WO2023143615A1 - 一种波导结构及显示装置 - Google Patents

一种波导结构及显示装置 Download PDF

Info

Publication number
WO2023143615A1
WO2023143615A1 PCT/CN2023/073880 CN2023073880W WO2023143615A1 WO 2023143615 A1 WO2023143615 A1 WO 2023143615A1 CN 2023073880 W CN2023073880 W CN 2023073880W WO 2023143615 A1 WO2023143615 A1 WO 2023143615A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
transmitting structure
transmitting
region
Prior art date
Application number
PCT/CN2023/073880
Other languages
English (en)
French (fr)
Inventor
周兴
关健
兰富洋
邵陈荻
Original Assignee
珠海莫界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海莫界科技有限公司 filed Critical 珠海莫界科技有限公司
Publication of WO2023143615A1 publication Critical patent/WO2023143615A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates to the field of optical waveguide technology, in particular to a waveguide structure and a display device.
  • the optical waveguide is a device that can trap signal beams inside and transmit the signal light in a specific direction, and the optical waveguide has good light transmission. Based on these properties, the optical waveguide can serve as a display for augmented reality (AR) near-eye display devices.
  • the optical waveguide directional transmits the signal light projected by the projector to the human eye, so the human eye can see the image to be displayed, and because the optical waveguide has good light transmission, the human eye can also clearly see the image behind the optical waveguide.
  • the real environment, so what the human eye finally sees is the fusion of the image to be displayed and the real environment.
  • optical devices such as refractive lenses
  • the signal beam bound in the waveguide will leak from the optical device, making The waveguide sheet cannot completely bind the signal light beam, resulting in poor display effect or abnormal display of the image to be displayed.
  • the technical problem to be solved by the present invention is to provide a waveguide structure and a display device for the above-mentioned defects of the prior art, aiming at solving the problem of light leakage after adding optical devices on the waveguide sheet in the prior art, which leads to poor display effect of the image to be displayed. Good or not displaying properly.
  • a waveguide structure comprising:
  • a waveguide including: an outcoupling region;
  • the refractive index of the dielectric layer is smaller than the refractive index of the waveguide plate
  • the light-transmitting structure covers the outcoupling region and extends outside the outcoupling region.
  • the waveguide structure wherein the light-transmitting structure is a refraction structure or an embryo body structure; the diopter of the refraction structure is greater than or equal to a preset positive threshold, or less than or equal to a preset negative threshold, the embryo The diopter of the body structure is smaller than the preset positive threshold and larger than the preset negative threshold.
  • the waveguide structure, wherein the waveguide plate further includes:
  • the waveguide structure, wherein the waveguide plate further includes:
  • the incident light of the in-coupling region propagates to the out-coupling region after passing through the turning region, and the number of the turning regions is greater than or equal to the number of the out-coupling regions;
  • the light-transmitting structure is located on the light-incident side of the in-coupling region or on the side away from the light-incident side.
  • the waveguide structure wherein the light-transmitting structure is located on the light-incident side of the in-coupling region, and a straight part is provided at a corresponding position of the in-coupling region on the light-transmitting structure, and the straight part
  • the diopter is 0.
  • the straight portion is a through hole.
  • the waveguide structure wherein, after the light of the same direction incident on the in-coupling region is transmitted to the out-coupling region in the waveguide, the direction of each outgoing light of the out-coupling region is the same;
  • the light-transmitting structure is located on the side of the outcoupling region where the light exits and/or on the side away from the light exit; and/or
  • the light-transmitting structure includes a convex light-transmitting structure or a concave light-transmitting structure; and/or
  • the dielectric layer includes an adhesive glue layer, the adhesive glue layer is connected to the waveguide plate, and the refractive index of the adhesive glue layer is smaller than the refractive index of the waveguide plate; and/or
  • the waveguide plate has at least two layers, and at least two layers of the waveguide plate are overlapped in sequence.
  • the waveguide structure wherein the convex light-transmitting structure is a plano-convex light-transmitting structure, and the planar portion of the plano-convex light-transmitting structure faces the dielectric layer; and/or
  • the concave light-transmitting structure is a plano-concave light-transmitting structure, and the plane part of the plano-concave light-transmitting structure faces the medium layer; and / or
  • the adhesive layer is covered with the light-transmitting structure
  • the adhesive layer includes:
  • the two sides are respectively connected to the waveguide plate and the light-transmitting structure
  • the air part is located between the waveguide plate and the light-transmitting structure.
  • a display device including the waveguide structure described in any one of the above.
  • Fig. 1 is a first front view of the waveguide structure in the present invention.
  • Fig. 2 is a second front view of the waveguide structure in the present invention.
  • Fig. 3 is a first plan view of the waveguide structure in the present invention.
  • Fig. 4 is a second top view of the waveguide structure in the present invention.
  • Fig. 5 is a third top view of the waveguide structure in the present invention.
  • Fig. 6 is a fourth top view of the waveguide structure in the present invention.
  • Fig. 7 is a first front view of the waveguide structure with the turning region in the present invention.
  • Fig. 8 is a second front view of the waveguide structure with the turning region in the present invention.
  • Fig. 9 is a first front view of a waveguide structure with two outcoupling regions in accordance with the present invention.
  • Fig. 10 is a first plan view of a waveguide structure with two outcoupling regions in the present invention.
  • Figure 11 is a second elevational view of a waveguide structure with two outcoupling regions in accordance with the present invention.
  • Fig. 12 is a second top view of the waveguide structure with two outcoupling regions in the present invention.
  • Fig. 13 is a schematic structural diagram of a display device in the present invention.
  • Fig. 14 is a front view of a waveguide structure with two turning regions in the present invention.
  • Fig. 15 is a perspective view of a waveguide structure with two turning regions in the present invention.
  • Fig. 16 is a first plan view of the waveguide structure with the first light-transmitting structure and the second light-transmitting structure in the present invention.
  • Fig. 17 is a second plan view of the waveguide structure with the first light-transmitting structure and the second light-transmitting structure in the present invention.
  • Fig. 18 is a first plan view of a waveguide structure with a first light-transmitting structure, a second light-transmitting structure and two outcoupling regions in the present invention.
  • 19 is a second plan view of the waveguide structure with the first light-transmitting structure, the second light-transmitting structure and two outcoupling regions in the present invention.
  • Fig. 20 is a top view of a waveguide structure with two layers of waveguide plates in the present invention.
  • Fig. 21 is a top view of a waveguide structure with a first light-transmitting structure, a second light-transmitting structure and two layers of waveguide plates in the present invention.
  • Fig. 22 is a first plan view of a waveguide structure with two layers of waveguide plates and each waveguide plate has two outcoupling regions in the present invention.
