WO2023142949A1 - 一种抗滴落剂及其制备方法和应用 - Google Patents

一种抗滴落剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023142949A1
WO2023142949A1 PCT/CN2023/070710 CN2023070710W WO2023142949A1 WO 2023142949 A1 WO2023142949 A1 WO 2023142949A1 CN 2023070710 W CN2023070710 W CN 2023070710W WO 2023142949 A1 WO2023142949 A1 WO 2023142949A1
Authority
WO
WIPO (PCT)
Prior art keywords
dripping agent
polyoxyethylene ether
optionally
polymer
surfactant
Prior art date
Application number
PCT/CN2023/070710
Other languages
English (en)
French (fr)
Inventor
潘杰辉
魏国强
陈楚亮
王静会
冯璋霓
Original Assignee
熵能创新材料(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210114168.XA external-priority patent/CN114381013B/zh
Priority claimed from CN202210114172.6A external-priority patent/CN114395140B/zh
Priority claimed from CN202210114173.0A external-priority patent/CN114437480A/zh
Application filed by 熵能创新材料(珠海)有限公司 filed Critical 熵能创新材料(珠海)有限公司
Publication of WO2023142949A1 publication Critical patent/WO2023142949A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the invention relates to the technical field of thermoplastic resin products, in particular to an anti-dripping agent and its preparation method and application, especially the application in thermoplastic resin products.
  • anti-dripping agents are often used in clinker products to inhibit the formation of drippings, and the commonly used anti-dripping agents are tetrafluoroethylene-based anti-dripping agents with a molecular weight of about 4 million to 5 million.
  • This kind of anti-dripping agent is added to thermoplastic engineering plastics such as PC, PC/ABS alloy, PBT, ABS, HIPS, etc., and can effectively disperse into a fibrous network structure under certain conditions to play an anti-dripping effect and improve Flame retardant properties, and can also meet the requirements of ULV-0 standards when reducing the amount of flame retardants.
  • emulsion-type fluoropolymer such as polytetrafluoroethylene emulsion
  • fluoropolymer pure powder anti-dripping agent Fluoropolymer pure powder anti-dripping agent and coated fluoropolymer anti-dripping agent.
  • a fluoropolymer emulsion (usually a concentrated aqueous dispersion of fluoropolymer) is used in the preparation process. body), while the fluoropolymer emulsion will add surfactants during the preparation process to help the fluoropolymer particles to stably exist in the water phase at a certain concentration (usually 40-70% solid content) to form an emulsion.
  • Surfactants in currently commercially available fluorine-containing polymer (generally polytetrafluoroethylene) emulsions are mainly polyoxyethylene ether surfactants, such as trimethylnonyl polyoxyethylene ether (TMN series), Fatty alcohol polyoxyethylene ether (APEO series), alkylphenol polyoxyethylene ether (NPEO, OPEO) and other nonionic surfactants.
  • TBN series trimethylnonyl polyoxyethylene ether
  • APEO series Fatty alcohol polyoxyethylene ether
  • NPEO alkylphenol polyoxyethylene ether
  • NPEO alkylphenol polyoxyethylene ether
  • OPEO alkylphenol polyoxyethylene ether
  • the proportion of this type of surfactant in the fluoropolymer emulsion is usually about 2-5wt%, and in the process of preparing the anti-dripping agent, most of it will remain in the anti-dripping agent, which may follow the anti-dripping agent.
  • the falling agent enters the thermoplastic resin product
  • the invention aims to provide an anti-dripping agent and its preparation method and application.
  • an anti-dripping agent wherein the content of polyoxyethylene ether surfactant is not more than 3100ppm.
  • the content of the polyoxyethylene ether surfactant in the anti-dripping agent is not more than 2000 ppm, preferably not more than 1600 ppm.
  • the anti-dripping agent may comprise a fluoropolymer and a polymer formed by polymerization of vinyl polymerized monomers and/or acrylate polymerized monomers; wherein based on the weight of the anti-dripping agent , the content of the fluorine-containing polymer can be 40-70wt%, optionally 45-60wt%, and the content of the polymer formed by the polymerization of vinyl polymerized monomers and/or acrylate polymerized monomers can be 30-60wt%, optionally 40-55wt%.
  • the anti-dripping agent also includes a non-polyoxyethylene ether surfactant, based on the weight of the anti-dripping agent, the content of the non-polyoxyethylene ether surfactant is 0-5wt%, optional 0-1wt%.
  • the anti-dripping agent may be a cladding structure, wherein the fluoropolymer forms an inner layer portion of the cladding structure, and the fluorine-containing polymer is composed of vinyl polymerized monomers and/or acrylates The polymer formed by the polymerization of the polymerized monomers forms the outer layer portion of the cladding structure.
  • the molecular weight of the fluoropolymer can be 1 million to 10 million, and it can include a homopolymer of any fluoromonomer or a copolymer of several fluoromonomers selected from the following : Tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluoroethylene propylene, vinylidene fluoride, C 1-4 fluoroalkylethylene and C 1-4 fluoroalkyl vinyl ether.
  • the vinyl polymerization monomer can be selected from one or more of the following: ethylene, propylene, butene, isobutylene, butadiene, styrene, ⁇ -C 1-4 alkylbenzene Ethylene, acrylonitrile and methacrylonitrile; and/or, the acrylate polymer monomer is selected from one or more of the following: C 1-4 alkyl acrylate and C 1-4 alkane methacrylate base ester.
  • the non-polyoxyethylene ether surfactants can be selected from ionic surfactants, polymer surfactants, non-polyoxyethylene ether non-ionic surfactants, or combinations thereof one or more of them.
  • the ionic surfactant can be selected from one or more of the following: alkyl sulfate, polyoxyethylene fatty alcohol ether sulfate, fatty acid salt, alcohol ether carboxylate, alkane Base phenol ether carboxylates, stearates, alkylbenzene sulfonates, ⁇ -olefin sulfonates, ⁇ -sulfomonocarboxylates, fatty acid ester sulfonates, succinate sulfonates, alkanes Base naphthalene sulfonate, alkyl glyceryl ether sulfonate, petroleum sulfonate, lignin sulfonate, alkyl carboxylate; further optionally, the ionic surfactant is selected from one of the following Or several: sodium dodecyl sulfate (SDS), ammonium dodecyl sulfate (AESA-70), sodium dode
  • the polymer surfactant is selected from one or more of the following: polyolefin polymers, polyvinylpyrrolidone (PVP) polymers, polyoxyalkylene polymers, polyether Polymers, polyurethane polymers, polyvinyl alcohol polymers, polysilicone-modified polyether polymers, polycarboxylic acid polymers and elemental organic polymer surfactants (such as silicone surfactants).
  • PVP polyvinylpyrrolidone
  • polyoxyalkylene polymers polyether Polymers
  • polyurethane polymers polyvinyl alcohol polymers
  • polysilicone-modified polyether polymers polycarboxylic acid polymers
  • elemental organic polymer surfactants such as silicone surfactants
  • the non-ionic surfactant of non-polyoxyethylene ether is selected from one or more of the following: monoglyceride laurate, hexitol ester, sucrose ester, diethyl laurate amides.
  • the second aspect of the present invention provides a kind of preparation method of anti-dripping agent, it comprises the following steps:
  • the content of polyoxyethylene ether surfactant in the anti-dripping agent is not more than 3100ppm, preferably not more than 2000ppm, and the anti-dripping agent contains fluorine-containing polymer and is composed of vinyl polymerized monomer and/or acrylate A polymer formed by polymerization of a polymer-like monomer; wherein based on the weight of the anti-dripping agent, the content of the fluorine-containing polymer is 40-70 wt%, optionally 45-60 wt%, and the vinyl polymer monomer monomer The content of the polymer formed by polymerization of monomers and/or acrylate monomers is 30-60wt%, optionally 40-55wt%.
  • the solid content of the fluoropolymer emulsion in step S1 can be 40-70wt%, optionally 55-65wt%, and the fluoropolymer emulsion contains non-polyoxyethylene ether Surfactant.
  • the content of the non-polyoxyethylene ether surfactant can be 2-16wt%, optionally 2-12wt%, and further optionally It is 4-10wt%.
  • the fluoropolymer emulsion further comprises a polyoxyethylene ether surfactant, based on the solid content of the fluoropolymer emulsion, the content of the polyoxyethylene ether surfactant is no more than 1 wt%, preferably no more than 0.5 wt%.
  • the coagulant in step S1 can be selected from one or more of the following solutions: sodium chloride, magnesium chloride, calcium chloride, ferric chloride, ferrous chloride, aluminum chloride, chlorine Copper chloride, magnesium sulfate, aluminum sulfate, calcium acetate, copper sulfate, ferric sulfate, ferrous sulfate, sodium phosphate, calcium phosphate, magnesium phosphate.
  • the initiator in step S1 may include a free radical thermal polymerization initiator and a redox polymerization initiator; optionally, the initiator may be selected from one or more of the following: peroxide Hydrogen, Potassium Persulfate, Ammonium Persulfate, Azobisisobutyronitrile, Cumene Hydroperoxide, Tert-Butyl Hydroperoxide, Benzoyl Peroxide.
  • the conditions of the reaction in step S1 may include: the reaction temperature may be 40-80°C, optionally 50-70°C, and the reaction time may be 2-10 hours, optionally 3-6 hours .
  • thermoplastic resin composition which includes the following raw materials in parts by weight:
  • the anti-dripping agent is the anti-dripping agent provided by the first aspect of the present invention or the anti-dripping agent prepared by the preparation method provided by the second aspect of the present invention.
  • the thermoplastic resin may include: acrylonitrile-butadiene-styrene copolymer resin (ABS resin), rubber-modified polystyrene resin (HIPS), acrylonitrile-styrene-acrylate Copolymer resin (ASA resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), acrylonitrile-ethyl acrylate-styrene copolymer resin (AES resin), polycarbonate resin ( PC), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyvinyl chloride (PVC), polymethacrylic acid Methyl esters (PMMA), their copolymers, or combinations thereof.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • HIPS rubber-modified polystyrene resin
  • ASA resin acrylon
  • the flame retardant may include a halogen flame retardant, an organophosphorus flame retardant, an inorganic flame retardant, an intumescent flame retardant, and a sulfonate flame retardant; optionally, the The flame retardant can be selected from one or more of the following: bis(hexachlorocyclopentadiene) cyclooctane (DCRP), tetrabromobisphenol A (TBBA), resorcinol (diphenyl phosphate) (RDP), bisphenol A-bis(diphenyl phosphate) (BDP), aluminum hydroxide (ATH), magnesium hydroxide (MTH), potassium perfluorobutylsulfonate (KPFBS), benzenesulfonylbenzenesulfonate Potassium Sulphate (KSS).
  • DCRP bis(hexachlorocyclopentadiene) cyclooctane
  • TBBA tetrabromobisphenol A
  • the fourth aspect of the present invention provides a thermoplastic resin product produced from the thermoplastic resin composition provided by the third aspect of the present invention.
  • the content of the polyoxyethylene ether surfactant in the anti-dripping agent provided based on the above technical scheme is not more than 3100ppm, preferably not more than 2000ppm, and when it is used to prepare thermoplastic resin products, it will not or basically will not contribute to the thermoplastic resin. Introducing such polyoxyethylene ether surfactants that are prone to decomposition in the product can ensure that the thermoplastic resin product has good appearance and surface quality, even compared with the prior art by containing more than 3100ppm of polyoxyethylene ether
  • the thermoplastic resin products prepared by the surfactant-like anti-dripping agent have better flame retardancy and anti-dripping properties and more excellent appearance and surface quality.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all contemplated: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • fluoropolymer such as polytetrafluoroethylene
  • fluoropolymer anti-dripping agent whether it is emulsion type fluoropolymer anti-dripping agent, fluoropolymer pure powder anti-dripping agent or coated type containing Fluoropolymer anti-dripping agent
  • fluoropolymer emulsion also called concentrated aqueous dispersion of fluoropolymer in this paper
  • fluoropolymer emulsion is added with surface active during the preparation process agent to help fluoropolymer particles to stabilize in a certain concentration in the water phase to form an emulsion.
  • the surfactants in the currently commercially available fluoropolymer emulsions are mainly polyoxyethylene ether surfactants, such as trimethyl nonyl polyoxyethylene ether (TMN series), fatty alcohol polyoxyethylene ether (AEO series), alkylphenol polyoxyethylene ether (NPEO, OPEO) and other nonionic surfactants.
  • TNN series trimethyl nonyl polyoxyethylene ether
  • AEO series fatty alcohol polyoxyethylene ether
  • NPEO alkylphenol polyoxyethylene ether
  • OPEO alkylphenol polyoxyethylene ether
  • these polyoxyethylene ether surfactants will decompose during the processing of thermoplastic resin products, which will lead to yellowing of thermoplastic resin products and defects such as silver streaks on the surface, especially in high-gloss mirror PCs.
  • the surfactant used in the preparation of the fluoropolymer emulsion does not contain or only contains a small amount (based on the solid content of the fluoropolymer emulsion, no more than 1wt%) of polyoxyethylene ether
  • Surfactants can also be used to prepare fluorine-containing polymer emulsions with good stability, and the physical and chemical indicators of the anti-dripping agent prepared by using the fluorine-containing polymer emulsions are all the same as those prepared under the same conditions.
  • the physical and chemical indicators of the fluoropolymer anti-dripping agent of the oxyethylene ether surfactant are equivalent.
  • the inventors are also surprised to find that, compared with anti-dripping agents containing a large amount of polyoxyethylene ether surfactants, when using these fluoropolymer anti-dripping agents that do not contain or only contain a small amount of polyoxyethylene ether surfactants.
  • the dropping agent is used to prepare thermoplastic resin products, the flame retardant and anti-dripping properties of the prepared thermoplastic resin products are better, and the appearance and surface quality are more excellent.
  • an anti-dripping agent wherein the content of polyoxyethylene ether surfactant is not more than 3100ppm.
  • the content of polyoxyethylene ether surfactant in the anti-dripping agent is not more than 2000ppm, preferably not more than 1600ppm.
  • the anti-dripping agent may comprise a fluorine-containing polymer and a polymer formed by polymerization of vinyl polymerizable monomers and/or acrylate polymerizable monomers; wherein based on the weight of the anti-dripping agent , the content of the fluorine-containing polymer can be 40-70wt%, optionally 45-60wt%, and the content of the polymer formed by the polymerization of vinyl polymerized monomers and/or acrylate polymerized monomers can be 30-60wt%, optionally 40-55wt%.
  • the anti-dripping agent further comprises non-polyoxyethylene ether surfactants in an amount not exceeding 5wt%, preferably not exceeding 1wt%.
  • This type of non-polyoxyethylene ether surfactant can be introduced from the raw material fluoropolymer emulsion for preparing the anti-dripping agent, and exists as an impurity in the prepared anti-dripping agent, so it is preferred that the anti-dripping agent does not contain Such surfactants.
  • the anti-dripping agent can be a coating structure, that is, the anti-dripping agent is a coated fluoropolymer anti-dripping agent, wherein the fluoropolymer forms the coating structure
  • the inner part of the inner layer, the polymer formed by the polymerization of vinyl polymerized monomers and/or acrylate polymerized monomers forms the outer layer part of the cladding structure.
  • the molecular weight of the fluoropolymer can be 1 million to 10 million, and it can include a homopolymer of any fluoromonomer or a copolymer of several fluoromonomers selected from the following : Tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluoroethylene propylene, vinylidene fluoride, C 1-4 fluoroalkylethylene and C 1-4 fluoroalkyl vinyl ether.
  • the particle size of the fluoropolymer is not particularly limited, and may generally be 0.15-0.40 ⁇ m.
  • the vinyl polymerization monomer can be selected from one or more of the following: ethylene, propylene, butene, isobutylene, butadiene, styrene, ⁇ -C 1-4 alkylbenzene Ethylene, acrylonitrile and methacrylonitrile.
  • the acrylate polymerizable monomer can be selected from one or more of the following: C 1-4 alkyl acrylate and C 1-4 alkyl methacrylate.
  • the non-polyoxyethylene ether surfactant is selected from ionic surfactants, polymer surfactants, non-polyoxyethylene ether non-ionic surfactants, or combinations thereof one or more of.
