WO2023144999A1 - Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit - Google Patents

Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit Download PDF

Info

Publication number
WO2023144999A1
WO2023144999A1 PCT/JP2022/003313 JP2022003313W WO2023144999A1 WO 2023144999 A1 WO2023144999 A1 WO 2023144999A1 JP 2022003313 W JP2022003313 W JP 2022003313W WO 2023144999 A1 WO2023144999 A1 WO 2023144999A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
majorana
width
wte
topological insulator
Prior art date
Application number
PCT/JP2022/003313
Other languages
French (fr)
Japanese (ja)
Inventor
大伴真名歩
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2022/003313 priority Critical patent/WO2023144999A1/en
Publication of WO2023144999A1 publication Critical patent/WO2023144999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions

Definitions

  • the present invention relates to a topological insulator, a qubit, a method for manufacturing a topological insulator, and a method for manufacturing a qubit.
  • Topological superconductors are known as substances that express Majorana particles. However, at present, no good candidates for topological superconductors have been found, so research is being conducted to bring s-wave superconductors into contact with topological insulators and induce superconductivity by the proximity effect. As a topological insulator, it is desired that a gapless state appears on the surface and edges, while the inside has an insulating or semiconducting property so that a conduction mode is difficult to form.
  • One aspect aims to achieve both the emergence of a gapless state and the suppression of the generation of internal conduction modes.
  • a first region including a first material whose electrical properties change according to width and extending in a first direction; and an oxide of the first material provided on a surface of the first region. wherein the first region is a topological insulator having a width such that the electrical properties of the first region are semiconductor properties.
  • FIG. 1(a) is a plan view showing the appearance position of the gapless state of a single tungsten ditelluride (WTe 2 ) layer
  • FIG. 1(b) shows the appearance position of the gapless state of a multilayer WTe 2 layer
  • Fig. 2(a) is a plan view showing the positions of Majorana grains expressed in the single WTe bilayer
  • Fig. 2 (b) is a perspective view showing the positions of Majorana grains expressed in the multilayer WTe bilayer.
  • FIG. 3(a) is a perspective view showing a bulk single crystal WTe 2 layer
  • FIG. 3(b) is a perspective view showing a nanowire-like WTe 2 layer.
  • FIG. 4 shows simulation results of the band structure of bulk single crystal WTe bilayer.
  • FIG. 5 shows the widthwise crystal structure of the nanowire-like WTe 2 layer.
  • 6(a) and 6(b) are diagrams (part 1) showing simulation results of the band structure of the nanowire-like WTe bilayer .
  • 7(a) and 7(b) are diagrams (part 2 ) showing simulation results of the band structure of the nanowire-like WTe bilayer.
  • 8(a) and 8(b) are diagrams (part 3) showing simulation results of the band structure of the nanowire-like WTe bilayer .
  • 9(a) and 9(b) are diagrams (part 4) showing simulation results of the band structure of the nanowire-like WTe bilayer .
  • FIG. 1 shows simulation results of the band structure of the nanowire-like WTe bilayer .
  • 7(a) and 7(b) are diagrams (part 2 ) showing simulation results of the band structure of the nanowire-like WTe
  • FIG. 10 is a diagram showing the relationship between the number of unit cells in the width direction and the bandgap obtained from the simulation results of FIGS. 6(a) to 9(b).
  • FIG. 11(a) is a transparent perspective view showing a topological insulator according to Example 1
  • FIG. 11(b) is a cross-sectional view along line AA in FIG. 11(a)
  • FIG. It is a BB sectional view of a).
  • 12(a) to 12(c) are perspective views showing a method for manufacturing a topological insulator according to Example 1.
  • FIG. FIG. 13 is a perspective view showing a quantum bit according to Example 2.
  • FIGS. 14A to 14C are perspective views (part 1) showing the method of manufacturing the quantum bit according to the second embodiment.
  • 15A and 15B are perspective views (part 2) showing the method of manufacturing the quantum bit according to the second embodiment.
  • 16A to 16C are perspective views showing another method of manufacturing a quantum bit according to Example 2.
  • FIG. 17 is a perspective view of a quantum bit according to a modification of the second embodiment;
  • FIG. 1(a) is a plan view showing the appearance position of the gapless state 20 of the single WTe2 layer 500
  • FIG. 1(b) is a perspective view showing the appearance position of the gapless state 20 of the multilayer WTe2 layer 600. is.
  • the length of the WTe two layers in the lateral direction of the paper surface is assumed to be infinite. As shown in FIG.
  • a single WTe2 layer 500 is called a two-dimensional primary topological insulator, and a one-dimensional gapless state 20 appears at the edge.
  • the multi-layered WTe2 layer 600 is what is called a three-dimensional second-order topological insulator, and a one-dimensional gapless state 20 appears at the ridgeline.
  • FIG. 2(a) is a plan view showing the positions where the Majorana particles 22 appear in the single WTe 2 layer 500
  • FIG. 2(b) shows the positions where the Majorana particles 22 appear in the multilayer WTe 2 layer 600. It is a perspective view showing the.
  • FIG. 2( a ) when the s-wave superconductor 30 is brought into contact with the single WTe2 layer 500 , the s-wave superconductor 30 in the gapless state 20 appears at the edge of the WTe2 layer 500 .
  • Majorana grains 22 appear in the vicinity.
  • FIG. 1 is a plan view showing the positions where the Majorana particles 22 appear in the single WTe 2 layer 500
  • FIG. 2(b) shows the positions where the Majorana particles 22 appear in the multilayer WTe 2 layer 600. It is a perspective view showing the.
  • FIG. 2( a ) when the s-wave superconductor 30 is brought into contact with the single WTe2 layer 500 , the
  • a single WTe 2 layer is easily totally oxidized by natural oxidation. In this case, the gapless state 20 will not appear.
  • it is necessary to fabricate the device in an inert gas atmosphere or in a vacuum, and to protect it with a film that suppresses oxygen permeation, which increases the difficulty of the process and makes it difficult to handle. .
  • Multilayered WTe 2 layers are therefore considered below.
  • FIG. 3(a) is a perspective view of a bulk single crystal WTe 2 layer 700
  • FIG. 3(b) is a perspective view of a nanowire-like WTe 2 layer 800
  • FIG. 3A the bulk single crystal WTe 2 layer 700 is not particularly limited in size, but for example, the width W and length L are about several tens of ⁇ m, and the thickness T is about several tens of nm.
  • the nanowire-like WTe 2 layer 800 has a width W of several nanometers.
  • the length L and thickness T are not particularly limited, for example, the length L is several tens of ⁇ m and the thickness T is several tens of nm.
  • the band structures of the bulk single-crystal WTe2 layer 700 and the nanowire-like WTe2 layer 800 were calculated by simulation.
  • the simulation was performed by the density functional theory.
  • the exchange-correlation potential is treated under the generalized gradient approximation using the PBE (Perdew-Burke-Ernzerhof) exchange energy.
  • Electron-ion interactions are described by norm-conserving pseudopotentials with partial core correction.
  • a pseudo-atomic orbital centered on an atomic site is used as the basis function, and a semi-empirical DFT-D2 method is used for the van der Waals interaction.
  • the structure optimization is performed under three-dimensional periodic boundary conditions, and the convergence condition is that the force acting on each atom is 0.01 eV/ ⁇ or less.
  • FIG. 4 shows simulation results of the band structure of bulk single crystal WTe 2 layer 700 .
  • G, Y, S, X, and Z on the horizontal axis of FIG. 4 correspond to the G point, Y point, S point, X point, and Z point of the Brillouin zone, respectively.
  • the vertical axis in FIG. 4 is the bandgap.
  • the direction of the width W of the WTe 2 layer 700 is taken as the a-axis direction of the crystal, the direction of the length L as the b-axis direction, and the direction of the thickness T as the c-axis direction.
  • the bulk single crystal WTe2 layer 700 can be confirmed to have a semi-metallic electronic state.
  • conduction modes occur inside the bulk in addition to the gapless states 20 appearing at the ridges. In this case, if the Andreev coupling state occurs via the conduction mode inside the bulk, it becomes difficult to separate it from the development of the Majorana grain 22 .
  • FIG. 5 shows the crystal structure along the width W of the nanowire-like WTe 2 layer 800 .
  • the unit cells 40 in the direction of the width W of the WTe2 layer 800 are illustrated by dotted lines, and the number of the unit cells 40 is nine.
  • the direction of the width W of the nanowire-like WTe 2 layer 800 is taken as the a-axis direction of the crystal, the direction of the length L as the b-axis direction, and the direction of the thickness T as the c-axis direction.
  • the crystal lattice constant in the a-axis direction is about 0.348 nm
  • the crystal lattice constant in the b-axis direction is about 0.625 nm
  • the crystal lattice constant in the c-axis direction is about 1.405 nm.
  • the direction of the smallest lattice constant in the WTe2 crystal is defined as the a-axis direction, the direction with the second smallest lattice constant as the b-axis direction, and the direction with the largest lattice constant as the c-axis direction.
  • FIGS. 6(a) to 9(b) show simulation results of the band structure of the nanowire-like WTe2 layer 800.
  • FIG. G, Y, S, X, and Z on the horizontal axes of FIGS. 6A to 9B correspond to G point, Y point, S point, X point, and Z point of the Brillouin zone, respectively.
  • the vertical axis in FIGS. 6A to 9B is the bandgap.
  • the width dependence of the band structure was investigated by changing the number N of the unit cells 40 in the direction of the width W (a-axis direction) between 4 and 13. .
  • the b-axis and c-axis directions were modeled assuming periodic boundary conditions, and the length L and thickness T of the WTe2 layer 800 were assumed to be infinite.
  • the number N of unit cells 40 in the direction of width W (a-axis direction) is 4, 5, 6, 7, 9, it can be confirmed that the nanowire-like WTe2 layer 800 has semiconducting properties.
  • FIGS. 8(a), 9(a), and 9(b) when the number N of the unit cells 40 in the direction of the width W (a-axis direction) is 8, 10, or 13, the nanowire-like It can be seen that the WTe2 layer 800 has semi-metallic properties.
  • the bandgap was 34 meV in FIG. 6(a), 10 meV in FIG. 6(b), 14 meV in FIG. 7(a), 17 meV in FIG. 7(b), and 8 meV in FIG. 8(b).
  • FIG. 10 is a diagram showing the relationship between the number N of unit cells 40 in the width direction and the bandgap obtained from the simulation results of FIGS. 6(a) to 9(b).
  • the bandgap tends to be small, and when the number N is 8, the bandgap is closed.
  • the bandgap is closed when the number N is 10. From these facts, it can be said that by setting the number N of the unit cells 40 in the a-axis direction to 9 or less, the bandgap can be widened and the properties of a semiconductor can be obtained. It can be said that when the number N of the unit cells 40 in the a-axis direction is 10 or more, the bandgap is closed and the material has semimetal properties.
  • FIG. 11(a) is a see-through perspective view showing the topological insulator 100 according to Example 1
  • FIG. 11(b) is a cross-sectional view along line AA of FIG. 11(a)
  • FIG. 11(c) is a cross-sectional view of FIG. It is a BB sectional view of (a).
  • the topological insulator 100 includes a first region 10 that is a nanowire-shaped WTe 2 layer and a second region 10 that is an oxide layer formed on the surface of the first region 10 .
  • the first region 10 extends in a first direction that is the direction of length L, and a second direction that intersects (for example, is perpendicular to) the first direction is the direction of width W.
  • the direction of the width W of the first region 10 is the a-axis direction of the WTe2 crystal, and the direction of the length L is the b-axis direction.
  • the second region 12 is formed by naturally oxidizing the surface of the first region 10 .
  • the second region 12 is made of tungsten oxide (WO 3 ) and/or tellurium oxide (TeO 2 ), for example. By using multiple layers of WTe 2 layers, the native oxidation remains only on the surface and the interior retains the WTe 2 layers.
  • the topological insulator 100 is obtained in which the inside becomes the first region 10 containing WTe 2 and the second region 12 containing the oxide of WTe 2 is formed on the surface of the first region 10 .
  • the second region 12 is not limited to being formed on all of the top surface, bottom surface, and side surfaces of the first region 10, and may not be formed on any of the surfaces.
  • the width W of the first region 10 is preferably such that the number of unit cells 40 in the a-axis direction is 9 or less. Since the length is 3.1 nm when the number of unit cells 40 in the a-axis direction is nine, the width W of the first region 10 is preferably 3.1 nm or less. By having such a width W, the first region 10 exhibits properties of a semiconductor.
  • the thickness of the second region 12 is approximately 2 to 3 nm on all of the top surface, bottom surface and side surfaces of the first region 10 .
  • the width of the topological insulator 100 is about 7 to 9 nm or less.
  • the thickness T of the first region 10 may be equal to or greater than the thickness of one layer of WTe 2 , and may be equal to or greater than 7.07 ⁇ . Therefore, the thickness of the topological insulator 100 is about 4.1 to 6.1 nm or more when the second region 12 is formed on both the upper surface and the lower surface of the first region 10, and is formed only on one side. If there is, it will be about 2.1 to 3.1 nm or more.
  • the upper limit of the thickness T of the first region 10 may be within a range in which manufacturing is possible. For example, when a film containing hydrogen silsesquioxane as a main component is used as a resist film for patterning, as in the manufacturing method described later, the aspect ratio of patterning is about 50:1. In this case, the upper limit of the thickness T of the first region 10 is approximately 500 nm.
  • the length L of the first region 10 is not particularly limited.
  • FIG. 12(a) are perspective views showing a method of manufacturing the topological insulator 100 according to the first embodiment.
  • the WTe 2 single crystal is thinned by repeating tape peeling under an inert atmosphere, and is temporarily attached to a holding substrate.
  • a WTe 2 film 86 having desired crystals is picked up from the WTe 2 stuck on the holding substrate by the glass substrate 82 using, for example, a polycarbonate film 84 as an adhesive layer.
  • a WTe 2 film 86 picked up using a glass substrate 82 is adhered onto an insulating substrate 80 .
  • the WTe 2 crystal is attached so that the crystal orientation matches the desired direction by utilizing the property that the longitudinal direction of the WTe 2 crystal tends to be parallel to the a-axis.
  • the formation of the WTe 2 film 86 on the substrate 80 may be performed using a molecular beam epitaxy method, a pulsed laser deposition method, or the like.
  • the WTe2 film 86 is patterned to form a pattern 87 by photolithography using electron beam exposure and etching using reactive ion etching.
  • the pattern 87 extends in the first direction and the second direction is the width direction.
  • a photolithography method for example, a resist film containing hydrogen silsesquioxane as a main component is used, and in the reactive ion etching method, for example, a fluorocarbon gas is used as an etching gas.
  • patterning is performed so that the width of the pattern 87 is 7 to 9 nm or less.
  • the surface of pattern 87 is naturally oxidized. As a result, as shown in FIG.
  • a topological insulator 100 is formed having a second region 12 comprising: In attaching the WTe2 film 86 to the substrate 80 in FIG. 12(b), the direction of the length L of the topological insulator 100 is the b-axis direction of the crystallographic orientation of WTe2 , and the direction of the width W is the a-axis direction.
  • the topological insulator 100 includes a material whose electrical properties change according to the width, the first region 10 extending in the first direction, and provided on the surface of the first region 10, and a second region 12 comprising an oxide of the material contained in the first region 10 .
  • the first region 10 has a width W such that the electrical properties of the first region 10 are those of a semiconductor.
  • the first region 10 suppresses the occurrence of conduction modes other than the gapless state appearing on the ridgeline.
  • the influence of natural oxidation stops at the second region 12 the influence of oxidation on the first region 10 is suppressed. Therefore, it is possible to achieve both the emergence of a gapless state and the suppression of the occurrence of internal conduction modes.