  • Fig. 23 is a second plan view of a waveguide structure with two layers of waveguide plates and each layer of waveguide plates has two outcoupling regions in the present invention.
  • Waveguide sheet 20. Outcoupling area; 30. Dielectric layer; 31. Adhesive layer; 311. Connection part; 312. Air part; 40. Light-transmitting structure; 41. First light-transmitting structure; 42. 2. Light-transmitting structure; 43, through hole; 50, coupling area; 60, turning area; 70, optical machine.
  • the present invention provides some embodiments of a waveguide structure.
  • the waveguide structure of the present invention includes:
  • the waveguide 10 includes: an outcoupling region 20;
  • the refractive index of the dielectric layer 30 is smaller than the refractive index of the waveguide plate 10;
  • the transparent structure 40 covers the outcoupling region 20 and extends outside the outcoupling region 20 .
  • the waveguide 10 refers to a structure for propagating light beams inside.
  • the outcoupling region 20 refers to the region for outcoupling the beam in the waveguide 10 .
  • the dielectric layer 30 refers to a structure formed of a dielectric material with a certain refractive index.
  • the light-transmitting structure 40 refers to a structure that can transmit light beams.
  • the light-transmitting structure 40 When the light-transmitting structure 40 is added to the waveguide 10, if the waveguide 10 is directly bonded to the light-transmitting structure 40, the light beam in the waveguide 10 can travel from the place where the waveguide 10 and the light-transmitting structure 40 are bonded. The emitted light will affect the emitted light from the outcoupling region 20 , causing confusion in the emitted light from the outcoupled region 20 , resulting in poor display effect or abnormal display of the image to be displayed.
  • the light beam propagating in the waveguide 10 will undergo total reflection when propagating, and cannot Refracted into the medium layer 30, there will be no problem of light leakage.
  • the light beam propagating in the waveguide 10 will not exit until it reaches the outcoupling region 20 .
  • the material of the waveguide 10 is resin or glass, and a diffractive microstructure is arranged on the surface of the waveguide 10 corresponding to the outcoupling area 20, so that the light in the waveguide 10 diffracts to the outside world and enters the user's eyes for imaging.
  • Fig. 1-Fig. It plays the role of protecting the waveguide plate 10 and avoiding the damage of the waveguide plate 10 .
  • the light-transmitting structure 40 covers the outcoupling region 20 , the outcoupling region 20 can be protected.
  • the light-transmitting structure 40 may be a structure that improves the direction of light propagation, so that the user's eyes can observe things.
  • the light emitted from the outcoupling region 20 can reach the eyes of the user after exiting, and the natural light from the outside can also reach the eyes of the user through the waveguide 10 . Since the light-transmitting structure 40 covers the out-coupling region 20, when the light-transmitting structure 40 is located on the side of the out-coupling region 20 that is emitted to the human eye, it can improve both the outgoing light of the out-coupling region 20 and the natural light outside; When the structure 40 is located on the side of the outcoupling region 20 facing away from the light exiting toward human eyes, it can improve the natural light outside.
  • the area of the light-transmitting structure 40 is larger than the area of the out-coupling region 20, and the outgoing light of the out-coupling region 20 passes through the light-transmitting structure 40, or the reverse direction of the outgoing light of the out-coupling region 20
  • the extension line passes through the light-transmitting structure 40 .
  • the light-transmitting structure 40 is a refractive structure or an embryonic body structure; the refractive structure has a radius of curvature less than or equal to a preset Threshold surface structure, the embryoid body junction
  • the structure is a planar structure or a curved surface structure with a radius of curvature greater than a preset threshold.
  • the refractive structure refers to a structure that changes the propagation direction of light beams, through which the refractive state of the eye can be corrected, and the refractive state of the eye includes at least one of myopia, hyperopia or astigmatism. Then the refractive structure can be used to correct myopia, or to correct hyperopia, or to correct astigmatism. Of course, astigmatism can be corrected while correcting myopia, and astigmatism can be corrected while correcting hyperopia.
  • the embryonic body structure refers to the optical embryonic body structure to be processed, and the embryonic body structure can be processed to form a refractive structure.
  • the preset positive threshold refers to a preset threshold greater than zero
  • the preset negative threshold refers to a preset threshold smaller than zero.
  • the preset positive threshold and the preset negative threshold can be set as required. For example, set the preset positive threshold to 0.5, and the preset negative threshold to -1.
  • the value range of the diopter of the refraction structure is (- ⁇ , preset negative threshold] or [preset positive threshold, + ⁇ ), and the range of diopter of the embryo body structure is (preset negative threshold, preset set a positive threshold). It should be noted that when the diopter of the embryo body structure is 0, the embryo body structure is a planar structure, that is to say, the two sides of the embryo body structure are planes.
  • the diopter of the refractive structure is determined according to the refractive state of the user's eyes.
  • the embryo body structure is produced, and then according to the refractive state of the user's eyes, the parameters that the embryo body structure needs to be processed are determined, and according to the parameters
  • the embryonic body structure is processed to form a refractive structure, so that the user can correct the refractive state of the user's eyes when using it.
  • the refraction structure can be processed from the embryo body structure by first processing the refraction structure (such as cutting, cutting, grinding, polishing, etc.), and then connecting the refraction structure with the waveguide 10 . It is also possible to connect the embryonic structure with the waveguide 10 first, and then process the embryonic structure on the waveguide 10 into a refractive structure.
  • the outgoing light from the outcoupling area 20 will pass through the refractive structure or the embryonic body structure before reaching the user's eyes.
  • the structure is processed to form a refractive structure, and the outgoing light from the outcoupling area 20 reaches the user's eyes after being corrected by the refractive structure, and the natural light from the outside also reaches the user's eyes after being corrected by the refractive structure, so that the eyes are in the refractive state.
  • the user can clearly see the image formed by the outgoing light of the outcoupling region 20 and the image formed by the natural light outside.
  • the refractive structure is located on the side of the outcoupling area 20 away from the light output to the human eye, the natural light from the outside will reach the user's eyes after being corrected by the refractive structure, and the outgoing light from the outcoupling area 20 will not pass through the refractive structure.
  • the corrections reach directly to the user's eyes.
  • the user whose eyes are in the state of refraction can clearly see the image formed by the natural light outside, and the out-coupling
  • the virtual image distance of the image formed by the light emitted from the area 20 is more convenient to adjust.
  • the waveguide structure of the present invention has smaller volume and weight, and can adjust the external natural light and the light in the waveguide plate 10 so that users can observe corresponding images.
