WO2024005017A1 - Tungsten carbide powder - Google Patents

Tungsten carbide powder Download PDF

Info

Publication number
WO2024005017A1
WO2024005017A1 PCT/JP2023/023813 JP2023023813W WO2024005017A1 WO 2024005017 A1 WO2024005017 A1 WO 2024005017A1 JP 2023023813 W JP2023023813 W JP 2023023813W WO 2024005017 A1 WO2024005017 A1 WO 2024005017A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
tungsten carbide
powder
sum
secondary ion
Prior art date
Application number
PCT/JP2023/023813
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 牧野
志賢 青木
直樹 岩井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024005017A1 publication Critical patent/WO2024005017A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides

Definitions

  • the disclosed embodiments relate to tungsten carbide powder.
  • tungsten carbide is a component of superhard alloys such as cemented carbide, is used together with cobalt, niobium, etc., and is often used in cutting tools and the like.
  • the metal tungsten contained in tungsten carbide has a high melting point, it is used in a variety of applications such as heating elements, structural members, catalysts for the petrochemical industry, environmental equipment, wiring for ceramic wiring boards, and heat dissipation materials. ing. In order to effectively utilize these resources, a method of recycling tungsten from waste materials (scrap) has been devised (see Patent Document 1).
  • the tungsten carbide powder according to one aspect of the embodiment includes powder whose main component is tungsten carbide crystal grains. Furthermore, when analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in a region up to 5 (nm) in the depth direction from the outermost surface of the tungsten carbide crystal grains, tungsten, chromium, and vanadium are excluded.
  • the intensity ratio (SUM/W) between the sum of the secondary ion strengths (SUM) of metal elements in groups 4a, 5a, and 6a of the periodic table and the secondary ion strength (W) of tungsten is 0.03 or more.
  • FIG. 1 is a diagram showing the structure of tungsten carbide crystal grains according to an embodiment.
  • FIG. 2 is a flowchart illustrating an example of the procedure of the tungsten carbide production process according to the embodiment.
  • FIG. 3 is a flowchart illustrating an example of a procedure of a tungsten carbide generation process in a reference example.
  • Figure 4 is a diagram showing the depth distribution of the intensity ratio (SUM/W) between the total value (SUM) of the secondary ion intensity of specific metal elements and the secondary ion intensity (W) of tungsten in tungsten carbide powder. be.
  • tungsten carbide is a component of superhard alloys such as cemented carbide, is used together with cobalt, niobium, etc., and is often used in cutting tools and the like.
  • the metal tungsten contained in tungsten carbide has a high melting point, it is used in a variety of applications such as heating elements, structural members, catalysts for the petrochemical industry, environmental equipment, wiring for ceramic wiring boards, and heat dissipation materials. ing. In order to effectively utilize these resources, methods have been devised to recycle tungsten from waste materials (scrap).
  • the tungsten carbide powder according to the embodiment includes powder whose main component is tungsten carbide crystal grains 1 (see FIG. 1).
  • the tungsten carbide powder according to the embodiment includes powder consisting of tungsten carbide crystal grains 1 and inevitable impurities.
  • a region from the outermost surface 1a (see FIG. 1) to 5 (nm) in the depth direction of the tungsten carbide crystal grains 1 was analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the intensity ratio (SUM/ W) may be 0.03 or more.
  • metal elements in groups 4a, 5a, and 6a of the periodic table i.e., titanium, zirconium, hafnium, niobium, tantalum, and molybdenum
  • specific metal elements tungsten, chromium, and vanadium
  • cemented carbide since it is possible to generate cemented carbide by low-temperature firing, cemented carbide can be efficiently produced. Further, in the embodiment, since the crystals are finely densified when producing the cemented carbide, a cemented carbide with a small amount of deformation can be obtained.
  • the total value of secondary ion intensities of specific metal elements when analyzed by TOF-SIMS in a region from the outermost surface 1a of tungsten carbide crystal grains 1 to 5 (nm) in the depth direction, the total value of secondary ion intensities of specific metal elements (SUM/W) between the tungsten secondary ion strength (SUM) and the tungsten secondary ion strength (W) may be 0.1 or more.
  • cemented carbide can be produced more efficiently. Furthermore, in the embodiment, a cemented carbide with even less deformation can be obtained.
  • FIG. 1 is a diagram showing the structure of tungsten carbide crystal grains 1 according to an embodiment.
  • a powder mainly composed of tungsten carbide crystal grains 1 includes a combined body 2 having a plurality of tungsten carbide crystal grains 1.
  • the total value of the atomic ratios of the specific metal elements may be 1 (at%) or less.
  • the temperature of the mixed powder is raised to 1400 (°C) to 1600 (°C) and two-stage firing is performed in the manufacturing process of cemented carbide.
  • a mixed structure of coarse grains and fine grains can be easily formed. The reason is as follows.
  • Tungsten carbide crystal grains 1 have the property that grain growth is reduced in areas where the content of specific metal elements is high, but by creating a structure in which there is no segregation of specific metal elements at grain boundaries 1b of tungsten carbide crystal grains 1. , the grain boundaries 1b tend to become starting points for grain growth.
  • the outermost surface 1a of the tungsten carbide crystal grains 1 has a relatively high content of the specific metal element as described above, it is difficult to become a starting point for grain growth.
  • the combined body 2 has a mixture of places that are likely to become the starting point of grain growth and places that are difficult to start grain growth.
  • a mixed structure of coarse grains and fine grains is likely to be formed.
  • FIG. 2 is a flowchart illustrating an example of the procedure of the tungsten carbide powder production process according to the embodiment. As shown in FIG. 2, in the process of producing tungsten carbide powder according to the embodiment, scraps of cemented carbide were first prepared.
  • Cemented carbide which is a type of superhard alloy, is mainly composed of composite carbides such as tungsten metal and tungsten carbide, and has a binder phase of iron, nickel, cobalt, etc., and optionally contains TiC, TaC, NbC, etc. as additive components. Contains VC, Cr3C2 , etc.
  • Materials to be treated containing cemented carbide include, for example, cutting tools (cutting inserts, drills, end mills, etc.), molds (forming rolls, molds, etc.), civil engineering and mining tools (oil drilling tools, rock crushing tools, etc.).
  • the prepared cemented carbide scrap was oxidized and roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the obtained mixture was refluxed with an aqueous sodium hydroxide (NaOH) solution and extracted, thereby obtaining a tungsten compound solution containing sodium tungstate (Na 2 WO 4 ).
  • the adsorbent in the present disclosure is not limited to containing lysine, and may also include alanine, cystine, methionine, tyrosine, valine, glutamic acid, and histidine. Histidine), Proline, Threonine, Asparagine, Glycine, Isoleucine, Ornithine, Arginine, Serine, Citrulline and Cystathionine ( Cystathionine).
  • the total amount of the first amino acid salt added in the adsorbent is 0.2 (mol) to 1.1 (mol) per 1 (mol) of the metal component of the tungsten compound. Add in proportions. This allows a large amount of tungsten compounds to be adsorbed with a small amount of adsorbent.
  • the total amount of the first amino acid salt added is, for example, 10 (g/l) to 300 (g/l) with respect to the tungsten compound solution. This prevents the viscosity of the solution from increasing, making it difficult for the recovery efficiency of the metal compound to decrease. In particular, when the adsorbent is made of an amino acid salt, the viscosity of the solution does not increase easily and the workability is good.
  • the temperature may be adjusted depending on the activity of the free amino acid, and usually room temperature is sufficient.
  • the tungsten compound solution containing the adsorbent may be adjusted using hydrochloric acid or the like so that the zeta potential of the free amino acid becomes positive. This allows the adsorbent to adsorb tungsten compound ions, which are anions.
  • the pH of the solution may be less than 7 (acidic).
  • the free amino acid is glutamic acid, the preferred pH is 1.5 or less.
  • the recovery rate of the tungsten compound can be increased.
  • the step of adjusting the pH of the solution or the step of adding an adsorbent into the solution containing the metal compound may be performed first.
  • the recovery efficiency of the adsorbent is higher if the adsorption reaction takes place within 1 hour. That is, if the adsorption reaction exceeds 1 hour, part of the adsorbed metal compound may be desorbed from the free amino acid.
  • the adsorbent on which the tungsten compound ions were adsorbed was filtered using a means such as a filter.
  • the filtered adsorbent was washed in the order of acid washing and pure water washing as necessary.
  • the filtered adsorbent may be washed with warm water of 40 (° C.) or higher instead of acid washing.
  • impurities were removed by washing with pure water until the electrical conductivity of the washing filtrate became 500 ( ⁇ S/m) or less. This makes it possible to improve the quality of the tungsten compound and recover it.
  • the washed adsorbent was compressed by means such as a compressor. Then, a required amount of at least one of titanium alkoxide compound powder, zirconium alkoxide compound powder, niobium oxalate powder, ammonium molybdate powder, and tantalum oxalate powder was added to the compressed adsorbent.
  • the amount of the titanium alkoxide compound powder added is preferably 0.3 (wt%) to 33 (wt%) based on the dry weight of the adsorbent containing tungsten, and the amount of the zirconium alkoxide compound powder added is, for example, It is preferably 0.1 (wt%) to 20.0 (wt%) based on the dry weight of the adsorbent containing tungsten.
  • the amount of niobium oxalate powder added is preferably 0.1 (wt%) to 20.0 (wt%) based on the dry weight of the adsorbent containing tungsten
  • the amount of ammonium molybdate powder added is , for example, preferably 0.1 (wt%) to 20.0 (wt%) based on the dry weight of the adsorbent containing tungsten
  • the amount of tantalum oxalate powder added is preferably, for example, 0.1 (wt%) to 12.0 (wt%) based on the dry weight of the tungsten-containing adsorbent.
  • the water absorption rate of the adsorbent after pressing is preferably 40 (%) or more. In this way, by including a large amount of water in the adsorbent, each powder added to the compressed adsorbent can be well dissolved in the adsorbent.
  • the adsorbent on which the tungsten compound ions have been adsorbed is dried and further incinerated at a temperature of 300 (°C) or higher in the air to oxidize the tungsten compound and remove organic components including the adsorbent and additives. did.
  • tungsten oxide powder (WO 3 ) was obtained.
  • the obtained tungsten oxide powder was heat treated at a temperature of 800 (°C) to 950 (°C) in a reducing atmosphere (for example, hydrogen gas atmosphere) to reduce the tungsten oxide compound.
  • a reducing atmosphere for example, hydrogen gas atmosphere
  • metallic tungsten (W) was obtained.
  • the obtained tungsten metal was carbonized to obtain tungsten carbide powder (WC) according to the embodiment.
  • FIG. 3 is a flowchart illustrating an example of a procedure for producing tungsten carbide powder in a reference example. As shown in FIG. 3, in the step of producing tungsten carbide powder in the reference example, scraps of cemented carbide were first prepared.
  • the prepared cemented carbide scrap was oxidized and roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the obtained mixture was extracted with an aqueous sodium hydroxide (NaOH) solution to obtain a tungsten compound solution containing sodium tungstate ( Na2WO4 ).
  • NaOH sodium hydroxide
  • the obtained tungsten compound solution was ion-exchanged with an ion exchange resin or the like to produce an aqueous solution of ammonium tungstate ((NH 4 ) 2 WO 4 ).
  • the resulting aqueous solution was then heated and concentrated to crystallize a tungsten compound as ammonium paratungstate (APT).
  • tungsten oxide powder (WO 3 ) was obtained.
  • the obtained tungsten oxide powder was heat treated in a reducing atmosphere to reduce the tungsten oxide compound.
  • metallic tungsten (W) was obtained.
  • the obtained tungsten metal was carbonized to obtain a tungsten carbide powder (WC) as a reference example.
  • the obtained tungsten carbide powders of the embodiment and reference example were analyzed by TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry). Specifically, the depth distribution of tungsten and specific metal elements in the tungsten carbide powders of the embodiment and the reference example was measured by TOF-SIMS.
  • TOF-SIMS Time-Of-Flight Secondary Ion Mass Spectrometry
  • the TOF-SIMS measurement conditions are as follows.
  • the tungsten carbide powders of the embodiment and the reference example were fixed, and the powder surface was measured at a 100 ( ⁇ m) square.
  • the measuring device is TOF. manufactured by ION-TOF.
  • SIMS5 Bi (bismuth) was selected as the primary ion source, and elemental analysis in the depth direction was measured.
  • Figure 4 is a diagram showing the depth distribution of the intensity ratio (SUM/W) between the total value (SUM) of the secondary ion intensity of specific metal elements and the secondary ion intensity (W) of tungsten in tungsten carbide powder. be.
  • the strength is low in at least a part of the region from the outermost surface 1a (see FIG. 1) of the tungsten carbide crystal grains 1 to 5 (nm) in the depth direction. It can be seen that the ratio (SUM/W) is not 0.03 or more.
  • the cemented carbide can be efficiently produced as described above. Further, in the embodiment, by increasing the concentration of the specific metal element at the outermost surface 1a of the tungsten carbide crystal grains 1 and its vicinity, a cemented carbide with a small amount of deformation can be obtained.
  • the strength is low in at least a part of the region from the outermost surface 1a (see FIG. 1) of the tungsten carbide crystal grains 1 to 5 (nm) in the depth direction. It can be seen that the ratio (SUM/W) is not 0.1 or more.
  • the cemented carbide can be produced more efficiently as described above. Furthermore, in the embodiment, by further increasing the concentration of the specific metal element at the outermost surface 1a of the tungsten carbide crystal grains 1 and its vicinity, a cemented carbide with a smaller amount of deformation can be obtained.
  • the atomic ratios of various elements within the tungsten carbide crystal grains 1 and the atomic ratios of various elements at the grain boundaries 1b were measured using STEM (Scanning Transmission). Measured using an Electron Microscope (scanning transmission electron microscope).
  • the inside of the tungsten carbide crystal grain 1 was measured at two locations, and the grain boundary 1b of the tungsten carbide crystal grain 1 was measured at three locations, and various elements within the grain and at the grain boundary 1b were measured. The average value of the atomic ratio was determined.
  • the STEM measurement conditions are as follows. First, as sample pretreatment, the sample was sliced into thin sections using the FIB method ( ⁇ -sampling method). Next, the thin sectioned sample was subjected to STEM observation using a scanning transmission electron microscope (JEM-ARM200F manufactured by JEOL Ltd.). The observation conditions were an accelerating voltage of 200 (kV) and a magnification accuracy of ⁇ 10 (%).
  • the analysis conditions are: acceleration voltage of 200 (kV), beam diameter of approximately 0.1 (nm ⁇ ), X-ray detector is a Si drift detector, energy resolution of approximately 140 (eV), and X-ray extraction angle of 21.9. (°), the solid angle was 0.98 (sr), and the acquisition time was 60 (seconds). Table 1 shows the STEM measurement results.
  • the specific metal element is It can be seen that the total value of the atomic ratios is 1 (at%) or less.