  • the ionic surfactant is selected from one or more of the following: alkyl sulfate, polyoxyethylene fatty alcohol ether sulfate, fatty acid salt, alcohol ether carboxylate, alkyl Phenol ether carboxylates, stearates, alkylbenzene sulfonates, ⁇ -olefin sulfonates, ⁇ -sulfomonocarboxylates, fatty acid ester sulfonates, succinate sulfonates, alkyl Naphthalene sulfonate, alkyl glyceryl ether sulfonate, petroleum sulfonate, lignin sulfonate, alkyl carboxylate; further optionally, the ionic surfactant is selected from one of the following or Several kinds: sodium dodecyl sulfate (SDS), ammonium dodecyl sulfate (AESA-70), sodium
  • the polymer surfactant is selected from one or more of the following: polyolefin polymers, polyvinylpyrrolidone polymers, polyoxyalkylenes (polyoxyethylene, polyoxyethylene Acrylic, polyoxybutylene, polyoxypentenyl, etc.) polymers, polyether-based polymers, polyurethane-based polymers, polyvinyl alcohol-based polymers, polysilicone-modified polyether-based polymers, polycarboxylates Acid-based polymers and elemental organic polymer surfactants (meaning that there is no carbon atom in the main chain of the macromolecule, but composed of silicon, boron, aluminum, oxygen, nitrogen, sulfur, phosphorus and other atoms, but the side groups are composed of organic groups Groups such as methyl, ethyl, aryl, etc., typically silicone surfactants).
  • polyolefin polymers polyvinylpyrrolidone polymers
  • polyoxyalkylenes polyoxyethylene, polyoxyethylene Acrylic, polyoxybutylene,
  • the polyvinylpyrrolidone-based polymer can be represented by the following formula (I):
  • n 9-450.
  • the molecular weight of the polyvinylpyrrolidone-based polymer may be 1,000-100,000, optionally 3,000-60,000.
  • the polyvinylpyrrolidone-based polymer can be selected from one or more of the following: K12, K15, K17, K25 and K30.
  • the non-ionic surfactant of non-polyoxyethylene ether is selected from one or more of the following: monoglyceride laurate, hexitol ester, sucrose ester, diethyl laurate amides.
  • a method for preparing an anti-dripping agent which comprises the following steps:
  • the content of polyoxyethylene ether surfactant in the anti-dripping agent is not more than 3100ppm, preferably not more than 2000ppm, and the anti-dripping agent contains fluorine-containing polymer and is composed of vinyl polymerized monomer and/or acrylate A polymer formed by polymerization of a polymer-like monomer; wherein based on the weight of the anti-dripping agent, the content of the fluorine-containing polymer is 40-70 wt%, optionally 45-60 wt%, and the vinyl polymer monomer monomer The content of the polymer formed by polymerization of monomers and/or acrylate monomers is 30-60wt%, optionally 40-55wt%.
  • the mixing in step S1 can be stirred and mixed at a temperature of 50-80° C. and a rotational speed ⁇ 200 rpm.
  • the solid content of the fluoropolymer emulsion in step S1 can be 40-70wt%, optionally 55-65wt%, and the fluoropolymer emulsion contains non-polyoxyethylene ether Surfactant.
  • the content of the non-polyoxyethylene ether surfactant can be 2-16wt%, optionally 2-12wt%, and further optionally It is 4-10wt%.
  • the preparation method of the fluoropolymer emulsion comprises the following steps:
  • T1 adding non-polyoxyethylene ether surfactants to the initial aqueous dispersion of fluoropolymer particles to obtain a concentrated initial aqueous dispersion of fluoropolymer particles;
  • T2 Concentrating the concentrated starting aqueous dispersion of fluoropolymer particles obtained in step T1;
  • the wt% is based on the weight of fluoropolymer particles in the initial aqueous dispersion of fluoropolymer particles.
  • the fluoropolymer emulsion can also include a polyoxyethylene ether surfactant, based on the solid content of the fluoropolymer emulsion, the content of the polyoxyethylene ether surfactant is not More than 1 wt%, preferably not more than 0.5 wt%.
  • the coagulant can be selected from one or more of the following solutions: sodium chloride, magnesium chloride, calcium chloride, ferric chloride, ferrous chloride, aluminum chloride, copper chloride, Magnesium Sulfate, Aluminum Sulfate, Calcium Acetate, Copper Sulfate, Ferric Sulfate, Ferrous Sulfate, Sodium Phosphate, Calcium Phosphate, Magnesium Phosphate.
  • the amount of the coagulant added in step S1 can be such that the final concentration of the salt is 0.05-10 wt% of the total solution.
  • the initiator in step S1 includes a free radical thermal polymerization initiator and a redox polymerization initiator; optionally, the initiator is selected from one or more of the following: hydrogen peroxide, Water-soluble initiators such as potassium persulfate and ammonium persulfate, and oil-soluble initiators such as azobisisobutyronitrile, cumene hydroperoxide, tert-butyl hydroperoxide, and benzoyl peroxide, etc.
  • hydrogen peroxide Water-soluble initiators such as potassium persulfate and ammonium persulfate
  • oil-soluble initiators such as azobisisobutyronitrile, cumene hydroperoxide, tert-butyl hydroperoxide, and benzoyl peroxide, etc.
  • the reaction conditions in step S1 include: a reaction temperature of 40-80°C, optionally 50-70°C, and a reaction time of 2-10 hours, optionally 3-6 hours.
  • a reaction temperature 40-80°C
  • 50-70°C 50-70°C
  • a reaction time 2-10 hours, optionally 3-6 hours.
  • the reaction time may be difficult to complete the reaction if the reaction time is less than 2 hours. If the reaction time exceeds 10 hours, the efficiency will be reduced and the production cost will be increased.
  • thermoplastic resin composition which includes the following raw materials in parts by weight:
  • the anti-dripping agent is the anti-dripping agent provided in the first aspect of the present invention without polyoxyethylene ether surfactant.
  • thermoplastic resin composition includes the following raw materials in parts by weight:
  • the thermoplastic resin includes: acrylonitrile-butadiene-styrene copolymer resin (ABS resin), rubber-modified polystyrene resin (HIPS), acrylonitrile-styrene-acrylate copolymer resin material resin (ASA resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), acrylonitrile-ethyl acrylate-styrene copolymer resin (AES resin), polycarbonate resin (PC ), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyvinyl chloride (PVC), polymethacrylate Esters (PMMA), their copolymers, or their combinations.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • HIPS rubber-modified polystyrene resin
  • ASA resin acrylonitrile-
  • the flame retardants include halogenated flame retardants, organophosphorus flame retardants, inorganic flame retardants, intumescent flame retardants and sulfonate flame retardants.
  • the flame retardant is selected from one or more of the following: bis(hexachlorocyclopentadiene) cyclooctane (DCRP), tetrabromobisphenol A (TBBA), resorcinol (diphenyl phosphate) (RDP), bisphenol A-bis (diphenyl phosphate) (BDP), aluminum hydroxide (ATH), magnesium hydroxide (MTH), potassium perfluorobutane sulfonate (KPFBS ), potassium benzenesulfonylbenzenesulfonate (KSS).
  • DCRP bis(hexachlorocyclopentadiene) cyclooctane
  • TBBA tetrabromobisphenol A
  • RDP resorcinol
  • BDP bisphenol A-bis (diphenyl phosphate)
  • ATH aluminum hydroxide
  • MTH magnesium hydroxide
  • KPFBS potassium perfluorobutane sulfonate
  • thermoplastic resin article produced from the thermoplastic resin composition provided in the third aspect of the present invention.
  • the alkali-free glass cloth was treated with the concentrated aqueous dispersion of fluoropolymer prepared according to the present invention in the following sequence.
  • Plain weaving density of glass cloth 60 (line/25mm) in length, 46 (line/25mm) in width, and 0.05mm in thickness.
  • the glass cloth used is a product of plain weave cloth with neat warp and weft, no cracks, broken ends and other defects after hot washing.
  • Solid content of concentrated aqueous dispersions determined from the weight loss of each aqueous dispersion after drying at 150° C. for 1 hour.
  • Viscosity of the concentrated aqueous dispersion Take 500ml at 25°C to measure the viscosity on an NDJ-1 rotational viscometer.
  • CCT Test of Coatings Formed from Concentrated Aqueous Dispersions Fill the container with the dispersion to be tested and remove any foam with a straw. Immerse the degreased aluminum plate (18 ⁇ 4 ⁇ 4mm 2 ) into the dispersion, take out the plate and hang it at an angle of 45° to dry, let the plate dry for 5 minutes, then heat it at 380°C for 10 minutes, cool the plate and use a microscope to grade the coating layer of cracks. The maximum film thickness without cracking is taken as the critical film thickness ( ⁇ m).
  • Gloss of coated glass cloth use a gloss meter to measure the light reflectance at an incident angle of 60°.
  • Abrasion resistance test of coated glass cloth According to GB/T1768-1979, after grinding 200 laps with a grinding wheel under a weight of 250g, test the weight loss of the coating to judge its wear resistance.
  • Chromaticity test of coated glass cloth use Konica Minolta CM-5 colorimeter to test L, a and b of coated glass cloth, by subtracting the chromaticity L0, a0 of the glass cloth before coating and b0 to calculate the changes in chromaticity values ⁇ L, ⁇ a and ⁇ b.
  • the yellowness index ⁇ b is less than 1, the dispersion is considered good, and when the value is equal to or greater than 1, the dispersion is considered poor. A dispersion is considered poor when cracks in the coating are observed.
  • Elution conductivity of coated glass cloth immerse coated glass cloth in 10 times the mass of distilled water for 1 week, and measure the conductivity of the eluent with a conductivity tester manufactured by Lacom.
  • the conductivity is less than 1 ⁇ S, indicating that the ionic components are hardly dissolved, which is considered good; while the conductivity exceeds 1 ⁇ S, it is considered poor.
  • Examples 1-17 Preparation of polytetrafluoroethylene emulsions (also known as concentrated aqueous dispersions of fluoropolymers) containing anionic surfactants
  • Example 1 According to the steps in Example 1, the difference is that the sodium dodecylbenzenesulfonate anionic surfactant represented by SDBS replaces the SDS in Example 1, and the consumption is 6 wt%, and vacuum concentration is carried out, and the obtained concentrated aqueous dispersion The solid content of the body is about 64.8wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 According to the steps in Example 1, the difference is that the amount of SDS is 10wt%, vacuum concentration is carried out, and the solid content of the obtained concentrated aqueous dispersion is about 62wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 According to the steps in Example 1, the difference is that the amount of SDS is 1 wt%, vacuum concentration is carried out, and the solid content of the obtained concentrated aqueous dispersion is about 60.8 wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 According to the steps in Example 1, the difference is that the amount of SDS is 2wt%, vacuum concentration is carried out, and the solid content of the obtained concentrated aqueous dispersion is about 59.2wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 According to the steps in Example 1, the difference is that the amount of SDS is 8wt%, vacuum concentration is carried out, and the solid content of the obtained concentrated aqueous dispersion is about 60.9wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 According to the steps in Example 1, the difference is that the amount of SDS is 12wt%, vacuum concentration is carried out, and the solid content of the obtained concentrated aqueous dispersion is about 60.7wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 According to the steps in Example 1, the difference is that the SDS in Example 1 is replaced by dihexyl sulfosuccinate sodium anionic surfactant, the consumption is 6wt%, and vacuum concentration is carried out, the solid content of the gained concentrated aqueous dispersion About 55.5 wt%.
  • the performance test results are shown in Table 1 below.
  • difference is: (1) in the initial aqueous dispersion of the polytetrafluoroethylene particle that obtains, add strongly basic ion-exchange resin and remove sodium perfluorohexyl acetate wherein; (2) ) replace the SDS in embodiment 1 with sodium lauryl carboxylate anionic surfactant, consumption is 6wt%, carry out vacuum concentration, the solid content of gained concentrated aqueous dispersion is about 62.3wt%.
  • Table 1 The performance test results are shown in Table 1 below.
  • Example 1 Following the steps in Example 1, except that the SDS in Example 1 is replaced by a nonionic surfactant represented by branched chain secondary alcohol polyoxyethylene ether (TERGITOL TM TMN-10).
  • TERGITOL TM TMN-10 branched chain secondary alcohol polyoxyethylene ether
  • the resulting concentrated aqueous dispersion had a solids content of about 59.8 wt%.
  • the performance test results are shown in Table 1 below.
  • Example 1 The steps in Example 1 were followed, except that the SDS in Example 1 was replaced by a non-ionic polymer material dispersant represented by polyacrylamide (PAM).
  • PAM polyacrylamide
  • the performance test results are shown in Table 1 below.
  • Example 1 Following the steps in Example 1, except that the SDS in Example 1 is replaced by polyacrylic acid macromolecular polymer represented by PVOH.
  • the resulting concentrated aqueous dispersion had a solids content of about 60% by weight.
  • the performance test results are shown in Table 1 below.
  • the concentrated dispersion that adds a kind of nonionic surfactant can not obtain satisfactory mechanical stability and storage stability in comparative example 1-3; And in embodiment 1-4 and 6-12 to The addition of metered non-fluorinated anionic surfactants to initial aqueous dispersions of fluoropolymers (with little or no fluorinated anionic surfactants) without the addition of additional nonionic surfactants can achieve both low Concentrated aqueous dispersion of fluoropolymers with high viscosity, good mechanical stability and storage stability.
  • the viscosity of the concentrated aqueous dispersion of polytetrafluoroethylene obtained is no more than 20mPa ⁇ s, even no more than 18mPa ⁇ s, and all have good mechanical stability and storage stability, and the preservation time at room temperature It can be as long as 2 months without changing color or settling, especially when the amount of non-fluorinated anionic surfactant added accounts for 4-10wt% of the amount of polytetrafluoroethylene particles, it has a better stabilizing effect, It even showed a better stabilizing effect than when adding two surfactants (comparative example 4, TMN-10+SDS).
  • the coatings prepared from the concentrated aqueous dispersions of polytetrafluoroethylene provided by Examples 1-4 and 7-12 of the present invention have good gloss and transparency, and compared with those prepared by Comparative Examples 1-4 Coatings obtained from concentrated aqueous dispersions of PTFE have generally better wear resistance and greater critical cracking thickness.
  • Embodiments 13-17 are carried out according to the steps of Embodiment 1, and the difference is only in the surfactants used and their contents. Specifically:
  • the surfactant used in Example 13 is 1wt% sodium dodecylbenzenesulfonate (SDBS)+6wt% BASF PVP K17.
  • the surfactant used in Example 14 is 2wt% sodium dodecylbenzenesulfonate (SDBS)+5wt% BASF PVP K17.
  • the surfactant used in embodiment 15 is 3wt% sodium lauryl carboxylate+3wt% BASF PVP K17.
  • the surfactant used in Example 16 is 5wt% sodium dihexyl sulfosuccinate+1wt% BASF PVP K17.
  • the surfactant used in Example 17 is 1wt% sodium dodecyl sulfate (SDS)+1wt% BASF PVP K17.
  • Table 2 Concentrated aqueous dispersion of polytetrafluoroethylene prepared in Examples 13-17 and measurement of dipping processing performance
  • PVP Pyrrolidone
  • the concentrated aqueous dispersion of polytetrafluoroethylene that prepares also all have characteristics such as low viscosity, good mechanical stability and storage stability concurrently
  • the concentrated aqueous dispersions prepared in Examples 13-17 also had a large crack-free thickness (CCT), and when the concentrated aqueous dispersions of polytetrafluoroethylene prepared in Examples 13-17 were used to impregnate the glass cloth, a The coating has good gloss, transparency and excellent wear resistance.
  • CCT crack-free thickness
  • a starting aqueous dispersion of polytetrafluoroethylene particles is prepared.
  • the solids content of this dispersion was about 20% by weight and the average particle size of the polytetrafluoroethylene particles was about 250 nm.
  • a starting aqueous dispersion of polytetrafluoroethylene particles is prepared.
  • the solids content of this dispersion was about 25% by weight, and the average particle size of the polytetrafluoroethylene particles was about 250 nm.
