WO2023144995A1 - レーザ装置およびレーザ加工機 - Google Patents

レーザ装置およびレーザ加工機 Download PDF

Info

Publication number
WO2023144995A1
WO2023144995A1 PCT/JP2022/003301 JP2022003301W WO2023144995A1 WO 2023144995 A1 WO2023144995 A1 WO 2023144995A1 JP 2022003301 W JP2022003301 W JP 2022003301W WO 2023144995 A1 WO2023144995 A1 WO 2023144995A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam group
laser
optical system
laser element
diffraction grating
Prior art date
Application number
PCT/JP2022/003301
Other languages
English (en)
French (fr)
Inventor
正人 河▲崎▼
弘 菊池
智毅 桂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/003301 priority Critical patent/WO2023144995A1/ja
Priority to JP2022525817A priority patent/JP7098090B1/ja
Publication of WO2023144995A1 publication Critical patent/WO2023144995A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to a laser device and a laser processing machine that amplify a beam and output laser light.
  • a laser element and an output mirror each constitute one end of a laser resonator.
  • One of such laser devices includes a laser device that emits beams from a plurality of horizontally arranged light emitting points in order to increase the output of laser light.
  • beams emitted from a plurality of light emitting points are superimposed by a diffraction grating to increase the output of laser light.
  • a plurality of laser elements are vertically stacked, and by outputting the same number of laser beams as the number of layers, high-power laser beams are output.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a laser device capable of outputting high-power laser light using a small and inexpensive diffraction grating.
  • the laser device of the present disclosure has a plurality of light emitting points arranged in a first direction, each of which emits a beam in a first emission direction perpendicular to the first direction.
  • a first laser element that emits to form a first beam group and a plurality of light emitting points arranged in a second direction each emit beams in a second emission direction perpendicular to the second direction to form a second beam group. and a second laser element forming a group of beams.
  • the laser device of the present disclosure includes a first external resonator, one end of which is composed of the first laser element, and a second external resonator, of which the second laser element constitutes one end.
  • the laser device of the present disclosure is arranged at the intersection point where at least a portion of the first beam group and the second beam group overlap, and is arranged in a third direction perpendicular to the first direction and the second direction.
  • a diffraction grating having a diffractive action in a vertical first plane, and a diffraction grating disposed between the diffraction grating and the output mirror and perpendicular to the partially reflecting surface with each of the first beam group and the second beam group being spatially separated from each other.
  • collimating optics for collimating the first group of beams and the second group of beams to be incident on the .
  • the laser device has the effect of being able to output high-power laser light using a small and inexpensive diffraction grating.
  • FIG. 1 is a diagram showing a configuration of a laser processing machine provided with a laser device according to a first embodiment
  • FIG. 1 is a schematic diagram showing a schematic configuration of a laser device according to a first embodiment
  • FIG. 2 is a diagram showing the configuration of the laser device according to the first embodiment in which the collimating optical system is two cylindrical lenses
  • FIG. 2 is a diagram showing the configuration of the laser device according to the first embodiment when the collimating optical system is one cylindrical lens
  • FIG. 4 is a diagram showing the configuration of a laser device according to a second embodiment in which the superimposing optical system is two decentered lenses
  • FIG. 10 is a diagram showing the configuration of a laser device according to a second embodiment in which the superimposing optical system is two deflecting mirrors
  • FIG. 1 is a diagram showing the configuration of a laser processing machine equipped with a laser device according to a first embodiment.
  • a laser processing machine 100 is a device that processes a workpiece 6 by irradiating a laser beam 7 onto the workpiece 6 that is an object to be processed. Processing by the laser processing machine 100 is laser processing such as cutting or welding of the workpiece 6 .
  • the laser processing machine 100 has a laser device 1 that emits laser light 7 , an optical fiber 4 that propagates the laser light 7 , a condensing optical system 3 , and a processing optical system 5 .
  • the condensing optical system 3 converges the laser beam 7 emitted from the laser device 1 onto the incident end surface of the optical fiber 4 .
  • the optical fiber 4 is an example of an optical transmission line that transmits the laser beam 7 .
  • An optical fiber 4 transmits laser light 7 to a processing optical system 5 .
  • the processing optical system 5 converges the laser beam 7 emitted from the optical fiber 4 onto the workpiece 6 .
  • the workpiece 6 is, for example, a metal plate such as iron or stainless steel.
  • the laser processing machine 100 can perform laser processing of a metal plate by including the laser device 1 suitable for high-power applications.
  • the configuration of the laser processing machine 100 described here is an example, and may be changed as appropriate.
  • the laser device 1 can also be applied to a 3D printer or the like by combining with the configuration of a generally known laser processing machine.
  • the laser devices described in the second and subsequent embodiments can also be applied to the laser processing machine 100 that cuts or welds the workpiece 6 or other laser processing devices.
  • FIG. 2 is a schematic diagram showing the schematic configuration of the laser device according to the first embodiment.
  • FIG. 2 shows the x-, y-, and z-axes of a three-axis Cartesian coordinate system.
  • the y-axis and the z-axis are two axes in a plane parallel to the flat surface of the beam entrance surface and the beam exit surface of the converging optical system 11 and perpendicular to each other.
  • An axis perpendicular to the y-axis and the z-axis is the x-axis.
  • the xy plane is, for example, a horizontal plane.
  • the z-axis direction is the vertical direction.
  • FIG. 2 shows the configuration of the laser device 1A, which is an example of the laser device 1, when viewed from the y-axis direction.
  • the laser device 1A has a first laser element LD1 and a second laser element LD2, which are laser elements.
  • the laser device 1A also has a converging optical system 11, a diffraction grating 12, a collimating optical system 13, and an output mirror .
  • the converging optical system 11 is arranged after the first laser element LD1 and the second laser element LD2, and the diffraction grating 12 is arranged after the converging optical system 11.
  • the collimating optical system 13 is arranged after the diffraction grating 12 , and the output mirror 14 is arranged after the collimating optical system 13 .
  • the first laser element LD1 and the second laser element LD2 are spaced apart in the z-axis direction.
  • the first laser element LD1 and the second laser element LD2 are arranged non-parallel, and the first beam group B1 emitted by the first laser element LD1 and the second beam group B2 emitted by the second laser element LD2 are Non-parallel. That is, the first laser element LD1 and the second laser element LD2 are inclined so that the first beam group B1 and the second beam group B2 intersect at an intersection point 120, which will be described later.
  • the first laser element LD1 and the second laser element LD2 emit beams in an in-plane direction parallel to the xz plane.
  • a plurality of light emitting points are arranged in the first direction parallel to the y-axis direction in the first laser element LD1.
  • Each light emitting point arranged in the first laser element LD1 emits beams having different wavelengths. That is, the first laser element LD1 emits a plurality of beams from a plurality of light emitting points to form and emit a first beam group B1.
  • a first beam group B1 which is a plurality of beams, includes a plurality of beams with different wavelengths.
  • the surface on which the light emitting points are arranged in the first laser element LD1 is a surface obtained by rotating a surface parallel to the yz plane about a direction parallel to the y-axis direction.
  • the first laser element LD1 emits the first beam group B1 in a first emission direction perpendicular to the plane on which the light emitting points of the first laser element LD1 are arranged.
  • a first emission direction in which the first beam group B1 is emitted is a direction toward the intersection 120 .
  • a plurality of light emitting points are arranged in the second direction parallel to the y-axis direction in the second laser element LD2.
  • Each light emitting point arranged in the second laser element LD2 emits beams having different wavelengths. That is, the second laser element LD2 emits a plurality of beams from a plurality of light emitting points to form and emit a second beam group B2.
  • the surface on which the light emitting points are arranged in the second laser element LD2 is a surface obtained by rotating a surface parallel to the yz plane about a direction parallel to the y-axis direction.
  • the second laser element LD2 emits the second beam group B2 in a second emission direction perpendicular to the plane on which the light emitting points of the second laser element LD2 are arranged.
  • a second emission direction in which the second beam group B2 is emitted is a direction toward the intersection 120 .
  • the angle obtained by rotating the surface on which the light emitting points are arranged in the first laser element LD1 and the angle by which the surface on which the light emitting points are arranged in the second laser element LD2 are the same in magnitude.
  • the direction is opposite.
  • the plane on which the light emitting points are arranged in the first laser element LD1 and the plane on which the light emitting points are arranged in the second laser element LD2 are non-parallel. Therefore, the first emission direction of the first beam group B1 and the second emission direction of the second beam group B2 are different directions.
  • FIG. 2 shows the case where both the first direction and the second direction are directions parallel to the y-axis, and the third direction is a direction parallel to the z-axis.
  • the first beam group B1 and the second beam group B2 are incident on the converging optical system 11 in a non-parallel state.
  • the converging optical system 11 converges the first beam group B1 to overlap each other at an intersection point 120 on the diffraction grating 12, and converges the second beam group B2 to overlap each other at an intersection point 120 on the diffraction grating 12. .
  • the converging optical system 11 may be composed of two converging optical systems.
  • the converging optical system 11 includes a first converging optical system that converges the first beam group B1 so as to overlap each other at an intersection point 120 on the diffraction grating 12, and a first converging optical system that converges the second beam group B2 to overlap each other on the diffraction grating 12. and a second converging optical system that converges so as to.
  • the first beam group B1 and the second beam group B2 emitted from the converging optical system 11 intersect at an intersection point 120 between the output mirror 14 and the first laser element LD1 and the second laser element LD2.
  • the first beam group B1 and the second beam group B2 intersect at an intersection point 120, which is the position of the diffraction grating 12, so that at least a portion of the first beam group B1 and the second beam group B2 overlap. do.
  • the diffraction grating 12 may be arranged on the intersection 120 or may be arranged near the intersection 120 . That is, the diffraction grating 12 may be arranged at a position (crossing point 120) where at least a portion of the first beam group B1 and the second beam group B2 overlap.
  • the diffraction grating 12 is a transmissive diffraction grating.
  • the diffraction grating 12 has a diffractive action within a plane (first plane) of a plane 50 parallel to the xy plane.
  • the diffraction grating 12 deflects the beams of the first beam group B1 and the beams of the second beam group B2 in the plane 50 by means of wavelength dispersion. Therefore, the diffraction grating 12 rotates the first beam group B1 and the second beam group B2 about the axis of rotation parallel to the z-axis direction, and sends the beams to the collimating optical system 13 .
  • the diffraction grating 12 maintains the z-axis direction components of the first beam group B1 and the second beam group B2, while changing the x-axis direction and y-axis direction components, thereby changing the first beam group B1 and the second beam group B2. Bend beam group B2.
  • the diffraction grating 12 converges each beam into one by diffracting each beam constituting the beam group at an angle according to the wavelength. Specifically, the diffraction grating 12 converges the first beam group B1 made up of a plurality of mutually dispersed beams into one first beam group B1. Also, the diffraction grating 12 converges the second beam group B2 including a plurality of mutually dispersed beams into one second beam group B2. Thereby, the laser device 1A can improve the beam condensing performance.
  • BPP Beam Parameter Product
