WO2023143617A1 - 一种堆叠光栅及ar显示装置 - Google Patents

一种堆叠光栅及ar显示装置 Download PDF

Info

Publication number
WO2023143617A1
WO2023143617A1 PCT/CN2023/073889 CN2023073889W WO2023143617A1 WO 2023143617 A1 WO2023143617 A1 WO 2023143617A1 CN 2023073889 W CN2023073889 W CN 2023073889W WO 2023143617 A1 WO2023143617 A1 WO 2023143617A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
layer
stacked
dislocation
grooves
Prior art date
Application number
PCT/CN2023/073889
Other languages
English (en)
French (fr)
Inventor
邵陈荻
兰富洋
赵晋
Original Assignee
珠海莫界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海莫界科技有限公司 filed Critical 珠海莫界科技有限公司
Publication of WO2023143617A1 publication Critical patent/WO2023143617A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide

Definitions

  • the present invention relates to the technical field of gratings, in particular to a stacked grating and an AR display device.
  • optical waveguide In augmented reality (Augmented reality, AR) and mixed reality (Mixed reality, MR) fields, compared to BirdBath (BB, semi-reflective and transflective), insect eyes (off-axis reflective), free-form surface prism and other display solutions, optical waveguide The solution is thinner and lighter, and the eye box is larger, so it has broader application prospects.
  • the manufacturing process of the diffractive optical waveguide is less difficult, and there is no grid-shaped dark when realizing two-dimensional pupil expansion (exit pupil expansion in two dimensions). Stripes, therefore more attention.
  • coupling-in and coupling-out are the most basic grating function settings, corresponding to the coupling-in area and the coupling-out area.
  • the in-coupling region converts the free-space beam (projected by the light engine to the optical waveguide) into a beam that is transmitted in the form of total reflection in the optical waveguide substrate (called “coupling"), and the out-coupling region performs the reverse process (called “coupling”).
  • Couple the part of the beam transmitted in the form of total reflection is converted into a free-space beam for human eyes to receive.
  • the turning zone (if present) changes the transmission direction of the part of the light beam transmitted in the form of total reflection, and continues the transmission in the form of total reflection in a new direction.
  • the surface relief grating belongs to the surface grating, and its diffraction properties determine that when the light passes through the outcoupling grating, there are both transmission outcoupling and reflection outcoupling, but the human eye only observes on one side, and the other side
  • the side (leakage) light outcoupling causes privacy leakage, and also shows that the diffraction efficiency is low, resulting in low energy utilization efficiency of the entire diffractive optical waveguide.
  • the technical problem to be solved by the present invention is to provide a stacked grating and an AR display device aiming at solving the problem of low energy utilization rate of gratings in the prior art.
  • a stacked grating comprising:
  • the grating layer is provided with several grating grooves
  • Dislocation spacing exists between the grating grooves of two adjacent grating layers, and all the dislocation spacings form a periodic distribution from bottom to top.
  • the stacked grating wherein the distance between two adjacent grating grooves is the grating period of the two grating grooves in the arrangement direction, and the grating period is 200nm-1000nm.
  • the stacked grating wherein the grating layer is a one-dimensional grating layer, and the dislocation pitch is 0.01-0.99 grating periods; or
  • the grating layer is a two-dimensional grating layer, and the dislocation pitch includes: the dislocation pitch in the first arrangement direction and/or the dislocation pitch in the second arrangement direction;
  • the dislocation pitch in the first arrangement direction is 0.01-0.99 grating periods
  • the dislocation pitch in the second arrangement direction is 0.01-0.99 grating periods.
  • the grating grooves of two adjacent grating layers are filled with a connecting layer; wherein, the refractive index of the grating layer is greater than that of the connecting layer.
  • the refractive index of the grating layer is 1.5-2.4; the refractive index of the connection layer is 1-1.49.
  • each grating layer is not completely the same;
  • each grating layer is not exactly the same; and/or,
  • the groove depths of the grating grooves of each grating layer are not completely the same; and/or,
  • the refractive index of each connecting layer is not completely the same.
  • the stacked grating wherein the bottom grating layer is connected to a waveguide substrate;
  • the uppermost or lowermost grating layer is connected to the film layer; and/or
  • the grating layer includes: at least one of a straight groove grating layer, a helical grating layer, a blazed grating layer, a stepped grating layer, and a curved grating layer; and/or
  • the thickness of the grating layer is 20nm-1000nm.
  • the waveguide substrate includes at least one of a glass waveguide substrate, a resin waveguide substrate, a plastic waveguide substrate, and a transparent ceramic waveguide substrate.
  • the film layer includes a dielectric film and/or a metal film, the dielectric film is a single-layer dielectric film or a multi-layer dielectric film, and the metal film is a single-layer metal film or a multi-layer metal film.
  • An AR display device including:
  • At least one layer of optical waveguide is located in the light output direction of the light engine
  • the stacked grating according to any one of the above is arranged in the optical waveguide.
  • the stacked grating is equivalent to a volume grating, which can improve the selection of grating diffraction for transmission/reflection performance, which can reduce privacy leakage and improve energy utilization.
  • Fig. 1 is a schematic structural diagram of a grating in the prior art.
  • Fig. 2 is a schematic structural diagram of stacked gratings in the present invention.
  • Fig. 3 is a schematic diagram of the structure of the straight groove grating layer in the present invention.
  • Fig. 4 is a schematic structural diagram of a helical grating layer in the present invention.
  • Fig. 5 is a schematic structural diagram of a blazed grating layer in the present invention.