  • the light-transmitting structure 40 includes a convex-shaped light-transmitting structure or a concave-shaped light-transmitting structure.
  • the convex light-transmitting structure refers to a light-transmitting structure with a diopter greater than 0, and the convex light-transmitting structure plays a role of converging light.
  • the convex light-transmitting structure is divided into a convex refractive structure and a convex embryo body structure according to the diopter.
  • the concave light-transmitting structure refers to a light-transmitting structure with a diopter less than 0, and the concave light-transmitting structure plays the role of diverging light.
  • the concave light-transmitting structure is divided into a concave refractive structure and a concave embryo body structure according to the diopter.
  • the refractive structure includes a convex refractive structure or a concave refractive structure.
  • a convex refractive structure refers to a refractive structure whose diopter is greater than or equal to a preset positive threshold, and a concave refractive structure refers to a diopter less than or equal to a predetermined threshold. Refractive structure with negative threshold.
  • the embryo body structure includes a convex embryo body structure or a concave embryo body structure.
  • a convex embryo body structure refers to an embryo body structure with a diopter greater than 0 and less than a preset positive threshold.
  • a concave embryo body structure refers to a diopter less than 0 and greater than a preset Embryoid body structure for negative thresholds.
  • the embryoid body structure also includes a straight embryoid body structure with a diopter of 0.
  • the convex light-transmitting structure is a plano-convex light-transmitting The dielectric layer 30.
  • the plano-convex light-transmitting structure refers to the light-transmitting structure 40 having a planar part and a convex curved part. Since the surface of the waveguide 10 is usually flat, the surface of the dielectric layer 30 is also flat, and the planar portion of the plano-convex light-transmitting structure faces the dielectric layer 30 so that the flat portion is connected to the dielectric layer 30 .
  • the concave light-transmitting structure is a plano-concave light-transmitting structure, and the plane part of the plano-concave light-transmitting structure faces the medium layer 30.
  • the plano-concave light-transmitting structure refers to the light-transmitting structure 40 having a planar part and a concave curved part. Since the surface of the waveguide 10 is generally flat, the surface of the dielectric layer 30 is also flat, and the planar portion of the plano-concave light-transmitting structure faces the dielectric layer 30, so that the planar portion is in contact with the medium. Layer 30 connections.
  • the waveguide 10 may be a planar waveguide or a curved waveguide.
  • a planar waveguide refers to a waveguide whose two sides are flat.
  • the convex light-transmitting structure adopts a plano-convex light-transmitting structure.
  • the plane portion of the convex light-transmitting structure cooperates with the plane of the planar waveguide plate.
  • a curved waveguide refers to a waveguide whose two sides are curved.
  • the human eye side of the curved waveguide is a concave surface
  • the side of the curved waveguide facing away from the human eye is a convex surface.
  • the convex light-transmitting structure can adopt a double-convex light-transmitting structure, a plano-convex light-transmitting structure or a concave-convex light-transmitting structure, and a double-convex light-transmitting structure
  • a concave-convex light-transmitting structure refers to a lens structure with a convex curved surface on one side and a concave curved surface on the other side, and the curvature radius of the convex curved surface is smaller than that of the concave curved surface.
  • the convex portion of the convex light-transmitting structure matches the concave surface of the curved waveguide.
  • the concave light-transmitting structure can adopt a convex-concave light-transmitting structure. structure, and the radius of curvature of the concave surface on the side away from the waveguide plate is smaller than the radius of curvature of the convex surface on the side facing the waveguide plate.
  • the convex surface of the convex-concave light-transmitting structure matches the concave curved surface of the curved waveguide sheet.
  • the convex-shaped light-transmitting structure may adopt a concave-convex light-transmitting structure.
  • the concave part of the concave-convex light-transmitting structure matches the convex curved surface of the curved waveguide sheet.
  • the concave light transmission structure can adopt a double concave light transmission structure, a flat concave light transmission structure or a convex and concave light transmission structure.
  • the double concave light transmission structure refers to two Both sides are light-transmitting structures with concave curved surfaces.
  • the concave part of the concave light-transmitting structure matches the convex curved surface of the curved waveguide sheet.
  • the waveguide further includes:
  • the surface of the waveguide plate 10 corresponding to the incoupling region 50 is provided with a diffractive microstructure, such as a one-dimensional grating or a two-dimensional grating or a volume holographic grating or a metasurface, and the surface of the waveguide plate 10 corresponding to the outcoupling region 20 is also provided with a diffractive microstructure. Structures such as 1D gratings or 2D gratings or volume holographic gratings or metasurfaces.
  • the diffractive microstructures of the in-coupling region 50 can be arranged on the same side or both sides of the waveguide plate 10
  • the diffractive microstructures of the outcoupling region 20 can be arranged on the same side or both sides of the waveguide plate 10 .
  • the diffractive microstructure of the coupling-in region 50 and the diffractive microstructure of the coupling-out region 20 are located on the same side of the waveguide 10, the diffraction of the coupling-in region 50
  • the microstructures and the diffractive microstructures of the outcoupling region 20 are arranged at intervals or adjacent to each other.
  • the waveguide further includes:
  • the incident light of the in-coupling region 50 propagates to the out-coupling region 20 after passing through the turning region 60, and the number of the turning regions is greater than or equal to the number of the out-coupling regions.
  • the surface of the waveguide plate 10 corresponding to the turning region 60 is provided with a diffractive microstructure, such as a one-dimensional grating or a two-dimensional grating or a volume holographic grating or a metasurface, and the diffractive microstructure can be arranged on Either side of the waveguide 10.
  • the coupling-in region 50 is located at the upper left corner of the out-coupling region 20
  • the turning region 60 is located at the left or upper side of the out-coupling region 20 .
  • the two outcoupling regions 20 respectively correspond to the two eyes of the user, and both eyes of the user can observe the outgoing light of the outcoupling regions 20 .
  • Two outcoupling regions 20 may share one incoupling region 50 , and the incoupling region 50 is located between the two outcoupling regions 20 .
  • the light-transmitting structure 40 covers the two out-coupling regions 20.
  • two light-transmitting structures 40 can also be used, denoted as the left light-transmitting structure 40 and the right light-transmitting structure 40, respectively corresponding to two
  • the outcoupling regions 20 also correspond to the user's left and right eyes, respectively.
  • the diopters of the left light-transmitting structure 40 and the right light-transmitting structure 40 can be set according to the user's eyes, and can be the same or different.
  • two turning regions 60 may also be provided, and the turning regions 60 and the outcoupling regions 20 are provided in one-to-one correspondence.
  • the light-transmitting structure 40 is located on the light-incident side or the side away from the light-incident side of the in-coupling region 50 .
