JP2020096107A - Quantum bit and control method thereof - Google Patents

Quantum bit and control method thereof Download PDF

Info

Publication number
JP2020096107A
JP2020096107A JP2018233780A JP2018233780A JP2020096107A JP 2020096107 A JP2020096107 A JP 2020096107A JP 2018233780 A JP2018233780 A JP 2018233780A JP 2018233780 A JP2018233780 A JP 2018233780A JP 2020096107 A JP2020096107 A JP 2020096107A
Authority
JP
Japan
Prior art keywords
ferromagnetic semiconductor
domain wall
gate structure
semiconductor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018233780A
Other languages
Japanese (ja)
Inventor
雅彦 市村
Masahiko Ichimura
雅彦 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018233780A priority Critical patent/JP2020096107A/en
Publication of JP2020096107A publication Critical patent/JP2020096107A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hall/Mr Elements (AREA)

Abstract

To provide a quantum bit structure with a topological superconducting phase and its edge state by externally controlling the effective magnitude of spin-orbit interaction without the need for an external magnetic field.SOLUTION: A ferromagnetic semiconductor is formed on an s-wave superconductor in the shape of a nanowire, and an effective spin-orbit interaction is achieved by introducing a domain wall into the ferromagnetic semiconductor. A quantum bit is made up that induces a phase transition to topological superconducting phase by providing a gate in the ferromagnetic semiconductor with a superconducting component due to the superconducting proximity effect and controlling the chemical potential by a gate voltage to form a Majorana bound state at the gate edge. Further, a plurality of gates are provided, and voltage control of each gate is synchronized with domain wall movement of a wire-shaped ferromagnetic semiconductor due to pulse current application, thereby moving the quantum bit.SELECTED DRAWING: Figure 1

Description

本発明は、量子ビットに係り、固体中の安定な量子ビットの構成及びその制御方法に関する。 The present invention relates to a qubit, and more particularly to a configuration of a stable qubit in a solid and a control method thereof.

量子力学的な重ね合わせを用いて並列性を実現するとされる量子コンピュータは、従来のコンピュータが、情報について、「0か1」などなんらかの2値をあらわすいずれかの状態しか持ち得ない「ビット」で扱うのに代えて、「量子ビット」により、重ね合わせ状態によって情報を扱う。 A quantum computer, which is said to realize parallelism by using quantum mechanical superposition, has a "bit" in which a conventional computer can have only one state that represents some binary value such as "0 or 1" for information. Instead of handling in, information is handled by superposition state by "qubit".

様々な方式で量子ビットを作る研究がなされており、固体ベースの計算方法では、超伝導量子ビットとシリコン量子ビットを使う方式が主に研究されている。 Researches have been made on making qubits by various methods, and in solid-state calculation methods, methods using superconducting qubits and silicon qubits are mainly studied.

固体中における量子ビットの担体として、電荷、電子スピン、および核スピンなどが挙げられる。これらの担体が量子ビットとして機能するためには、コヒーレンス時間をより長く保つ必要がある。そのため、各素子レベルでは極低温環境を含めたノイズ源の除去、回路レベルでは誤り訂正回路の構成などに関心が払われてきた。 Carriers of qubits in solids include charges, electron spins, and nuclear spins. In order for these carriers to function as qubits, the coherence time needs to be kept longer. Therefore, attention has been paid to the removal of noise sources including the cryogenic environment at each element level and the configuration of the error correction circuit at the circuit level.

一方、トポロジカル量子計算と呼ばれる分野(非特許文献1)においては、数学的な2次元面内に閉じ込められた粒子、あるいは準粒子の二粒子交換の際に引き起こされる位相変化がもたらす組紐(ブレイド)群を演算の基礎とする(特許文献1)。組紐群の実現には、超伝導を用いたハイブリッドな構成においてトポロジカル超伝導相転移を誘起させ、そのトポロジカル超伝導領域の端に形成されるMajorana束縛状態を量子ビットとすることが有望視されている。トポロジカル超伝導相は、通常のs波超伝導体上にスピン軌道相互作用の強い半導体ワイヤを形成させ、外部磁場を印加することにより得られる(非特許文献2)。 On the other hand, in a field called topological quantum computation (Non-Patent Document 1), a braid that is caused by a phase change caused by two-particle exchange of particles confined in a mathematical two-dimensional plane or quasiparticles A group is used as the basis of calculation (Patent Document 1). In order to realize the braid group, it is considered promising to induce a topological superconducting phase transition in a hybrid structure using superconductivity and to use the Majorana bound state formed at the edge of the topological superconducting region as a qubit. There is. The topological superconducting phase is obtained by forming a semiconductor wire having a strong spin-orbit interaction on an ordinary s-wave superconductor and applying an external magnetic field (Non-Patent Document 2).

特表2013−532373号公報Special table 2013-532373 gazette

Jason Alicea, Yuval Oreg, Gil Refael, Felix von Oppen, and Matthew P. A. Fisher 著、「Non-Abelian statistics and topological quantum information processing in 1D wire networks」,Nature Physics 7. 412 (2011)Jason Alicea, Yuval Oreg, Gil Refael, Felix von Oppen, and Matthew P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nature Physics 7. 412 (2011). V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven 著、「Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices」,SCIENCE VOL 336, 25 MAY 2012V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, "Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices", SCIENCE VOL 336, 25 MAY 2012

非特許文献2に開示される技術は、スピン軌道相互作用の強い半導体のバンド構造において超伝導近接効果により超伝導ギャップを開け、さらに外部磁場を印加し超伝導ギャップを構成するバンドにバンド反転効果をもたらすことでトポロジカル超伝導相を実現している。ブリルアン域の中央、つまりk=0の点でこれらの条件を式で表すと次の数式(1)のように書ける。 The technique disclosed in Non-Patent Document 2 opens a superconducting gap by a superconducting proximity effect in a band structure of a semiconductor having a strong spin-orbit interaction, and further applies an external magnetic field to apply a band inversion effect to a band forming the superconducting gap. To realize a topological superconducting phase. When these conditions are expressed by the formulas at the center of the Brillouin region, that is, at k=0, they can be written as the following formula (1).

