WO2023047460A1 - Majorana quantum bit and quantum computer - Google Patents

Majorana quantum bit and quantum computer Download PDF

Info

Publication number
WO2023047460A1
WO2023047460A1 PCT/JP2021/034577 JP2021034577W WO2023047460A1 WO 2023047460 A1 WO2023047460 A1 WO 2023047460A1 JP 2021034577 W JP2021034577 W JP 2021034577W WO 2023047460 A1 WO2023047460 A1 WO 2023047460A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
topological insulator
edge
majorana
wave superconductor
Prior art date
Application number
PCT/JP2021/034577
Other languages
French (fr)
Japanese (ja)
Inventor
真名歩 大伴
研一 河口
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2023549194A priority Critical patent/JPWO2023047460A1/ja
Priority to PCT/JP2021/034577 priority patent/WO2023047460A1/en
Publication of WO2023047460A1 publication Critical patent/WO2023047460A1/en

Links

Images

Definitions

  • This disclosure relates to Majorana qubits and quantum computers.
  • a technique using a two-dimensional topological insulator has been proposed as a technique for generating Majorana particles.
  • an s-wave superconductor is brought into contact with a topological insulator, and Majorana particles are generated by tunneling Cooper pairs from the s-wave superconductor to the topological insulator.
  • the electronic state of the topological insulator may be damaged, and Majorana particles may not occur.
  • the purpose of the present disclosure is to provide a Majorana qubit and a quantum computer that can stably generate Majorana particles.
  • a first topological insulator layer with a first edge, a first s-wave superconductor layer, and between said first edge and said first s-wave superconductor layer: and a first layer capable of penetration of Cooper pairs from said first s-wave superconductor layer to said first edge by proximity effect.
  • Majorana particles can be stably generated.
  • FIG. 1 is a top view showing a quantum bit according to the first embodiment.
  • FIG. FIG. 2 is a cross-sectional view showing the quantum bit according to the first embodiment.
  • FIG. 3 shows the density of states of h-BN in contact with Nb.
  • FIG. 4 is a top view showing a quantum bit according to a reference example.
  • FIG. 5 is a cross-sectional view showing a quantum bit according to a reference example.
  • FIG. 6 is a diagram showing an intensity map of spectral weights of WTe 2 in the reference example.
  • FIG. 7 is a diagram showing band structures of WTe 2 and Nb in the reference example.
  • FIG. 8 shows the band structure of WTe 2 without external influences.
  • FIG. 9 is a perspective view showing a quantum bit according to the second embodiment.
  • FIG. 9 is a perspective view showing a quantum bit according to the second embodiment.
  • FIG. 10 is a top view showing a quantum bit according to the second embodiment.
  • FIG. 11 is a cross-sectional view (No. 1) showing the quantum bit according to the second embodiment.
  • FIG. 12 is a cross-sectional view (Part 2) showing the quantum bit according to the second embodiment.
  • FIG. 13 is a top view (No. 1) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 14 is a top view (No. 2) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 15 is a top view (No. 3) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 16 is a top view (No. 4) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 17 is a top view (No.).
  • FIG. 18 is a top view (No. 6) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 19 is a top view (No. 7) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 20 is a top view (No. 8) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 21 is a top view (No. 9) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 22 is a top view (No. 10) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 23 is a top view (No. 11) showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • FIG. 24 is a schematic diagram (Part 1) showing a method of manufacturing a quantum bit according to the third embodiment.
  • FIG. 25 is a schematic diagram (Part 2) showing the method of manufacturing the quantum bit according to the third embodiment.
  • FIG. 26 is a schematic diagram (No. 3) showing the method of manufacturing the quantum bit according to the third embodiment.
  • FIG. 27 is a schematic diagram (part 4) showing the method of manufacturing the quantum bit according to the third embodiment.
  • FIG. 28 is a schematic diagram (No. 5) showing the method of manufacturing the quantum bit according to the third embodiment.
  • FIG. 29 is a schematic diagram showing a quantum bit according to the fourth embodiment.
  • FIG. 30 is a diagram showing a quantum computer according to the fifth embodiment;
  • FIG. 31 is a schematic diagram showing a qubit including a higher topological insulator layer.
  • FIG. 1 is a top view showing a quantum bit according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the quantum bit according to the first embodiment.
  • FIG. 2 corresponds to a cross-sectional view taken along line II-II in FIG.
  • the quantum bit 1 has a topological insulator layer 10, an s-wave superconductor layer 20, and a cap layer 30, as shown in FIGS.
  • Topological insulator layer 10 comprises edge 11 .
  • the material of the topological insulator layer 10 is tungsten ditelluride (WTe 2 ).
  • the material of the s-wave superconductor layer 20 is Nb.
  • the material of the cap layer 30 is hexagonal boron nitride (h-BN).
  • a cap layer 30 is provided between the edge 11 and the s-wave superconductor layer 20 .
  • Cooper pair penetration from the s-wave superconductor layer 20 to the edge 11 is possible through the cap layer 30 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 20 to tunnel through the cap layer 30 and into the edge 11 .
  • the topological insulator layer 10 becomes functional as a topological superconductor layer.
  • Cap layer 30 directly contacts both topological insulator layer 10 and s-wave superconductor layer 20 .
  • the cap layer 30 is an example of the first layer.
  • h-BN itself, which is the material of the cap layer 30, is an insulator with a bandgap of about 6 eV.
  • a chemical bond occurs between h-BN and Nb, and the electronic state of h-BN changes to a metallic electronic state. become.
  • the shortest distance between Nb and h-BN is about 2.4 ⁇ .
  • FIG. 3 shows the density of state (DOS) of h-BN in contact with Nb.
  • DOS density of state
  • the shortest distance between WTe 2 and h-BN is about 3.0 ⁇ . Therefore, there is no chemical bond between the cap layer 30 and the topological insulator layer 10 , and the cap layer 30 is physically adsorbed to the topological insulator layer 10 .
  • the cap layer 30 and the topological insulator layer 10 may be van der Waals coupled to each other.
  • a suitable cap layer 30 is provided between the edge 11 of the topological insulator layer 10 and the s-wave superconductor layer 20, so that the topological insulator layer by the s-wave superconductor layer 20 Disturbance of the 10 electronic states can be suppressed, and Majorana particles can be stably generated.
  • the shortest distance between Nb and WTe2 is about 5.4 ⁇ .
  • the generated Majorana particles can be replaced, for example, by grounding or floating the s-wave superconductor layer 20 .
  • FIG. 4 is a top view showing a quantum bit according to a reference example.
  • FIG. 5 is a cross-sectional view showing a quantum bit according to a reference example.
  • FIG. 5 corresponds to a cross-sectional view taken along line V-V in FIG.
  • the quantum bit 9 according to the reference example does not have the cap layer 30, and the edge 11 of the topological insulator layer 10 and the s-wave superconductor layer 20 are in direct contact with each other. are doing.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 6 is a diagram showing an intensity map of spectral weights of WTe 2 in the reference example.
  • FIG. 7 is a diagram showing band structures of WTe 2 and Nb in the reference example.
  • FIG. 6 corresponds to extracting the contribution of WTe 2 in FIG. 7 as a weighting map.
  • FIG. 8 shows the band structure of WTe 2 without external influences.
  • the energy difference between the upper end of the valence band and the lower end of the conduction band is small in the pure WTe2 , which is free from external influences. Therefore, in this state, WTe 2 can stably function as a topological insulator.
  • WTe 2 when Nb and WTe2 are in direct contact with each other, the band structure of WTe2 is disturbed. Therefore, WTe 2 may not be able to function as a topological insulator. Therefore, in the quantum bit 9 according to the reference example, the electronic state of the topological insulator layer 10 may be damaged, and Majorana particles may not be generated.
  • the appropriate cap layer 30 since the appropriate cap layer 30 is provided, it is possible to suppress the disturbance of the electronic state of the topological insulator layer 10 due to the s-wave superconductor layer 20. It can generate Majorana Particles stably. If a layer serving as a barrier against the Cooper pairs is provided instead of the cap layer 30, the Cooper pairs cannot enter the topological insulator layer 10 and the Majorana particles cannot be generated.
  • FIG. 9 is a perspective view showing a quantum bit according to the second embodiment.
  • FIG. 10 is a top view showing a quantum bit according to the second embodiment.
  • 11 and 12 are cross-sectional views showing a quantum bit according to the second embodiment.
  • FIG. 11 corresponds to a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 corresponds to a cross-sectional view taken along line XII-XII in FIG.
  • the qubit 2 includes a substrate 110, a lower topological insulator layer 121 extending in the Y-axis direction, and an upper topological insulator layer 122 extending in the X-axis direction.
  • the substrate 110 is an insulating substrate such as an alumina substrate or a sapphire substrate.
  • the X-axis direction and the Y-axis direction are directions orthogonal to the Z-axis direction perpendicular to the surface of the substrate 110 .
  • the Y-axis direction intersects the X-axis direction, for example, the X-axis direction and the Y-axis direction are orthogonal to each other. In the present disclosure, viewing an object from the Z-axis direction may be referred to as planar viewing.
  • the Y-axis direction is an example of a first direction
  • the X-axis direction is an example of a second direction.
  • the lower topological insulator layer 121 is, for example, a two-dimensional topological insulator layer and has a first edge 161 and a third edge 163 extending in the Y-axis direction. The first edge 161 is located on the +X side of the third edge 163 .
  • the lower topological insulator layer 121 may be composed of a single two-dimensional topological insulator, or may be composed of a plurality of stacked two-dimensional topological insulators.
  • the material of the lower topological insulator layer 121 is, for example, tungsten ditelluride (WTe 2 ).
  • WTe 2 tungsten ditelluride
  • a plurality of lower topological insulator layers 121 may be arranged side by side in the X-axis direction.
  • the lower topological insulator layer 121 is an example of a first topological insulator layer.
  • the upper topological insulator layer 122 is, for example, a two-dimensional topological insulator layer and has a second edge 162 and a fourth edge 164 extending in the X-axis direction. The second edge 162 is located on the +Y side of the fourth edge 164 .
  • the upper topological insulator layer 122 may be composed of a single two-dimensional topological insulator, or may be composed of a plurality of stacked two-dimensional topological insulators.
  • the material of the upper topological insulator layer 122 is, for example, tungsten ditelluride (WTe 2 ).
  • WTe 2 tungsten ditelluride
  • a plurality of upper topological insulator layers 122 may be arranged side by side in the Y-axis direction.
  • Upper topological insulator layer 122 is an example of a second topological insulator layer.
  • a plurality of lower s-wave superconductor layers 131 are provided below the lower topological insulator layer 121 .
  • the lower s-wave superconductor layer 131 is provided along the first edge 161 and the third edge 163 .
  • the Y-axis direction end of each lower s-wave superconductor layer 131 is separated from the second edge 162 and the fourth edge 164 of the upper topological insulator layer 122 in plan view.
  • the lower s-wave superconductor layer 131 is, for example, a Nb layer.
  • the lower s-wave superconductor layer 131 is an example of a first s-wave superconductor layer.
  • a cap layer 151 is provided on the upper surface of each lower s-wave superconductor layer 131 .
  • the cap layer 151 directly contacts the upper surface of the lower s-wave superconductor layer 131 and the lower surface of the lower topological insulator layer 121 .
  • the cap layer 151 is, for example, an h-BN layer.
  • the h-BN layer includes one or more h-BN layers stacked together.
  • Cap layer 151 is provided between first edge 161 or third edge 163 and lower s-wave superconductor layer 131 . There is no chemical bond between the cap layer 151 and the lower topological insulator layer 121 , and the cap layer 151 is physically adsorbed to the lower topological insulator layer 121 .
  • the cap layer 151 and the lower topological insulator layer 121 may be van der Waals coupled to each other. Cooper pair penetration from the lower s-wave superconductor layer 131 to the first edge 161 or the third edge 163 is possible through the cap layer 151 due to the proximity effect. That is, it is possible for Cooper pairs from the lower s-wave superconductor layer 131 to tunnel through the cap layer 151 and enter the first edge 161 or the third edge 163 . When the Cooper pair penetrates the first edge 161 or the third edge 163, the lower topological insulator layer 121 will act as a topological superconductor layer.
  • the cap layer 151 is an example of the first layer.
  • a plurality of upper s-wave superconductor layers 132 are provided below the upper topological insulator layer 122 .
  • Upper s-wave superconductor layer 132 is provided along second edge 162 and fourth edge 164 .
  • the X-axis direction end of each upper s-wave superconductor layer 132 is separated from the first edge 161 and the third edge 163 of the lower topological insulator layer 121 in plan view.
  • the upper s-wave superconductor layer 132 is, for example, a Nb layer.
  • the upper s-wave superconductor layer 132 is an example of a second s-wave superconductor layer.
  • a cap layer 152 is provided on the upper surface of each upper s-wave superconductor layer 132 .
  • Cap layer 152 directly contacts the top surface of upper s-wave superconductor layer 132 and the bottom surface of upper topological insulator layer 122 .
  • Cap layer 152 is, for example, an h-BN layer.
  • the h-BN layer includes one or more h-BN layers stacked together.
  • Cap layer 152 is provided between second edge 162 or fourth edge 164 and upper s-wave superconductor layer 132 . There is no chemical bond between the cap layer 152 and the upper topological insulator layer 122 , and the cap layer 152 is physically adsorbed to the upper topological insulator layer 122 .
  • the cap layer 152 and the upper topological insulator layer 122 may be van der Waals coupled to each other.
  • Cooper pair penetration from the upper s-wave superconductor layer 132 to the second edge 162 or the fourth edge 164 is possible through the cap layer 152 due to the proximity effect. That is, it is possible for Cooper pairs from the upper s-wave superconductor layer 132 to tunnel through the cap layer 152 and penetrate the second edge 162 or the fourth edge 164 .
  • upper topological insulator layer 122 becomes functional as a topological superconductor layer.
  • Cap layer 152 is an example of a second layer.
  • a plurality of upper s-wave superconductor layers 133 are provided above the upper topological insulator layer 122 .
  • the upper s-wave superconductor layer 133 is provided along the second edge 162 and the fourth edge 164 .
  • the X-axis direction end of each upper s-wave superconductor layer 133 is separated from the first edge 161 and the third edge 163 of the lower topological insulator layer 121 in plan view.
  • the upper s-wave superconductor layer 133 is, for example, a Nb layer.
  • the upper s-wave superconductor layer 133 is an example of a second s-wave superconductor layer.
  • a cap layer 153 is provided on the lower surface of each upper s-wave superconductor layer 133 .
  • Cap layer 153 directly contacts the bottom surface of upper s-wave superconductor layer 133 and the top surface of upper topological insulator layer 122 .
  • Cap layer 153 is, for example, an h-BN layer.
  • the h-BN layer includes one or more h-BN layers stacked together.
  • Cap layer 153 is provided between second edge 162 or fourth edge 164 and upper s-wave superconductor layer 133 . There is no chemical bond between the cap layer 153 and the upper topological insulator layer 122 , and the cap layer 153 is physically adsorbed to the upper topological insulator layer 122 .
  • the cap layer 153 and the upper topological insulator layer 122 may be van der Waals coupled to each other.
  • Cooper pair penetration from the upper s-wave superconductor layer 133 to the second edge 162 or the fourth edge 164 is possible through the cap layer 153 due to the proximity effect. That is, it is possible for Cooper pairs from the upper s-wave superconductor layer 133 to tunnel through the cap layer 153 and penetrate the second edge 162 or the fourth edge 164 .
  • upper topological insulator layer 122 becomes functional as a topological superconductor layer.
  • Cap layer 153 is an example of a second layer.
  • the upper s-wave superconductor layer 133 and the cap layer 153 are provided in a region overlapping the lower topological insulator layer 121 of the upper topological insulator layer 122, and the upper s-wave superconductor layer 132 And the cap layer 152 is provided in a region away from the lower topological insulator layer 121 .
  • An etching stopper 140 is provided between the lower topological insulator layer 121 and the upper topological insulator layer 122 .
  • the material of the etching stopper 140 is graphene or graphite, for example. When the material of the etching stopper 140 is graphite, the thinner the thickness, the better, for example, 5 nm or less. This is because the Majorana grains tunnel through the etching stopper 140 between the lower topological insulator layer 121 and the upper topological insulator layer 122 .
  • a plurality of magnetic electrodes 141 are provided on the upper topological insulator layer 122 .
