容量(mAh/g)+初期2サイクル目の充電容量(mAh/g)-初期2サイクル目の放電容量(mAh/g)+初期3サイクル目の充電容量(mAh/g)-初期3サイクル目の放電容量(mAh/g))}×100 The charge/discharge efficiency was determined by the following formula. The mass of the negative electrode active material was determined by subtracting the mass of a copper foil punched into the same area as the negative electrode from the mass of the negative electrode.
Charge-discharge efficiency (%) = {Discharge capacity of initial 3rd cycle (mAh / g) / (Charge capacity of initial 1st cycle (mAh / g) + Charge capacity of initial 2nd cycle (mAh / g) - Initial 2 Cycle discharge capacity (mAh / g) + initial 3rd cycle charge capacity (mAh / g) - initial 3rd cycle discharge capacity (mAh / g)} × 100
充放電効率(%)={初期3サイクル目の放電容量(mAh/g)/(初期1サイクル目の充電容量(mAh/g)+初期2サイクル目の充電容量(mAh/g)-初期2サイクル目の放電容量(mAh/g)+初期3サイクル目の充電容量(mAh/g)-初期3サイクル目の放電容量(mAh/g))}×100 The charge/discharge efficiency was determined by the following formula. The mass of the negative electrode active material was determined by subtracting the mass of a copper foil punched into the same area as the negative electrode from the mass of the negative electrode.
Charge-discharge efficiency (%) = {Discharge capacity of initial 3rd cycle (mAh / g) / (Charge capacity of initial 1st cycle (mAh / g) + Charge capacity of initial 2nd cycle (mAh / g) - Initial 2 Cycle discharge capacity (mAh / g) + initial 3rd cycle charge capacity (mAh / g) - initial 3rd cycle discharge capacity (mAh / g)} × 100
(電極膨れ)
上記初期充放電後の電池に対してさらに、50回、充電と放電を繰り返した(1サイクル目~50サイクル目)。ただし、25サイクル目及び50サイクル目以外は、充電時の電流密度を0.2mA/cm2、放電時の電流密度を0.3mA/cm2としたこと以外は初期1サイクル目と同様の条件を用いた。また、25サイクル目及び50サイクル目は、初期2サイクル目と同様の条件を用いた。
50サイクルの充放電を繰り返した後の電池を解体して負極を取り出し、厚さ測定器(ミツトヨ製)で負極の厚みを測定し、そこから負極と同面積に打ち抜いた銅箔の厚みを差し引くことによって負極の厚みを求め、それを電池作製時の負極の厚みの値で除して電極膨れの指標値とした。 (electrode swelling)
After the initial charging and discharging, the battery was further charged and discharged 50 times (1st cycle to 50th cycle). However, except for the 25th and 50th cycles, the conditions were the same as those for the initial 1st cycle, except that the current density during charging was 0.2 mA/cm 2 and the current density during discharging was 0.3 mA/cm 2 . was used. In the 25th and 50th cycles, the same conditions as in the initial 2nd cycle were used.
After repeating 50 cycles of charging and discharging, the battery is disassembled, the negative electrode is taken out, the thickness of the negative electrode is measured with a thickness measuring instrument (manufactured by Mitutoyo), and the thickness of the copper foil punched into the same area as the negative electrode is subtracted from this. Thus, the thickness of the negative electrode was obtained and divided by the value of the thickness of the negative electrode at the time of battery fabrication to obtain an index value of electrode swelling.
上記初期充放電後の電池に対してさらに、50回、充電と放電を繰り返した(1サイクル目~50サイクル目)。ただし、25サイクル目及び50サイクル目以外は、充電時の電流密度を0.2mA/cm2、放電時の電流密度を0.3mA/cm2としたこと以外は初期1サイクル目と同様の条件を用いた。また、25サイクル目及び50サイクル目は、初期2サイクル目と同様の条件を用いた。
50サイクルの充放電を繰り返した後の電池を解体して負極を取り出し、厚さ測定器(ミツトヨ製)で負極の厚みを測定し、そこから負極と同面積に打ち抜いた銅箔の厚みを差し引くことによって負極の厚みを求め、それを電池作製時の負極の厚みの値で除して電極膨れの指標値とした。 (electrode swelling)
After the initial charging and discharging, the battery was further charged and discharged 50 times (1st cycle to 50th cycle). However, except for the 25th and 50th cycles, the conditions were the same as those for the initial 1st cycle, except that the current density during charging was 0.2 mA/cm 2 and the current density during discharging was 0.3 mA/cm 2 . was used. In the 25th and 50th cycles, the same conditions as in the initial 2nd cycle were used.