  • Example 1 the material included in the first region 10 whose electrical properties change according to the width is WTe2 .
  • the electrical properties of WTe 2 change according to the width, exhibiting the properties of a semiconductor at a given width. Therefore, by using WTe 2 as the material contained in the first region 10 whose electrical properties change according to the width, it is possible to realize the appearance of the gapless state and the suppression of the occurrence of the internal conduction mode.
  • the width W of the first region 10 containing WTe 2 is 3.1 nm or less.
  • the direction of the width W of the first region 10 is the a-axis direction of WTe 2 , and the number of unit cells 40 of WTe 2 in the a-axis direction is 9 or less.
  • the first region 10 exhibiting semiconductor properties can be obtained as shown in the simulation results of FIGS. 6(a) to 9(b). From the point that the first region 10 exhibits semiconductor properties, as shown in FIG . is preferred, and 4 or less is more preferred.
  • the length is 2.41 nm when the number of WTe 2 unit cells 40 in the a-axis direction is seven, and the length is 1.38 nm when the number is four. Therefore, the width W of the first region 10 is preferably 2.41 nm or less, more preferably 1.38 nm or less.
  • the thickness T of the first region 10 is equal to or greater than the thickness of one layer of WTe 2 and equal to or greater than 7.07 ⁇ .
  • the direction of the length L of the first region 10 is the b-axis direction of the crystal orientation of WTe2 .
  • a gapless state appears at the ridgeline in the b-axis direction of the crystal orientation. Therefore, by setting the direction of the length L of the first region 10 to the b-axis direction of the crystal orientation of WTe 2 , it becomes easier to contact the s-wave superconductor layer for developing Majorana grains.
  • the WTe2 film 86 which is a material whose electrical properties change according to the width, is formed on the substrate 80 (FIG. 12(b)).
  • the WTe2 film 86 is patterned to form a pattern 87 extending in the first direction (FIG. 12(c)).
  • the surface of pattern 87 is oxidized to form an oxide of WTe2 .
  • the width W of the region where the WTe 2 is not oxidized is the width where the electrical properties of the WTe 2 are those of a semiconductor.
  • the topological insulator 100 in which the gapless state appears and the generation of the internal conduction mode is suppressed is obtained.
  • FIG. 13 is a perspective view showing a quantum bit 200 according to Example 2.
  • a qubit 200 includes a nanowire-like Majorana particle carrier layer 50 extending in a first direction, a bulk Majorana particle carrier layer 52 having a longitudinal direction in a second direction, and an s-wave superconducting It includes body layers 60-64 and magnetic layers 70-76. The first direction and the second direction intersect, for example, orthogonally.
  • the s-wave superconductor layers 60-64 are, for example, aluminum (Al) or niobium (Nb) layers with a thickness of 30-50 nm.
  • the magnetic layers 70-76 are, for example, iron (Fe) layers, nickel (Ni) layers, or cobalt (Co) layers with a thickness of 30-50 nm. Although these are provided on a substrate, illustration of the substrate is omitted for clarity of the drawing.
  • the Majorana particle carrier layer 50 is a nanowire-shaped topological insulator, contains WTe 2 and extends in a first direction, and has a nanowire-shaped first region 10 provided on the surface of the first region 10 and containing WTe 2 . and a second region 12 comprising oxide.
  • the second region 12 is formed on the side and top surfaces of the first region 10 .
  • the first region 10, as described in Example 1, has a width exhibiting semiconductor properties. That is, in the first region 10, the width direction (second direction) is the a-axis direction of the crystal orientation of WTe 2 , the number of unit cells 40 in the a-axis direction is 9 or less, and the width is 3.1 nm or less. have width.
  • the thickness of the first region 10 may be equal to or greater than the thickness of one layer of WTe 2 , and may be equal to or greater than 7.07 ⁇ .
  • the first direction which is the length direction
  • the second direction which is the width direction
  • a one-dimensional gapless state appears on the ridge extending in one direction.
  • the s-wave superconductor layer 60 and the magnetic layer 70 are provided in contact with the lower surface of the Majorana particle carrier layer 50 .
  • the width of the s-wave superconductor layer 60 and the magnetic layer 70 is greater than the width of the Majorana grain carrier layer 50 .
  • Majorana grains appear in the vicinity of the s-wave superconductor layer 60 in the gapless state appearing on the ridgeline of the first region 10 .
  • the on and off of a switch connecting the s-wave superconductor layer 60 to ground can control the development of Majorana particles.
  • the magnetic layer 70 is provided to suppress the influence of the Majorana grains on the Majorana grains appearing at other positions.
  • the Majorana grain carrier layer 52 is a bulk topological insulator, and is a bulk single crystal WTe 2 layer having a length direction in the second direction and a third region 54 provided on the surface of the third region 54 . , and a fourth region 56 comprising an oxide of WTe2 .
  • the fourth region 56 is formed on the side and top surfaces of the third region 54 .
  • One end of the Majorana particle carrier layer 50 is connected to the side surface of the Majorana particle carrier layer 52 extending in the second direction.
  • the second longitudinal direction is the a-axis direction of the crystal orientation of WTe2 .
  • a one-dimensional gapless state appears on the ridge extending in the a-axis direction of the crystal orientation of WTe 2 . Therefore, a one-dimensional gapless state appears on the ridge extending in the second direction of the third region 54 .
  • the s-wave superconductor layers 62 and 64 and the magnetic layers 72 to 76 are provided in contact with the lower surface of the Majorana particle carrier layer 52 .
  • the s-wave superconductor layers 62 and 64 and the magnetic layers 72 and 74 are provided so as to protrude outward from the side surfaces of the Majorana particle carrier layer 52 . Therefore, as shown in FIG. 2(b), Majorana grains appear in the vicinity of the s-wave superconductor layers 62 and 64 in the gapless state appearing on the ridgeline extending in the second direction of the third region 54.
  • FIG. For example, the on and off of switches connecting the s-wave superconductor layers 62, 64 to ground can control the development of Majorana particles.
  • the s-wave superconductor layer 62 and the s-wave superconductor layer 64 are provided, for example, so as to sandwich the portion where the Majorana particle carrier layer 50 connects to the Majorana particle carrier layer 52 in the second direction.
  • the magnetic layers 72 to 76 like the magnetic layer 70, are provided to suppress the influence of the Majorana grains on the Majorana grains appearing at other positions.
  • FIG. 14A magnetic layers 70 to 76 are formed on an insulating substrate 80 using, for example, a lift-off method.
  • FIG. 14B s-wave superconductor layers 60 to 64 are formed on a substrate 80 using, for example, a lift-off method.
  • the WTe 2 single crystal is thinned by repeating tape peeling under an inert atmosphere, and is temporarily attached to a holding substrate.
  • a WTe 2 film 86 having desired crystals is picked up from the WTe 2 stuck on the holding substrate by the glass substrate 82 using, for example, a polycarbonate film 84 as an adhesive layer.
  • a WTe 2 film 86 picked up using a glass substrate 82 is adhered onto the substrate 80 so as to cover the s-wave superconductor layers 60-64 and the magnetic layers 70-76.
  • the crystal orientations of the WTe2 crystals are matched so that the b-axis direction is the first direction and the a-axis direction is the second direction.
  • the WTe2 crystal utilizes the property that the longitudinal direction tends to be parallel to the a-axis.
  • the WTe2 film 86 is patterned by photolithography using electron beam exposure and etching using reactive ion etching. At this time, the WTe 2 film 86 is patterned so that the width of the Majorana particle carrier layer 50 is 7 to 9 nm or less.
  • the surface of the WTe2 film 86 after patterning is naturally oxidized. As a result, a nanowire-shaped first region 10 containing WTe 2 and extending in the first direction and having a width of 3.1 nm or less, and a second region provided on the surface of the first region 10 and containing an oxide of WTe 2 12 and a Majorana grain carrier layer 50 is formed (see also FIG. 13).
  • the third region 54 which is bulk single crystal WTe 2 having a length direction in the second direction, and a fourth region 56 provided on the surface of the third region 54 and containing an oxide of WTe 2 .
  • a Majorana grain carrier layer 52 is formed (see also FIG. 13). The first direction is the b-axis direction of the crystal orientation of WTe 2 and the second direction is the a-axis direction.
  • FIG. 16A s-wave superconductor layers 60 to 64 and magnetic layers 70 to 76 are formed on an insulating substrate 80 by using, for example, a lift-off method.
  • MgO magnesium oxide
  • a WTe2 film 86 is deposited on the substrate 80 using, for example, molecular beam epitaxy or pulsed laser deposition to cover the s-wave superconductor layers 60-64 and the magnetic layers 70-76. to form As a result, a WTe 2 film 86 having the crystal orientation b-axis direction in the first direction and the crystal orientation a-axis direction in the second direction is obtained.
  • the WTe2 film 86 is patterned by photolithography using electron beam exposure and etching using reactive ion etching. At this time, the WTe 2 film 86 is patterned so that the width of the Majorana particle carrier layer 50 is 7 to 9 nm or less.
  • the surface of the WTe2 film 86 after patterning is naturally oxidized. As a result, a nanowire-shaped first region 10 containing WTe 2 and extending in the first direction and having a width of 3.1 nm or less, and a second region provided on the surface of the first region 10 and containing an oxide of WTe 2 12 and a Majorana grain carrier layer 50 is formed (see also FIG. 13).
  • third region 54 which is bulk single crystal WTe 2 having a length direction in the second direction, and a fourth region 56 provided on the surface of the third region 54 and containing an oxide of WTe 2 .
  • a Majorana grain carrier layer 52 is formed (see also FIG. 13).
  • the second embodiment it includes a Majorana particle carrier layer 50 that includes a topological insulator and extends in the first direction, and an s-wave superconductor layer 60 that is in contact with the Majorana particle carrier layer 50 .
  • the Majorana grain carrier layer 50 includes a material whose electrical properties change depending on the width, and includes a first region 10 extending in the first direction, and a material provided on the surface of the first region 10 and included in the first region 10 . and a second region 12 comprising an oxide of a material that can be deposited.
  • the first region 10 has a width such that the electrical properties of the first region 10 are those of a semiconductor.
  • the first region 10 suppresses the occurrence of conduction modes other than the gapless state appearing on the ridgeline. Further, since the influence of natural oxidation stops at the second region 12, the influence of oxidation on the first region 10 is suppressed. Therefore, in the Majorana grain carrier layer 50, a gapless state appears and the generation of internal conduction mode is suppressed. Therefore, the emergence of the gapless state enables the development of Majorana particles, and the suppression of the occurrence of the internal conduction mode makes it possible to distinguish whether Majorana particles are occurring or not.
  • a bulk Majorana particle carrier layer 52 which is a topological insulator connected to the nanowire Majorana particle carrier layer 50, an s-wave superconductor layer 62 in contact with the Majorana particle carrier layer 52, 64 and.
  • the nanowire-like Majorana particle carrier layer 50 extends in a first direction, and the longitudinal direction of the bulk Majorana particle carrier layer 52 is a second direction that intersects (eg, is perpendicular to) the first direction.
  • the bulk Majorana particle carrier layer 52 includes a bulk third region 54 made of the same material as the first region 10 of the nanowire Majorana particle carrier layer 50, and provided on the surface of the third region 54. and a fourth region 56 comprising an oxide of the material contained in the third region 54 .
  • the first region 10 and the third region 54 both contain WTe 2
  • the first direction in which the Majorana grain carrier layer 50 extends is the b-axis direction of the crystal orientation of WTe 2
  • the length of the Majorana grain carrier layer 52 The second direction, which is the longitudinal direction, is the a-axis direction.
  • a gapless state appears on the ridgeline of the Majorana particle carrier layer 50 extending in the first direction
  • a gapless state appears on the ridgeline of the Majorana particle carrier layer 52 extending in the second direction.
  • the patterned s-wave superconductor layers 60 to 62 are formed on the substrate 80 (FIGS. 14(b) and 16(a)).
  • a WTe 2 film 86 which is a material whose electrical properties change depending on the width, is formed on the substrate 80 so as to cover the s-wave superconductor layers 60 to 62 (FIGS. 15(a) and 16(b)).
  • the WTe2 film 86 is patterned to form the Majorana grain carrier layer 50, which is a topological insulator in contact with the s-wave superconductor layer 60 (FIGS. 15(b) and 16(c)).
  • the Majorana grain carrier layer 50 includes a first region 10 that includes WTe 2 , a material whose electrical properties vary according to width, has a width that is semiconducting, and extends in a first direction; a second region 12 provided on the surface of the region 10 and comprising an oxide of WTe2 (FIG. 13).
  • a gapless state appears and the Majorana grain carrier layer 50 in which the generation of the internal conduction mode is suppressed is obtained. Therefore, it becomes possible to express Majorana particles, and it is also possible to distinguish whether Majorana particles are expressed or not.
  • FIG. 17 is a perspective view showing a quantum bit 210 according to a modified example of the second embodiment.
  • a qubit 210 includes a nanowire-shaped Majorana particle carrier layer 50 extending in a first direction and a nanowire-shaped Majorana particle carrier layer 50 extending in a third direction that intersects (for example, is perpendicular to) the first direction. It includes a carrier layer 50a, s-wave superconductor layers 60-66, and magnetic layers 70-76. Although these are provided on a substrate, illustration of the substrate is omitted for clarity of the drawing. Also, the third direction may be the same as or different from the second direction in the second embodiment.
  • the Majorana particle carrier layer 50 is a topological insulator containing WTe 2 and extending in the first direction. and a second region 12 comprising oxide.
  • the Majorana particle carrier layer 50a is also a topological insulator and contains WTe 2 and extends in the third direction. and a second region 12a including.
  • the first regions 10, 10a as described in Example 1, have widths that are semiconductor in nature. That is, the first regions 10 and 10a have 9 or less unit cells 40 in the width direction and have a width of 3.1 nm or less.
  • the thickness of the first regions 10 and 10a should be equal to or greater than the thickness of one layer of WTe 2 , and may be equal to or greater than 7.07 ⁇ .
  • the s-wave superconductor layers 60 and 66 and the magnetic layers 70 and 76 are provided in contact with the lower surface of the Majorana particle carrier layer 50 .
  • the widths of the s-wave superconductor layers 60 , 66 and the magnetic layers 70 , 76 are greater than the width of the Majorana grain carrier layer 50 .
  • s-wave superconductor layers 62, 64 and magnetic layers 72, 74 are provided in contact with the lower surface of Majorana grain carrier layer 50a.
  • the widths of the s-wave superconductor layers 62, 64 and the magnetic layers 72, 74 are greater than the width of the Majorana grain carrier layer 50a.
  • the quantum bit 210 of the modification of Example 2 can be manufactured by the same method as the quantum bit 200 of Example 2 described in FIGS. 14(a) to 16(c).
  • the nanowire-shaped Majorana particle carrier layer 50 extending in the first direction and the nanowire-shaped Majorana particle carrier layer 50a extending in the third direction crossing the Majorana particle carrier layer 50 are provided. , provided. Even in this case, the Majorana particle carrier layers 50 and 50a exhibit a gapless state and suppress the generation of the internal conduction mode, so that the Majorana particles can be developed and whether or not the Majorana particles are generated can be determined. It is possible to distinguish.
  • the first regions 10 and 10a are made of a material whose electrical properties change according to the width and have semiconductor properties at a predetermined width, It may be formed of a material other than WTe2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