Figure 2020096107
ここで、Bは外部磁場、Δはs波超伝導体の秩序変数、μはゲートにより変調するキャリア密度に対応した化学ポテンシャルの大きさを表す。しかし外部磁場の印加は局所的な制御には適さない。またスピン軌道相互作用の大きさは材料選択に依存し、外部からの制御は不可能である。
Figure 2020096107
Here, B is the external magnetic field, Δ is the order variable of the s-wave superconductor, and μ is the magnitude of the chemical potential corresponding to the carrier density modulated by the gate. However, application of an external magnetic field is not suitable for local control. The magnitude of spin-orbit interaction depends on the material selection and cannot be controlled from the outside.

本発明は、外部磁場を必要とせず、スピン軌道相互作用の実効的な大きさを外部から制御することによるトポロジカル超伝導相とその端状態による量子ビットの構成を提供し、さらに量子ビットの移動操作の制御方法を提供するものである。 The present invention provides a configuration of a qubit with a topological superconducting phase and its end states by externally controlling the effective magnitude of spin-orbit interaction without the need for an external magnetic field, and further, the migration of the qubit A method of controlling an operation is provided.

本発明の量子ビットの好ましい例では、s波超伝導体上に強磁性半導体をナノワイヤ状に接合した構造において、前記強磁性半導体にゲート構造を設け、ゲート部直下の強磁性半導体に磁壁を導入し、強磁性半導体の交換相互作用をJ、磁化をM、s波超伝導体の秩序変数をΔ、ゲート構造への印加電圧による化学ポテンシャルをμとしたとき、数式(2)の関係式を満たし、s波超伝導体の超伝導転移温度以下に冷却することで、ゲート構造の端に対応する強磁性半導体の部分にMajorana束縛状態を形成するように構成する。 In a preferred example of the qubit of the present invention, in a structure in which a ferromagnetic semiconductor is joined to an s-wave superconductor in a nanowire form, a gate structure is provided in the ferromagnetic semiconductor, and a domain wall is introduced into the ferromagnetic semiconductor immediately below the gate portion. Where J is the exchange interaction of the ferromagnetic semiconductor, M is the magnetization, Δ is the order variable of the s-wave superconductor, and μ is the chemical potential due to the applied voltage to the gate structure, By filling and cooling below the superconducting transition temperature of the s-wave superconductor, a Majorana bound state is formed in the portion of the ferromagnetic semiconductor corresponding to the edge of the gate structure.

また、本発明の他の特徴として、前記量子ビットにおいて、前記s波超伝導体はAl、及び前記強磁性半導体は(Ga,Mn)As{化合物半導体GaAsのGaをMnで5%置換したもの}より成る。 Further, as another feature of the present invention, in the qubit, the s-wave superconductor is Al, and the ferromagnetic semiconductor is (Ga,Mn)As {Compound semiconductor GaAs in which Ga is replaced by 5% by Mn. } Consists of.

また、本発明の量子ビットの制御方法の好ましい例では、s波超伝導体上に強磁性半導体をナノワイヤ状に接合した構造において、前記強磁性半導体に第1、および第2のゲート構造を直線状に設け、前記強磁性半導体両端に磁壁移動のための電源を配置し、第1のゲート部直下の強磁性半導体に磁壁を導入し、s波超伝導体の超伝導転移温度以下に冷却した後、第1のゲート構造への印加電圧による化学ポテンシャルμは、強磁性半導体の交換相互作用をJ、磁化をM、s波超伝導体の秩序変数をΔとしたとき、数式(2)の関係式を満たし、磁壁が配置されている第1のゲート構造から、磁壁を配置する第2のゲート構造への磁壁の移動を、第1のゲート構造への印加電圧を第2のゲート構造へ印加するように切り替えるのと同期させて、前記強磁性半導体に磁壁の移動方向とは逆方向に電流を供給することを特徴とする。 Further, in a preferable example of the method for controlling a qubit of the present invention, in a structure in which a ferromagnetic semiconductor is joined to an s-wave superconductor in a nanowire shape, the first and second gate structures are linearly connected to the ferromagnetic semiconductor. Power supply for moving the domain wall is arranged at both ends of the ferromagnetic semiconductor, the domain wall is introduced into the ferromagnetic semiconductor immediately below the first gate portion, and cooled to a temperature below the superconducting transition temperature of the s-wave superconductor. After that, the chemical potential μ due to the applied voltage to the first gate structure is expressed by Equation (2), where J is the exchange interaction of the ferromagnetic semiconductor, M is the magnetization, and Δ is the order variable of the s-wave superconductor. The movement of the domain wall from the first gate structure, which satisfies the relational expression and in which the domain wall is arranged, to the second gate structure in which the domain wall is arranged, and the applied voltage to the first gate structure is applied to the second gate structure. It is characterized in that a current is supplied to the ferromagnetic semiconductor in a direction opposite to the moving direction of the domain wall in synchronization with the switching to apply.

本発明によると、トポロジカル量子計算における量子ビット生成の局所的制御が可能になる。また、量子ビット移動の局所的制御が可能になる。 The present invention enables local control of qubit generation in topological quantum computation. It also allows local control of qubit movement.