  • Fig. 6 is a schematic structural diagram of a step grating layer in the present invention.
  • Fig. 7 is a schematic structural diagram of a curved grating layer in the present invention.
  • Fig. 8 is a schematic structural diagram of a two-dimensional grating in the present invention.
  • Grating layer 11. Grating groove; 20. Connecting layer; 30. Waveguide substrate.
  • a component when referred to as being “fixed on” or “disposed on” another component, it may be directly on the other component or indirectly on the other component.
  • an element When an element is referred to as being “connected to” another element, it can be directly connected to the other element or indirectly connected to the other element.
  • the stacked grating of the present invention includes:
  • At least two grating layers 10 stacked in sequence from bottom to top;
  • the grating layer 10 is provided with several grating grooves 11;
  • dislocation pitches between the grating grooves 11 of two adjacent grating layers 10 there are dislocation pitches between the grating grooves 11 of two adjacent grating layers 10 , and all the dislocation pitches form a periodic distribution from bottom to top.
  • the dislocation pitch refers to the distance between the inner walls of the grating grooves 11 of two adjacent grating layers 10 in the horizontal direction, and the periodic distribution means that the dislocation distances are arranged according to a certain repeating rule in the bottom-up direction, for example, the first The dislocation distance between the grating groove 11 of the grating layer and the grating groove 11 of the second grating layer is d, and the position of the grating groove 11 of the third grating layer and the grating groove 11 of the first grating layer in the horizontal direction Similarly, the dislocation distance between the grating grooves 11 of the third grating layer and the grating grooves 11 of the fourth grating layer is d, that is to say, the grating grooves 11 of the first
  • the stacked grating is equivalent to a volume grating, which can improve the effect of grating diffraction on transmission/reflection. Selectivity, which can reduce privacy leakage and improve energy utilization.
  • the improvement of the outcoupled light energy will lead to the improvement of viewing brightness, or reduce the energy consumption of the light engine under the same brightness condition.
  • the stacked grating of the present invention can be used as a holographic volume grating, but not by holographic exposure or other methods (such as using photosensitive materials or liquid crystal related materials).
  • the Kling parameter can be used to distinguish volume gratings and surface gratings, where ⁇ is the wavelength of the recording beam, H is the total thickness, n is the refractive index of the recording medium, and ⁇ is the grating period.
  • Q>>10 it is a volume grating.
  • volume gratings are mainly made of silver halide and other materials, and the environmental stability is not high.
  • the stacked gratings of the present invention Compared with holographic volume gratings realized by methods such as holographic exposure, the stacked gratings of the present invention have higher stability in different environments, are easier to realize mass production, and have higher reliability of stacked gratings, expanding the application of diffractive optical waveguides scope.
  • each grating layer 10 can be adjusted, the design freedom of the stacked grating increases, and the uniformity of light energy coupled out of the optical waveguide can be improved by adjusting the grating parameters of each grating layer 10 .
  • the distance between two adjacent grating grooves 11 is the grating period of the two grating grooves in the arrangement direction, and the grating period is 200nm-1000nm.
  • the grating groove 11 on the grating layer 10 has a grating period D, and the grating period D is the distance between two adjacent grating grooves 11, and the distance between two adjacent grating grooves 11 can be the grating groove 11.
  • the distance between the inner wall of and the corresponding inner wall of the adjacent grating groove 11 indicates that the size of the grating period can be adjusted as required.
  • the thickness of the grating layer 10 is 20nm-1000nm, and the thickness of the grating layer 10 can be adjusted as required.
  • the grating layer 10 is a one-dimensional grating layer or a two-dimensional grating layer.
  • the one-dimensional grating layer refers to the grating layer 10 in which the grating grooves 11 have a grating period in one arrangement direction, that is to say, the grating grooves 11 on the one-dimensional grating layer 10 are arranged in a row.
  • the two-dimensional grating layer refers to the grating layer 10 in which the grating grooves 11 have grating periods in two arrangement directions. For example, the grating grooves 11 on the two-dimensional grating layer are arranged in an array, and each row of grating grooves 11 has a grating period.
  • a row of grating grooves 11 also has a grating period. As shown in Figure 8, the periodic array of microjunctions
  • the structural unit (grating groove 11) has a minimum translation amount (ie grating period) of p 1 and p 2 in the two arrangement directions respectively.
  • the grating period p 1 and the grating period p 2 may be the same or different.
  • the dislocation pitch is 0.01-0.99 grating periods.
  • the dislocation spacing includes: the dislocation spacing in the first arrangement direction and/or the dislocation spacing in the second arrangement direction, and the dislocation spacing in the first arrangement direction is 0.01-0.99 gratings period; the dislocation pitch in the second arrangement direction is 0.01-0.99 grating periods.
  • the first arrangement direction and the second arrangement direction may form an included angle, and the included angle may be 90°, or less than or greater than 90° (as shown in FIG. 8 ).
  • the dislocation pitch when a two-dimensional grating layer is used, there may be a dislocation pitch only in the first arrangement direction (then there is no dislocation in the overlapping direction in the second arrangement direction, or the dislocation pitch is 0 or 1 grating period), or The dislocation pitch exists only in the second arrangement direction (then there is no dislocation in the overlapping direction in the first arrangement direction), or there may be a dislocation distance in both the first arrangement direction and the second arrangement direction.