A topological insulator according to the present invention contains a first material, the electrical properties of which change in accordance with the width, while having a first region that extends in a first direction and a second region that is provided on the surface of the first region and contains an oxide of the first material; and the first region has such a width that the electrical properties of the first region are those of a semiconductor. A quantum bit according to the present invention is provided with a first Majorana particle carrier that contains a topological insulator and extends in a first direction, and a superconductor that is in contact with the first Majorana particle carrier; the first Majorana particle carrier contains a first material, the electrical properties of which change in accordance with the width, while having a first region that extends in the first direction and a second region that is provided on the surface of the first region and contains an oxide of the first material; and the first region has such a width that the electrical properties of the first region are those of a semiconductor. 

Description

トポロジカル絶縁体、量子ビット、トポロジカル絶縁体の製造方法、および量子ビットの製造方法Topological insulator, qubit, method of manufacturing topological insulator, and method of manufacturing qubit
 本発明は、トポロジカル絶縁体、量子ビット、トポロジカル絶縁体の製造方法、および量子ビットの製造方法に関する。 The present invention relates to a topological insulator, a qubit, a method for manufacturing a topological insulator, and a method for manufacturing a qubit.
 マヨラナ粒子を用いた量子コンピュータについての研究が行われている。マヨラナ粒子を発現させる方法として様々な技術が提案されている。例えば、半導体等のナノワイヤ構造体を用いてマヨラナ粒子を発現させる技術が提案されている(例えば特許文献1-3)。 Research is being conducted on quantum computers using Majorana particles. Various techniques have been proposed as methods for expressing Majorana particles. For example, a technique has been proposed to express Majorana particles using a nanowire structure such as a semiconductor (for example, Patent Documents 1 to 3).
特開2020-96107号公報JP 2020-96107 A 米国特許出願公開第2014/0221059号明細書U.S. Patent Application Publication No. 2014/0221059 米国特許出願公開第2013/0299783号明細書U.S. Patent Application Publication No. 2013/0299783
 マヨラナ粒子を発現させる物質としてトポロジカル超伝導体が知られている。しかしながら、現状では、トポロジカル超伝導体となる良い物質の候補が見つかっていないため、トポロジカル絶縁体にs波超伝導体を接触させ、近接効果により超伝導を誘起する研究が行われている。トポロジカル絶縁体としては、表面や端(エッジ)にギャップレス状態が出現しつつ、内部は絶縁性または半導体性を有していて伝導モードが形成され難い性質を有することが望まれている。 Topological superconductors are known as substances that express Majorana particles. However, at present, no good candidates for topological superconductors have been found, so research is being conducted to bring s-wave superconductors into contact with topological insulators and induce superconductivity by the proximity effect. As a topological insulator, it is desired that a gapless state appears on the surface and edges, while the inside has an insulating or semiconducting property so that a conduction mode is difficult to form.
 1つの側面では、ギャップレス状態が出現することと、内部の伝導モードの発生が抑制されることと、の両方を実現することを目的とする。 One aspect aims to achieve both the emergence of a gapless state and the suppression of the generation of internal conduction modes.
 1つの態様では、電気的性質が幅に応じて変化する第1材料を含み、第1方向に延在する第1領域と、前記第1領域の表面に設けられ、前記第1材料の酸化物を含む第2領域と、を備え、前記第1領域は、前記第1領域の前記電気的性質が半導体の性質となる幅を有する、トポロジカル絶縁体である。 In one aspect, a first region including a first material whose electrical properties change according to width and extending in a first direction; and an oxide of the first material provided on a surface of the first region. wherein the first region is a topological insulator having a width such that the electrical properties of the first region are semiconductor properties.
 1つの側面として、ギャップレス状態が出現することと、内部の伝導モードの発生が抑制されることと、の両方を実現することができる。 As one aspect, it is possible to achieve both the emergence of a gapless state and the suppression of the generation of internal conduction modes.
図1(a)は、単層の2テルル化タングステン(WTe)層のギャップレス状態の出現位置を示す平面図、図1(b)は、多層のWTe層のギャップレス状態の出現位置を示す斜視図である。FIG. 1(a) is a plan view showing the appearance position of the gapless state of a single tungsten ditelluride (WTe 2 ) layer, and FIG. 1(b) shows the appearance position of the gapless state of a multilayer WTe 2 layer. It is a perspective view. 図2(a)は、単層のWTe層に発現するマヨラナ粒子の発現位置を示す平面図、図2(b)は、多層のWTe層に発現するマヨラナ粒子の発現位置を示す斜視図である。Fig. 2(a) is a plan view showing the positions of Majorana grains expressed in the single WTe bilayer, and Fig. 2 (b) is a perspective view showing the positions of Majorana grains expressed in the multilayer WTe bilayer. is. 図3(a)は、バルク単結晶のWTe層を示す斜視図、図3(b)は、ナノワイヤ状のWTe層を示す斜視図である。FIG. 3(a) is a perspective view showing a bulk single crystal WTe 2 layer, and FIG. 3(b) is a perspective view showing a nanowire-like WTe 2 layer. 図4は、バルク単結晶のWTe層のバンド構造のシミュレーション結果を示す図である。FIG. 4 shows simulation results of the band structure of bulk single crystal WTe bilayer. 図5は、ナノワイヤ状のWTe層の幅方向の結晶構造を示す図である。FIG. 5 shows the widthwise crystal structure of the nanowire-like WTe 2 layer. 図6(a)および図6(b)は、ナノワイヤ状のWTe層のバンド構造のシミュレーション結果を示す図(その1)である。6(a) and 6(b) are diagrams (part 1) showing simulation results of the band structure of the nanowire-like WTe bilayer . 図7(a)および図7(b)は、ナノワイヤ状のWTe層のバンド構造のシミュレーション結果を示す図(その2)である。7(a) and 7(b) are diagrams (part 2 ) showing simulation results of the band structure of the nanowire-like WTe bilayer. 図8(a)および図8(b)は、ナノワイヤ状のWTe層のバンド構造のシミュレーション結果を示す図(その3)である。8(a) and 8(b) are diagrams (part 3) showing simulation results of the band structure of the nanowire-like WTe bilayer . 図9(a)および図9(b)は、ナノワイヤ状のWTe層のバンド構造のシミュレーション結果を示す図(その4)である。9(a) and 9(b) are diagrams (part 4) showing simulation results of the band structure of the nanowire-like WTe bilayer . 図10は、図6(a)から図9(b)のシミュレーション結果から得られた、幅方向の単位格子の個数とバンドギャップとの関係を示す図である。FIG. 10 is a diagram showing the relationship between the number of unit cells in the width direction and the bandgap obtained from the simulation results of FIGS. 6(a) to 9(b). 図11(a)は、実施例1に係るトポロジカル絶縁体を示す透視斜視図、図11(b)は、図11(a)のA-A断面図、図11(c)は、図11(a)のB-B断面図である。FIG. 11(a) is a transparent perspective view showing a topological insulator according to Example 1, FIG. 11(b) is a cross-sectional view along line AA in FIG. 11(a), and FIG. It is a BB sectional view of a). 図12(a)から図12(c)は、実施例1に係るトポロジカル絶縁体の製造方法を示す斜視図である。12(a) to 12(c) are perspective views showing a method for manufacturing a topological insulator according to Example 1. FIG. 図13は、実施例2に係る量子ビットを示す斜視図である。FIG. 13 is a perspective view showing a quantum bit according to Example 2. FIG. 図14(a)から図14(c)は、実施例2に係る量子ビットの製造方法を示す斜視図(その1)である。FIGS. 14A to 14C are perspective views (part 1) showing the method of manufacturing the quantum bit according to the second embodiment. 図15(a)および図15(b)は、実施例2に係る量子ビットの製造方法を示す斜視図(その2)である。15A and 15B are perspective views (part 2) showing the method of manufacturing the quantum bit according to the second embodiment. 図16(a)から図16(c)は、実施例2に係る量子ビットの他の製造方法を示す斜視図である。16A to 16C are perspective views showing another method of manufacturing a quantum bit according to Example 2. FIG. 図17は、実施例2の変形例に係る量子ビットを示す斜視図である。FIG. 17 is a perspective view of a quantum bit according to a modification of the second embodiment;
 2テルル化タングステン(WTe)はマヨラナ粒子の発現が有力視されている物質である。そこで、まず、単層のWTe層と多層のWTe層のギャップレス状態(金属状態)の出現位置とマヨラナ粒子の発現位置について説明する。図1(a)は、単層のWTe層500のギャップレス状態20の出現位置を示す平面図、図1(b)は、多層のWTe層600のギャップレス状態20の出現位置を示す斜視図である。なお、図1(a)および図1(b)においては、WTe層の紙面横方向の長さは無限の長さであるとしている。図1(a)のように、単層のWTe層500は、2次元の1次トポロジカル絶縁体と呼ばれるものであり、端(エッジ)に1次元状のギャップレス状態20が現れる。図1(b)のように、多層のWTe層600は、3次元の2次トポロジカル絶縁体と呼ばれるものであり、稜線に1次元状のギャップレス状態20が現れる。 Tungsten di-telluride (WTe 2 ) is a material that is expected to produce Majorana grains. Therefore, first, the appearance position of the gapless state (metallic state) of the single WTe 2 layer and the multilayer WTe 2 layer and the appearance position of the Majorana grains will be described. FIG. 1(a) is a plan view showing the appearance position of the gapless state 20 of the single WTe2 layer 500, and FIG. 1(b) is a perspective view showing the appearance position of the gapless state 20 of the multilayer WTe2 layer 600. is. In FIGS. 1(a) and 1(b), the length of the WTe two layers in the lateral direction of the paper surface is assumed to be infinite. As shown in FIG. 1(a), a single WTe2 layer 500 is called a two-dimensional primary topological insulator, and a one-dimensional gapless state 20 appears at the edge. As shown in FIG. 1(b), the multi-layered WTe2 layer 600 is what is called a three-dimensional second-order topological insulator, and a one-dimensional gapless state 20 appears at the ridgeline.
 図2(a)は、単層のWTe層500に発現するマヨラナ粒子22の発現位置を示す平面図、図2(b)は、多層のWTe層600に発現するマヨラナ粒子22の発現位置を示す斜視図である。図2(a)のように、単層のWTe層500にs波超伝導体30を接触させると、WTe層500の端(エッジ)に現れるギャップレス状態20におけるs波超伝導体30の近傍にマヨラナ粒子22が発現する。図2(b)のように、多層のWTe層600にs波超伝導体30を接触させると、WTe層600の稜線に現れるギャップレス状態20におけるs波超伝導体30の近傍にマヨラナ粒子22が発現する。なお、図2(b)において、シミュレーションでは右上の稜線にはギャップレス状態が出現しなかったため、ここでは図示していない。 FIG. 2(a) is a plan view showing the positions where the Majorana particles 22 appear in the single WTe 2 layer 500, and FIG. 2(b) shows the positions where the Majorana particles 22 appear in the multilayer WTe 2 layer 600. It is a perspective view showing the. As shown in FIG. 2( a ), when the s-wave superconductor 30 is brought into contact with the single WTe2 layer 500 , the s-wave superconductor 30 in the gapless state 20 appears at the edge of the WTe2 layer 500 . Majorana grains 22 appear in the vicinity. As shown in FIG. 2(b), when the s-wave superconductor 30 is brought into contact with the multi-layered WTe2 layer 600, Majorana grains appear in the vicinity of the s-wave superconductor 30 in the gapless state 20 appearing on the ridgeline of the WTe2 layer 600. 22 is expressed. In FIG. 2(b), the gapless state did not appear on the upper right ridgeline in the simulation, so it is not shown here.
 単層のWTe層は、自然酸化によって容易に全体が酸化されてしまう。この場合、ギャップレス状態20が出現しなくなってしまう。酸化を抑制するためには、デバイス作製を不活性ガス雰囲気中または真空中で行ったり、酸素透過を抑制する膜で保護したりする必要があるため、プロセスの難易度が高くなり、取り扱いが難しい。そこで、多層のWTe層について以下で検討する。 A single WTe 2 layer is easily totally oxidized by natural oxidation. In this case, the gapless state 20 will not appear. In order to suppress oxidation, it is necessary to fabricate the device in an inert gas atmosphere or in a vacuum, and to protect it with a film that suppresses oxygen permeation, which increases the difficulty of the process and makes it difficult to handle. . Multilayered WTe 2 layers are therefore considered below.
[多層のWTe層]
 図3(a)は、バルク単結晶のWTe層700を示す斜視図、図3(b)は、ナノワイヤ状のWTe層800を示す斜視図である。図3(a)のように、バルク単結晶のWTe層700は、大きさは特に限定されないが、例えば幅Wおよび長さLは数十μm程度、厚さTは数十nm程度である。図3(b)のように、ナノワイヤ状のWTe層800は、幅Wが数nm程度である。長さLおよび厚さTは特に限定されないが、例えば長さLは数十μm、厚さTは数十nm程度である。
[Multilayer WTe 2 layers]
3(a) is a perspective view of a bulk single crystal WTe 2 layer 700, and FIG. 3(b) is a perspective view of a nanowire-like WTe 2 layer 800. FIG. As shown in FIG. 3A, the bulk single crystal WTe 2 layer 700 is not particularly limited in size, but for example, the width W and length L are about several tens of μm, and the thickness T is about several tens of nm. . As shown in FIG. 3(b), the nanowire-like WTe 2 layer 800 has a width W of several nanometers. Although the length L and thickness T are not particularly limited, for example, the length L is several tens of μm and the thickness T is several tens of nm.