  • the magnetic electrode 141 is located between the upper s-wave superconductor layer 133 and the second edge 162 and between the upper s-wave superconductor layer 133 and the upper topological insulator layer 122 within the range where the lower topological insulator layer 121 and the upper topological insulator layer 122 overlap. It is provided between the s-wave superconductor layer 133 and the fourth edge 164 .
  • the magnetic electrode 141 generates a magnetic field across the upper topological insulator layer 122 and the lower topological insulator layer 121 .
  • the material of the magnetic electrode 141 is Fe, Co or Ni, for example.
  • the magnetic electrode 141 is an example of the first magnetic layer and the second magnetic layer.
  • Majorana grains can be present in the portion between 131 and . Then, for example, of the portions where these Majorana particles can exist, the portion of the first edge 161 that overlaps the second edge 162 functions as the first region 171, and the portion of the third edge 163 that overlaps the second edge 162 functions as the first region 171. functions as the third region 173 .
  • the portion of the first edge 161 that overlaps the fourth edge 164 functions as a fifth region 175, and the portion of the third edge 163 that overlaps the fourth edge 164 functions as a fifth region 175. functions as the seventh region 177 .
  • the portion between the upper s-wave superconductor layer 132 and the upper s-wave superconductor layer 133 that are adjacent in plan view of the second edge 162 and the upper s-wave superconductor layer that is adjacent in plan view of the fourth edge 164 Majorana grains can be present in the conductor layer 132 and in the portion between the upper s-wave superconductor layer 133 . Then, for example, among the portions where these Majorana particles can exist, the portion of the second edge 162 that overlaps the first edge 161 functions as the second region 172, and the portion of the fourth edge 164 that overlaps the first edge 161 functions as the second region 172. functions as the sixth region 176 .
  • the portion of the second edge 162 that overlaps the third edge 163 functions as a fourth region 174
  • the portion of the fourth edge 164 that overlaps the third edge 163 functions as the fourth region 174. 8 region 178.
  • the Majorana particles existing in the first region 171 and the Majorana particles existing in the second region 172 can tunnel through the etching stopper 140 and interact with each other. Therefore, both Majorana particles can be regarded as a single Majorana particle.
  • the Majorana particles generated in the lower topological insulator layer 121 and the Majorana particles generated in the upper topological insulator layer 122 can easily interact.
  • a cap layer 151 is provided on the upper surface of each lower s-wave superconductor layer 131 , a cap layer 152 is provided on the upper surface of each upper s-wave superconductor layer 132 , and a cap layer 152 is provided on the upper surface of each upper s-wave superconductor layer 133 .
  • a cap layer 153 is provided on the bottom surface. Therefore, similarly to the first embodiment, disturbance of the electronic states of the lower topological insulator layer 121 and the upper topological insulator layer 122 can be suppressed, and Majorana particles can be stably generated. The generated Majorana grains can be replaced, for example, by grounding or floating the s-wave superconductor layers 131-133.
  • 13 to 23 are top views showing the manufacturing method of the quantum bit 2 according to the second embodiment.
  • the Nb layer 181 is formed on the substrate 110. Then, as shown in FIG. 13, the Nb layer 181 is formed, for example, by vapor deposition.
  • an h-BN layer 182 is formed on the Nb layer 181, as shown in FIG.
  • the h-BN layer 182 can be formed by chemical vapor deposition (CVD), for example.
  • the laminate of the Nb layer 181 and the h-BN layer 182 by processing the laminate of the Nb layer 181 and the h-BN layer 182, the laminate of the lower s-wave superconductor layer 131 and the cap layer 151 and the upper s-wave superconductor A stack of layer 132 and cap layer 152 is formed (see FIGS. 11 and 12).
  • the cap layers 151, 152 can function as protective layers for the lower s-wave superconductor layer 131 and the upper s-wave superconductor layer 132, respectively, and during subsequent processing, the lower s-wave superconductor layer 131, Oxidation of the surface of the upper s-wave superconductor layer 132 can be suppressed.
  • a laminate of the lower s-wave superconductor layer 131 and the cap layer 151 and a laminate of the upper s-wave superconductor layer 132 and the cap layer 152 are formed on the substrate 110.
  • a two-dimensional topological insulator layer 121X is provided so as to cover it.
  • the two-dimensional topological insulator layer 121X can be provided, for example, by separately growing it on a growth substrate (not shown) and transferring it from the growth substrate.
  • a plurality of lower topological insulator layers 121 are formed by processing the two-dimensional topological insulator layer 121X.
  • RIE reactive ion etching
  • an etching gas for example, a fluorocarbon-based gas is used.
  • an etching stopper 140X is provided above the substrate 110 so as to cover the lower topological insulator layer 121. Then, as shown in FIG.
  • the etching stopper 140X can be provided, for example, by separately growing it on a growth substrate (not shown) and transferring it from the growth substrate.
  • a two-dimensional topological insulator layer 122X is provided on the etching stopper 140X.
  • the two-dimensional topological insulator layer 122X can be provided, for example, by separately growing it on a growth substrate (not shown) and transferring it from the growth substrate.
  • a plurality of upper topological insulator layers 122 are formed by processing the two-dimensional topological insulator layer 122X.
  • RIE is performed for processing the two-dimensional topological insulator layer 122X.
  • an etching gas for example, a fluorocarbon-based gas is used.
  • the lower topological insulator layer is protected by the etching stopper 140X.
  • the etching stopper 140X is processed to remove the exposed portion of the etching stopper 140X from the upper topological insulator layer 122, thereby forming the lower topological insulator layer 121 and the upper topological insulator layer. 122, an etching stopper 140 is left (see FIGS. 11 and 12).
  • RIE is performed in processing the etching stopper 140X.
  • Oxygen gas for example, is used as the etching gas.
  • a laminate of a cap layer 153 and an upper s-wave superconductor layer 133 is formed on the upper topological insulator layer 122 (see FIG. 11).
  • a plurality of magnetic electrodes 141 are formed on the upper topological insulator layer 122 .
  • the quantum bit 2 according to the second embodiment can be manufactured.
  • the third embodiment relates to a method of manufacturing a quantum bit.
  • 24 to 28 are schematic diagrams showing a method of manufacturing a quantum bit according to the third embodiment.
  • the h-BN layer 301 is formed on the growth substrate 41, and the h-BN layer 301 is adhered to the transparent polymer block 52 provided on the slide glass 51. Then, as shown in FIG. 24, the h-BN layer 301 is formed on the growth substrate 41, and the h-BN layer 301 is adhered to the transparent polymer block 52 provided on the slide glass 51. Then, as shown in FIG. 24, the h-BN layer 301 is formed on the growth substrate 41, and the h-BN layer 301 is adhered to the transparent polymer block 52 provided on the slide glass 51. Then, as shown in FIG.
  • a WTe 2 layer 302 is then formed on the growth substrate 42 and the WTe 2 layer 302 is attached to the h-BN layer 301, as shown in FIG.
  • the WTe2 layer 302 can be formed, for example, by pulsed laser deposition (PLD) or molecular beam epitaxy.
  • PLD pulsed laser deposition
  • a WTe 2 layer 302 exfoliated from single crystal WTe 2 may also be used.
  • an h-BN layer 303 is formed on the growth substrate 43 and the h-BN layer 303 is attached to the WTe2 layer 302, as shown in FIG.
  • an s-wave superconductor layer 310 is formed on the substrate 44, and a laminate of the h-BN layer 301, the WTe2 layer 302 and the h-BN layer 303 is formed as an s-wave superconductor. Press against layer 310 .
  • the transparent polymer mass 52 is then removed from the h-BN layer 301, as shown in FIG. As a result, a stack of h-BN layer 301 , WTe 2 layer 302 and h-BN layer 303 is transferred onto substrate 44 .
  • a qubit 3 having an h-BN layer 301 sandwiched between an s-wave superconductor layer 310 and a topological insulator WTe2 layer 302 can be fabricated.
  • FIG. 29 is a schematic diagram showing a quantum bit according to the fourth embodiment.
  • the quantum bit 4 has a topological insulator layer 421 with a rectangular planar shape and a topological insulator layer 422 with a rectangular planar shape.
  • One vertex of the topological insulator layer 421 and one vertex of the topological insulator layer 422 are connected. If the topological insulator layers 421 and 422 are regarded as one topological insulator layer, there is a constriction at the connecting portion 423 between the topological insulator layers 421 and 422 .
  • the topological insulator layer 421 is, for example, a two-dimensional topological insulator layer and has a first edge 461 and a third edge 463 extending from the connecting portion 423 .
  • the topological insulator layer 421 may be configured from a single two-dimensional topological insulator, or may be configured by stacking a plurality of two-dimensional topological insulators.
  • the material of the topological insulator layer 421 is WTe2 , for example.
  • the topological insulator layer 422 is, for example, a two-dimensional topological insulator layer and has a second edge 462 and a fourth edge 464 extending from the connecting portion 423 .
  • the topological insulator layer 422 may be configured from a single two-dimensional topological insulator, or may be configured by stacking a plurality of two-dimensional topological insulators.
  • the material of the topological insulator layer 422 is WTe2 , for example.
  • An s-wave superconductor layer 431 is provided above the first edge 461 of the topological insulator layer 421 .
  • An s-wave superconductor layer 433 is provided above the third edge 463 of the topological insulator layer 421 .
  • the s-wave superconductor layers 431 and 433 are, for example, Nb layers.
  • a cap layer 451 is provided on the lower surface of the s-wave superconductor layer 431 .
  • Cap layer 451 directly contacts the bottom surface of s-wave superconductor layer 431 and the top surface of topological insulator layer 421 .
  • Cap layer 451 is, for example, an h-BN layer.
  • a cap layer 451 is provided between the first edge 461 and the s-wave superconductor layer 431 . There is no chemical bond between the cap layer 451 and the topological insulator layer 421 , and the cap layer 451 is physically adsorbed to the topological insulator layer 421 .
  • the cap layer 451 and the topological insulator layer 421 may be van der Waals coupled to each other.
  • Cooper pair penetration from the s-wave superconductor layer 431 to the first edge 461 is possible through the cap layer 451 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 431 to tunnel through the cap layer 451 and enter the first edge 461 . Once the Cooper pair penetrates the first edge 461, the topological insulator layer 421 will act as a topological superconductor layer.
  • a cap layer 453 is provided on the lower surface of the s-wave superconductor layer 433 .
  • Cap layer 453 directly contacts the bottom surface of s-wave superconductor layer 433 and the top surface of topological insulator layer 421 .
  • Cap layer 453 is, for example, an h-BN layer.
  • a cap layer 453 is provided between the third edge 463 and the s-wave superconductor layer 433 . There is no chemical bond between the cap layer 453 and the topological insulator layer 421 , and the cap layer 453 is physically adsorbed to the topological insulator layer 421 .
  • the cap layer 453 and the topological insulator layer 421 may be van der Waals coupled to each other.
  • a cap layer 452 is provided on the lower surface of the s-wave superconductor layer 432 .
  • Cap layer 452 directly contacts the bottom surface of s-wave superconductor layer 432 and the top surface of topological insulator layer 422 .
  • Cap layer 452 is, for example, an h-BN layer.
  • a cap layer 452 is provided between the second edge 462 and the s-wave superconductor layer 432 . There is no chemical bond between the cap layer 452 and the topological insulator layer 422 , and the cap layer 452 is physically adsorbed to the topological insulator layer 422 .
  • Cap layer 452 and topological insulator layer 422 may be van der Waals coupled to each other.
  • Cooper pair penetration from the s-wave superconductor layer 432 to the second edge 462 is possible through the cap layer 452 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 432 to tunnel through the cap layer 452 and enter the second edge 462 .
  • the topological insulator layer 422 becomes functional as a topological superconductor layer.
  • Magnetic layers 441 and 443 are provided on the topological insulator layer 421 .
  • the magnetic layer 441 is provided at the end of the first edge 461 opposite to the connecting portion 423 .
  • the magnetic layer 443 is provided at the end of the third edge 463 opposite to the connecting portion 423 .
  • Magnetic layers 441 and 443 generate a magnetic field across topological insulator layer 421 .
  • the material of the magnetic layers 441 and 443 is Fe, Co or Ni, for example.
  • Magnetic layers 442 and 444 are provided on the topological insulator layer 422 .
  • the magnetic layer 442 is provided at the end of the second edge 462 opposite to the connecting portion 423 .
  • a magnetic layer 444 is provided on the fourth edge 464 .
  • the material of the magnetic layers 442 and 444 is Fe, Co or Ni, for example.
  • the portion between the magnetic layer 441 and the stack of the s-wave superconductor layer 431 and the cap layer 451 in plan view of the first edge 461 is the first region where Majorana particles can exist.
  • 471 functions.
  • a portion of the second edge 462 between the magnetic layer 442 and the lamination of the s-wave superconductor layer 432 and the cap layer 452 in plan view functions as a second region 472 in which Majorana grains can exist.
  • a portion of the third edge 463 between the magnetic layer 443 and the lamination of the s-wave superconductor layer 433 and the cap layer 453 in plan view functions as a third region 473 in which Majorana grains can exist.
  • the connecting portion 423 functions as a fourth region 474 in which Majorana particles can exist.
  • a cap layer 451 is provided on the lower surface of the s-wave superconductor layer 431
  • a cap layer 452 is provided on the lower surface of the s-wave superconductor layer 432
  • a cap layer 452 is provided on the lower surface of the s-wave superconductor layer 433.
  • a cap layer 453 is provided. Therefore, as in the first embodiment, disturbance of the electronic states of the topological insulator layers 421 and 422 can be suppressed, and Majorana particles can be stably generated.
  • FIG. 30 is a diagram showing a quantum computer according to the fifth embodiment.
  • a quantum computer 5 according to the fifth embodiment has a general-purpose computer 501, a control unit 502, and a quantum bit 503.
  • Control unit 502 controls quantum bit 503 based on a control signal from general-purpose computer 501 .
  • the quantum bit 503 the quantum bit according to any one of the first to fourth embodiments is used.
  • Control unit 502 and qubit 503 are housed in cryostat 504 .
  • the quantum computer 5 can perform stable quantum operations.
  • the material of the first layer that is, the cap layer in the embodiment is not limited to h-BN.
  • the thickness of the first layer is preferably 1 nm or less.
  • the first layer may be an oxide layer such as Nb 2 O 5 layer, Nb 2 O 3 layer, NbO 2 layer.
  • the thickness of the first layer is preferably 1 nm or less.
  • the oxide layer may be deposited on the Nb layer used as the s-wave superconductor layer or may be formed by oxidation of the Nb layer. When the Nb layer is oxidized, the surface of the Nb layer is terminated with O atoms.
  • the first layer may be a nitride layer such as an NbN layer or a TiN layer. Since the NbN layer functions as a superconductor, it can be relatively thick. Also, part of the NbN layer may function as the first s-wave superconductor layer.
  • the nitride layer may be deposited on the Nb layer used as the s-wave superconductor layer, may be formed by nitridation of the Nb layer, or may be formed directly on the substrate. When the Nb layer is nitrided, the surface of the Nb layer is terminated with N atoms.
  • the first layer may be a graphene layer or graphite.
  • the thickness of the first layer is preferably 1 nm or less.
  • the graphene layer or graphite may be provided by transfer or the like on the Nb layer used as the s-wave superconductor layer. good too.
  • a graphene layer includes one or more graphenes stacked together.
  • the first layer may be a normal-conducting metal layer such as an Au layer or a Pt layer.
  • the thickness of the first layer is preferably 5 nm or less.
  • a normal metal layer may be deposited over the Nb layer which is used as an s-wave superconductor layer.
  • the first layer may contain a combination of these multiple types.
  • the first topological insulator layer is not limited to a two-dimensional topological insulator layer, and may be a higher-order topological insulator layer.
  • FIG. 31 is a schematic diagram showing a qubit including a higher topological insulator layer.
  • a quantum bit 6 shown in FIG. 31 has a rectangular parallelepiped high-order topological insulator layer 610 , an s-wave superconductor layer 620 , a cap layer 630 , and a magnetic layer 640 .
  • a cap layer 630 covers a portion of the higher topological insulator layer 610 and an s-wave superconductor layer 620 covers the cap layer 630 .
  • Cap layer 630 directly contacts high-order topological insulator layer 610 and s-wave superconductor layer 620 .
  • Materials of the higher-order topological insulator layer 610, the s-wave superconductor layer 620, and the cap layer 630 are WTe 2 , Nb, h-BN, for example.
  • a magnetic layer 640 covers a portion of the high-order topological insulator layer 610 away from the cap layer 630 .
  • Majorana grains can be present at two hinges (ridge lines) located diagonally.
  • the material of the topological insulator layer is not limited to WTe2 .
  • other topological insulators, Weyl semimetals, or the like may be used as the material of the topological insulator layer.