  • the grating grooves 11 of two adjacent grating layers 10 are filled with a connection layer 20; wherein, the refractive index of the grating layer 10 is greater than the The refractive index of the connection layer 20 .
  • the refractive index of the grating layer 10 is relatively high, and the refractive index of the connecting layer 20 is relatively low.
  • Using the connecting layer 20 with a relatively low refractive index to connect the grating layer 10 can ensure high structural stability and improve diffraction efficiency.
  • Glue can be used for the connection layer 20 .
  • the refractive index of the grating layer 10 is 1.5-2.4; the refractive index of the connecting layer 20 is 1-1.49. Specifically, the refractive index of the grating layer 10 and the refractive index of the connecting layer 20 can be adjusted as required.
  • the refractive indices of the grating layers 10 are not completely the same. Specifically, the refractive index of each grating layer 10 may be the same or different. Generally, the difference of the refractive index of the grating layer 10 is between 0-0.3, preferably, the difference of the refractive index of the grating layer 10 is between 0-0.1, for example, the difference of the refractive index of the grating layer 10 is 0.05.
  • the duty ratios of the grating layers 10 are not completely the same. Specifically, the duty ratios of the grating layers 10 may be the same or different.
  • the depth of the grating grooves 11 of each grating layer 10 is endless. all the same. Specifically, the grating grooves 11 of each grating layer 10 may use the same groove depth, or may use different groove depths.
  • the grating layer 10 includes: a straight groove grating layer, a helical tooth grating layer, a blazed grating layer, a stepped grating layer, and a curved grating layer at least one of the
  • the cross-section of the grating groove 11 in the straight-groove grating layer is rectangular, and the corners of the rectangle may have chamfers, such as round chamfers, etc.
  • the cross-section of the grating groove 11 in the helical grating layer is parallelogram or trapezoidal, and in the blazed grating layer
  • the cross-section of the grating groove 11 is triangular
  • the cross-section of the grating groove 11 in the step grating layer is stepped
  • the cross-section of the grating groove 11 in the curved grating layer is arc-shaped, and the arc here includes at least one curve.
  • a plurality of curves are connected sequentially; in addition to curves, arcs can also include straight lines, and straight lines are connected to curves.
  • the shape of the grating groove 11 can be determined as required, so that different grating layers 10 can be used.
  • the shape of the grating groove 11 can be circular, elliptical, square, rectangular, rhombus, etc., or the convex part of the grating can be any of the above shapes, and the convex part of the grating refers to several grooves arranged on the grating. raised.
  • the refractive indices of the connecting layers 20 are not completely the same. Specifically, the refractive index of each connecting layer 20 may be the same or different. Usually, the difference of the refractive index of the connecting layer 20 is between 0-0.3, preferably, the difference of the refractive index of the connecting layer 20 is between 0-0.1.
  • the bottom grating layer 10 is connected with a waveguide substrate 30 .
  • grating layers 10 may be located above or below the waveguide substrate 30 , and may also be located inside the waveguide substrate 30 .
  • Several grating layers 10 can be arranged on one side or both sides of the waveguide substrate 30 .
  • the stacked grating of the present invention can be used as an in-coupling grating, or as an out-coupling grating, and of course, can also be used as an inflection grating, or other types of gratings, and is not limited to the way the gratings are named.
  • the same stacked gratings or different stacked gratings may be used for each grating.
  • the stacked grating of the present invention does not limit the direction of the outcoupling light of the target, that is, the outcoupling light can be located on the same side or the opposite side of the optical waveguide relative to the incoupling light, but the overall effect is to reduce the energy of the outcoupling light in non-target directions.
  • the waveguide substrate 30 includes glass waveguide substrate, resin waveguide substrate, plastic waveguide substrate, transparent ceramic waveguide substrate At least one of the conductive substrates.
  • Plastic waveguide substrates such as polymethyl methacrylate (PMMA) waveguide substrates, polycarbonate (PC) waveguide substrates, etc.
  • the uppermost or lowermost grating layer 10 is connected with a film layer.
  • a film layer is provided on the uppermost or lowermost grating layer 10 .
  • the film layer includes a dielectric film and/or a metal film, the dielectric film is a single-layer dielectric film or a multi-layer dielectric film, and the metal film is a single-layer metal film or a multi-layer metal film.
  • the film layer adopts a dielectric film, and the dielectric film is located between the waveguide substrate 30 and the lowermost grating layer 10; the film layer can also use a metal film, and the metal film and the waveguide substrate 30 are respectively located Up and down sides.
  • both a dielectric film and a metal film can be used.
  • the dielectric film can be single-layer or multi-layer, the multi-layer dielectric film forms a dielectric film system, the metal film can use single-layer or multi-layer, and the multi-layer metal film forms a metal film system.
  • the present invention also provides a preferred embodiment of an AR display device:
  • At least one layer of optical waveguide is located in the light output direction of the light engine
  • the stacked grating according to any one of the above embodiments is disposed on the optical waveguide, specifically as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种堆叠光栅及AR显示装置,堆叠光栅包括:自下而上依次堆叠设置的若干至少两个光栅层(10);其中,光栅层(10)上设置有若干个光栅槽(11);相邻两个光栅层(10)的光栅槽(11)之间存在错位间距d,所有错位间距d自下而上形成周期性分布。由于至少两个光栅层(10)自下而上依次堆叠,且所有错位间距d自下而上形成周期性分布,则堆叠光栅等效为体光栅,可提升光栅衍射对透射/反射的选择性,从而可以降低隐私泄露,提高能量的利用率。