 バルク単結晶のWTe層700およびナノワイヤ状のWTe層800のバンド構造をシミュレーションにより計算した。シミュレーションは密度汎関数法により行った。密度汎関数法において、交換相関ポテンシャルはPBE(Perdew-Burke-Ernzerhof)交換エネルギーを用いて一般化勾配近似の下で扱われる。電子イオン相互作用は部分的な内殻補正を行ったノルム保存擬ポテンシャルにより記述される。基底関数は原子サイトを中心とした擬原子軌道が用いられ、ファンデルワールス相互作用は半経験的なDFT-D2法が用いられる。また、構造最適化は三次元的な周期的境界条件で行われ、各原子に働く力が0.01eV/Å以下になることが収束条件とされる。 The band structures of the bulk single-crystal WTe2 layer 700 and the nanowire-like WTe2 layer 800 were calculated by simulation. The simulation was performed by the density functional theory. In the density functional theory, the exchange-correlation potential is treated under the generalized gradient approximation using the PBE (Perdew-Burke-Ernzerhof) exchange energy. Electron-ion interactions are described by norm-conserving pseudopotentials with partial core correction. A pseudo-atomic orbital centered on an atomic site is used as the basis function, and a semi-empirical DFT-D2 method is used for the van der Waals interaction. The structure optimization is performed under three-dimensional periodic boundary conditions, and the convergence condition is that the force acting on each atom is 0.01 eV/Å or less.
 図4は、バルク単結晶のWTe層700のバンド構造のシミュレーション結果を示す図である。図4の横軸のG、Y、S、X、ZはそれぞれブリルアンゾーンのG点、Y点、S点、X点、Z点に対応する。図4の縦軸はバンドギャップである。図4のシミュレーションでは、WTe層700の幅Wの方向を結晶のa軸方向、長さLの方向をb軸方向、厚さTの方向をc軸方向とした。a軸、b軸、c軸方向は全て周期的境界条件を仮定したモデルとし、WTe層700の幅W、長さL、および厚さTは無限大とした。図4のように、バルク単結晶のWTe層700は半金属的な電子状態を有することが確認できる。半金属の性質を示すWTe層700では、稜線に現れるギャップレス状態20以外にもバルク内部に伝導モードが発生する。この場合、バルク内部の伝導モードを介してアンドレーエフ結合状態が生じてしまうと、マヨラナ粒子22の発現との切り分けが難しくなる。すなわち、何らかのシグナルが出現した場合に、マヨラナ粒子に起因するものであるのか、他の準粒子に起因するものであるのか、の切り分けが難しくなる。このようなことから、トポロジカル絶縁体の材料としてバルク単結晶のWTe層を用いることは好ましくない。 FIG. 4 shows simulation results of the band structure of bulk single crystal WTe 2 layer 700 . G, Y, S, X, and Z on the horizontal axis of FIG. 4 correspond to the G point, Y point, S point, X point, and Z point of the Brillouin zone, respectively. The vertical axis in FIG. 4 is the bandgap. In the simulation of FIG. 4, the direction of the width W of the WTe 2 layer 700 is taken as the a-axis direction of the crystal, the direction of the length L as the b-axis direction, and the direction of the thickness T as the c-axis direction. The a-axis, b-axis, and c-axis directions were all modeled assuming periodic boundary conditions, and the width W, length L, and thickness T of the WTe2 layer 700 were assumed to be infinite. As shown in FIG. 4, the bulk single crystal WTe2 layer 700 can be confirmed to have a semi-metallic electronic state. In the WTe2 layer 700, which exhibits semi-metallic properties, conduction modes occur inside the bulk in addition to the gapless states 20 appearing at the ridges. In this case, if the Andreev coupling state occurs via the conduction mode inside the bulk, it becomes difficult to separate it from the development of the Majorana grain 22 . That is, when some kind of signal appears, it becomes difficult to distinguish whether it is caused by Majorana particles or other quasiparticles. For this reason, it is not preferable to use a bulk single-crystal WTe2 layer as the material for the topological insulator.
 図5は、ナノワイヤ状のWTe層800の幅Wの方向の結晶構造を示す図である。図5では、WTe層800の幅Wの方向の単位格子40を点線で図示し、単位格子40の個数が9個の場合を図示している。図5のように、シミュレーションでは、ナノワイヤ状のWTe層800の幅Wの方向を結晶のa軸方向、長さLの方向をb軸方向、厚さTの方向をc軸方向とした。a軸方向における結晶の格子定数は約0.348nmであり、b軸方向における結晶の格子定数は約0.625nmであり、c軸方向における結晶の格子定数は約1.405nmである。つまり本明細書においては、WTeの結晶において格子定数が一番小さい方向をa軸方向、次に格子定数が小さい方向をb軸方向、最も格子定数が大きい方向をc軸方向と定義する。 FIG. 5 shows the crystal structure along the width W of the nanowire-like WTe 2 layer 800 . In FIG. 5, the unit cells 40 in the direction of the width W of the WTe2 layer 800 are illustrated by dotted lines, and the number of the unit cells 40 is nine. As shown in FIG. 5, in the simulation, the direction of the width W of the nanowire-like WTe 2 layer 800 is taken as the a-axis direction of the crystal, the direction of the length L as the b-axis direction, and the direction of the thickness T as the c-axis direction. The crystal lattice constant in the a-axis direction is about 0.348 nm, the crystal lattice constant in the b-axis direction is about 0.625 nm, and the crystal lattice constant in the c-axis direction is about 1.405 nm. In other words, in this specification, the direction of the smallest lattice constant in the WTe2 crystal is defined as the a-axis direction, the direction with the second smallest lattice constant as the b-axis direction, and the direction with the largest lattice constant as the c-axis direction.
 図6(a)から図9(b)は、ナノワイヤ状のWTe層800のバンド構造のシミュレーション結果を示す図である。図6(a)から図9(b)の横軸のG、Y、S、X、ZはそれぞれブリルアンゾーンのG点、Y点、S点、X点、Z点に対応する。図6(a)から図9(b)の縦軸はバンドギャップである。図6(a)から図9(b)のシミュレーションは、幅Wの方向(a軸方向)の単位格子40の個数Nを4~13の間で変化させ、バンド構造の幅依存性を調査した。b軸、c軸方向は周期的境界条件を仮定したモデルとし、WTe層800の長さLおよび厚さTは無限大とした。 6(a) to 9(b) show simulation results of the band structure of the nanowire-like WTe2 layer 800. FIG. G, Y, S, X, and Z on the horizontal axes of FIGS. 6A to 9B correspond to G point, Y point, S point, X point, and Z point of the Brillouin zone, respectively. The vertical axis in FIGS. 6A to 9B is the bandgap. In the simulations of FIGS. 6(a) to 9(b), the width dependence of the band structure was investigated by changing the number N of the unit cells 40 in the direction of the width W (a-axis direction) between 4 and 13. . The b-axis and c-axis directions were modeled assuming periodic boundary conditions, and the length L and thickness T of the WTe2 layer 800 were assumed to be infinite.
 図6(a)、図6(b)、図7(a)、図7(b)、および図8(b)のように、幅Wの方向(a軸方向)の単位格子40の個数Nが4、5、6、7、9の場合、ナノワイヤ状のWTe層800は半導体の性質を有することが確認できる。図8(a)、図9(a)、および図9(b)のように、幅Wの方向(a軸方向)の単位格子40の個数Nが8、10、13の場合、ナノワイヤ状のWTe層800は半金属の性質を有することが確認できる。図6(a)ではバンドギャップが34meV、図6(b)では10meV、図7(a)では14meV、図7(b)では17meV、図8(b)では8meVであった。 As shown in FIGS. 6(a), 6(b), 7(a), 7(b), and 8(b), the number N of unit cells 40 in the direction of width W (a-axis direction) is 4, 5, 6, 7, 9, it can be confirmed that the nanowire-like WTe2 layer 800 has semiconducting properties. As shown in FIGS. 8(a), 9(a), and 9(b), when the number N of the unit cells 40 in the direction of the width W (a-axis direction) is 8, 10, or 13, the nanowire-like It can be seen that the WTe2 layer 800 has semi-metallic properties. The bandgap was 34 meV in FIG. 6(a), 10 meV in FIG. 6(b), 14 meV in FIG. 7(a), 17 meV in FIG. 7(b), and 8 meV in FIG. 8(b).
 図10は、図6(a)から図9(b)のシミュレーション結果から得られた、幅方向の単位格子40の個数Nとバンドギャップとの関係を示す図である。図10のように、単位格子40の個数Nが3n+1(nは正の整数)の系列(すなわちN=4、7)では、バンドギャップは大きい傾向がある。一方、単位格子40の個数Nが3n+2(nは正の整数)の系列(すなわちN=5、8)では、バンドギャップは小さい傾向にあり、個数Nが8ではバンドギャップが閉じている。また、個数Nが3n+1の系列においても、個数Nが10ではバンドギャップが閉じている。これらのことから、a軸方向における単位格子40の個数Nを9以下にすることで、バンドギャップが開いて半導体の性質を有するようにできることが言える。a軸方向における単位格子40の個数Nが10以上となると、バンドギャップが閉じて半金属の性質となることが言える。 FIG. 10 is a diagram showing the relationship between the number N of unit cells 40 in the width direction and the bandgap obtained from the simulation results of FIGS. 6(a) to 9(b). As shown in FIG. 10, the bandgap tends to be large in a series in which the number N of the unit cells 40 is 3n+1 (n is a positive integer) (that is, N=4, 7). On the other hand, in the series where the number N of the unit cells 40 is 3n+2 (n is a positive integer) (that is, N=5, 8), the bandgap tends to be small, and when the number N is 8, the bandgap is closed. In addition, even in a series in which the number N is 3n+1, the bandgap is closed when the number N is 10. From these facts, it can be said that by setting the number N of the unit cells 40 in the a-axis direction to 9 or less, the bandgap can be widened and the properties of a semiconductor can be obtained. It can be said that when the number N of the unit cells 40 in the a-axis direction is 10 or more, the bandgap is closed and the material has semimetal properties.
 この結果から、トポロジカル絶縁体の材料としてナノワイヤ状の多層WTe層を用いる際に、ナノワイヤの幅W方向をWTe結晶のa軸方向とし、a軸方向の単位格子数を制御することで、稜線に現れるギャップレス状態20以外の伝導モードの発生を抑制でき、マヨラナ粒子22の発現の切り分けが可能となることが言える。また、自然酸化は表面の数層で止まって内部は酸化されないことから、ナノワイヤ状の多層WTe層を用いることで酸化の影響も受け難くなることが言える。したがって、トポロジカル絶縁体の材料としてナノワイヤ状の多層WTe層は好適であることが言える。以下の実施例1に、ナノワイヤ状の多層のWTe層を用いたトポロジカル絶縁体の例を示す。 From this result, when using a nanowire-shaped multilayer WTe2 layer as a material for a topological insulator, by setting the width W direction of the nanowire as the a-axis direction of the WTe2 crystal and controlling the number of unit cells in the a-axis direction, It can be said that the occurrence of conduction modes other than the gapless state 20 appearing on the ridgeline can be suppressed, and the occurrence of the Majorana grains 22 can be separated. In addition, since the natural oxidation stops at a few layers on the surface and the inside is not oxidized, it can be said that the use of the nanowire-like multilayer WTe 2 layer makes it less susceptible to oxidation. Therefore, it can be said that the nanowire-like multilayer WTe 2 layer is suitable as a material for the topological insulator. Example 1 below provides an example of a topological insulator using nanowire-like multilayer WTe 2 layers.
 図11(a)は、実施例1に係るトポロジカル絶縁体100を示す透視斜視図、図11(b)は、図11(a)のA-A断面図、図11(c)は、図11(a)のB-B断面図である。図11(a)から図11(c)のように、トポロジカル絶縁体100は、ナノワイヤ状のWTe層である第1領域10と、第1領域10の表面に形成された酸化層である第2領域12と、を備える。第1領域10は、長さLの方向である第1方向に延在し、第1方向に交差(例えば直交)する第2方向が幅Wの方向となる。第1領域10の幅Wの方向はWTe結晶のa軸方向であり、長さLの方向はb軸方向である。第2領域12は、第1領域10の表面が自然酸化されることで形成されている。第2領域12は、例えば酸化タングステン(WO)および/または酸化テルル(TeO)により形成されている。多層のWTe層を用いることで、自然酸化は表面だけにとどまり、内部はWTe層を維持する。このため、内部はWTeを含む第1領域10となり、第1領域10の表面にWTeの酸化物を含む第2領域12が形成されたトポロジカル絶縁体100が得られる。第2領域12は、第1領域10の上面、下面、および側面の全てに形成される場合に限られず、いずれかの面には形成されていない場合でもよい。 11(a) is a see-through perspective view showing the topological insulator 100 according to Example 1, FIG. 11(b) is a cross-sectional view along line AA of FIG. 11(a), and FIG. 11(c) is a cross-sectional view of FIG. It is a BB sectional view of (a). As shown in FIGS. 11( a ) to 11 ( c ), the topological insulator 100 includes a first region 10 that is a nanowire-shaped WTe 2 layer and a second region 10 that is an oxide layer formed on the surface of the first region 10 . 2 regions 12; The first region 10 extends in a first direction that is the direction of length L, and a second direction that intersects (for example, is perpendicular to) the first direction is the direction of width W. As shown in FIG. The direction of the width W of the first region 10 is the a-axis direction of the WTe2 crystal, and the direction of the length L is the b-axis direction. The second region 12 is formed by naturally oxidizing the surface of the first region 10 . The second region 12 is made of tungsten oxide (WO 3 ) and/or tellurium oxide (TeO 2 ), for example. By using multiple layers of WTe 2 layers, the native oxidation remains only on the surface and the interior retains the WTe 2 layers. Therefore, the topological insulator 100 is obtained in which the inside becomes the first region 10 containing WTe 2 and the second region 12 containing the oxide of WTe 2 is formed on the surface of the first region 10 . The second region 12 is not limited to being formed on all of the top surface, bottom surface, and side surfaces of the first region 10, and may not be formed on any of the surfaces.
