WO2023142829A1 - 电解除氧装置和冰箱 - Google Patents

电解除氧装置和冰箱 Download PDF

Info

Publication number
WO2023142829A1
WO2023142829A1 PCT/CN2022/141948 CN2022141948W WO2023142829A1 WO 2023142829 A1 WO2023142829 A1 WO 2023142829A1 CN 2022141948 W CN2022141948 W CN 2022141948W WO 2023142829 A1 WO2023142829 A1 WO 2023142829A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
cathode plate
deoxygenation
opening
liquid storage
Prior art date
Application number
PCT/CN2022/141948
Other languages
English (en)
French (fr)
Inventor
黄璐璐
费斌
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023142829A1 publication Critical patent/WO2023142829A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of refrigeration and freezing, in particular to an electrolytic deoxidizer and a refrigerator.
  • a refrigerator with deoxygenation function which utilizes the principle of electrolysis to electrolyze the air introduced into the deoxygenation device to separate the oxygen and leave or discharge the nitrogen into the storage room of the refrigerator. Achieve freshness.
  • a cathode plate and an anode plate are arranged on the electrolysis chamber of the existing oxygen removal device, the cathode plate electrolyzes the oxygen in the air flowing through it to generate negative ions, and the anode plate oxidizes the negative ions into oxygen.
  • the oxygen removal device has only one cathode plate, and the oxygen removal efficiency is low.
  • An object of the present invention is to provide an electrolytic deoxygenation device, which includes at least one electrolytic deoxygenation unit with double-sided cathode plates, so that the electrolytic deoxygenation efficiency can be improved.
  • a further object of the present invention is to arrange the exhaust port on the exhaust chamber communicating with the liquid storage chamber, so as to prevent the electrolyte in the liquid storage chamber from splashing out of the housing through the exhaust port when it reacts.
  • Another further object of the present invention is to use a fixing frame to fix the cathode plate at the opening of the casing.
  • Another object of the present invention is to provide a refrigerator with the electrolytic deoxygenation device.
  • the present invention provides an electrolytic deoxygenation device, which includes at least one electrolytic deoxygenation unit, and the electrolytic deoxygenation unit includes:
  • a housing having a first opening and a second opening
  • the first cathode plate and the second cathode plate are respectively arranged at the first opening and the second opening to define together with the casing a liquid storage chamber for containing an electrolyte, and are configured to flow through it for electrolysis Oxygen in the air above to generate negative ions;
  • an anode plate disposed in the liquid storage chamber and between the first cathode plate and the second cathode plate, configured to oxidize the negative ions into oxygen and discharge the liquid storage chamber, so that the Oxygen in the air of the electrolytic deoxygenation unit is separated.
  • the housing is flat, and the first opening and the second opening are respectively opened on two opposite wider sides of the housing.
  • the housing further defines an exhaust chamber that communicates with the liquid storage chamber, and the exhaust chamber is provided with an exhaust port that communicates with the exhaust chamber and the outside of the housing.
  • the exhaust cavity is configured to allow the oxygen generated in the liquid storage cavity to flow to the outside of the casing through the exhaust cavity and the exhaust port in sequence.
  • the exhaust chamber is disposed above the liquid storage chamber, and the exhaust port is disposed on the top wall of the exhaust chamber;
  • a liquid injection port for injecting electrolyte solution into the liquid storage chamber is also provided on the top wall of the exhaust chamber.
  • an avoidance opening connecting the exhaust chamber and the outside of the housing is also provided on the top wall of the exhaust chamber, and the positive connection end of the anode plate protrudes to the The outside of the casing is connected to the positive pole of the power supply.
  • the side wall of the liquid storage chamber is provided with at least one pipeline interface communicating with the liquid storage chamber and the outside of the housing, and at least one of the pipeline interfaces is configured to communicate with other positions on the electrolytic deoxygenation unit through pipelines.
  • the corresponding pipe interfaces are connected so that the electrolytes of the multiple electrolytic deoxygenation units are consistent.
  • electrolytic deoxygenation units which are stacked in sequence.
  • the anode plates of the adjacent electrolytic deoxygenation units are connected and connected to the positive pole of the power supply, and the first cathode plate and the second cathode plate of the same electrolytic deoxygenation unit are connected and connected to the negative pole of the power supply, so as to realize parallel connection;
  • the first cathode plate and the second cathode plate of the same electrolytic deoxygenation unit are connected and connected in series with the anode plate of the next adjacent electrolytic deoxygenation unit, the anode plate of the first electrolytic deoxygenation unit is connected to the positive pole of the power supply, and the last The first cathode plate and the second cathode plate of the electrolytic deoxygenation unit are connected and connected to the negative pole of the power supply to realize series connection.