  • Example 19 the difference is that 2 kg of the initial aqueous dispersion of polytetrafluoroethylene particles is taken, and 4 wt% of BASF PVP K17 is added thereto for vacuum concentration, and the solid content of the resulting concentrated aqueous dispersion is about 62.4 wt%.
  • the storage stability is good, and no precipitation occurs when placed for 10 weeks.
  • the performance test results are shown in Table 3 below.
  • Example 19 the difference is that 2 kg of the initial aqueous dispersion of polytetrafluoroethylene particles is taken, and 9 wt% of BASF PVP K17 is added thereto for vacuum concentration, and the solid content of the resulting concentrated aqueous dispersion is about 61.7 wt%.
  • the storage stability is good, and no precipitation occurs when placed for 10 weeks.
  • the performance test results are shown in Table 3 below.
  • a starting aqueous dispersion of polytetrafluoroethylene particles is prepared.
  • the solid content of this dispersion is about 30 wt%, and the average particle size of the polytetrafluoroethylene particles is 250 nm.
  • Example 22 the difference is that 2 kg of the initial aqueous dispersion of polytetrafluoroethylene particles is taken, and 3 wt% of BASF PVP K30 is added thereto for vacuum concentration, and the solid content of the resulting concentrated aqueous dispersion is about 61.4 wt%. . A small amount of precipitation appeared when standing for 8 weeks.
  • the performance test results are shown in Table 3 below.
  • Example 22 the difference is that 2 kg of the initial aqueous dispersion of polytetrafluoroethylene particles is taken, and 7 wt% of BASF PVP K30 is added thereto for vacuum concentration, and the solid content of the resulting concentrated aqueous dispersion is about 62.2 wt%. A small amount of precipitation appeared when standing for 5 weeks.
  • the performance test results are shown in Table 3 below.
  • Example 25 the difference is that 2 kg of the initial aqueous dispersion of polytetrafluoroethylene particles is taken, and 2 wt% of BASF PVP K17 is added thereto for vacuum concentration, and the solid content of the resulting concentrated aqueous dispersion is about 55.2 wt%. A small amount of precipitation appeared after standing for 5 weeks.
  • the performance test results are shown in Table 3 below.
  • Example 25 the difference is that 2 kg of the initial aqueous dispersion of polytetrafluoroethylene particles is taken, and 12 wt% of BASF PVP K17 is added thereto for vacuum concentration, and the solid content of the resulting concentrated aqueous dispersion is about 64.2 wt%. A small amount of precipitation appeared after standing for 5 weeks.
  • the performance test results are shown in Table 3 below.
  • Comparative Example 5 was carried out according to the steps of Example 18, except that the surfactant used was polyvinyl alcohol (PVOH, BASF, molecular weight 20000).
  • PVOH polyvinyl alcohol
  • BASF molecular weight 20000
  • the resulting concentrated aqueous dispersion had a solids content of about 60% by weight. A small amount of precipitation appeared after standing for 4 weeks.
  • the performance test results are shown in Table 3 below.
  • Comparative Example 6 was carried out according to the steps of Example 18, except that the surfactant used was polyacrylamide (PAM, BASF, molecular weight 1000).
  • PAM polyacrylamide
  • BASF molecular weight 1000
  • the resulting concentrated aqueous dispersion had a solids content of about 60% by weight. Partial precipitation appeared after standing for 1 week, and the storage stability was poor.
  • the performance test results are shown in Table 3 below.
  • Comparative Example 7 was carried out according to the steps of Example 18, except that the surfactant used was branched chain secondary alcohol polyoxyethylene ether (TERGITOL TM TMN-10, molecular weight 500-700).
  • the resulting concentrated aqueous dispersion had a solids content of about 59.8 wt%. A small amount of precipitation appeared after standing for 4 weeks.
  • the performance test results are shown in Table 3 below.
  • Comparative Example 8 was carried out according to the steps of Example 25, except that the surfactant used was 5wt% BASF PVP K30 and 1wt% TMN-10.
  • the resulting concentrated aqueous dispersion had a solids content of about 60% by weight. A small amount of precipitation appeared after standing for 4 weeks.
  • the performance test results are shown in Table 3 below.
  • the concentrated aqueous dispersions prepared using a kind of other nonionic surfactants in Comparative Examples 5-7 cannot obtain satisfactory mechanical stability and storage stability;
  • the polyvinylpyrrolidone (PVP) series polymer represented by the formula (I) is added step by step, and the polyvinylpyrrolidone (PVP) series polymer represented by the formula (I) is added directly to the polymer in Example 25-27.
  • PVP polyvinylpyrrolidone
  • the viscosity of the concentrated aqueous dispersion of polytetrafluoroethylene obtained is no more than 25mPa ⁇ s, preferably no more than 22mPa ⁇ s, and all have good mechanical stability and storage stability, and the storage time at room temperature It can be as long as 5 weeks, 8 weeks, or even 10 weeks without sedimentation, and even shows a better stability effect than when adding two surfactants (comparative example 8, TMN-10+K30).
  • polyvinylpyrrolidone (PVP) polymer represented by formula (I) when the total amount of polyvinylpyrrolidone (PVP) polymer represented by formula (I) is 4-10wt%, it has a better stabilizing effect, and because polyvinylpyrrolidone (PVP) represented by formula (I)
  • the polytetrafluoroethylene based polymer has good biodegradability, so the concentrated aqueous dispersion of polytetrafluoroethylene prepared by it is environmentally friendly.
  • the concentrated aqueous dispersions prepared in Examples 18-27 have a larger crack-free thickness (CCT), and the concentrated aqueous dispersions of polytetrafluoroethylene prepared in Examples 18-27
  • CCT crack-free thickness
  • the concentrated aqueous dispersions of polytetrafluoroethylene prepared in Examples 18-27 When the dispersion is impregnated with glass cloth, the whiteness of the glass cloth (the yellowing index ⁇ b is all less than 1) is good, and the conductivity of the elution test is low ( ⁇ 1 ⁇ S).
  • Embodiments 28-32 are carried out according to the steps of Embodiment 25, and the difference is only in the surfactants used and their contents. Specifically:
  • the surfactant used in Example 28 was 10wt% BASF PVP K17+1wt% sodium dodecylbenzenesulfonate (SDBS).
  • the surfactant used in Example 29 was 5wt% BASF PVP K17+2wt% sodium dodecylbenzenesulfonate (SDBS).
  • the surfactant used in Example 30 was 5wt% BASF PVP K17+5wt% sodium lauryl carboxylate.
  • the surfactant used in Example 31 was 1 wt% BASF PVP K17+10 wt% sodium dihexylsulfosuccinate.
  • the surfactant used in Example 32 was 1 wt% BASF PVP K17+1 wt% sodium dodecyl sulfate (SDS).
  • Table 4 Concentrated aqueous dispersion of polytetrafluoroethylene prepared in Examples 28-32 and determination of processing performance by dipping
  • the concentrated aqueous dispersions prepared in Examples 28-32 also had a large crack-free thickness (CCT), and when the concentrated aqueous dispersions of polytetrafluoroethylene prepared in Examples 28-32 were used to impregnate the glass cloth, the glass The cloth whiteness (the yellowing index ⁇ b is all less than 1) is good, and the conductivity of the elution test is low ( ⁇ 1 ⁇ S).
  • S1 the polytetrafluoroethylene emulsion containing 2wt% polyvinylpyrrolidone (PVP) prepared by the above (1), coagulant (calcium chloride salt solution), initiator (potassium persulfate), styrene polymer monomer (with The mass ratio of solids contained in polytetrafluoroethylene emulsion is about 1:1) and distilled water are added into the reaction kettle together, sheared and stirred at 300rpm and mixed, and reacted at 40-80°C for 3-6h to obtain a reaction mixture ;
  • PVP polyvinylpyrrolidone
  • LC-HRMS liquid phase-high resolution mass spectrometry
  • sample amount is the content of the polymer formed by the polymerization of vinyl or acrylate monomers.
  • Embodiment 34-42 is carried out according to the method step of embodiment 33, and difference is that different surfactants are used in the method for preparing anti-dripping agent, specifically:
  • Example 34 made a polytetrafluoroethylene emulsion containing 4wt% polyvinylpyrrolidone (BASF PVP K12), the solid content of the polytetrafluoroethylene emulsion was about 61.5wt%, and the storage stability was better; and using the polytetrafluoroethylene Anti-dripping agent B was prepared from ethylene emulsion, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • BASF PVP K12 polyvinylpyrrolidone
  • Example 35 prepared a polytetrafluoroethylene emulsion containing 1wt% polyvinylpyrrolidone (BASF PVP K17) and 3wt% monoglyceride laurate, the solid content of the gained polytetrafluoroethylene emulsion was about 61.7wt%, and the storage stability was relatively Good; And use this polytetrafluoroethylene emulsion to make anti-dripping agent C, its physicochemical characteristic test result is as shown in table 5 below.
  • BASF PVP K17 polyvinylpyrrolidone
  • Example 36 made a polytetrafluoroethylene emulsion containing 1wt% polyvinylpyrrolidone (BASF PVP K12) and 5wt% monoglyceride laurate, the solid content of the gained polytetrafluoroethylene emulsion was about 62.1wt%, and the storage stability was relatively Good; and use this polytetrafluoroethylene emulsion to make anti-dripping agent D (in the preparation process, the mass ratio of styrene polymerization monomer and polytetrafluoroethylene emulsion is about 60: 40), its physicochemical characteristics test The results are shown in Table 5 below.
  • Example 37 made a polytetrafluoroethylene emulsion containing 6wt% polyvinylpyrrolidone (BASF PVP K12) and 4wt% monoglyceride laurate, the solid content of the gained polytetrafluoroethylene emulsion was about 63.2wt%, and the storage stability was relatively Good; and use this polytetrafluoroethylene emulsion to make anti-dripping agent E (in the preparation process, the mass ratio of styrene polymerization monomer and polytetrafluoroethylene emulsion is about 45: 55), its physicochemical characteristics test The results are shown in Table 5 below.
  • Example 38 A polytetrafluoroethylene emulsion containing 4wt% polyvinylpyrrolidone (BASF PVP K30) and 0.5wt% sodium dodecyl sulfate (SDS) was prepared, and the solid content of the obtained polytetrafluoroethylene emulsion was about 61.6wt%. , better storage stability; and using the polytetrafluoroethylene emulsion to prepare the anti-dripping agent F, its physical and chemical characteristics test results are shown in Table 5 below.
  • BASF PVP K30 polyvinylpyrrolidone
  • SDS sodium dodecyl sulfate
  • Example 39 prepared a polytetrafluoroethylene emulsion containing 2wt% sodium dodecylbenzenesulfonate (SDBS), the solid content of the polytetrafluoroethylene emulsion was about 61.0wt%, and the storage stability was better; and using the The anti-dripping agent G was prepared from the polytetrafluoroethylene emulsion, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • SDBS sodium dodecylbenzenesulfonate
  • Example 40 prepared a polytetrafluoroethylene emulsion containing 2wt% sodium dihexyl sulfosuccinate, the solid content of the obtained polytetrafluoroethylene emulsion was about 61.1wt%, and the storage stability was better; and using the polytetrafluoroethylene
  • the anti-dripping agent H was prepared from the emulsion, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • Example 41 prepared polytetrafluoroethylene emulsion containing 3wt% polyvinylpyrrolidone (BASF PVP K12) and 1wt% trimethylnonylpolyoxyethylene ether-10 (TMN-10), the solidity of the obtained polytetrafluoroethylene emulsion The content is about 60.3wt%; and the polytetrafluoroethylene emulsion is used to prepare the anti-dripping agent I, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • BASF PVP K12 polyvinylpyrrolidone
  • TNN-10 trimethylnonylpolyoxyethylene ether-10
  • Example 42 made a polytetrafluoroethylene emulsion containing 4wt% polyvinylpyrrolidone (BASF PVP K12) and 0.5wt% trimethylnonylpolyoxyethylene ether-10 (TMN-10), and the obtained polytetrafluoroethylene emulsion
  • the solid content is about 59.1wt%
  • the anti-dripping agent J is prepared by using the polytetrafluoroethylene emulsion, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • Comparative example 9-16 is carried out according to the method step of embodiment 1, and difference is to use different surfactants in the method for preparing anti-dripping agent, specifically:
  • Comparative example 9 makes the polytetrafluoroethylene emulsion containing 5wt% trimethylnonyl polyoxyethylene ether-6 (TMN-6), and uses this polytetrafluoroethylene emulsion to prepare the anti-dripping agent containing TMN-6 K, the test results of its physical and chemical characteristics are shown in Table 5 below.
  • TBN-6 trimethylnonyl polyoxyethylene ether-6
  • Comparative example 10 makes the polytetrafluoroethylene emulsion containing 5wt% trimethylnonyl polyoxyethylene ether-10 (TMN-10), and uses this polytetrafluoroethylene emulsion to prepare the anti-dripping agent containing TMN-10 L, its physical and chemical characteristics test results are shown in Table 5 below.
  • TBN-10 trimethylnonyl polyoxyethylene ether-10
  • Comparative example 11 made the polytetrafluoroethylene emulsion containing 5wt% octylphenol polyoxyethylene ether (OPEO), and used the polytetrafluoroethylene emulsion to prepare the anti-dripping agent M containing OPEO, and its physical and chemical characteristics test results are as follows Table 5 shows.
  • OPEO octylphenol polyoxyethylene ether
  • Comparative Example 12 made a polytetrafluoroethylene emulsion containing 5wt% nonylphenol polyoxyethylene ether (NPEO), and used the polytetrafluoroethylene emulsion to prepare an anti-dripping agent N containing NPEO, and its physical and chemical characteristics test results are as follows Table 5 shows.
  • NPEO nonylphenol polyoxyethylene ether
  • Comparative Example 13 prepared a polytetrafluoroethylene emulsion containing 2.5wt% trimethylnonylpolyoxyethylene ether-10 (TMN-10), and used the polytetrafluoroethylene emulsion to prepare an anti-dripping film containing TMN-10 Agent O, its physical and chemical characteristics test results are shown in Table 5 below.
  • TNN-10 trimethylnonylpolyoxyethylene ether-10
  • Comparative Example 14 made a polytetrafluoroethylene emulsion containing 2.5wt% nonylphenol polyoxyethylene ether (NPEO), and used the polytetrafluoroethylene emulsion to prepare an anti-dripping agent P containing NPEO, and its physicochemical characteristics test results As shown in Table 5 below.
  • NPEO nonylphenol polyoxyethylene ether
  • Comparative Example 15 made a polytetrafluoroethylene emulsion containing 1wt% polyvinylpyrrolidone (BASF PVP K12) and 3wt% trimethylnonylpolyoxyethylene ether-10 (TMN-10), and used the polytetrafluoroethylene emulsion
  • the anti-dripping agent Q was prepared, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • Comparative Example 16 prepared a polytetrafluoroethylene emulsion containing 1wt% polyvinylpyrrolidone (BASF PVP K12) and 2wt% trimethylnonylpolyoxyethylene ether-10 (TMN-10), and used the polytetrafluoroethylene emulsion
  • the anti-dripping agent R was prepared, and the test results of its physical and chemical characteristics are shown in Table 5 below.
  • the surfactant used in the preparation of polytetrafluoroethylene emulsion does not contain polyoxyethylene ether surfactant or only contains a small amount (not More than 1wt% polyoxyethylene ether surfactant, also can obtain solid content at about 60% (optionally 40-70%, further optionally being 55-65%) good polytetrafluoroethylene Fluoroethylene emulsion, and using this polytetrafluoroethylene emulsion containing no or a small amount of polyoxyethylene ether surfactant can also successfully prepare a coated polytetrafluoroethylene anti-dripping agent, and the polytetrafluoroethylene
  • the physical and chemical characteristics of the anti-dripping agent and the anti-dripping agent prepared by using polytetrafluoroethylene emulsion containing polyoxyethylene ether surfactant wherein the content of polyoxyethylene ether surfactant exceeds 1wt%)
  • the present invention successfully produces a fluoropolymer anti-dripping agent without using or using a small amount of polyoxyethylene ether surfactants, which does not contain or contains no more than 3100ppm, preferably no more than 2000ppm of polyoxyethylene Ether surfactants.