 WTeを含む第1領域10は、図6(a)から図9(b)のシミュレーション結果のように、幅Wに応じて電気的性質が変化する。第1領域10の幅Wは、図6(a)から図9(b)のシミュレーション結果から、a軸方向の単位格子40の数が9以下である場合が好ましい。a軸方向の単位格子40の数が9個のときの長さは3.1nmであることから、第1領域10の幅Wは3.1nm以下である場合が好ましい。このような幅Wを有することで、第1領域10は半導体の性質を示すようになる。第2領域12の厚さは、第1領域10の上面、下面、および側面のいずれにおいても2~3nm程度である。したがって、幅が7~9nm程度以下のWTe層を作製することで、WTeを含み、3.1nm以下の幅Wを有する第1領域10と、第1領域10の表面に設けられ、WTeの酸化物を含み、2~3nm程度の厚さの第2領域12と、を備えるトポロジカル絶縁体100が得られる。すなわち、トポロジカル絶縁体100の幅は7~9nm程度以下である。 The electrical properties of the first region 10 containing WTe 2 change according to the width W, as shown in the simulation results of FIGS. 6(a) to 9(b). From the simulation results of FIGS. 6A to 9B, the width W of the first region 10 is preferably such that the number of unit cells 40 in the a-axis direction is 9 or less. Since the length is 3.1 nm when the number of unit cells 40 in the a-axis direction is nine, the width W of the first region 10 is preferably 3.1 nm or less. By having such a width W, the first region 10 exhibits properties of a semiconductor. The thickness of the second region 12 is approximately 2 to 3 nm on all of the top surface, bottom surface and side surfaces of the first region 10 . Therefore, by manufacturing a WTe 2 layer having a width of about 7 to 9 nm or less, the first region 10 including WTe 2 and having a width W of 3.1 nm or less and provided on the surface of the first region 10, WTe 2 and a second region 12 having a thickness of the order of 2-3 nm. That is, the width of the topological insulator 100 is about 7 to 9 nm or less.
 第1領域10の厚さTは、WTeの1層分の厚さ以上あればよく、7.07Å以上であればよい。したがって、トポロジカル絶縁体100の厚さは、第1領域10の上面と下面の両方に第2領域12が形成されている場合は4.1~6.1nm程度以上となり、一方のみに形成されている場合は2.1~3.1nm程度以上となる。第1領域10の厚さTの上限は、製造が可能な範囲であればよい。例えば、後述する製造方法のように、パターニングのためのレジスト膜に水素シルセスキオキサンを主成分とする膜を用いる場合、パターニングのアスペクト比は50:1程度である。この場合、第1領域10の厚さTの上限は500nm程度となる。第1領域10の長さLは特に限定はない。 The thickness T of the first region 10 may be equal to or greater than the thickness of one layer of WTe 2 , and may be equal to or greater than 7.07 Å. Therefore, the thickness of the topological insulator 100 is about 4.1 to 6.1 nm or more when the second region 12 is formed on both the upper surface and the lower surface of the first region 10, and is formed only on one side. If there is, it will be about 2.1 to 3.1 nm or more. The upper limit of the thickness T of the first region 10 may be within a range in which manufacturing is possible. For example, when a film containing hydrogen silsesquioxane as a main component is used as a resist film for patterning, as in the manufacturing method described later, the aspect ratio of patterning is about 50:1. In this case, the upper limit of the thickness T of the first region 10 is approximately 500 nm. The length L of the first region 10 is not particularly limited.
[製造方法]
 図12(a)から図12(c)は、実施例1に係るトポロジカル絶縁体100の製造方法を示す斜視図である。図12(a)のように、不活性雰囲気下において、WTeの単結晶に対してテープ剥離を繰り返すことで薄層化し、一時的に保持基板上に貼り付ける。そして、保持基板上に貼り付けたWTeの中から所望の結晶を有するWTe膜86を、例えばポリカーボネート膜84を接着層として用いてガラス基板82によりピックアップする。
[Production method]
12A to 12C are perspective views showing a method of manufacturing the topological insulator 100 according to the first embodiment. As shown in FIG. 12(a), the WTe 2 single crystal is thinned by repeating tape peeling under an inert atmosphere, and is temporarily attached to a holding substrate. A WTe 2 film 86 having desired crystals is picked up from the WTe 2 stuck on the holding substrate by the glass substrate 82 using, for example, a polycarbonate film 84 as an adhesive layer.
 図12(b)のように、ガラス基板82を用いてピックアップしたWTe膜86を絶縁性の基板80上に貼り付ける。このときに、WTe結晶は長手方向がa軸と並行になり易い性質を利用して、結晶方位が所望の方向に合うように貼り付ける。なお、基板80上へのWTe膜86の形成は、分子線エピタキシー法またはパルスレーザー堆積法等を用いてもよい As shown in FIG. 12B, a WTe 2 film 86 picked up using a glass substrate 82 is adhered onto an insulating substrate 80 . At this time, the WTe 2 crystal is attached so that the crystal orientation matches the desired direction by utilizing the property that the longitudinal direction of the WTe 2 crystal tends to be parallel to the a-axis. The formation of the WTe 2 film 86 on the substrate 80 may be performed using a molecular beam epitaxy method, a pulsed laser deposition method, or the like.
 図12(c)のように、電子ビーム露光を用いたフォトリソグラフィ法および反応性イオンエッチングを用いたエッチング法によりWTe膜86をパターニングしてパターン87を形成する。パターン87は、第1方向に延在し、第2方向が幅の方向となる。フォトリソグラフィ法では例えば水素シルセスキオキサンを主成分とするレジスト膜を用い、反応性イオンエッチングでは例えばエッチングガスとしてフッ化炭素系ガスを用いる。このとき、パターン87の幅が7~9nm以下となるようにパターニングする。パターン87の表面は自然酸化される。これにより、図11(a)のように、幅Wが3.1nm以下のナノワイヤ状であり、WTeを含む第1領域10と、第1領域10の表面に形成され、WTeの酸化物を含む第2領域12と、を有するトポロジカル絶縁体100が形成される。図12(b)におけるWTe膜86の基板80への貼り付けにおいて、トポロジカル絶縁体100の長さLの方向がWTeの結晶軸方位のb軸方向となり、幅Wの方向がa軸方向となるようにする。 As shown in FIG. 12C, the WTe2 film 86 is patterned to form a pattern 87 by photolithography using electron beam exposure and etching using reactive ion etching. The pattern 87 extends in the first direction and the second direction is the width direction. In the photolithography method, for example, a resist film containing hydrogen silsesquioxane as a main component is used, and in the reactive ion etching method, for example, a fluorocarbon gas is used as an etching gas. At this time, patterning is performed so that the width of the pattern 87 is 7 to 9 nm or less. The surface of pattern 87 is naturally oxidized. As a result, as shown in FIG. 11A, a first region 10 having a nanowire shape with a width W of 3.1 nm or less and containing WTe 2 and an oxide of WTe 2 formed on the surface of the first region 10 A topological insulator 100 is formed having a second region 12 comprising: In attaching the WTe2 film 86 to the substrate 80 in FIG. 12(b), the direction of the length L of the topological insulator 100 is the b-axis direction of the crystallographic orientation of WTe2 , and the direction of the width W is the a-axis direction. so that
 実施例1によれば、トポロジカル絶縁体100は、電気的性質が幅に応じて変化する材料を含み、第1方向に延在する第1領域10と、第1領域10の表面に設けられ、第1領域10に含まれる材料の酸化物を含む第2領域12と、を備える。そして、第1領域10は、第1領域10の電気的性質が半導体の性質となる幅Wを有する。これにより、第1領域10は、稜線に現れるギャップレス状態以外の伝導モードの発生が抑制される。また、自然酸化の影響は第2領域12で止まっているため、第1領域10は酸化の影響を受けることが抑制される。したがって、ギャップレス状態が出現することと、内部の伝導モードの発生が抑制されることと、の両方を実現することができる。 According to Example 1, the topological insulator 100 includes a material whose electrical properties change according to the width, the first region 10 extending in the first direction, and provided on the surface of the first region 10, and a second region 12 comprising an oxide of the material contained in the first region 10 . The first region 10 has a width W such that the electrical properties of the first region 10 are those of a semiconductor. As a result, the first region 10 suppresses the occurrence of conduction modes other than the gapless state appearing on the ridgeline. Further, since the influence of natural oxidation stops at the second region 12, the influence of oxidation on the first region 10 is suppressed. Therefore, it is possible to achieve both the emergence of a gapless state and the suppression of the occurrence of internal conduction modes.
 また、実施例1では、第1領域10に含まれる電気的性質が幅に応じて変化する材料はWTeである。図6(a)から図9(b)のシミュレーション結果のように、WTeは幅に応じて電気的性質が変化し、所定の幅の場合に半導体の性質を示すようになる。したがって、第1領域10に含まれる電気的性質が幅に応じて変化する材料にWTeを用いることで、ギャップレス状態の出現と内部の伝導モードの発生の抑制とを実現することができる。 Further, in Example 1, the material included in the first region 10 whose electrical properties change according to the width is WTe2 . As shown in the simulation results of FIGS. 6(a) to 9(b), the electrical properties of WTe 2 change according to the width, exhibiting the properties of a semiconductor at a given width. Therefore, by using WTe 2 as the material contained in the first region 10 whose electrical properties change according to the width, it is possible to realize the appearance of the gapless state and the suppression of the occurrence of the internal conduction mode.
 また、実施例1では、WTeを含む第1領域10の幅Wは3.1nm以下である。このとき、第1領域10の幅Wの方向はWTeのa軸方向であり、a軸方向におけるWTeの単位格子40の数は9以下である。これにより、図6(a)から図9(b)のシミュレーション結果のように、半導体の性質を示す第1領域10を得ることができる。第1領域10が半導体の性質を示すようになる点から、図10のように、第1領域10の幅Wの方向であるa軸方向におけるWTeの単位格子40の数は7以下の場合が好ましく、4以下の場合がより好ましい。a軸方向におけるWTeの単位格子40の数が7個のときの長さは2.41nmで、4個のときの長さは1.38nmある。したがって、第1領域10の幅Wは2.41nm以下の場合が好ましく、1.38nm以下がより好ましい。 Further, in Example 1, the width W of the first region 10 containing WTe 2 is 3.1 nm or less. At this time, the direction of the width W of the first region 10 is the a-axis direction of WTe 2 , and the number of unit cells 40 of WTe 2 in the a-axis direction is 9 or less. As a result, the first region 10 exhibiting semiconductor properties can be obtained as shown in the simulation results of FIGS. 6(a) to 9(b). From the point that the first region 10 exhibits semiconductor properties, as shown in FIG . is preferred, and 4 or less is more preferred. The length is 2.41 nm when the number of WTe 2 unit cells 40 in the a-axis direction is seven, and the length is 1.38 nm when the number is four. Therefore, the width W of the first region 10 is preferably 2.41 nm or less, more preferably 1.38 nm or less.
 また、実施例1では、第1領域10の厚さTは、WTeの1層分の厚さ以上であり、7.07Å以上である。これにより、ギャップレス状態の出現と内部の伝導モードの発生の抑制とを実現することができる。 In addition, in Example 1, the thickness T of the first region 10 is equal to or greater than the thickness of one layer of WTe 2 and equal to or greater than 7.07 Å. As a result, it is possible to realize the appearance of the gapless state and the suppression of the occurrence of the internal conduction mode.
 また、実施例1では、第1領域10の長さLの方向はWTeの結晶方位のb軸方向である。ナノワイヤ状のWTeでは、結晶方位のb軸方向において稜線にギャップレス状態が現れる。このため、第1領域10の長さLの方向をWTeの結晶方位のb軸方向とすることで、マヨラナ粒子を発現させるためのs波超伝導体層を接触させ易くなる。 In Example 1, the direction of the length L of the first region 10 is the b-axis direction of the crystal orientation of WTe2 . In the nanowire-like WTe2 , a gapless state appears at the ridgeline in the b-axis direction of the crystal orientation. Therefore, by setting the direction of the length L of the first region 10 to the b-axis direction of the crystal orientation of WTe 2 , it becomes easier to contact the s-wave superconductor layer for developing Majorana grains.
 実施例1の製造方法によれば、基板80上に電気的性質が幅に応じて変化する材料であるWTe膜86を形成する(図12(b))。WTe膜86をパターニングして、第1方向に延在するパターン87を形成する(図12(c))。パターン87の表面を酸化させてWTeの酸化物を形成する。この酸化物を形成するときに、WTeが酸化されていない領域(図11(a)の第1領域10)の幅Wを、WTeの電気的性質が半導体の性質となる幅とする。これにより、ギャップレス状態が出現されるとともに、内部の伝導モードの発生が抑制されたトポロジカル絶縁体100が得られる。 According to the manufacturing method of Example 1, the WTe2 film 86, which is a material whose electrical properties change according to the width, is formed on the substrate 80 (FIG. 12(b)). The WTe2 film 86 is patterned to form a pattern 87 extending in the first direction (FIG. 12(c)). The surface of pattern 87 is oxidized to form an oxide of WTe2 . When forming this oxide, the width W of the region where the WTe 2 is not oxidized (the first region 10 in FIG. 11(a)) is the width where the electrical properties of the WTe 2 are those of a semiconductor. As a result, the topological insulator 100 in which the gapless state appears and the generation of the internal conduction mode is suppressed is obtained.