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

This Majorana quantum bit has a first topological insulator layer comprising a first edge; a first s-wave superconductor layer; and a first layer that is disposed between the first edge and the first s-wave superconductor layer and that enables the penetration of Cooper pairs via a proximity effect from the first s-wave superconductor layer to the first edge.

Description

マヨラナ量子ビット及び量子コンピュータMajorana qubits and quantum computers
 本開示は、マヨラナ量子ビット及び量子コンピュータに関する。 This disclosure relates to Majorana qubits and quantum computers.
 マヨラナ粒子を用いた量子コンピュータについての研究が行われている。マヨラナ粒子を発生させる技術として、2次元のトポロジカル絶縁体を用いる技術が提案されている。この技術では、トポロジカル絶縁体にs波超伝導体を接触させ、s波超伝導体からクーパー対をトポロジカル絶縁体にトンネリングさせることでマヨラナ粒子を発生させる。 Research is being conducted on quantum computers using Majorana particles. A technique using a two-dimensional topological insulator has been proposed as a technique for generating Majorana particles. In this technique, an s-wave superconductor is brought into contact with a topological insulator, and Majorana particles are generated by tunneling Cooper pairs from the s-wave superconductor to the topological insulator.
特表2020-511780号公報Japanese Patent Publication No. 2020-511780 米国特許出願公開第2020/0098990号明細書U.S. Patent Application Publication No. 2020/0098990
 2次元のトポロジカル絶縁体を用いる従来技術では、トポロジカル絶縁体の電子状態が損なわれ、マヨラナ粒子が発生しないおそれがある。  In the conventional technology using a two-dimensional topological insulator, the electronic state of the topological insulator may be damaged, and Majorana particles may not occur.
 本開示の目的は、安定してマヨラナ粒子を発生させることができるマヨラナ量子ビット及び量子コンピュータ提供することにある。 The purpose of the present disclosure is to provide a Majorana qubit and a quantum computer that can stably generate Majorana particles.
 本開示の一形態によれば、第1縁を備えた第1トポロジカル絶縁体層と、第1s波超伝導体層と、前記第1縁と前記第1s波超伝導体層との間に設けられ、近接効果による前記第1s波超伝導体層から前記第1縁へのクーパー対の侵入が可能な第1層と、を有するマヨラナ量子ビットが提供される。 According to one aspect of the present disclosure, a first topological insulator layer with a first edge, a first s-wave superconductor layer, and between said first edge and said first s-wave superconductor layer: and a first layer capable of penetration of Cooper pairs from said first s-wave superconductor layer to said first edge by proximity effect.
 本開示によれば、安定してマヨラナ粒子を発生させることができる。 According to the present disclosure, Majorana particles can be stably generated.
図1は、第1実施形態に係る量子ビットを示す上面図である。FIG. 1 is a top view showing a quantum bit according to the first embodiment. FIG. 図2は、第1実施形態に係る量子ビットを示す断面図である。FIG. 2 is a cross-sectional view showing the quantum bit according to the first embodiment. 図3は、Nbに接触したh-BNの状態密度を示す図である。FIG. 3 shows the density of states of h-BN in contact with Nb. 図4は、参考例に係る量子ビットを示す上面図である。FIG. 4 is a top view showing a quantum bit according to a reference example. 図5は、参考例に係る量子ビットを示す断面図である。FIG. 5 is a cross-sectional view showing a quantum bit according to a reference example. 図6は、参考例におけるWTeのスペクトル重みの強度マップを示す図である。FIG. 6 is a diagram showing an intensity map of spectral weights of WTe 2 in the reference example. 図7は、参考例におけるWTe及びNbのバンド構造を示す図である。FIG. 7 is a diagram showing band structures of WTe 2 and Nb in the reference example. 図8は、外部からの影響を受けないWTeのバンド構造を示す図である。FIG. 8 shows the band structure of WTe 2 without external influences. 図9は、第2実施形態に係る量子ビットを示す斜視図である。FIG. 9 is a perspective view showing a quantum bit according to the second embodiment. 図10は、第2実施形態に係る量子ビットを示す上面図である。FIG. 10 is a top view showing a quantum bit according to the second embodiment. 図11は、第2実施形態に係る量子ビットを示す断面図(その1)である。FIG. 11 is a cross-sectional view (No. 1) showing the quantum bit according to the second embodiment. 図12は、第2実施形態に係る量子ビットを示す断面図(その2)である。FIG. 12 is a cross-sectional view (Part 2) showing the quantum bit according to the second embodiment. 図13は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その1)である。FIG. 13 is a top view (No. 1) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図14は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その2)である。FIG. 14 is a top view (No. 2) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図15は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その3)である。FIG. 15 is a top view (No. 3) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図16は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その4)である。FIG. 16 is a top view (No. 4) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図17は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その5)である。FIG. 17 is a top view (No. 5) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図18は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その6)である。FIG. 18 is a top view (No. 6) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図19は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その7)である。FIG. 19 is a top view (No. 7) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図20は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その8)である。FIG. 20 is a top view (No. 8) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図21は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その9)である。FIG. 21 is a top view (No. 9) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図22は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その10)である。FIG. 22 is a top view (No. 10) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図23は、第2実施形態に係る量子ビット2の製造方法を示す上面図(その11)である。FIG. 23 is a top view (No. 11) showing the manufacturing method of the quantum bit 2 according to the second embodiment. 図24は、第3実施形態に係る量子ビットの製造方法を示す模式図(その1)である。FIG. 24 is a schematic diagram (Part 1) showing a method of manufacturing a quantum bit according to the third embodiment. 図25は、第3実施形態に係る量子ビットの製造方法を示す模式図(その2)である。FIG. 25 is a schematic diagram (Part 2) showing the method of manufacturing the quantum bit according to the third embodiment. 図26は、第3実施形態に係る量子ビットの製造方法を示す模式図(その3)である。FIG. 26 is a schematic diagram (No. 3) showing the method of manufacturing the quantum bit according to the third embodiment. 図27は、第3実施形態に係る量子ビットの製造方法を示す模式図(その4)である。FIG. 27 is a schematic diagram (part 4) showing the method of manufacturing the quantum bit according to the third embodiment. 図28は、第3実施形態に係る量子ビットの製造方法を示す模式図(その5)である。FIG. 28 is a schematic diagram (No. 5) showing the method of manufacturing the quantum bit according to the third embodiment. 図29は、第4実施形態に係る量子ビットを示す模式図である。FIG. 29 is a schematic diagram showing a quantum bit according to the fourth embodiment. 図30は、第5実施形態に係る量子コンピュータを示す図である。FIG. 30 is a diagram showing a quantum computer according to the fifth embodiment; 図31は、高次トポロジカル絶縁体層を含む量子ビットを示す模式図である。FIG. 31 is a schematic diagram showing a qubit including a higher topological insulator layer.
 以下、本開示の実施形態について添付の図面を参照しながら具体的に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省くことがある。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the attached drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration may be denoted by the same reference numerals, thereby omitting redundant description.
 (第1実施形態)
 まず、第1実施形態について説明する。第1実施形態は、2次元トポロジカル絶縁体を含む量子ビットに関する。図1は、第1実施形態に係る量子ビットを示す上面図である。図2は、第1実施形態に係る量子ビットを示す断面図である。図2は、図1中のII-II線に沿った断面図に相当する。
(First embodiment)
First, the first embodiment will be described. A first embodiment relates to a qubit containing a two-dimensional topological insulator. FIG. 1 is a top view showing a quantum bit according to the first embodiment. FIG. FIG. 2 is a cross-sectional view showing the quantum bit according to the first embodiment. FIG. 2 corresponds to a cross-sectional view taken along line II-II in FIG.
 第1実施形態に係る量子ビット1は、図1及び図2に示すように、トポロジカル絶縁体層10と、s波超伝導体層20と、キャップ層30とを有する。 The quantum bit 1 according to the first embodiment has a topological insulator layer 10, an s-wave superconductor layer 20, and a cap layer 30, as shown in FIGS.
 トポロジカル絶縁体層10は縁11を備える。トポロジカル絶縁体層10の材料は2テルル化タングステン(WTe)である。s波超伝導体層20の材料はNbである。キャップ層30の材料は六方晶窒化ホウ素(h-BN)である。キャップ層30は縁11とs波超伝導体層20との間に設けられている。キャップ層30を介して、近接効果によるs波超伝導体層20から縁11へのクーパー対の侵入が可能である。つまり、s波超伝導体層20からクーパー対がキャップ層30をトンネリングして縁11に侵入することが可能である。クーパー対が縁11に侵入すると、トポロジカル絶縁体層10はトポロジカル超伝導体層として機能するようになる。キャップ層30はトポロジカル絶縁体層10及びs波超伝導体層20の両方に直接接触する。キャップ層30は第1層の一例である。 Topological insulator layer 10 comprises edge 11 . The material of the topological insulator layer 10 is tungsten ditelluride (WTe 2 ). The material of the s-wave superconductor layer 20 is Nb. The material of the cap layer 30 is hexagonal boron nitride (h-BN). A cap layer 30 is provided between the edge 11 and the s-wave superconductor layer 20 . Cooper pair penetration from the s-wave superconductor layer 20 to the edge 11 is possible through the cap layer 30 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 20 to tunnel through the cap layer 30 and into the edge 11 . When the Cooper pairs encroach on the edge 11, the topological insulator layer 10 becomes functional as a topological superconductor layer. Cap layer 30 directly contacts both topological insulator layer 10 and s-wave superconductor layer 20 . The cap layer 30 is an example of the first layer.
 キャップ層30の材料であるh-BN自体は、6eV程度のバンドギャップを持つ絶縁体である。しかし、キャップ層30が、Nbを材料とするs波超伝導体層20に接触すると、h-BNとNbとの間に化学結合を生じ、h-BNの電子状態は、金属的な電子状態になる。発明者のシミュレーションによると、キャップ層30がs波超伝導体層20に直接接触した場合、Nbとh-BNとの間の最短距離は2.4Å程度である。図3は、Nbに接触したh-BNの状態密度(density of state:DOS)を示す図である。図3に示すように、Nbに接触したh-BNはフェルミ面に状態密度を有しており、クーパー対に対するバリアにはならない。 h-BN itself, which is the material of the cap layer 30, is an insulator with a bandgap of about 6 eV. However, when the cap layer 30 contacts the s-wave superconductor layer 20 made of Nb, a chemical bond occurs between h-BN and Nb, and the electronic state of h-BN changes to a metallic electronic state. become. According to the inventor's simulation, when the cap layer 30 is in direct contact with the s-wave superconductor layer 20, the shortest distance between Nb and h-BN is about 2.4 Å. FIG. 3 shows the density of state (DOS) of h-BN in contact with Nb. As shown in FIG. 3, h-BN in contact with Nb has a density of states at the Fermi surface and does not act as a barrier to Cooper pairs.
 また、発明者のシミュレーションによると、キャップ層30がトポロジカル絶縁体層10に直接接触した場合、WTeとh-BNとの間の最短距離は3.0Å程度である。このため、キャップ層30とトポロジカル絶縁体層10との間に化学結合が存在せず、キャップ層30がトポロジカル絶縁体層10に物理吸着された状態となっている。キャップ層30とトポロジカル絶縁体層10とは、互いにファンデルワールス結合していてもよい。 Further, according to the inventor's simulation, when the cap layer 30 is in direct contact with the topological insulator layer 10, the shortest distance between WTe 2 and h-BN is about 3.0 Å. Therefore, there is no chemical bond between the cap layer 30 and the topological insulator layer 10 , and the cap layer 30 is physically adsorbed to the topological insulator layer 10 . The cap layer 30 and the topological insulator layer 10 may be van der Waals coupled to each other.
 第1実施形態では、適切なキャップ層30がトポロジカル絶縁体層10の縁11とs波超伝導体層20との間に設けられているため、s波超伝導体層20によるトポロジカル絶縁体層10の電子状態の乱れを抑制することができ、安定してマヨラナ粒子を発生させることができる。なお、第1実施形態では、NbとWTeとの間の最短距離が5.4Å程度である。 In the first embodiment, a suitable cap layer 30 is provided between the edge 11 of the topological insulator layer 10 and the s-wave superconductor layer 20, so that the topological insulator layer by the s-wave superconductor layer 20 Disturbance of the 10 electronic states can be suppressed, and Majorana particles can be stably generated. In the first embodiment, the shortest distance between Nb and WTe2 is about 5.4 Å.
 発生したマヨラナ粒子は、例えば、s波超伝導体層20を地絡又はフロートさせることにより交換することができる。 The generated Majorana particles can be replaced, for example, by grounding or floating the s-wave superconductor layer 20 .
 ここで、第1実施形態との比較のために、参考例について説明する。図4は、参考例に係る量子ビットを示す上面図である。図5は、参考例に係る量子ビットを示す断面図である。図5は、図4中のV-V線に沿った断面図に相当する。 Here, a reference example will be described for comparison with the first embodiment. FIG. 4 is a top view showing a quantum bit according to a reference example. FIG. 5 is a cross-sectional view showing a quantum bit according to a reference example. FIG. 5 corresponds to a cross-sectional view taken along line V-V in FIG.
 参考例に係る量子ビット9は、図4及び図5に示すように、キャップ層30を有しておらず、トポロジカル絶縁体層10の縁11とs波超伝導体層20とが互いに直接接触している。他の構成は第1実施形態と同様である。 As shown in FIGS. 4 and 5, the quantum bit 9 according to the reference example does not have the cap layer 30, and the edge 11 of the topological insulator layer 10 and the s-wave superconductor layer 20 are in direct contact with each other. are doing. Other configurations are the same as those of the first embodiment.
 発明者のシミュレーションによると、s波超伝導体層20がトポロジカル絶縁体層10に直接接触した場合、NbとWTeとの間の最短距離は僅かに1.6Å程度であるため、トポロジカル絶縁体層10とs波超伝導体層20との間に化学結合が生じる。この結果、トポロジカル絶縁体層10の電子状態がs波超伝導体層20の影響を受ける。図6は、参考例におけるWTeのスペクトル重みの強度マップを示す図である。図7は、参考例におけるWTe及びNbのバンド構造を示す図である。図6は、図7中でWTeの寄与を重みづけマップとして抜き出したものに対応する。図8は、外部からの影響を受けないWTeのバンド構造を示す図である。 According to the inventors' simulations, when the s-wave superconductor layer 20 is in direct contact with the topological insulator layer 10, the shortest distance between Nb and WTe2 is only about 1.6 Å, so the topological insulator A chemical bond is formed between layer 10 and s-wave superconductor layer 20 . As a result, the electronic state of the topological insulator layer 10 is affected by the s-wave superconductor layer 20 . FIG. 6 is a diagram showing an intensity map of spectral weights of WTe 2 in the reference example. FIG. 7 is a diagram showing band structures of WTe 2 and Nb in the reference example. FIG. 6 corresponds to extracting the contribution of WTe 2 in FIG. 7 as a weighting map. FIG. 8 shows the band structure of WTe 2 without external influences.
 図8に示すように、外部からの影響を受けない単体のWTeでは、価電子帯の上端と伝導帯の下端との間のエネルギの差が小さい。このため、この状態であれば、WTeは安定してトポロジカル絶縁体として機能し得る。ところが、図6及び図7に示すように、NbとWTeとが互いに直接接触すると、WTeのバンド構造が乱れてしまう。このため、WTeがトポロジカル絶縁体として機能できなくなるおそれがある。従って、参考例に係る量子ビット9では、トポロジカル絶縁体層10の電子状態が損なわれ、マヨラナ粒子が発生しないおそれがある。 As shown in FIG. 8, the energy difference between the upper end of the valence band and the lower end of the conduction band is small in the pure WTe2 , which is free from external influences. Therefore, in this state, WTe 2 can stably function as a topological insulator. However, as shown in FIGS. 6 and 7, when Nb and WTe2 are in direct contact with each other, the band structure of WTe2 is disturbed. Therefore, WTe 2 may not be able to function as a topological insulator. Therefore, in the quantum bit 9 according to the reference example, the electronic state of the topological insulator layer 10 may be damaged, and Majorana particles may not be generated.
 これに対し、第1実施形態では、上述のように、適切なキャップ層30が設けられているため、s波超伝導体層20によるトポロジカル絶縁体層10の電子状態の乱れを抑制することができ、安定してマヨラナ粒子を発生させることができる。なお、キャップ層30に代えて、クーパー対に対してバリアとなる層が設けられた場合には、クーパー対がトポロジカル絶縁体層10に侵入できず、マヨラナ粒子を発生させることができない。 In contrast, in the first embodiment, as described above, since the appropriate cap layer 30 is provided, it is possible to suppress the disturbance of the electronic state of the topological insulator layer 10 due to the s-wave superconductor layer 20. It can generate Majorana Particles stably. If a layer serving as a barrier against the Cooper pairs is provided instead of the cap layer 30, the Cooper pairs cannot enter the topological insulator layer 10 and the Majorana particles cannot be generated.