  • thermoplastic resin composition composed of the above raw materials in parts by weight was extruded and granulated at 270°C using a Nanjing Jieant SHJ-36 plastic extruder, and injected at 280°C using a Haitian SA860 injection molding machine to obtain Thermoplastic resin products of dripping agents.
  • the physical and chemical properties of the thermoplastic resin product were tested, and the results are shown in Table 6 below.
  • thermoplastic resin products Test methods for physical and chemical properties of thermoplastic resin products:
  • Test equipment RH-6033B horizontal combustion tester
  • Pretreatment Place the test sample at 23 ⁇ 2°C, 50 ⁇ 10% RH for 48 hours; age at 70°C for 168 hours, then place it in a desiccator for at least 4 hours to cool to room temperature;
  • Test steps Place the Bunsen burner (flame height 20 ⁇ 1mm) at the center directly below the sample, the mouth of the Bunsen burner is 10 ⁇ 1mm from the bottom of the sample, the ignition time is 10 ⁇ 0.5s, and after 10 ⁇ 0.5s of ignition Remove the Bunsen burner at least 150mm at a speed of 300mm/sec, and start recording the afterflame time t1 at the same time.
  • the afterflame stops it should be ignited immediately for 10 ⁇ 0.5s, and after igniting for 10 ⁇ 0.5s, remove the Bunsen burner at a speed of 300mm/sec.
  • the lamp should be at least 150mm long, record the afterflame time t2 and afterflame time t3 at the same time, and calculate the flame retardant performance of the test sample according to the UL 94-2020 test standard.
  • Test equipment Zwick HIT 25P plastic pendulum impact testing machine
  • Test equipment MFLOW type melt flow rate testing machine/FD-115 type drying oven
  • Test equipment 40-197-100 thermal deformation Vicat testing machine
  • Test standard According to the defects of the high-gloss mirror surface, such as silver streaks, pitting, etc., it is divided into 5 grades, grade 1 is the best, grade 5 is the worst;
  • Examples 44-52 are carried out according to the method steps of Example 43, the difference is that different anti-dripping agents are used when preparing thermoplastic resin products, specifically: Example 44 uses anti-dripping agent B, and Example 45 uses anti-dripping agents Dripping agent C, embodiment 46 uses anti-dripping agent D, embodiment 47 uses anti-dripping agent E, embodiment 48 uses anti-dripping agent F, embodiment 48 uses anti-dripping agent G, and embodiment 50 uses anti-dripping agent Dripping agent H, embodiment 51 uses anti-dripping agent I, and embodiment 52 uses anti-dripping agent J.
  • Example 44 uses anti-dripping agent B
  • Example 45 uses anti-dripping agents Dripping agent C
  • embodiment 46 uses anti-dripping agent D
  • embodiment 47 uses anti-dripping agent E
  • embodiment 48 uses anti-dripping agent F
  • embodiment 48 uses anti-dripping agent G
  • embodiment 50 uses anti-dripping agent Dripping agent H
  • embodiment 51 uses anti-dripping agent I
  • embodiment 52 uses anti-dripping agent J.
  • Table 6 The test results of the physical and
  • Comparative Examples 17-24 are carried out according to the method steps of Example 43, the difference is that different anti-dripping agents are used when preparing thermoplastic resin products, specifically: Comparative Example 17 uses anti-dripping agent K, and Comparative Example 18 uses anti-dripping agent K.
  • Dripping agent L comparative example 19 uses anti-dripping agent M
  • comparative example 20 uses anti-dripping agent N
  • comparative example 21 uses anti-dripping agent O
  • comparative example 22 uses anti-dripping agent P
  • comparative example 23 uses anti-dripping agent P.
  • the anti-dripping agent Q the anti-dripping agent R was used in Comparative Example 24.
  • Table 6 The test results of the physical and chemical properties of the thermoplastic resin products are shown in Table 6 below.
  • thermoplastic resin products made in Examples 43-52 and the thermoplastic resin products made in Comparative Examples 17-24 have higher impact performance (notched Izod impact strength) , melt index (melt mass flow rate), Vicat softening temperature and vertical flame retardancy of 1/8' are basically no difference, indicating that there is no or a small amount (not more than 3100ppm) of polyoxyethylene ether surface
  • the thermoplastic resin products prepared by the anti-dripping agent of the active agent are different from those containing (more than 3100ppm) polyoxyethylene ether surfactants in terms of impact performance, melting index, Vicat softening temperature and 1/8' vertical flame retardancy.
  • thermoplastic resin products prepared by the anti-dripping agent are equivalent and have good performance.
  • Examples 43-50 utilize anti-dripping agents that do not contain polyoxyethylene ether surfactants, or
  • Example 52 utilizes polyoxyethylene ethers containing no more than 1600ppm
  • the thermoplastic resin products prepared by the anti-dripping agent of vinyl ether surfactants are more excellent in 1/16' vertical flame retardancy, indicating that they do not contain or contain a small amount (not more than 2000ppm, preferably not more than 1600ppm) polyoxyethylene
  • the anti-dripping agent of ether surfactant has more excellent flame retardant and anti-dripping properties in thermoplastic resin products.
  • thermoplastic resin products prepared in Comparative Examples 17-24 examples 43-50 use anti-dripping agents that do not contain polyoxyethylene ether surfactants, or Examples 51-52 use anti-dripping agents that contain no more than 3100ppm
  • the surface gloss and high-gloss mirror effect of the thermoplastic resin products prepared by the anti-dripping agent of polyoxyethylene ether surfactant are more excellent.
  • Comparative Examples 23-24 and Examples 51-52 it can be seen that the higher the content of polyoxyethylene ether surfactants in the anti-dripping agent, the higher the high-gloss mirror effect of the corresponding thermoplastic resin products. worse.
  • the anti-dripping agent containing more than 3100ppm polyoxyethylene ether surfactant in the prior art, utilize the polyoxyethylene ether surfactant that does not contain or contain a small amount (no more than 3100ppm) polyoxyethylene ether surfactant provided by the present invention
  • the anti-dripping agent can make thermoplastic resin products with more excellent comprehensive properties.
  • Examples 53-55 are carried out according to the method steps of Example 43, except that the formulations of the thermoplastic resin compositions used are different, specifically as shown in Table 7 below, and the test results of the physical and chemical properties of the prepared thermoplastic resin products are shown in Table 8 shown.
  • Table 7 Formula (by weight) of the thermoplastic resin composition in Examples 53-55
  • thermoplastic resin products with excellent comprehensive properties can be prepared by using the thermoplastic resin compositions of Examples 53-55.
  • the invention provides an anti-dripping agent and its preparation method and application.
  • the anti-dripping agent is used to prepare thermoplastic resin products, it can ensure that the obtained thermoplastic resin products have good appearance and surface quality, and are suitable for industrial applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种抗滴落剂及其制备方法和应用,其中提供的抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过3100ppm。在将该抗滴落剂用于制备热塑性树脂制品时,不会或基本上不会向热塑性树脂制品中引入容易发生分解的聚氧乙烯醚类表面活性剂,可以保证制得的热塑性树脂制品具有良好的外观和表面质量。

Description

一种抗滴落剂及其制备方法和应用 技术领域
本发明涉及热塑性树脂制品技术领域,具体涉及一种抗滴落剂及其制备方法和应用,尤其是在热塑性树脂制品中的应用。
背景技术
塑料在燃烧过程中,产生的滴落物是导致火势急速蔓延的主要原因。目前在熟料制品常使用抗滴落剂来抑制滴落物的形成,其中常用的抗滴落剂是分子量在400万-500万左右的四氟乙烯基抗滴落剂。此类抗滴落剂被添加到PC、PC/ABS合金、PBT、ABS、HIPS等热塑性工程塑料中,在一定条件下可有效分散成纤维化的网状结构,起到抗滴落作用并提高阻燃性能,且在减少阻燃剂的用量时同样能达到ULV-0标准的要求,目前市场上应用比较广泛的是乳液型含氟聚合物(例如聚四氟乙烯乳液)抗滴落剂、含氟聚合物纯粉抗滴落剂和包覆型含氟聚合物抗滴落剂。