Description

一种堆叠光栅及AR显示装置 技术领域
本发明涉及光栅技术领域,尤其涉及的是一种堆叠光栅及AR显示装置。
背景技术
在增强现实(Augmented reality,AR)、混合现实(Mixed reality,MR)领域,相比BirdBath(BB,半反半透式)、虫眼(离轴反射式)、自由曲面棱镜等显示方案,光波导方案更轻薄、眼盒更大,因此有更广阔的应用前景。在光波导方案中,相比使用部分透反膜的阵列光波导,衍射光波导生产制备工艺难度更低,在实现二维扩瞳(两个维度的出瞳拓展)时不存在栅格状暗条纹,因此更受关注。
衍射光波导方案中,耦入和耦出为最基本的光栅功能设置,对应耦入区和耦出区。可选的,也可以有一或多个中间件或称转折区。耦入区将自由空间光束(由光引擎投影至光波导)转换成在光波导基底中以全反射形式传输的光束(称为“耦入”),耦出区执行逆过程(称为“耦出”),将以全反射形式传输的光束部分转换为自由空间光束为人眼所接收。转折区(若存在)将全反射形式传输的光束部分改变传输方向,以新的方向继续全反射形式的传输。
现有技术中,如图1所示,表面浮雕光栅属于面光栅,其衍射性质决定光线在经过耦出光栅时同时存在透射耦出和反射耦出,但是人眼仅在一侧观察,另一侧的(泄漏)光线耦出造成了隐私泄露,也表明衍射效率较低,导致整个衍射光波导的能量利用率低。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种堆叠光栅及AR显示装置,旨在解决现有技术中光栅的能量利用率低的问题。
本发明解决技术问题所采用的技术方案如下:
一种堆叠光栅,其中,包括:
自下而上依次堆叠设置的至少两个光栅层;
其中,所述光栅层上设置有若干个光栅槽;
相邻两个光栅层的光栅槽之间存在错位间距,所有所述错位间距自下而上形成周期性分布。
所述的堆叠光栅,其中,相邻两个所述光栅槽的间距为两个所述光栅槽在排列方向上的光栅周期,所述光栅周期为200nm-1000nm。
所述的堆叠光栅,其中,所述光栅层为一维光栅层,所述错位间距为0.01-0.99个光栅周期;或
所述光栅层为二维光栅层,所述错位间距包括:第一排列方向上的错位间距和/或第二排列方向上的错位间距;
所述第一排列方向上的错位间距为0.01-0.99个光栅周期;
所述第二排列方向上的错位间距为0.01-0.99个光栅周期。
所述的堆叠光栅,其中,相邻两个光栅层的光栅槽内填充有连接层;其中,所述光栅层的折射率大于所述连接层的折射率。
所述的堆叠光栅,其中,所述光栅层的折射率为1.5-2.4;所述连接层的折射率为1-1.49。
所述的堆叠光栅,其中,各所述光栅层的折射率不完全相同;和/或,
各所述光栅层的占空比不完全相同;和/或,
各所述光栅层的光栅槽的槽深不完全相同;和/或,
各所述连接层的折射率不完全相同。
所述的堆叠光栅,其中,最下方的光栅层连接有波导基底;和/或
最上方或最下方的光栅层连接有膜层;和/或
所述光栅层包括:直槽光栅层、斜齿光栅层、闪耀光栅层、台阶光栅层、曲面光栅层中的至少一种;和/或
所述光栅层的厚度为20nm-1000nm。
所述的堆叠光栅,其中,
所述波导基底包括玻璃波导基底、树脂波导基底、塑料波导基底、透明陶瓷波导基底中的至少一种。
所述的堆叠光栅,其中,
所述膜层包括介质膜和/或金属膜,所述介质膜为单层介质膜或多层介质膜,所述金属膜为单层金属膜或多层金属膜。
一种AR显示装置,其中,包括:
光引擎;
至少一层光波导,位于所述光引擎的出光方向上;
如上述任一项所述的堆叠光栅,设置于所述光波导。
有益效果:由于至少两个光栅层自下而上依次堆叠,且所有所述错位间距自下而上形成周期性分布,则堆叠光栅等效为体光栅,可提升光栅衍射对透射/反射的选择性,从而可以降低隐私泄露,提高能量的利用率。
附图说明
图1是现有技术中光栅的结构示意图。
图2是本发明中堆叠光栅的结构示意图。
图3是本发明中直槽光栅层的结构示意图。
图4是本发明中斜齿光栅层的结构示意图。
图5是本发明中闪耀光栅层的结构示意图。
图6是本发明中台阶光栅层的结构示意图。