  • the electrolytic deoxygenation device also includes:
  • the first fixing frame and the second fixing frame are arranged on the circumferential outer sides of the first cathode plate and the second cathode plate respectively, so as to assemble the first cathode plate and the second cathode plate to the said first opening and said second opening;
  • a first annular flange is formed on the edge of the first opening, and a first annular protrusion opposite to the first annular flange is formed on the first fixing frame to achieve sealing engagement;
  • a second annular flange is formed on the edge of the second opening, and a second annular protrusion opposite to the second annular flange is formed on the second fixing frame to achieve sealing engagement.
  • the anode plate is parallel and opposite to the cathode plate
  • the distance between the anode plate and the cathode plate is configured to be between 5mm and 10mm.
  • a refrigerator which includes the electrolytic deoxygenation device as described in any one of the above.
  • the first cathode plate and the second cathode plate of the electrolytic deoxygenation unit are respectively arranged at the first opening and the second opening of the casing, together with the casing, define a liquid storage for containing the electrolyte chamber
  • the anode plate is disposed in the liquid storage chamber and between the first cathode plate and the second cathode plate
  • the first cathode plate and the second cathode plate are configured to electrolyze the oxygen in the air flowing therethrough to generate negative ions
  • the anode The plate is configured to oxidize the negative ions into oxygen and discharge the liquid storage chamber to separate the oxygen in the air flowing through the electrolytic deoxygenation unit.
  • the electrolytic deoxygenation unit of the present invention is based on the double-sided cathode plate, which improves the The electrolytic oxygen removal efficiency also improves the electrolytic oxygen removal efficiency of the electrolytic oxygen removal device.
  • the housing defines an exhaust chamber that communicates with the liquid storage chamber, and the exhaust chamber is provided with an exhaust port that communicates with the exhaust chamber and the outside of the housing.
  • the position is set so that the electrolyte in the liquid storage chamber can be prevented from being splashed to the outside of the shell through the exhaust port when it reacts.
  • the fixed frame is arranged on the circumferential outer side of the cathode plate, an annular flange is formed at the edge of the opening, and a ring-shaped flange is provided on the fixed frame to be opposite to the ring-shaped flange to realize sealing engagement.
  • Fig. 1 is the front view of the electrolytic deoxygenation device according to one embodiment of the present invention.
  • Fig. 2 is an exploded view of an electrolytic deoxygenation device according to an embodiment of the present invention
  • Fig. 3 is a schematic sectional view taken along the section line A-A in Fig. 1;
  • Fig. 4 is a parallel schematic diagram of a plurality of electrolytic deoxygenation units according to one embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a series connection of a plurality of electrolytic deoxygenation units according to one embodiment of the present invention
  • Fig. 6 is a schematic structural block diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 1 is a front view of an electrolytic deoxygenation device according to an embodiment of the present invention
  • Fig. 2 is an exploded view of an electrolytic deoxygenation device according to an embodiment of the present invention
  • Fig. 3 is a schematic diagram taken along the section line A-A in Fig. 1 Cutaway view.
  • the electrolysis oxygen device 200 includes at least one electrolysis oxygen unit 100
  • the electrolysis oxygen unit 100 includes a casing 110 , a first cathode plate 120 , a second cathode plate 130 and an anode plate 140 .
  • the casing 110 has a first opening 111 and a second opening 112, and the first opening 111 and the second opening 112 are connected; the first cathode plate 120 and the second cathode plate 130 are respectively arranged on the first opening 111 and the second opening.
  • the casing 110 jointly define a liquid storage chamber 113 for containing the electrolyte, and is configured to electrolyze the oxygen in the air flowing through it to generate negative ions;
  • the anode plate 140 is arranged in the liquid storage chamber 113 and is in the first Between the first cathode plate 120 and the second cathode plate 130 , it is configured to oxidize negative ions into oxygen and discharge it out of the liquid storage chamber 113 , so as to separate the oxygen in the air flowing through the electrolytic deoxygenation unit 100 .
  • the electrolytic deoxygenation unit 100 uses the first cathode plate 120 and the second cathode plate 130 respectively as the two walls of the housing 110 to jointly define a liquid storage chamber 113 with the housing 110 , the anode plate 140 is arranged in the liquid storage chamber 113 and is located between the first cathode plate 120 and the second cathode plate 130, due to the setting of the double cathode plate, the electrolytic deoxygenation efficiency of the electrolytic deoxygenation unit 100 is improved, and the The electrolytic oxygen removal efficiency of the electrolytic oxygen removal device 200 was found.
  • the electrolytic deoxygenation unit 100 may also include a first fixed frame 150 and a second fixed frame 160, the first fixed frame 150 and the second fixed frame 160 are arranged on the first cathode plate 120 and the second fixed frame respectively.