  • the light-transmitting structure 40 when the light-transmitting structure 40 is located on the side of the coupling-in region 50 away from the incident light, the incident light of the coupling-in region 50 will not pass through the light-transmitting structure 40, and the light-transmitting structure 40 can cover the coupling-in region 50, or cover The whole waveguide 10.
  • the incident light of the coupling-in region 50 reaches the coupling-in region 50 after passing through the light-transmitting structure 40 . In order to make the incident light of the coupling-in region 50 pass through the light-transmitting structure 40, the propagation direction of the incident light will not be affected.
  • the corresponding position of the in-coupling region 50 on the light-transmitting structure 40 is provided with a straight part, and the diopter of the straight part is 0, so when the incident light of the in-coupling region 50 passes through the light-transmitting structure 40, it The previous incident light is parallel or collinear with the incident light after passing through the light-transmitting structure 40 .
  • the straight portion is a through hole 43 .
  • a through hole 43 is provided at the corresponding position of the coupling-in region junction 50 on the light-transmitting structure 40, then the incident light of the coupling-in region 50 reaches the coupling-in region 50 through the through-hole 43, and the light-transmitting structure 40 will not change the coupling-in region 50.
  • the propagation direction of the incident light in the zone 50 is provided at the corresponding position of the coupling-in region junction 50 on the light-transmitting structure 40
  • the out-coupling region 20 in the waveguide After the light incident on the in-coupling region 50 in the same direction is transmitted to the out-coupling region 20 in the waveguide, the out-coupling The direction of each outgoing light of the zone 20 is the same.
  • the out-coupling region 20 in the waveguide there may be multiple beams of outgoing light from the out-coupling structure, and the direction of each outgoing light is the same.
  • the dioptric structure is located on the side where the light from the outcoupling area 20 exits, the directions of each beam of outgoing light from the outcoupling area 20 are the same when they exit, but the propagation direction of the outgoing light changes after passing through the dioptric structure, and then when it reaches the user's eyes , which can correct the refractive state of the user's eyes.
  • the light-transmitting structure 40 is located on the side of the outcoupling region 20 where the light exits to the human eye and/or is away from the light exit. to the side of the human eye.
  • the light-transmitting structure 40 can be provided on the side where the light of the outcoupling region 20 is emitted to the human eye and/or on the side away from the light that is emitted to the human eye, for example, the light that is emitted from the outcoupling region 20 is emitted to the human eye.
  • the light-transmitting structure 40 on one side is marked as the first light-transmitting structure 41
  • the light-transmitting structure 40 on the side of the out-coupling region 20 that is away from the light emitted to the human eye is marked as the second light-transmitting structure 42, because the out-coupling region 20
  • the outgoing light will pass through the first light-transmitting structure 41 and will not pass through the second light-transmitting structure 42 .
  • the outgoing light from the outcoupling area 20 is parallel light, which is equivalent to the light emitted from a point at infinity. Due to the long distance, it can be regarded as parallel light when it reaches the user's eyes.
  • the natural light outside is not necessarily parallel light. Therefore, by adjusting the diopter of the second light-transmitting structure 42, the natural light at the target position can be converted into parallel light. Then the outgoing light of the outcoupling area 20 and the natural light outside are both parallel light.
  • the second light-transmitting structure 42 is located on the side of the waveguide 10 facing away from the human eye, that is, on the side of the waveguide 10 away from the light out-coupling region 20 .
  • the second light-transmitting structure 42 can protect and beautify the side of the human eye.
  • the refractive index of the adhesive layer 31 is smaller than the refractive index of the waveguide plate 10 .
  • an adhesive layer 31 is used to connect the waveguide 10 and the light-transmitting structure 40, and the adhesive layer 31 is directly connected to the waveguide 10. Since the refractive index of the adhesive layer 31 is smaller than that of the waveguide 10, the waveguide The light propagating in 10 is totally reflected, and will not propagate into the adhesive layer 31, so that there will be no problem of light leakage.
  • Other functional layers can be arranged between the dielectric layer 30 and the light-transmitting structure 40.
  • the adhesive layer 31 is directly connected to the waveguide layer, and the other functional layers are connected to the dielectric layer 30.
  • the refractive index of the other functional layers can be set as required.
  • the adhesive layer 31 is covered with the transparent structure 40.
  • the adhesive layer 31 covers the light-transmitting structure 40 so that the light-transmitting structure 40 is fully connected to the waveguide 10 through the adhesive layer 31 .
  • the waveguide 10 and the light-transmitting structure 40 can be connected to form a stable whole.
  • the adhesive layer 31 includes:
  • a connecting part 311, the two sides are respectively connected to the waveguide plate 10 and the light-transmitting structure 40;
  • the air portion 312 is located between the waveguide plate 10 and the light-transmitting structure 40 .
  • the adhesive layer 31 is not covered with the light-transmitting structure 40, and the connecting part 311 connects the waveguide sheet 10 and the light-transmitting structure 40.
  • Structure 40 Since the refractive index of the connecting portion 311 and the refractive index of the gas in the air portion 312 are both lower than the refractive index of the waveguide 10 , there is no light leakage problem of the waveguide 10 .
  • the gas in the air part 312 can be set as required, for example, the air part 312 is filled with air or other gases, for example, colored gas. Other functional parts or decorative parts can also be arranged in the air part 312 .
  • the light-transmitting structure 40 does not contact the diffractive microstructure of the out-coupling region 20 , and the diffractive microstructure will not be damaged by the light-transmitting structure 40 .
  • the waveguide plate 10 has at least two layers, and at least two layers of the waveguide plate 10 are stacked in sequence.
  • the waveguide 10 can be one layer or multiple layers.
  • the waveguide 10 is at least two layers, at least two layers of waveguide 10 are stacked in sequence, and the waveguide can be connected by a connecting part or by an adhesive layer Bonding, the present invention does not limit the specific connection method between the multilayer waveguide sheets.
  • the in-coupling region 50 , the out-coupling region 20 , the turning region 60 and the like can be set on each waveguide plate 10 .
  • the coupling-in region 50 on the waveguide 10 corresponds to the coupling-in region 50 on the adjacent waveguide 10
  • the out-coupling region 20 on the waveguide 10 corresponds to the out-coupling region 20 on the adjacent waveguide 10 .
  • the display device includes:
  • the waveguide structure includes an in-coupling region 50
  • the display device further includes an optical machine 70 .
  • the light emitted by the optical machine 70 enters the waveguide plate 10 from the in-coupling area 50 and exits from the out-coupling area 20 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种波导结构及显示装置,波导结构包括:波导片,包括耦出区;介质层,设置于所述波导片;透光结构,设置于所述介质层;其中,所述介质层的折射率小于所述波导片的折射率;所述透光结构覆盖所述耦出区且延伸至所述耦出区之外。由于介质层的折射率小于波导片的折射率,波导片内传播的光束在传播时,发生全反射,无法折射入介质层,也就不会有漏光的问题,可确保待显示图像的显示效果。