图7是本发明中曲面光栅层的结构示意图。
图8是本发明中二维光栅的结构示意图。
附图标记说明:
10、光栅层;11、光栅槽;20、连接层;30、波导基底。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接连接到另一个部件或者间接连接至该另一个部件上。
还需说明的是,本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此,附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。请同时参阅图1-图7,本发明提供了一种堆叠光栅的一些实施例。
如图2所示,本发明的堆叠光栅包括:
自下而上依次堆叠设置的至少两个光栅层10;
其中,所述光栅层10上设置有若干个光栅槽11;
相邻两个光栅层10的光栅槽11之间存在错位间距,所有所述错位间距自下而上形成周期性分布。
值得说明的是,光栅层10上的所有光栅槽11设置在光栅层10的单侧,所有光栅层10的光栅槽11的开口朝向同一方向。错位间距是指相邻两个光栅层10的光栅槽11的内壁在水平方向上的间距,周期性分布是指在自下而上的方向上错位间距按照一定重复规则排列,例如,第一个光栅层的光栅槽11与第二个光栅层的光栅槽11之间的错位间距为d,第三个光栅层的光栅槽11与第一个光栅层的光栅槽11的在水平方向上的位置相同,第三个光栅层的光栅槽11与第四个光栅层的光栅槽11之间的错位间距为d,也就是说,第一个光栅层的光栅槽11与第二个光栅层的光栅槽11形成一个重复单元, 第三个光栅层的光栅槽11与第四个光栅层的光栅槽11形成另一个重复单元,两个重复单元内光栅槽11的错位间距的分布是相同的。
具体地,由于至少两个光栅层10自下而上依次堆叠,且所有所述错位间距自下而上形成周期性分布,则堆叠光栅等效为体光栅,可提升光栅衍射对透射/反射的选择性,从而可以降低隐私泄露,提高能量的利用率。另一方面,耦出光线能量的提高将导致观看的亮度提升,或在同等亮度条件下降低光引擎的能耗。
此外,本发明的堆叠光栅可作为全息体光栅,但不通过全息曝光等方法实现(如使用光敏材料或液晶相关材料)。对于全息曝光法制备的光栅,可用克林参量来区分体光栅和面光栅,其中,λ为记录光束波长,H为总厚度,n为记录介质折射率,Λ为光栅周期。当Q>>10时即为体光栅。目前,体光栅主要通过卤化银等材料制备,环境稳定性不高。与这些全息曝光等方法实现的全息体光栅相比,本发明的堆叠光栅在不同环境下的稳定性较高,更易实现量产,且堆叠光栅的可靠性较高,扩大了衍射光波导的适用范围。
需要强调的是,由于各光栅层10的光栅参数均可调节,堆叠光栅的设计自由度增加,可以通过调节各光栅层10的光栅参数以提高光波导耦出光线能量的均匀性。
在本发明实施例的一个较佳实现方式中,如图2所示,相邻两个所述光栅槽11的间距为两个所述光栅槽在排列方向上的光栅周期,所述光栅周期为200nm-1000nm。
具体地,如图2所示,光栅层10上的光栅槽11具有光栅周期D,光栅周期D为相邻两个光栅槽11的间距,相邻两个光栅槽11的间距可以采用光栅槽11的内壁与相邻的光栅槽11的对应位置的内壁之间的距离表示,光栅周期的大小可以根据需要进行调整。光栅层10的厚度为20nm-1000nm,光栅层10的厚度可以根据需要进行调整。
在本发明实施例的一个较佳实现方式中,所述光栅层10为一维光栅层或二维光栅层。一维光栅层是指光栅槽11在一个排列方向上具有光栅周期的光栅层10,也就是说,一维光栅层10上的光栅槽11排成一列。二维光栅层是指光栅槽11在两个排列方向上具有光栅周期的光栅层10,例如,二维光栅层上的光栅槽11排成阵列,在每一排光栅槽11具有光栅周期,每一列光栅槽11也具有光栅周期。如图8所示,周期排列的微结 构单元(光栅槽11)在两个排列方向上分别具有最小平移量(即光栅周期)为p1和p2。光栅周期p1与光栅周期p2,可以相同,也可以不相同。