  • the circumferential outer side of the cathode plate 130 is used to assemble the first cathode plate 120 and the second cathode plate 130 to the first opening 111 and the second opening 112 respectively.
  • a first annular flange 118 may be formed on the edge of the first opening 111, and a first annular protrusion 151 opposite to the first annular flange 118 is formed on the first fixing frame 150 to achieve sealing engagement.
  • the edge of the second opening 112 is formed with a second annular flange 119, and the second fixed frame 160 is correspondingly formed with a second annular protrusion 161 opposite to the second annular flange 119 to achieve sealing engagement, the first The fixing frame 150 is sealingly connected with the first annular flange 118 through the first annular protrusion 151 to fix the first cathode plate 120 at the first opening 111 of the housing 110, and the second fixing frame 160 passes through the second annular
  • the protrusion 161 is sealingly connected with the second annular flange 119 to fix the second cathode plate 130 at the second opening 112 of the casing 110 .
  • the sealing method of the annular flange and the annular protrusion includes but not limited to ultras
  • the first cathode plate 120 and the second cathode plate 130 may respectively be composed of a catalytic layer, a conductive layer, and a waterproof and breathable layer that are sequentially stacked from the inside to the outside.
  • the catalyst layer can adopt noble metal or rare metal catalyst, such as metal platinum, metal gold, metal silver, metal manganese or metal rubidium and the like.
  • the waterproof and breathable layer can be a waterproof and breathable film, so that the electrolyte cannot seep out of the liquid storage chamber 113 , and air can enter the liquid storage chamber 113 through the waterproof and breathable layer.
  • the conductive layer can be made into a corrosion-resistant metal current collector, such as metal nickel, metal titanium, etc., so that it not only has better conductivity, corrosion resistance and support strength.
  • the top of the upper frame of the first fixed frame 150 is integrally formed with a first receiving part 152, and the first receiving part 152 communicates with the upper frame of the first fixed frame 150 to make the conductive layer of the first cathode plate 120 It can extend into the first receiving part 152 through the upper frame of the first fixing frame 150 .
  • the side wall of the first receiving part 152 is provided with a first socket 153 for inserting the first negative electrode connector 170 into the first receiving part 152, and one end of the first negative electrode connecting part 170 is inserted into the first receiving part through the first socket 153.
  • the upper frame top of the second fixed frame 160 is integrally formed with a second The receiving part 162, the second receiving part 162 communicates with the upper frame of the second fixed frame 160 so that the conductive layer of the second cathode plate 130 can extend into the second receiving part 162 through the upper frame of the second fixed frame 160, the second The side wall of the receiving part 162 is provided with a second socket 163 for inserting the second negative electrode connector 180 into the second receiving part 162 , and one end of the second negative electrode connecting part 180 is inserted into the second receiving part 162 through the second socket 163 And connected to the conductive layer of the second cathode plate 130 , so that the conductive layer of the second cathode plate 130 can be connected to the negative pole of the power supply through the second negative electrode connecting piece 180 .
  • the housing 110 may be configured in a flat shape, and the first opening 111 and the second opening 112 are respectively opened on two opposite wider sides of the housing 110 . Since the cathode plate covers the opening, the larger the opening, the larger the area of the cathode plate, and the larger the contact area between the cathode plate and the air, which improves the electrolysis efficiency of the electrolytic oxygen removal unit 100 . In addition, setting the housing 110 in a flat shape can also shorten the width of the electrolytic deoxidation unit 100 , reduce its occupied thickness, and save space.
  • the housing 110 also defines an exhaust chamber 114 that communicates with the liquid storage chamber 113 , and the exhaust chamber 114 is provided with a The exhaust port 115 is arranged, and the exhaust chamber 114 is configured to allow the oxygen generated in the liquid storage chamber 113 to flow to the outside of the casing 110 through the exhaust chamber 114 and the exhaust port 115 in sequence.
  • the exhaust cavity 114 is disposed above the liquid storage cavity 113 , and the exhaust port 115 is disposed on the top wall of the exhaust cavity 114 . Due to the distance between the exhaust port 115 and the liquid storage chamber 113 , the electrolyte in the liquid storage chamber 113 can be prevented from splashing out of the casing 110 through the exhaust port 115 during reaction.
  • the top wall of the exhaust chamber 114 is also provided with a liquid injection port 116 for injecting electrolyte into the liquid storage chamber 113.
  • the liquid injection port 116 is arranged on the top wall of the exhaust chamber 114, which can ensure that the user does not need to inject liquid when injecting liquid. It will be in contact with the electrolyte in the liquid storage cavity 113 .