本発明の量子ビットの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the quantum bit of this invention. 本発明の量子ビットの移動操作の例を示す模式図である。It is a schematic diagram which shows the example of the movement operation of the qubit of this invention. シミュレーション結果において、磁壁幅が20、100、200原子の場合の規格化された磁化の大きさを表す図である。It is a figure showing the magnitude|size of the standardized magnetization in case the domain wall width is 20, 100, 200 atoms in a simulation result. 図3の各磁壁幅におけるシミュレーション結果に対応する実効的なスピン軌道相互作用の大きさを表す図である。It is a figure showing the magnitude of effective spin orbit interaction corresponding to the simulation result in each domain wall width of FIG. トポロジカル超伝導領域の端部分に形成されるMajorana束縛状態の局所状態密度分布を示す図である。It is a figure which shows the local density of states distribution of Majorana bound state formed in the edge part of a topological superconducting region. 図5のトポロジカル超伝導領域の端部分に形成されるMajorana束縛状態に対応する局所スピン密度分布を示す図である。It is a figure which shows the local spin density distribution corresponding to the Majorana bound state formed in the edge part of the topological superconducting region of FIG.

以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施例の量子ビットの構成例を示す模式図である。
本実施例の量子ビットは、s波超伝導体10、強磁性半導体20、および強磁性半導体20に対してトポロジカル超伝導{通常の超伝導は、物質が臨界温度を超えて冷却されたときに起こる、電気抵抗がゼロになる現象。超伝導状態では、電気がエネルギーを失わずに物質中を流れる。トポロジカル超伝導では、物質内部で超伝導状態に特有の超伝導ギャップが開いているのに対し、表面や端(エッジ)にはトポロジカルに保護された金属状態が現れる。}を誘起するためにキャリア密度を制御するゲート30を備える。強磁性半導体20は、s波超伝導体10上に原子層を蒸着にて積層して形成した擬一次元的な形状(ナノワイヤ状)を有し、磁壁21が導入されている。
FIG. 1 is a schematic diagram showing a configuration example of a quantum bit of this embodiment.
The qubit of the present embodiment has a topological superconductivity with respect to the s-wave superconductor 10, the ferromagnetic semiconductor 20, and the ferromagnetic semiconductor 20. {Normal superconductivity means that when a substance is cooled above a critical temperature. Phenomenon that occurs when electrical resistance becomes zero. In the superconducting state, electricity flows through a material without losing energy. In topological superconductivity, a superconducting gap peculiar to the superconducting state is opened inside a substance, whereas a topologically protected metal state appears on the surface or edge. } Is provided for controlling the carrier density. The ferromagnetic semiconductor 20 has a pseudo one-dimensional shape (nanowire shape) formed by stacking atomic layers on the s-wave superconductor 10 by vapor deposition, and has a domain wall 21 introduced therein.

強磁性半導体20にトポロジカル超伝導を誘起するためには、強磁性半導体20の厚さ(Z軸方向厚さ)が5原子層以内の範囲が望ましい。5原子層以上の厚さとなった場合、トポロジカル超伝導が誘起される領域はs波超伝導体10と強磁性半導体20の界面と表現される。トポロジカル超伝導を生成するためには、ゲート30による化学ポテンシャルμの設定は数式(2)の関係式を満たす必要がある。 In order to induce topological superconductivity in the ferromagnetic semiconductor 20, the thickness of the ferromagnetic semiconductor 20 (thickness in the Z-axis direction) is preferably within 5 atomic layers. When the thickness is 5 atomic layers or more, the region in which topological superconductivity is induced is expressed as the interface between the s-wave superconductor 10 and the ferromagnetic semiconductor 20. In order to generate topological superconductivity, the setting of the chemical potential μ by the gate 30 needs to satisfy the relational expression of Expression (2).

Figure 2020096107
ここでJ・Mは強磁性半導体20における交換相互作用Jと磁化Mの積、Δはs波超伝導体10における秩序変数の大きさを表す。
Figure 2020096107
Here, J·M is the product of the exchange interaction J and the magnetization M in the ferromagnetic semiconductor 20, and Δ is the magnitude of the order variable in the s-wave superconductor 10.

ゲート30をこの設定の元で、s波超伝導体10の超伝導転移温度以下に冷却を行い、ゲート電圧により化学ポテンシャルを制御することでトポロジカル超伝導相への相転移を誘起する。このとき注意すべきは、s波超伝導体10、あるいは強磁性半導体20におけるスピン軌道相互作用{電子のスピンと、電子の軌道角運動量との相互作用}が比較的大きいことが望ましい。トポロジカル超伝導転移に対し、スピン軌道相互作用の大きさが十分でない場合には、強磁性半導体20に磁壁21を導入することでスピン軌道相互作用の増強が可能となる。 Under this setting, the gate 30 is cooled below the superconducting transition temperature of the s-wave superconductor 10 and the chemical potential is controlled by the gate voltage to induce a phase transition to the topological superconducting phase. At this time, it should be noted that it is desirable that the spin-orbit interaction {interaction between electron spin and electron orbital angular momentum} in the s-wave superconductor 10 or the ferromagnetic semiconductor 20 is relatively large. If the magnitude of the spin-orbit interaction is not sufficient for the topological superconducting transition, the spin-orbit interaction can be enhanced by introducing the domain wall 21 into the ferromagnetic semiconductor 20.