  • the diffraction grating 12 in Embodiment 1 is such a transmission type diffraction grating, the diffraction grating 12 diffracts 90% or more of the incident s-polarized light and diffracts 50% or more of the incident p-polarized light, for example. permeate.
  • the first beam group B1 and the second beam group B2 incident on the diffraction grating 12 consist only of s-polarized light.
  • s-polarized light and p-polarized light may be mixed in the laser light actually emitted from the laser element.
  • laser light composed mainly of s-polarized light may contain a few percent of p-polarized light.
  • the p-polarized light transmitted through the diffraction grating 12 becomes stray light deviating from the normal optical path in the first external resonator using the first laser element LD1 or the second external resonator using the second laser element LD2.
  • the generation of stray light may cause heating of components within the laser apparatus 1A or deterioration of the focusing performance of the output beam. Therefore, it is desirable that the laser device 1A can reduce the generation of stray light.
  • the laser device 1A may be provided with a polarization separating element.
  • the polarization separation elements are installed between the first laser element LD1 and the diffraction grating 12 and between the second laser element LD2 and the diffraction grating 12, respectively.
  • the laser device 1A can reduce the generation of stray light.
  • the collimating optical system 13 converts the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 are vertically incident on the partially reflecting surface 140 of the output mirror 14 while being spatially separated.
  • the second beam group B2 is collimated.
  • the output mirror 14 has a partially reflecting surface 140 that partially reflects the first beam group B1 and the second beam group B2 and transmits the rest.
  • the incident surface of the partially reflecting surface 140 on which the first beam group B1 and the second beam group B2 are incident is a single plane.
  • the use of the partially reflective surface 140 having a single plane incident surface allows the external resonator to be realized with a simple optical system.
  • the first laser element LD1 and the output mirror 14 constitute a first external resonator
  • the second laser element LD2 and the output mirror 14 constitute a second external resonator. That is, the first external resonator has the first laser element LD1 at one end and the output mirror 14 at the other end.
  • the second external resonator has the second laser element LD2 at one end and the output mirror 14 at the other end.
  • the first external resonator is an external resonator that resonates the first beam group B1.
  • the second external resonator is an external resonator that resonates the second beam group B2.
  • a common partial reflecting surface 140 is used for resonance of the first beam group B1 by the first external resonator and resonance of the second beam group B2 by the second external resonator.
  • a common diffraction grating 12 is used for the first external resonator and the second external resonator.
  • An optical element for collimating, condensing, or rotating the first beam group B1 is inserted into the first external cavity as required.
  • Optical elements are inserted into the second external cavity to collimate, focus, or rotate the second beam group B2 as required.
  • Each beam of the first beam group B1 propagates from the first laser element LD1 to the diffraction grating 12 in a direction parallel to the xz plane.
  • Each beam of the first beam group B1 is bent by the diffraction grating 12, propagates in a direction non-parallel to the xz plane, and is sent to the collimating optical system 13.
  • Each beam of the second beam group B2 propagates from the second laser element LD2 to the diffraction grating 12 in a direction parallel to the xz plane.
  • Each beam of the second beam group B2 is bent by the diffraction grating 12, propagates in a direction non-parallel to the xz plane, and is sent to the collimating optical system 13.
  • the first beam group B1 and the second beam group B2 are collimated by the collimating optical system 13 and sent to the output mirror 14.
  • the first beam group B 1 and the second beam group B 2 are perpendicularly incident on the partially reflective surface 140 of the output mirror 14 .
  • a part of the first beam group B1 and the second beam group B2 is reflected by the partially reflecting surface 140 of the output mirror 14 and the remaining part is transmitted as the laser beam 7 .
  • the first beam group B1 and the second beam group B2 are inclined, so the first beam group B1 and the second beam group B2 can intersect at the crossing point 120.
  • the laser device 1A can reduce the incident area of the first beam group B1 and the second beam group B2 incident on the diffraction grating 12, thereby avoiding an increase in the size of the diffraction grating 12.
  • the laser device 1A causes the first beam group B1 and the second beam group B2 to enter the output mirror 14 in a separated state, it is possible to suppress an increase in beam intensity on the output mirror 14. Therefore, the laser device 1A can prevent damage caused by an increase in light intensity at the output mirror 14.
  • a diffraction grating that is at least twice as large as the diffraction grating 12 provided in the laser device 1A is required.
  • diffraction gratings are difficult to manufacture, and large-sized diffraction gratings are expensive to manufacture. Therefore, by downsizing the diffraction grating 12 as in the laser device 1A of the first embodiment, the manufacturing cost of the laser device 1A can be reduced.
  • the collimating optical system 13 is, for example, two cylindrical lenses.
  • the configuration of the laser device when the collimating optical system 13 is two cylindrical lenses will be described.
  • FIG. 3 is a diagram showing the configuration of the laser device according to Embodiment 1 when the collimating optical system is two cylindrical lenses. Among the constituent elements shown in FIG. 3, the constituent elements that achieve the same functions as those of the laser device 1A shown in FIG.
  • the laser device 1B is an example of the laser device 1.
  • the laser device 1B is a laser device in which the collimating optical system 13 is two cylindrical lenses 21a and 21b. Similar to the laser device 1A, the laser device 1B includes a first laser element LD1, a second laser element LD2, a converging optical system 11, a diffraction grating 12, and two cylindrical lenses as an example of a collimating optical system 13. 21 a , 21 b and an output mirror 14 .
  • a first laser element LD1, a second laser element LD2, a converging optical system 11, a diffraction grating 12, and a collimating optical system 13 are provided at the same positions as in the laser device 1A. 21a, 21b and an output mirror 14 are arranged.
  • the incident surface (upper surface) on which the first beam group B1 and the second beam group B2 are incident is a convex surface, and the first beam group B1 and the second beam group B2 are incident.
  • the output surface (lower surface) from which light is emitted is a plane.
  • the cylindrical lenses 21a and 21b are arranged side by side in a direction (z-axis direction) perpendicular to the optical axis of the first beam group B1 and the optical axis of the second beam group B2 incident on the partially reflecting surface 140 of the output mirror 14. .
  • Cylindrical lenses 21a and 21b direct the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 are vertically incident on the partially reflecting surface 140 of the output mirror 14 while being spatially separated.
  • the second beam group B2 is collimated.
  • the first beam group B1 emitted from the first laser element LD1 is sent to the diffraction grating 12 via the converging optical system 11.
  • the second beam group B2 emitted from the second laser element LD2 is sent to the diffraction grating 12 via the converging optical system 11.
  • the diffraction grating 12 rotates the first beam group B ⁇ b>1 and the second beam group B ⁇ b>2 about an axial direction parallel to the z-axis direction, and sends them to the collimating optical system 13 .
  • a first beam group B1 emerging from the diffraction grating 12 is sent to the cylindrical lens 21b, and a second beam group B2 emerging from the diffraction grating 12 is sent to the cylindrical lens 21a.
  • the cylindrical lens 21b diffracts the first beam group B1 so that the first beam group B1 becomes a group of beams in a plane parallel to the xy plane, and reaches the partially reflecting surface 140 of the output mirror .
  • the cylindrical lens 21a diffracts the second beam group B2 so that the second beam group B2 becomes a beam group in a plane parallel to the xy plane, and reaches the partially reflecting surface 140 of the output mirror 14.
  • the cylindrical lenses 21a and 21b collimate the first beam group B1 and the second beam group B2 so that they do not overlap, and direct the collimated first beam group B1 and the second beam group B2 to the portion of the output mirror 14. Let it reach the reflective surface 140 .
  • the collimating optical system 13 may be an array lens in which two cylindrical lenses are cemented together in the z-axis direction.
  • the collimating optical system 13 may be a single cylindrical lens.
  • the configuration of the laser device when the collimating optical system 13 is one cylindrical lens will be described.
  • FIG. 4 is a diagram showing the configuration of the laser device according to Embodiment 1 when the collimating optical system is one cylindrical lens.
  • constituent elements in FIG. 4 constituent elements that achieve the same functions as those of the laser devices 1A and 1B shown in FIGS.
  • the laser device 1C is an example of the laser device 1.
  • a laser device 1C is a laser device in which the collimating optical system 13 is one cylindrical lens 22 .
  • the laser device 1C has a converging optical system 11, a diffraction grating 12, a cylindrical lens 22 which is an example of the collimating optical system 13, and an output mirror .
  • laser device 1C has cylindrical lens 22 instead of two cylindrical lenses 21a and 21b.
  • a cylindrical lens including a first laser element LD1, a second laser element LD2, a converging optical system 11, a diffraction grating 12, and a collimating optical system 13 is arranged at the same position as the laser device 1B. 22 and an output mirror 14 are arranged.
  • the cylindrical lens 22 is a cylindrical lens having a focal length f, which is located at a distance f, which is the first distance, from the intersection 120 toward the partially reflecting surface 140 .
  • the incident surface (upper surface) on which the first beam group B1 and the second beam group B2 are incident is a convex surface, and the first beam group B1 and the second beam group B2 are emitted.
  • the surface (lower surface) is a plane.
  • the incident surface side of the cylindrical lens 22 is a part of a circular arc or an elliptical arc,
  • the exit surface side is straight.
  • the exit surface of the cylindrical lens 22 may be convex and the entrance surface may be flat.
  • the cylindrical lens 22 directs the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 are vertically incident on the partially reflective surface 140 of the output mirror 14 while being spatially separated.
  • Beam group B2 is collimated. That is, the cylindrical lens 22 diffracts the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 form a beam group in a plane parallel to the xy plane, and the output mirror 14 partially reflective surfaces 140 .
  • the cylindrical lens 22 collimates the first beam group B1 and the second beam group B2 so that they do not overlap, and directs the collimated first beam group B1 and the second beam group B2 to the partial reflection surface of the output mirror 14 .
  • the laser devices 1A to 1C may have three or more laser elements.
  • the first laser element LD1 and the second laser element LD2 direct the first beam group B1 and the second beam group B2 in a non-parallel state. is incident on the Then, the converging optical system 11 converges the first beam group B1 so that the first beam group B1 is superimposed on the rear stage side of the converging optical system 11, and converges the second beam group B2 so that the second beam group B2 is superimposed. B2 is converged.
  • the diffraction grating 12 is arranged at the intersection where at least a part of the first beam group B1 and the second beam group B2 overlap, and the direction in which the light emitting points of the first laser element LD1 are arranged (parallel to the y-axis direction) direction) and a plane 50 (parallel to the xy-plane It has a diffractive effect in the plane).
  • the laser devices 1A to 1C converge the first beam group B1 and converge the second beam group B2, so that a high-power laser beam 7 can be output.
  • the laser devices 1A to 1C can reduce the incident area of the first beam group B1 and the second beam group B2 incident on the diffraction grating 12, the diffraction grating 12 can be prevented from becoming large. Therefore, the laser devices 1A to 1C can output high-power laser light 7 using a small and inexpensive diffraction grating 12 .
  • Embodiment 2 Next, Embodiment 2 will be described with reference to FIGS. 5 to 8.
  • FIG. 5 is a schematic diagram showing the schematic configuration of the laser device according to the second embodiment.
  • FIG. 5 shows the configuration of the laser device 2A when the laser device 2A is viewed from the y-axis direction.
  • components that achieve the same functions as those of the laser device 1A shown in FIG. are referred to the second embodiment.
  • the laser device 2A is an example of the laser device 1.