然而,不论是乳液型含氟聚合物抗滴落剂或包覆型含氟聚合物抗滴落剂,在制备过程中都会用到含氟聚合物乳液(通常为含氟聚合物的浓缩水性分散体),而含氟聚合物乳液在制备过程中都会添加表面活性剂,以帮助含氟聚合物颗粒能够以一定的浓度(通常固含量为40-70%)稳定存在于水相中形成乳液。目前市售的含氟聚合物(一般为聚四氟乙烯)乳液中的表面活性剂主要以聚氧乙烯醚类表面活性剂为主,如三甲基壬基聚氧乙烯醚(TMN系列)、脂肪醇聚氧乙烯醚(APEO系列)、烷基酚聚氧乙烯醚(NPEO,OPEO)等非离子表面活性剂。这类表面活性剂通常在含氟聚合物乳液中的比例约为2-5wt%,在制备抗滴落剂的过程中,其大部分都会残留在抗滴落剂中,进而可能随着抗滴落剂进入热塑性树脂制品中。这些聚氧乙烯醚类表面活性剂会在热塑性树脂制品加工过程中分解,进而导致热塑性树脂制品出现黄变,表面出现银纹等缺陷,尤其是在高光镜面PC中这些问题尤其显著。
发明内容
本发明旨在提供一种抗滴落剂及其制备方法和应用。
在本发明的第一个方面,提供一种抗滴落剂,其中聚氧乙烯醚类表面活性剂的含量不超过3100ppm。
在一些实施方式中,所述抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过2000 ppm,优选不超过1600ppm。
在一些实施方式中,所述抗滴落剂可包含含氟聚合物和由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物;其中基于所述抗滴落剂的重量,所述含氟聚合物的含量可为40-70wt%,可选为45-60wt%,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物的含量可为30-60wt%,可选为40-55wt%。
在一些实施方式中,所述抗滴落剂还包含非聚氧乙烯醚类的表面活性剂,基于所述抗滴落剂的重量,所述非聚氧乙烯醚类的表面活性剂的含量为0-5wt%,可选为0-1wt%。
在一些实施方式中,所述抗滴落剂可为包覆结构,其中所述含氟聚合物形成所述包覆结构的内层部分,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物形成所述包覆结构的外层部分。
在一些实施方式中,所述含氟聚合物的分子量可为100万-1000万,其可包括选自以下的任一种含氟单体的均聚物或几种含氟单体的共聚物:四氟乙烯、一氯三氟乙烯、六氟丙烯、全氟乙丙烯、偏氟乙烯、C 1-4氟烷基乙烯和C 1-4氟烷基乙烯基醚。
在一些实施方式中,所述乙烯基聚合单体可选自以下中的一种或几种:乙烯、丙烯、丁烯、异丁烯、丁二烯、苯乙烯、α-C 1-4烷基苯乙烯、丙烯腈和甲基丙烯腈;和/或,所述丙烯酸酯类聚合单体选自以下中的一种或几种:丙烯酸C 1-4烷基酯和甲基丙烯酸C 1-4烷基酯。
在一些实施方式中,所述非聚氧乙烯醚类的表面活性剂可选自离子型表面活性剂、高分子表面活性剂、非聚氧乙烯醚类的非离子型表面活性剂、或其组合中的一种或几种。
在一些实施方式中,所述离子型表面活性剂可选自以下中的一种或几种:烷基硫酸盐、聚氧乙烯脂肪醇醚硫酸盐、脂肪酸盐、醇醚羧酸盐、烷基酚醚羧酸盐、硬脂酸盐、烷基苯磺酸盐、α-烯烃磺酸盐、α-磺基单羧酸盐、脂肪酸酯磺酸盐、琥珀酸酯磺酸盐、烷基萘磺酸盐、烷基甘油醚磺酸盐、石油磺酸盐、木质素磺酸盐、烷基羧酸盐;进一步可选地,所述离子型表面活性剂选自以下中的一种或几种:十二烷基硫酸钠(SDS)、十二烷基硫酸铵(AESA-70)、十二烷基苯磺酸钠(SDBS)、十二烷基二苯醚二磺酸钠(SLDED)、十二醇聚氧乙烯醚磺基琥珀酸酯二钠(MES)、二己基磺化琥珀酸钠、二辛基磺化琥珀酸钠(OT-75)、硬脂酸钾、十二烷基羧酸钠和十二烷基醇聚氧乙烯醚羧酸钠。
在一些实施方式中,所述高分子表面活性剂选自以下中的一种或几种:聚烯烃系聚合物、聚乙烯吡咯烷酮系(PVP)聚合物、聚氧化亚烷系聚合物、聚醚系聚合物、聚氨酯系聚合物、聚乙烯醇系聚合物、聚有机硅改性聚醚系聚合物、聚羧酸系聚合物和 元素有机高分子表面活性剂(例如有机硅表面活性剂)。
在一些实施方式中,所述非聚氧乙烯醚类的非离子型表面活性剂选自以下中的一种或几种:月桂酸单甘油酯、己糖醇酯、蔗糖酯、月桂酸二乙醇酰胺。
本发明的第二方面提供一种抗滴落剂的制备方法,其包括以下步骤:
S1:将含氟聚合物乳液、凝聚剂、引发剂、乙烯基聚合单体和/或丙烯酸酯类聚合单体和蒸馏水混合,反应后得到反应混合物;
S2:对反应混合物进行离心、洗涤、干燥,得到抗滴落剂;
所述抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过3100ppm,优选不超过2000ppm,且所述抗滴落剂包含含氟聚合物和由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物;其中基于所述抗滴落剂的重量,所述含氟聚合物的含量为40-70wt%,可选为45-60wt%,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物的含量为30-60wt%,可选为40-55wt%。
在一些实施方式中,步骤S1中所述含氟聚合物乳液的固含量可为40-70wt%,可选为55-65wt%,且所述含氟聚合物乳液包含非聚氧乙烯醚类的表面活性剂。
在一些实施方式中,基于所述含氟聚合物乳液的固含量,所述非聚氧乙烯醚类的表面活性剂的含量可为2-16wt%,可选为2-12wt%,进一步可选为4-10wt%。
在一些实施方式中,所述含氟聚合物乳液还包含聚氧乙烯醚类表面活性剂,基于所述含氟聚合物乳液的固含量,所述聚氧乙烯醚类表面活性剂的含量不超过1wt%,优选不超过0.5wt%。
在一些实施方式中,步骤S1中所述凝聚剂可选自以下的一种或几种的溶液:氯化钠、氯化镁、氯化钙、氯化铁、氯化亚铁、氯化铝、氯化铜、硫酸镁、硫酸铝、醋酸钙、硫酸铜、硫酸铁、硫酸亚铁、磷酸钠、磷酸钙、磷酸镁。
在一些实施方式中,步骤S1中所述引发剂可包括自由基热聚合引发剂和氧化还原聚合引发剂;可选地,所述引发剂可选自以下中的一种或几种:过氧化氢、过硫酸钾、过硫酸铵、偶氮二异丁腈、异丙苯过氧化氢、叔丁基过氧化氢、过氧化苯甲酰。
在一些实施方式中,步骤S1中所述反应的条件可包括:反应温度可为40-80℃,可选为50-70℃,反应时间可为2-10小时,可选为3-6小时。
本发明的第三方面,提供一种热塑性树脂组合物,其包括以下重量份的原料:
Figure PCTCN2023070710-appb-000001
Figure PCTCN2023070710-appb-000002
其中所述抗滴落剂为本发明第一方面提供的抗滴落剂或本发明的第二方面提供的制备方法制得的抗滴落剂。
在一些实施方式中,所述热塑性树脂可包括:丙烯腈-丁二烯-苯乙烯共聚物树脂(ABS树脂)、橡胶改性的聚苯乙烯树脂(HIPS)、丙烯腈-苯乙烯-丙烯酸酯共聚物树脂(ASA树脂)、甲基丙烯酸甲脂-丁二烯-苯乙烯共聚物树脂(MBS树脂)、丙烯腈-丙烯酸乙酯-苯乙烯共聚物树脂(AES树脂)、聚碳酸酯树脂(PC)、聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、它们的共聚物、或它们的组合。
在一些实施方式中,所述阻燃剂可包括卤系阻燃剂、有机磷系阻燃剂、无机阻燃剂、膨胀型阻燃剂和磺酸盐阻燃剂;可选地,所述阻燃剂可选自以下中的一种或几种:双(六氯环戊二烯)环辛(DCRP)、四溴双酚A(TBBA)、间苯二酚(二苯基磷酸酯)(RDP)、双酚A-双(二苯基磷酸酯)(BDP)、氢氧化铝(ATH)、氢氧化镁(MTH)、全氟丁基磺酸钾(KPFBS)、苯磺酰基苯磺酸钾(KSS)。
本发明的第四方面,提供一种热塑性树脂制品,其由本发明第三方面提供的热塑性树脂组合物生产。
基于以上技术方案提供的抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过3100ppm,优选不超过2000ppm,将其用于制备热塑性树脂制品时,不会或基本上不会向热塑性树脂制品中引入容易发生分解的此类聚氧乙烯醚类表面活性剂,因此可以保证制得的热塑性树脂制品具有良好的外观和表面质量,甚至比现有技术中由含有超过3100ppm的聚氧乙烯醚类表面活性剂的抗滴落剂制备的热塑性树脂制品具有更好的阻燃抗滴落性能和更加优异的外观和表面质量。
具体实施方式
以下,将通过具体实施方式说明本发明提供的含氟聚合物的浓缩水性分散体及其制备方法和应用。但以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2, 和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在本文的描述中,需要说明的是,除非另有说明,“一种或几种”中“几种”的含义是两种或两种以上。
在含氟聚合物(例如聚四氟乙烯)抗滴落剂的制备技术领域中,不论是乳液型含氟聚合物抗滴落剂、含氟聚合物纯粉抗滴落剂还是包覆型含氟聚合物抗滴落剂,在其制备过程中都会用到含氟聚合物乳液(本文又称含氟聚合物的浓缩水性分散体),而含氟聚合物乳液在制备过程中都会添加表面活性剂,以帮助含氟聚合物颗粒能够以一定的浓度稳定存在于水相中形成乳液。目前市售的含氟聚合物乳液中的表面活性剂主要以聚氧乙烯醚类表面活性剂为主,如三甲基壬基聚氧乙烯醚(TMN系列)、脂肪醇聚氧乙烯醚(AEO系列)、烷基酚聚氧乙烯醚(NPEO,OPEO)等非离子表面活性剂。然而,这类表面活性剂在用于制备抗滴落剂时,其大部分都会残留在抗滴落剂中,进而可能随着抗滴落剂进入热塑性树脂制品中。这些聚氧乙烯醚类表面活性剂会在热塑性树脂制品加工过程中分解,进而导致热塑性树脂制品出现黄变,表面出现银纹等缺陷,尤其是在高光镜面PC中这些问题尤其显著。
本发明人通过大量的研究注意到,在制备含氟聚合物乳液中使用的表面活性剂中不含或仅含有少量(基于含氟聚合物乳液的固含不超过1wt%)的聚氧乙烯醚类表面活性剂,也可以制备得到具有良好稳定性的含氟聚合物乳液,并且利用该含氟聚合物乳液制备得到的抗滴落剂的各项物化指标均与相同条件下制备的含有大量聚氧乙烯醚类 表面活性剂的含氟聚合物抗滴落剂的各项物化指标相当。另外,发明人还惊讶发现,相对于含有大量聚氧乙烯醚类表面活性剂的抗滴落剂,当使用这些不含或仅含有少量的聚氧乙烯醚类表面活性剂含氟聚合物抗滴落剂制备热塑性树脂制品时,制得的热塑性树脂制品的阻燃抗滴落性能更好,且外观和表面质量更加优异。
在本发明的第一方面,提供一种抗滴落剂,其中聚氧乙烯醚类表面活性剂的含量不超过3100ppm。
在一些实施例中,所述抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过2000ppm,优选不超过1600ppm。
在一些实施例中,所述抗滴落剂可包含含氟聚合物和由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物;其中基于所述抗滴落剂的重量,所述含氟聚合物的含量可为40-70wt%,可选为45-60wt%,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物的含量可为30-60wt%,可选为40-55wt%。
在一些实施例中,基于所述抗滴落剂的重量,所述抗滴落剂还包含量不超过5wt%,优选不超过1wt%的非聚氧乙烯醚类的表面活性剂。这类非聚氧乙烯醚类的表面活性剂可由制备抗滴落剂的原料含氟聚合物乳液引入,在制成的抗滴落剂中作为杂质存在,因此优选所述抗滴落剂不含这类表面活性剂。
在一些实施例中,所述抗滴落剂可为包覆结构,即该抗滴落剂为包覆型含氟聚合物抗滴落剂,其中所述含氟聚合物形成所述包覆结构的内层部分,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物形成所述包覆结构的外层部分。
在一些实施例中,所述含氟聚合物的分子量可为100万-1000万,其可包括选自以下的任一种含氟单体的均聚物或几种含氟单体的共聚物:四氟乙烯、一氯三氟乙烯、六氟丙烯、全氟乙丙烯、偏氟乙烯、C 1-4氟烷基乙烯和C 1-4氟烷基乙烯基醚。
在一些实施例中,所述含氟聚合物的粒子大小没有特别限制,通常可为0.15-0.40μm。
在一些实施例中,所述乙烯基聚合单体可选自以下中的一种或几种:乙烯、丙烯、丁烯、异丁烯、丁二烯、苯乙烯、α-C 1-4烷基苯乙烯、丙烯腈和甲基丙烯腈。
在一些实施例中,所述丙烯酸酯类聚合单体可选自以下中的一种或几种:丙烯酸C 1-4烷基酯和甲基丙烯酸C 1-4烷基酯。
在一些实施例中,所述非聚氧乙烯醚类的表面活性剂选自离子型表面活性剂、高分子表面活性剂、非聚氧乙烯醚类的非离子型表面活性剂、或其组合中的一种或几种。
在一些实施例中,所述离子型表面活性剂选自以下中的一种或几种:烷基硫酸盐、聚氧乙烯脂肪醇醚硫酸盐、脂肪酸盐、醇醚羧酸盐、烷基酚醚羧酸盐、硬脂酸盐、烷基苯磺酸盐、α-烯烃磺酸盐、α-磺基单羧酸盐、脂肪酸酯磺酸盐、琥珀酸酯磺酸盐、烷 基萘磺酸盐、烷基甘油醚磺酸盐、石油磺酸盐、木质素磺酸盐、烷基羧酸盐;进一步可选地,所述离子型表面活性剂选自以下中的一种或几种:十二烷基硫酸钠(SDS)、十二烷基硫酸铵(AESA-70)、十二烷基苯磺酸钠(SDBS)、十二烷基二苯醚二磺酸钠(SLDED)、十二醇聚氧乙烯醚磺基琥珀酸酯二钠(MES)、二己基磺化琥珀酸钠、二辛基磺化琥珀酸钠(OT-75)、硬脂酸钾、十二烷基羧酸钠和十二烷基醇聚氧乙烯醚羧酸钠。
在一些实施例中,所述高分子表面活性剂选自以下中的一种或几种:聚烯烃系聚合物、聚乙烯吡咯烷酮系聚合物、聚氧化亚烷系(聚氧化乙烯基、聚氧化丙烯基、聚氧化丁烯基、聚氧化戊烯基等)聚合物、聚醚系聚合物、聚氨酯系聚合物、聚乙烯醇系聚合物、聚有机硅改性聚醚系聚合物、聚羧酸系聚合物和元素有机高分子表面活性剂(是指大分子主链中没有碳原子,而由硅、硼、铝、氧、氮、硫、磷等原子组成,但侧基却由有机基团如甲基、乙基、芳基等组成,典型的可为有机硅表面活性剂)。
在一些实施例中,所述聚乙烯吡咯烷酮系聚合物可由下式(I)表示:
(C 6H 9NO) n  (I)
式(I)中n为9-450。
在一些实施例中,所述聚乙烯吡咯烷酮系聚合物的分子量可为1000-100000,可选为3000-60000。
在一些实施例中,所述聚乙烯吡咯烷酮系聚合物可选自以下中的一种或几种:K12、K15、K17、K25和K30。
在一些实施例中,所述非聚氧乙烯醚类的非离子型表面活性剂选自以下中的一种或几种:月桂酸单甘油酯、己糖醇酯、蔗糖酯、月桂酸二乙醇酰胺。
在本发明的第二方面,提供一种抗滴落剂的制备方法,其包括以下步骤:
S1:将含氟聚合物乳液、凝聚剂、引发剂、乙烯基聚合单体和/或丙烯酸酯类聚合单体和蒸馏水混合,反应后得到反应混合物;
S2:对反应混合物进行离心、洗涤、干燥,得到抗滴落剂;
所述抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过3100ppm,优选不超过2000ppm,且所述抗滴落剂包含含氟聚合物和由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物;其中基于所述抗滴落剂的重量,所述含氟聚合物的含量为40-70wt%,可选为45-60wt%,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物的含量为30-60wt%,可选为40-55wt%。
在一些实施例中,步骤S1中所述混合可在温度50-80℃,以及转速≥200rpm的条件下搅拌混合。
在一些实施例中,步骤S1中所述含氟聚合物乳液的固含量可为40-70wt%,可选为 55-65wt%,且所述含氟聚合物乳液包含非聚氧乙烯醚类的表面活性剂。
在一些实施方式中,基于所述含氟聚合物乳液的固含量,所述非聚氧乙烯醚类的表面活性剂的含量可为2-16wt%,可选为2-12wt%,进一步可选为4-10wt%。
在一些实施方式中,所述含氟聚合物乳液的制备方法包括以下步骤:
T1:向含氟聚合物颗粒的起始水性分散体中加入非聚氧乙烯醚类的表面活性剂,获得含氟聚合物颗粒的浓缩起始水性分散体;
T2:对步骤T1获得的含氟聚合物颗粒的浓缩起始水性分散体进行浓缩;
所述wt%是基于所述含氟聚合物颗粒的起始水性分散体中的含氟聚合物颗粒的重量。
在一些实施方式中,所述含氟聚合物乳液还可包含聚氧乙烯醚类表面活性剂,基于所述含氟聚合物乳液的固含量,所述聚氧乙烯醚类表面活性剂的含量不超过1wt%,优选不超过0.5wt%。
在一些实施例中,所述凝聚剂可选自以下的一种或几种的溶液:氯化钠、氯化镁、氯化钙、氯化铁、氯化亚铁、氯化铝、氯化铜、硫酸镁、硫酸铝、醋酸钙、硫酸铜、硫酸铁、硫酸亚铁、磷酸钠、磷酸钙、磷酸镁。
在一些实施例中,步骤S1中所述凝聚剂的添加量可为使其中盐的最终浓度为总溶液的0.05-10wt%。
在一些实施例中,步骤S1中所述引发剂包括自由基热聚合引发剂和氧化还原聚合引发剂;可选地,所述引发剂选自以下中的一种或几种:过氧化氢、过硫酸钾、过硫酸铵等水溶性引发剂,以及偶氮二异丁腈、异丙苯过氧化氢、叔丁基过氧化氢、过氧化苯甲酰等油溶性引发剂等。
在一些实施例中,步骤S1中所述反应的条件包括:反应温度为40-80℃,可选为50-70℃,反应时间为2-10小时,可选为3-6小时。其中反应温度低于40℃时可能难于引发反应,高于80℃时易引发爆聚,反应时间小于2小时可能难以反应完全,反应时间超过10小时会降低效率并增加生产成本。
在本发明的第三方面,提供一种热塑性树脂组合物,其包括以下重量份的原料:
Figure PCTCN2023070710-appb-000003
其中所述抗滴落剂为本发明第一方面提供的不含聚氧乙烯醚类表面活性剂的抗滴落剂。
在一些实施例中,所述热塑性树脂组合物包括以下重量份的原料:
Figure PCTCN2023070710-appb-000004
在一些实施例中,所述热塑性树脂包括:丙烯腈-丁二烯-苯乙烯共聚物树脂(ABS树脂)、橡胶改性的聚苯乙烯树脂(HIPS)、丙烯腈-苯乙烯-丙烯酸酯共聚物树脂(ASA树脂)、甲基丙烯酸甲脂-丁二烯-苯乙烯共聚物树脂(MBS树脂)、丙烯腈-丙烯酸乙酯-苯乙烯共聚物树脂(AES树脂)、聚碳酸酯树脂(PC)、聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、它们的共聚物、或它们的组合。
在一些实施例中,所述阻燃剂包括卤系阻燃剂、有机磷系阻燃剂、无机阻燃剂、膨胀型阻燃剂和磺酸盐阻燃剂。