Description

一种波导结构及显示装置 技术领域
本发明涉及光波导技术领域,尤其涉及的是一种波导结构及显示装置。
背景技术
所述光波导是一种可将信号光束缚在其内部,并使信号光朝着特定方向传输的器件,同时光波导具有良好的透光性。基于这些特性,光波导可以作为增强现实(AR)近眼显示装置的显示器。光波导将投影光机投出的信号光定向传输到人眼中,因此人眼可以看到待显示的图像,又因光波导具有良好的透光性,人眼还可以清晰看到光波导后的真实环境,因此人眼最终看到的是待显示图像和真实环境的融合。
现有技术中,为了扩宽光波导的应用场景,在波导片上增加光学器件,例如屈光镜片,光学器件贴在波导片上后,束缚在波导片内的信号光束会从光学器件上漏出,使得波导片无法完全束缚信号光束,导致待显示图像的显示效果不佳或无法正常显示。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种波导结构及显示装置,旨在解决现有技术中波导片上增加光学器件后出现漏光从而导致待显示图像的显示效果不佳或无法正常显示的问题。
本发明解决技术问题所采用的技术方案如下:
一种波导结构,其中,包括:
波导片,包括:耦出区;
介质层,设置于所述波导片;
透光结构,设置于所述介质层;
其中,所述介质层的折射率小于所述波导片的折射率;
所述透光结构覆盖所述耦出区且延伸至所述耦出区之外。
所述的波导结构,其中,所述透光结构为屈光结构或胚体结构;所述屈光结构的屈光度大于或等于预设正数阈值,或者小于或等于预设负数阈值,所述胚体结构的屈光度小于所述预设正数阈值且大于所述预设负数阈值。
所述的波导结构,其中,所述波导片还包括:
耦入区。
所述的波导结构,其中,所述波导片还包括:
转折区;
其中,所述耦入区的入射的光经过所述转折区后传播至所述耦出区,所述转折区的数量大于等于所述耦出区的数量;和/或
所述耦出区有两个,两个所述耦出区分别位于所述耦入区的两侧。
所述的波导结构,其中,所述透光结构位于所述耦入区的光入射的一侧或背离光入射的一侧。
所述的波导结构,其中,所述透光结构位于所述耦入区的光入射的一侧,所述透光结构上所述耦入区对应位置设置有平直部,所述平直部的屈光度为0。
所述的波导结构,其中,所述平直部为通孔。
所述的波导结构,其中,入射所述耦入区的相同方向的光在所述波导内传输至所述耦出区后,所述耦出区的各出射光的方向相同;和/或
所述透光结构位于所述耦出区的光出射的一侧和/或背离光出射的一侧;和/或
所述透光结构包括凸型透光结构或凹型透光结构;和/或
所述介质层包括粘合胶层,所述粘合胶层与所述波导片连接,所述粘合胶层的折射率小于所述波导片的折射率;和/或
所述波导片有至少两层,至少两层所述波导片依次重叠设置。
所述的波导结构,其中,所述凸型透光结构为平凸型透光结构,所述平凸型透光结构的平面部朝向所述介质层;和/或
所述凹型透光结构为平凹型透光结构,所述平凹型透光结构的平面部朝向所述介质层; 和/或
所述粘合胶层铺满所述透光结构;或
所述粘合胶层包括:
连接部,两侧分别连接所述波导片和所述透光结构;
空气部,位于所述波导片和所述透光结构之间。
一种显示装置,其中,包括如上述任一项所述的波导结构。
有益效果:由于介质层的折射率小于波导片的折射率,波导片内传播的光束在传播时,发生全反射,无法折射入介质层,也就不会有漏光的问题,可确保待显示图像的显示效果。
附图说明
图1是本发明中波导结构的第一正视图。
图2是本发明中波导结构的第二正视图。
图3是本发明中波导结构的第一俯视图。
图4是本发明中波导结构的第二俯视图。
图5是本发明中波导结构的第三俯视图。
图6是本发明中波导结构的第四俯视图。
图7是本发明中带有转折区的波导结构的第一正视图。
图8是本发明中带有转折区的波导结构的第二正视图。
图9是本发明中带有两个耦出区的波导结构的第一正视图。
图10是本发明中带有两个耦出区的波导结构的第一俯视图。
图11是本发明中带有两个耦出区的波导结构的第二正视图。
图12是本发明中带有两个耦出区的波导结构的第二俯视图。
图13是本发明中显示装置的结构示意图。
图14是本发明中带有两个转折区的波导结构的正视图。
图15是本发明中带有两个转折区的波导结构的立体图。
图16是本发明中带有第一透光结构和第二透光结构的波导结构的第一俯视图。
图17是本发明中带有第一透光结构和第二透光结构的波导结构的第二俯视图。
图18是本发明中带有第一透光结构、第二透光结构及两个耦出区的波导结构的第一俯视图。
图19是本发明中带有第一透光结构、第二透光结构及两个耦出区的波导结构的第二俯视图。
图20是本发明中带有两层波导片的波导结构的俯视图。
图21是本发明中带有第一透光结构、第二透光结构及两层波导片的波导结构的俯视图。
图22是本发明中带有两层波导片且每层波导片具有两个耦出区的波导结构的第一俯视图。
图23是本发明中带有两层波导片且每层波导片具有两个耦出区的波导结构的第二俯视图。
附图标记说明:
10、波导片;20、耦出区;30、介质层;31、粘合胶层;311、连接部;312、空气部;40、透光结构;41、第一透光结构;42、第二透光结构;43、通孔;50、耦入区;60、转折区;70、光机。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参阅图1-图23,本发明提供了一种波导结构的一些实施例。
如图1-图3所示,本发明的波导结构,包括:
波导片10,包括:耦出区20;
介质层30,设置于所述波导片10;
透光结构40,设置于所述介质层30;
其中,所述介质层30的折射率小于所述波导片10的折射率;
所述透光结构40覆盖所述耦出区20且延伸至所述耦出区20之外。
值得说明的是,波导片10是指使光束在内部传播的结构。耦出区20是指将波导片10中的光束耦出的区域。介质层30是指具有一定折射率的介质材料形成的结构。透光结构40是指可以透过光束的结构。
在波导片10上增加透光结构40时,若直接将波导片10与透光结构40贴合,则波导片10内的光束在传播时,可从波导片10与透光结构40贴合处出射,这些出射的光会影响耦出区20出射的光,使得耦出区20出射的光混乱,导致待显示图像的显示效果不佳或无法正常显示。
本申请在波导片10和透光结构40之间设置介质层30后,由于介质层30的折射率小于波导片10的折射率,波导片10内传播的光束在传播时,发生全反射,无法折射入介质层30,也就不会有漏光的问题。波导片10内传播的光束传播至耦出区20时,才会出射。
波导片10的材质为树脂或玻璃,在耦出区20对应的波导片10的表面设置衍射微结构,使得波导片10内的光衍射到外界,并进入用户的眼睛进行成像。
在本发明实施例的一个较佳实现方式中,如图1-图6以及图16-图19所示,透光结构40可以设置在波导片10的一侧或两侧,透光结构40可以起到保护波导片10的作用,避免波导片10的损坏。特别地,由于透光结构40覆盖耦出区20,可以保护耦出区20。
透光结构40可以是改善光线传播方向的结构,以便用户的眼睛观察事物。耦出区20出射的光出射后可以到达用户的眼睛,外界的自然光穿过波导片10也可以到达用户的眼睛。由于透光结构40覆盖耦出区20,透光结构40位于耦出区20的光出射向人眼的一侧时,对耦出区20的出射光和外界的自然光均具有改善作用;透光结构40位于耦出区20的背离光出射向人眼的一侧时,对外界的自然光具有改善作用。
透光结构40覆盖耦出区20时,透光结构40的面积大于耦出区20的面积,且耦出区20的出射光经过透光结构40,或者耦出区20的出射光的反向延长线经过透光结构40。
在本发明实施例的一个较佳实现方式中,如图1-图6所示,所述透光结构40为屈光结构或胚体结构;所述屈光结构为曲率半径小于或等于预设阈值的曲面结构,所述胚体结 构为平面结构或曲率半径大于预设阈值的曲面结构。
具体地,屈光结构是指改变光束传播方向的结构,通过屈光结构可以矫正眼睛的屈光状态,眼睛的屈光状态包括近视、远视或散光中的至少一种。则屈光结构可以用于矫正近视,或者用于矫正远视,或者用于矫正散光。当然,在矫正近视的同时还可以矫正散光,矫正远视的同时也可以矫正散光。胚体结构是指待加工的光学胚体结构,胚体结构可以通过加工形成屈光结构。预设正数阈值是指预设的大于零的阈值,预设负数阈值是指预设的小于零的阈值。预设正数阈值和预设负数阈值可以根据需要设置。例如,将预设正数阈值设置为0.5,预设负数阈值设置为-1。