  • the laser device 2A differs from the laser device 1A in the arrangement directions of the first laser element LD1 and the second laser element LD2.
  • the laser device 2A also has a superimposing optical system 30 in addition to the constituent elements of the laser device 1A. That is, the laser device 2A has a superimposing optical system 30, a converging optical system 11, a diffraction grating 12, a collimating optical system 13, and an output mirror .
  • the superimposing optical system 30 is arranged after the first laser element LD1 and the second laser element LD2 and before the converging optical system 11 .
  • the first laser element LD1 and the second laser element LD2 are spaced apart in the z-axis direction.
  • the first laser element LD1 and the second laser element LD2 are arranged in parallel and each emits a beam in a direction parallel to the x-axis direction.
  • the plane on which the light emitting points are arranged in the first laser element LD1 is parallel to the yz plane.
  • the surface on which the light emitting points are arranged in the second laser element LD2 is parallel to the yz plane.
  • the plane on which the light emitting points are arranged in the first laser element LD1 and the plane on which the light emitting points are arranged in the second laser element LD2 are parallel. Therefore, the first emission direction of the first beam group B1 and the second emission direction of the second beam group B2 are parallel directions.
  • the superimposing optical system 30 combines the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 are incident on the converging optical system 11 at the incident angles described in the first embodiment. Change direction of B2. That is, the superimposing optical system 30 converges the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 intersect at the intersection point 120 . The superimposing optical system 30 changes the optical axis directions of the first beam group B1 and the second beam group B2.
  • the superimposing optical system 30 changes the optical axis direction of the first beam group B1 from a direction parallel to the x-axis to an optical axis direction rotated within a plane parallel to the xz plane.
  • the superimposing optical system 30 changes the optical axis direction of the second beam group B2 from a direction parallel to the x-axis to an optical axis direction rotated within a plane parallel to the xz plane.
  • the angle by which the first beam group B1 is rotated and the angle by which the second beam group B2 is rotated are the same in magnitude and opposite in rotation direction.
  • Converging optical system 11, diffraction grating 12, collimating optical system 13, and output mirror 14 are the same as in the first embodiment.
  • the laser device 2A since the first beam group B1 and the second beam group B2 are inclined, as in the laser device 1A of the first embodiment, it is possible to avoid an increase in the size of the diffraction grating 12 and output An increase in beam intensity on the mirror 14 can be suppressed.
  • the superimposing optical system 30 is, for example, two decentered lenses.
  • the configuration of the laser device when the superimposing optical system 30 is two decentered lenses will be described.
  • FIG. 6 is a diagram showing the configuration of the laser device according to the second embodiment when the superimposing optical system is two decentered lenses.
  • constituent elements in FIG. 6 constituent elements that achieve the same functions as those of the laser device 2A shown in FIG.
  • the parallelizing optical system 13 is cylindrical lenses 21 a and 21 b will be described, but the parallelizing optical system 13 may be a cylindrical lens 22 .
  • the laser device 2B is an example of the laser device 1.
  • the laser device 2B is a laser device in which the superimposing optical system 30 is two decentered lenses 31 and 32 . Similar to the laser device 2A, the laser device 2B includes two decentered lenses 31 and 32 as a superimposing optical system 30, a converging optical system 11, a diffraction grating 12, and a cylindrical lens 21a and 21a as a collimating optical system 13. 21 b and an output mirror 14 .
  • the decentered lens 31 is the first decentered lens
  • the decentered lens 32 is the second decentered lens.
  • the eccentric lenses 31 and 32 are, for example, cylindrical lenses.
  • a first laser element LD1 a second laser element LD2, a superimposing optical system 30 (here, two decentered lenses 31 and 32), and a converging optical system are arranged at the same positions as in the laser device 2A.
  • a diffraction grating 12 a collimating optical system 13 (here, cylindrical lenses 21a and 21b), and an output mirror 14 are arranged.
  • the eccentric lens 31 is arranged eccentrically on the second laser element LD2 side between the first laser element LD1 and the diffraction grating 12 .
  • the eccentric lens 32 is arranged between the second laser element LD2 and the diffraction grating 12 so as to be eccentric toward the first laser element LD1.
  • the incident surface (upper surface) on which the first beam group B1 and the second beam group B2 are incident is a plane, and the first beam group B1 and the second beam group B2 are emitted.
  • the exit surface (lower surface) where the light is emitted is convex.
  • the first beam group B1 incident on the converging optical system 11 and the side surfaces of the decentered lenses 31 and 32 when viewed from a direction perpendicular to the z-axis direction have circular arcs or elliptical arcs on the exit surface side.
  • the incident surface side is a straight line.
  • the incident surfaces of the decentered lenses 31 and 32 may be convex and the exit surfaces may be flat.
  • the first beam group B1 emitted from the first laser element LD1 is sent to the decentered lens 31.
  • a second beam group B2 emitted from the second laser element LD2 is sent to the decentered lens 32 .
  • the decentered lens 31 rotates the first beam group B1 parallel to the x-axis direction with a rotation axis parallel to the y-axis direction.
  • the decentered lens 32 rotates the second beam group B2 parallel to the x-axis direction with a rotation axis parallel to the y-axis direction.
  • Converging optical system 11, diffraction grating 12, collimating optical system 13, and output mirror 14 are the same as in the first embodiment.
  • the superimposing optical system 30 is composed of the decentered lenses 31 and 32, so that the crossing angle of the first beam group B1 and the second beam group B2 can be easily adjusted by the amount of decentration of the decentered lenses 31 and 32. can be changed to
  • the superimposing optical system 30 may have only one of the decentered lenses 31 and 32 .
  • the superimposing optical system 30 is composed of either one of the decentered lenses 31 and 32 and components other than the decentered lenses 31 and 32 .
  • the superimposing optical system 30 may include at least one of the decentered lenses 31 and 32 .
  • the superimposing optical system 30 may be a deflecting mirror.
  • the configuration of the laser device when the superimposing optical system 30 is a deflecting mirror will be described.
  • FIG. 7 is a diagram showing the configuration of the laser device according to the second embodiment when the superimposing optical system is two deflecting mirrors.
  • constituent elements in FIG. 7 constituent elements that achieve the same functions as those of the laser devices 2A and 2B shown in FIGS.
  • the laser device 2C is an example of the laser device 1.
  • the laser device 2C is a laser device in which the superimposing optical system 30 is deflection mirrors 33 and 34 . Similar to the laser device 2A, the laser device 2C includes two deflecting mirrors 33 and 34 as a superimposing optical system 30, a converging optical system 11, a diffraction grating 12, and cylindrical lenses 21a and 21b as a collimating optical system 13. and an output mirror 14 .
  • the deflection mirror 33 is the first deflection mirror and the deflection mirror 34 is the second deflection mirror.
  • a first laser element LD1 a second laser element LD2, a superposing optical system 30 (two deflection mirrors 33 and 34), a converging optical system 11, and a diffraction A grating 12, a collimating optical system 13 (cylindrical lenses 21a and 21b), and an output mirror 14 are arranged.
  • the deflection mirror 33 is arranged between the first laser element LD1 and the diffraction grating 12, and deflects the first beam group B1.
  • a deflection mirror 34 is arranged between the second laser element LD2 and the diffraction grating 12, and deflects the second beam group B2.
  • the first beam group B1 emitted from the first laser element LD1 is sent to the deflection mirror 33.
  • a second beam group B2 emitted from the second laser element LD2 is sent to the deflection mirror .
  • the deflection mirror 33 rotates the first beam group B1 parallel to the x-axis direction with a rotation axis parallel to the y-axis direction.
  • the deflection mirror 34 rotates the second beam group B2 parallel to the x-axis direction with a rotation axis parallel to the y-axis direction.
  • the first beam group B1 and the second beam group B2 enter the converging optical system 11 at the incident angles described in FIGS.
  • Converging optical system 11, diffraction grating 12, collimating optical system 13, and output mirror 14 are the same as in the first embodiment.
  • the superimposing optical system 30 is composed of the deflecting mirrors 33 and 34, so that the crossing angles of the first beam group B1 and the second beam group B2 can be easily changed by changing the installation angles of the deflecting mirrors 33 and 34. becomes possible.
  • the superimposing optical system 30 may have only one of the deflecting mirrors 33 and 34 .
  • the superimposing optical system 30 is composed of one of the deflection mirrors 33 and 34 and parts other than the deflection mirrors 33 and 34 .
  • the superimposing optical system 30 may include at least one of the deflection mirrors 33 and 34 .
  • the superimposing optical system 30 may be composed of the decentered lens 31 and the deflecting mirror 34 or may be composed of the decentered lens 32 and the deflecting mirror 33 .
  • the first laser element LD1 may be arranged at the position described in the first embodiment
  • the second laser element LD2 may be arranged at the position described in the second embodiment.
  • the decentered lens 32 or the deflecting mirror 34 is arranged after the second laser element LD2.
  • the second laser element LD2 may be arranged at the position described in the first embodiment, and the first laser element LD1 may be arranged at the position described in the second embodiment.
  • a decentered lens 31 or a deflection mirror 33 is arranged after the first laser element LD1.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a laser device of a comparative example.
  • the laser device 1X of the comparative example has a first laser element LD1, a second laser element LD2, a converging optical system 11, a diffraction grating 15, and an output mirror .
  • the first laser element LD1 and the second laser element LD2 are arranged in parallel.
  • the first laser element LD1 and the second laser element LD2 are spaced apart in the z-axis direction.
  • the first laser element LD1 emits a first beam group B1 in a direction parallel to the x-axis direction
  • the second laser element LD2 emits a second beam group B2 in a direction parallel to the x-axis direction.
  • the first beam group B1 and the second beam group B2 enter the converging optical system 11 while being separated from each other.
  • the converging optical system 11 converges the first beam group B ⁇ b>1 to overlap each other on the diffraction grating 15 and converges the second beam group B ⁇ b>2 to overlap each other on the diffraction grating 15 .
  • the diffraction grating 15 rotates the first beam group B1 and the second beam group B2 about the axis of rotation parallel to the z-axis direction, and sends them to the output mirror 14 . Since the first beam group B1 and the second beam group B2 incident on the diffraction grating 15 are separated from each other, the diffraction grating 15 is longer than the diffraction grating 12 in the z-axis direction. Therefore, the diffraction grating 15 is more expensive than the diffraction grating 12, and the manufacturing cost of the laser device 1X is higher than that of the laser device 1A.
  • the superimposing optical system 30 converges the first beam group B1 and the second beam group B2 so that the first beam group B1 and the second beam group B2 intersect at the intersection point 120. Therefore, a high-power laser beam 7 can be output using a small and inexpensive diffraction grating 12 as in the first embodiment.
  • 1, 1A to 1C, 1X, 2A to 2C Laser device 3 Condensing optical system, 4 Optical fiber, 5 Processing optical system, 6 Workpiece, 7 Laser light, 11 Converging optical system, 12, 15 Diffraction grating, 13 Parallelization Optical system, 14 Output mirror, 21a, 21b, 22 Cylindrical lens, 30 Superimposing optical system, 31, 32 Decentered lens, 33, 34 Deflecting mirror, 50 Plane, 100 Laser processing machine, 120 Intersection, 140 Partial reflecting surface, B1 First beam group, B2 Second beam group, LD1 First laser element, LD2 Second laser element.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ装置(1A)が、y軸方向に配列された発光点が第1ビーム群(B1)を形成する第1レーザ素子(LD1)と、y軸方向に配列された発光点が第2ビーム群(B2)を形成する第2レーザ素子(LD2)と、外部共振器の端を構成し、第1および第2ビーム群の一部を反射し残部を透過させる出力鏡(14)と、第1および第2ビーム群が非平行に入射され、後段側で、第1ビーム群を重畳させて収束させるとともに第2ビーム群を重畳させて収束させる収束光学系(11)と、第1および第2ビーム群の少なくとも一部が重畳する交差点(120)に配置され、第1および第2の方向に垂直な方向である第3の方向に垂直な平面(50)の面内に回折作用を有する回折格子(12)と、回折格子と出力鏡との間に配置され第1および第2ビーム群が空間的に分離した状態で出力鏡に垂直に入射するように第1および第2ビーム群を平行化する平行化光学系(13)とを備える。