在一些实施例中,所述阻燃剂选自以下中的一种或几种:双(六氯环戊二烯)环辛(DCRP)、四溴双酚A(TBBA)、间苯二酚(二苯基磷酸酯)(RDP)、双酚A-双(二苯基磷酸酯)(BDP)、氢氧化铝(ATH)、氢氧化镁(MTH)、全氟丁基磺酸钾(KPFBS)、苯磺酰基苯磺酸钾(KSS)。
在本发明的第四方面,还提供一种热塑性树脂制品,其由本发明的第三方面提供的热塑性树脂组合物生产。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
玻璃布的浸渍加工
使用本发明制备的含氟聚合物的浓缩水性分散体依下述顺序处理无碱玻璃布。玻璃布的平织密度:纵60(线/25mm)、横46(线/25mm),厚0.05mm。所用玻璃布为经 纬整齐、无破裂、断头等缺陷的平纹布经热洗涤后产品。
①以含氟聚合物的浓缩水性分散体浸渍玻璃布1次,于约100℃下干燥,在约280-290℃焙烘,然后约380℃烧制3min。放置于常温中进行冷却。
②将上述浸渍物在同一含氟聚合物的浓缩水性分散体中浸渍,使其含该浸渍液后,在约100℃下干燥,在约380℃烧制3min。之后观察被覆的含氟聚合物的浓缩水性分散体的鼓泡情况。
③重复②的浸渍、干燥、烧制工序,得到含氟聚合物的固含量约为60-65%、膜厚度约为80μm的膜状物形成的具涂层玻璃布。
性能测试
浓缩水性分散体的固含量:根据每种水性分散体在150℃下干燥1小时后的重量损失确定。
浓缩水性分散体的粘度:25℃下取500ml在NDJ-1型旋转粘度计上检测粘度。
浓缩水性分散体的机械稳定性:采用高转速乳化机,测试条件:25℃,乳化机转速为10000rpm下高速剪切5min,观察是否破乳,若未破乳,说明稳定性好;否则,稳定性差。
浓缩水性分散体的储存稳定性:取定量的含氟聚合物的浓缩水性分散体,室温储存条件静置,隔一周观察一次分散体的状况;
由浓缩水性分散体形成的涂层的CCT测试:将待测分散体填充于容器,若有泡沫,使用吸管除去。将脱脂铝板(18×4×4mm 2)浸入到分散体中,将板取出后以45°的角度悬挂干燥,使板干燥5min,然后在380℃下加热10min,将板冷却并使用显微镜评级涂层的裂纹。取无开裂情况下最大膜厚为临界膜厚值(μm)。
具涂层玻璃布的光泽度:采用光泽度仪,测定入射角60°的光反射率。
具涂层玻璃布的耐磨性测试:按照GB/T1768-1979,在250g砝码下砂轮打磨200圈后,测试涂层失重量,以此判断其耐磨性能。
具涂层玻璃布的色度测试:使用柯尼卡美能达CM-5色度仪测试具涂层玻璃布的L、a和b,通过减去涂布前的玻璃布的色度L0、a0和b0来计算色度值的变化ΔL、Δa和Δb。当发黄指标Δb小于1时,分散体被认为是良好的,而当该值等于或大于1时,分散体被认为是差的。当观察到涂层中有裂纹时,分散体被认为是差的。
具涂层玻璃布的洗脱电导率:将具涂层玻璃布在10倍质量的蒸馏水中浸渍1周,用Lacom制造的电导测试仪测量洗脱液的电导率。电导率小于1μS,说明离子组分几乎没有溶解,认为是良好的;而电导率超过1μS,则认为是差的。
实施例1-17:含阴离子表面活性剂的聚四氟乙烯乳液(又称含氟聚合物的浓缩水性分散体)的制备
实施例1
在配有夹套和水平搅拌器的5L不锈钢高压反应釜中,加入3000g去离子水,80g石蜡,将反应釜内容物加热升温70℃,并且将反应釜抽真空、氮气置换后用四氟乙烯(TFE)吹扫。加入聚合引发剂过硫酸铵0.02g,3g含氟乳化剂(全氟己基乙酸钠),控制反应压力为2.5MPa,通过压缩机持续通入TFE。通过乳液聚合法,制得聚四氟乙烯颗粒的起始水性分散体。此分散体的固含量约为30wt%,聚四氟乙烯颗粒的平均粒径为250nm。
取2kg聚四氟乙烯颗粒的起始水性分散体(其中基于聚四氟乙烯颗粒的重量含有约0.2wt%的全氟己基乙酸钠),加入6wt%的(以聚四氟乙烯颗粒重量为基准,下同)十二烷基硫酸钠(SDS)阴离子表面活性剂,进行真空浓缩,所得浓缩水性分散体的固含量为60.1wt%。性能测试结果如下表1所示。
实施例2
按照实施例1中的步骤进行,不同之处在于以SDBS表示的十二烷基苯磺酸钠阴离子表面活性剂代替实施例1中的SDS,用量为6wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为64.8wt%。性能测试结果如下表1所示。
实施例3
按照实施例1中的步骤进行,不同之处在于以45%的SLDED水溶液表示的十二烷基二苯醚二磺酸钠阴离子表面活性剂代替实施例1中的SDS,用量为6wt%(以SLDED干基计),进行真空浓缩,所得浓缩水性分散体的固含量约为61.3%。性能测试结果如下表1所示。
实施例4
按照实施例1中的步骤进行,不同之处在于SDS的用量为10wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为62wt%。性能测试结果如下表1所示。
实施例5
按照实施例1中的步骤进行,不同之处在于SDS的用量为1wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为60.8wt%。性能测试结果如下表1所示。
实施例6
按照实施例1中的步骤进行,不同之处在于SDS的用量为2wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为59.2wt%。性能测试结果如下表1所示。
实施例7
按照实施例1中的步骤进行,不同之处在于SDS的用量为8wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为60.9wt%。性能测试结果如下表1所示。
实施例8
按照实施例1中的步骤进行,不同之处在于SDS的用量为12wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为60.7wt%。性能测试结果如下表1所示。
实施例9
按照实施例1中的步骤进行,不同之处在于以二己基磺化琥珀酸钠阴离子表面活性剂代替实施例1中的SDS,用量为6wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为55.5wt%。性能测试结果如下表1所示。
实施例10
按照实施例9中的步骤进行,不同之处在于二己基磺化琥珀酸钠阴离子表面活性剂的加入量为4wt%,进行真空浓缩,所得浓缩分散液的固含量为60.9wt%。性能测试结果如下表1所示。
实施例11
按照实施例1中的步骤进行,不同之处在于:(1)向获得的聚四氟乙烯颗粒的起始水性分散体中加入强碱性离子交换树脂去除其中的全氟己基乙酸钠;(2)用十二烷基醇聚氧乙烯醚羧酸钠阴离子表面活性剂代替实施例1中的SDS,用量为6wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为61.2wt%。性能测试结果如下表1所示。
实施例12
按照实施例1中的步骤进行,不同之处在于:(1)向获得的聚四氟乙烯颗粒的起始水性分散体中加入强碱性离子交换树脂去除其中的全氟己基乙酸钠;(2)用十二烷基羧酸钠阴离子表面活性剂代替实施例1中的SDS,用量为6wt%,进行真空浓缩,所得浓缩水性分散体的固含量约为62.3wt%。性能测试结果如下表1所示。
比较例1
按照实施例1中的步骤进行,不同之处在于用支链仲醇聚氧乙烯醚(TERGITOL TM TMN-10)表示的非离子表面活性剂代替实施例1中的SDS。所得浓缩水性分散体的固含量约为59.8wt%。性能测试结果如下表1所示。
比较例2
按照实施例1中的步骤进行,不同之处在于用聚丙烯酰胺(PAM)表示的非离子型高分子物质分散剂代替实施例1中的SDS。所得浓缩水性分散体的固含量约为60wt%。 性能测试结果如下表1所示。
比较例3
按照实施例1中的步骤进行,不同之处在于用PVOH表示的聚丙烯酸大分子聚合物代替实施例1中的SDS。所得浓缩水性分散体的固含量约为60wt%。性能测试结果如下表1所示。
比较例4
按照实施例1中的步骤进行,不同之处在于用5wt%TMN-10表示的非离子表面活性剂和1wt%SDS表示的阴离子表面活性剂代替实施例1中的SDS,所得浓缩水性分散体的固含量约为60.5wt%。性能测试结果如下表1所示。
Figure PCTCN2023070710-appb-000005
由上表1可知,比较例1-3中添加一种非离子表面活性剂的浓缩分散体不能获得令人满意的机械稳定性和储存稳定性;而实施例1-4和6-12中向含氟聚合物的起始水性分散体(含有少量或不含氟化阴离子表面活性剂)中添加计量的非氟化阴离子表面活性剂,不另外添加非离子表面活性剂,能够获得兼具有低粘度、良好的机械稳定性和储存稳定性的含氟聚合物的浓缩水性分散体。具体而言,获得的聚四氟乙烯的浓缩水性分散体的粘度均不超过20mPa·s,甚至不超过18mPa·s,并均具有良好的机械稳定性和储存稳定性,在室温条件下保存时间可长达2个月而不变色、不沉降,尤其是当添加的非氟化阴离子表面活性剂的量占聚四氟乙烯颗粒的量的4-10wt%时,具有更好的稳定性效果,甚至比添加两种表面活性剂(比较例4,TMN-10+SDS)时表现出更好的稳定性效果。另一方面,利用本发明实施例1-4和7-12提供的聚四氟乙烯的浓缩水性分散体制备的涂层具有良好的光泽性、透明性,且相对于由比较例1-4制备的聚四氟乙烯的浓缩水性分散体获得的涂层,具有普遍更加优良的耐磨性能和更大的临界开裂厚度。
实施例13-17
实施例13-17为按照实施例1的步骤进行,不同之处仅在于使用的表面活性剂及含量不同。具体为:
实施例13中使用的表面活性剂为1wt%十二烷基苯磺酸钠(SDBS)+6wt%BASF PVP K17。
实施例14中使用的表面活性剂为2wt%十二烷基苯磺酸钠(SDBS)+5wt%BASF PVP K17。
实施例15中使用的表面活性剂为3wt%十二烷基羧酸钠+3wt%BASF PVP K17。
实施例16中使用的表面活性剂为5wt%二己基磺化琥珀酸钠+1wt%BASF PVP K17。
实施例17中使用的表面活性剂为1wt%十二烷基硫酸钠(SDS)+1wt%BASF PVP K17。
实施例13-17制备的取聚四氟乙烯的浓缩水性分散体的性能测试结果如下表2所示。
表2:实施例13-17制备的聚四氟乙烯的浓缩水性分散体及浸渍加工性能测定
Figure PCTCN2023070710-appb-000006
Figure PCTCN2023070710-appb-000007
由上表2记载的内容可知,在对聚四氟乙烯颗粒的起始水性分散体进行浓缩时,也可以向其中同时加入计量的非氟化阴离子表面活性剂和式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物,制备得到的聚四氟乙烯的浓缩水性分散体也均兼具有低粘度、良好的机械稳定性和储存稳定性等特性,并且式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物和非氟化阴离子表面活性剂均具有良好的生物降解性和水溶性等特性,因此相对于现有技术中使用生物降解性较差的聚氧乙烯醚类表面活性剂对环境更加友好。另一方面,实施例13-17制备的浓缩水性分散体也具有大的无裂缝厚度(CCT),并且使用实施例13-17制备的聚四氟乙烯的浓缩水性分散体浸渍玻璃布时,形成的涂层具有良好的光泽性、透明性和优良的耐磨性能。
实施例18-32:含有聚乙烯吡咯烷酮作为表面活性剂的聚四氟乙烯乳液(又称含氟聚合物的浓缩水性分散体)的制备
实施例18
在配有夹套和水平搅拌器的5L不锈钢高压反应釜中,加入3000g去离子水,80g石蜡,将反应釜内容物加热升温70℃,并且将反应釜抽真空、氮气置换后用四氟乙烯(TFE)吹扫。加入聚合引发剂过硫酸铵0.02g,3g含氟乳化剂(全氟己基乙酸钠),1wt%的BASF PVP K12(以聚四氟乙烯颗粒重量为基准,下同),控制反应压力为2.5MPa,通过压缩机持续通入TFE。通过乳液聚合法,制得聚四氟乙烯颗粒的起始水性分散体。此分散体的固含量约为20wt%,聚四氟乙烯颗粒的平均粒径为约250nm。
取2kg聚四氟乙烯颗粒的起始水性分散体(其中基于聚四氟乙烯颗粒的重量含有约0.2wt%的全氟己基乙酸钠),加入5wt%的BASF PVP K12,进行真空浓缩,所得浓缩水性分散体的固含量为60.9wt%。储存稳定性较好,放置10周时未出现沉淀。性能测试结 果如下表3所示。
实施例19
在配有夹套和水平搅拌器的5L不锈钢高压反应釜中,加入3000g去离子水,80g石蜡,将反应釜内容物加热升温70℃,并且将反应釜抽真空、氮气置换后用四氟乙烯(TFE)吹扫。加入聚合引发剂过硫酸铵0.02g,3g含氟乳化剂(全氟己基乙酸钠),1wt%的BASF PVP K17,控制反应压力为2.5MPa,通过压缩机持续通入TFE。通过乳液聚合法,制得聚四氟乙烯颗粒的起始水性分散体。此分散体的固含量约为25wt%,聚四氟乙烯粒子的平均粒径为约250nm。
取2kg聚四氟乙烯颗粒的起始水性分散体,加入5wt%的BASF PVP K17,进行真空浓缩,所得浓缩水性分散体的固含量为61.8wt%。储存稳定性较好,放置10周时未出现沉淀。性能测试结果如下表3所示。
实施例20
按照实施例19,所不同的是取聚四氟乙烯颗粒的起始水性分散体2kg,向其中加入4wt%的BASF PVP K17进行真空浓缩,所得浓缩水性分散体的固含量约为62.4wt%,储存稳定性较好,放置10周时未出现沉淀。性能测试结果如下表3所示。
实施例21
按照实施例19,所不同的是取聚四氟乙烯颗粒的起始水性分散体2kg,向其中加入9wt%的BASF PVP K17进行真空浓缩,所得浓缩水性分散体的固含量约为61.7wt%,储存稳定性较好,放置10周时未出现沉淀。性能测试结果如下表3所示。
实施例22
在配有夹套和水平搅拌器的5L不锈钢高压反应釜中,加入3000g去离子水,80g石蜡,将反应釜内容物加热升温70℃,并且将反应釜抽真空、氮气置换后用四氟乙烯(TFE)吹扫。加入聚合引发剂过硫酸铵0.02g,3g含氟乳化剂(全氟己基乙酸钠),1wt%的BASF PVP K30,控制反应压力为2.5MPa,通过压缩机持续通入TFE。通过乳液聚合法,制得聚四氟乙烯颗粒的起始水性分散体。此分散体的固含量约为30wt%,聚四氟乙烯粒子的平均粒径为250nm。
取2kg聚四氟乙烯颗粒的起始水性分散体,加入5wt%的BASF PVP K30,进行真空浓缩,所得浓缩水性分散体的固含量为61.6wt%。储存稳定性较好,放置10周时未出现沉淀。性能测试结果如下表3所示。
实施例23
按照实施例22,所不同的是取聚四氟乙烯颗粒的起始水性分散体2kg,向其中加入3 wt%的BASF PVP K30进行真空浓缩,所得浓缩水性分散体的固含量约为61.4wt%。放置8周时出现少量沉淀。性能测试结果如下表3所示。
实施例24
按照实施例22,所不同的是取聚四氟乙烯颗粒的起始水性分散体2kg,向其中加入7wt%的BASF PVP K30进行真空浓缩,所得浓缩水性分散体的固含量约为62.2wt%,放置5周时出现少量沉淀。性能测试结果如下表3所示。
实施例25
在配有夹套和水平搅拌器的5L不锈钢高压反应釜中,加入3000g去离子水,80g石蜡,将反应釜内容物加热升温70℃,并且将反应釜抽真空、氮气置换后用四氟乙烯(TFE)吹扫。加入聚合引发剂过硫酸铵0.02g,3g含氟乳化剂(全氟己基乙酸钠),控制反应压力为2.5MPa,通过压缩机持续通入TFE。通过乳液聚合法,制得聚四氟乙烯颗粒的起始水性分散体。此分散体的固含量约为20wt%,聚四氟乙烯粒子的平均粒径为250nm。
取2kg聚四氟乙烯颗粒的起始水性分散体,加入6wt%的BASF PVP K17,进行真空浓缩,所得浓缩水性分散体的固含量为61.6wt%,放置8周时出现少量沉淀。性能测试结果如下表3所示。
实施例26
按照实施例25,所不同的是取聚四氟乙烯颗粒的起始水性分散体2kg,向其中加入2wt%的BASF PVP K17进行真空浓缩,所得浓缩水性分散体的固含量约为55.2wt%,放置5周后出现少量沉淀。性能测试结果如下表3所示。
实施例27
按照实施例25,所不同的是取聚四氟乙烯颗粒的起始水性分散体2kg,向其中加入12wt%的BASF PVP K17进行真空浓缩,所得浓缩水性分散体的固含量约为64.2wt%,放置5周后出现少量沉淀。性能测试结果如下表3所示。
比较5-8
比较例5按照实施例18的步骤进行,不同之处仅在于使用的表面活性剂为聚乙烯醇(PVOH,BASF,分子量为20000)。所得浓缩水性分散体的固含量约为60wt%。放置4周后出现少量沉淀。性能测试结果如下表3所示。
比较例6按照实施例18的步骤进行,不同之处仅在于使用的表面活性剂为聚丙烯酰胺(PAM,BASF,分子量为1000)。所得浓缩水性分散体的固含量约为60wt%。放置1周后出现部分沉淀,储存稳定性差。性能测试结果如下表3所示。
比较例7按照实施例18的步骤进行,不同之处仅在于使用的表面活性剂为支链仲醇聚 氧乙烯醚(TERGITOL TM TMN-10,分子量为500-700)。所得浓缩水性分散体的固含量约为59.8wt%。放置4周后出现少量沉淀。性能测试结果如下表3所示。
比较例8按照实施例25的步骤进行,不同之处仅在于使用的表面活性剂为5wt%BASF PVP K30和1wt%TMN-10。所得浓缩水性分散体的固含量约为60wt%。放置4周后出现少量沉淀。性能测试结果如下表3所示。
Figure PCTCN2023070710-appb-000008
由上表3可知,比较例5-7中使用一种其他非离子表面活性剂制得的浓缩水性分散体不能获得令人满意的机械稳定性和储存稳定性;而实施例18-24在聚四氟乙烯颗粒的起始水性分散体的制备过程中以及后续的浓缩过程中分步加入计量的式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物,和实施例25-27直接向聚四氟乙烯颗粒的起始水性分散体中加入计量的式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物作为表面活性剂,均能够获得兼具有低粘度、良好的机械稳定性和储存稳定性的含氟聚合物的浓缩水性分散体。具体而言,获得的聚四氟乙烯的浓缩水性分散体的粘度均不超过25mPa·s,优选不超过22mPa·s,并均具有良好的机械稳定性和储存稳定性,在室温条件下保存时间可长达5周、8周、甚至10周而不沉降,甚至比添加两种表面活性剂(比较例8,TMN-10+K30)时表现出更好的稳定性效果。尤其当式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物的添加总量为4-10wt%时,具有更好的稳定性效果,并且由于式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物具有良好的生物降解性,因此利用其制备的聚四氟乙烯的浓缩水性分散体是环境友好的。