 (第2実施形態)
 次に、第2実施形態について説明する。第2実施形態は、第1実施形態を応用した、2次元トポロジカル絶縁体を含む量子ビットに関する。図9は、第2実施形態に係る量子ビットを示す斜視図である。図10は、第2実施形態に係る量子ビットを示す上面図である。図11及び図12は、第2実施形態に係る量子ビットを示す断面図である。図11は、図10中のXI-XI線に沿った断面図に相当する。図12は、図10中のXII-XII線に沿った断面図に相当する。
(Second embodiment)
Next, a second embodiment will be described. The second embodiment relates to a quantum bit including a two-dimensional topological insulator to which the first embodiment is applied. FIG. 9 is a perspective view showing a quantum bit according to the second embodiment. FIG. 10 is a top view showing a quantum bit according to the second embodiment. 11 and 12 are cross-sectional views showing a quantum bit according to the second embodiment. FIG. 11 corresponds to a cross-sectional view taken along line XI-XI in FIG. FIG. 12 corresponds to a cross-sectional view taken along line XII-XII in FIG.
 第2実施形態に係る量子ビット2は、図9~図12に示すように、基板110と、Y軸方向に延びる下部トポロジカル絶縁体層121と、X軸方向に延びる上部トポロジカル絶縁体層122とを有する。基板110は、例えばアルミナ基板又はサファイア基板等の絶縁基板である。X軸方向及びY軸方向は、基板110の表面に垂直なZ軸方向に直交する方向である。Y軸方向はX軸方向に交差し、例えばX軸方向及びY軸方向は互いに直交する。本開示において、Z軸方向から対象物を見ることを平面視ということがある。Y軸方向は第1方向の一例であり、X軸方向は第2方向の一例である。 9 to 12, the qubit 2 according to the second embodiment includes a substrate 110, a lower topological insulator layer 121 extending in the Y-axis direction, and an upper topological insulator layer 122 extending in the X-axis direction. have The substrate 110 is an insulating substrate such as an alumina substrate or a sapphire substrate. The X-axis direction and the Y-axis direction are directions orthogonal to the Z-axis direction perpendicular to the surface of the substrate 110 . The Y-axis direction intersects the X-axis direction, for example, the X-axis direction and the Y-axis direction are orthogonal to each other. In the present disclosure, viewing an object from the Z-axis direction may be referred to as planar viewing. The Y-axis direction is an example of a first direction, and the X-axis direction is an example of a second direction.
 下部トポロジカル絶縁体層121は、例えば2次元トポロジカル絶縁体層であり、Y軸方向に延びる第1縁161及び第3縁163を有する。第1縁161は第3縁163の+X側に位置する。下部トポロジカル絶縁体層121は、単一の2次元トポロジカル絶縁体から構成されていてもよく、複数の2次元トポロジカル絶縁体が積層されて構成されていてもよい。下部トポロジカル絶縁体層121の材料は、例えば2テルル化タングステン(WTe)である。図示を省略するが、複数の下部トポロジカル絶縁体層121がX軸方向に並んで配置されていてもよい。下部トポロジカル絶縁体層121は第1トポロジカル絶縁体層の一例である。 The lower topological insulator layer 121 is, for example, a two-dimensional topological insulator layer and has a first edge 161 and a third edge 163 extending in the Y-axis direction. The first edge 161 is located on the +X side of the third edge 163 . The lower topological insulator layer 121 may be composed of a single two-dimensional topological insulator, or may be composed of a plurality of stacked two-dimensional topological insulators. The material of the lower topological insulator layer 121 is, for example, tungsten ditelluride (WTe 2 ). Although not shown, a plurality of lower topological insulator layers 121 may be arranged side by side in the X-axis direction. The lower topological insulator layer 121 is an example of a first topological insulator layer.
 上部トポロジカル絶縁体層122は、例えば2次元トポロジカル絶縁体層であり、X軸方向に延びる第2縁162及び第4縁164を有する。第2縁162は第4縁164の+Y側に位置する。上部トポロジカル絶縁体層122は、単一の2次元トポロジカル絶縁体から構成されていてもよく、複数の2次元トポロジカル絶縁体が積層されて構成されていてもよい。上部トポロジカル絶縁体層122の材料は、例えば2テルル化タングステン(WTe)である。図示を省略するが、複数の上部トポロジカル絶縁体層122がY軸方向に並んで配置されていてもよい。上部トポロジカル絶縁体層122は第2トポロジカル絶縁体層の一例である。 The upper topological insulator layer 122 is, for example, a two-dimensional topological insulator layer and has a second edge 162 and a fourth edge 164 extending in the X-axis direction. The second edge 162 is located on the +Y side of the fourth edge 164 . The upper topological insulator layer 122 may be composed of a single two-dimensional topological insulator, or may be composed of a plurality of stacked two-dimensional topological insulators. The material of the upper topological insulator layer 122 is, for example, tungsten ditelluride (WTe 2 ). Although not shown, a plurality of upper topological insulator layers 122 may be arranged side by side in the Y-axis direction. Upper topological insulator layer 122 is an example of a second topological insulator layer.
 下部トポロジカル絶縁体層121の下方に複数の下部s波超伝導体層131が設けられている。下部s波超伝導体層131は、第1縁161、第3縁163に沿って設けられている。各下部s波超伝導体層131のY軸方向の端部は、平面視で上部トポロジカル絶縁体層122の第2縁162及び第4縁164から離れている。下部s波超伝導体層131は、例えばNb層である。下部s波超伝導体層131は第1s波超伝導体層の一例である。 A plurality of lower s-wave superconductor layers 131 are provided below the lower topological insulator layer 121 . The lower s-wave superconductor layer 131 is provided along the first edge 161 and the third edge 163 . The Y-axis direction end of each lower s-wave superconductor layer 131 is separated from the second edge 162 and the fourth edge 164 of the upper topological insulator layer 122 in plan view. The lower s-wave superconductor layer 131 is, for example, a Nb layer. The lower s-wave superconductor layer 131 is an example of a first s-wave superconductor layer.
 各下部s波超伝導体層131の上面にキャップ層151が設けられている。キャップ層151は、下部s波超伝導体層131の上面と、下部トポロジカル絶縁体層121の下面とに直接接触する。キャップ層151は、例えばh-BN層である。h-BN層は、1又は互いに積層された複数のh-BNを含む。キャップ層151は第1縁161又は第3縁163と下部s波超伝導体層131との間に設けられている。キャップ層151と下部トポロジカル絶縁体層121との間に化学結合が存在せず、キャップ層151が下部トポロジカル絶縁体層121に物理吸着された状態となっている。キャップ層151と下部トポロジカル絶縁体層121とは、互いにファンデルワールス結合していてもよい。キャップ層151を介して、近接効果による下部s波超伝導体層131から第1縁161又は第3縁163へのクーパー対の侵入が可能である。つまり、下部s波超伝導体層131からクーパー対がキャップ層151をトンネリングして第1縁161又は第3縁163に侵入することが可能である。クーパー対が第1縁161又は第3縁163に侵入すると、下部トポロジカル絶縁体層121はトポロジカル超伝導体層として機能するようになる。キャップ層151は第1層の一例である。 A cap layer 151 is provided on the upper surface of each lower s-wave superconductor layer 131 . The cap layer 151 directly contacts the upper surface of the lower s-wave superconductor layer 131 and the lower surface of the lower topological insulator layer 121 . The cap layer 151 is, for example, an h-BN layer. The h-BN layer includes one or more h-BN layers stacked together. Cap layer 151 is provided between first edge 161 or third edge 163 and lower s-wave superconductor layer 131 . There is no chemical bond between the cap layer 151 and the lower topological insulator layer 121 , and the cap layer 151 is physically adsorbed to the lower topological insulator layer 121 . The cap layer 151 and the lower topological insulator layer 121 may be van der Waals coupled to each other. Cooper pair penetration from the lower s-wave superconductor layer 131 to the first edge 161 or the third edge 163 is possible through the cap layer 151 due to the proximity effect. That is, it is possible for Cooper pairs from the lower s-wave superconductor layer 131 to tunnel through the cap layer 151 and enter the first edge 161 or the third edge 163 . When the Cooper pair penetrates the first edge 161 or the third edge 163, the lower topological insulator layer 121 will act as a topological superconductor layer. The cap layer 151 is an example of the first layer.
 上部トポロジカル絶縁体層122の下方に複数の上部s波超伝導体層132が設けられている。上部s波超伝導体層132は、第2縁162、第4縁164に沿って設けられている。各上部s波超伝導体層132のX軸方向の端部は、平面視で下部トポロジカル絶縁体層121の第1縁161及び第3縁163から離れている。上部s波超伝導体層132は、例えばNb層である。上部s波超伝導体層132は第2s波超伝導体層の一例である。 A plurality of upper s-wave superconductor layers 132 are provided below the upper topological insulator layer 122 . Upper s-wave superconductor layer 132 is provided along second edge 162 and fourth edge 164 . The X-axis direction end of each upper s-wave superconductor layer 132 is separated from the first edge 161 and the third edge 163 of the lower topological insulator layer 121 in plan view. The upper s-wave superconductor layer 132 is, for example, a Nb layer. The upper s-wave superconductor layer 132 is an example of a second s-wave superconductor layer.
 各上部s波超伝導体層132の上面にキャップ層152が設けられている。キャップ層152は、上部s波超伝導体層132の上面と、上部トポロジカル絶縁体層122の下面とに直接接触する。キャップ層152は、例えばh-BN層である。h-BN層は、1又は互いに積層された複数のh-BNを含む。キャップ層152は第2縁162又は第4縁164と上部s波超伝導体層132との間に設けられている。キャップ層152と上部トポロジカル絶縁体層122との間に化学結合が存在せず、キャップ層152が上部トポロジカル絶縁体層122に物理吸着された状態となっている。キャップ層152と上部トポロジカル絶縁体層122とは、互いにファンデルワールス結合していてもよい。キャップ層152を介して、近接効果による上部s波超伝導体層132から第2縁162又は第4縁164へのクーパー対の侵入が可能である。つまり、上部s波超伝導体層132からクーパー対がキャップ層152をトンネリングして第2縁162又は第4縁164に侵入することが可能である。クーパー対が第2縁162又は第4縁164に侵入すると、上部トポロジカル絶縁体層122はトポロジカル超伝導体層として機能するようになる。キャップ層152は第2層の一例である。 A cap layer 152 is provided on the upper surface of each upper s-wave superconductor layer 132 . Cap layer 152 directly contacts the top surface of upper s-wave superconductor layer 132 and the bottom surface of upper topological insulator layer 122 . Cap layer 152 is, for example, an h-BN layer. The h-BN layer includes one or more h-BN layers stacked together. Cap layer 152 is provided between second edge 162 or fourth edge 164 and upper s-wave superconductor layer 132 . There is no chemical bond between the cap layer 152 and the upper topological insulator layer 122 , and the cap layer 152 is physically adsorbed to the upper topological insulator layer 122 . The cap layer 152 and the upper topological insulator layer 122 may be van der Waals coupled to each other. Cooper pair penetration from the upper s-wave superconductor layer 132 to the second edge 162 or the fourth edge 164 is possible through the cap layer 152 due to the proximity effect. That is, it is possible for Cooper pairs from the upper s-wave superconductor layer 132 to tunnel through the cap layer 152 and penetrate the second edge 162 or the fourth edge 164 . When Cooper pairs penetrate second edge 162 or fourth edge 164, upper topological insulator layer 122 becomes functional as a topological superconductor layer. Cap layer 152 is an example of a second layer.
 上部トポロジカル絶縁体層122の上方に複数の上部s波超伝導体層133が設けられている。上部s波超伝導体層133は、第2縁162、第4縁164に沿って設けられている。各上部s波超伝導体層133のX軸方向の端部は、平面視で下部トポロジカル絶縁体層121の第1縁161及び第3縁163から離れている。上部s波超伝導体層133は、例えばNb層である。上部s波超伝導体層133は第2s波超伝導体層の一例である。 A plurality of upper s-wave superconductor layers 133 are provided above the upper topological insulator layer 122 . The upper s-wave superconductor layer 133 is provided along the second edge 162 and the fourth edge 164 . The X-axis direction end of each upper s-wave superconductor layer 133 is separated from the first edge 161 and the third edge 163 of the lower topological insulator layer 121 in plan view. The upper s-wave superconductor layer 133 is, for example, a Nb layer. The upper s-wave superconductor layer 133 is an example of a second s-wave superconductor layer.
 各上部s波超伝導体層133の下面にキャップ層153が設けられている。キャップ層153は、上部s波超伝導体層133の下面と、上部トポロジカル絶縁体層122の上面とに直接接触する。キャップ層153は、例えばh-BN層である。h-BN層は、1又は互いに積層された複数のh-BNを含む。キャップ層153は第2縁162又は第4縁164と上部s波超伝導体層133との間に設けられている。キャップ層153と上部トポロジカル絶縁体層122との間に化学結合が存在せず、キャップ層153が上部トポロジカル絶縁体層122に物理吸着された状態となっている。キャップ層153と上部トポロジカル絶縁体層122とは、互いにファンデルワールス結合していてもよい。キャップ層153を介して、近接効果による上部s波超伝導体層133から第2縁162又は第4縁164へのクーパー対の侵入が可能である。つまり、上部s波超伝導体層133からクーパー対がキャップ層153をトンネリングして第2縁162又は第4縁164に侵入することが可能である。クーパー対が第2縁162又は第4縁164に侵入すると、上部トポロジカル絶縁体層122はトポロジカル超伝導体層として機能するようになる。キャップ層153は第2層の一例である。 A cap layer 153 is provided on the lower surface of each upper s-wave superconductor layer 133 . Cap layer 153 directly contacts the bottom surface of upper s-wave superconductor layer 133 and the top surface of upper topological insulator layer 122 . Cap layer 153 is, for example, an h-BN layer. The h-BN layer includes one or more h-BN layers stacked together. Cap layer 153 is provided between second edge 162 or fourth edge 164 and upper s-wave superconductor layer 133 . There is no chemical bond between the cap layer 153 and the upper topological insulator layer 122 , and the cap layer 153 is physically adsorbed to the upper topological insulator layer 122 . The cap layer 153 and the upper topological insulator layer 122 may be van der Waals coupled to each other. Cooper pair penetration from the upper s-wave superconductor layer 133 to the second edge 162 or the fourth edge 164 is possible through the cap layer 153 due to the proximity effect. That is, it is possible for Cooper pairs from the upper s-wave superconductor layer 133 to tunnel through the cap layer 153 and penetrate the second edge 162 or the fourth edge 164 . When Cooper pairs penetrate second edge 162 or fourth edge 164, upper topological insulator layer 122 becomes functional as a topological superconductor layer. Cap layer 153 is an example of a second layer.
 例えば、平面視で、上部s波超伝導体層133及びキャップ層153は、上部トポロジカル絶縁体層122の下部トポロジカル絶縁体層121と重なる領域に設けられており、上部s波超伝導体層132及びキャップ層152は、下部トポロジカル絶縁体層121から離れた領域に設けられている。 For example, in plan view, the upper s-wave superconductor layer 133 and the cap layer 153 are provided in a region overlapping the lower topological insulator layer 121 of the upper topological insulator layer 122, and the upper s-wave superconductor layer 132 And the cap layer 152 is provided in a region away from the lower topological insulator layer 121 .
 下部トポロジカル絶縁体層121と上部トポロジカル絶縁体層122との間に、エッチングストッパ140が設けられている。エッチングストッパ140の材料は、例えばグラフェン又はグラファイトである。エッチングストッパ140の材料がグラファイトである場合、その厚さは薄いほど好ましく、例えば5nm以下であることが好ましい。下部トポロジカル絶縁体層121と上部トポロジカル絶縁体層122との間でマヨラナ粒子がエッチングストッパ140をトンネルするからである。 An etching stopper 140 is provided between the lower topological insulator layer 121 and the upper topological insulator layer 122 . The material of the etching stopper 140 is graphene or graphite, for example. When the material of the etching stopper 140 is graphite, the thinner the thickness, the better, for example, 5 nm or less. This is because the Majorana grains tunnel through the etching stopper 140 between the lower topological insulator layer 121 and the upper topological insulator layer 122 .
 上部トポロジカル絶縁体層122の上に複数の磁性電極141が設けられている。磁性電極141は、例えば、平面視で、下部トポロジカル絶縁体層121と上部トポロジカル絶縁体層122とが重なる範囲内で、上部s波超伝導体層133と第2縁162との間と、上部s波超伝導体層133と第4縁164との間とに設けられている。磁性電極141は、上部トポロジカル絶縁体層122及び下部トポロジカル絶縁体層121に及ぶ磁界を生成する。磁性電極141の材料は、例えばFe、Co又はNiである。磁性電極141は第1磁性体層、第2磁性体層の一例である。 A plurality of magnetic electrodes 141 are provided on the upper topological insulator layer 122 . For example, in plan view, the magnetic electrode 141 is located between the upper s-wave superconductor layer 133 and the second edge 162 and between the upper s-wave superconductor layer 133 and the upper topological insulator layer 122 within the range where the lower topological insulator layer 121 and the upper topological insulator layer 122 overlap. It is provided between the s-wave superconductor layer 133 and the fourth edge 164 . The magnetic electrode 141 generates a magnetic field across the upper topological insulator layer 122 and the lower topological insulator layer 121 . The material of the magnetic electrode 141 is Fe, Co or Ni, for example. The magnetic electrode 141 is an example of the first magnetic layer and the second magnetic layer.