具体地,光栅层10采用一维光栅层时,错位间距为0.01-0.99个光栅周期。光栅层10采用二维光栅层时,错位间距包括:第一排列方向上的错位间距和/或第二排列方向上的错位间距,所述第一排列方向上的错位间距为0.01-0.99个光栅周期;所述第二排列方向上的错位间距为0.01-0.99个光栅周期。第一排列方向和第二排列方向可以形成一夹角,该夹角可以是90°,也可以小于或大于90°(如图8所示)。
需要说明的是,采用二维光栅层时,可以仅在第一排列方向上存在错位间距(则在第二排列方向上重叠没有错位,或者说错位间距为0或1个光栅周期),也可以仅在第二排列方向上存在错位间距(则在第一排列方向上重叠没有错位),也可以在第一排列方向上和第二排列方向上都存在错位间距。
在本发明实施例的一个较佳实现方式中,如图2所示,相邻两个光栅层10的光栅槽11内填充有连接层20;其中,所述光栅层10的折射率大于所述连接层20的折射率。
具体地,光栅层10的折射率较高,连接层20的折射率较低,采用折射率较低的连接层20连接光栅层10,可保证结构稳定性较高,且提高衍射效率。连接层20可以采用胶水。
在本发明实施例的一个较佳实现方式中,所述光栅层10的折射率为1.5-2.4;所述连接层20的折射率为1-1.49。具体地,光栅层10的折射率和连接层20的折射率可以根据需要进行调整。
在本发明实施例的一个较佳实现方式中,各所述光栅层10的折射率不完全相同。具体地,各所述光栅层10的折射率可以采用相同的折射率,也可以采用不相同的折射率。通常光栅层10的折射率的差异在0-0.3之间,优选地,光栅层10的折射率的差异在0-0.1之间,例如,光栅层10的折射率的差异为0.05。
在本发明实施例的一个较佳实现方式中,各所述光栅层10的占空比不完全相同。具体地,各光栅层10的占空比可以采用相同的占空比,也可以采用不相同的占空比。
在本发明实施例的一个较佳实现方式中,各所述光栅层10的光栅槽11的槽深不完 全相同。具体地,各所述光栅层10的光栅槽11可以采用相同的槽深,也可以采用不相同的槽深。
在本发明实施例的一个较佳实现方式中,如图3-图7所示,所述光栅层10包括:直槽光栅层、斜齿光栅层、闪耀光栅层、台阶光栅层、曲面光栅层中的至少一种。
具体地,直槽光栅层中光栅槽11的截面呈矩形,矩形的角可以具有倒角,例如圆倒角等,斜齿光栅层中光栅槽11的截面呈平行四边形或梯形,闪耀光栅层中的光栅槽11的截面呈三角形,台阶光栅层中的光栅槽11的截面呈阶梯状,曲面光栅层中光栅槽11的截面呈弧形,这里的弧形包括至少一个曲线,有多个曲线时多个曲线依次连接;除了曲线,弧形还可以包括直线,直线与曲线相连接。可以根据需要确定光栅槽11的形状,从而采用不同的光栅层10。
如图8所示,光栅槽11的形状可以是圆形、椭圆、方形、矩形、菱形等等,或者光栅凸起部分可以为上述任意一形状,光栅凸起部分是指光栅上设置的若干个凸起。
在本发明实施例的一个较佳实现方式中,各所述连接层20的折射率不完全相同。具体地,各所述连接层20的折射率可以采用相同的折射率,也可以采用不相同的折射率。通常连接层20的折射率的差异在0-0.3之间,优选地,连接层20的折射率的差异在0-0.1之间。
在本发明实施例的一个较佳实现方式中,如图2所示,最下方的光栅层10连接有波导基底30。
具体地,若干个光栅层10可以位于波导基底30的上方或下方,也可以位于波导基底30的内部。若干个光栅层10可以设置在波导基底30的一侧或两侧。
本发明的堆叠光栅可以作为耦入光栅,也可以作为耦出光栅,当然,也可以作为转折光栅,或者其他类型光栅,不限于光栅的命名方式。在波导基底30上形成有多个光栅时,各光栅可以采用相同的堆叠光栅,也可以采用不同的堆叠光栅。本发明的堆叠光栅不限制目标耦出光线的方向,即耦出光线相对耦入光线可以位于光波导同侧或异侧,但是总体效果为降低耦出光线在非目标方向的能量。
所述波导基底30包括玻璃波导基底、树脂波导基底、塑料波导基底、透明陶瓷波 导基底中的至少一种。塑料波导基底,如聚甲基丙烯酸甲酯(PMMA)波导基底,聚碳酸酯(PC)波导基底等。
在本发明实施例的一个较佳实现方式中,最上方或最下方的光栅层10连接有膜层。