 図13は、実施例2に係る量子ビット200を示す斜視図である。図13のように、量子ビット200は、第1方向に延在したナノワイヤ状のマヨラナ粒子担体層50と、第2方向に長手方向を有するバルク状のマヨラナ粒子担体層52と、s波超伝導体層60~64と、磁性体層70~76と、を備える。第1方向と第2方向は交差し、例えば直交している。s波超伝導体層60~64は、例えば厚さが30~50nmのアルミニウム(Al)層またはニオブ(Nb)層である。磁性体層70~76は、例えば厚さが30~50nmの鉄(Fe)層、ニッケル(Ni)層、またはコバルト(Co)層である。なお、これらは基板上に設けられているが、基板については図の明瞭化のために図示を省略している。 FIG. 13 is a perspective view showing a quantum bit 200 according to Example 2. FIG. As shown in FIG. 13, a qubit 200 includes a nanowire-like Majorana particle carrier layer 50 extending in a first direction, a bulk Majorana particle carrier layer 52 having a longitudinal direction in a second direction, and an s-wave superconducting It includes body layers 60-64 and magnetic layers 70-76. The first direction and the second direction intersect, for example, orthogonally. The s-wave superconductor layers 60-64 are, for example, aluminum (Al) or niobium (Nb) layers with a thickness of 30-50 nm. The magnetic layers 70-76 are, for example, iron (Fe) layers, nickel (Ni) layers, or cobalt (Co) layers with a thickness of 30-50 nm. Although these are provided on a substrate, illustration of the substrate is omitted for clarity of the drawing.
 マヨラナ粒子担体層50は、ナノワイヤ状のトポロジカル絶縁体であり、WTeを含み、第1方向に延在するナノワイヤ状の第1領域10と、第1領域10の表面に設けられ、WTeの酸化物を含む第2領域12と、を有する。第2領域12は、第1領域10の側面および上面に形成されている。第1領域10は、実施例1に記載したように、半導体の性質を示す幅を有する。すなわち、第1領域10は、幅の方向(第2方向)がWTeの結晶方位のa軸方向であってa軸方向における単位格子40の数が9個以下であり、3.1nm以下の幅を有する。第1領域10の厚さは、実施例1に記載したように、WTeの1層分の厚さ以上あればよく、7.07Å以上であればよい。マヨラナ粒子担体層50は、長さ方向である第1方向がWTeの結晶方位のb軸方向であり、幅方向である第2方向がa軸方向であることから、第1領域10の第1方向に伸びた稜線に一次元状のギャップレス状態が現れる。 The Majorana particle carrier layer 50 is a nanowire-shaped topological insulator, contains WTe 2 and extends in a first direction, and has a nanowire-shaped first region 10 provided on the surface of the first region 10 and containing WTe 2 . and a second region 12 comprising oxide. The second region 12 is formed on the side and top surfaces of the first region 10 . The first region 10, as described in Example 1, has a width exhibiting semiconductor properties. That is, in the first region 10, the width direction (second direction) is the a-axis direction of the crystal orientation of WTe 2 , the number of unit cells 40 in the a-axis direction is 9 or less, and the width is 3.1 nm or less. have width. As described in Example 1, the thickness of the first region 10 may be equal to or greater than the thickness of one layer of WTe 2 , and may be equal to or greater than 7.07 Å. In the Majorana grain carrier layer 50, the first direction, which is the length direction, is the b-axis direction of the crystal orientation of WTe 2 , and the second direction, which is the width direction, is the a-axis direction. A one-dimensional gapless state appears on the ridge extending in one direction.
 s波超伝導体層60と磁性体層70は、マヨラナ粒子担体層50の下面に接触して設けられている。s波超伝導体層60と磁性体層70の幅は、マヨラナ粒子担体層50の幅よりも大きい。これにより、図2(b)に示したように、第1領域10の稜線に現れるギャップレス状態におけるs波超伝導体層60の近傍にマヨラナ粒子が発現する。例えば、s波超伝導体層60をアースに接続するスイッチのオン、オフによりマヨラナ粒子の発現を制御することができる。磁性体層70は、マヨラナ粒子の影響が他の位置に出現したマヨラナ粒子に及ぼすことを抑制するために設けられている。 The s-wave superconductor layer 60 and the magnetic layer 70 are provided in contact with the lower surface of the Majorana particle carrier layer 50 . The width of the s-wave superconductor layer 60 and the magnetic layer 70 is greater than the width of the Majorana grain carrier layer 50 . As a result, as shown in FIG. 2B, Majorana grains appear in the vicinity of the s-wave superconductor layer 60 in the gapless state appearing on the ridgeline of the first region 10 . For example, the on and off of a switch connecting the s-wave superconductor layer 60 to ground can control the development of Majorana particles. The magnetic layer 70 is provided to suppress the influence of the Majorana grains on the Majorana grains appearing at other positions.
 マヨラナ粒子担体層52は、バルク状のトポロジカル絶縁体であり、バルク単結晶のWTe層であって第2方向に長さ方向を有する第3領域54と、第3領域54の表面に設けられ、WTeの酸化物を含む第4領域56と、を有する。第4領域56は、第3領域54の側面および上面に形成されている。マヨラナ粒子担体層52の第2方向に伸びた側面に、マヨラナ粒子担体層50の一端が接続されている。マヨラナ粒子担体層52において、長さ方向である第2方向はWTeの結晶方位のa軸方向である。バルク単結晶のWTeでは、WTeの結晶方位のa軸方向に伸びた稜線に一次元状のギャップレス状態が現れる。したがって、第3領域54の第2方向に伸びた稜線に一次元状のギャップレス状態が現れる。 The Majorana grain carrier layer 52 is a bulk topological insulator, and is a bulk single crystal WTe 2 layer having a length direction in the second direction and a third region 54 provided on the surface of the third region 54 . , and a fourth region 56 comprising an oxide of WTe2 . The fourth region 56 is formed on the side and top surfaces of the third region 54 . One end of the Majorana particle carrier layer 50 is connected to the side surface of the Majorana particle carrier layer 52 extending in the second direction. In the Majorana grain carrier layer 52, the second longitudinal direction is the a-axis direction of the crystal orientation of WTe2 . In bulk single crystal WTe 2 , a one-dimensional gapless state appears on the ridge extending in the a-axis direction of the crystal orientation of WTe 2 . Therefore, a one-dimensional gapless state appears on the ridge extending in the second direction of the third region 54 .
 s波超伝導体層62、64と磁性体層72~76は、マヨラナ粒子担体層52の下面に接触して設けられている。s波超伝導体層62、64と磁性体層72、74は、マヨラナ粒子担体層52の側面よりも外側に突出して設けられている。したがって、図2(b)に示したように、第3領域54の第2方向に伸びた稜線に現れるギャップレス状態におけるs波超伝導体層62、64の近傍にマヨラナ粒子が発現する。例えば、s波超伝導体層62、64をアースに接続するスイッチのオン、オフによりマヨラナ粒子の発現を制御することができる。s波超伝導体層62とs波超伝導体層64は、例えば、第2方向においてマヨラナ粒子担体層50がマヨラナ粒子担体層52に接続する部分を挟むように設けられている。磁性体層72~76は、磁性体層70と同じく、マヨラナ粒子の影響が他の位置に出現したマヨラナ粒子に及ぼすことを抑制するために設けられている。 The s-wave superconductor layers 62 and 64 and the magnetic layers 72 to 76 are provided in contact with the lower surface of the Majorana particle carrier layer 52 . The s-wave superconductor layers 62 and 64 and the magnetic layers 72 and 74 are provided so as to protrude outward from the side surfaces of the Majorana particle carrier layer 52 . Therefore, as shown in FIG. 2(b), Majorana grains appear in the vicinity of the s-wave superconductor layers 62 and 64 in the gapless state appearing on the ridgeline extending in the second direction of the third region 54. FIG. For example, the on and off of switches connecting the s-wave superconductor layers 62, 64 to ground can control the development of Majorana particles. The s-wave superconductor layer 62 and the s-wave superconductor layer 64 are provided, for example, so as to sandwich the portion where the Majorana particle carrier layer 50 connects to the Majorana particle carrier layer 52 in the second direction. The magnetic layers 72 to 76, like the magnetic layer 70, are provided to suppress the influence of the Majorana grains on the Majorana grains appearing at other positions.
[製造方法]
 図14(a)から図15(b)は、実施例2に係る量子ビット200の製造方法を示す斜視図である。図14(a)のように、絶縁性の基板80上に、例えばリフトオフ法を用いて磁性体層70~76を形成する。図14(b)のように、基板80上に、例えばリフトオフ法を用いてs波超伝導体層60~64を形成する。
[Production method]
14(a) to 15(b) are perspective views showing a method of manufacturing the quantum bit 200 according to the second embodiment. As shown in FIG. 14A, magnetic layers 70 to 76 are formed on an insulating substrate 80 using, for example, a lift-off method. As shown in FIG. 14B, s-wave superconductor layers 60 to 64 are formed on a substrate 80 using, for example, a lift-off method.
 図14(c)のように、不活性雰囲気下において、WTeの単結晶に対してテープ剥離を繰り返すことで薄層化し、一時的に保持基板上に貼り付ける。そして、保持基板上に貼り付けたWTeの中から所望の結晶を有するWTe膜86を、例えばポリカーボネート膜84を接着層として用いてガラス基板82によりピックアップする。 As shown in FIG. 14(c), the WTe 2 single crystal is thinned by repeating tape peeling under an inert atmosphere, and is temporarily attached to a holding substrate. A WTe 2 film 86 having desired crystals is picked up from the WTe 2 stuck on the holding substrate by the glass substrate 82 using, for example, a polycarbonate film 84 as an adhesive layer.
 図15(a)のように、ガラス基板82を用いてピックアップしたWTe膜86を、s波超伝導体層60~64および磁性体層70~76を覆うように基板80上に貼り付ける。このときに、WTe結晶のb軸方向が第1方向、a軸方向が第2方向となるように、結晶方位を合わせて貼り付ける。WTe結晶は長手方向がa軸と並行になり易い性質を利用する。 As shown in FIG. 15(a), a WTe 2 film 86 picked up using a glass substrate 82 is adhered onto the substrate 80 so as to cover the s-wave superconductor layers 60-64 and the magnetic layers 70-76. At this time, the crystal orientations of the WTe2 crystals are matched so that the b-axis direction is the first direction and the a-axis direction is the second direction. The WTe2 crystal utilizes the property that the longitudinal direction tends to be parallel to the a-axis.
 図15(b)のように、電子ビーム露光を用いたフォトリソグラフィ法および反応性イオンエッチングを用いたエッチング法によりWTe膜86をパターニングする。このとき、マヨラナ粒子担体層50においては、幅が7~9nm以下となるようにWTe膜86をパターニングする。パターニング後のWTe膜86の表面は自然酸化される。これにより、WTeを含み、第1方向に伸びて幅が3.1nm以下のナノワイヤ状の第1領域10と、第1領域10の表面に設けられ、WTeの酸化物を含む第2領域12と、を有するマヨラナ粒子担体層50が形成される(図13も参照)。また、第2方向に長さ方向を有するバルク単結晶のWTeである第3領域54と、第3領域54の表面に設けられ、WTeの酸化物を含む第4領域56と、を有するマヨラナ粒子担体層52が形成される(図13も参照)。第1方向はWTeの結晶方位のb軸方向であり、第2方向はa軸方向である。 As shown in FIG. 15B, the WTe2 film 86 is patterned by photolithography using electron beam exposure and etching using reactive ion etching. At this time, the WTe 2 film 86 is patterned so that the width of the Majorana particle carrier layer 50 is 7 to 9 nm or less. The surface of the WTe2 film 86 after patterning is naturally oxidized. As a result, a nanowire-shaped first region 10 containing WTe 2 and extending in the first direction and having a width of 3.1 nm or less, and a second region provided on the surface of the first region 10 and containing an oxide of WTe 2 12 and a Majorana grain carrier layer 50 is formed (see also FIG. 13). Further, it has a third region 54 which is bulk single crystal WTe 2 having a length direction in the second direction, and a fourth region 56 provided on the surface of the third region 54 and containing an oxide of WTe 2 . A Majorana grain carrier layer 52 is formed (see also FIG. 13). The first direction is the b-axis direction of the crystal orientation of WTe 2 and the second direction is the a-axis direction.
 図16(a)から図16(c)は、実施例2に係る量子ビット200の他の製造方法を示す斜視図である。図16(a)のように、絶縁性の基板80上に、例えばリフトオフ法を用いてs波超伝導体層60~64および磁性体層70~76を形成する。基板80には、WTeのエピ成長が可能な基板、例えば酸化マグネシウム(MgO)基板を用いる。 16(a) to 16(c) are perspective views showing another manufacturing method of the quantum bit 200 according to the second embodiment. As shown in FIG. 16A, s-wave superconductor layers 60 to 64 and magnetic layers 70 to 76 are formed on an insulating substrate 80 by using, for example, a lift-off method. A substrate on which WTe 2 can be epitaxially grown, such as a magnesium oxide (MgO) substrate, is used as the substrate 80 .
 図16(b)のように、基板80上に、例えば分子線エピタキシー法またはパルスレーザー堆積法を用いて、s波超伝導体層60~64および磁性体層70~76を覆うWTe膜86を形成する。これにより、第1方向に結晶方位のb軸方向、第2方向にa軸方向を有するWTe膜86が得られる。 As shown in FIG. 16(b), a WTe2 film 86 is deposited on the substrate 80 using, for example, molecular beam epitaxy or pulsed laser deposition to cover the s-wave superconductor layers 60-64 and the magnetic layers 70-76. to form As a result, a WTe 2 film 86 having the crystal orientation b-axis direction in the first direction and the crystal orientation a-axis direction in the second direction is obtained.
 図16(c)のように、電子ビーム露光を用いたフォトリソグラフィ法および反応性イオンエッチングを用いたエッチング法によりWTe膜86をパターニングする。このとき、マヨラナ粒子担体層50においては、幅が7~9nm以下となるようにWTe膜86をパターニングする。パターニング後のWTe膜86の表面は自然酸化される。これにより、WTeを含み、第1方向に伸びて幅が3.1nm以下のナノワイヤ状の第1領域10と、第1領域10の表面に設けられ、WTeの酸化物を含む第2領域12と、を有するマヨラナ粒子担体層50が形成される(図13も参照)。また、第2方向に長さ方向を有するバルク単結晶のWTeである第3領域54と、第3領域54の表面に設けられ、WTeの酸化物を含む第4領域56と、を有するマヨラナ粒子担体層52が形成される(図13も参照)。 As shown in FIG. 16C, the WTe2 film 86 is patterned by photolithography using electron beam exposure and etching using reactive ion etching. At this time, the WTe 2 film 86 is patterned so that the width of the Majorana particle carrier layer 50 is 7 to 9 nm or less. The surface of the WTe2 film 86 after patterning is naturally oxidized. As a result, a nanowire-shaped first region 10 containing WTe 2 and extending in the first direction and having a width of 3.1 nm or less, and a second region provided on the surface of the first region 10 and containing an oxide of WTe 2 12 and a Majorana grain carrier layer 50 is formed (see also FIG. 13). Further, it has a third region 54 which is bulk single crystal WTe 2 having a length direction in the second direction, and a fourth region 56 provided on the surface of the third region 54 and containing an oxide of WTe 2 . A Majorana grain carrier layer 52 is formed (see also FIG. 13).