実施例1として、s波超伝導体10にAl、強磁性半導体20に(Ga,Mn)Asを用いる。本実施例で用いられる(Ga,Mn)Asは、標準的な化合物半導体GaAsのGaをMnで5%置換したもので、バルクの(Ga,Mn)Asにおいて強磁性転移温度は95Kである。ゲート30の材質は強磁性半導体20の材質と結晶成長の整合性が取れるメタル、32は絶縁体である。 As Example 1, Al is used for the s-wave superconductor 10 and (Ga,Mn)As is used for the ferromagnetic semiconductor 20. The (Ga,Mn)As used in this example is a standard compound semiconductor GaAs in which Ga is replaced with 5% of Mn, and the ferromagnetic transition temperature of bulk (Ga,Mn)As is 95K. The material of the gate 30 is a metal having crystal growth matching the material of the ferromagnetic semiconductor 20, and 32 is an insulator.

p型半導体である(Ga,Mn)Asにゲート構造30を設けキャリア密度を制御し、Alの超伝導転移温度1.2K(ケルビン)以下である0.5Kまで冷却し、トポロジカル超伝導が生成されるかを確認する。前記材料のもと、上述のパラメータは、J・M=0.1eV、Δ=0.02eVと見積もられるので、トポロジカル超伝導生成には|μ|> 0.1eVが望ましい。本実施例においては、ゲート構造30にμ= -0.1eVを印加した(41)。 A gate structure 30 is provided on (Ga,Mn)As, which is a p-type semiconductor, the carrier density is controlled, and the superconducting transition temperature of Al is cooled to 0.5K, which is 1.2K (Kelvin) or lower, to generate topological superconductivity. Check if Based on the above materials, the above parameters are estimated to be J·M=0.1 eV and Δ=0.02 eV. Therefore, |μ|> 0.1 eV is desirable for producing topological superconductivity. In this embodiment, μ=-0.1 eV was applied to the gate structure 30 (41).

トポロジカル超伝導生成の確認は、ゲート構造30の端に対応する強磁性半導体20
の部分にMajorana束縛状態の生成確認と同値であり、スピン偏極STM(Scanning Tunnel Microscope)を用いて局所スピン密度の測定により確認した。スピン偏極STMのエネルギー、およびスピンの分解によって、超伝導ギャップ中におけるゼロエネルギーの束縛状態が検出可能である。
The generation of topological superconductivity is confirmed by the ferromagnetic semiconductor 20 corresponding to the edge of the gate structure 30.
It is the same value as the confirmation of the Majorana bound state in the part of, and it was confirmed by measuring the local spin density using a spin polarized STM (Scanning Tunnel Microscope). The zero-energy bound states in the superconducting gap can be detected by the spin-polarized STM energy and spin decomposition.

ここで、Majorana束縛状態とは、Majorana粒子がポテンシャルなどに束縛された状態のこと。Majorana粒子とは、1937年にE. Majoranaが理論的に提案した粒子で、粒子がそれ自身の反粒子になる特徴を持っていて、その性質を利用した量子コンピュータへの応用が提案されている。トポロジカル超伝導に現れると予測されているMajorana粒子は普通の電子とは異なり、電荷を持たずに存在し、スピンを持つ。 Here, the Majorana bound state is a state in which Majorana particles are bound to the potential. The Majorana particle is a particle that was theoretically proposed by E. Majorana in 1937, and it has the characteristic that the particle becomes its own antiparticle, and its application to a quantum computer has been proposed. .. Majorana particles, which are predicted to appear in topological superconductivity, are different from ordinary electrons in that they exist without charge and have spin.

また、スピン偏極STM(Scanning Tunnel Microscope)とは、先端を尖がらせた金属の針(探針)で物質の表面をなぞるように走査し、探針の最先端の原子から測定表面へのトンネル電流の有無の観測より、測定表面の原子レベルのエネルギーとスピン状態を検出することができる。 In addition, the spin-polarized STM (Scanning Tunnel Microscope) is a metal needle (probe) with a sharp tip that traces the surface of a substance so that it scans from the tip atom of the probe to the measurement surface. By observing the presence or absence of the tunnel current, it is possible to detect the atomic level energy and spin state of the measurement surface.

本実施例では先ず、強磁性半導体20の(Ga,Mn)Asに磁壁を導入しないで、トポロジカル超伝導生成の確認を行った。この場合には、ゲート構造30の端部に対応する強磁性半導体20の部分にはMajorana束縛状態に由来する局所スピン密度が形成されず、ゲート構造30によるキャリア密度の変調効果のみによってはトポロジカル超伝導が生成されないことが確認された。 In this example, first, generation of topological superconductivity was confirmed without introducing a domain wall into (Ga,Mn)As of the ferromagnetic semiconductor 20. In this case, the local spin density derived from the Majorana bound state is not formed in the portion of the ferromagnetic semiconductor 20 corresponding to the end of the gate structure 30, and the topological superstructure may be caused only by the carrier density modulation effect of the gate structure 30. It was confirmed that no conduction was generated.

次に、端部より強磁性半導体20に電流を流して発生させた外部磁場の印加により強磁性半導体20の(Ga,Mn)Asに磁壁21を導入する。磁壁21の導入が確認された後、外部磁場を除去する。(Ga,Mn)Asに磁壁導入後は、上記手順と同様、ゲート構造30によりキャリア密度を制御し、0.5Kまで冷却する。磁壁導入の効果により、ゲート構造30の端部に対応する強磁性半導体20の部分には局所スピン密度が形成され、Majorana束縛状態が存在することが確認された。Majorana束縛状態の存在は、(Ga,Mn)Asがトポロジカル超伝導に転移したことを意味する。 Next, the domain wall 21 is introduced into (Ga,Mn)As of the ferromagnetic semiconductor 20 by applying an external magnetic field generated by passing a current through the ferromagnetic semiconductor 20 from the end. After the introduction of the domain wall 21 is confirmed, the external magnetic field is removed. After the domain wall is introduced into (Ga,Mn)As, the carrier density is controlled by the gate structure 30 and cooled to 0.5 K as in the above procedure. It was confirmed that due to the effect of introducing the domain wall, a local spin density was formed in the portion of the ferromagnetic semiconductor 20 corresponding to the end of the gate structure 30, and a Majorana bound state existed. The existence of the Majorana bound state means that (Ga,Mn)As is transformed into topological superconductivity.