Description

レーザ装置およびレーザ加工機
 本開示は、ビームを増幅してレーザ光を出力するレーザ装置およびレーザ加工機に関する。
 ビームを増幅してレーザ光を出力するレーザ装置は、レーザ素子と出力鏡とがそれぞれレーザ共振器の一端を構成している。このレーザ装置の1つに、レーザ光の出力を高めるため、水平方向に配置された複数の発光点からビームを出射するレーザ素子を備えたレーザ装置がある。このレーザ装置では、複数の発光点から出射されるビームを回折格子によって重畳させてレーザ光の出力を高めている。
 特許文献1に記載のレーザ装置は、レーザ素子が垂直方向に複数個積層されており、積層数と同じ本数のレーザ光を出力することで高出力なレーザ光を出力している。
米国特許第8488245号明細書
 しかしながら、上記特許文献1の技術では、レーザ素子が垂直方向に積層されているのでレーザ素子の積層数に比例して回折格子の垂直方向の寸法が大きくなる。例えば、レーザ素子が垂直方向に2層分だけ積層される場合、回折格子の垂直方向の寸法が2倍になる。このため、回折格子が高価になるという問題があった。
 本開示は、上記に鑑みてなされたものであって、小型で安価な回折格子を用いて高出力なレーザ光を出力できるレーザ装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示のレーザ装置は、第1の方向に配列された複数の発光点が、それぞれ第1の方向に垂直な第1出射方向にビームを出射して第1ビーム群を形成する第1レーザ素子と、第2の方向に配列された複数の発光点が、それぞれ第2の方向に垂直な第2出射方向にビームを出射して第2ビーム群を形成する第2レーザ素子とを備える。また、本開示のレーザ装置は、第1レーザ素子が一方の端を構成する第1外部共振器の他方の端を構成するとともに、第2レーザ素子が一方の端を構成する第2外部共振器の他方の端を構成し、第1ビーム群および第2ビーム群の一部を反射し残部を透過させる部分反射面を有する出力鏡と、第1ビーム群および第2ビーム群が非平行な状態で入射され、後段側で、第1ビーム群が重畳するように第1ビーム群を収束させるとともに第2ビーム群が重畳するように第2ビーム群を収束させる収束光学系とを備える。また、本開示のレーザ装置は、第1ビーム群および第2ビーム群の少なくとも一部が重畳する交差点に配置され、第1の方向および第2の方向に垂直な方向である第3の方向に垂直な第1面内に回折作用を有する回折格子と、回折格子と出力鏡との間に配置され第1ビーム群および第2ビーム群の各々が空間的に分離した状態で部分反射面に垂直に入射するように第1ビーム群および第2ビーム群を平行化する平行化光学系とを備える。
 本開示にかかるレーザ装置は、小型で安価な回折格子を用いて高出力なレーザ光を出力できるという効果を奏する。
実施の形態1にかかるレーザ装置を備えたレーザ加工機の構成を示す図 実施の形態1にかかるレーザ装置の概略構成を示す模式図 平行化光学系が2つの円筒レンズである場合の実施の形態1にかかるレーザ装置の構成を示す図 平行化光学系が1つの円筒レンズである場合の実施の形態1にかかるレーザ装置の構成を示す図 実施の形態2にかかるレーザ装置の概略構成を示す模式図 重畳光学系が2つの偏芯レンズである場合の実施の形態2にかかるレーザ装置の構成を示す図 重畳光学系が2つの偏向ミラーである場合の実施の形態2にかかるレーザ装置の構成を示す図 比較例のレーザ装置の概略構成を示す模式図
 以下に、本開示の実施の形態にかかるレーザ装置およびレーザ加工機を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1にかかるレーザ装置を備えたレーザ加工機の構成を示す図である。レーザ加工機100は、レーザ光7を加工対象物であるワーク6へ照射してワーク6を加工する装置である。レーザ加工機100による加工は、ワーク6の切断または溶接といったレーザ加工である。
 レーザ加工機100は、レーザ光7を出射させるレーザ装置1と、レーザ光7を伝搬する光ファイバ4と、集光光学系3と、加工光学系5とを有する。集光光学系3は、レーザ装置1から出射されたレーザ光7を、光ファイバ4の入射端面に集光する。光ファイバ4は、レーザ光7を伝送する光伝送路の一例である。光ファイバ4は、加工光学系5にレーザ光7を伝送する。加工光学系5は、光ファイバ4から出射されたレーザ光7をワーク6上に集光する。
 ワーク6は、例えば、鉄またはステンレス等の金属板である。レーザ加工機100は、高出力用途に適したレーザ装置1を備えることによって、金属板のレーザ加工を行い得る。ここで述べるレーザ加工機100の構成は一例であって、適宜変更されてもよい。レーザ装置1は、一般に知られるレーザ加工機の構成と組み合わせることによって3Dプリンタ等にも適用できる。実施の形態2以降において説明するレーザ装置も、レーザ装置1と同様に、ワーク6の切断または溶接を行うレーザ加工機100、またはその他のレーザ加工装置に適用することができる。
 図2は、実施の形態1にかかるレーザ装置の概略構成を示す模式図である。図2には、3軸直交座標系のx軸、y軸およびz軸が図示されている。収束光学系11のビーム入射面およびビーム出射面のうち平面となっている面と平行な面内の2つの軸であって互いに直交する2つの軸がy軸およびz軸である。また、y軸およびz軸に直交する軸がx軸である。xy平面は、例えば水平面である。この場合、z軸方向は鉛直方向である。図2では、レーザ装置1の一例であるレーザ装置1Aをy軸方向から見た場合の、レーザ装置1Aの構成を示している。
 レーザ装置1Aは、レーザ素子である第1レーザ素子LD1および第2レーザ素子LD2を有する。また、レーザ装置1Aは、収束光学系11と、回折格子12と、平行化光学系13と、出力鏡14とを有する。
 収束光学系11は、第1レーザ素子LD1および第2レーザ素子LD2よりも後段に配置され、回折格子12は、収束光学系11よりも後段に配置されている。また、平行化光学系13は、回折格子12よりも後段に配置され、出力鏡14は、平行化光学系13よりも後段に配置される。
 レーザ装置1Aでは、第1レーザ素子LD1と第2レーザ素子LD2とが、z軸方向に離間して配置されている。第1レーザ素子LD1と第2レーザ素子LD2とは、非平行に配置されており、第1レーザ素子LD1が出射する第1ビーム群B1および第2レーザ素子LD2が出射する第2ビーム群B2は非平行である。すなわち、第1レーザ素子LD1および第2レーザ素子LD2は、第1ビーム群B1と第2ビーム群B2とが、後述する交差点120で交差するように傾斜して配置されている。第1レーザ素子LD1および第2レーザ素子LD2は、xz平面に平行な面内方向にビームを出射する。
 第1レーザ素子LD1には、y軸方向に平行な方向である第1の方向に、複数の発光点が配列されている。第1レーザ素子LD1に配置されている各発光点は、波長が互いに異なるビームを出射させる。すなわち、第1レーザ素子LD1は、複数の発光点から、複数のビームを出射させて第1ビーム群B1を形成し出射する。複数のビームである第1ビーム群B1は、波長が互いに異なる複数のビームを含んでいる。
 第1レーザ素子LD1で発光点が配列される面は、yz平面に平行な面を、y軸方向に平行な方向を軸として回転させた面である。第1レーザ素子LD1は、第1レーザ素子LD1で発光点が配列される面に垂直な第1出射方向に第1ビーム群B1を出射する。第1ビーム群B1が出射される第1出射方向は、交差点120に向かう方向である。
 第2レーザ素子LD2には、y軸方向に平行な方向である第2の方向に、複数の発光点が配列されている。第2レーザ素子LD2に配置されている各発光点は、波長が互いに異なるビームを出射させる。すなわち、第2レーザ素子LD2は、複数の発光点から、複数のビームを出射させて第2ビーム群B2を形成し出射させる。複数のビームである第2ビーム群B2は、波長が互いに異なる複数のビームを含んでいる。
 第2レーザ素子LD2で発光点が配列される面は、yz平面に平行な面を、y軸方向に平行な方向を軸として回転させた面である。第2レーザ素子LD2は、第2レーザ素子LD2で発光点が配列される面に垂直な第2出射方向に第2ビーム群B2を出射する。第2ビーム群B2が出射される第2出射方向は、交差点120に向かう方向である。
 第1レーザ素子LD1で発光点が配列される面を回転させた角度と、第2レーザ素子LD2で発光点が配列される面を回転させた角度とは、大きさが同じであるが、回転方向は反対である。
 第1レーザ素子LD1で発光点が配列される面と、第2レーザ素子LD2で発光点が配列される面とは、非平行である。したがって、第1ビーム群B1の第1出射方向と、第2ビーム群B2の第2出射方向とは異なる方向である。
 第1レーザ素子LD1において発光点が配列されている第1の方向と、第2レーザ素子LD2において発光点が配列されている第2の方向との両方に垂直な方向が第3の方向である。図2では、第1の方向および第2の方向がともにy軸に平行な方向であり、第3の方向がz軸に平行な方向である場合を示している。
 収束光学系11へは、第1ビーム群B1および第2ビーム群B2が非平行な状態で入射される。収束光学系11は、第1ビーム群B1が回折格子12上の交差点120で互いに重畳するように収束させるとともに、第2ビーム群B2が回折格子12上の交差点120で互いに重畳するように収束させる。