 量子ビット2では、第1縁161の平面視で隣り合う2つの下部s波超伝導体層131の間の部分と、第3縁163の平面視で隣り合う2つの下部s波超伝導体層131の間の部分とに、マヨラナ粒子が存在することができる。そして、例えば、これらマヨラナ粒子が存在することができる部分のうち、第1縁161の第2縁162と重なる部分が第1領域171として機能し、第3縁163の第2縁162と重なる部分が第3領域173として機能する。また、例えば、これらマヨラナ粒子が存在することができる部分のうち、第1縁161の第4縁164と重なる部分が第5領域175として機能し、第3縁163の第4縁164と重なる部分が第7領域177として機能する。 In the qubit 2, a portion of the first edge 161 between two adjacent lower s-wave superconductor layers 131 in plan view, and a portion of the third edge 163 between two adjacent lower s-wave superconductor layers in plan view. Majorana grains can be present in the portion between 131 and . Then, for example, of the portions where these Majorana particles can exist, the portion of the first edge 161 that overlaps the second edge 162 functions as the first region 171, and the portion of the third edge 163 that overlaps the second edge 162 functions as the first region 171. functions as the third region 173 . Further, for example, among the portions where these Majorana particles can exist, the portion of the first edge 161 that overlaps the fourth edge 164 functions as a fifth region 175, and the portion of the third edge 163 that overlaps the fourth edge 164 functions as a fifth region 175. functions as the seventh region 177 .
 同様に、第2縁162の平面視で隣り合う上部s波超伝導体層132と上部s波超伝導体層133と間の部分と、第4縁164の平面視で隣り合う上部s波超伝導体層132と上部s波超伝導体層133と間の部分とに、マヨラナ粒子が存在することができる。そして、例えば、これらマヨラナ粒子が存在することができる部分のうち、第2縁162の第1縁161と重なる部分が第2領域172として機能し、第4縁164の第1縁161と重なる部分が第6領域176として機能する。また、これらマヨラナ粒子が存在することができる部分のうち、第2縁162の第3縁163と重なる部分が第4領域174として機能し、第4縁164の第3縁163と重なる部分が第8領域178として機能する。 Similarly, the portion between the upper s-wave superconductor layer 132 and the upper s-wave superconductor layer 133 that are adjacent in plan view of the second edge 162 and the upper s-wave superconductor layer that is adjacent in plan view of the fourth edge 164 Majorana grains can be present in the conductor layer 132 and in the portion between the upper s-wave superconductor layer 133 . Then, for example, among the portions where these Majorana particles can exist, the portion of the second edge 162 that overlaps the first edge 161 functions as the second region 172, and the portion of the fourth edge 164 that overlaps the first edge 161 functions as the second region 172. functions as the sixth region 176 . Further, among the portions where these Majorana particles can exist, the portion of the second edge 162 that overlaps the third edge 163 functions as a fourth region 174, and the portion of the fourth edge 164 that overlaps the third edge 163 functions as the fourth region 174. 8 region 178.
 第1領域171に存在するマヨラナ粒子と、第2領域172に存在するマヨラナ粒子とは、エッチングストッパ140をトンネル効果で通り抜けることができ、相互作用する。このため、両マヨラナ粒子は単一のマヨラナ粒子とみなすことができる。第3領域173と第4領域174との組、第5領域175と第6領域176との組、第7領域177と第8領域178との組についても、同様である。 The Majorana particles existing in the first region 171 and the Majorana particles existing in the second region 172 can tunnel through the etching stopper 140 and interact with each other. Therefore, both Majorana particles can be regarded as a single Majorana particle. The same applies to the set of the third area 173 and the fourth area 174, the set of the fifth area 175 and the sixth area 176, and the set of the seventh area 177 and the eighth area 178.
 このように、量子ビット2では、下部トポロジカル絶縁体層121に発生するマヨラナ粒子と上部トポロジカル絶縁体層122に発生するマヨラナ粒子とを容易に相互作用させることできる。 Thus, in the qubit 2, the Majorana particles generated in the lower topological insulator layer 121 and the Majorana particles generated in the upper topological insulator layer 122 can easily interact.
 また、各下部s波超伝導体層131の上面にキャップ層151が設けられ、各上部s波超伝導体層132の上面にキャップ層152が設けられ、各上部s波超伝導体層133の下面にキャップ層153が設けられている。このため、第1実施形態と同様に、下部トポロジカル絶縁体層121及び上部トポロジカル絶縁体層122のそれぞれの電子状態の乱れを抑制することができ、安定してマヨラナ粒子を発生させることができる。発生したマヨラナ粒子は、例えば、s波超伝導体層131~133を地絡又はフロートさせることにより交換することができる。 A cap layer 151 is provided on the upper surface of each lower s-wave superconductor layer 131 , a cap layer 152 is provided on the upper surface of each upper s-wave superconductor layer 132 , and a cap layer 152 is provided on the upper surface of each upper s-wave superconductor layer 133 . A cap layer 153 is provided on the bottom surface. Therefore, similarly to the first embodiment, disturbance of the electronic states of the lower topological insulator layer 121 and the upper topological insulator layer 122 can be suppressed, and Majorana particles can be stably generated. The generated Majorana grains can be replaced, for example, by grounding or floating the s-wave superconductor layers 131-133.
 次に、第2実施形態に係る量子ビット2の製造方法について説明する。図13~図23は、第2実施形態に係る量子ビット2の製造方法を示す上面図である。 Next, a method for manufacturing the quantum bit 2 according to the second embodiment will be described. 13 to 23 are top views showing the manufacturing method of the quantum bit 2 according to the second embodiment.
 まず、図13に示すように、基板110の上にNb層181を形成する。Nb層181は、例えば蒸着法等により形成することができる。 First, as shown in FIG. 13, the Nb layer 181 is formed on the substrate 110. Then, as shown in FIG. The Nb layer 181 can be formed, for example, by vapor deposition.
 次いで、図14に示すように、Nb層181の上にh-BN層182を形成する。h-BN層182は、例えば化学気相成長(chemical vapor deposition:CVD)法等により形成することができる。 Then, an h-BN layer 182 is formed on the Nb layer 181, as shown in FIG. The h-BN layer 182 can be formed by chemical vapor deposition (CVD), for example.
 その後、図15に示すように、Nb層181及びh-BN層182の積層体を加工することにより、下部s波超伝導体層131及びキャップ層151の積層体と、上部s波超伝導体層132及びキャップ層152の積層体とを形成する(図11、図12参照)。キャップ層151、152は、それぞれ下部s波超伝導体層131、上部s波超伝導体層132に対する保護層として機能することができ、この後の処理において、下部s波超伝導体層131、上部s波超伝導体層132の表面の酸化を抑制することができる。 Thereafter, as shown in FIG. 15, by processing the laminate of the Nb layer 181 and the h-BN layer 182, the laminate of the lower s-wave superconductor layer 131 and the cap layer 151 and the upper s-wave superconductor A stack of layer 132 and cap layer 152 is formed (see FIGS. 11 and 12). The cap layers 151, 152 can function as protective layers for the lower s-wave superconductor layer 131 and the upper s-wave superconductor layer 132, respectively, and during subsequent processing, the lower s-wave superconductor layer 131, Oxidation of the surface of the upper s-wave superconductor layer 132 can be suppressed.
 続いて、図16に示すように、基板110の上に、下部s波超伝導体層131及びキャップ層151の積層体と、上部s波超伝導体層132及びキャップ層152の積層体とを覆うようにして2次元トポロジカル絶縁体層121Xを設ける。2次元トポロジカル絶縁体層121Xは、例えば、別途、成長基板(図示せず)の上に成長させ、成長基板から転写することにより設けることができる。 Subsequently, as shown in FIG. 16, a laminate of the lower s-wave superconductor layer 131 and the cap layer 151 and a laminate of the upper s-wave superconductor layer 132 and the cap layer 152 are formed on the substrate 110. A two-dimensional topological insulator layer 121X is provided so as to cover it. The two-dimensional topological insulator layer 121X can be provided, for example, by separately growing it on a growth substrate (not shown) and transferring it from the growth substrate.
 次いで、図17に示すように、2次元トポロジカル絶縁体層121Xを加工することにより、複数の下部トポロジカル絶縁体層121を形成する。2次元トポロジカル絶縁体層121Xの加工では、例えば反応性イオンエッチング(reactive ion etching:RIE)を行う。エッチングガスとしては、例えばフッ化炭素系ガスを用いる。 Next, as shown in FIG. 17, a plurality of lower topological insulator layers 121 are formed by processing the two-dimensional topological insulator layer 121X. In the processing of the two-dimensional topological insulator layer 121X, for example, reactive ion etching (RIE) is performed. As an etching gas, for example, a fluorocarbon-based gas is used.
 その後、図18に示すように、基板110の上方に下部トポロジカル絶縁体層121を覆うようにしてエッチングストッパ140Xを設ける。エッチングストッパ140Xは、例えば、別途、成長基板(図示せず)の上に成長させ、成長基板から転写することにより設けることができる。 After that, as shown in FIG. 18, an etching stopper 140X is provided above the substrate 110 so as to cover the lower topological insulator layer 121. Then, as shown in FIG. The etching stopper 140X can be provided, for example, by separately growing it on a growth substrate (not shown) and transferring it from the growth substrate.
 続いて、図19に示すように、エッチングストッパ140Xの上に2次元トポロジカル絶縁体層122Xを設ける。2次元トポロジカル絶縁体層122Xは、例えば、別途、成長基板(図示せず)の上に成長させ、成長基板から転写することにより設けることができる。 Subsequently, as shown in FIG. 19, a two-dimensional topological insulator layer 122X is provided on the etching stopper 140X. The two-dimensional topological insulator layer 122X can be provided, for example, by separately growing it on a growth substrate (not shown) and transferring it from the growth substrate.
 次いで、図20に示すように、2次元トポロジカル絶縁体層122Xを加工することにより、複数の上部トポロジカル絶縁体層122を形成する。2次元トポロジカル絶縁体層122Xの加工では、例えばRIEを行う。エッチングガスとしては、例えばフッ化炭素系ガスを用いる。このとき、下部トポロジカル絶縁体層はエッチングストッパ140Xにより保護される。 Next, as shown in FIG. 20, a plurality of upper topological insulator layers 122 are formed by processing the two-dimensional topological insulator layer 122X. For processing the two-dimensional topological insulator layer 122X, for example, RIE is performed. As an etching gas, for example, a fluorocarbon-based gas is used. At this time, the lower topological insulator layer is protected by the etching stopper 140X.
 その後、図21に示すように、エッチングストッパ140Xを加工することにより、エッチングストッパ140Xの上部トポロジカル絶縁体層122から露出している部分を除去し、下部トポロジカル絶縁体層121と上部トポロジカル絶縁体層122との間にエッチングストッパ140を残す(図11、図12参照)。エッチングストッパ140Xの加工では、例えばRIEを行う。エッチングガスとしては、例えば酸素ガスを用いる。 Thereafter, as shown in FIG. 21, the etching stopper 140X is processed to remove the exposed portion of the etching stopper 140X from the upper topological insulator layer 122, thereby forming the lower topological insulator layer 121 and the upper topological insulator layer. 122, an etching stopper 140 is left (see FIGS. 11 and 12). In processing the etching stopper 140X, for example, RIE is performed. Oxygen gas, for example, is used as the etching gas.
 続いて、図22に示すように、上部トポロジカル絶縁体層122の上にキャップ層153及び上部s波超伝導体層133の積層体を形成する(図11参照)。 Subsequently, as shown in FIG. 22, a laminate of a cap layer 153 and an upper s-wave superconductor layer 133 is formed on the upper topological insulator layer 122 (see FIG. 11).
 次いで、図23に示すように、上部トポロジカル絶縁体層122の上に複数の磁性電極141を形成する。 Next, as shown in FIG. 23, a plurality of magnetic electrodes 141 are formed on the upper topological insulator layer 122 .
 このようにして、第2実施形態に係る量子ビット2を製造することができる。 In this way, the quantum bit 2 according to the second embodiment can be manufactured.
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態は量子ビットの製造方法に関する。図24~図28は、第3実施形態に係る量子ビットの製造方法を示す模式図である。
(Third embodiment)
Next, a third embodiment will be described. The third embodiment relates to a method of manufacturing a quantum bit. 24 to 28 are schematic diagrams showing a method of manufacturing a quantum bit according to the third embodiment.
 まず、図24に示すように、成長基板41上にh-BN層301を形成し、スライドガラス51に設けた透明ポリマー塊52にh-BN層301を付着させる。 First, as shown in FIG. 24, the h-BN layer 301 is formed on the growth substrate 41, and the h-BN layer 301 is adhered to the transparent polymer block 52 provided on the slide glass 51. Then, as shown in FIG.
 次いで、図25に示すように、成長基板42上にWTe層302を形成し、h-BN層301にWTe層302を付着させる。WTe層302は、例えばパルスレーザ堆積(pulse laser deposition:PLD)法又は分子線エピタキシー(molecular beam epitaxy)法等により形成することができる。単結晶のWTeから剥離したWTe層302を用いてもよい。 A WTe 2 layer 302 is then formed on the growth substrate 42 and the WTe 2 layer 302 is attached to the h-BN layer 301, as shown in FIG. The WTe2 layer 302 can be formed, for example, by pulsed laser deposition (PLD) or molecular beam epitaxy. A WTe 2 layer 302 exfoliated from single crystal WTe 2 may also be used.
 その後、図26に示すように、成長基板43上にh-BN層303を形成し、WTe層302にh-BN層303を付着させる。 Thereafter, an h-BN layer 303 is formed on the growth substrate 43 and the h-BN layer 303 is attached to the WTe2 layer 302, as shown in FIG.
 続いて、図27に示すように、基板44上にs波超伝導体層310を形成し、h-BN層301、WTe層302及びh-BN層303の積層体をs波超伝導体層310に押し付ける。 Subsequently, as shown in FIG. 27, an s-wave superconductor layer 310 is formed on the substrate 44, and a laminate of the h-BN layer 301, the WTe2 layer 302 and the h-BN layer 303 is formed as an s-wave superconductor. Press against layer 310 .
 次いで、図28に示すように、透明ポリマー塊52をh-BN層301から外す。この結果、h-BN層301、WTe層302及びh-BN層303の積層体が基板44上に転写される。 The transparent polymer mass 52 is then removed from the h-BN layer 301, as shown in FIG. As a result, a stack of h-BN layer 301 , WTe 2 layer 302 and h-BN layer 303 is transferred onto substrate 44 .
 このようにして、s波超伝導体層310と、トポロジカル絶縁体であるWTe層302との間にh-BN層301が挟まれた量子ビット3を製造することができる。 In this manner, a qubit 3 having an h-BN layer 301 sandwiched between an s-wave superconductor layer 310 and a topological insulator WTe2 layer 302 can be fabricated.
 (第4実施形態)
 次に、第4実施形態について説明する。図29は、第4実施形態に係る量子ビットを示す模式図である。
(Fourth embodiment)
Next, a fourth embodiment will be described. FIG. 29 is a schematic diagram showing a quantum bit according to the fourth embodiment.
 第4実施形態に係る量子ビット4は、図29に示すように、平面形状が矩形状のトポロジカル絶縁体層421と、平面形状が矩形状のトポロジカル絶縁体層422とを有する。トポロジカル絶縁体層421の1つの頂点とトポロジカル絶縁体層422の1つの頂点とが繋がっている。トポロジカル絶縁体層421及び422を1つのトポロジカル絶縁体層とみれば、トポロジカル絶縁体層421とトポロジカル絶縁体層422との連結部423にくびれが存在する。 As shown in FIG. 29, the quantum bit 4 according to the fourth embodiment has a topological insulator layer 421 with a rectangular planar shape and a topological insulator layer 422 with a rectangular planar shape. One vertex of the topological insulator layer 421 and one vertex of the topological insulator layer 422 are connected. If the topological insulator layers 421 and 422 are regarded as one topological insulator layer, there is a constriction at the connecting portion 423 between the topological insulator layers 421 and 422 .
 トポロジカル絶縁体層421は、例えば2次元トポロジカル絶縁体層であり、連結部423から延びる第1縁461及び第3縁463を有する。トポロジカル絶縁体層421は、単一の2次元トポロジカル絶縁体から構成されていてもよく、複数の2次元トポロジカル絶縁体が積層されて構成されていてもよい。トポロジカル絶縁体層421の材料は、例えばWTeである。 The topological insulator layer 421 is, for example, a two-dimensional topological insulator layer and has a first edge 461 and a third edge 463 extending from the connecting portion 423 . The topological insulator layer 421 may be configured from a single two-dimensional topological insulator, or may be configured by stacking a plurality of two-dimensional topological insulators. The material of the topological insulator layer 421 is WTe2 , for example.
 トポロジカル絶縁体層422は、例えば2次元トポロジカル絶縁体層であり、連結部423から延びる第2縁462及び第4縁464を有する。トポロジカル絶縁体層422は、単一の2次元トポロジカル絶縁体から構成されていてもよく、複数の2次元トポロジカル絶縁体が積層されて構成されていてもよい。トポロジカル絶縁体層422の材料は、例えばWTeである。 The topological insulator layer 422 is, for example, a two-dimensional topological insulator layer and has a second edge 462 and a fourth edge 464 extending from the connecting portion 423 . The topological insulator layer 422 may be configured from a single two-dimensional topological insulator, or may be configured by stacking a plurality of two-dimensional topological insulators. The material of the topological insulator layer 422 is WTe2 , for example.
 トポロジカル絶縁体層421の第1縁461の上方にs波超伝導体層431が設けられている。トポロジカル絶縁体層421の第3縁463の上方にs波超伝導体層433が設けられている。s波超伝導体層431及び433は、例えばNb層である。 An s-wave superconductor layer 431 is provided above the first edge 461 of the topological insulator layer 421 . An s-wave superconductor layer 433 is provided above the third edge 463 of the topological insulator layer 421 . The s-wave superconductor layers 431 and 433 are, for example, Nb layers.