  • the top wall of the exhaust chamber 114 can also be provided with an avoidance opening 117 that communicates with the exhaust chamber 114 and the outside of the housing 110, and the positive connection end of the anode plate 140 protrudes into the housing through the avoidance opening 117. 110 outside to connect with the positive pole of the power supply.
  • an elastic seal 190 is arranged in the escape opening 117, and the elastic seal 190 is provided with an opening for the positive connection end of the anode plate 140 to extend to the outside of the housing 110, and the anode plate The positive electrode connection end of 140 protrudes to the outside of the housing 110 through the opening 191 on the elastic sealing member 190 .
  • the anode plate 140 is parallel to and opposite to the cathode plate. In order to increase its relative area and promote the positive electrolysis reaction.
  • Fig. 4 is a schematic diagram of a parallel connection of a plurality of electrolytic deoxygenation units according to an embodiment of the present invention
  • Fig. 5 is a schematic diagram of a series connection of a plurality of electrolytic deoxygenation units according to an embodiment of the present invention.
  • there are multiple electrolytic deoxygenation units 100 and at least one pipe connecting the liquid storage chamber 113 and the outside of the housing 110 is provided on the side wall of the liquid storage chamber 113
  • the interface 1131 , at least one pipeline interface 1131 is configured to communicate with the corresponding pipeline interface 1131 on other electrolysis units 100 through pipelines, so as to keep the electrolytes of multiple electrolysis units 100 consistent.
  • At least one pipeline interface 1131 can be two, respectively arranged on the two side walls of the liquid storage chamber 113, when there are multiple electrolytic deoxygenation units 100, the liquid injection ports 116 of the multiple electrolytic deoxygenation units 100 are also The outlets 115 of the plurality of electrolytic deoxygenation units 100 are also connected through pipelines to facilitate the discharge of oxygen to the outside.
  • FIGs. 4 and 5 there are a plurality of electrolytic deoxygenation units 100 stacked one after the other, thereby saving space.
  • the anode plates 140 of adjacent electrolytic deoxygenation units 100 are connected and connected to the positive pole of the power supply, and the first cathode plate 120 and the second cathode plate 130 of the same electrolytic deoxygenation unit 100 are connected and connected to the negative pole of the power supply to realize parallel connection.
  • the first cathode plate 120 and the second cathode plate 130 of the same electrolysis oxygen unit 100 are connected and connected in series with the anode plate 140 of the next adjacent electrolysis unit 100, and the anode plate 140 of the first electrolysis unit 100 is connected to The positive pole of the power supply, the first cathode plate 120 and the second cathode plate 130 of the last electrolytic deoxygenation unit 100 are connected and connected to the negative pole of the power supply to achieve series connection. Series and parallel connections are used to meet the needs of different scenarios.
  • the oxygen in the air undergoes a reduction reaction on the first cathode plate 120 and the second cathode plate 130, namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ ; O 2 +H 2 O+ 2e - ⁇ HO 2 - +OH - ; as the reduction reaction on the first cathode plate 120 and the second cathode plate 130 proceeds, the electrolyzed negative ions OH - can enter through the first cathode plate 120 and the second cathode plate 130 In the electrolyte in the liquid storage chamber 113, oxidation reaction occurs on the anode plate 140, namely: 4OH - ⁇ O 2 +2H 2 O+4e - ; HO 2 - +OH - ⁇ O 2 +H 2 O+2e - , finally the oxygen generated on the anode plate 140 is exhausted from the exhaust port 115 on the housing 110 to separate the oxygen in the air.
  • the anode plate 140 can be fixedly arranged in the casing 110, and then the first cathode plate 120 can be embedded in the first fixing frame 150, and the second cathode plate 130 can be embedded In the second fixed frame 160, the first annular flange 118 at the first opening 111 is fixedly connected with the first annular protrusion 151 of the first fixed frame 150, and the second annular flange at the second opening 112 is 119 is fixedly connected with the second annular projection 161 of the second fixing frame 160, so that the first cathode plate 120 is fixed at the first opening 111, the second cathode plate 130 is fixed at the second opening 112, and then the seal 190 is plugged into the escape opening 117 of the top wall of the exhaust chamber 114, and the first negative connecting piece 170 and the second negative connecting piece 180 are inserted into the first receiving piece 152 of the first fixing frame 150 and the second receiving piece 160 of the second fixing frame
  • the step in the second receiving part 162 of the second fixing frame 160 may be before or after any step, which is not limited in the present invention.
  • FIG. 6 is a schematic structural block diagram of the refrigerator according to an embodiment of the present invention.
  • a refrigerator 300 includes the electrolytic deoxygenation device 200 as in any one of the above-mentioned embodiments.