Abstract

This tungsten carbide powder includes a powder containing, as a main ingredient, tungsten carbide crystal grains. In addition, when a region down to 5 (nm) in the depth direction from the outermost surface of the tungsten carbide crystal grains is analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the intensity ratio (SUM/W) of the total value (SUM) of secondary ion intensities of metal elements belonging to groups 4a, 5a, and 6a of the periodic table but excluding tungsten, chromium, and vanadium, with respect to the secondary ion intensity (W) of tungsten is 0.03 or more.

Description

炭化タングステン粉末tungsten carbide powder
 開示の実施形態は、炭化タングステン粉末に関する。 The disclosed embodiments relate to tungsten carbide powder.
 近年、金属または金属化合物のリサイクル技術の開発が進められている。たとえば、炭化タングステンは、超硬合金などの超硬質合金を構成する成分であり、コバルト、ニオブなどとともに用いられ、切削工具などに多く使用されている。 In recent years, the development of recycling technology for metals or metal compounds has been progressing. For example, tungsten carbide is a component of superhard alloys such as cemented carbide, is used together with cobalt, niobium, etc., and is often used in cutting tools and the like.
 また、炭化タングステンに含まれる金属タングステンは、高融点であることから、発熱体、構造部材、石油化学工業用の触媒、環境機器、セラミック配線基板の配線、放熱部材などの種々の用途に用いられている。これらの資源を有効活用するため、廃材(スクラップ)からタングステンをリサイクルする方法が考案されている(特許文献1を参照)。 In addition, since the metal tungsten contained in tungsten carbide has a high melting point, it is used in a variety of applications such as heating elements, structural members, catalysts for the petrochemical industry, environmental equipment, wiring for ceramic wiring boards, and heat dissipation materials. ing. In order to effectively utilize these resources, a method of recycling tungsten from waste materials (scrap) has been devised (see Patent Document 1).
特開2004-2927号公報Japanese Patent Application Publication No. 2004-2927
 実施形態の一態様に係る炭化タングステン粉末は、炭化タングステン結晶粒を主成分とする粉体を含む。また、前記炭化タングステン結晶粒の最表面から深さ方向で5(nm)までの領域において、飛行時間型二次イオン質量分析(TOF-SIMS)により分析した場合に、タングステン、クロムおよびバナジウムを除く周期律表4a、5a、6a族の金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)が0.03以上である。 The tungsten carbide powder according to one aspect of the embodiment includes powder whose main component is tungsten carbide crystal grains. Furthermore, when analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in a region up to 5 (nm) in the depth direction from the outermost surface of the tungsten carbide crystal grains, tungsten, chromium, and vanadium are excluded. The intensity ratio (SUM/W) between the sum of the secondary ion strengths (SUM) of metal elements in groups 4a, 5a, and 6a of the periodic table and the secondary ion strength (W) of tungsten is 0.03 or more.
図1は、実施形態に係る炭化タングステン結晶粒の構成を示す図である。FIG. 1 is a diagram showing the structure of tungsten carbide crystal grains according to an embodiment. 図2は、実施形態に係る炭化タングステンの生成工程の手順の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of the procedure of the tungsten carbide production process according to the embodiment. 図3は、参考例における炭化タングステンの生成工程の手順の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a procedure of a tungsten carbide generation process in a reference example. 図4は、炭化タングステン粉末における特定金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)の深さ方向分布を示す図である。Figure 4 is a diagram showing the depth distribution of the intensity ratio (SUM/W) between the total value (SUM) of the secondary ion intensity of specific metal elements and the secondary ion intensity (W) of tungsten in tungsten carbide powder. be.
 以下、添付図面を参照して、本願の開示する炭化タングステン粉末の実施形態について説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the tungsten carbide powder disclosed in the present application will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below.
 近年、金属または金属化合物のリサイクル技術の開発が進められている。たとえば、炭化タングステンは、超硬合金などの超硬質合金を構成する成分であり、コバルト、ニオブなどとともに用いられ、切削工具などに多く使用されている。 In recent years, the development of recycling technology for metals or metal compounds has been progressing. For example, tungsten carbide is a component of superhard alloys such as cemented carbide, is used together with cobalt, niobium, etc., and is often used in cutting tools and the like.
 また、炭化タングステンに含まれる金属タングステンは、高融点であることから、発熱体、構造部材、石油化学工業用の触媒、環境機器、セラミック配線基板の配線、放熱部材などの種々の用途に用いられている。これらの資源を有効活用するため、廃材(スクラップ)からタングステンをリサイクルする方法が考案されている。 In addition, since the metal tungsten contained in tungsten carbide has a high melting point, it is used in a variety of applications such as heating elements, structural members, catalysts for the petrochemical industry, environmental equipment, wiring for ceramic wiring boards, and heat dissipation materials. ing. In order to effectively utilize these resources, methods have been devised to recycle tungsten from waste materials (scrap).
 一方で、上記の従来技術では、リサイクル技術により生成された炭化タングステン粉末を用いた場合、超硬合金を効率よく生成するという点でさらなる改善の余地があった。そこで、上記の問題点を解決し、超硬合金を効率よく生成することができる技術の実現が期待されている。 On the other hand, in the above-mentioned conventional technology, when tungsten carbide powder produced by recycling technology is used, there is room for further improvement in terms of efficiently producing cemented carbide. Therefore, it is expected that a technology that can solve the above problems and efficiently produce cemented carbide will be realized.
 実施形態に係る炭化タングステン粉末は、炭化タングステン結晶粒1(図1参照)を主成分とする粉体を含む。たとえば、実施形態に係る炭化タングステン粉末は、炭化タングステン結晶粒1および不可避不純物からなる粉体を含む。 The tungsten carbide powder according to the embodiment includes powder whose main component is tungsten carbide crystal grains 1 (see FIG. 1). For example, the tungsten carbide powder according to the embodiment includes powder consisting of tungsten carbide crystal grains 1 and inevitable impurities.
 そして、実施形態では、炭化タングステン結晶粒1の最表面1a(図1参照)から深さ方向で5(nm)までの領域において、飛行時間型二次イオン質量分析(TOF-SIMS)により分析した場合に、タングステン、クロムおよびバナジウムを除く周期律表4a、5a、6a族の金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)が0.03以上であってもよい。 In the embodiment, a region from the outermost surface 1a (see FIG. 1) to 5 (nm) in the depth direction of the tungsten carbide crystal grains 1 was analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this case, the intensity ratio (SUM/ W) may be 0.03 or more.
 なお、本開示では、タングステン、クロムおよびバナジウムを除く周期律表4a、5a、6a族の金属元素(すなわち、チタン、ジルコニウム、ハフニウム、ニオブ、タンタルおよびモリブデン)を総称して「特定金属元素」と呼称する。 In the present disclosure, metal elements in groups 4a, 5a, and 6a of the periodic table (i.e., titanium, zirconium, hafnium, niobium, tantalum, and molybdenum) excluding tungsten, chromium, and vanadium are collectively referred to as "specific metal elements." To call.