 s波超伝導体層431の下面にキャップ層451が設けられている。キャップ層451は、s波超伝導体層431の下面と、トポロジカル絶縁体層421の上面とに直接接触する。キャップ層451は、例えばh-BN層である。キャップ層451は第1縁461とs波超伝導体層431との間に設けられている。キャップ層451とトポロジカル絶縁体層421との間に化学結合が存在せず、キャップ層451がトポロジカル絶縁体層421に物理吸着された状態となっている。キャップ層451とトポロジカル絶縁体層421とは、互いにファンデルワールス結合していてもよい。キャップ層451を介して、近接効果によるs波超伝導体層431から第1縁461へのクーパー対の侵入が可能である。つまり、s波超伝導体層431からクーパー対がキャップ層451をトンネリングして第1縁461に侵入することが可能である。クーパー対が第1縁461に侵入すると、トポロジカル絶縁体層421はトポロジカル超伝導体層として機能するようになる。 A cap layer 451 is provided on the lower surface of the s-wave superconductor layer 431 . Cap layer 451 directly contacts the bottom surface of s-wave superconductor layer 431 and the top surface of topological insulator layer 421 . Cap layer 451 is, for example, an h-BN layer. A cap layer 451 is provided between the first edge 461 and the s-wave superconductor layer 431 . There is no chemical bond between the cap layer 451 and the topological insulator layer 421 , and the cap layer 451 is physically adsorbed to the topological insulator layer 421 . The cap layer 451 and the topological insulator layer 421 may be van der Waals coupled to each other. Cooper pair penetration from the s-wave superconductor layer 431 to the first edge 461 is possible through the cap layer 451 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 431 to tunnel through the cap layer 451 and enter the first edge 461 . Once the Cooper pair penetrates the first edge 461, the topological insulator layer 421 will act as a topological superconductor layer.
 s波超伝導体層433の下面にキャップ層453が設けられている。キャップ層453は、s波超伝導体層433の下面と、トポロジカル絶縁体層421の上面とに直接接触する。キャップ層453は、例えばh-BN層である。キャップ層453は第3縁463とs波超伝導体層433との間に設けられている。キャップ層453とトポロジカル絶縁体層421との間に化学結合が存在せず、キャップ層453がトポロジカル絶縁体層421に物理吸着された状態となっている。キャップ層453とトポロジカル絶縁体層421とは、互いにファンデルワールス結合していてもよい。キャップ層453を介して、近接効果によるs波超伝導体層433から第3縁463へのクーパー対の侵入が可能である。つまり、s波超伝導体層433からクーパー対がキャップ層453をトンネリングして第3縁463に侵入することが可能である。クーパー対が第3縁463に侵入すると、トポロジカル絶縁体層421はトポロジカル超伝導体層として機能するようになる。 A cap layer 453 is provided on the lower surface of the s-wave superconductor layer 433 . Cap layer 453 directly contacts the bottom surface of s-wave superconductor layer 433 and the top surface of topological insulator layer 421 . Cap layer 453 is, for example, an h-BN layer. A cap layer 453 is provided between the third edge 463 and the s-wave superconductor layer 433 . There is no chemical bond between the cap layer 453 and the topological insulator layer 421 , and the cap layer 453 is physically adsorbed to the topological insulator layer 421 . The cap layer 453 and the topological insulator layer 421 may be van der Waals coupled to each other. Cooper pair penetration from the s-wave superconductor layer 433 to the third edge 463 is possible through the cap layer 453 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 433 to tunnel through the cap layer 453 and enter the third edge 463 . Once the Cooper pair penetrates the third edge 463, the topological insulator layer 421 will act as a topological superconductor layer.
 s波超伝導体層432の下面にキャップ層452が設けられている。キャップ層452は、s波超伝導体層432の下面と、トポロジカル絶縁体層422の上面とに直接接触する。キャップ層452は、例えばh-BN層である。キャップ層452は第2縁462とs波超伝導体層432との間に設けられている。キャップ層452とトポロジカル絶縁体層422との間に化学結合が存在せず、キャップ層452がトポロジカル絶縁体層422に物理吸着された状態となっている。キャップ層452とトポロジカル絶縁体層422とは、互いにファンデルワールス結合していてもよい。キャップ層452を介して、近接効果によるs波超伝導体層432から第2縁462へのクーパー対の侵入が可能である。つまり、s波超伝導体層432からクーパー対がキャップ層452をトンネリングして第2縁462に侵入することが可能である。クーパー対が第2縁462に侵入すると、トポロジカル絶縁体層422はトポロジカル超伝導体層として機能するようになる。 A cap layer 452 is provided on the lower surface of the s-wave superconductor layer 432 . Cap layer 452 directly contacts the bottom surface of s-wave superconductor layer 432 and the top surface of topological insulator layer 422 . Cap layer 452 is, for example, an h-BN layer. A cap layer 452 is provided between the second edge 462 and the s-wave superconductor layer 432 . There is no chemical bond between the cap layer 452 and the topological insulator layer 422 , and the cap layer 452 is physically adsorbed to the topological insulator layer 422 . Cap layer 452 and topological insulator layer 422 may be van der Waals coupled to each other. Cooper pair penetration from the s-wave superconductor layer 432 to the second edge 462 is possible through the cap layer 452 due to the proximity effect. That is, it is possible for Cooper pairs from the s-wave superconductor layer 432 to tunnel through the cap layer 452 and enter the second edge 462 . When the Cooper pair penetrates the second edge 462, the topological insulator layer 422 becomes functional as a topological superconductor layer.
 トポロジカル絶縁体層421の上に磁性体層441及び443が設けられている。磁性体層441は、第1縁461の連結部423とは反対側の端部に設けられている。磁性体層443は、第3縁463の連結部423とは反対側の端部に設けられている。平面視で、磁性体層441と連結部423との間にs波超伝導体層431及びキャップ層451の積層体があり、磁性体層443と連結部423との間にs波超伝導体層433及びキャップ層453の積層体がある。磁性体層441及び443は、トポロジカル絶縁体層421に及ぶ磁界を生成する。磁性体層441及び443の材料は、例えばFe、Co又はNiである。 Magnetic layers 441 and 443 are provided on the topological insulator layer 421 . The magnetic layer 441 is provided at the end of the first edge 461 opposite to the connecting portion 423 . The magnetic layer 443 is provided at the end of the third edge 463 opposite to the connecting portion 423 . In plan view, there is a laminate of the s-wave superconductor layer 431 and the cap layer 451 between the magnetic layer 441 and the coupling portion 423, and the s-wave superconductor is between the magnetic layer 443 and the coupling portion 423. There is a stack of layer 433 and cap layer 453 . Magnetic layers 441 and 443 generate a magnetic field across topological insulator layer 421 . The material of the magnetic layers 441 and 443 is Fe, Co or Ni, for example.
 トポロジカル絶縁体層422の上に磁性体層442及び444が設けられている。磁性体層442は、第2縁462の連結部423とは反対側の端部に設けられている。磁性体層444は、第4縁464の上に設けられている。平面視で、磁性体層442と連結部423との間にs波超伝導体層432及びキャップ層452の積層体がある。磁性体層442及び444の材料は、例えばFe、Co又はNiである。 Magnetic layers 442 and 444 are provided on the topological insulator layer 422 . The magnetic layer 442 is provided at the end of the second edge 462 opposite to the connecting portion 423 . A magnetic layer 444 is provided on the fourth edge 464 . In plan view, there is a laminate of the s-wave superconductor layer 432 and the cap layer 452 between the magnetic layer 442 and the connecting portion 423 . The material of the magnetic layers 442 and 444 is Fe, Co or Ni, for example.
 量子ビット4では、第1縁461の平面視で磁性体層441とs波超伝導体層431及びキャップ層451の積層体との間の部分が、マヨラナ粒子が存在することができる第1領域471として機能する。第2縁462の平面視で磁性体層442とs波超伝導体層432及びキャップ層452の積層体との間の部分が、マヨラナ粒子が存在することができる第2領域472として機能する。第3縁463の平面視で磁性体層443とs波超伝導体層433及びキャップ層453の積層体との間の部分が、マヨラナ粒子が存在することができる第3領域473として機能する。更に、連結部423が、マヨラナ粒子が存在することができる第4領域474として機能する。 In the qubit 4 , the portion between the magnetic layer 441 and the stack of the s-wave superconductor layer 431 and the cap layer 451 in plan view of the first edge 461 is the first region where Majorana particles can exist. 471 functions. A portion of the second edge 462 between the magnetic layer 442 and the lamination of the s-wave superconductor layer 432 and the cap layer 452 in plan view functions as a second region 472 in which Majorana grains can exist. A portion of the third edge 463 between the magnetic layer 443 and the lamination of the s-wave superconductor layer 433 and the cap layer 453 in plan view functions as a third region 473 in which Majorana grains can exist. Furthermore, the connecting portion 423 functions as a fourth region 474 in which Majorana particles can exist.
 第4実施形態では、s波超伝導体層431の下面にキャップ層451が設けられ、s波超伝導体層432の下面にキャップ層452が設けられ、s波超伝導体層433の下面にキャップ層453が設けられている。このため、第1実施形態と同様に、トポロジカル絶縁体層421及び422のそれぞれの電子状態の乱れを抑制することができ、安定してマヨラナ粒子を発生させることができる。 In the fourth embodiment, a cap layer 451 is provided on the lower surface of the s-wave superconductor layer 431, a cap layer 452 is provided on the lower surface of the s-wave superconductor layer 432, and a cap layer 452 is provided on the lower surface of the s-wave superconductor layer 433. A cap layer 453 is provided. Therefore, as in the first embodiment, disturbance of the electronic states of the topological insulator layers 421 and 422 can be suppressed, and Majorana particles can be stably generated.
 (第5実施形態)
 次に、第5実施形態について説明する。第5実施形態は、量子コンピュータに関する。図30は、第5実施形態に係る量子コンピュータを示す図である。
(Fifth embodiment)
Next, a fifth embodiment will be described. The fifth embodiment relates to quantum computers. FIG. 30 is a diagram showing a quantum computer according to the fifth embodiment;
 第5実施形態に係る量子コンピュータ5は、汎用コンピュータ501と、制御部502と、量子ビット503とを有する。制御部502は、汎用コンピュータ501からの制御信号に基づいて量子ビット503を制御する。量子ビット503としては、第1~第4実施形態のいずれかに係る量子ビットが用いられる。制御部502及び量子ビット503はクリオスタット504に収納される。 A quantum computer 5 according to the fifth embodiment has a general-purpose computer 501, a control unit 502, and a quantum bit 503. Control unit 502 controls quantum bit 503 based on a control signal from general-purpose computer 501 . As the quantum bit 503, the quantum bit according to any one of the first to fourth embodiments is used. Control unit 502 and qubit 503 are housed in cryostat 504 .
 量子コンピュータ5により、安定した量子演算を行うことが可能である。  The quantum computer 5 can perform stable quantum operations.
 なお、本開示において、第1層、すなわち実施形態におけるキャップ層の材料はh-BNに限定されない。第1層の材料がh-BNである場合、第1層の厚さは、好ましくは1nm以下である。 Note that in the present disclosure, the material of the first layer, that is, the cap layer in the embodiment is not limited to h-BN. When the material of the first layer is h-BN, the thickness of the first layer is preferably 1 nm or less.
 例えば、第1層がNb層、Nb層、NbO層等の酸化物層であってもよい。第1層が酸化物層である場合、第1層の厚さは、好ましくは1nm以下である。酸化物層は、s波超伝導体層として用いられるNb層の上に堆積されてもよく、Nb層の酸化により形成されてもよい。Nb層の酸化が行われた場合、Nb層の表面においてO原子により終端化がなされる。 For example, the first layer may be an oxide layer such as Nb 2 O 5 layer, Nb 2 O 3 layer, NbO 2 layer. When the first layer is an oxide layer, the thickness of the first layer is preferably 1 nm or less. The oxide layer may be deposited on the Nb layer used as the s-wave superconductor layer or may be formed by oxidation of the Nb layer. When the Nb layer is oxidized, the surface of the Nb layer is terminated with O atoms.
 例えば、第1層がNbN層、TiN層等の窒化物層であってもよい。NbN層は超伝導体として機能するため、比較的厚くてもよい。また、NbN層の一部を第1s波超伝導体層として機能させてもよい。窒化物層は、s波超伝導体層として用いられるNb層の上に堆積されてもよく、Nb層の窒化により形成されてもよく、基板の上に直接形成されてもよい。Nb層の窒化が行われた場合、Nb層の表面においてN原子により終端化がなされる。 For example, the first layer may be a nitride layer such as an NbN layer or a TiN layer. Since the NbN layer functions as a superconductor, it can be relatively thick. Also, part of the NbN layer may function as the first s-wave superconductor layer. The nitride layer may be deposited on the Nb layer used as the s-wave superconductor layer, may be formed by nitridation of the Nb layer, or may be formed directly on the substrate. When the Nb layer is nitrided, the surface of the Nb layer is terminated with N atoms.
 例えば、第1層がグラフェン層又はグラファイトであってもよい。第1層がグラフェン層又はグラファイトである場合、第1層の厚さは、好ましくは1nm以下である。グラフェン層又はグラファイトは、s波超伝導体層として用いられるNb層の上に転写等により設けられてもよく、Nb層に炭素(C)を固溶させておき、Cの析出により形成されてもよい。グラフェン層は、1又は互いに積層された複数のグラフェンを含む。 For example, the first layer may be a graphene layer or graphite. When the first layer is a graphene layer or graphite, the thickness of the first layer is preferably 1 nm or less. The graphene layer or graphite may be provided by transfer or the like on the Nb layer used as the s-wave superconductor layer. good too. A graphene layer includes one or more graphenes stacked together.
 例えば、第1層がAu層、Pt層等の常伝導金属層であってもよい。第1層が常伝導金属層である場合、第1層の厚さは、好ましくは5nm以下である。常伝導金属層は、s波超伝導体層として用いられるNb層の上に堆積されてもよい。 For example, the first layer may be a normal-conducting metal layer such as an Au layer or a Pt layer. When the first layer is a normal metal layer, the thickness of the first layer is preferably 5 nm or less. A normal metal layer may be deposited over the Nb layer which is used as an s-wave superconductor layer.
 第1層がこれらの複数種類を組み合わせて含んでいてもよい。 The first layer may contain a combination of these multiple types.
 また、第1トポロジカル絶縁体層は2次元トポロジカル絶縁体層に限定されず、高次トポロジカル絶縁体層であってもよい。図31は、高次トポロジカル絶縁体層を含む量子ビットを示す模式図である。 Also, the first topological insulator layer is not limited to a two-dimensional topological insulator layer, and may be a higher-order topological insulator layer. FIG. 31 is a schematic diagram showing a qubit including a higher topological insulator layer.
 図31に示す量子ビット6は、直方体状の高次トポロジカル絶縁体層610と、s波超伝導体層620と、キャップ層630と、磁性体層640とを有する。キャップ層630が高次トポロジカル絶縁体層610の一部を覆い、s波超伝導体層620がキャップ層630を覆う。キャップ層630は高次トポロジカル絶縁体層610及びs波超伝導体層620に直接接触する。高次トポロジカル絶縁体層610、s波超伝導体層620、キャップ層630の材料は、例えば、WTe、Nb、h-BNである。磁性体層640はキャップ層630から離れて高次トポロジカル絶縁体層610の一部を覆う。高次トポロジカル絶縁体層610のキャップ層630と磁性体層640との間の部分で、対角に位置する2つのヒンジ(稜線)にマヨラナ粒子が存在することができる。 A quantum bit 6 shown in FIG. 31 has a rectangular parallelepiped high-order topological insulator layer 610 , an s-wave superconductor layer 620 , a cap layer 630 , and a magnetic layer 640 . A cap layer 630 covers a portion of the higher topological insulator layer 610 and an s-wave superconductor layer 620 covers the cap layer 630 . Cap layer 630 directly contacts high-order topological insulator layer 610 and s-wave superconductor layer 620 . Materials of the higher-order topological insulator layer 610, the s-wave superconductor layer 620, and the cap layer 630 are WTe 2 , Nb, h-BN, for example. A magnetic layer 640 covers a portion of the high-order topological insulator layer 610 away from the cap layer 630 . In the portion between the cap layer 630 and the magnetic layer 640 of the high-order topological insulator layer 610 , Majorana grains can be present at two hinges (ridge lines) located diagonally.
 量子ビット6においても、s波超伝導体層620と高次トポロジカル絶縁体層610との間に適切なキャップ層630が設けられているため、高次トポロジカル絶縁体層610の電子状態の乱れを抑制することができ、安定してマヨラナ粒子を発生させることができる。 In the qubit 6 as well, since an appropriate cap layer 630 is provided between the s-wave superconductor layer 620 and the high-order topological insulator layer 610, disturbance of the electronic state of the high-order topological insulator layer 610 can be suppressed. It can be suppressed, and Majorana particles can be stably generated.
 また、トポロジカル絶縁体層の材料はWTeに限定されない。例えば、他のトポロジカル絶縁体又はワイル半金属等がトポロジカル絶縁体層の材料に用いられてもよい。 Also, the material of the topological insulator layer is not limited to WTe2 . For example, other topological insulators, Weyl semimetals, or the like may be used as the material of the topological insulator layer.
 以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, the present invention is not limited to the above-described embodiments and the like, and various modifications can be made to the above-described embodiments and the like without departing from the scope of the claims. and substitutions can be added.
 1、2、3、4、6:量子ビット
 5:量子コンピュータ
 10、121、122、421、422:トポロジカル絶縁体層
 11、161、162、163、164、461、462、463、464:縁
 20、131、132、133、310、431、432、433、620:s波超伝導体層
 30、151、152、153、451、452、453、630:キャップ層
 141:磁性電極
 301、303:h-BN層
 302:WTe
 441、442、443、444、640:磁性体層
 610:高次トポロジカル絶縁体層
1, 2, 3, 4, 6: qubits 5: quantum computer 10, 121, 122, 421, 422: topological insulator layers 11, 161, 162, 163, 164, 461, 462, 463, 464: edges 20 , 131, 132, 133, 310, 431, 432, 433, 620: s- wave superconductor layer 30, 151, 152, 153, 451, 452, 453, 630: cap layer 141: magnetic electrode 301, 303: h -BN layer 302: WTe 2 layers 441, 442, 443, 444, 640: magnetic layer 610: higher topological insulator layer