  • the double-sided cathode plates of the electrolytic deoxygenation and deoxygenation device 200 can communicate with the storage compartment of the refrigerator, so as to consume the oxygen in the storage compartment through an electrochemical reaction, so as to improve the freshness preservation effect of the storage compartment of the refrigerator.
  • electrolytic deoxygenation device 200 can also arrange the electrolytic deoxygenation device 200 at other positions of the inner container after knowing the technical solution of this embodiment. For example, on the side wall, bottom wall or top wall of the liner, not listed here.
  • the first cathode plate 120 and the second cathode plate 130 of the electrolytic deoxygenation unit 100 are respectively arranged at the first opening 111 and the second opening 112 of the housing 110 to define together with the housing 110 a chamber for containing the electrolyte.
  • the liquid storage chamber 113, the anode plate 140 is arranged in the liquid storage chamber 113 and is between the first cathode plate 120 and the second cathode plate 130, the cathode plate is configured to electrolyze the oxygen in the air flowing through it to generate negative ions, and the anode
  • the plate 140 is configured to oxidize negative ions into oxygen and discharge the liquid storage chamber 113 to separate the oxygen in the air flowing through the electrolytic deoxygenation unit 100.
  • the present invention improves the efficiency of the electrolytic deoxygenation unit 100 due to the setting of the double-sided cathode plate.
  • the electrolytic oxygen removal efficiency also improves the electrolytic oxygen removal efficiency of the electrolytic oxygen removal device 200 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电解除氧装置和冰箱,电解除氧装置包括电解除氧装置,包括至少一个电解除氧单元,电解除氧单元的第一阴极板和第二阴极板分别设置在壳体的第一开口和第二开口处与壳体共同限定出承装电解液的储液腔,阳极板设置在储液腔内并处于第一阴极板与第二阴极板之间,阴极板配置成电解流经其上的空气中的氧气以生成负离子,阳极板配置成将负离子氧化为氧气并排出储液腔以将流经电解除氧单元的空气中的氧气分离出,本发明由于双面阴极板的设置,提高了电解除氧单元的电解除氧效率,也提高了电解除氧装置的电解除氧效率。

Description

电解除氧装置和冰箱 技术领域
本发明涉及冷藏冷冻技术领域,特别是涉及一种电解除氧装置和冰箱。
背景技术
现有技术中出现了一种具备除氧功能的冰箱,其利用电解原理对导入除氧装置内部的空气进行电解,以将氧气分离出,将氮气留在或者排入冰箱的储物间室内,实现保鲜。具体地,该现有除氧装置的电解室上设置阴极板和阳极板,阴极板电解流经其上的空气中的氧气生成负离子,阳极板将负离子氧化为氧气。