 なお、収束光学系11は、2つの収束光学系で構成されてもよい。この場合、収束光学系11は、第1ビーム群B1が回折格子12上の交差点120で互いに重畳するように収束させる第1収束光学系と、第2ビーム群B2が回折格子12上で互いに重畳するように収束させる第2収束光学系とを備える。
 収束光学系11から出射された第1ビーム群B1および第2ビーム群B2は、第1レーザ素子LD1および第2レーザ素子LD2と出力鏡14との間の点の交差点120で交差する。具体的には、第1ビーム群B1および第2ビーム群B2は、回折格子12の位置である交差点120で、第1ビーム群B1および第2ビーム群B2の少なくとも一部が重畳するように交差する。
 なお、回折格子12は、交差点120上に配置されていてもよいし、交差点120の近傍に配置されていてもよい。すなわち、回折格子12は、第1ビーム群B1および第2ビーム群B2の少なくとも一部が重畳する位置(交差点120)に配置されていればよい。
 回折格子12は、透過型の回折格子である。回折格子12は、xy平面に平行な面である平面50の面内(第1面内)に回折作用を有している。回折格子12は、波長分散性によって、第1ビーム群B1の各ビームおよび第2ビーム群B2の各ビームを、平面50の面内にて偏向させる。したがって、回折格子12は、第1ビーム群B1および第2ビーム群B2を、z軸方向に平行な軸方向を回転軸として回転させて平行化光学系13に送る。すなわち、回折格子12は、第1ビーム群B1および第2ビーム群B2のz軸方向の成分を維持しつつ、x軸方向およびy軸方向の成分を変えることで第1ビーム群B1および第2ビーム群B2を曲げる。
 回折格子12は、ビーム群を構成する各ビームを波長に応じた角度で回折させることによって、各ビームを1つに収束させる。具体的には、回折格子12は、互いに分散された複数のビームからなる第1ビーム群B1を、1つの第1ビーム群B1に収束させる。また、回折格子12は、互いに分散された複数のビームからなる第2ビーム群B2を、1つの第2ビーム群B2に収束させる。これにより、レーザ装置1Aは、ビームの集光性能を高めることができる。
 ここで言う集光性能とは、BPP(Beam Parameter Product)で表される特性とする。BPPは、集光時のビームウェストの半径と集光後のビーム拡がり半角の積で定義される指標である。BPPの単位はmm・mradで表される。BPPの値が小さいほど集光性が高く、より微小な領域にビームを集光できることを意味する。より微小な領域にビームを集光できるほど、高いエネルギー密度が得られる。レーザ加工の用途では、エネルギー密度が高いほど、加工品質の向上と、加工速度の向上とが可能となる。
 一般的な透過型回折格子の多くは、s偏光とp偏光とのうち一方に対する回折効率が高く、他方に対する回折効率が低い。実施の形態1における回折格子12がこのような透過型回折格子である場合において、回折格子12は、例えば、入射するs偏光の90%以上を回折し、かつ入射するp偏光の50%以上を透過させる。この場合、回折格子12へ入射する第1ビーム群B1および第2ビーム群B2は、s偏光のみからなることが望ましい。
 ただし、レーザ素子から実際に出射するレーザ光には、s偏光とp偏光とが混在する場合がある。主にs偏光からなるレーザ光であっても、数%のp偏光が含まれることがあり得る。主にs偏光からなる第1ビーム群B1および第2ビーム群B2が回折格子12へ入射する場合に、第1ビーム群B1および第2ビーム群B2に含まれるp偏光が回折格子12を透過することがある。この場合、回折格子12を透過したp偏光は、第1レーザ素子LD1を用いた第1外部共振器または第2レーザ素子LD2を用いた第2外部共振器における正規の光路から外れた迷光となる場合がある。迷光の発生によって、レーザ装置1A内の部品の加熱、または出力ビームの集光性能の低下が引き起こされる可能性がある。このため、レーザ装置1Aは、迷光の発生を低減できることが望ましい。
 迷光の発生を低減するために、レーザ装置1Aには、偏光分離素子が設けられてもよい。偏光分離素子は、第1レーザ素子LD1および回折格子12の間と、第2レーザ素子LD2および回折格子12の間とのそれぞれに設置される。回折格子12へ入射する第1ビーム群B1および第2ビーム群B2の偏光度が偏光分離素子によって高められることで、レーザ装置1Aは、迷光の発生を低減できる。
 平行化光学系13は、第1ビーム群B1および第2ビーム群B2が空間的に分離した状態で出力鏡14の部分反射面140に対して垂直に入射するように、第1ビーム群B1および第2ビーム群B2を平行化する。
 出力鏡14は、第1ビーム群B1および第2ビーム群B2の一部を反射し残部を透過させる部分反射面140を有している。
 部分反射面140のうち第1ビーム群B1および第2ビーム群B2が入射する入射面は、単一平面である。単一平面である入射面を有する部分反射面140が使用されることによって、簡易な光学系で外部共振器を実現できる。
 レーザ装置1Aでは、第1レーザ素子LD1と出力鏡14とで第1外部共振器が構成され、第2レーザ素子LD2と出力鏡14とで第2外部共振器が構成されている。すなわち、第1外部共振器は、第1レーザ素子LD1が一方の端を構成し、出力鏡14が他方の端を構成している。第2外部共振器は、第2レーザ素子LD2が一方の端を構成し、出力鏡14が他方の端を構成している。
 第1外部共振器は、第1ビーム群B1を共振させる外部共振器である。第2外部共振器は、第2ビーム群B2を共振させる外部共振器である。第1外部共振器による第1ビーム群B1の共振と第2外部共振器による第2ビーム群B2の共振とに、共通の部分反射面140が使用されている。また、第1外部共振器と第2外部共振器とには、共通の回折格子12が使用されている。
 第1外部共振器には、必要に応じて、第1ビーム群B1をコリメート、集光、または回転させる光学素子が挿入される。第2外部共振器には、必要に応じて、第2ビーム群B2をコリメート、集光、または回転させる光学素子が挿入される。
 第1ビーム群B1の各ビームは、第1レーザ素子LD1から回折格子12までは、xz平面に平行な方向に伝搬する。第1ビーム群B1の各ビームは、回折格子12で曲げられて、xz平面に非平行な方向に伝搬し平行化光学系13に送られる。
 第2ビーム群B2の各ビームは、第2レーザ素子LD2から回折格子12までは、xz平面に平行方向に伝搬する。第2ビーム群B2の各ビームは、回折格子12で曲げられて、xz平面に非平行な方向に伝搬し平行化光学系13に送られる。
 第1ビーム群B1および第2ビーム群B2は、平行化光学系13で平行にされて出力鏡14に送られる。第1ビーム群B1および第2ビーム群B2は、出力鏡14の部分反射面140に対して垂直に入射する。第1ビーム群B1および第2ビーム群B2は、出力鏡14の部分反射面140で、一部が反射され残部がレーザ光7として透過する。
 このように、レーザ装置1Aは、第1ビーム群B1および第2ビーム群B2が傾斜しているので、交差点120で第1ビーム群B1および第2ビーム群B2を交差させることができる。これにより、レーザ装置1Aは、回折格子12に入射する第1ビーム群B1および第2ビーム群B2の入射領域を小さくすることができるので、回折格子12の大型化を回避できる。
 また、レーザ装置1Aは、第1ビーム群B1および第2ビーム群B2を、離間した状態で出力鏡14に入射させるので、出力鏡14上でビーム強度が増大することを抑制できる。したがって、レーザ装置1Aは、出力鏡14における光強度の増大に起因する損傷を防ぐことができる。
 第1ビーム群B1および第2ビーム群B2が傾斜していない場合、レーザ装置1Aが備える回折格子12の2倍以上の大きさの回折格子が必要となる。一般的に回折格子は、製作難易度が高く、大型の回折格子は製造コストが高い。このため、実施の形態1のレーザ装置1Aのように回折格子12が小型化されることで、レーザ装置1Aの製造コストを低減することができる。
 平行化光学系13は、例えば、2つの円筒レンズである。ここで、平行化光学系13が2つの円筒レンズである場合のレーザ装置の構成について説明する。
 図3は、平行化光学系が2つの円筒レンズである場合の実施の形態1にかかるレーザ装置の構成を示す図である。図3の各構成要素のうち図2に示すレーザ装置1Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 レーザ装置1Bは、レーザ装置1の一例である。レーザ装置1Bは、平行化光学系13が2つの円筒レンズ21a,21bである場合のレーザ装置である。レーザ装置1Bは、レーザ装置1Aと同様に、第1レーザ素子LD1と、第2レーザ素子LD2と、収束光学系11と、回折格子12と、平行化光学系13の一例である2つの円筒レンズ21a,21bと、出力鏡14とを有する。レーザ装置1Bでは、レーザ装置1Aと同様の位置に、第1レーザ素子LD1と、第2レーザ素子LD2と、収束光学系11と、回折格子12と、平行化光学系13である2つの円筒レンズ21a,21bと、出力鏡14とが配置されている。