図2は、実施例1で示した量子ビットの移動操作の例を示す模式図である。図2に示すように磁壁21を移動させるために用いられる電源40と、複数のゲート構造30、31を設ける。各ゲートの長さ(X軸方向長さ)はそれぞれ1μmである。ゲート構造30にμ= -0.1eVを印加し、ゲート構造30直下に対応する強磁性半導体20の領域をトポロジカル超伝導相とする。一方、ゲート構造31はμ= 0eVとし、通常の超伝導とする。強磁性半導体20 (Ga,Mn)Asに磁壁21を導入後、電源40から強磁性半導体20に100nAの電流を供給する。強磁性半導体20の磁壁21は電流とは逆方向に移動する。これと同期させ、ゲート構造31にμ= -0.1eVを印加する(42)と共に、ゲート構造30はμ= 0eVとする(41)。100msの通電後、スピン偏極STMによる測定をすると、磁壁21の移動に伴いゲート構造30の端部に対応する強磁性半導体20の部分からゲート構造31の端部に対応する強磁性半導体20の部分への局所スピン密度の移動が確認された。また、電流40の極性を逆にすることにより、局所スピン密度すなわちMajorana束縛状態のゲート構造31の端部に対応する強磁性半導体20の部分からゲート構造30の端部に対応する強磁性半導体20の部分への移動が確認された。 FIG. 2 is a schematic diagram illustrating an example of the qubit transfer operation described in the first embodiment. As shown in FIG. 2, a power supply 40 used to move the domain wall 21 and a plurality of gate structures 30 and 31 are provided. The length of each gate (length in the X-axis direction) is 1 μm. Μ=-0.1 eV is applied to the gate structure 30, and the region of the ferromagnetic semiconductor 20 corresponding to directly under the gate structure 30 is set as a topological superconducting phase. On the other hand, the gate structure 31 is set to μ=0 eV, which is a normal superconductivity. After introducing the domain wall 21 into the ferromagnetic semiconductor 20 (Ga,Mn)As, the power supply 40 supplies a current of 100 nA to the ferromagnetic semiconductor 20. The domain wall 21 of the ferromagnetic semiconductor 20 moves in the direction opposite to the current. In synchronization with this, μ=−0.1 eV is applied to the gate structure 31 (42), and the gate structure 30 is set to μ=0 eV (41). After conducting the current for 100 ms, the measurement by the spin polarization STM shows that the ferromagnetic semiconductor 20 corresponding to the end of the gate structure 31 changes from the part of the ferromagnetic semiconductor 20 corresponding to the end of the gate structure 30 as the domain wall 21 moves. It was confirmed that the local spin density moved to the part. Further, by reversing the polarity of the current 40, the local spin density, that is, the portion of the ferromagnetic semiconductor 20 corresponding to the end of the gate structure 31 in the Majorana bound state to the ferromagnetic semiconductor 20 corresponding to the end of the gate structure 30. It was confirmed to move to the part.

図1に示す量子ビットの構成例の模式図において、s波超伝導体10にAl、強磁性半導体20に(In,Fe)Sbを用いた実施例を示す。本実施例で用いられる(In,Fe)Sbは標準的な化合物半導体InSbのInをFeで15%置換したもので、バルクの(In,Fe)Sbにおいて強磁性転移温度は290Kである。実験は、前記の実施例1とほぼ同様に行ったが、(In,Fe)Sb はn型半導体であるため、ゲート構造30にμ= +0.1eVを印加した(41)。(In,Fe)Sbにおいても実施例1と同様、ゲート構造30によるキャリア密度の変調効果のみによってはトポロジカル超伝導が生成されず、磁壁21導入後にゲート構造30の端部に対応する強磁性半導体20の部分に局所スピン密度が形成され、Majorana束縛状態が存在することが確認された。 In the schematic diagram of the configuration example of the qubit shown in FIG. 1, an example in which Al is used for the s-wave superconductor 10 and (In,Fe)Sb is used for the ferromagnetic semiconductor 20 is shown. (In,Fe)Sb used in this example is a standard compound semiconductor InSb with In replaced by 15% by In, and the ferromagnetic transition temperature of bulk (In,Fe)Sb is 290K. The experiment was performed in substantially the same manner as in Example 1 above, but since (In,Fe)Sb is an n-type semiconductor, μ=+0.1 eV was applied to the gate structure 30 (41). Similarly to the first embodiment, in (In,Fe)Sb, topological superconductivity is not generated only by the effect of modulating the carrier density by the gate structure 30, and the ferromagnetic semiconductor corresponding to the end of the gate structure 30 after the domain wall 21 is introduced. It was confirmed that local spin densities were formed at 20 and Majorana bound states existed.

図1に示す量子ビットの構成例の模式図において、s波超伝導体10、および強磁性半導体20の素材は実施例1と同様と仮定して、一次元タイトバインディングモデルを用いて、トポロジカル超伝導を誘起するシミュレーションを実施した。 In the schematic diagram of the configuration example of the qubit shown in FIG. 1, it is assumed that the materials of the s-wave superconductor 10 and the ferromagnetic semiconductor 20 are the same as in Example 1, and the one-dimensional tight binding model is used to calculate the topological A simulation was conducted to induce conduction.