 このように、コバルトとの溶解性が高い特定金属元素が炭化タングステン粉体の表面に比較的多く存在することで、超硬合金の結合材として用いられるコバルトと炭化タングステン粉体との親和性(濡れ性)が高まる。 In this way, the presence of a relatively large amount of specific metal elements that are highly soluble in cobalt on the surface of tungsten carbide powder increases the affinity between cobalt, which is used as a binder in cemented carbide, and tungsten carbide powder ( wettability).
 これにより、炭化タングステン粉末とコバルト粉末との混合粉末を焼成して超硬合金を生成する際に、コバルトの液相が出現開始する温度域において液化したコバルトが、特定金属元素が比較的多く存在する炭化タングステン粉体の表面でスムーズに濡れ、拡散する。 As a result, when a mixed powder of tungsten carbide powder and cobalt powder is fired to produce cemented carbide, the liquefied cobalt in the temperature range where the liquid phase of cobalt starts to appear has a relatively large amount of specific metal elements. The surface of the tungsten carbide powder wets and spreads smoothly.
 したがって、実施形態によれば、低温焼成による超硬合金の生成が可能となるため、超硬合金を効率よく生成することができる。また、実施形態では、超硬合金を生成する際に結晶がきれいに緻密化するため、変形量が少ない超硬合金を得ることができる。 Therefore, according to the embodiment, since it is possible to generate cemented carbide by low-temperature firing, cemented carbide can be efficiently produced. Further, in the embodiment, since the crystals are finely densified when producing the cemented carbide, a cemented carbide with a small amount of deformation can be obtained.
 また、実施形態では、炭化タングステン結晶粒1の最表面1aから深さ方向で5(nm)までの領域において、TOF-SIMSにより分析した場合に、特定金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)が0.1以上であってもよい。 In addition, in the embodiment, when analyzed by TOF-SIMS in a region from the outermost surface 1a of tungsten carbide crystal grains 1 to 5 (nm) in the depth direction, the total value of secondary ion intensities of specific metal elements ( The intensity ratio (SUM/W) between the tungsten secondary ion strength (SUM) and the tungsten secondary ion strength (W) may be 0.1 or more.
 これにより、炭化タングステン粉末とコバルト粉末との混合粉末を焼成して超硬合金を生成する際に、コバルトの液相が出現開始する温度域において液化したコバルトが、特定金属元素が多く存在する炭化タングステン粉体の表面でさらにスムーズに濡れ、拡散する。 As a result, when sintering a mixed powder of tungsten carbide powder and cobalt powder to produce cemented carbide, the liquefied cobalt in the temperature range where the liquid phase of cobalt starts to appear becomes carbonized with a large amount of specific metal elements. Wet and spread even more smoothly on the surface of tungsten powder.
 したがって、実施形態によれば、超硬合金をさらに効率よく生成することができる。また、実施形態では、さらに変形量が少ない超硬合金を得ることができる。 Therefore, according to the embodiment, cemented carbide can be produced more efficiently. Furthermore, in the embodiment, a cemented carbide with even less deformation can be obtained.
 図1は、実施形態に係る炭化タングステン結晶粒1の構成を示す図である。実施形態では、図1に示すように、炭化タングステン結晶粒1を主成分とする粉体が、複数の炭化タングステン結晶粒1を有する結合体2を含む。 FIG. 1 is a diagram showing the structure of tungsten carbide crystal grains 1 according to an embodiment. In the embodiment, as shown in FIG. 1, a powder mainly composed of tungsten carbide crystal grains 1 includes a combined body 2 having a plurality of tungsten carbide crystal grains 1.
 そして、実施形態では、結合体2内における複数の炭化タングステン結晶粒1の結晶粒界1bにおいて、特定金属元素の原子比率の合計値が1(at%)以下であってもよい。 In the embodiment, in the grain boundaries 1b of the plurality of tungsten carbide crystal grains 1 in the combined body 2, the total value of the atomic ratios of the specific metal elements may be 1 (at%) or less.
 このように、結晶粒界1bにおいて特定金属元素の偏在が低減されることで、超硬合金の製造工程において混合粉末を1400(℃)~1600(℃)まで昇温して2段焼成を行う場合に、粗粒と微粒との混在組織を形成しやすくすることができる。その理由は以下の通りである。 In this way, by reducing the uneven distribution of specific metal elements at the grain boundaries 1b, the temperature of the mixed powder is raised to 1400 (°C) to 1600 (°C) and two-stage firing is performed in the manufacturing process of cemented carbide. In some cases, a mixed structure of coarse grains and fine grains can be easily formed. The reason is as follows.
 炭化タングステン結晶粒1は特定金属元素の含有量が多い箇所では粒成長が低減される性質があるが、炭化タングステン結晶粒1の結晶粒界1bに特定金属元素の偏析がない構成とすることで、結晶粒界1bが粒成長の起点となりやすい。 Tungsten carbide crystal grains 1 have the property that grain growth is reduced in areas where the content of specific metal elements is high, but by creating a structure in which there is no segregation of specific metal elements at grain boundaries 1b of tungsten carbide crystal grains 1. , the grain boundaries 1b tend to become starting points for grain growth.
 一方で、炭化タングステン結晶粒1の最表面1aは、上述のように特定金属元素の含有量が比較的多くなっているため、粒成長の起点となりにくい。 On the other hand, since the outermost surface 1a of the tungsten carbide crystal grains 1 has a relatively high content of the specific metal element as described above, it is difficult to become a starting point for grain growth.
 このように、実施形態では、粒成長の起点になりやすい箇所となりにくい箇所とが結合体2内に混在していることで、炭化タングステン粉末とコバルト粉末との混合粉末を焼成して超硬合金を生成する際に、粗粒と微粒との混在組織が形成されやすくなる。 In this way, in the embodiment, the combined body 2 has a mixture of places that are likely to become the starting point of grain growth and places that are difficult to start grain growth. When producing , a mixed structure of coarse grains and fine grains is likely to be formed.
 すなわち、実施形態では、結晶粒界1bにおいて特定金属元素の偏在が低減されることで、粗粒と微粒との混在組織が形成されやすくなることから、強靭な超硬合金を生成することができる。 That is, in the embodiment, by reducing the uneven distribution of the specific metal element at the grain boundaries 1b, a mixed structure of coarse grains and fine grains is more likely to be formed, so that a tough cemented carbide can be produced. .
 以下、本開示の実施例を具体的に説明する。図2は、実施形態に係る炭化タングステン粉末の生成工程の手順の一例を示すフローチャートである。図2に示すように、実施形態に係る炭化タングステン粉末の生成工程では、まず、超硬合金のスクラップを準備した。 Examples of the present disclosure will be specifically described below. FIG. 2 is a flowchart illustrating an example of the procedure of the tungsten carbide powder production process according to the embodiment. As shown in FIG. 2, in the process of producing tungsten carbide powder according to the embodiment, scraps of cemented carbide were first prepared.
 超硬質合金の一種である超硬合金は、金属タングステンや炭化タングステンなどの複合炭化物を主体とし、鉄、ニッケル、コバルトなどを結合相とし、必要に応じて添加物成分としてTiC、TaC、NbC、VC、Crなどを含む。 Cemented carbide, which is a type of superhard alloy, is mainly composed of composite carbides such as tungsten metal and tungsten carbide, and has a binder phase of iron, nickel, cobalt, etc., and optionally contains TiC, TaC, NbC, etc. as additive components. Contains VC, Cr3C2 , etc.
 対象となる超硬合金を含んだ被処理材は、たとえば、切削工具(切削インサート、ドリル、エンドミル等)、金型(成形ロール、成形型等)、土木鉱山用工具(石油掘削用工具、岩石粉砕用工具等)などである。 Materials to be treated containing cemented carbide include, for example, cutting tools (cutting inserts, drills, end mills, etc.), molds (forming rolls, molds, etc.), civil engineering and mining tools (oil drilling tools, rock crushing tools, etc.).