另一方面,相对于比较例5-8,实施例18-27制备的浓缩水性分散体具有更大的无裂缝厚度(CCT),并且使用实施例18-27制备的聚四氟乙烯的浓缩水性分散体浸渍玻璃布时,玻璃布白度(发黄指标Δb均小于1)良好,且洗脱测试的电导率低(<1μS)。
实施例28-32
实施例28-32为按照实施例25的步骤进行,不同之处仅在于使用的表面活性剂及含量不同。具体为:
实施例28中使用的表面活性剂为10wt%BASF PVP K17+1wt%十二烷基苯磺酸钠(SDBS)。
实施例29中使用的表面活性剂为5wt%BASF PVP K17+2wt%十二烷基苯磺酸钠(SDBS)。
实施例30中使用的表面活性剂为5wt%BASF PVP K17+5wt%十二烷基羧酸钠。
实施例31中使用的表面活性剂为1wt%BASF PVP K17+10wt%二己基磺化琥珀酸钠。
实施例32中使用的表面活性剂为1wt%BASF PVP K17+1wt%十二烷基硫酸钠(SDS)。
实施例28-32制备的取聚四氟乙烯的浓缩水性分散体的性能测试结果如下表4所示。
表4:实施例28-32制备的聚四氟乙烯的浓缩水性分散体及浸渍加工性能测定
Figure PCTCN2023070710-appb-000009
Figure PCTCN2023070710-appb-000010
由表4记载的结果可知,在对聚四氟乙烯颗粒的起始水性分散体进行浓缩时,也可以向其中同时加入计量的式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物和非氟化阴离子表面活性剂,制备得到的聚四氟乙烯的浓缩水性分散体也均兼具有低粘度、良好的机械稳定性和储存稳定性等特性,并且式(I)表示的聚乙烯吡咯烷酮(PVP)系聚合物和非氟化阴离子表面活性剂均具有良好的生物降解性和水溶性等特性,因此相对于现有技术中使用生物降解性较差的聚氧乙烯醚类表面活性剂对环境更加友好。另一方面,实施例28-32制备的浓缩水性分散体也具有大的无裂缝厚度(CCT),并且使用实施例28-32制备的聚四氟乙烯的浓缩水性分散体浸渍玻璃布时,玻璃布白度(发黄指标Δb均小于1)良好,且洗脱测试的电导率低(<1μS)。
实施例33:抗滴落剂的制备
(1)含有2wt%(相对于制备的聚四氟乙烯乳液的干基,下同)聚乙烯吡咯烷酮(BASF PVP K12)作为表面活性剂的聚四氟乙烯乳液的制备
在配有夹套和水平搅拌器的5L不锈钢高压反应釜中,加入3000g去离子水,80g石蜡,将反应釜内容物加热升温70℃,并且将反应釜抽真空、氮气置换后用四氟乙烯(TFE)吹扫。加入聚合引发剂过硫酸铵0.02g,3g含氟乳化剂(全氟己基乙酸钠),控制反应压力为2.5MPa,通过压缩机持续通入TFE。通过乳液聚合法,制得聚四氟乙烯颗粒的起始水性分散体。此分散体的固含量约为20wt%,聚四氟乙烯颗粒的平均粒径为约250nm。
取2kg聚四氟乙烯颗粒的起始水性分散体,加入2wt%(基于聚四氟乙烯颗粒的重量,下同)的BASF PVP K12,进行真空浓缩,所得聚四氟乙烯乳液的固含量约为60.1wt%, 储存稳定性较好。
(2)抗滴落剂的制备
S1:将上述(1)制备的含有2wt%聚乙烯吡咯烷酮(PVP)的聚四氟乙烯乳液、凝聚剂(氯化钙盐溶液)、引发剂(过硫酸钾)、苯乙烯聚合单体(与聚四氟乙烯乳液中固含的质量比约为1∶1)和蒸馏水一起加入到反应釜中,在300rpm下剪切搅拌混合,并在40-80℃温度下反应3-6h,获得反应混合物;
S2:使用三足离心机在转速不小于600rpm下对反应混合物进行离心,收集离心沉淀,使用沉淀重量的0.2-5倍水喷洗沉淀,然后在70-120℃干燥箱中干燥,得到含BASF PVP K12的抗滴落剂A,其物化特征测试结果如下表5所示。
抗滴落剂的物化特征测试方法:
(1.1)聚氧乙烯醚类表面活性剂含量
使用液相-高分辨质谱联用仪(LC-HRMS)检测,当HRMS图谱上有一系列质量数相差44.052的整数倍的碎片峰时,即可判断含有聚氧乙烯醚类表面活性剂。此方法的检测限为1ppm,即当聚氧乙烯醚类表面活性剂的含量低于1ppm时,检测结果以ND表示。
(1.2)聚四氟乙烯含量
取2.0g抗滴落剂样品,加入200g甲醇加热回流8小时,冷却过滤后烘干剩余固体,剩余固体与样品的百分比即为聚四氟乙烯的含量。
(1.3)由乙烯基或丙烯酸酯类聚合单体聚合形成的聚合物含量
取2.0g样品加入200g四氢呋喃,加热回流4h,冷却过滤后烘干剩余固体,样品量与剩余固体之差除以样品量即为由乙烯基或丙烯酸酯类聚合单体聚合形成的聚合物的含量。
(1.4)易挥发份含量
取0.10g左右样品,放在快速水分仪中,在105℃下干燥至恒重,失重的百分比即为易挥发份含量。
(1.5)粒径分布
取100g样品,倒入分级振动筛最上层,开启振动筛10s,称重各层样品,计算其占总样品量的百分比。
实施例34-42
实施例34-42按照实施例33的方法步骤进行,不同之处在于在制备抗滴落剂的方法中使用不同的表面活性剂,具体为:
实施例34制得含有4wt%聚乙烯吡咯烷酮(BASF PVP K12)的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为61.5wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂B,其物化特征测试结果如下表5所示。
实施例35制得含有1wt%聚乙烯吡咯烷酮(BASF PVP K17)和3wt%月桂酸单甘油酯的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为61.7wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂C,其物化特征测试结果如下表5所示。
实施例36制得含有1wt%聚乙烯吡咯烷酮(BASF PVP K12)和5wt%月桂酸单甘油酯的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为62.1wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂D(在制备过程中苯乙烯聚合单体与聚四氟乙烯乳液中固含的质量比约为60∶40),其物化特征测试结果如下表5所示。
实施例37制得含有6wt%聚乙烯吡咯烷酮(BASF PVP K12)和4wt%月桂酸单甘油酯的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为63.2wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂E(在制备过程中苯乙烯聚合单体与聚四氟乙烯乳液中固含的质量比约为45∶55),其物化特征测试结果如下表5所示。
实施例38制得含有4wt%聚乙烯吡咯烷酮(BASF PVP K30)和0.5wt%十二烷基硫酸钠(SDS)的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为61.6wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂F,其物化特征测试结果如下表5所示。
实施例39制得含有2wt%十二烷基苯磺酸钠(SDBS)的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为61.0wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂G,其物化特征测试结果如下表5所示。
实施例40制得含有2wt%二己基磺化琥珀酸钠的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为61.1wt%,储存稳定性较好;并使用该聚四氟乙烯乳液制得抗滴落剂H,其物化特征测试结果如下表5所示。
实施例41制得含有3wt%聚乙烯吡咯烷酮(BASF PVP K12)和1wt%三甲基壬基聚氧乙烯醚-10(TMN-10)的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为60.3wt%;并使用该聚四氟乙烯乳液制得抗滴落剂I,其物化特征测试结果如下表5所示。
实施例42制得含有4wt%聚乙烯吡咯烷酮(BASF PVP K12)和0.5wt%三甲基壬基聚氧乙烯醚-10(TMN-10)的聚四氟乙烯乳液,所得聚四氟乙烯乳液的固含量约为59.1wt%;并使用该聚四氟乙烯乳液制得抗滴落剂J,其物化特征测试结果如下表5所示。
比较例9-16
比较例9-16按照实施例1的方法步骤进行,不同之处在于在制备抗滴落剂的方法中使用不同的表面活性剂,具体为:
比较例9制得含有5wt%三甲基壬基聚氧乙烯醚-6(TMN-6)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得含TMN-6的抗滴落剂K,其物化特征测试结果如下表5所示。
比较例10制得含有5wt%三甲基壬基聚氧乙烯醚-10(TMN-10)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得含TMN-10的抗滴落剂L,其物化特征测试结果如下表5所 示。
比较例11制得含有5wt%辛基酚聚氧乙烯醚(OPEO)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得含OPEO的抗滴落剂M,其物化特征测试结果如下表5所示。
比较例12制得含有5wt%壬基酚聚氧乙烯醚(NPEO)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得含NPEO的抗滴落剂N,其物化特征测试结果如下表5所示。
比较例13制得含有2.5wt%三甲基壬基聚氧乙烯醚-10(TMN-10)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得含TMN-10的抗滴落剂O,其物化特征测试结果如下表5所示。
比较例14制得含有2.5wt%壬基酚聚氧乙烯醚(NPEO)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得含NPEO的抗滴落剂P,其物化特征测试结果如下表5所示。
比较例15制得含有1wt%聚乙烯吡咯烷酮(BASF PVP K12)和3wt%三甲基壬基聚氧乙烯醚-10(TMN-10)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得抗滴落剂Q,其物化特征测试结果如下表5所示。
比较例16制得含有1wt%聚乙烯吡咯烷酮(BASF PVP K12)和2wt%三甲基壬基聚氧乙烯醚-10(TMN-10)的聚四氟乙烯乳液,并使用该聚四氟乙烯乳液制得抗滴落剂R,其物化特征测试结果如下表5所示。
表5:实施例33-42和比较例9-16制备的抗滴落剂的物化特征测试结果
Figure PCTCN2023070710-appb-000011
Figure PCTCN2023070710-appb-000012
由以上实施例33-42记载的抗滴落剂的物化特征测试结果可知,在制备聚四氟乙烯乳液中使用的表面活性剂中不含有聚氧乙烯醚类表面活性剂或者仅含有少量(不超过1wt%)的聚氧乙烯醚类表面活性剂,也可以获得固含量在60%左右(可选地为40-70%,进一步可选地为55-65%)的稳定性能良好的聚四氟乙烯乳液,并且利用该不含或含少量聚氧乙烯醚类表面活性剂的聚四氟乙烯乳液也能够成功制备得到包覆型的聚四氟乙烯抗滴落剂,且该聚四氟乙烯抗滴落剂的各项物化特征指标与使用含有聚氧乙烯醚类表面活性剂的聚四氟乙烯乳液(其中聚氧乙烯醚类表面活性剂的含量超过1wt%)制得的抗滴落剂的各项物化特征指标基本无差异。因此,本发明在不使用或使用少量聚氧乙烯醚类表面活性剂的情况下成功制得了含氟聚合物抗滴落剂,其中不含或含有不超过3100ppm,优选不超过2000ppm的聚氧乙烯醚类表面活性剂。
实施例43:含有抗滴落剂的热塑性树脂制品的制备
该实施例提供的含有抗滴落剂的热塑性树脂制品由包含以下重量份的原料的热塑性树脂组合物制成:
Figure PCTCN2023070710-appb-000013
将由以上重量份的原料组成的热塑性树脂组合物使用南京杰恩特SHJ-36型塑料挤出机在270℃下挤出造粒,并使用海天SA860型注塑机在280℃下注塑,得到含有抗滴落剂的热塑性树脂制品。对该热塑性树脂制品的物化性能(包括阻燃、力学性能、表面光泽度、和高光镜面效果等)进行测试,结果如下表6所示。
热塑性树脂制品的物化性能测试方法:
(2.1)阻燃性能(垂直燃烧1/8’,垂直燃烧1/16’)
测试标准:UL 94-2020;
测试设备:RH-6033B型水平燃烧试验仪;
测试条件:
预处理:将测试样品在23±2℃,50±10%RH环境条件放置48h;70℃老化168h,然后再干燥器中放置至少4h冷却至室温;
测试步骤:将本生灯(火焰高度20±1mm)置于样品正下方正中心位置,本生灯管口距样品底端10±1mm,点火时间为10±0.5s,点火10±0.5s后以300mm/sec的速度移开本生灯至少150mm,同时开始记录余焰时间t1,余焰停止时应立即点燃10±0.5s,点火10±0.5s后以300mm/sec的速度移开本生灯至少150mm,同时记录余焰时间t2和余燃时间t3,按照UL 94-2020测试标准计算测试样品的阻燃性能。
(2.2)悬臂梁缺口冲击强度
测试标准:ASTM D256-10(2018);
测试设备:Zwick HIT 25P型塑料摆锤冲击试验机;
(2.3)熔体质量流动速率
测试标准:ASTM D1238-13;
测试设备:MFLOW型熔体流动速率试验机/FD-115型干燥箱;
(2.4)维卡软化温度
测试标准:ASTM D1525-17;
测试设备:40-197-100型热变形维卡试验机;
(2.5)表面光泽度
测试标准:ASTM D523;
测试设备:3nh光泽度仪;
(2.6)高光镜面效果
测试标准:按照高光镜面的缺陷,如银纹,麻点等,分为5级,1级最好,5级最差;
测试方法:目视。
实施例44-52
实施例44-52按照实施例43的方法步骤进行,不同之处在于在制备热塑性树脂制品时使用不同的抗滴落剂,具体为:实施例44使用抗滴落剂B,实施例45使用抗滴落剂C,实施例46使用抗滴落剂D,实施例47使用抗滴落剂E,实施例48使用抗滴落剂F,实施例48使用抗滴落剂G,实施例50使用抗滴落剂H,实施例51使用抗滴落剂I,实施例52使用抗滴落剂J。热塑性树脂制品的物化性能的测试结果如下表6所示。
比较例17-24
比较例17-24按照实施例43的方法步骤进行,不同之处在于在制备热塑性树脂制品时使用不同的抗滴落剂,具体为:比较例17使用抗滴落剂K,比较例18使用抗滴落剂L,比 较例19使用抗滴落剂M,比较例20使用抗滴落剂N,比较例21使用抗滴落剂O,比较例22使用抗滴落剂P,比较例23使用抗滴落剂Q,比较例24使用抗滴落剂R。热塑性树脂制品的物化性能的测试结果如下表6所示。
表6:实施例43-52和比较例17-24制得的热塑性树脂制品的物化性能的测试结果
Figure PCTCN2023070710-appb-000014
由上表6记载的热塑性树脂制品的物化性能的测试结果可知,实施例43-52制得的热塑性树脂制品与比较例17-24制得的热塑性树脂制品在冲击性能(悬臂梁缺口冲击强度)、熔指(熔体质量流动速率)、维卡软化温度和1/8’的垂直阻燃性能等方面基本上无差异,表明由不含或含少量(不超过3100ppm)聚氧乙烯醚类表面活性剂的抗滴落剂制备的热塑性树脂制品在冲击性能、熔指、维卡软化温度和1/8’的垂直阻燃性能等方面与由含有(超过3100ppm)聚氧乙烯醚类表面活性剂的抗滴落剂制备的热塑性树脂制品相当,均具有良好的性能。然而,相对于比较例17-24制得的热塑性树脂制品,实施例43-50利用不含聚氧乙烯醚类表面活性剂的抗滴落剂,或者实施例52利用含有不超过1600ppm的聚氧乙烯醚类表面活性剂的抗滴落剂制得的热塑性树脂制品在1/16’垂直阻燃性能方面表现更加优异,表明不含或含少量(不超过2000ppm,优选不超过1600ppm)聚氧乙烯醚类表面 活性剂的抗滴落剂在热塑性树脂制品中的阻燃抗滴落性能更加优异。另外,相对于比较例17-24制得的热塑性树脂制品,实施例43-50利用不含聚氧乙烯醚类表面活性剂的抗滴落剂,或者实施例51-52利用含有不超过3100ppm的聚氧乙烯醚类表面活性剂的抗滴落剂制得的热塑性树脂制品的表面光泽度和高光镜面效果表现更加优异。再者,从比较例23-24和实施例51-52的结果也可以看出,抗滴落剂中聚氧乙烯醚类表面活性剂的含量越高,相应的热塑性树脂制品的高光镜面效果就越差。因此,相对于现有技术中的含超过3100ppm的聚氧乙烯醚类表面活性剂的抗滴落剂,利用本发明提供的不含或含少量(不超过3100ppm)聚氧乙烯醚类表面活性剂的抗滴落剂能够制得综合性能更加优异的热塑性树脂制品。
实施例53-55
实施例53-55按照实施例43的方法步骤进行,不同之处在于使用的热塑性树脂组合物的配方不同,具体如下表7所示,制得的热塑性树脂制品的物化性能的测试结果如下表8所示。
表7:实施例53-55中热塑性树脂组合物的配方(按重量份计)
组分 聚碳酸酯 EM500A BDP 1076抗氧剂 168辅抗氧剂 PETS润滑剂 抗滴落剂A
实施例53 100 2 8 0 0.4 1 1
实施例54 100 8 5 1 0 0.4 0.05
实施例55 100 10 1 0.4 1 0.2 0.5
表8:实施例53-55制得的热塑性树脂制品的物化性能的测试结果
Figure PCTCN2023070710-appb-000015
由以上表7和表8记载的热塑性树脂制品的物化性能的测试结果可知,利用实施例53-55的热塑性树脂组合物均能制得综合性能优异的热塑性树脂制品。