一次元タイトバインディングモデルは、500格子点の一次元配列(単純一次元鎖)にて構成し、各格子点を構成する原子は、(Ga,Mn)Asの特性(化合物半導体のバンド構造をモデル化する)をパラメータで表現した見かけ上1種類で表現されている。100−400番目の格子点の範囲がゲートに相当する領域であり、エネルギーを変えてやる。磁壁中心を250番目の格子点に固定して、磁壁幅が20、100、200原子の場合のそれぞれの条件で、シミュレーションを実施した。 The one-dimensional tight binding model is composed of a one-dimensional array of 500 lattice points (simple one-dimensional chain), and the atoms that compose each lattice point are the characteristics of (Ga,Mn)As (the band structure of a compound semiconductor is modeled. It is expressed as one kind of appearance that is expressed as a parameter. The range of the 100th to 400th lattice points corresponds to the gate, and the energy is changed. The center of the domain wall was fixed to the 250th lattice point, and the simulation was performed under the respective conditions when the domain wall width was 20, 100, and 200 atoms.

図3は磁壁幅が20原子(51)、100原子(52)、200原子(53)の場合の規格化された磁化の大きさを表す(磁壁を境界として、両側の磁化の向きは逆となる。磁壁の両端で+1と−1となるように正規化する。)。磁壁中心を250番目の格子点に固定している。 Fig. 3 shows the normalized magnitude of magnetization when the domain wall width is 20 atoms (51), 100 atoms (52), and 200 atoms (53) (with the domain wall as the boundary, the magnetization directions on both sides are opposite. Normalize to be +1 and -1 at both ends of the domain wall.). The domain wall center is fixed at the 250th lattice point.

図4には、図3の各磁壁幅におけるシミュレーション結果に対応した実効的なスピン軌道相互作用の大きさを示す。磁壁幅が狭いほど実効スピン軌道相互作用の絶対値が大きいことが分かる。 FIG. 4 shows the magnitude of the effective spin-orbit interaction corresponding to the simulation result for each domain wall width in FIG. It can be seen that the smaller the domain wall width, the larger the absolute value of the effective spin-orbit interaction.

図5は超伝導ギャップ{超伝導状態で電子は二つずつ対(クーパー対)になっている。電子対を安定化させているのは、電子間に働く実効的な引力であるが、そのため、電子対を破壊するには有限のエネルギーが必要である。この安定化エネルギー以下のエネルギーでは、対を組まない個々の電子を励起することはできないため、電子の励起スペクトルには低エネルギーにギャップが生じることになる。このギャップを超伝導ギャップと呼ぶ。}中に形成される束縛状態の局所状態密度を示す。100−400番目の格子点の範囲がトポロジカル超伝導領域で、磁壁幅を100原子とした場合である。トポロジカル超伝導領域の端の部分に100原子程度幅に局在した状態が現れる。(なお、トポロジカル超伝導領域のもう一方の端の部分である400番目の格子点近傍側にも対称に、束縛状態の局所状態密度が100原子程度幅に局在した状態が現れるのであるが、本図では、全体が見難くなるため省略している。100番目の格子点近傍側の100原子程度幅に局在した状態のみ示している。)
100番目の格子点近傍(ゲートに相当する領域の端)に状態密度[個/eV]のピークが現れ、Majorana粒子が存在すると想定される。
Figure 5 shows a superconducting gap (in the superconducting state, two electrons are paired (Cooper pair). It is the effective attractive force that acts between the electrons that stabilizes the electron pairs, so finite energy is required to destroy the electron pairs. At energies below this stabilizing energy, it is not possible to excite the individual electrons that do not form a pair, so a gap is created in the low-energy excitation spectrum of the electrons. This gap is called a superconducting gap. } Shows the local density of states of the bound state formed in the. The range of the 100-400th lattice point is the topological superconducting region, and the domain wall width is 100 atoms. A localized state with a width of about 100 atoms appears at the edge of the topological superconducting region. (It should be noted that there is a state in which the local density of states in the bound state is localized in a width of about 100 atoms symmetrically near the 400th lattice point near the other end of the topological superconducting region. In this figure, it is omitted because it is difficult to see the whole. Only the state localized at a width of about 100 atoms near the 100th lattice point is shown.)
It is assumed that a peak of density of states [number/eV] appears near the 100th lattice point (edge of the region corresponding to the gate), and Majorana particles are present.

図6は、図5に示した束縛状態の局所状態密度を得たシミュレーション結果に対応した局所スピン密度を示す。(なお、トポロジカル超伝導領域のもう一方の端の部分である400番目の格子点近傍側にも対称に、局所スピン密度のピークが現れるが、図5での理由と同様に、本図でも省略している。100番目の格子点近傍側の100原子程度幅に局在した状態のみ示している。)
100番目の格子点近傍(ゲートに相当する領域の端)に局所スピン密度のピークが現れ、電荷は持たずにスピンのみ持つMajorana粒子が存在すると想定される。
FIG. 6 shows local spin densities corresponding to the simulation results of obtaining the local density of states in the bound state shown in FIG. (Note that the local spin density peaks also appear symmetrically near the 400th lattice point, which is the other end of the topological superconducting region, but are omitted in this figure for the same reason as in FIG. Only the state localized in the width of about 100 atoms near the 100th lattice point is shown.)
It is assumed that a local spin density peak appears near the 100th lattice point (at the edge of the region corresponding to the gate), and there are Majorana particles that have only spin but no charge.