 例えば、円筒レンズ21a,21bが有する面のうち第1ビーム群B1および第2ビーム群B2が入射される入射面(上面)は、凸面であり、第1ビーム群B1および第2ビーム群B2が出射される出射面(下面)は、平面である。回折格子12から出射された第1ビーム群B1およびz軸方向に垂直な方向から円筒レンズ21a,21bを見た場合の円筒レンズ21a,21bの側面は、それぞれ入射面側が円弧または楕円弧の一部となっており、出射面側が直線になっている。なお、円筒レンズ21a,21bの出射面が凸面で入射面が平面であってもよい。
 円筒レンズ21a,21bは、出力鏡14の部分反射面140に入射する第1ビーム群B1の光軸および第2ビーム群B2の光軸に垂直な方向(z軸方向)に並べて配置されている。
 円筒レンズ21a,21bは、第1ビーム群B1および第2ビーム群B2が空間的に分離した状態で出力鏡14の部分反射面140に対して垂直に入射するように、第1ビーム群B1および第2ビーム群B2を平行化する。
 第1レーザ素子LD1から出射された第1ビーム群B1は、収束光学系11を介して回折格子12に送られる。第2レーザ素子LD2から出射された第2ビーム群B2は、収束光学系11を介して回折格子12に送られる。回折格子12は、第1ビーム群B1および第2ビーム群B2を、z軸方向に平行な軸方向を回転軸として回転させて平行化光学系13に送る。
 回折格子12から出てくる第1ビーム群B1は、円筒レンズ21bに送られ、回折格子12から出てくる第2ビーム群B2は、円筒レンズ21aに送られる。円筒レンズ21bは、第1ビーム群B1がxy平面に平行な面内のビーム群となるように第1ビーム群B1を回折させて出力鏡14の部分反射面140に到達させる。円筒レンズ21aは、第2ビーム群B2がxy平面に平行な面内のビーム群となるように第2ビーム群B2を回折させて出力鏡14の部分反射面140に到達させる。
 このように、円筒レンズ21a,21bは、第1ビーム群B1および第2ビーム群B2が重ならないように平行化し、平行化した第1ビーム群B1および第2ビーム群B2を出力鏡14の部分反射面140に到達させる。なお、平行化光学系13は、2つの円筒レンズがz軸方向に接合されたアレイレンズであってもよい。
 また、平行化光学系13は、1つの円筒レンズであってもよい。ここで、平行化光学系13が1つの円筒レンズである場合のレーザ装置の構成について説明する。
 図4は、平行化光学系が1つの円筒レンズである場合の実施の形態1にかかるレーザ装置の構成を示す図である。図4の各構成要素のうち図2,3に示すレーザ装置1A,1Bと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 レーザ装置1Cは、レーザ装置1の一例である。レーザ装置1Cは、平行化光学系13が1つの円筒レンズ22である場合のレーザ装置である。レーザ装置1Cは、レーザ装置1Bと同様に、収束光学系11と、回折格子12と、平行化光学系13の一例である円筒レンズ22と、出力鏡14とを有する。レーザ装置1Cは、レーザ装置1Bと比較して、2つの円筒レンズ21a,21bの代わりに円筒レンズ22を有する。レーザ装置1Cでは、レーザ装置1Bと同様の位置に、第1レーザ素子LD1と、第2レーザ素子LD2と、収束光学系11と、回折格子12と、平行化光学系13である1つの円筒レンズ22と、出力鏡14とが配置されている。
 円筒レンズ22は、交差点120から部分反射面140側に第1距離である距離fだけ離れた位置に配置された、焦点距離がfの円筒レンズである。
 円筒レンズ22が有する面のうち第1ビーム群B1および第2ビーム群B2が入射される入射面(上面)は、凸面であり、第1ビーム群B1および第2ビーム群B2が出射される出射面(下面)は、平面である。回折格子12から出射された第1ビーム群B1およびz軸方向に垂直な方向から円筒レンズ22を見た場合の円筒レンズ22の側面は、入射面側が円弧または楕円弧の一部となっており、出射面側が直線になっている。なお、円筒レンズ22の出射面が凸面で入射面が平面であってもよい。
 円筒レンズ22は、第1ビーム群B1および第2ビーム群B2が空間的に分離した状態で出力鏡14の部分反射面140に対して垂直に入射するように、第1ビーム群B1および第2ビーム群B2を平行化する。すなわち、円筒レンズ22は、第1ビーム群B1および第2ビーム群B2がxy平面に平行な面内のビーム群となるように第1ビーム群B1および第2ビーム群B2を回折させて出力鏡14の部分反射面140に到達させる。
 このように、円筒レンズ22は、第1ビーム群B1および第2ビーム群B2が重ならないように平行化し、平行化した第1ビーム群B1および第2ビーム群B2を出力鏡14の部分反射面140に到達させる。なお、レーザ装置1A~1Cは、3つ以上のレーザ素子を備えていてもよい。
 このように、実施の形態1のレーザ装置1A~1Cでは、第1レーザ素子LD1および第2レーザ素子LD2が第1ビーム群B1および第2ビーム群B2を非平行な状態で、収束光学系11に入射させている。そして、収束光学系11が、収束光学系11の後段側で、第1ビーム群B1が重畳するように第1ビーム群B1を収束させるとともに第2ビーム群B2が重畳するように第2ビーム群B2を収束させている。さらに、回折格子12が、第1ビーム群B1および第2ビーム群B2の少なくとも一部が重畳する交差点に配置され、第1レーザ素子LD1で発光点が配列されている方向(y軸方向に平行な方向)および第2レーザ素子LD2で発光点が配列されている方向(y軸方向に平行な方向)に垂直な方向であるz軸に平行な方向に垂直な平面50(xy平面に平行な面)内に回折作用を有している。
 このような構成により、レーザ装置1A~1Cは、第1ビーム群B1を収束させるとともに第2ビーム群B2を収束させているので、高出力なレーザ光7を出力できる。また、レーザ装置1A~1Cは、回折格子12に入射する第1ビーム群B1および第2ビーム群B2の入射領域を小さくすることができるので、回折格子12の大型化を回避できる。したがって、レーザ装置1A~1Cは、小型で安価な回折格子12を用いて高出力なレーザ光7を出力できる。
実施の形態2.
 つぎに、図5から図8を用いて実施の形態2について説明する。実施の形態2では、第1レーザ素子LD1および第2レーザ素子LD2によって平行に出射された第1ビーム群B1および第2ビーム群B2が、回折格子12で重畳されるよう、重畳光学系を収束光学系11の前段に配置しておく。
 図5は、実施の形態2にかかるレーザ装置の概略構成を示す模式図である。図5では、レーザ装置2Aをy軸方向から見た場合の、レーザ装置2Aの構成を示している。図5の各構成要素のうち図2に示すレーザ装置1Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 レーザ装置2Aは、レーザ装置1の一例である。レーザ装置2Aは、レーザ装置1Aと比較して、第1レーザ素子LD1および第2レーザ素子LD2の配置方向が異なる。また、レーザ装置2Aは、レーザ装置1Aが備える構成要素に加えて、重畳光学系30を有する。すなわち、レーザ装置2Aは、重畳光学系30と、収束光学系11と、回折格子12と、平行化光学系13と、出力鏡14とを有する。
 重畳光学系30は、第1レーザ素子LD1および第2レーザ素子LD2よりも後段で、収束光学系11よりも前段に配置されている。
 レーザ装置2Aでは、第1レーザ素子LD1と第2レーザ素子LD2とが、z軸方向に離間して配置されている。第1レーザ素子LD1と第2レーザ素子LD2とは、平行に配置されており、それぞれx軸方向に平行な方向にビームを出射する。
 第1レーザ素子LD1で発光点が配列される面は、yz平面に平行な面である。第2レーザ素子LD2で発光点が配列される面は、yz平面に平行な面である。このように、第1レーザ素子LD1で発光点が配列される面と、第2レーザ素子LD2で発光点が配列される面とは、平行である。したがって、第1ビーム群B1の第1出射方向と、第2ビーム群B2の第2出射方向とは平行な方向である。
 重畳光学系30は、第1ビーム群B1および第2ビーム群B2が、実施の形態1で説明した入射角度で収束光学系11に入射されるように、第1ビーム群B1および第2ビーム群B2の進行方向を変える。すなわち、重畳光学系30は、第1ビーム群B1と第2ビーム群B2とが交差点120で交差するように第1ビーム群B1および第2ビーム群B2を収束させる。重畳光学系30は、第1ビーム群B1および第2ビーム群B2の光軸方向を変える。
 重畳光学系30は、第1ビーム群B1の光軸方向を、x軸に平行な方向からxz面内に平行な面内で回転させた光軸方向に変える。重畳光学系30は、第2ビーム群B2の光軸方向を、x軸に平行な方向からxz面内に平行な面内で回転させた光軸方向に変える。第1ビーム群B1を回転させる角度と、第2ビーム群B2を回転させる角度とは、大きさが同じであり、回転方向が反対である。収束光学系11、回折格子12、平行化光学系13、出力鏡14については、実施の形態1と同じである。
 このように、レーザ装置2Aでは、第1ビーム群B1および第2ビーム群B2が傾斜しているので、実施の形態1のレーザ装置1Aと同様に、回折格子12の大型化を回避できるとともに出力鏡14上でビーム強度が増大することを抑制できる。