Claims (15)

  1.  第1縁を備えた第1トポロジカル絶縁体層と、
     第1s波超伝導体層と、
     前記第1縁と前記第1s波超伝導体層との間に設けられ、近接効果による前記第1s波超伝導体層から前記第1縁へのクーパー対の侵入が可能な第1層と、
     を有することを特徴とするマヨラナ量子ビット。
    a first topological insulator layer having a first edge;
    a first s-wave superconductor layer;
    a first layer provided between the first edge and the first s-wave superconductor layer and capable of penetration of Cooper pairs from the first s-wave superconductor layer to the first edge by proximity effect;
    A Majorana qubit characterized by having:
  2.  前記第1層は、前記第1トポロジカル絶縁体層に物理吸着されていることを特徴とする請求項1に記載のマヨラナ量子ビット。 The Majorana qubit according to claim 1, wherein the first layer is physically adsorbed to the first topological insulator layer.
  3.  前記第1層は、フェルミ面に状態密度を備えることを特徴とする請求項1又は2に記載のマヨラナ量子ビット。 The Majorana qubit according to claim 1 or 2, wherein the first layer has a density of states on the Fermi surface.
  4.  前記第1層は、Nb層、Nb層、NbO層、NbN層、TiN層、六方晶窒化ホウ素層、グラフェン層、グラファイト、Au層若しくはPt層又はこれらの任意の組み合わせを含むことを特徴とする請求項1乃至3のいずれか1項に記載のマヨラナ量子ビット。 The first layer is Nb2O5 layer , Nb2O3 layer, NbO2 layer, NbN layer, TiN layer, hexagonal boron nitride layer, graphene layer, graphite, Au layer or Pt layer or any combination thereof. The Majorana qubit according to any one of claims 1 to 3, comprising:
  5.  前記第1トポロジカル絶縁体層は、2次元トポロジカル絶縁体又は高次トポロジカル絶縁体を含むことを特徴とする請求項1乃至4のいずれか1項に記載のマヨラナ量子ビット。 The Majorana qubit according to any one of claims 1 to 4, wherein the first topological insulator layer includes a two-dimensional topological insulator or a higher-order topological insulator.
  6.  前記第1トポロジカル絶縁体層に及ぶ磁界を生成する第1磁性体層を有することを特徴とする請求項1乃至5のいずれか1項に記載のマヨラナ量子ビット。 The Majorana qubit according to any one of claims 1 to 5, comprising a first magnetic layer that generates a magnetic field that reaches the first topological insulator layer.
  7.  前記第1層と前記第1トポロジカル絶縁体層とは、互いにファンデルワールス結合していることを特徴とする請求項1乃至6のいずれか1項に記載のマヨラナ量子ビット。 The Majorana qubit according to any one of claims 1 to 6, wherein the first layer and the first topological insulator layer are van der Waals coupled to each other.
  8.  前記第1トポロジカル絶縁体層は、第1方向に延び、
     第2縁を備え、前記第1方向と交差する第2方向に延びる第2トポロジカル絶縁体層と、
     第2s波超伝導体層と、
     前記第2縁と前記第2s波超伝導体層との間に設けられ、近接効果による前記第2s波超伝導体層から前記第2縁へのクーパー対の侵入が可能な第2層と、
     を有し、
     前記第1トポロジカル絶縁体層は、前記第1縁の平面視で前記第2縁と重なる部分に、マヨラナ粒子が存在することができる第1領域を含み、
     前記第2トポロジカル絶縁体層は、前記第2縁の平面視で前記第1縁と重なる部分に、マヨラナ粒子が存在することができる第2領域を含み、
     前記第1領域のマヨラナ粒子と前記第2領域のマヨラナ粒子とが交換可能であることを特徴とする請求項1乃至6のいずれか1項に記載のマヨラナ量子ビット。
    the first topological insulator layer extends in a first direction;
    a second topological insulator layer having a second edge and extending in a second direction intersecting the first direction;
    a second s-wave superconductor layer;
    a second layer provided between the second edge and the second s-wave superconductor layer to allow penetration of Cooper pairs from the second s-wave superconductor layer to the second edge by proximity effect;
    has
    The first topological insulator layer includes a first region where Majorana grains can exist in a portion of the first edge that overlaps the second edge in plan view,
    The second topological insulator layer includes a second region where Majorana grains can exist in a portion of the second edge that overlaps the first edge in plan view,
    The Majorana qubit according to any one of claims 1 to 6, wherein the Majorana particles in the first region and the Majorana particles in the second region are interchangeable.
  9.  前記第2層は、前記第2トポロジカル絶縁体層に物理吸着されていることを特徴とする請求項8に記載のマヨラナ量子ビット。 The Majorana qubit according to claim 8, wherein the second layer is physically adsorbed to the second topological insulator layer.
  10.  前記第2層は、フェルミ面に状態密度を備えることを特徴とする請求項8又は9に記載のマヨラナ量子ビット。 The Majorana qubit according to claim 8 or 9, wherein the second layer has a density of states on the Fermi surface.
  11.  前記第2層は、Nb層、Nb層、NbO層、NbN層、TiN層、六方晶窒化ホウ素層、グラフェン層、グラファイト、Au層若しくはPt層又はこれらの任意の組み合わせを含むことを特徴とする請求項8乃至10のいずれか1項に記載のマヨラナ量子ビット。 The second layer is Nb2O5 layer , Nb2O3 layer, NbO2 layer, NbN layer, TiN layer, hexagonal boron nitride layer, graphene layer, graphite, Au layer or Pt layer or any combination thereof. 11. The Majorana qubit according to any one of claims 8 to 10, comprising:
  12.  前記第2トポロジカル絶縁体層は、2次元トポロジカル絶縁体又は高次トポロジカル絶縁体を含むことを特徴とする請求項8乃至11のいずれか1項に記載のマヨラナ量子ビット。 The Majorana qubit according to any one of claims 8 to 11, wherein the second topological insulator layer includes a two-dimensional topological insulator or a higher-order topological insulator.
  13.  前記第2トポロジカル絶縁体層に及ぶ磁界を生成する第2磁性体層を有することを特徴とする請求項8乃至12のいずれか1項に記載のマヨラナ量子ビット。 The Majorana qubit according to any one of claims 8 to 12, further comprising a second magnetic layer that generates a magnetic field that reaches the second topological insulator layer.
  14.  前記第2層と前記第2トポロジカル絶縁体層とは、互いにファンデルワールス結合していることを特徴とする請求項8乃至13のいずれか1項に記載のマヨラナ量子ビット。 The Majorana qubit according to any one of claims 8 to 13, wherein the second layer and the second topological insulator layer are van der Waals coupled to each other.
  15.  請求項1乃至14のいずれか1項に記載のマヨラナ量子ビットを含むことを特徴とする量子コンピュータ。 A quantum computer comprising the Majorana qubit according to any one of claims 1 to 14.
PCT/JP2021/034577 2021-09-21 2021-09-21 Majorana quantum bit and quantum computer WO2023047460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023549194A JPWO2023047460A1 (en) 2021-09-21 2021-09-21
PCT/JP2021/034577 WO2023047460A1 (en) 2021-09-21 2021-09-21 Majorana quantum bit and quantum computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034577 WO2023047460A1 (en) 2021-09-21 2021-09-21 Majorana quantum bit and quantum computer