 実施例2によれば、トポロジカル絶縁体を含み、第1方向に延在するマヨラナ粒子担体層50と、マヨラナ粒子担体層50に接触したs波超伝導体層60と、を備える。マヨラナ粒子担体層50は、電気的性質が幅に応じて変化する材料を含み、第1方向に延在する第1領域10と、第1領域10の表面に設けられ、第1領域10に含まれる材料の酸化物を含む第2領域12と、を備える。そして、第1領域10は、第1領域10の電気的性質が半導体の性質となる幅を有する。これにより、第1領域10は、稜線に現れるギャップレス状態以外の伝導モードの発生が抑制される。また、自然酸化の影響は第2領域12で止まっているため、第1領域10は酸化の影響を受けることが抑制される。したがって、マヨラナ粒子担体層50は、ギャップレス状態が出現されるとともに、内部の伝導モードの発生が抑制される。よって、ギャップレス状態が出現することでマヨラナ粒子の発現が可能になり、内部の伝導モードの発生が抑制されることでマヨラナ粒子の発現か否かを見分けることが可能となる。 According to the second embodiment, it includes a Majorana particle carrier layer 50 that includes a topological insulator and extends in the first direction, and an s-wave superconductor layer 60 that is in contact with the Majorana particle carrier layer 50 . The Majorana grain carrier layer 50 includes a material whose electrical properties change depending on the width, and includes a first region 10 extending in the first direction, and a material provided on the surface of the first region 10 and included in the first region 10 . and a second region 12 comprising an oxide of a material that can be deposited. The first region 10 has a width such that the electrical properties of the first region 10 are those of a semiconductor. As a result, the first region 10 suppresses the occurrence of conduction modes other than the gapless state appearing on the ridgeline. Further, since the influence of natural oxidation stops at the second region 12, the influence of oxidation on the first region 10 is suppressed. Therefore, in the Majorana grain carrier layer 50, a gapless state appears and the generation of internal conduction mode is suppressed. Therefore, the emergence of the gapless state enables the development of Majorana particles, and the suppression of the occurrence of the internal conduction mode makes it possible to distinguish whether Majorana particles are occurring or not.
 また、実施例2では、ナノワイヤ状のマヨラナ粒子担体層50に接続した、トポロジカル絶縁体であるバルク状のマヨラナ粒子担体層52と、マヨラナ粒子担体層52に接触したs波超伝導体層62、64と、を備える。ナノワイヤ状のマヨラナ粒子担体層50は第1方向に延在し、バルク状のマヨラナ粒子担体層52の長手方向は第1方向に交差(例えば直交)する第2方向である。バルク状のマヨラナ粒子担体層52は、ナノワイヤ状のマヨラナ粒子担体層50の第1領域10と同じ材料により形成されたバルク状の第3領域54と、第3領域54の表面に設けられ、第3領域54に含まれる材料の酸化物を含む第4領域56と、を備える。これにより、ナノワイヤ状のマヨラナ粒子担体層50に加えて、バルク状のマヨラナ粒子担体層52にもマヨラナ粒子を発現させることが可能となる。例えば、第1領域10と第3領域54が共にWTeを含み、マヨラナ粒子担体層50が延在した第1方向はWTeの結晶方位のb軸方向であり、マヨラナ粒子担体層52の長さ方向である第2方向はa軸方向である。この場合、マヨラナ粒子担体層50の第1方向に伸びた稜線にギャップレス状態が現れ、マヨラナ粒子担体層52の第2方向に伸びた稜線にギャップレス状態が現れるため、マヨラナ粒子を発現させ易くなる。 In addition, in Example 2, a bulk Majorana particle carrier layer 52 which is a topological insulator connected to the nanowire Majorana particle carrier layer 50, an s-wave superconductor layer 62 in contact with the Majorana particle carrier layer 52, 64 and. The nanowire-like Majorana particle carrier layer 50 extends in a first direction, and the longitudinal direction of the bulk Majorana particle carrier layer 52 is a second direction that intersects (eg, is perpendicular to) the first direction. The bulk Majorana particle carrier layer 52 includes a bulk third region 54 made of the same material as the first region 10 of the nanowire Majorana particle carrier layer 50, and provided on the surface of the third region 54. and a fourth region 56 comprising an oxide of the material contained in the third region 54 . Thereby, in addition to the nanowire-like Majorana particle carrier layer 50, it is possible to express Majorana particles in the bulk Majorana particle carrier layer 52 as well. For example, the first region 10 and the third region 54 both contain WTe 2 , the first direction in which the Majorana grain carrier layer 50 extends is the b-axis direction of the crystal orientation of WTe 2 , and the length of the Majorana grain carrier layer 52 The second direction, which is the longitudinal direction, is the a-axis direction. In this case, a gapless state appears on the ridgeline of the Majorana particle carrier layer 50 extending in the first direction, and a gapless state appears on the ridgeline of the Majorana particle carrier layer 52 extending in the second direction.
 また、実施例2の製造方法によれば、基板80上にパターン化したs波超伝導体層60~62を形成する(図14(b)、図16(a))。s波超伝導体層60~62を覆うように、基板80上に電気的性質が幅に応じて変化する材料であるWTe膜86を形成する(図15(a)、図16(b))。WTe膜86をパターニングして、s波超伝導体層60に接触したトポロジカル絶縁体であるマヨラナ粒子担体層50を形成する(図15(b)、図16(c))。マヨラナ粒子担体層50は、電気的性質が幅に応じて変化する材料であるWTeを含み、半導体の性質となる幅を有し、第1方向に延在する第1領域10と、第1領域10の表面に設けられ、WTeの酸化物を含む第2領域12と、を有する(図13)。これにより、ギャップレス状態が出現されるとともに、内部の伝導モードの発生が抑制されたマヨラナ粒子担体層50が得られる。よって、マヨラナ粒子の発現が可能になるとともに、マヨラナ粒子の発現か否かを見分けることも可能となる。 Further, according to the manufacturing method of Example 2, the patterned s-wave superconductor layers 60 to 62 are formed on the substrate 80 (FIGS. 14(b) and 16(a)). A WTe 2 film 86, which is a material whose electrical properties change depending on the width, is formed on the substrate 80 so as to cover the s-wave superconductor layers 60 to 62 (FIGS. 15(a) and 16(b)). ). The WTe2 film 86 is patterned to form the Majorana grain carrier layer 50, which is a topological insulator in contact with the s-wave superconductor layer 60 (FIGS. 15(b) and 16(c)). The Majorana grain carrier layer 50 includes a first region 10 that includes WTe 2 , a material whose electrical properties vary according to width, has a width that is semiconducting, and extends in a first direction; a second region 12 provided on the surface of the region 10 and comprising an oxide of WTe2 (FIG. 13). Thereby, a gapless state appears and the Majorana grain carrier layer 50 in which the generation of the internal conduction mode is suppressed is obtained. Therefore, it becomes possible to express Majorana particles, and it is also possible to distinguish whether Majorana particles are expressed or not.
[変形例]
 図17は、実施例2の変形例に係る量子ビット210を示す斜視図である。図17のように、量子ビット210は、第1方向に延在したナノワイヤ状のマヨラナ粒子担体層50と、第1方向に交差(例えば直交)する第3方向に延在したナノワイヤ状のマヨラナ粒子担体層50aと、s波超伝導体層60~66と、磁性体層70~76と、を備える。なお、これらは基板上に設けられているが、基板については図の明瞭化のために図示を省略している。また、第3方向は実施例2の第2方向と同じ方向でもよいし異なる方向でもよい。
[Modification]
FIG. 17 is a perspective view showing a quantum bit 210 according to a modified example of the second embodiment. As shown in FIG. 17, a qubit 210 includes a nanowire-shaped Majorana particle carrier layer 50 extending in a first direction and a nanowire-shaped Majorana particle carrier layer 50 extending in a third direction that intersects (for example, is perpendicular to) the first direction. It includes a carrier layer 50a, s-wave superconductor layers 60-66, and magnetic layers 70-76. Although these are provided on a substrate, illustration of the substrate is omitted for clarity of the drawing. Also, the third direction may be the same as or different from the second direction in the second embodiment.
 マヨラナ粒子担体層50は、上述したように、トポロジカル絶縁体であり、WTeを含み、第1方向に伸びるナノワイヤ状の第1領域10と、第1領域10の表面に設けられ、WTeの酸化物を含む第2領域12と、を有する。マヨラナ粒子担体層50aも同様に、トポロジカル絶縁体であり、WTeを含み、第3方向に伸びるナノワイヤ状の第1領域10aと、第1領域10aの表面に設けられ、WTeの酸化物を含む第2領域12aと、を有する。第1領域10、10aは、実施例1に記載したように、半導体の性質となる幅を有する。すなわち、第1領域10、10aは、幅方向の単位格子40の数が9個以下であり、3.1nm以下の幅を有する。第1領域10、10aの厚さは、実施例1に記載したように、WTeの1層分の厚さ以上あればよく、7.07Å以上であればよい。 As described above, the Majorana particle carrier layer 50 is a topological insulator containing WTe 2 and extending in the first direction. and a second region 12 comprising oxide. The Majorana particle carrier layer 50a is also a topological insulator and contains WTe 2 and extends in the third direction. and a second region 12a including. The first regions 10, 10a, as described in Example 1, have widths that are semiconductor in nature. That is, the first regions 10 and 10a have 9 or less unit cells 40 in the width direction and have a width of 3.1 nm or less. As described in the first embodiment, the thickness of the first regions 10 and 10a should be equal to or greater than the thickness of one layer of WTe 2 , and may be equal to or greater than 7.07 Å.
 s波超伝導体層60、66と磁性体層70、76は、マヨラナ粒子担体層50の下面に接触して設けられている。s波超伝導体層60、66と磁性体層70、76の幅は、マヨラナ粒子担体層50の幅よりも大きい。同様に、s波超伝導体層62、64と磁性体層72、74は、マヨラナ粒子担体層50aの下面に接触して設けられている。s波超伝導体層62、64と磁性体層72、74の幅は、マヨラナ粒子担体層50aの幅よりも大きい。これらにより、第1領域10、10aの稜線に現れるギャップレス状態におけるs波超伝導体層60~66の近傍にマヨラナ粒子が発現する。 The s-wave superconductor layers 60 and 66 and the magnetic layers 70 and 76 are provided in contact with the lower surface of the Majorana particle carrier layer 50 . The widths of the s-wave superconductor layers 60 , 66 and the magnetic layers 70 , 76 are greater than the width of the Majorana grain carrier layer 50 . Similarly, s-wave superconductor layers 62, 64 and magnetic layers 72, 74 are provided in contact with the lower surface of Majorana grain carrier layer 50a. The widths of the s-wave superconductor layers 62, 64 and the magnetic layers 72, 74 are greater than the width of the Majorana grain carrier layer 50a. As a result, Majorana grains appear in the vicinity of the s-wave superconductor layers 60 to 66 in the gapless state appearing on the ridgelines of the first regions 10 and 10a.
 実施例2の変形例の量子ビット210は、図14(a)から図16(c)で説明した実施例2の量子ビット200と同様の方法により製造することができる。 The quantum bit 210 of the modification of Example 2 can be manufactured by the same method as the quantum bit 200 of Example 2 described in FIGS. 14(a) to 16(c).
 実施例2の変形例では、第1方向に延在したナノワイヤ状のマヨラナ粒子担体層50と、第3方向にマヨラナ粒子担体層50に交差して延在したナノワイヤ状のマヨラナ粒子担体層50aと、を備える。この場合でも、マヨラナ粒子担体層50、50aは、ギャップレス状態が出現されるとともに、内部の伝導モードの発生が抑制されため、マヨラナ粒子の発現が可能になるとともに、マヨラナ粒子の発現か否かを見分けることが可能となる。 In the modification of the second embodiment, the nanowire-shaped Majorana particle carrier layer 50 extending in the first direction and the nanowire-shaped Majorana particle carrier layer 50a extending in the third direction crossing the Majorana particle carrier layer 50 are provided. , provided. Even in this case, the Majorana particle carrier layers 50 and 50a exhibit a gapless state and suppress the generation of the internal conduction mode, so that the Majorana particles can be developed and whether or not the Majorana particles are generated can be determined. It is possible to distinguish.
 なお、実施例1、実施例2およびその変形例において、第1領域10、10aは、幅に応じて電気的性質が変化し、所定の幅のときに半導体の性質を有する材料であれば、WTe以外の材料により形成されていてもよい。 In Examples 1 and 2 and their modifications, if the first regions 10 and 10a are made of a material whose electrical properties change according to the width and have semiconductor properties at a predetermined width, It may be formed of a material other than WTe2 .
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.
 10、10a 第1領域
 12、12a 第2領域
 20 ギャップレス状態
 22 マヨラナ粒子
 30 s波超伝導体
 40 単位格子
 50、50a マヨラナ粒子担体層
 52 マヨラナ粒子担体層
 54 第3領域
 56 第4領域
 60~64 s波超伝導体層
 70~76 磁性体層
 80 基板
 82 ガラス基板
 84 ポリカーボネート膜
 86 WTe
 100 トポロジカル絶縁体
 200、210 量子ビット
 500 単層のWTe
 600 多層のWTe
 700 バルク単結晶のWTe
 800 ナノワイヤ状のWTe
 