因此,屈光结构的屈光度的取值范围为(﹣∞,预设负数阈值]或[预设正数阈值,﹢∞),胚体结构的屈光度的取值范围为(预设负数阈值,预设正数阈值)。需要说明的是胚体结构的屈光度为0时,则胚体结构为平面结构,也就是说,胚体结构的两个侧面为平面。
采用屈光结构时,屈光结构的屈光度根据用户的眼睛的屈光状态确定。通常,在生产波导结构时,并不是直接生产相应屈光度的屈光结构,而是生产胚体结构,然后根据用户的眼睛的屈光状态,确定胚体结构需要加工的参数,并根据该参数对胚体结构进行加工,形成屈光结构,以便用户使用时,矫正用户的眼睛的屈光状态。胚体结构加工成屈光结构,可以是先将屈光结构加工(如外形裁剪、切削、研磨、抛光等)好,然后将屈光结构与波导片10连接。还可以先将胚体结构与波导片10连接,然后将波导片10上的胚体结构加工成屈光结构。
若屈光结构或胚体结构位于耦出区20的光出射至人眼的一侧,则耦出区20的出射光会经过屈光结构或胚体结构后才到达用户的眼睛,若胚体结构加工形成屈光结构,则耦出区20的出射光经过屈光结构的矫正后到达用户的眼睛,外界的自然光也经过屈光结构的矫正后到达用户的眼睛,使得眼睛处于屈光状态的用户可以看清楚耦出区20的出射光形成的图像以及外界的自然光形成的图像。
若屈光结构位于耦出区20的背离光出射至人眼的一侧,则外界的自然光经过屈光结构的矫正后到达用户的眼睛,耦出区20的出射光并不会经过屈光结构的矫正,直接到达用户的眼睛。此时,眼睛处于屈光状态的用户可以看清楚外界的自然光形成的图像,耦出 区20的出射光形成的图像的虚像距更便于调节。
在波导片10上设置屈光结构后,屈光不正的用户,无需要再佩戴眼镜下使用波导片10,可以直接摘掉眼镜。本发明的波导结构具有更小的体积和重量,能够对外界自然光和波导片10内的光进行调整,以便用户观察到相应的图像。
在本发明实施例的一个较佳实现方式中,如图3-图6所示,所述透光结构40包括凸型透光结构或凹型透光结构。
具体地,凸型透光结构是指屈光度大于0的透光结构,凸型透光结构起到汇聚光线的作用。凸型透光结构按照屈光度的大小不同,分为凸型屈光结构和凸型胚体结构。凹型透光结构是指屈光度小于0的透光结构,凹型透光结构起到发散光线的作用。凹型透光结构按照屈光度的大小不同,分为凹型屈光结构和凹型胚体结构。
具体地,屈光结构包括凸型屈光结构或凹型屈光结构,凸型屈光结构是指屈光度大于或等于预设正数阈值的屈光结构,凹型屈光结构是指屈光度小于或等于预设负数阈值的屈光结构。胚体结构包括凸型胚体结构或凹型胚体结构,凸型胚体结构是指屈光度大于0且小于预设正数阈值的胚体结构,凹型胚体结构是指屈光度小于0且大于预设负数阈值的胚体结构。胚体结构还包括屈光度为0的平直胚体结构。
在本发明实施例的一个较佳实现方式中,如图5-图6所示,所述凸型透光结构为平凸型透光结构,所述平凸型透光结构的平面部朝向所述介质层30。
具体地,平凸型透光结构是指具有一个平面部和一个凸曲面部的透光结构40,平面部的表面呈平面,凸曲面部的表面呈向外凸出的曲面。由于波导片10的表面通常是平面,介质层30的表面也呈平面,平凸型透光结构的平面部朝向介质层30,以便平面部与介质层30连接。
在本发明实施例的一个较佳实现方式中,如图3-图4所示,所述凹型透光结构为平凹型透光结构,所述平凹型透光结构的平面部朝向所述介质层30。
具体地,平凹型透光结构是指具有一个平面部和一个凹曲面部的透光结构40,平面部的表面呈平面,凹曲面部的表面呈向内下凹的曲面。由于波导片10的表面通常是平面,介质层30的表面也呈平面,平凹型透光结构的平面部朝向介质层30,以便平面部与介质 层30连接。
需要说明的是,波导片10可以采用平面型波导片,也可以采用曲面型波导片。平面型波导片是指两个侧面均为平面的波导片,采用平面型波导片时,为了与平面型波导片的平面适配,则凸型透光结构采用平凸型透光结构,通过平凸型透光结构的平面部与平面型波导片的平面配合。曲面型波导片是指两个侧面均为曲面的波导片,通常,曲面型波导片的人眼侧为凹曲面,曲面型波导片的背离人眼的一侧为凸曲面。若曲面型波导片的人眼侧为凸型透光结构,则凸型透光结构可以采用双凸型透光结构、平凸型透光结构或凹凸型透光结构,双凸型透光结构是指两个侧均为凸曲面的透光结构,凹凸型透光结构是指一个侧面为凸曲面,另一个侧面为凹曲面的透镜结构,且凸曲面的曲率半径小于凹曲面的曲率半径。凸型透光结构的凸面部与曲面型波导片的凹曲面匹配。
若曲面型波导片的人眼侧为凹型透光结构,则凹型透光结构可以采用凸凹型透光结构,凸凹型透光结构是指一个侧面为凸曲面,另一个侧面为凹曲面的透光结构,且背离波导片一侧的凹曲面的曲率半径小于朝向波导片一侧的凸曲面的曲率半径。凸凹型透光结构的凸面部与曲面型波导片的凹曲面匹配。
若曲面型波导片的背离人眼一侧为凸型透光结构,则凸型透光结构可以采用凹凸型透光结构。凹凸型透光结构的凹面部与曲面型波导片的凸曲面匹配。
若曲面型波导片的背离人眼一侧为凹型透光结构,则凹型透光结构可以采用双凹型透光结构、平凹型透光结构或凸凹型透光结构,双凹型透光结构是指两个侧均为凹曲面的透光结构。凹型透光结构的凹面部与曲面型波导片的凸曲面匹配。
在本发明实施例的一个较佳实现方式中,如图1-图6所示,所述波导片还包括:
耦入区50。
具体地,耦入区50对应的波导片10的表面设置衍射微结构,如一维光栅或二维光栅或体全息光栅或超构表面,耦出区20对应的波导片10的表面也设置衍射微结构,如一维光栅或二维光栅或体全息光栅或超构表面。耦入区50的衍射微结构可以设置在波导片10的同一侧或两侧,耦出区20的衍射微结构可以设置在波导片10的同一侧或两侧。耦入区50的衍射微结构和耦出区20的衍射微结构位于波导片10的同一侧时,耦入区50的衍射 微结构和耦出区20的衍射微结构间隔设置或邻接设置。
在本发明实施例的一个较佳实现方式中,如图7-图8以及图14-图15所示,所述波导片还包括:
转折区60;
其中,所述耦入区50的入射的光经过所述转折区60后传播至所述耦出区20,所述转折区的数量大于等于所述耦出区的数量。
具体地,如图7-图8所示,转折区60对应的波导片10的表面设置衍射微结构,如一维光栅或二维光栅或体全息光栅或超构表面,该衍射微结构可以设置于波导片10的任意一侧。耦入区50位于耦出区20的左上角,转折区60位于耦出区20的左侧或上侧。
在本发明实施例的一个较佳实现方式中,如图9-图15以及图18-图19所示,所述耦出区20有两个,两个所述耦出区20分别位于所述耦入区50的两侧。
具体地,两个耦出区20分别对应于用户的两个眼睛,则用户的两个眼睛都可以观察到耦出区20的出射光。两个耦出区20可以共用一个耦入区50,耦入区50位于两个耦出区20之间。
采用两个耦出区20时,透光结构40覆盖两个耦出区20,当然也可以采用两个透光结构40,记为左透光结构40和右透光结构40,分别对应两个耦出区20,也分别对应于用户的左眼和右眼。左透光结构40和右透光结构40均采用屈光结构时,左透光结构40的屈光度和右透光结构40的屈光度可以根据用户的眼睛设置,可以相同,也可以不相同。
由于耦出区20有两个,则转折区60也可以设置两个,转折区60与耦出区20一一对应设置。
在本发明实施例的一个较佳实现方式中,如图16-图23所示,所述透光结构40位于所述耦入区50的光入射的一侧或背离光入射的一侧。
具体地,透光结构40位于耦入区50的背离光入射的一侧时,耦入区50的入射的光不会经过透光结构40,透光结构40可以覆盖耦入区50,或者覆盖整个波导片10。透光结构40位于耦入区50的光入射的一侧时,耦入区50的入射的光穿过透光结构40后到达耦入区50。为了使耦入区50的入射的光穿过透光结构40时,不影响入射的光的传播方 向,透光结构40上耦入区50对应位置设置有平直部,平直部的屈光度为0,则耦入区50的入射的光穿过透光结构40时,穿过透光结构40之前的入射的光与穿过透光结构40之后的入射的光平行或共线。