 次に、準備された超硬合金スクラップを酸化焙焼し、酸化タングステン(WO)およびタングステン酸コバルト(CoWO)の混合体を得た。そして、得られた混合体に対して水酸化ナトリウム(NaOH)水溶液で還流後、抽出することで、タングステン酸ナトリウム(NaWO)を含有するタングステン化合物溶液を得た。 Next, the prepared cemented carbide scrap was oxidized and roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the obtained mixture was refluxed with an aqueous sodium hydroxide (NaOH) solution and extracted, thereby obtaining a tungsten compound solution containing sodium tungstate (Na 2 WO 4 ).
 次に、得られたタングステン化合物溶液にリジン(Lysine)を含む吸着剤を添加して、タングステン化合物イオンをリジンに吸着させた(図ではリジン-WOと記載)。 Next, an adsorbent containing lysine was added to the obtained tungsten compound solution to cause tungsten compound ions to be adsorbed to lysine (denoted as lysine-WO 4 in the figure).
 なお、本開示における吸着剤は、リジンを含む場合に限られず、アラニン(Alanine)、シスチン(Cystine)、メチオニン(Methionine)、チロシン(Tyrosine)、バリン(Valine)、グルタミン酸(Glutamic acid)、ヒスチジン(Histidine)、プロリン(Proline)、トレオニン(Threonine)、アスパラギン(Asparagine)、グリシン(Glycine)、イソロイシン(Isoleucine)、オルニチン(Ornithine)、アルギニン(Arginine)、セリン(Serine)、シトルリン(Citrulline)およびシスタチオニン(Cystathionine)のうちの少なくとも一種の第1アミノ酸を含んでいてもよい。 Note that the adsorbent in the present disclosure is not limited to containing lysine, and may also include alanine, cystine, methionine, tyrosine, valine, glutamic acid, and histidine. Histidine), Proline, Threonine, Asparagine, Glycine, Isoleucine, Ornithine, Arginine, Serine, Citrulline and Cystathionine ( Cystathionine).
 かかる吸着処理では、たとえば、吸着剤中の第1アミノ酸の塩の合計添加量が、タングステン化合物の金属成分1(mol)に対して、0.2(mol)~1.1(mol)の含有比率で添加する。これによって、少量の吸着剤で多量のタングステン化合物を吸着させることができる。 In such adsorption treatment, for example, the total amount of the first amino acid salt added in the adsorbent is 0.2 (mol) to 1.1 (mol) per 1 (mol) of the metal component of the tungsten compound. Add in proportions. This allows a large amount of tungsten compounds to be adsorbed with a small amount of adsorbent.
 また、第1アミノ酸の塩の合計添加量は、たとえば、タングステン化合物溶液に対して、10(g/l)~300(g/l)である。これによって、溶液の粘性が高くならず、金属化合物の回収効率が低下しにくくなる。特に、吸着剤がアミノ酸の塩からなる場合、溶液の粘性が上がりにくく、作業性がよい。 Further, the total amount of the first amino acid salt added is, for example, 10 (g/l) to 300 (g/l) with respect to the tungsten compound solution. This prevents the viscosity of the solution from increasing, making it difficult for the recovery efficiency of the metal compound to decrease. In particular, when the adsorbent is made of an amino acid salt, the viscosity of the solution does not increase easily and the workability is good.
 温度は遊離アミノ酸の活性に応じて調整すればよく、通常は室温で構わない。吸着剤を添加したタングステン化合物溶液を、塩酸などを用いて遊離アミノ酸のゼータ電位が正となるように調整してもよい。これによって、吸着剤にアニオンであるタングステン化合物イオンを吸着させることができる。 The temperature may be adjusted depending on the activity of the free amino acid, and usually room temperature is sufficient. The tungsten compound solution containing the adsorbent may be adjusted using hydrochloric acid or the like so that the zeta potential of the free amino acid becomes positive. This allows the adsorbent to adsorb tungsten compound ions, which are anions.
 また、溶液のpHは7未満(酸性)であってもよい。遊離アミノ酸がリジンおよびアルギニンの場合、好適なpHは4以下、好ましくは0.5~3.0、望ましくはpH=0.8~2.3である。遊離アミノ酸がグルタミン酸の場合、好適なpHは1.5以下である。 Additionally, the pH of the solution may be less than 7 (acidic). When the free amino acids are lysine and arginine, a suitable pH is 4 or less, preferably 0.5-3.0, desirably pH=0.8-2.3. When the free amino acid is glutamic acid, the preferred pH is 1.5 or less.
 これによって、タングステン化合物の回収率を高めることができる。なお、溶液のpHを調整する工程と、金属化合物が含有される溶液中に吸着剤を添加する工程とは、どちらが先でもよい。 Thereby, the recovery rate of the tungsten compound can be increased. Note that either the step of adjusting the pH of the solution or the step of adding an adsorbent into the solution containing the metal compound may be performed first.
 吸着剤が第1アミノ酸の塩である場合、吸着反応は1時間以内であるほうが、吸着剤の回収効率が高い。すなわち、吸着反応が1時間を越えると、吸着していた金属化合物の一部が遊離アミノ酸から脱離することがある。 When the adsorbent is a salt of the first amino acid, the recovery efficiency of the adsorbent is higher if the adsorption reaction takes place within 1 hour. That is, if the adsorption reaction exceeds 1 hour, part of the adsorbed metal compound may be desorbed from the free amino acid.
 リジンへの吸着工程につづいて、タングステン化合物イオンが吸着した吸着剤を、濾過機等の手段により濾過した。 Following the adsorption step onto lysine, the adsorbent on which the tungsten compound ions were adsorbed was filtered using a means such as a filter.
 次に、濾過された吸着剤を、必要に応じて酸洗浄と純水洗浄の順に吸着剤を洗浄した。なお、濾過された吸着剤を、酸洗浄の代わりに40(℃)以上の温水で洗浄してもよい。そして洗浄濾液の電気伝導度が500(μS/m)以下になるまで純水洗浄をするなどして不純物を除去した。これによって、タングステン化合物を高品位化し、回収することができる。 Next, the filtered adsorbent was washed in the order of acid washing and pure water washing as necessary. Note that the filtered adsorbent may be washed with warm water of 40 (° C.) or higher instead of acid washing. Then, impurities were removed by washing with pure water until the electrical conductivity of the washing filtrate became 500 (μS/m) or less. This makes it possible to improve the quality of the tungsten compound and recover it.
 次に、洗浄された吸着剤を、圧搾機等の手段により圧搾した。そして、圧搾された吸着剤に、チタンアルコキシド化合物粉末、ジルコニウムアルコキシド化合物粉末、シュウ酸ニオブ粉末、モリブデン酸アンモニウム粉末およびシュウ酸タンタル粉末のうち少なくとも1種を必要量添加した。 Next, the washed adsorbent was compressed by means such as a compressor. Then, a required amount of at least one of titanium alkoxide compound powder, zirconium alkoxide compound powder, niobium oxalate powder, ammonium molybdate powder, and tantalum oxalate powder was added to the compressed adsorbent.
 チタンアルコキシド化合物粉末の添加量は、たとえば、タングステンを含む吸着剤の乾燥重量に対して、0.3(wt%)~33(wt%)が望ましく、ジルコニウムアルコキシド化合物粉末の添加量は、たとえば、タングステンを含む吸着剤の乾燥重量に対して、0.1(wt%)~20.0(wt%)が望ましい。 The amount of the titanium alkoxide compound powder added is preferably 0.3 (wt%) to 33 (wt%) based on the dry weight of the adsorbent containing tungsten, and the amount of the zirconium alkoxide compound powder added is, for example, It is preferably 0.1 (wt%) to 20.0 (wt%) based on the dry weight of the adsorbent containing tungsten.
 シュウ酸ニオブ粉末の添加量は、たとえば、タングステンを含む吸着剤の乾燥重量に対して、0.1(wt%)~20.0(wt%)が望ましく、モリブデン酸アンモニウム粉末粉末の添加量は、たとえば、タングステンを含む吸着剤の乾燥重量に対して、0.1(wt%)~20.0(wt%)が望ましい。シュウ酸タンタル粉末の添加量は、たとえば、タングステンを含む吸着剤の乾燥重量に対して、0.1(wt%)~12.0(wt%)が望ましい。 For example, the amount of niobium oxalate powder added is preferably 0.1 (wt%) to 20.0 (wt%) based on the dry weight of the adsorbent containing tungsten, and the amount of ammonium molybdate powder added is , for example, preferably 0.1 (wt%) to 20.0 (wt%) based on the dry weight of the adsorbent containing tungsten. The amount of tantalum oxalate powder added is preferably, for example, 0.1 (wt%) to 12.0 (wt%) based on the dry weight of the tungsten-containing adsorbent.