具体地,为了提高堆叠光栅的光学性能,如透反特性、偏振特性、衍射效率分布特性、机械强度特性等特性,在最上方或最下方的光栅层10上设置膜层。
所述膜层包括介质膜和/或金属膜,所述介质膜为单层介质膜或多层介质膜,所述金属膜为单层金属膜或多层金属膜。例如,膜层采用介质膜,介质膜位于所述波导基底30与所述最下方的光栅层10之间;膜层还可以采用金属膜,金属膜和所述波导基底30分别位于光栅层10的上下两侧。当然,可以既采用介质膜,又采用金属膜。介质膜可以采用单层或多层,多层介质膜形成介质膜系,金属膜可以采用单层或多层,多层金属膜形成金属膜系。
基于上述任意一实施例的堆叠光栅,本发明还提供了一种AR显示装置的较佳实施例:
本发明实施例的AR显示装置,包括:
光引擎;
至少一层光波导,位于所述光引擎的出光方向上;
如上述任意一实施例的堆叠光栅,设置于所述光波导,具体如上所述。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种堆叠光栅,其特征在于,包括:
    自下而上依次堆叠设置的至少两个光栅层;
    其中,所述光栅层上设置有若干个光栅槽;
    相邻两个光栅层的光栅槽之间存在错位间距,所有所述错位间距自下而上形成周期性分布。
  2. 根据权利要求1所述的堆叠光栅,其特征在于,相邻两个所述光栅槽的间距为两个所述光栅槽在排列方向上的光栅周期,所述光栅周期为200nm-1000nm。
  3. 根据权利要求2所述的堆叠光栅,其特征在于,所述光栅层为一维光栅层,所述错位间距为0.01-0.99个光栅周期;或
    所述光栅层为二维光栅层,所述错位间距包括:第一排列方向上的错位间距和/或第二排列方向上的错位间距;
    所述第一排列方向上的错位间距为0.01-0.99个光栅周期;
    所述第二排列方向上的错位间距为0.01-0.99个光栅周期。
  4. 根据权利要求1所述的堆叠光栅,其特征在于,相邻两个光栅层的光栅槽内填充有连接层;其中,所述光栅层的折射率大于所述连接层的折射率。
  5. 根据权利要求4所述的堆叠光栅,其特征在于,所述光栅层的折射率为1.5-2.4;所述连接层的折射率为1-1.49。
  6. 根据权利要求4所述的堆叠光栅,其特征在于,各所述光栅层的折射率不完全相同;和/或,
    各所述光栅层的占空比不完全相同;和/或,
    各所述光栅层的光栅槽的槽深不完全相同;和/或,
    各所述连接层的折射率不完全相同。
  7. 根据权利要求1-6任意一项所述的堆叠光栅,其特征在于,最下方的光栅层连接有波导基底;和/或
    最上方或最下方的光栅层连接有膜层;和/或
    所述光栅层包括:直槽光栅层、斜齿光栅层、闪耀光栅层、台阶光栅层、曲面光栅 层中的至少一种;和/或
    所述光栅层的厚度为20nm-1000nm。
  8. 根据权利要求7所述的堆叠光栅,其特征在于,所述波导基底包括玻璃波导基底、树脂波导基底、塑料波导基底、透明陶瓷波导基底中的至少一种。
  9. 根据权利要求7所述的堆叠光栅,其特征在于,所述膜层包括介质膜和/或金属膜,所述介质膜为单层介质膜或多层介质膜,所述金属膜为单层金属膜或多层金属膜。
  10. 一种AR显示装置,其特征在于,包括:
    光引擎;
    至少一层光波导,位于所述光引擎的出光方向上;
    如权利要求1至9中任一项所述的堆叠光栅,设置于所述光波导。
PCT/CN2023/073889 2022-01-30 2023-01-30 一种堆叠光栅及ar显示装置 WO2023143617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114535.6A CN114371529B (zh) 2022-01-30 2022-01-30 一种堆叠光栅及ar显示装置
CN202210114535.6 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023143617A1 true WO2023143617A1 (zh) 2023-08-03