此处描述的实施例只用于说明(作为例证),技术人员所做的各种修改或变更也应包括在专利申请的实质范围内。
工业应用性
本发明提供了一种抗滴落剂及其制备方法和应用,在将该抗滴落剂用于制备热塑性树脂制品时,可以保证制得的热塑性树脂制品具有良好的外观和表面质量,适于工业应用。

Claims (15)

  1. 一种抗滴落剂,其中聚氧乙烯醚类表面活性剂的含量不超过3100ppm。
  2. 根据权利要求1所述的抗滴落剂,其中所述抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过2000ppm,优选为不超过1600ppm。
  3. 根据权利要求1或2所述的抗滴落剂,其中所述抗滴落剂包含含氟聚合物和由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物;其中基于所述抗滴落剂的重量,所述含氟聚合物的含量为40-70wt%,可选为45-60wt%,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物的含量为30-60wt%,可选为40-55wt%;
    可选地,所述抗滴落剂还包含非聚氧乙烯醚类的表面活性剂,基于所述抗滴落剂的重量,所述非聚氧乙烯醚类的表面活性剂的含量为0-5wt%,可选为0-1wt%。
  4. 根据权利要求3所述的抗滴落剂,其中所述抗滴落剂为包覆结构,其中所述含氟聚合物形成所述包覆结构的内层部分,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物形成所述包覆结构的外层部分。
  5. 根据权利要求3或4所述的抗滴落剂,其中所述含氟聚合物的分子量为100万-1000万,其包括选自以下的任一种含氟单体的均聚物或几种含氟单体的共聚物:四氟乙烯、一氯三氟乙烯、六氟丙烯、全氟乙丙烯、偏氟乙烯、C 1-4氟烷基乙烯和C 1-4氟烷基乙烯基醚。
  6. 根据权利要求3-5中任一项所述的抗滴落剂,其中所述乙烯基聚合单体选自以下中的一种或几种:乙烯、丙烯、丁烯、异丁烯、丁二烯、苯乙烯、α-C 1-4烷基苯乙烯、丙烯腈和甲基丙烯腈;和/或,
    所述丙烯酸酯类聚合单体选自以下中的一种或几种:丙烯酸C 1-4烷基酯和甲基丙烯酸C 1-4烷基酯。
  7. 根据权利要求3-6中任一项所述的抗滴落剂,其中所述非聚氧乙烯醚类的表面活性剂选自离子型表面活性剂、高分子表面活性剂、非聚氧乙烯醚类的非离子型表面活性剂、或其组合中的一种或几种;
    可选地,所述离子型表面活性剂选自以下中的一种或几种:烷基硫酸盐、聚氧乙烯脂肪醇醚硫酸盐、脂肪酸盐、醇醚羧酸盐、烷基酚醚羧酸盐、硬脂酸盐、烷基苯磺酸盐、α-烯烃磺酸盐、α-磺基单羧酸盐、脂肪酸酯磺酸盐、琥珀酸酯磺酸盐、烷基萘磺酸盐、烷基甘油醚磺酸盐、石油磺酸盐、木质素磺酸盐、烷基羧酸盐;进一步可选地,所述离子型表面活性剂选自以下中的一种或几种:十二烷基硫酸钠、 十二烷基硫酸铵、十二烷基苯磺酸钠、十二烷基二苯醚二磺酸钠、十二醇聚氧乙烯醚磺基琥珀酸酯二钠、二己基磺化琥珀酸钠、二辛基磺化琥珀酸钠、硬脂酸钾、十二烷基羧酸钠和十二烷基醇聚氧乙烯醚羧酸钠;
    可选地,所述高分子表面活性剂选自以下中的一种或几种:聚烯烃系聚合物、聚乙烯吡咯烷酮系聚合物、聚氧化亚烷系聚合物、聚醚系聚合物、聚氨酯系聚合物、聚乙烯醇系聚合物、聚有机硅改性聚醚系聚合物、聚羧酸系聚合物和元素有机高分子表面活性剂;
    可选地,所述非聚氧乙烯醚类的非离子型表面活性剂选自以下中的一种或几种:月桂酸单甘油酯、己糖醇酯、蔗糖酯、和月桂酸二乙醇酰胺。
  8. 一种抗滴落剂的制备方法,其包括以下步骤:
    S1:将含氟聚合物乳液、凝聚剂、引发剂、乙烯基聚合单体和/或丙烯酸酯类聚合单体和蒸馏水混合,反应后得到反应混合物;
    S2:对反应混合物进行离心、洗涤、干燥,得到抗滴落剂;
    所述抗滴落剂中聚氧乙烯醚类表面活性剂的含量不超过3100ppm,优选不超过2000ppm,且所述抗滴落剂包含含氟聚合物和由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物;其中基于所述抗滴落剂的重量,所述含氟聚合物的含量为40-70wt%,可选为45-60wt%,所述由乙烯基聚合单体和/或丙烯酸酯类聚合单体聚合形成的聚合物的含量为30-60wt%,可选为40-55wt%。
  9. 根据权利要求8所述的制备方法,步骤S1中所述含氟聚合物乳液的固含量为40-70wt%,可选为55-65wt%,且所述含氟聚合物乳液包含非聚氧乙烯醚类的表面活性剂;
    可选地,基于所述含氟聚合物乳液的固含量,所述非聚氧乙烯醚类的表面活性剂的含量为2-16wt%,可选为2-12wt%,进一步可选为4-10wt%;
    进一步可选地,所述含氟聚合物乳液还包含聚氧乙烯醚类表面活性剂,基于所述含氟聚合物乳液的固含量,所述聚氧乙烯醚类表面活性剂的含量不超过1wt%,优选不超过0.5wt%。
  10. 根据权利要求8或9所述的制备方法,骤S1中所述凝聚剂选自以下的一种或几种的溶液:氯化钠、氯化镁、氯化钙、氯化铁、氯化亚铁、氯化铝、氯化铜、硫酸镁、硫酸铝、醋酸钙、硫酸铜、硫酸铁、硫酸亚铁、磷酸钠、磷酸钙、磷酸镁;和/或,
    步骤S1中所述引发剂包括自由基热聚合引发剂和氧化还原聚合引发剂;
    可选地,所述引发剂选自以下中的一种或几种:过氧化氢、过硫酸钾、过硫酸铵、偶氮二异丁腈、异丙苯过氧化氢、叔丁基过氧化氢、过氧化苯甲酰。
  11. 根据权利要求8-10中任一项所述的制备方法,步骤S1中所述反应的条件包括:反应温度为40-80℃,可选为50-70℃,反应时间为2-10小时,可选为3-6小时。
  12. 一种热塑性树脂组合物,其包括以下重量份的原料:
    Figure PCTCN2023070710-appb-100001
    其中所述抗滴落剂为权利要求1-7中任一项所述的抗滴落剂或权利要求8-11中任一项所述的制备方法制得的抗滴落剂。
  13. 根据权利要求12所述的热塑性树脂组合物,其中所述热塑性树脂包括:丙烯腈-丁二烯-苯乙烯共聚物树脂、橡胶改性的聚苯乙烯树脂、丙烯腈-苯乙烯-丙烯酸酯共聚物树脂、甲基丙烯酸甲脂-丁二烯-苯乙烯共聚物树脂、丙烯腈-丙烯酸乙酯-苯乙烯共聚物树脂、聚碳酸酯树脂、聚乙烯、聚丙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚氯乙烯、聚甲基丙烯酸甲酯、它们的共聚物、或它们的组合。
  14. 根据权利要求12或13所述的热塑性树脂组合物,其中所述阻燃剂包括卤系阻燃剂、有机磷系阻燃剂、无机阻燃剂、膨胀型阻燃剂和磺酸盐阻燃剂;
    可选地,所述阻燃剂选自以下中的一种或几种:双(六氯环戊二烯)环辛、四溴双酚A、间苯二酚(二苯基磷酸酯)、双酚A-双(二苯基磷酸酯)、氢氧化铝、氢氧化镁、全氟丁基磺酸钾、苯磺酰基苯磺酸钾。
  15. 一种热塑性树脂制品,其由权利要求12-14中任一项所述的热塑性树脂组合物生产。
PCT/CN2023/070710 2022-01-30 2023-01-05 一种抗滴落剂及其制备方法和应用 WO2023142949A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210114172.6 2022-01-30
CN202210114173.0 2022-01-30
CN202210114168.XA CN114381013B (zh) 2022-01-30 2022-01-30 一种含氟聚合物的浓缩水性分散体及其制备方法和应用
CN202210114172.6A CN114395140B (zh) 2022-01-30 2022-01-30 一种环保型含氟聚合物的浓缩水性分散体及其制备方法和应用
CN202210114173.0A CN114437480A (zh) 2022-01-30 2022-01-30 一种抗滴落剂及其制备方法和应用
CN202210114168.X 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023142949A1 true WO2023142949A1 (zh) 2023-08-03

Family

ID=87470565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070710 WO2023142949A1 (zh) 2022-01-30 2023-01-05 一种抗滴落剂及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023142949A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040370A (en) * 1997-04-17 2000-03-21 General Electric Company Aqueous fluoropolymer dispersion and method for making fluoropolymer-containing thermoplastic resin composition
WO2007020488A1 (fr) * 2005-08-18 2007-02-22 Guangzhou Shine Polymer Technology Co., Ltd. Agent antigoutte pour des resines thermoplastiques et son procede de preparation et d'utilisation
CN101165082A (zh) * 2006-10-19 2008-04-23 广州熵能聚合物技术有限公司 防滴落剂及其制备方法和含有它的热塑性树脂制品
CN101348603A (zh) * 2007-07-19 2009-01-21 东丽纤维研究所(中国)有限公司 阻燃抗滴落性树脂组合物
US20120302702A1 (en) * 2011-05-25 2012-11-29 THAI ABS Company Ltd. Compositions including polytetrafluoroethylene and processes for the preparation thereof
CN104945578A (zh) * 2015-07-22 2015-09-30 广东盛化塑胶科技有限公司 一种抗滴落、热塑化的橡胶接枝共聚物及其制备方法
CN107254022A (zh) * 2017-06-23 2017-10-17 安徽申嘉聚合物科技有限公司 一种高光ptfe防滴落剂及其制备方法
CN110540613A (zh) * 2019-09-23 2019-12-06 铨盛聚碳科技股份有限公司 一种防滴落高分子磺酸盐阻燃剂及其制备方法
CN113278233A (zh) * 2021-03-25 2021-08-20 中广核三角洲(中山)高聚物有限公司 一种成束阻燃电线电缆用pvc电缆料及其制备方法
CN114381013A (zh) * 2022-01-30 2022-04-22 广州熵能创新材料股份有限公司 一种含氟聚合物的浓缩水性分散体及其制备方法和应用
CN114395140A (zh) * 2022-01-30 2022-04-26 广州熵能创新材料股份有限公司 一种环保型含氟聚合物的浓缩水性分散体及其制备方法和应用
CN114437480A (zh) * 2022-01-30 2022-05-06 广州熵能创新材料股份有限公司 一种抗滴落剂及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040370A (en) * 1997-04-17 2000-03-21 General Electric Company Aqueous fluoropolymer dispersion and method for making fluoropolymer-containing thermoplastic resin composition
WO2007020488A1 (fr) * 2005-08-18 2007-02-22 Guangzhou Shine Polymer Technology Co., Ltd. Agent antigoutte pour des resines thermoplastiques et son procede de preparation et d'utilisation
CN101165082A (zh) * 2006-10-19 2008-04-23 广州熵能聚合物技术有限公司 防滴落剂及其制备方法和含有它的热塑性树脂制品
CN101348603A (zh) * 2007-07-19 2009-01-21 东丽纤维研究所(中国)有限公司 阻燃抗滴落性树脂组合物
US20120302702A1 (en) * 2011-05-25 2012-11-29 THAI ABS Company Ltd. Compositions including polytetrafluoroethylene and processes for the preparation thereof
CN104945578A (zh) * 2015-07-22 2015-09-30 广东盛化塑胶科技有限公司 一种抗滴落、热塑化的橡胶接枝共聚物及其制备方法
CN107254022A (zh) * 2017-06-23 2017-10-17 安徽申嘉聚合物科技有限公司 一种高光ptfe防滴落剂及其制备方法
CN110540613A (zh) * 2019-09-23 2019-12-06 铨盛聚碳科技股份有限公司 一种防滴落高分子磺酸盐阻燃剂及其制备方法
CN113278233A (zh) * 2021-03-25 2021-08-20 中广核三角洲(中山)高聚物有限公司 一种成束阻燃电线电缆用pvc电缆料及其制备方法
CN114381013A (zh) * 2022-01-30 2022-04-22 广州熵能创新材料股份有限公司 一种含氟聚合物的浓缩水性分散体及其制备方法和应用
CN114395140A (zh) * 2022-01-30 2022-04-26 广州熵能创新材料股份有限公司 一种环保型含氟聚合物的浓缩水性分散体及其制备方法和应用
CN114437480A (zh) * 2022-01-30 2022-05-06 广州熵能创新材料股份有限公司 一种抗滴落剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
US9688796B2 (en) High melting PTFE polymers for melt-processing
CN100497446C (zh) 一种热塑性树脂的防滴落剂及其制备和使用方法
JP6751722B2 (ja) フッ化ビニリデン含有ポリマーの高耐衝撃性ブレンド物
EP3527634A1 (en) Fluoropolymers and fluoropolymer dispersions
EP3243851A1 (en) Fluoropolymer dispersion and method for making the same
CN114437480A (zh) 一种抗滴落剂及其制备方法和应用
WO2023142947A2 (zh) 一种环保型含氟聚合物的浓缩水性分散体及其制备方法和应用
US20220356340A1 (en) Thermoplastic resin and method of preparing the same
US20110213088A1 (en) Heat aged perfluoropolymer
TW455605B (en) Flame retardant carbonate polymer composition with improved hydrolytic stability
MX2015003521A (es) Sustratos revestidos con clorofluoropolimeros y metodos para producir los mismos.
WO2007149274A2 (en) Process for desactivating polymerization catalyst using phosphoric- or phosphonic acid salts and a catalyst deactivator
JP2019019295A (ja) スチレン系樹脂
WO2023142949A1 (zh) 一种抗滴落剂及其制备方法和应用
WO2008018521A1 (fr) Composition de résine de chlorure de vinyle transparente et de retardement des flammes et produit moulé
JP2012503677A (ja) エチレン/テトラフルオロエチレンコポリマーの応用
US20220372269A1 (en) Transparent thermoplastic resin and method of preparing the same
CN104744912B (zh) 热可塑性树脂组成物
JP2016044226A (ja) 難燃樹脂成形物
CN116023556B (zh) 一种油溶性pvc聚合乳液分散助剂、制备方法及应用
RU2721602C1 (ru) Способ получения сополимеров тетрафторэтилена, сополимеры и изделия из них
JP7342888B2 (ja) イソプレン系重合体ラテックス組成物
JP2018016772A (ja) 超高分子量ポリエチレンパウダー
JP2011527717A (ja) エチレン/テトラフルオロエチレンコポリマーの水分散液重合方法
JPWO2017043614A1 (ja) 塩化ビニル樹脂組成物及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745834

Country of ref document: EP

Kind code of ref document: A1