 また、圧搾後における吸着剤の吸水率は40(%)以上が望ましい。このように、吸着剤に多く水分を含ませることによって、圧搾後の吸着剤に添加された各粉末を、吸着剤に良好に溶解させることができる。 Furthermore, the water absorption rate of the adsorbent after pressing is preferably 40 (%) or more. In this way, by including a large amount of water in the adsorbent, each powder added to the compressed adsorbent can be well dissolved in the adsorbent.
 次に、タングステン化合物イオンが吸着した吸着剤を乾燥させ、さらに、たとえば大気中で300(℃)以上の温度で焼却してタングステン化合物を酸化するとともに、吸着剤や添加剤を含む有機物成分を除去した。これにより、酸化タングステン粉末(WO)が得られた。 Next, the adsorbent on which the tungsten compound ions have been adsorbed is dried and further incinerated at a temperature of 300 (℃) or higher in the air to oxidize the tungsten compound and remove organic components including the adsorbent and additives. did. As a result, tungsten oxide powder (WO 3 ) was obtained.
 次に、得られた酸化タングステン粉末を、還元雰囲気(たとえば、水素ガス雰囲気)にて800(℃)~950(℃)の温度で熱処理し、酸化タングステン化合物を還元した。これにより、金属タングステン(W)が得られた。最後に、得られた金属タングステンを炭化することで、実施形態に係る炭化タングステン粉末(WC)が得られた。 Next, the obtained tungsten oxide powder was heat treated at a temperature of 800 (°C) to 950 (°C) in a reducing atmosphere (for example, hydrogen gas atmosphere) to reduce the tungsten oxide compound. As a result, metallic tungsten (W) was obtained. Finally, the obtained tungsten metal was carbonized to obtain tungsten carbide powder (WC) according to the embodiment.
 図3は、参考例における炭化タングステン粉末の生成工程の手順の一例を示すフローチャートである。図3に示すように、参考例における炭化タングステン粉末の生成工程では、まず、超硬合金のスクラップを準備した。 FIG. 3 is a flowchart illustrating an example of a procedure for producing tungsten carbide powder in a reference example. As shown in FIG. 3, in the step of producing tungsten carbide powder in the reference example, scraps of cemented carbide were first prepared.
 次に、準備された超硬合金スクラップを酸化焙焼し、酸化タングステン(WO)およびタングステン酸コバルト(CoWO)の混合体を得た。そして、得られた混合体に対して水酸化ナトリウム(NaOH)水溶液で抽出することで、タングステン酸ナトリウム(Na2WO)を含有するタングステン化合物溶液を得た。ここまでの各工程は上述の実施形態と同様であるため、詳細な説明は省略する。 Next, the prepared cemented carbide scrap was oxidized and roasted to obtain a mixture of tungsten oxide (WO 3 ) and cobalt tungstate (CoWO 4 ). Then, the obtained mixture was extracted with an aqueous sodium hydroxide (NaOH) solution to obtain a tungsten compound solution containing sodium tungstate ( Na2WO4 ). Each step up to this point is the same as in the above-described embodiment, so detailed explanation will be omitted.
 次に、得られたタングステン化合物溶液をイオン交換樹脂などでイオン交換し、タングステン酸アンモニウム((NHWO)の水溶液を生成した。そして、得られた水溶液を加熱濃縮することで、タングステン化合物をパラタングステン酸アンモニウム(APT)として晶析させた。 Next, the obtained tungsten compound solution was ion-exchanged with an ion exchange resin or the like to produce an aqueous solution of ammonium tungstate ((NH 4 ) 2 WO 4 ). The resulting aqueous solution was then heated and concentrated to crystallize a tungsten compound as ammonium paratungstate (APT).
 次に、得られたAPTを熱分解することでAPTを酸化した。これにより、酸化タングステン粉末(WO)が得られた。 Next, the obtained APT was oxidized by thermally decomposing it. As a result, tungsten oxide powder (WO 3 ) was obtained.
 次に、得られた酸化タングステン粉末を、還元雰囲気で熱処理し、酸化タングステン化合物を還元した。これにより、金属タングステン(W)が得られた。最後に、得られた金属タングステンを炭化することで、参考例の炭化タングステン粉末(WC)が得られた。 Next, the obtained tungsten oxide powder was heat treated in a reducing atmosphere to reduce the tungsten oxide compound. As a result, metallic tungsten (W) was obtained. Finally, the obtained tungsten metal was carbonized to obtain a tungsten carbide powder (WC) as a reference example.
 次に、得られた実施形態および参考例の炭化タングステン粉末に対して、TOF-SIMS(Time-Of-Flight Secondary Ion Mass Spectrometry)による分析を行った。具体的には、TOF-SIMSによって、実施形態および参考例の炭化タングステン粉末におけるタングステンおよび特定金属元素の深さ方向分布を測定した。 Next, the obtained tungsten carbide powders of the embodiment and reference example were analyzed by TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry). Specifically, the depth distribution of tungsten and specific metal elements in the tungsten carbide powders of the embodiment and the reference example was measured by TOF-SIMS.
 TOF-SIMSの測定条件は以下の通りである。実施形態および参考例の炭化タングステン粉末を固定し、粉末表面を100(μm)角にて測定した。なお測定装置はION-TOF社のTOF.SIMS5を用い、1次イオン源にBi(ビスマス)を選定し、深さ方向の元素分析について測定した。 The TOF-SIMS measurement conditions are as follows. The tungsten carbide powders of the embodiment and the reference example were fixed, and the powder surface was measured at a 100 (μm) square. The measuring device is TOF. manufactured by ION-TOF. Using SIMS5, Bi (bismuth) was selected as the primary ion source, and elemental analysis in the depth direction was measured.
 また、実施形態に係る炭化タングステン粉末である試料1、2と、参考例における炭化タングステン粉末である試料3、4についてそれぞれ深さ方向の元素分析を行った。そして、各試料において、特定金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)の深さ方向分布を求めた。 In addition, elemental analysis in the depth direction was conducted for Samples 1 and 2, which are tungsten carbide powders according to the embodiment, and Samples 3 and 4, which are tungsten carbide powders in the reference example. Then, for each sample, the depth distribution of the intensity ratio (SUM/W) between the total value (SUM) of the secondary ion intensity of the specific metal element and the secondary ion intensity (W) of tungsten was determined.
 図4は、炭化タングステン粉末における特定金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)の深さ方向分布を示す図である。 Figure 4 is a diagram showing the depth distribution of the intensity ratio (SUM/W) between the total value (SUM) of the secondary ion intensity of specific metal elements and the secondary ion intensity (W) of tungsten in tungsten carbide powder. be.
 図4に示すように、実施形態に係る炭化タングステン粉末(試料1、2)では、炭化タングステン結晶粒1の最表面1a(図1参照)から深さ方向で5(nm)までのすべての領域において、強度比(SUM/W)が0.03以上であることがわかる。 As shown in FIG. 4, in the tungsten carbide powders (samples 1 and 2) according to the embodiment, all regions from the outermost surface 1a (see FIG. 1) of tungsten carbide crystal grains 1 to 5 (nm) in the depth direction It can be seen that the intensity ratio (SUM/W) is 0.03 or more.
 一方で、参考例における炭化タングステン粉末(試料3、4)では、炭化タングステン結晶粒1の最表面1a(図1参照)から深さ方向で5(nm)までの少なくとも一部の領域において、強度比(SUM/W)が0.03以上でないことがわかる。 On the other hand, in the tungsten carbide powders in the reference examples (samples 3 and 4), the strength is low in at least a part of the region from the outermost surface 1a (see FIG. 1) of the tungsten carbide crystal grains 1 to 5 (nm) in the depth direction. It can be seen that the ratio (SUM/W) is not 0.03 or more.