但是,基于现有技术中除氧装置的结构,除氧装置只有设置一块阴极板,除氧效率低。
发明内容
本发明的一个目的是要提供一种电解除氧装置,该电解除氧装置包括至少一个具备双面阴极板的电解除氧单元,从而可提高电解除氧效率。
本发明一个进一步的目的是将排气口设置在与储液腔连通的排气腔上,以避免储液腔内电解液反应时经排气口喷溅到壳体外部。
本发明另一个进一步的目的是利用固定框将阴极板固定在壳体的开口处。
本发明另一个目的是提供一种具有该电解除氧装置的冰箱。
特别地,本发明提供了一种电解除氧装置,其包括至少一个电解除氧单元,并且所述电解除氧单元包括:
壳体,具有第一开口和第二开口;
第一阴极板和第二阴极板,分别设置在所述第一开口和所述第二开口处以与所述壳体共同限定出用于盛装电解液的储液腔,并配置成电解流经其上的空气中的氧气以生成负离子;
阳极板,设置在所述储液腔内并处于所述第一阴极板与所述第二阴极板之间,配置成将所述负离子氧化为氧气并排出所述储液腔,以将流经所述电解除氧单元的空气中的氧气分离出。
可选地,所述壳体为扁平状,所述第一开口和所述第二开口分别开设于 所述壳体上两个相对立的较宽的侧面。
可选地,所述壳体还限定出与所述储液腔相连通的排气腔,所述排气腔设置有连通所述排气腔和所述壳体外部的排气口,所述排气腔配置成允许所述储液腔内生成的氧气依次经所述排气腔和所述排气口流向所述壳体外部。
可选地,所述排气腔设置于所述储液腔的上方,所述排气口设置于所述排气腔的顶壁;且
所述排气腔的顶壁上还设置有用于向所述储液腔注入电解液的注液口。
可选地,所述排气腔的顶壁上还设置有连通所述排气腔和所述壳体外部的避让开口,所述阳极板的正极连接端经所述避让开口伸出到所述壳体外部以与电源正极连接。
可选地,所述电解除氧单元为多个;且
所述储液腔的侧壁上设置有至少一个连通所述储液腔和所述壳体外部的管道接口,至少一个所述管道接口配置成通过管路与其他所述电解除氧单元上位置对应的所述管道接口相连通,以使多个所述电解除氧单元的电解液保持一致。
可选地,所述电解除氧单元为多个,并且依次叠置;且
相邻所述电解除氧单元的阳极板相连并接至电源正极,同一所述电解除氧单元的第一阴极板和第二阴极板相连并接至电源负极,以实现并联;
同一所述电解除氧单元的第一阴极板和第二阴极板相连并与相邻下一电解除氧单元的阳极板串接,首个电解除氧单元的阳极板接至电源正极,末个电解除氧单元的第一阴极板和第二阴极板相连并接至电源负极,以实现串联。
可选地,所述电解除氧装置还包括:
第一固定框和第二固定框,分别设置在所述第一阴极板和所述第二阴极板的周向外侧,以将所述第一阴极板和所述第二阴极板分别装配至所述第一开口和所述第二开口;且
所述第一开口的边缘形成有第一环状凸缘,所述第一固定框上相应形成有与所述第一环状凸缘相对以实现密封接合的第一环状凸起;
所述第二开口的边缘形成有第二环状凸缘,所述第二固定框上相应形成有与所述第二环状凸缘相对以实现密封接合的第二环状凸起。
可选地,所述阳极板与所述阴极板平行且相对设置;
所述阳极板与所述阴极板之间的间距配置成处于5mm至10mm之间。
根据本发明的另一个方面,还提供了一种冰箱,其包括如上述任一项所述的电解除氧装置。
本发明的电解除氧装置中,电解除氧单元的第一阴极板和第二阴极板分别设置在壳体的第一开口和第二开口处与壳体共同限定出承装电解液的储液腔,阳极板设置在储液腔内并处于第一阴极板与第二阴极板之间,第一阴极板和第二阴极板配置成电解流经其上的空气中的氧气以生成负离子,阳极板配置成将负离子氧化为氧气并排出储液腔以将流经电解除氧单元的空气中的氧气分离出,本发明电解除氧单元基于双面阴极板的设置,提高了电解除氧单元的电解除氧效率,也提高了电解除氧装置的电解除氧效率。
进一步地,本发明的电解除氧单元中,壳体限定出与储液腔连通的排气腔,排气腔上设置有连通排气腔和壳体外部的排气口,基于排气口的设置位置,使可避免储液腔内的电解液反应时经排气口喷溅到壳体外部。
进一步地,本发明的电解除氧单元中,固定框设置在阴极板的周向外侧,开口的边缘处形成有环状凸缘,固定框上设置有与环状凸缘相对以实现密封接合的环状凸起,从而固定框将阴极板固定在壳体的开口处。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的电解除氧装置的主视图;
图2是根据本发明一个实施例的电解除氧装置的爆炸图;
图3是沿图1中的剖切线A-A截取的示意性剖视图;
图4是根据本发明一个实施例的多个电解除氧单元的并联示意图;
图5是根据本发明一个实施例的多个电解除氧单元的串联示意图;
图6是根据本发明一个实施例的冰箱的示意性结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要说明的是,在不冲突的前提下本发明实施例及可选实施例中的技术特征可以相互结合。