After repeating 50 cycles of charging and discharging, the battery is disassembled, the negative electrode is taken out, the thickness of the negative electrode is measured with a thickness measuring instrument (manufactured by Mitutoyo), and the thickness of the copper foil punched into the same area as the negative electrode is subtracted from this. Thus, the thickness of the negative electrode was obtained and divided by the value of the thickness of the negative electrode at the time of battery fabrication to obtain an index value of electrode swelling.
表2A,2Bより、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が1000ppm以下の本発明の酸化珪素粒子と黒鉛とを含む、ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が600ppm以下の本発明の粒子を負極活物質として用いることで、電池特性に優れ、特に電極膨れの抑制効果に優れた二次電池を提供することができることが分かる。
From Tables 2A and 2B, the present invention having a total content of zirconium, yttrium, hafnium and manganese of 600 ppm or less, containing graphite and silicon oxide particles of the present invention having a total content of zirconium, yttrium, hafnium and manganese of 1000 ppm or less. As a negative electrode active material, it is possible to provide a secondary battery having excellent battery characteristics, particularly an excellent effect of suppressing electrode swelling.
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2021年10月27日付で出願された日本特許出願2021-175656に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2021-175656 filed on October 27, 2021, which is incorporated by reference in its entirety.
本出願は、2021年10月27日付で出願された日本特許出願2021-175656に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2021-175656 filed on October 27, 2021, which is incorporated by reference in its entirety.
Claims (17)
- ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、1000ppm以下であり、d50が、1μm以下である、酸化珪素粒子。 Silicon oxide particles having a total content of zirconium, yttrium, hafnium and manganese of less than or equal to 1000 ppm and a d50 of less than or equal to 1 μm.
- ジルコニウムの含有率が、500ppm以下である、請求項1に記載の酸化珪素粒子。 The silicon oxide particles according to claim 1, wherein the zirconium content is 500 ppm or less.
- イットリウムの含有率が、100ppm以下である、請求項1又は2に記載の酸化珪素粒子。 The silicon oxide particles according to claim 1 or 2, wherein the yttrium content is 100 ppm or less.
- ハフニウムの含有率が、100ppm以下である、請求項1~3のいずれか1項に記載の酸化珪素粒子。 The silicon oxide particles according to any one of claims 1 to 3, wherein the hafnium content is 100 ppm or less.
- マンガンの含有率が、300ppm以下である、請求項1~4のいずれか1項に記載の酸化珪素粒子。 The silicon oxide particles according to any one of claims 1 to 4, wherein the manganese content is 300 ppm or less.
- dmax/d50が、2~10である、請求項1~5のいずれか1項に記載の酸化珪素粒子。 Silicon oxide particles according to any one of claims 1 to 5, wherein d max /d 50 is 2-10.
- 二次電池に用いる、請求項1~6のいずれか1項に記載の酸化珪素粒子。 The silicon oxide particles according to any one of claims 1 to 6, which are used in secondary batteries.
- 酸化珪素粒子を乾式粉砕する工程を含む、請求項1~7のいずれか1項に記載の酸化珪素粒子の製造方法。 The method for producing silicon oxide particles according to any one of claims 1 to 7, comprising a step of dry pulverizing the silicon oxide particles.
- d50が1μm以下である酸化珪素粒子と、黒鉛とを含む粒子であって、
ジルコニウム、イットリウム、ハフニウム及びマンガンの総含有率が、600ppm以下である、粒子。 Particles containing silicon oxide particles having a d50 of 1 μm or less and graphite,
Particles having a total content of zirconium, yttrium, hafnium and manganese of 600 ppm or less. - ジルコニウムの含有率が、300ppm以下である、請求項9に記載の粒子。 The particles according to claim 9, wherein the zirconium content is 300 ppm or less.