 重畳光学系30は、例えば、2つの偏芯レンズである。ここで、重畳光学系30が2つの偏芯レンズである場合のレーザ装置の構成について説明する。
 図6は、重畳光学系が2つの偏芯レンズである場合の実施の形態2にかかるレーザ装置の構成を示す図である。図6の各構成要素のうち図5に示すレーザ装置2Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。なお、実施の形態2では、平行化光学系13が円筒レンズ21a,21bである場合について説明するが、平行化光学系13は、円筒レンズ22であってもよい。
 レーザ装置2Bは、レーザ装置1の一例である。レーザ装置2Bは、重畳光学系30が2つの偏芯レンズ31,32である場合のレーザ装置である。レーザ装置2Bは、レーザ装置2Aと同様に、重畳光学系30である2つの偏芯レンズ31,32と、収束光学系11と、回折格子12と、平行化光学系13である円筒レンズ21a,21bと、出力鏡14とを有する。偏芯レンズ31が第1偏芯レンズであり、偏芯レンズ32が第2偏芯レンズである。偏芯レンズ31,32は、例えば、円筒レンズである。
 レーザ装置2Bでは、レーザ装置2Aと同様の位置に、第1レーザ素子LD1と、第2レーザ素子LD2と、重畳光学系30(ここでは、2つの偏芯レンズ31,32)と、収束光学系11と、回折格子12と、平行化光学系13(ここでは、円筒レンズ21a,21b)と、出力鏡14とが配置されている。
 偏芯レンズ31は、第1レーザ素子LD1と回折格子12との間で第2レーザ素子LD2側に偏芯して配置されている。偏芯レンズ32は、第2レーザ素子LD2と回折格子12との間で第1レーザ素子LD1側に偏芯して配置されている。
 偏芯レンズ31,32が有する面のうち第1ビーム群B1および第2ビーム群B2が入射される入射面(上面)は、平面であり、第1ビーム群B1および第2ビーム群B2が出射される出射面(下面)は、凸面である。収束光学系11に入射された第1ビーム群B1およびz軸方向に垂直な方向から偏芯レンズ31,32を見た場合の偏芯レンズ31,32の側面は、それぞれ出射面側が円弧または楕円弧の一部となっており、入射面側が直線になっている。なお、偏芯レンズ31,32の入射面が凸面で出射面が平面であってもよい。
 レーザ装置2Bでは、第1レーザ素子LD1から出射された第1ビーム群B1は、偏芯レンズ31に送られる。第2レーザ素子LD2から出射された第2ビーム群B2は、偏芯レンズ32に送られる。
 偏芯レンズ31は、x軸方向に平行な第1ビーム群B1を、y軸方向に平行な方向を回転軸として回転させる。偏芯レンズ32は、x軸方向に平行な第2ビーム群B2を、y軸方向に平行な方向を回転軸として回転させる。これにより、第1ビーム群B1および第2ビーム群B2は、図5および実施の形態1で説明した入射角度で収束光学系11に入射される。収束光学系11、回折格子12、平行化光学系13、出力鏡14については、実施の形態1と同じである。
 このように、重畳光学系30が、偏芯レンズ31,32で構成されることにより、偏芯レンズ31,32の偏芯量によって第1ビーム群B1および第2ビーム群B2の交差角を容易に変更することが可能となる。
 なお、重畳光学系30は、偏芯レンズ31,32の何れか一方のみを有していてもよい。この場合、重畳光学系30は、偏芯レンズ31,32の何れか一方と、偏芯レンズ31,32以外の部品とで構成される。このように、重畳光学系30は、偏芯レンズ31,32の少なくとも一方を含んでいればよい。
 なお、重畳光学系30は、偏向ミラーであってもよい。ここで、重畳光学系30が偏向ミラーである場合のレーザ装置の構成について説明する。
 図7は、重畳光学系が2つの偏向ミラーである場合の実施の形態2にかかるレーザ装置の構成を示す図である。図7の各構成要素のうち図5,6に示すレーザ装置2A,2Bと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 レーザ装置2Cは、レーザ装置1の一例である。レーザ装置2Cは、重畳光学系30が偏向ミラー33,34である場合のレーザ装置である。レーザ装置2Cは、レーザ装置2Aと同様に、重畳光学系30である2つの偏向ミラー33,34と、収束光学系11と、回折格子12と、平行化光学系13である円筒レンズ21a,21bと、出力鏡14とを有する。偏向ミラー33が、第1偏向ミラーであり、偏向ミラー34が、第2偏向ミラーである。
 レーザ装置2Cでは、レーザ装置2Aと同様の位置に、第1レーザ素子LD1と、第2レーザ素子LD2と、重畳光学系30(2つの偏向ミラー33,34)と、収束光学系11と、回折格子12と、平行化光学系13(円筒レンズ21a,21b)と、出力鏡14とが配置されている。
 偏向ミラー33は、第1レーザ素子LD1と回折格子12との間に配置されており、第1ビーム群B1を偏向する。偏向ミラー34は、第2レーザ素子LD2と回折格子12との間に配置されており、第2ビーム群B2を偏向する。
 レーザ装置2Cでは、第1レーザ素子LD1から出射された第1ビーム群B1は、偏向ミラー33に送られる。第2レーザ素子LD2から出射された第2ビーム群B2は、偏向ミラー34に送られる。
 偏向ミラー33は、x軸方向に平行な第1ビーム群B1を、y軸方向に平行な方向を回転軸として回転させる。偏向ミラー34は、x軸方向に平行な第2ビーム群B2を、y軸方向に平行な方向を回転軸として回転させる。これにより、第1ビーム群B1および第2ビーム群B2は、図5,6および実施の形態1で説明した入射角度で収束光学系11に入射される。収束光学系11、回折格子12、平行化光学系13、出力鏡14については、実施の形態1と同じである。
 このように、重畳光学系30が、偏向ミラー33,34で構成されることにより、偏向ミラー33,34の設置角度によって第1ビーム群B1および第2ビーム群B2の交差角を容易に変更することが可能となる。
 なお、重畳光学系30は、偏向ミラー33,34の何れか一方のみを有していてもよい。この場合、重畳光学系30は偏向ミラー33,34の何れか一方と、偏向ミラー33,34以外の部品とで構成される。このように、重畳光学系30は、偏向ミラー33,34の少なくとも一方を含んでいればよい。例えば、重畳光学系30は、偏芯レンズ31および偏向ミラー34で構成されてもよいし、偏芯レンズ32および偏向ミラー33で構成されてもよい。
 また、実施の形態1で説明した位置に第1レーザ素子LD1が配置され、実施の形態2で説明した位置に第2レーザ素子LD2が配置されてもよい。この場合、第2レーザ素子LD2の後段に偏芯レンズ32または偏向ミラー34が配置される。
 また、実施の形態1で説明した位置に第2レーザ素子LD2が配置され、実施の形態2で説明した位置に第1レーザ素子LD1が配置されてもよい。この場合、第1レーザ素子LD1の後段に偏芯レンズ31または偏向ミラー33が配置される。
 ここで、比較例のレーザ装置について説明する。図8は、比較例のレーザ装置の概略構成を示す模式図である。比較例のレーザ装置1Xは、第1レーザ素子LD1と、第2レーザ素子LD2と、収束光学系11と、回折格子15と、出力鏡14とを有する。
 比較例のレーザ装置1Xは、第1レーザ素子LD1および第2レーザ素子LD2が平行に配置されている。第1レーザ素子LD1および第2レーザ素子LD2は、z軸方向に離間して配置されている。第1レーザ素子LD1は、x軸方向に平行な方向に第1ビーム群B1を出射し、第2レーザ素子LD2は、x軸方向に平行な方向に第2ビーム群B2を出射する。
 比較例のレーザ装置1Xでは、第1ビーム群B1および第2ビーム群B2は、離間した状態で収束光学系11に入射される。収束光学系11は、第1ビーム群B1が回折格子15上で互いに重畳するように収束させるとともに、第2ビーム群B2が回折格子15上で互いに重畳するように収束させる。
 回折格子15は、第1ビーム群B1および第2ビーム群B2を、z軸方向に平行な軸方向を回転軸として回転させて出力鏡14に送る。回折格子15に入射される第1ビーム群B1および第2ビーム群B2は、離間しているので、回折格子15は、回折格子12よりもz軸方向の寸法が長い。このため、回折格子15は、回折格子12よりも高価となり、レーザ装置1Xは、レーザ装置1Aよりも製造コストが高くなる。
 このように実施の形態2によれば、重畳光学系30が、第1ビーム群B1および第2ビーム群B2が交差点120で交差するように第1ビーム群B1および第2ビーム群B2を収束させるので、実施の形態1と同様に小型で安価な回折格子12を用いて高出力なレーザ光7を出力できる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1A~1C,1X,2A~2C レーザ装置、3 集光光学系、4 光ファイバ、5 加工光学系、6 ワーク、7 レーザ光、11 収束光学系、12,15 回折格子、13 平行化光学系、14 出力鏡、21a,21b,22 円筒レンズ、30 重畳光学系、31,32 偏芯レンズ、33,34 偏向ミラー、50 平面、100 レーザ加工機、120 交差点、140 部分反射面、B1 第1ビーム群、B2 第2ビーム群、LD1 第1レーザ素子、LD2 第2レーザ素子。