10 s波超伝導体
20 強磁性半導体
21 強磁性半導体における磁壁部分
30,31 ゲート構造
32 絶縁体
40 磁壁駆動用の電源
41,42 ゲート構造への印加電圧
51 磁壁幅が20原子のシミュレーション結果
52 磁壁幅が100原子のシミュレーション結果
53 磁壁幅が200原子のシミュレーション結果
10 s-wave superconductor 20 Ferromagnetic semiconductor 21 Domain wall portions 30 and 31 in ferromagnetic semiconductor Gate structure 32 Insulator 40 Power supplies 41 and 42 for driving domain wall 41 Applied voltage to gate structure 51 Simulation result with domain wall width of 20 atoms 52 Simulation result for domain wall width of 100 atoms 53 Simulation result for domain wall width of 200 atoms

Claims (10)

s波超伝導体上に強磁性半導体をナノワイヤ状に接合した構造において、
前記強磁性半導体にゲート構造を設け、ゲート部直下の強磁性半導体に磁壁を導入し、
強磁性半導体の交換相互作用をJ、磁化をM、s波超伝導体の秩序変数をΔ、ゲート構造への印加電圧による化学ポテンシャルをμとしたとき、数式(1)の関係式を満たし、
Figure 2020096107
s波超伝導体の超伝導転移温度以下に冷却することで、ゲート構造の端に対応する強磁性半導体の部分にMajorana束縛状態を形成することを特徴とする量子ビット。
In a structure in which a ferromagnetic semiconductor is joined to an s-wave superconductor in the form of nanowires,
A gate structure is provided on the ferromagnetic semiconductor, and a domain wall is introduced into the ferromagnetic semiconductor directly below the gate portion.
When the exchange interaction of the ferromagnetic semiconductor is J, the magnetization is M, the order variable of the s-wave superconductor is Δ, and the chemical potential due to the applied voltage to the gate structure is μ, the relational expression of the formula (1) is satisfied,
Figure 2020096107
A qubit characterized by forming a Majorana bound state in a portion of a ferromagnetic semiconductor corresponding to an end of a gate structure by cooling to a temperature below the superconducting transition temperature of an s-wave superconductor.
前記s波超伝導体はAl、及び前記強磁性半導体は(Ga,Mn)As{化合物半導体GaAsのGaをMnで5%置換したもの}より成ることを特徴とする請求項1に記載の量子ビット。 2. The quantum according to claim 1, wherein the s-wave superconductor is Al, and the ferromagnetic semiconductor is (Ga,Mn)As {compound semiconductor GaAs in which Ga is replaced by 5% by Mn}. bit. 前記s波超伝導体はAl、及び前記強磁性半導体は(In,Fe)Sb{化合物半導体InSbのInをFeで15%置換したもの}より成ることを特徴とする請求項1に記載の量子ビット。 2. The quantum according to claim 1, wherein the s-wave superconductor is Al, and the ferromagnetic semiconductor is (In,Fe)Sb {compound semiconductor InSb in which In is replaced by 15% by Fe}. bit. 請求項1記載の量子ビットにおいて、
前記強磁性半導体にゲート構造を直線状に複数個配置し、前記強磁性半導体両端に磁壁移動のための電源を配置することを特徴とする量子ビット。
In the qubit according to claim 1,
A qubit, wherein a plurality of gate structures are linearly arranged in the ferromagnetic semiconductor, and a power supply for moving a domain wall is arranged at both ends of the ferromagnetic semiconductor.
請求項4記載の量子ビットにおいて、
ゲート構造への印加電圧による化学ポテンシャルμが数式(1)の関係式を満たすゲート部直下の強磁性半導体に磁壁が配置されることを特徴とする量子ビット。
In the qubit according to claim 4,
A qubit characterized in that a domain wall is arranged in a ferromagnetic semiconductor immediately below a gate portion where a chemical potential μ due to an applied voltage to the gate structure satisfies the relational expression (1).
請求項5記載の量子ビットにおいて、
磁壁が配置されている第1のゲート構造から、磁壁を配置する第2のゲート構造への磁壁の移動は、第1のゲート構造への印加電圧を第2のゲート構造へ印加するように切り替えるのと同期させて、前記強磁性半導体に磁壁の移動方向とは逆方向に電流を供給することを特徴とする量子ビット。
In the qubit according to claim 5,
The movement of the domain wall from the first gate structure in which the domain wall is arranged to the second gate structure in which the domain wall is arranged is switched so that the voltage applied to the first gate structure is applied to the second gate structure. A qubit characterized in that a current is supplied to the ferromagnetic semiconductor in a direction opposite to the moving direction of the domain wall in synchronism with the above.
前記s波超伝導体上にナノワイヤ状に接合した前記強磁性半導体は、
前記s波超伝導体上に原子層を蒸着にて積層して擬一次元的な形状としたものであり、その厚さは5原子層以内としたことを特徴とする請求項1に記載の量子ビット。
The ferromagnetic semiconductor bonded to the s-wave superconductor in the form of nanowires,
The atomic layer is laminated on the s-wave superconductor by vapor deposition to form a quasi-one-dimensional shape, and the thickness thereof is within 5 atomic layers. Qubit.
s波超伝導体上に強磁性半導体をナノワイヤ状に接合した構造において、
前記強磁性半導体に第1、および第2のゲート構造を直線状に設け、前記強磁性半導体両端に磁壁移動のための電源を配置し、
第1のゲート部直下の強磁性半導体に磁壁を導入し、
s波超伝導体の超伝導転移温度以下に冷却した後、
第1のゲート構造への印加電圧による化学ポテンシャルμは、強磁性半導体の交換相互作用をJ、磁化をM、s波超伝導体の秩序変数をΔとしたとき、数式(1)の関係式を満たし、
磁壁が配置されている第1のゲート構造から、磁壁を配置する第2のゲート構造への磁壁の移動を、第1のゲート構造への印加電圧を第2のゲート構造へ印加するように切り替えるのと同期させて、前記強磁性半導体に磁壁の移動方向とは逆方向に電流を供給することを特徴とする量子ビットの制御方法。
In a structure in which a ferromagnetic semiconductor is joined to an s-wave superconductor in the form of nanowires,
First and second gate structures are linearly provided on the ferromagnetic semiconductor, and a power supply for moving a domain wall is arranged at both ends of the ferromagnetic semiconductor,
A domain wall is introduced into the ferromagnetic semiconductor immediately below the first gate section,
After cooling below the superconducting transition temperature of the s-wave superconductor,
The chemical potential μ due to the applied voltage to the first gate structure is expressed by the relational expression (1) where J is the exchange interaction of the ferromagnetic semiconductor, M is the magnetization, and Δ is the order variable of the s-wave superconductor. The filling,
Switching the movement of the domain wall from the first gate structure in which the domain wall is arranged to the second gate structure in which the domain wall is arranged is switched so that the voltage applied to the first gate structure is applied to the second gate structure. A method of controlling a qubit, characterized in that a current is supplied to the ferromagnetic semiconductor in a direction opposite to a moving direction of a domain wall in synchronism with the above.
前記s波超伝導体はAl、及び前記強磁性半導体は(Ga,Mn)As{化合物半導体GaAsのGaをMnで5%置換したもの}より成ることを特徴とする請求項8に記載の量子ビットの制御方法。 9. The quantum according to claim 8, wherein the s-wave superconductor is Al, and the ferromagnetic semiconductor is (Ga,Mn)As {compound semiconductor GaAs in which Ga is replaced by 5% by Mn}. Bit control method. 前記s波超伝導体はAl、及び前記強磁性半導体は(In,Fe)Sb{化合物半導体InSbのInをFeで15%置換したもの}より成ることを特徴とする請求項8に記載の量子ビットの制御方法。 9. The quantum according to claim 8, wherein the s-wave superconductor is Al, and the ferromagnetic semiconductor is (In,Fe)Sb (compound semiconductor InSb in which In is replaced by 15% by Fe). Bit control method.
JP2018233780A 2018-12-13 2018-12-13 Quantum bit and control method thereof Pending JP2020096107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233780A JP2020096107A (en) 2018-12-13 2018-12-13 Quantum bit and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233780A JP2020096107A (en) 2018-12-13 2018-12-13 Quantum bit and control method thereof