 このように、実施形態では、炭化タングステン結晶粒1の最表面1aおよびその近傍における特定金属元素の濃度を高くすることで、上述したように、超硬合金を効率よく生成することができる。また、実施形態では、炭化タングステン結晶粒1の最表面1aおよびその近傍における特定金属元素の濃度を高くすることで、変形量が少ない超硬合金を得ることができる。 As described above, in the embodiment, by increasing the concentration of the specific metal element on the outermost surface 1a of the tungsten carbide crystal grains 1 and in the vicinity thereof, the cemented carbide can be efficiently produced as described above. Further, in the embodiment, by increasing the concentration of the specific metal element at the outermost surface 1a of the tungsten carbide crystal grains 1 and its vicinity, a cemented carbide with a small amount of deformation can be obtained.
 また、図4に示すように、実施形態に係る炭化タングステン粉末(試料1、2)では、炭化タングステン結晶粒1の最表面1a(図1参照)から深さ方向で5(nm)までのすべての領域において、強度比(SUM/W)が0.1以上であることがわかる。 Moreover, as shown in FIG. 4, in the tungsten carbide powders (samples 1 and 2) according to the embodiment, all of the tungsten carbide crystal grains 1 from the outermost surface 1a (see FIG. 1) to 5 (nm) in the depth direction It can be seen that the intensity ratio (SUM/W) is 0.1 or more in the region.
 一方で、参考例における炭化タングステン粉末(試料3、4)では、炭化タングステン結晶粒1の最表面1a(図1参照)から深さ方向で5(nm)までの少なくとも一部の領域において、強度比(SUM/W)が0.1以上でないことがわかる。 On the other hand, in the tungsten carbide powders in the reference examples (samples 3 and 4), the strength is low in at least a part of the region from the outermost surface 1a (see FIG. 1) of the tungsten carbide crystal grains 1 to 5 (nm) in the depth direction. It can be seen that the ratio (SUM/W) is not 0.1 or more.
 このように、実施形態では、炭化タングステン結晶粒1の最表面1aおよびその近傍における特定金属元素の濃度をさらに高くすることで、上述したように、超硬合金をさらに効率よく生成することができる。また、実施形態では、炭化タングステン結晶粒1の最表面1aおよびその近傍における特定金属元素の濃度をさらに高くすることで、より変形量が少ない超硬合金を得ることができる。 As described above, in the embodiment, by further increasing the concentration of the specific metal element at the outermost surface 1a of the tungsten carbide crystal grains 1 and its vicinity, the cemented carbide can be produced more efficiently as described above. . Furthermore, in the embodiment, by further increasing the concentration of the specific metal element at the outermost surface 1a of the tungsten carbide crystal grains 1 and its vicinity, a cemented carbide with a smaller amount of deformation can be obtained.
 また、得られた実施形態に係る炭化タングステン粉末の結合体2において、炭化タングステン結晶粒1の粒内における各種元素の原子比率と、結晶粒界1bにおける各種元素の原子比率とをSTEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)によって測定した。 In addition, in the obtained tungsten carbide powder combined body 2 according to the embodiment, the atomic ratios of various elements within the tungsten carbide crystal grains 1 and the atomic ratios of various elements at the grain boundaries 1b were measured using STEM (Scanning Transmission). Measured using an Electron Microscope (scanning transmission electron microscope).
 具体的には、STEMによって、炭化タングステン結晶粒1の粒内を2箇所測定するとともに、炭化タングステン結晶粒1の結晶粒界1bを3箇所測定し、粒内および結晶粒界1bにおける各種元素の原子比率の平均値を求めた。 Specifically, by using STEM, the inside of the tungsten carbide crystal grain 1 was measured at two locations, and the grain boundary 1b of the tungsten carbide crystal grain 1 was measured at three locations, and various elements within the grain and at the grain boundary 1b were measured. The average value of the atomic ratio was determined.
 STEMの測定条件は以下の通りである。まず、試料の前処理として、FIB法(μ-サンプリング法)による試料の薄片化を行った。次に、薄片化した試料を走査透過電子顕微鏡(日本電子(株)製JEM-ARM200F)でSTEM観察を行った。観察条件は、加速電圧が200(kV)、倍率精度が±10(%)であった。 The STEM measurement conditions are as follows. First, as sample pretreatment, the sample was sliced into thin sections using the FIB method (μ-sampling method). Next, the thin sectioned sample was subjected to STEM observation using a scanning transmission electron microscope (JEM-ARM200F manufactured by JEOL Ltd.). The observation conditions were an accelerating voltage of 200 (kV) and a magnification accuracy of ±10 (%).
 そして、STEM観察の際に、STEM顕微鏡に設けられる元素分析装置(日本電子(株)製JED-2300T)を用いてエネルギー分散型X線分光法(EDX)による元素分析(点分析)を行った。 Then, during STEM observation, elemental analysis (point analysis) was performed by energy dispersive X-ray spectroscopy (EDX) using an elemental analyzer (JED-2300T manufactured by JEOL Ltd.) installed in the STEM microscope. .
 分析条件は、加速電圧が200(kV)、ビーム径が約0.1(nmφ)、X線検出器がSiドリフト検出器、エネルギー分解能が約140(eV)、X線取出角が21.9(°)、立体角が0.98(sr)、取込時間が60(秒)であった。STEMの測定結果を表1に示す。 The analysis conditions are: acceleration voltage of 200 (kV), beam diameter of approximately 0.1 (nmφ), X-ray detector is a Si drift detector, energy resolution of approximately 140 (eV), and X-ray extraction angle of 21.9. (°), the solid angle was 0.98 (sr), and the acquisition time was 60 (seconds). Table 1 shows the STEM measurement results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施形態に係る炭化タングステン粉末では、結合体2内における複数の炭化タングステン結晶粒1の結晶粒界1b(表1では「粒界」と記載)において、特定金属元素の原子比率の合計値が1(at%)以下であることがわかる。 As shown in Table 1, in the tungsten carbide powder according to the embodiment, the specific metal element is It can be seen that the total value of the atomic ratios is 1 (at%) or less.
 なお、表1では、特定金属元素としてモリブデンのみが記載されているが、これはモリブデン以外の特定金属元素の原子比率が0.1(at%)未満であったからである。 Note that in Table 1, only molybdenum is listed as a specific metal element, but this is because the atomic ratio of specific metal elements other than molybdenum was less than 0.1 (at%).
 このように、結晶粒界1bにおいて特定金属元素の偏在が低減されることで、上述のように、超硬合金の製造工程において混合粉末を1400(℃)~1600(℃)まで昇温して2段焼成を行う場合に、粗粒と微粒との混在組織を形成しやすくすることができる。したがって、実施形態によれば、強靭な超硬合金を生成することができる。 In this way, by reducing the uneven distribution of specific metal elements at the grain boundaries 1b, as mentioned above, it is possible to heat the mixed powder to 1400 (°C) to 1600 (°C) in the manufacturing process of cemented carbide. When performing two-stage firing, it is possible to easily form a mixed structure of coarse grains and fine grains. Therefore, according to embodiments, a tough cemented carbide can be produced.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、超硬合金のスクラップから炭化タングステンを生成(リサイクル)する場合について示しているが、本開示はかかる例に限られず、鉱石から炭化タングステンを生成する際などにも適用することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit thereof. For example, in the above embodiment, a case is shown in which tungsten carbide is generated (recycled) from cemented carbide scrap, but the present disclosure is not limited to such an example, and can also be applied to the generation of tungsten carbide from ore. can do.
 さらなる効果や他の態様は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and other embodiments can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments shown and described above. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
 1   炭化タングステン結晶粒
 1a  最表面
 1b  結晶粒界
 2   結合体
1 Tungsten carbide crystal grain 1a Outermost surface 1b Grain boundary 2 Combined body