Family

ID=81146613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073889 WO2023143617A1 (zh) 2022-01-30 2023-01-30 一种堆叠光栅及ar显示装置

Country Status (2)

Country Link
CN (1) CN114371529B (zh)
WO (1) WO2023143617A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114371529B (zh) * 2022-01-30 2024-01-09 珠海莫界科技有限公司 一种堆叠光栅及ar显示装置
CN114924413A (zh) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 光波导结构、光波导结构的制备方法及头戴显示设备
CN117310984A (zh) * 2022-06-24 2023-12-29 上海鲲游科技有限公司 一种衍射光波导及其制备方法、增强现实设备
CN115421234B (zh) * 2022-11-04 2023-04-07 北京驭光科技发展有限公司 衍射光波导及其光栅结构以及显示设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576907A (zh) * 2003-06-25 2005-02-09 夏普株式会社 偏振光学元件以及包括此偏振光学元件的显示器件
CN102047344A (zh) * 2008-04-15 2011-05-04 佳能株式会社 用于x射线的源光栅、用于x射线相衬图像的成像装置和x射线计算层析成像系统
CN106707518A (zh) * 2017-02-28 2017-05-24 华为技术有限公司 一种信息显示设备及信息显示方法
CN108645836A (zh) * 2018-04-28 2018-10-12 中山大学 平行堆叠双层金属光栅结构表面增强拉曼基底及其制作方法
CN108919488A (zh) * 2018-07-06 2018-11-30 成都理想境界科技有限公司 一种单眼大视场近眼显示模组
US20190033683A1 (en) * 2017-12-18 2019-01-31 Intel Corporation Broadband flat optical elements and methods of manufacture
US10578876B1 (en) * 2018-09-10 2020-03-03 Facebook Technologies, Llc Waveguide having a phase-matching region
CN111458886A (zh) * 2020-05-29 2020-07-28 深圳惠牛科技有限公司 一种具有大视场角的波导ar显示器件及其实现方法
CN112230339A (zh) * 2020-10-23 2021-01-15 联合微电子中心有限责任公司 光栅耦合器及其制备方法
US20210231861A1 (en) * 2020-01-24 2021-07-29 Commissariat à l'énergie atomique et aux énergies alternatives Distributed light projection device
CN114371529A (zh) * 2022-01-30 2022-04-19 珠海莫界科技有限公司 一种堆叠光栅及ar显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007140312A (ja) * 2005-11-22 2007-06-07 Shimadzu Corp 反射型回折素子
DE102016112504A1 (de) * 2016-07-07 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Anordnung zur spektralen Zerlegung von Licht
US10761330B2 (en) * 2018-01-23 2020-09-01 Facebook Technologies, Llc Rainbow reduction in waveguide displays
CN108387960A (zh) * 2018-03-22 2018-08-10 上海鲲游光电科技有限公司 可用于增强现实眼镜的多层结构光栅
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
WO2021016045A1 (en) * 2019-07-19 2021-01-28 Magic Leap, Inc. Display device having diffraction gratings with reduced polarization sensitivity
US10935730B1 (en) * 2019-11-25 2021-03-02 Shanghai North Ocean Photonics Co., Ltd. Waveguide display device
CN113721320A (zh) * 2021-09-06 2021-11-30 宁波舜宇奥来技术有限公司 光波导结构和显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576907A (zh) * 2003-06-25 2005-02-09 夏普株式会社 偏振光学元件以及包括此偏振光学元件的显示器件
CN102047344A (zh) * 2008-04-15 2011-05-04 佳能株式会社 用于x射线的源光栅、用于x射线相衬图像的成像装置和x射线计算层析成像系统
CN106707518A (zh) * 2017-02-28 2017-05-24 华为技术有限公司 一种信息显示设备及信息显示方法
US20190033683A1 (en) * 2017-12-18 2019-01-31 Intel Corporation Broadband flat optical elements and methods of manufacture
CN108645836A (zh) * 2018-04-28 2018-10-12 中山大学 平行堆叠双层金属光栅结构表面增强拉曼基底及其制作方法
CN108919488A (zh) * 2018-07-06 2018-11-30 成都理想境界科技有限公司 一种单眼大视场近眼显示模组
US10578876B1 (en) * 2018-09-10 2020-03-03 Facebook Technologies, Llc Waveguide having a phase-matching region
US20210231861A1 (en) * 2020-01-24 2021-07-29 Commissariat à l'énergie atomique et aux énergies alternatives Distributed light projection device
CN111458886A (zh) * 2020-05-29 2020-07-28 深圳惠牛科技有限公司 一种具有大视场角的波导ar显示器件及其实现方法
CN112230339A (zh) * 2020-10-23 2021-01-15 联合微电子中心有限责任公司 光栅耦合器及其制备方法
CN114371529A (zh) * 2022-01-30 2022-04-19 珠海莫界科技有限公司 一种堆叠光栅及ar显示装置

Also Published As

Publication number Publication date
CN114371529B (zh) 2024-01-09
CN114371529A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2023143617A1 (zh) 一种堆叠光栅及ar显示装置
CN107238979B (zh) 导光组件及制备方法、背光模组以及显示装置
JP4994384B2 (ja) 線形的に低減される発散を有するバックライトユニット
CN109212660B (zh) 导光组件、光准直组件、背光模组及显示装置
JP5646748B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
EP1684099A2 (en) Wire grid polarization film, method for manufacturing wire grid polarization film, liquid crystal display using wire grid polarization film, and method for manufacturing mold for forming wire grids thereof
JP6238203B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
WO2012046414A1 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
AU2007316111A1 (en) Light outcoupling structure for a lighting device
KR20090104077A (ko) 조명 애플리케이션들을 위한 인커플링 구조물
CN111679362A (zh) 一种光波导及近眼显示系统
JP2019511094A (ja) 反射格子島状構造を使用する格子ベースのバックライト
JP2010282962A (ja) 光をコリメートする導光体、導光体のコリメーション改善方法、バックライト、及び表示装置
CN212433446U (zh) 一种光波导及近眼显示系统
CN113777787B (zh) 一种具有高效率高均匀性的波导装置
WO2023126015A1 (zh) 一种多层衍射光波导器件及近眼显示装置
KR20070038868A (ko) 광학 필름
CN115343795A (zh) 一种衍射光波导及成像系统
CN113934056B (zh) 一种光源组件、显示装置及面光源装置
WO2023143616A1 (zh) 一种光波导模组及ar显示装置
CN101191851A (zh) 光学板
EP2048433A1 (en) Planar light emitting device, optical element and liquid crystal display device
WO2021208566A1 (zh) 背光模组结构、显示面板及显示装置
JP3215902U (ja) 光学フィルム及び表示装置
JP2015035252A (ja) 光源装置、面光源装置、表示装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746494

Country of ref document: EP

Kind code of ref document: A1