Publications (1)

Publication Number Publication Date
JP2020096107A true JP2020096107A (en) 2020-06-18

Family

ID=71086446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233780A Pending JP2020096107A (en) 2018-12-13 2018-12-13 Quantum bit and control method thereof

Country Status (1)

Country Link
JP (1) JP2020096107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410376A (en) * 2021-08-19 2021-09-17 北京大学 Topological quantum bit device based on topological semi-metal nanostructure and implementation method
WO2023047461A1 (en) * 2021-09-21 2023-03-30 富士通株式会社 Quantum bit, quantum computing device, and method for manufacturing quantum bit
WO2023047460A1 (en) * 2021-09-21 2023-03-30 富士通株式会社 Majorana quantum bit and quantum computer
WO2023144999A1 (en) * 2022-01-28 2023-08-03 富士通株式会社 Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit
WO2024023967A1 (en) * 2022-07-27 2024-02-01 富士通株式会社 Structure, quantum bit, quantum computing device and method for producing structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410376A (en) * 2021-08-19 2021-09-17 北京大学 Topological quantum bit device based on topological semi-metal nanostructure and implementation method
WO2023047461A1 (en) * 2021-09-21 2023-03-30 富士通株式会社 Quantum bit, quantum computing device, and method for manufacturing quantum bit
WO2023047460A1 (en) * 2021-09-21 2023-03-30 富士通株式会社 Majorana quantum bit and quantum computer
WO2023144999A1 (en) * 2022-01-28 2023-08-03 富士通株式会社 Topological insulator, quantum bit, method for producing topological insulator, and method for producing quantum bit
WO2024023967A1 (en) * 2022-07-27 2024-02-01 富士通株式会社 Structure, quantum bit, quantum computing device and method for producing structure

Similar Documents

Publication Publication Date Title
He et al. Topological insulator: Spintronics and quantum computations
JP2020096107A (en) Quantum bit and control method thereof
Giustino et al. The 2021 quantum materials roadmap
Choi et al. Colloquium: Atomic spin chains on surfaces
Flensberg et al. Engineered platforms for topological superconductivity and Majorana zero modes
Zhang et al. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications
Pawlak et al. Majorana fermions in magnetic chains
Kuneš Excitonic condensation in systems of strongly correlated electrons
Hasan et al. Colloquium: topological insulators
Mireles et al. Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires
Schäpers Semiconductor spintronics
Beiranvand et al. Nonlocal Andreev entanglements and triplet correlations in graphene with spin-orbit coupling
Grundler Spintronics
Feng et al. First-principles investigations on the berry phase effect in spin–orbit coupling materials
Yang et al. From topological superconductivity to quantum Hall states in coupled wires
Konakanchi et al. Platform for braiding Majorana modes with magnetic skyrmions
Saikin et al. Modelling for semiconductor spintronics
Cabero Z et al. Electron–Phonon Interaction Enables Strong Thermoelectric Seebeck Effect Variation in Hybrid Nanoscale Systems
Gharavi et al. Orbital Josephson interference in a nanowire proximity-effect junction
Sun et al. Spin Seebeck Effect in a Multiple Quantum Dot Molecule with Spin-Dependent Interdot Coupling
Tkachov Topological Quantum Materials: Concepts, Models, and Phenomena
Chandrasekar et al. Spin-dependent tunneling of light and heavy holes with electric and magnetic fields
Kurzyna et al. Electronic properties of atomic ribbons with spin-orbit couplings on different substrates
Gywat et al. Quantum computation and the production of entangled photons using coupled quantum dots
Bowen et al. Implementing a Quantum Information Engine Using Spintronics