Claims (3)

  1.  炭化タングステン結晶粒を主成分とする粉体を含み、
     前記炭化タングステン結晶粒の最表面から深さ方向で5(nm)までの領域において、飛行時間型二次イオン質量分析(TOF-SIMS)により分析した場合に、タングステン、クロムおよびバナジウムを除く周期律表4a、5a、6a族の金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)が0.03以上である
     炭化タングステン粉末。
    Contains powder whose main component is tungsten carbide crystal grains,
    When analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in a region up to 5 (nm) in the depth direction from the outermost surface of the tungsten carbide crystal grains, the periodic law excluding tungsten, chromium, and vanadium Tungsten carbide powder whose intensity ratio (SUM/W) between the total secondary ion strength (SUM) of metal elements in Groups 4a, 5a, and 6a in Tables 4a, 5a, and 6a and the secondary ion strength (W) of tungsten is 0.03 or more. .
  2.  タングステン、クロムおよびバナジウムを除く周期律表4a、5a、6a族の金属元素の二次イオン強度の合計値(SUM)とタングステンの二次イオン強度(W)との強度比(SUM/W)が0.1以上である
     請求項1に記載の炭化タングステン粉末。
    The intensity ratio (SUM/W) between the sum of the secondary ion strengths (SUM) of metal elements in groups 4a, 5a, and 6a of the periodic table excluding tungsten, chromium, and vanadium and the secondary ion strength (W) of tungsten is The tungsten carbide powder according to claim 1, wherein the tungsten carbide powder is 0.1 or more.
  3.  前記粉体は、複数の前記炭化タングステン結晶粒を有する結合体を含み、
     前記結合体内における複数の前記炭化タングステン結晶粒の結晶粒界において、タングステン、クロムおよびバナジウムを除く周期律表4a、5a、6a族の金属元素の原子比率の合計値が1(at%)以下である
     請求項1または2に記載の炭化タングステン粉末。
    The powder includes a combined body having a plurality of the tungsten carbide crystal grains,
    In the grain boundaries of the plurality of tungsten carbide crystal grains in the combined body, the total atomic ratio of metal elements of Groups 4a, 5a, and 6a of the periodic table excluding tungsten, chromium, and vanadium is 1 (at%) or less. The tungsten carbide powder according to claim 1 or 2.
PCT/JP2023/023813 2022-06-30 2023-06-27 Tungsten carbide powder WO2024005017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022106390 2022-06-30
JP2022-106390 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005017A1 true WO2024005017A1 (en) 2024-01-04