Claims (8)

  1.  第1の方向に配列された複数の発光点が、それぞれ前記第1の方向に垂直な第1出射方向にビームを出射して第1ビーム群を形成する第1レーザ素子と、
     第2の方向に配列された複数の発光点が、それぞれ前記第2の方向に垂直な第2出射方向にビームを出射して第2ビーム群を形成する第2レーザ素子と、
     前記第1レーザ素子が一方の端を構成する第1外部共振器の他方の端を構成するとともに、前記第2レーザ素子が一方の端を構成する第2外部共振器の他方の端を構成し、前記第1ビーム群および前記第2ビーム群の一部を反射し残部を透過させる部分反射面を有する出力鏡と、
     前記第1ビーム群および前記第2ビーム群が非平行な状態で入射され、後段側で、前記第1ビーム群が重畳するように前記第1ビーム群を収束させるとともに前記第2ビーム群が重畳するように前記第2ビーム群を収束させる収束光学系と、
     前記第1ビーム群および前記第2ビーム群の少なくとも一部が重畳する交差点に配置され、前記第1の方向および前記第2の方向に垂直な方向である第3の方向に垂直な第1面内に回折作用を有する回折格子と、
     前記回折格子と前記出力鏡との間に配置され前記第1ビーム群および前記第2ビーム群の各々が空間的に分離した状態で前記部分反射面に垂直に入射するように前記第1ビーム群および前記第2ビーム群を平行化する平行化光学系と、
     を備える、
     ことを特徴とするレーザ装置。
  2.  前記第1レーザ素子および前記第2レーザ素子は、前記第1ビーム群と前記第2ビーム群とが前記交差点で交差するように傾斜して配置されている、
     ことを特徴とする請求項1に記載のレーザ装置。
  3.  前記第1レーザ素子および前記第2レーザ素子は、前記第1ビーム群と前記第2ビーム群とを平行に出射し、
     前記収束光学系の前段に配置されるとともに、前記第1ビーム群と前記第2ビーム群とが前記交差点で交差するように前記第1ビーム群および前記第2ビーム群を収束させる重畳光学系をさらに備える、
     ことを特徴とする請求項1に記載のレーザ装置。
  4.  前記重畳光学系は、
     前記第1レーザ素子と前記回折格子との間で前記第2レーザ素子側に偏芯して配置された第1偏芯レンズ、および前記第2レーザ素子と前記回折格子との間で前記第1レーザ素子側に偏芯して配置された第2偏芯レンズの少なくとも一方を含んでいる、
     ことを特徴とする請求項3に記載のレーザ装置。
  5.  前記重畳光学系は、
     前記第1レーザ素子と前記回折格子との間に配置され前記第1ビーム群を偏向する第1偏向ミラー、および前記第2レーザ素子と前記回折格子との間に配置され前記第2ビーム群を偏向する第2偏向ミラーの少なくとも一方を含んでいる、
     ことを特徴とする請求項3に記載のレーザ装置。
  6.  前記平行化光学系は、前記部分反射面に入射する前記第1ビーム群の光軸および前記第2ビーム群の光軸に垂直な方向に並んだ2つの円筒レンズ、または2つの前記円筒レンズが接合されたアレイレンズである、
     ことを特徴とする請求項1から5の何れか1つに記載のレーザ装置。
  7.  前記平行化光学系は、前記交差点から前記部分反射面側に第1距離だけ離れた位置に配置された焦点距離が第1距離である円筒レンズである、
     ことを特徴とする請求項1から5の何れか1つに記載のレーザ装置。
  8.  レーザ光を出射するレーザ装置と、
     前記レーザ光を集光する集光光学系と、
     前記集光光学系が集光させた前記レーザ光を伝送する光伝送路と、
     前記光伝送路によって伝送されてきた前記レーザ光を、加工対象物に集光する加工光学系と、
     を有し、
     前記レーザ装置は、
     第1の方向に配列された複数の発光点が、それぞれ前記第1の方向に垂直な第1出射方向にビームを出射して第1ビーム群を形成する第1レーザ素子と、
     第2の方向に配列された複数の発光点が、それぞれ前記第2の方向に垂直な第2出射方向にビームを出射して第2ビーム群を形成する第2レーザ素子と、
     前記第1レーザ素子が一方の端を構成する第1外部共振器の他方の端を構成するとともに、前記第2レーザ素子が一方の端を構成する第2外部共振器の他方の端を構成し、前記第1ビーム群および前記第2ビーム群の一部を反射し残部を前記レーザ光として透過させる部分反射面を有する出力鏡と、
     前記第1ビーム群および前記第2ビーム群が非平行な状態で入射され、後段側で、前記第1ビーム群が重畳するように前記第1ビーム群を収束させるとともに前記第2ビーム群が重畳するように前記第2ビーム群を収束させる収束光学系と、
     前記第1ビーム群および前記第2ビーム群の少なくとも一部が重畳する交差点に配置され、前記第1の方向および前記第2の方向に垂直な方向である第3の方向に垂直な第1面内に回折作用を有する回折格子と、
     前記回折格子と前記出力鏡との間に配置され前記第1ビーム群および前記第2ビーム群の各々が空間的に分離した状態で前記部分反射面に垂直に入射するように前記第1ビーム群および前記第2ビーム群を平行化する平行化光学系と、
     を備える、
     ことを特徴とするレーザ加工機。
PCT/JP2022/003301 2022-01-28 2022-01-28 レーザ装置およびレーザ加工機 WO2023144995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/003301 WO2023144995A1 (ja) 2022-01-28 2022-01-28 レーザ装置およびレーザ加工機
JP2022525817A JP7098090B1 (ja) 2022-01-28 2022-01-28 レーザ装置およびレーザ加工機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003301 WO2023144995A1 (ja) 2022-01-28 2022-01-28 レーザ装置およびレーザ加工機

Publications (1)

Publication Number Publication Date
WO2023144995A1 true WO2023144995A1 (ja) 2023-08-03

Family

ID=82356929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003301 WO2023144995A1 (ja) 2022-01-28 2022-01-28 レーザ装置およびレーザ加工機

Country Status (2)

Country Link
JP (1) JP7098090B1 (ja)
WO (1) WO2023144995A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205061A (ja) * 2010-03-04 2011-10-13 Komatsu Ltd レーザ装置、レーザシステムおよび極端紫外光生成装置
JP2013521666A (ja) * 2010-03-05 2013-06-10 テラダイオード,インコーポレーテッド 波長ビーム結合システムおよび方法
WO2014087726A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 半導体レーザ装置
WO2016059893A1 (ja) * 2014-10-15 2016-04-21 株式会社アマダホールディングス 半導体レーザ発振器
WO2017122611A1 (ja) * 2016-01-14 2017-07-20 株式会社アマダミヤチ レーザ装置
WO2021229655A1 (ja) * 2020-05-11 2021-11-18 三菱電機株式会社 レーザ加工装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205061A (ja) * 2010-03-04 2011-10-13 Komatsu Ltd レーザ装置、レーザシステムおよび極端紫外光生成装置
JP2013521666A (ja) * 2010-03-05 2013-06-10 テラダイオード,インコーポレーテッド 波長ビーム結合システムおよび方法
WO2014087726A1 (ja) * 2012-12-03 2014-06-12 三菱電機株式会社 半導体レーザ装置
WO2016059893A1 (ja) * 2014-10-15 2016-04-21 株式会社アマダホールディングス 半導体レーザ発振器
WO2017122611A1 (ja) * 2016-01-14 2017-07-20 株式会社アマダミヤチ レーザ装置
WO2021229655A1 (ja) * 2020-05-11 2021-11-18 三菱電機株式会社 レーザ加工装置

Also Published As

Publication number Publication date
JPWO2023144995A1 (ja) 2023-08-03
JP7098090B1 (ja) 2022-07-08

Similar Documents

Publication Publication Date Title
JP6170950B2 (ja) レーザアレイ光源の合波方法および装置
JP6547072B2 (ja) ビーム品質改良および帯域幅低減のためのプリズムを利用する波長ビーム組み合わせレーザシステム
US11108214B2 (en) Wavelength combining laser apparatus
JP4234697B2 (ja) レーザ装置
JP6157194B2 (ja) レーザ装置および光ビームの波長結合方法
US11933990B2 (en) Wavelength beam combining laser systems with high beam quality factor
EP3010096B1 (en) Wavelength combined laser system
JP2020514839A (ja) 最適化されたビーム寸法を有するダイオードを使用したファイバ結合式ダイオードレーザにおけるパワーおよび輝度スケーリング
US20170207605A1 (en) Semiconductor laser device
US10254552B2 (en) Laser array
WO2006116477A2 (en) Multi-wavelength beam combiner
JP7296605B2 (ja) 波長ビーム結合共振器のアライメントのためのシステムおよび方法
WO2023144995A1 (ja) レーザ装置およびレーザ加工機
WO2018158892A1 (ja) レーザ発振装置
US20210387282A1 (en) Optical resonator, and laser processing apparatus
WO2022201310A1 (ja) レーザ装置
CN114721161B (zh) 激光光斑消除装置及其操作方法
JP7479396B2 (ja) 光学ユニット、ビーム結合装置およびレーザ加工機
US11835387B2 (en) Spectral channel splicer for spectral beam combining laser system
WO2023017644A1 (ja) 光学系及びレーザ装置、コリメータレンズ
US20240061265A1 (en) Dual-grating spectral beam combiner
JP2008098405A (ja) レーザ照射装置
JPWO2023144995A5 (ja)
JPH10300973A (ja) 結合光学糸

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022525817

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923859

Country of ref document: EP

Kind code of ref document: A1