图1是根据本发明一个实施例的电解除氧装置的主视图;图2是根据本发明一个实施例的电解除氧装置的爆炸图;图3是沿图1中的剖切线A-A截取的示意性剖视图。参见图1-3所示,电解除氧装置200包括至少一个电解除氧单元100,电解除氧单元100包括壳体110、第一阴极板120、第二阴极板130和阳极板140。其中,壳体110具有第一开口111和第二开口112,第一开口111和第二开口112相连通;第一阴极板120和第二阴极板130分别设置在第一开口111和第二开口112处以与壳体110共同限定出用于盛装电解液的储液腔113,并配置成电解流经其上的空气中的氧气以生成负离子;阳极板140设置在储液腔113内并处于第一阴极板120与第二阴极板130之间,配置成将负离子氧化为氧气并排出储液腔113,以将流经电解除氧单元100的空气中的氧气分离出。
本发明实施例提供的电解除氧装置200中,电解除氧单元100采用第一阴极板120和第二阴极板130分别作为壳体110的两个壁面与壳体110共同限定出储液腔113,阳极板140设置在储液腔113中并位于第一阴极板120和第二阴极板130之间,由于双阴极板的设置,提高了电解除氧单元100的电解除氧效率,也就提高了电解除氧装置200的电解除氧效率。
参见图2、3所示,电解除氧单元100还可包括第一固定框150和第二固定框160,第一固定框150和第二固定框160分别设置在第一阴极板120和第二阴极板130的周向外侧,以分别将第一阴极板120和第二阴极板130分别装配至第一开口111和第二开口112处。
具体地,第一开口111的边缘可形成有第一环状凸缘118,第一固定框150上相应形成有与第一环状凸缘118相对以实现密封接合的第一环状凸起151;第二开口112的边缘形成有第二环状凸缘119,第二固定框160上相应 形成有与第二环状凸缘119相对以实现密封接合的第二环状凸起161,第一固定框150通过第一环状凸起151与第一环状凸缘118密封连接以将第一阴极板120固定在壳体110的第一开口111处,第二固定框160通过第二环状凸起161与第二环状凸缘119密封连接以将第二阴极板130固定在壳体110的第二开口112处。其中,环状凸缘和环状凸起的密封接和方式包括但不限于超声波焊接、摩擦焊接、灌胶粘接。
在本发明一些实施例中,第一阴极板120和第二阴极板130可分别是由从内到外依次层叠设置的催化层、导电层和防水透气层组成。其中,催化层可以采用贵金属或稀有金属催化剂,例如金属铂、金属金、金属银、金属锰或金属铷等。防水透气层可以为防水透气膜,以使得电解液无法从储液腔113渗出,而空气可以透过防水透气层进入储液腔113。导电层可以制作成耐腐金属集流网,例如金属镍、金属钛等,以使其不仅具备较佳的导电性、防腐性和支撑强度。
参见图2、3所示,第一固定框150的上边框顶部一体成型有第一收容件152,第一收容件152与第一固定框150的上边框连通使第一阴极板120的导电层可经第一固定框150的上边框伸入到第一收容件152中。第一收容件152的侧壁上设置有供第一负极连接件170插入第一收容件152内的第一插口153,第一负极连接件170的一端经第一插口153插入到第一收容件152内并与第一阴极板120的导电层连接,使第一阴极板120的导电层可经第一负极连接件170与电源负极连接;第二固定框160的上边框顶部一体成型有第二收容件162,第二收容件162与第二固定框160的上边框连通使第二阴极板130的导电层可经第二固定框160的上边框伸入到第二收容件162中,第二收容件162的侧壁上设置有供第二负极连接件180插入第二收容件162内的第二插口163,第二负极连接件180的一端经第二插口163插入到第二收容件162内并与第二阴极板130的导电层连接,使第二阴极板130的导电层可经第二负极连接件180与电源负极连接。
在本发明一些实施例中,壳体110可以被设置为扁平状,第一开口111和第二开口112分别开设于壳体110上两个相对立的较宽的侧面。由于阴极板覆盖于开口处,因此开口越大,阴极板的面积越大,阴极板与空气的接触面积越大,提高了电解除氧单元100的电解效率。此外,壳体110设置成扁平状还能够缩短电解除氧单元100的宽度,减少其占用厚度,节省空间。
参见图3所示,在本发明一些实施例中,壳体110还限定出与储液腔113相连通的排气腔114,排气腔114上设置有连通排气腔114和壳体110外部的排气口115,排气腔114配置成允许储液腔113内生成的氧气依次经排气腔114和排气口115流向壳体110外部。
具体地,排气腔114设置在储液腔113的上方,排气口115设置于排气腔114的顶壁。由于排气口115与储液腔113距离较远,因此可避免储液腔113内的电解液反应时经排气口115喷溅到壳体110外部。
另外,排气腔114的顶壁上还设置有用于向储液腔113内注入电解液的注液口116,注液口116设置在排气腔114顶壁上,可保证用户注液时不会与储液腔113内的电解液接触。
参见图2、3所示,排气腔114的顶壁上还可设置连通排气腔114和壳体110外部的避让开口117,阳极板140的正极连接端经避让开口117伸出到壳体110外部以与电源正极连接。
另外,为了加强排气腔114的密闭性,避让开口117内设置有弹性密封件190,弹性密封件190上设置有供阳极板140的正极连接端伸出到壳体110外部的开口,阳极板140的正极连接端经弹性密封件190上的开口191伸出到壳体110外部。
参见图3所示,在本发明一些实施例中,阳极板140与阴极板平行且相对设置。以提高其相对面积,促进电解反应正向进行。