Publications (1)

Publication Number Publication Date
WO2023047460A1 true WO2023047460A1 (en) 2023-03-30

Family

ID=85720251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034577 WO2023047460A1 (en) 2021-09-21 2021-09-21 Majorana quantum bit and quantum computer

Country Status (2)

Country Link
JP (1) JPWO2023047460A1 (en)
WO (1) WO2023047460A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299783A1 (en) * 2012-05-08 2013-11-14 Microsoft Corporation Multi-Band Topological Nanowires
JP2013247267A (en) * 2012-05-28 2013-12-09 National Institute For Materials Science Device unit for topological quantum calculation using edge majorana fermion, operation method thereof, device for topological quantum calculation, and operation method thereof
US20160035470A1 (en) * 2014-08-04 2016-02-04 The Trustees Of Princeton University Magnetic topological nanowires
JP2020096107A (en) * 2018-12-13 2020-06-18 株式会社日立製作所 Quantum bit and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299783A1 (en) * 2012-05-08 2013-11-14 Microsoft Corporation Multi-Band Topological Nanowires
JP2013247267A (en) * 2012-05-28 2013-12-09 National Institute For Materials Science Device unit for topological quantum calculation using edge majorana fermion, operation method thereof, device for topological quantum calculation, and operation method thereof
US20160035470A1 (en) * 2014-08-04 2016-02-04 The Trustees Of Princeton University Magnetic topological nanowires
JP2020096107A (en) * 2018-12-13 2020-06-18 株式会社日立製作所 Quantum bit and control method thereof

Also Published As

Publication number Publication date
JPWO2023047460A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US6753546B2 (en) Trilayer heterostructure Josephson junctions
JP7098914B2 (en) Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistive effect element and magnetic memory
WO2022137421A1 (en) Quantum bit circuit, quantum bit computer, and quantum bit circuit manufacturing method
US20220084731A1 (en) Oxide interface displaying electronically controllable ferromagnetism
EP1974388B1 (en) Multiple quantum well devices
JP6546679B2 (en) Semiconductor parts
Li et al. Magnetic field resistant quantum interferences in Josephson junctions based on bismuth nanowires
KR20210091582A (en) Josephson junction device and method for manufacturing the same
US20030107033A1 (en) Trilayer heterostructure junctions
US11832531B2 (en) Spin-orbit torque magnetization rotational element, spin-orbit torque magnetoresistance effect element, magnetic memory, and reservoir element
TW201941367A (en) Storage device and method of manufacturing storage device
JP2023500613A (en) Majorana Fermion Quantum Computing Device Fabricated Using Ion Implantation Method
JP2023501097A (en) Double-sided Majorana Fermion Quantum Computing Device Fabricated Using Ion Implantation Method
Shaternik et al. Charge transport in hybrid tunnel superconductor—quantum dot—superconductor junctions
JP2023500491A (en) Majorana Fermion Quantum Computing Device with Charge Sensing Fabricated Using Ion Implantation Method
JPWO2022137421A5 (en)
JP2022059919A (en) Integrated device and neuromorphic device
WO2023047460A1 (en) Majorana quantum bit and quantum computer
Huang et al. Identifying the graphene d-wave superconducting symmetry by an anomalous splitting zero-bias conductance peak
KR102674372B1 (en) Semiconductor-ferromagnetic insulator-superconductor hybrid device
CN114600262A (en) Semiconductor superconductor hybrid device
Fujisawa et al. Nonvolatile operation of vertical ferroelectric gate-all-around nanowire transistors
WO2023144999A1 (en) Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit
WO2023047461A1 (en) Quantum bit, quantum computing device, and method for manufacturing quantum bit
WO2023095287A1 (en) Structure, quantum bit, quantum computing device, and method for manufacturing structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023549194

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958337

Country of ref document: EP

Kind code of ref document: A1