- イットリウムの含有率が、60ppm以下である、請求項9又は10に記載の粒子。 The particles according to claim 9 or 10, wherein the yttrium content is 60 ppm or less.
- ハフニウムの含有率が、60ppm以下である、請求項9~11のいずれか1項に記載の粒子。 The particles according to any one of claims 9 to 11, wherein the hafnium content is 60 ppm or less.
- マンガンの含有率が、180ppm以下である、請求項9~12のいずれか1項に記載の粒子。 The particles according to any one of claims 9 to 12, wherein the manganese content is 180 ppm or less.
- 酸化珪素粒子と黒鉛とを複合する工程を含む、請求項9~13のいずれか1項に記載の粒子の製造方法。 The method for producing particles according to any one of claims 9 to 13, comprising a step of combining silicon oxide particles and graphite.
- 酸化珪素粒子と黒鉛との複合方法が、酸化珪素粒子と黒鉛とを混合した後に球形化処理する方法である、請求項14に記載の粒子の製造方法。 The method for producing particles according to claim 14, wherein the method of combining silicon oxide particles and graphite is a method of mixing the silicon oxide particles and graphite and then performing a spheroidizing treatment.
- 正極、負極及び電解質を含む二次電池であって、
負極が、集電体と、集電体上に形成された負極活物質層とを含み、
負極活物質層が、請求項9~13のいずれか1項に記載の粒子を含む、二次電池。 A secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector;
A secondary battery, wherein the negative electrode active material layer comprises the particles according to any one of claims 9 to 13. - 正極、負極及び電解質を含む二次電池の製造方法であって、
集電体上に、請求項9~13のいずれか1項に記載の粒子を含む負極活物質層を形成して負極を得る工程を含む、二次電池の製造方法。
A method for manufacturing a secondary battery including a positive electrode, a negative electrode and an electrolyte,
A method for producing a secondary battery, comprising the step of forming a negative electrode active material layer containing the particles according to any one of claims 9 to 13 on a current collector to obtain a negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023556208A JPWO2023074217A1 (en) | 2021-10-27 | 2022-09-26 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021175656 | 2021-10-27 | ||
JP2021-175656 | 2021-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074217A1 true WO2023074217A1 (en) | 2023-05-04 |
Family
ID=86159728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035677 WO2023074217A1 (en) | 2021-10-27 | 2022-09-26 | Silicon oxide particles and method for producing same, particles and method for producing same, and secondary battery and method for producing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023074217A1 (en) |
TW (1) | TW202328000A (en) |
WO (1) | WO2023074217A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001226112A (en) * | 2000-02-15 | 2001-08-21 | Shin Etsu Chem Co Ltd | Highly active silicon oxide powder and its manufacturing method |
JP2010502554A (en) * | 2006-09-07 | 2010-01-28 | デグサ ノヴァラ テクノロジー ソチエタ ペル アツィオーニ | Sol-gel method |
JP2014088291A (en) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | Method of producing silicon oxide powder |
JP2014088292A (en) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | Method of producing silicon oxide powder |
JP2014179201A (en) * | 2013-03-14 | 2014-09-25 | Seiko Instruments Inc | Electrochemical cell |
WO2015041063A1 (en) * | 2013-09-17 | 2015-03-26 | 中央電気工業株式会社 | Composite particles of silicon phase-containing substance and graphite, and method for producing same |
WO2015146864A1 (en) * | 2014-03-25 | 2015-10-01 | 東ソー株式会社 | Negative electrode active material for lithium ion secondary battery, and method for producing same |
JP2016522139A (en) * | 2013-04-27 | 2016-07-28 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | SiOx / Si / C composite material, method for producing the same, and negative electrode for lithium ion battery including the composite material |
JP2018088403A (en) * | 2016-11-22 | 2018-06-07 | 三菱ケミカル株式会社 | Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery |
JP2020129556A (en) * | 2015-11-06 | 2020-08-27 | 国立大学法人 新潟大学 | Method for manufacturing nonaqueous electrolyte secondary battery negative electrode |
-
2022
- 2022-09-26 JP JP2023556208A patent/JPWO2023074217A1/ja active Pending
- 2022-09-26 WO PCT/JP2022/035677 patent/WO2023074217A1/en active Application Filing
- 2022-10-14 TW TW111138949A patent/TW202328000A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001226112A (en) * | 2000-02-15 | 2001-08-21 | Shin Etsu Chem Co Ltd | Highly active silicon oxide powder and its manufacturing method |
JP2010502554A (en) * | 2006-09-07 | 2010-01-28 | デグサ ノヴァラ テクノロジー ソチエタ ペル アツィオーニ | Sol-gel method |