10, 10a first region 12, 12a second region 20 gapless state 22 Majorana particles 30 s-wave superconductor 40 unit lattice 50, 50a Majorana particle carrier layer 52 Majorana particle carrier layer 54 third region 56 fourth region 60-64 S-wave superconductor layer 70-76 Magnetic layer 80 Substrate 82 Glass substrate 84 Polycarbonate film 86 WTe 2 film 100 Topological insulator 200, 210 Qubit 500 Single layer WTe 2 layer 600 Multilayer WTe 2 layer 700 Bulk single crystal WTe bilayer of 800 Nanowire-like WTe bilayer

Claims (13)

  1.  電気的性質が幅に応じて変化する第1材料を含み、第1方向に延在する第1領域と、
     前記第1領域の表面に設けられ、前記第1材料の酸化物を含む第2領域と、を備え、
     前記第1領域は、前記第1領域の前記電気的性質が半導体の性質となる幅を有する、トポロジカル絶縁体。
    a first region that includes a first material whose electrical properties vary with width and that extends in a first direction;
    a second region provided on the surface of the first region and containing an oxide of the first material;
    The first region is a topological insulator having a width such that the electrical properties of the first region are those of a semiconductor.
  2.  前記第1材料は2テルル化タングステンである、請求項1に記載のトポロジカル絶縁体。 The topological insulator according to claim 1, wherein the first material is tungsten ditelluride.
  3.  前記第1領域の前記幅は3.1nm以下である、請求項2に記載のトポロジカル絶縁体。 The topological insulator according to claim 2, wherein the width of the first region is 3.1 nm or less.
  4.  前記第1領域の前記幅の方向は前記2テルル化タングステンの結晶方位のa軸方向であり、前記a軸方向における前記2テルル化タングステンの単位格子数は9以下である、請求項2または3に記載のトポロジカル絶縁体。 4. The direction of the width of the first region is the a-axis direction of the crystal orientation of the tungsten ditelluride, and the unit cell number of the tungsten ditelluride in the a-axis direction is 9 or less. The topological insulator described in .
  5.  前記第1領域の厚さは7.07Å以上である、請求項2から4のいずれか一項に記載のトポロジカル絶縁体。 The topological insulator according to any one of claims 2 to 4, wherein the first region has a thickness of 7.07 Å or more.
  6.  前記第1方向は前記2テルル化タングステンの結晶方位のb軸方向である、請求項2から5のいずれか一項に記載のトポロジカル絶縁体。 The topological insulator according to any one of claims 2 to 5, wherein the first direction is the b-axis direction of the crystal orientation of the tungsten ditelluride.
  7.  トポロジカル絶縁体を含み、第1方向に延在する第1マヨラナ粒子担体と、
     前記第1マヨラナ粒子担体に接触した超伝導体と、を備え、
     前記第1マヨラナ粒子担体は、
      電気的性質が幅に応じて変化する第1材料を含み、前記第1方向に延在する第1領域と、
      前記第1領域の表面に設けられ、前記第1材料の酸化物を含む第2領域と、を備え、
      前記第1領域は、前記第1領域の前記電気的性質が半導体の性質となる幅を有する、量子ビット。
    a first Majorana-grain carrier comprising a topological insulator and extending in a first direction;
    a superconductor in contact with the first Majorana particle carrier;
    The first Majorana particle carrier is
    a first region including a first material whose electrical properties vary with width and extending in the first direction;
    a second region provided on the surface of the first region and containing an oxide of the first material;
    The first region has a width such that the electrical property of the first region is a property of a semiconductor.
  8.  前記第1材料は2テルル化タングステンである、請求項7に記載の量子ビット。 The qubit according to claim 7, wherein the first material is tungsten ditelluride.
  9.  前記第1マヨラナ粒子担体に接続し、前記第1方向に交差する第2方向に延在するトポロジカル絶縁体を含む第2マヨラナ粒子担体と、
     前記第2マヨラナ粒子担体に接触した超伝導体と、を備え、
     前記第2マヨラナ粒子担体は、
      前記第1材料により形成された第3領域と、
      前記第3領域の表面に設けられ、前記第1材料の酸化物を含む第4領域と、を備える、請求項7または8に記載の量子ビット。
    a second Majorana-particle carrier including a topological insulator connected to the first Majorana-particle carrier and extending in a second direction intersecting the first direction;
    a superconductor in contact with the second Majorana particle carrier;
    The second Majorana particle carrier is
    a third region formed of the first material;
    9. A qubit according to claim 7 or 8, comprising a fourth region provided on the surface of said third region and comprising an oxide of said first material.
  10.  前記第1材料は2テルル化タングステンであり、
     前記第1方向は前記2テルル化タングステンの結晶方位のb軸方向であり、
     前記第2方向は前記2テルル化タングステンの結晶方位のa軸方向である、請求項9に記載の量子ビット。
    the first material is tungsten ditelluride;
    The first direction is the b-axis direction of the crystal orientation of the tungsten ditelluride,
    10. The qubit of claim 9, wherein the second direction is the crystal orientation a-axis direction of the tungsten ditelluride.
  11.  前記第1方向に交差する第3方向に前記第1マヨラナ粒子担体に交差して延在する第3マヨラナ粒子担体を備え、
     前記第3マヨラナ粒子担体は、
      前記第1材料を含み、前記第3方向に延在する第5領域と、
      前記第5領域の表面に設けられ、前記第1材料の酸化物を含む第6領域と、を備え、
      前記第5領域は、前記第5領域の前記電気的性質が半導体の性質となる幅を有する、請求項7または8に記載の量子ビット。
    a third Majorana particle carrier extending across the first Majorana particle carrier in a third direction that intersects the first direction;
    The third Majorana particle carrier is
    a fifth region including the first material and extending in the third direction;
    a sixth region provided on the surface of the fifth region and containing an oxide of the first material;
    9. The qubit according to claim 7 or 8, wherein the fifth region has a width such that the electrical properties of the fifth region are semiconductor properties.
  12.  基板上に電気的性質が幅に応じて変化する第1材料を含む膜を形成する工程と、
     前記膜をパターニングして、第1方向に延在する第1パターンを形成する工程と、
     前記第1パターンの表面を酸化させて前記第1材料の酸化物を形成する工程と、を備え、
     前記酸化物を形成する工程において、前記第1材料が酸化されていない領域の幅を、前記第1材料の前記電気的性質が半導体の性質となる幅とする、トポロジカル絶縁体の製造方法。
    forming on a substrate a film containing a first material whose electrical properties vary according to width;
    patterning the film to form a first pattern extending in a first direction;
    oxidizing the surface of the first pattern to form an oxide of the first material;
    The method of manufacturing a topological insulator, wherein in the step of forming the oxide, the width of the region where the first material is not oxidized is the width at which the electrical properties of the first material are those of a semiconductor.
  13.  基板上に第1方向に延在するトポロジカル絶縁体であるマヨラナ粒子担体を含む量子ビットを製造する方法であって、
     前記基板上にパターン化した超伝導体を形成する工程と、
     前記超伝導体を覆うように、前記基板上に電気的性質が幅に応じて変化する第1材料を含む膜を形成する工程と、
     前記膜をパターニングして、前記超伝導体に接触し、前記電気的性質が半導体の性質となる幅を有する前記第1材料を含む第1領域と、前記第1領域の表面に設けられ、前記第1材料の酸化物を含む第2領域とを有するトポロジカル絶縁体である前記マヨラナ粒子担体を形成する工程と、を備える量子ビットの製造方法。
    A method of fabricating a qubit comprising Majorana particle carriers that are topological insulators extending in a first direction over a substrate, comprising:
    forming a patterned superconductor on the substrate;
    forming a film comprising a first material whose electrical properties vary according to width on the substrate so as to cover the superconductor;
    A first region is formed by patterning the film to contact the superconductor and includes the first material having a width such that the electrical property is that of a semiconductor; and forming said Majorana particle carrier being a topological insulator having a second region comprising an oxide of a first material.
PCT/JP2022/003313 2022-01-28 2022-01-28 Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit WO2023144999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003313 WO2023144999A1 (en) 2022-01-28 2022-01-28 Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003313 WO2023144999A1 (en) 2022-01-28 2022-01-28 Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit

Publications (1)

Publication Number Publication Date
WO2023144999A1 true WO2023144999A1 (en) 2023-08-03

Family

ID=87470925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003313 WO2023144999A1 (en) 2022-01-28 2022-01-28 Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit

Country Status (1)

Country Link
WO (1) WO2023144999A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096107A (en) * 2018-12-13 2020-06-18 株式会社日立製作所 Quantum bit and control method thereof
US20210336119A1 (en) * 2017-07-07 2021-10-28 Microsoft Technology Licensing, Llc Use of selective hydrogen etching technique for building topological qubits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210336119A1 (en) * 2017-07-07 2021-10-28 Microsoft Technology Licensing, Llc Use of selective hydrogen etching technique for building topological qubits
JP2020096107A (en) * 2018-12-13 2020-06-18 株式会社日立製作所 Quantum bit and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOODS JOHN M., HYNEK DAVID, LIU PENGZI, LI MIN, CHA JUDY J.: "Synthesis of WTe 2 Nanowires with Increased Electron Scattering", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 6, 25 June 2019 (2019-06-25), US , pages 6455 - 6460, XP093081597, ISSN: 1936-0851, DOI: 10.1021/acsnano.8b09342 *

Similar Documents

Publication Publication Date Title
US6753546B2 (en) Trilayer heterostructure Josephson junctions
Yin et al. Emerging Versatile Two‐Dimensional MoSi2N4 Family
US20190131513A1 (en) A Manufacturing Method for a Nanostructured Device Using a Shadow Mask
Zhao et al. Stanene: A good platform for topological insulator and topological superconductor
Brahlek et al. Topological materials by molecular beam epitaxy
US7470925B2 (en) Magnetic body, magnetic device using the same, and method of manufacturing the same
EP4032132B1 (en) Durable hybrid heterostructures and methods for manufacturing the same
Ghazaryan et al. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity
JP3622147B2 (en) Superconducting thin film having columnar pinning center and manufacturing method thereof
Iqbal Spin-valve effect of 2D-materials based magnetic junctions
WO2023144999A1 (en) Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit
Zhang et al. Twist the doorknob to open the electronic properties of graphene-based van der Waals structure
Huang et al. Identifying the graphene d-wave superconducting symmetry by an anomalous splitting zero-bias conductance peak
US11342493B2 (en) High coherence, small footprint superconducting qubit made by stacking up atomically thin crystals
US20230329126A1 (en) Quantum bit circuit, quantum computer, method for manufacturing quantum bit circuit
EP4070383B1 (en) Semiconductor-ferromagnetic insulator-superconductor hybrid devices
Alvarado et al. Intrinsic nonmagnetic ϕ 0 Josephson junctions in twisted bilayer graphene
Li et al. Cluster-and energy-separated extreme states in a synthesized superatomic solid
Ying et al. Superconducting pairing symmetries of the Hubbard model on the honeycomb lattice with inhomogeneous hopping strength
WO2023047460A1 (en) Majorana quantum bit and quantum computer
Jyoko et al. Preparation of giant magnetoresistance Co‐Cu heterogeneous alloys by electrodeposition
WO2023047461A1 (en) Quantum bit, quantum computing device, and method for manufacturing quantum bit
WO2023095287A1 (en) Structure, quantum bit, quantum computing device, and method for manufacturing structure
Tsai et al. Topological phases of Quantum matter
WO2023223531A1 (en) Quantum device and method for manufacturing quantum device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023576516

Country of ref document: JP