在本发明实施例的一个较佳实现方式中,如图2和图11所示,所述平直部为通孔43。
具体地,在透光结构40上耦入区结50对应位置设置通孔43,则耦入区50的入射的光穿过通孔43到达耦入区50,透光结构40不会改变耦入区50的入射的光的传播方向。
在本发明实施例的一个较佳实现方式中,如图13所示,入射所述耦入区50的相同方向的光在所述波导内传输至所述耦出区20后,所述耦出区20的各出射光的方向相同。
具体地,入射所述耦入区50的相同方向的光在所述波导内传输至所述耦出区20后,耦出结构的出射光可以有多束,各束出射光的方向相同。屈光结构位于耦出区20的光出射的一侧时,耦出区20的各束出射光出射时方向相同,但经过屈光结构后出射光的传播方向发生变化,然后到达用户的眼睛时,可以矫正用户的眼睛的屈光状态。
在本发明实施例的一个较佳实现方式中,如图16-图23所示,所述透光结构40位于所述耦出区20的光出射至人眼的一侧和/或背离光出射至人眼的一侧。
具体地,可以在耦出区20的光出射至人眼的一侧和/或背离光出射至人眼的一侧设置透光结构40,例如,将耦出区20的光出射至人眼的一侧的透光结构40记为第一透光结构41,将耦出区20的背离光出射至人眼的一侧的透光结构40记为第二透光结构42,由于耦出区20的出射光会经过第一透光结构41,而不会经过第二透光结构42。外界的自然光依次经过第二透光结构42和第一透光结构41。通常耦出区20的出射光为平行光,相当于位于无穷远出的点发出的光,由于距离较远,到达用户的眼睛时,可视为平行光。外界的自然光并不一定是平行光,因此,通过调整第二透光结构42的屈光度可以使目标位置的自然光转换成平行光,则耦出区20的出射光和外界的自然光都是平行光,再经过第一透光结构41时,两者光线的方向变化角度相同,则相当于耦出区20的出射光是目标位置发出的。耦出区20的出射光形成的虚拟图像与外界的自然光形成的真实图像,可以得到较好的配合,用户在切换观看虚拟图像和真实图像时,无需过多调整眼睛观察的距离。第二透光结构42位于波导片10背离人眼的一侧,即位于波导片10背离耦出区20的光出 射至人眼的一侧,第二透光结构42可以起到保护、美观的作用。
在本发明实施例的一个较佳实现方式中,如图3-图6所示,所述介质层30包括粘合胶层31,所述粘合胶层31与所述波导片10连接,所述粘合胶层31的折射率小于所述波导片10的折射率。
具体地,采用粘合胶层31连接波导片10和透光结构40,粘合胶层31直接与波导片10连接,由于粘合胶层31的折射率小于波导片10的折射率,波导片10内传播的光发生全反射,而不会传播至粘合胶层31内,不会出现漏光的问题。介质层30与透光结构40之间还可以设置其他功能层,粘合胶层31直接与波导层连接,其他功能层与介质层30连接,其他功能层的折射率可根据需要设置。
在本发明实施例的一个较佳实现方式中,如图3、图5、图10、图12图13、图20-图23所示,所述粘合胶层31铺满所述透光结构40。
具体地,为了提高波导片10和透光结构40之间的连接强度,粘合胶层31铺满透光结构40,使得透光结构40通过粘合胶层31充分与波导片10连接。而且波导片10和透光结构40可以连接形成一个稳定的整体。
在本发明实施例的一个较佳实现方式中,如图4、图6、图17以及图18所示,所述粘合胶层31包括:
连接部311,两侧分别连接所述波导片10和所述透光结构40;
空气部312,位于所述波导片10和所述透光结构40之间。
具体地,为了减少波导层与透光结构40之间因膨胀系数不同而发生不同程度的膨胀,粘合胶层31并不是铺满透光结构40的,连接部311连接波导片10和透光结构40。由于连接部311的折射率和空气部312内的气体的折射率均小于波导片10的折射率,因此,也不会带来波导片10的漏光问题。空气部312内的气体可以根据需要设置,例如,空气部312内填充空气或其他气体,例如,带有颜色的气体等。空气部312内还可以设置其他功能件或装饰件等。
由于空气部312的存在,透光结构40没有接触耦出区20的衍射微结构,衍射微结构不会受到透光结构40的破坏。
在本发明实施例的一个较佳实现方式中,如图20-图23所示,所述波导片10有至少两层,至少两层所述波导片10依次重叠设置。
具体地,波导片10可以采用一层或多层,波导片10采用至少两层时,至少两层波导片10依次重叠设置,波导片之间可以利用连接部连接,或者利用粘合胶层进行粘合,本发明不对多层波导片之间的具体连接方式进行限定。每层波导片10上可设置耦入区50、耦出区20以及转折区60等。波导片10上的耦入区50与相邻波导片10上的耦入区50对应,波导片10上的耦出区20与相邻波导片10上的耦出区20对应。
本发明还提供了一种显示装置的较佳实施例:
如图13所示,本发明实施例的显示装置,包括:
如上述任意一实施例所述的波导结构。
波导结构包括耦入区50,显示装置还包括光机70,光机70发出的光,自耦入区50进入到波导片10中,并从耦出区20射出。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种波导结构,其特征在于,包括:
    波导片,包括:耦出区;
    介质层,设置于所述波导片;
    透光结构,设置于所述介质层;
    其中,所述介质层的折射率小于所述波导片的折射率;
    所述透光结构覆盖所述耦出区且延伸至所述耦出区之外。
  2. 根据权利要求1所述的波导结构,其特征在于,所述透光结构为屈光结构或胚体结构;所述屈光结构的屈光度大于或等于预设正数阈值,或者小于或等于预设负数阈值,所述胚体结构的屈光度小于所述预设正数阈值且大于所述预设负数阈值。
  3. 根据权利要求2所述的波导结构,其特征在于,所述波导片还包括:
    耦入区。
  4. 根据权利要求3所述的波导结构,其特征在于,所述波导片还包括:
    转折区;
    其中,所述耦入区的入射的光经过所述转折区后传播至所述耦出区,所述转折区的数量大于等于所述耦出区的数量;和/或
    所述耦出区有两个,两个所述耦出区分别位于所述耦入区的两侧。
  5. 根据权利要求4所述的波导结构,其特征在于,所述透光结构位于所述耦入区的光入射的一侧或背离光入射的一侧。
  6. 根据权利要求5所述的波导结构,其特征在于,所述透光结构位于所述耦入区的光入射的一侧,所述透光结构上所述耦入区对应位置设置有平直部,所述平直部的屈光度为0。
  7. 根据权利要求6所述的波导结构,其特征在于,所述平直部为通孔。
  8. 根据权利要求1-7任意一项所述的波导结构,其特征在于,入射所述耦入区的相同方向的光在所述波导内传输至所述耦出区后,所述耦出区的各出射光的方向相同;和/或
    所述透光结构位于所述耦出区的光出射的一侧和/或背离光出射的一侧;和/或
    所述透光结构包括凸型透光结构或凹型透光结构;和/或
    所述介质层包括粘合胶层,所述粘合胶层与所述波导片连接,所述粘合胶层的折射率小于所述波导片的折射率;和/或
    所述波导片有至少两层,至少两层所述波导片依次重叠设置。
  9. 根据权利要求8所述的波导结构,其特征在于,所述凸型透光结构为平凸型透光结构,所述平凸型透光结构的平面部朝向所述介质层;和/或
    所述凹型透光结构为平凹型透光结构,所述平凹型透光结构的平面部朝向所述介质层;和/或
    所述粘合胶层铺满所述透光结构;或
    所述粘合胶层包括:
    连接部,两侧分别连接所述波导片和所述透光结构;
    空气部,位于所述波导片和所述透光结构之间。
  10. 一种显示装置,其特征在于,包括如权利要求1至9中任一项所述的波导结构。
PCT/CN2023/073880 2022-01-30 2023-01-30 一种波导结构及显示装置 WO2023143615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114529.0 2022-01-30
CN202210114529.0A CN115494575A (zh) 2022-01-30 2022-01-30 一种波导结构及显示装置