JP2014088291A (en) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | Method of producing silicon oxide powder |
JP2014088292A (en) * | 2012-10-31 | 2014-05-15 | Mitsubishi Materials Corp | Method of producing silicon oxide powder |
JP2014179201A (en) * | 2013-03-14 | 2014-09-25 | Seiko Instruments Inc | Electrochemical cell |
JP2016522139A (en) * | 2013-04-27 | 2016-07-28 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | SiOx / Si / C composite material, method for producing the same, and negative electrode for lithium ion battery including the composite material |
WO2015041063A1 (en) * | 2013-09-17 | 2015-03-26 | 中央電気工業株式会社 | Composite particles of silicon phase-containing substance and graphite, and method for producing same |
WO2015146864A1 (en) * | 2014-03-25 | 2015-10-01 | 東ソー株式会社 | Negative electrode active material for lithium ion secondary battery, and method for producing same |
JP2020129556A (en) * | 2015-11-06 | 2020-08-27 | 国立大学法人 新潟大学 | Method for manufacturing nonaqueous electrolyte secondary battery negative electrode |
JP2018088403A (en) * | 2016-11-22 | 2018-06-07 | 三菱ケミカル株式会社 | Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery |
Also Published As
Publication number | Publication date |
---|---|
TW202328000A (en) | 2023-07-16 |
JPWO2023074217A1 (en) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102469839B1 (en) | Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery | |
JP5943052B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5326609B2 (en) | Multi-layer structure carbonaceous material, method for producing the same, and non-aqueous secondary battery using the same | |
JP6906891B2 (en) | Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries | |
JP7480284B2 (en) | Spheroidized carbon-based negative electrode active material, its manufacturing method, negative electrode including the same, and lithium secondary battery | |
JP6409377B2 (en) | Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same | |
JP6476814B2 (en) | Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same | |
JP6634720B2 (en) | Carbon materials and non-aqueous secondary batteries | |
JP2014060124A (en) | Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP6098275B2 (en) | Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery | |
JP2016105396A (en) | Carbon material for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2016186912A (en) | Composite carbon material for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP2015130324A (en) | Nonaqueous electrolyte secondary battery | |
WO2021193662A1 (en) | Composite active material for lithium secondary battery, electrode composition for lithium secondary battery, lithium secondary battery electrode, and method for manufacturing composite active material for lithium secondary battery | |
JP2017126425A (en) | Carbon material for nonaqueous secondary battery, and lithium ion secondary battery | |
JP6672755B2 (en) | Carbon materials and non-aqueous secondary batteries | |
JP6707935B2 (en) | Method for producing negative electrode material for non-aqueous secondary battery | |
JP6759586B2 (en) | Carbon material and non-aqueous secondary battery | |
JP6801171B2 (en) | Carbon material and non-aqueous secondary battery | |
JP7192932B2 (en) | Carbon material and non-aqueous secondary battery | |
WO2015080204A1 (en) | Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery and nonaqueous rechargeable battery using same | |
WO2023074217A1 (en) | Silicon oxide particles and method for producing same, particles and method for producing same, and secondary battery and method for producing same | |
WO2023074216A1 (en) | Particles and method for producing same, and secondary battery and method for manufacturing same | |
JP7498267B2 (en) | Spheroidized carbon-based negative electrode active material, its manufacturing method, negative electrode including the same, and lithium secondary battery | |
WO2023037841A1 (en) | Carbon material, method for producing carbon material, method for producing spherical carbon material, method for producing composite carbon material, and method for producing secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886550 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023556208 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22886550 Country of ref document: EP Kind code of ref document: A1 |