Family

ID=89383085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023813 WO2024005017A1 (en) 2022-06-30 2023-06-27 Tungsten carbide powder

Country Status (1)

Country Link
WO (1) WO2024005017A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047506A (en) * 2000-06-19 2002-02-15 Korea Inst Of Mach & Materials Method for producing tungsten carbide/cobalt cemented carbide using particle growth inhibitor
JP2008106369A (en) * 1996-10-02 2008-05-08 Umicore MULTI-STEP PROCESS TO INCORPORATE GRAIN GROWTH INHIBITOR IN WC-Co COMPOSITE
US20140072469A1 (en) * 2012-09-10 2014-03-13 Kennametal Inc. Inert high hardness material for tool lens production
WO2019123764A1 (en) * 2017-12-18 2019-06-27 住友電気工業株式会社 Tungsten carbide powder, tungsten carbide-cobalt metal composite powder, and cemented carbide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106369A (en) * 1996-10-02 2008-05-08 Umicore MULTI-STEP PROCESS TO INCORPORATE GRAIN GROWTH INHIBITOR IN WC-Co COMPOSITE
JP2002047506A (en) * 2000-06-19 2002-02-15 Korea Inst Of Mach & Materials Method for producing tungsten carbide/cobalt cemented carbide using particle growth inhibitor
US20140072469A1 (en) * 2012-09-10 2014-03-13 Kennametal Inc. Inert high hardness material for tool lens production
WO2019123764A1 (en) * 2017-12-18 2019-06-27 住友電気工業株式会社 Tungsten carbide powder, tungsten carbide-cobalt metal composite powder, and cemented carbide

Similar Documents

Publication Publication Date Title
RU2402625C2 (en) Alloyed tungsten produced by chemical sedimentation from gas phase
US20140017114A1 (en) Tungsten cathode material
DE10043792A1 (en) Ultra-coarse, single-crystalline tungsten carbide and process for its manufacture; and carbide made from it
JP6744520B1 (en) Cubic boron nitride sintered body and cutting tool including the same
WO2020059755A1 (en) Cubic boron nitride sintered body, cutting tool containing this, and production method of cubic boron nitride sintered body
US11208358B2 (en) Cubic boron nitride sintered body and cutting tool including the same
CN1289392C (en) Fine tungsten carbide powder and its production process
WO2024005017A1 (en) Tungsten carbide powder
WO2024005100A1 (en) Tungsten carbide powder
WO2024005036A1 (en) Tungsten carbide powder
US11939221B2 (en) Method for the manufacture of reduced graphene oxide from electrode graphite scrap
DD263933A5 (en) METHOD FOR PRODUCING A SELF-SUPPORTING CERAMIC KOERPER
Nemoshkalenko et al. X-ray band spectra and electronic structure of carbides and nitrides of zirconium, niobium and molybdenium
WO2023145520A1 (en) Tungsten oxide powder
WO2010024160A1 (en) Transition metal-included tungsten carbide, tungsten carbide diffused cemented carbide, and process for producing same
CN112218825A (en) Method for producing graphene oxide from crystalline graphite
US9238854B2 (en) Method of producing carbide and carbon nitride powders containing binder, and cermet obtained from the same
WO2014104178A1 (en) Chemical conversion body for niobium capacitor positive electrode, and production method therefor
WO2023145521A1 (en) Tungsten oxide powder
EP4242334A1 (en) Cubic boron nitride sintered body
WO2022202738A1 (en) Noble metal adsorbent, noble metal recovery method, and noble metal adsorbent recyling method
JP5750201B1 (en) Tungsten powder, capacitor anode, and electrolytic capacitor
EP0889006A1 (en) Process for the recuparation of doped tungsten
Mullendore Tungsten: Its Manufacture, Properties, and Application
WO2003107388A2 (en) Electrode for a high-intensity discharge lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831457

Country of ref document: EP

Kind code of ref document: A1