Publications (1)

Publication Number Publication Date
WO2023143615A1 true WO2023143615A1 (zh) 2023-08-03

Family

ID=84464952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073880 WO2023143615A1 (zh) 2022-01-30 2023-01-30 一种波导结构及显示装置

Country Status (2)

Country Link
CN (1) CN115494575A (zh)
WO (1) WO2023143615A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494575A (zh) * 2022-01-30 2022-12-20 珠海莫界科技有限公司 一种波导结构及显示装置
CN115453678B (zh) * 2022-01-30 2023-08-29 珠海莫界科技有限公司 一种光组合器及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867853A (zh) * 2003-09-10 2006-11-22 鲁姆斯有限公司 基片导波的光学装置
CN111812847A (zh) * 2020-08-20 2020-10-23 杭州光粒科技有限公司 一种波导器件和ar显示设备
CN112305758A (zh) * 2019-08-01 2021-02-02 苏州苏大维格科技集团股份有限公司 一种ar显示眼镜
US20210149201A1 (en) * 2019-11-20 2021-05-20 Coretronic Corporation Head-mounted display device
CN113325505A (zh) * 2020-02-28 2021-08-31 苏州苏大维格科技集团股份有限公司 一种光波导镜片及三维显示装置
CN115453678A (zh) * 2022-01-30 2022-12-09 珠海莫界科技有限公司 一种光组合器及显示装置
CN115494575A (zh) * 2022-01-30 2022-12-20 珠海莫界科技有限公司 一种波导结构及显示装置
CN218332164U (zh) * 2022-09-07 2023-01-17 上海鲲游科技有限公司 一种增强现实眼镜
CN218497278U (zh) * 2022-09-01 2023-02-17 烟台艾睿光电科技有限公司 一种传输波导及近眼显示设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622837B (zh) * 2013-10-24 2018-05-01 元太科技工業股份有限公司 顯示裝置
WO2020056513A1 (en) * 2018-09-21 2020-03-26 North Inc. Optical combiner lens for wearable heads-up display
WO2020139752A1 (en) * 2018-12-28 2020-07-02 Magic Leap, Inc. Variable pixel density display system with mechanically-actuated image projector
CN212873079U (zh) * 2019-11-07 2021-04-02 中强光电股份有限公司 近眼光学系统
CN210639353U (zh) * 2019-11-20 2020-05-29 深圳惠牛科技有限公司 一种用于增强现实的光栅波导
EP4150389A4 (en) * 2020-05-14 2023-11-29 Magic Leap, Inc. METHOD AND SYSTEM FOR INTEGRATING REFRACTIVE OPTICS INTO A DIFFRACTIVE EYEPIECE WAVEGUIDE DISPLAY DEVICE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867853A (zh) * 2003-09-10 2006-11-22 鲁姆斯有限公司 基片导波的光学装置
CN112305758A (zh) * 2019-08-01 2021-02-02 苏州苏大维格科技集团股份有限公司 一种ar显示眼镜
US20210149201A1 (en) * 2019-11-20 2021-05-20 Coretronic Corporation Head-mounted display device
CN113325505A (zh) * 2020-02-28 2021-08-31 苏州苏大维格科技集团股份有限公司 一种光波导镜片及三维显示装置
CN111812847A (zh) * 2020-08-20 2020-10-23 杭州光粒科技有限公司 一种波导器件和ar显示设备
CN115453678A (zh) * 2022-01-30 2022-12-09 珠海莫界科技有限公司 一种光组合器及显示装置
CN115494575A (zh) * 2022-01-30 2022-12-20 珠海莫界科技有限公司 一种波导结构及显示装置
CN218497278U (zh) * 2022-09-01 2023-02-17 烟台艾睿光电科技有限公司 一种传输波导及近眼显示设备
CN218332164U (zh) * 2022-09-07 2023-01-17 上海鲲游科技有限公司 一种增强现实眼镜

Also Published As

Publication number Publication date
CN115494575A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2023143615A1 (zh) 一种波导结构及显示装置
US10146054B2 (en) Adding prescriptive correction to eyepieces for see-through head wearable displays
CN105829952B (zh) 用于头部可穿戴显示器的透明目镜
CN104614858B (zh) 增强现实的锯齿结构平面波导目视光学显示器件
CN104536088B (zh) 齿形镶嵌平面波导光学器件
JP2019519808A (ja) ヘッドアップディスプレイのための光導波路、および、その製造方法
KR20200118492A (ko) 증강 현실 장치 및 이를 위한 광학 시스템 및 반반사기
JP7039598B2 (ja) ダイクロイックフィルタを使用した導波管における色分離
CN104536138B (zh) 带有锯齿夹层结构的平面波导双目光学显示器件
WO2023143614A1 (zh) 一种光组合器及显示装置
CN110806645A (zh) 一种用于增强现实的光栅波导
JP2021508085A (ja) 階段導波路要素、個人用表示装置及び画像生成方法
JP2017524988A (ja) ヘッドマウントディスプレイ用光学システム
US8867131B1 (en) Hybrid polarizing beam splitter
JP2002277818A (ja) 着用型ディスプレーシステム
CN104678555A (zh) 屈光度矫正的齿形镶嵌平面波导光学器件
CN107015368A (zh) 一种近眼双目显示装置
CN104597565A (zh) 增强现实的齿形镶嵌平面波导光学器件
WO2023108949A1 (zh) 光学器件和光学系统以及ar设备
CN201173997Y (zh) 单芯片的眼镜式显示装置
CN211905863U (zh) 一种光波导显示设备和头戴式显示器
CN210639353U (zh) 一种用于增强现实的光栅波导
WO2023185663A1 (zh) 光学器件和ar设备
JP7441443B2 (ja) 光学システム及び複合現実装置
US10473938B2 (en) Multi-part optical system for light propagation in confined spaces and method of fabrication and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746492

Country of ref document: EP

Kind code of ref document: A1