此外,经多次试验发现,将阳极板140与阴极板之间的距离设置成5mm至10mm范围内(例如5mm、7mm或者10mm等),既能够避免因阳极板140与阴极板的间距过大而导致反应效率低,又能够避免因间距过小而导致阳极板140产生的氧气无法及时排出,影响反应进程,其技术效果已经在试制产品中得到验证。
图4是根据本发明一个实施例的多个电解除氧单元的并联示意图;图5是根据本发明一个实施例的多个电解除氧单元的串联示意图。参见图4、5所示,在本发明一些实施例中,电解除氧单元100为多个,且储液腔113的侧壁上设置有至少一个连通储液腔113和壳体110外部的管道接口1131,至少一个管道接口1131配置成通过管路与其他电解除氧单元100上位置对应的管道接口1131相连通,以使多个电解除氧单元100的电解液保持一致。
其中,至少一个管道接口1131可以为两个,分别设置在储液腔113的 两个侧壁上,当电解除氧单元100为多个时,多个电解除氧单元100的注液口116也通过管路连通,以方便注液,多个电解除氧单元100的排气口115也通过管路连通,以方便将氧气排到外部。
参见图4、5所示,电解除氧单元100为多个且依次叠置,从而可节约空间。相邻电解除氧单元100的阳极板140相连并接至电源正极,同一电解除氧单元100的第一阴极板120和第二阴极板130相连并接至电源负极,以实现并联。同一电解除氧单元100的第一阴极板120和第二阴极板130相连并与相邻下一电解除氧单元100的阳极板140串接,首个电解除氧单元100的阳极板140接至电源正极,末个电解除氧单元100的第一阴极板120和第二阴极板130相连并接至电源负极,以实现串联。串并联用于满足不同的场景需求。
电解除氧单元100工作时,空气中的氧气在第一阴极板120和第二阴极板130发生还原反应,即:O 2+2H 2O+4e -→4OH -;O 2+H 2O+2e -→HO 2 -+OH -;随着第一阴极板120和第二阴极板130上的还原反应进行,电解出的负离子OH -能够透过第一阴极板120和第二阴极板130进入储液腔113内的电解液内,并在阳极板140上发生氧化反应,即:4OH -→O 2+2H 2O+4e -;HO 2 -+OH -→O 2+H 2O+2e -,最终在阳极板140上生成的氧气从壳体110上的排气口115排出,实现将空气中的氧气分离出。
在组装本发明实施例的电解除氧单元100时,首先可以将阳极板140固定设置于壳体110内,然后可将第一阴极板120嵌入第一固定框150内、第二阴极板130嵌入第二固定框160内,将第一开口111处的第一环状凸缘118和第一固定框150的第一环状凸起151固定连接、第二开口112处的第二环状凸缘119和第二固定框160的第二环状凸起161固定连接,实现第一阴极板120固定在第一开口111处、第二阴极板130固定在第二开口112处,再可将密封件190塞入排气腔114顶壁的避让开口117,分别将第一负极连接件170和第二负极连接件180插入第一固定框150的第一收容件152和第二固定框160的第二收容件162中,最后可经壳体110上的注液口116注入电解液,完成组装。
需要说明的是,将密封件190塞入排气腔114的顶壁的避让开口117和分别将第一负极连接件170和第二负极连接件180插入第一固定框150的第一收容件152和第二固定框160的第二收容件162中的步骤可以在任意步骤 之前或之后,本发明不做限定。
基于同一发明构思,本发明还提出了一种冰箱300,图6是根据本发明一个实施例的冰箱的示意性结构框图。参见图6所示,冰箱300包括如上述任一实施例中的电解除氧装置200。
其中,电解除氧除氧装置200的双面阴极板可与冰箱的储物间室连通,以通过电化学反应消耗储物间室的氧气,以提高冰箱储物间室的保鲜效果。
当然,本领域技术人员在知晓本实施例的技术方案后还可以将该电解除氧装置200设置于内胆的其他位置。例如,内胆的侧壁、底壁或者顶壁上,在此不一一列举。
本发明中,电解除氧单元100的第一阴极板120和第二阴极板130分别设置在壳体110的第一开口111和第二开口112处与壳体110共同限定出承装电解液的储液腔113,阳极板140设置在储液腔113内并处于第一阴极板120与第二阴极板130之间,阴极板配置成电解流经其上的空气中的氧气以生成负离子,阳极板140配置成将负离子氧化为氧气并排出储液腔113以将流经电解除氧单元100的空气中的氧气分离出,本发明由于双面阴极板的设置,提高了电解除氧单元100的电解除氧效率,也提高了电解除氧装置200的电解除氧效率。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种电解除氧装置,包括至少一个电解除氧单元,并且所述电解除氧单元包括:
    壳体,具有第一开口和第二开口;
    第一阴极板和第二阴极板,分别设置在所述第一开口和所述第二开口处以与所述壳体共同限定出用于盛装电解液的储液腔,并配置成电解流经其上的空气中的氧气以生成负离子;
    阳极板,设置在所述储液腔内并处于所述第一阴极板与所述第二阴极板之间,配置成将所述负离子氧化为氧气并排出所述储液腔,以将流经所述电解除氧单元的空气中的氧气分离出。
  2. 根据权利要求1所述的电解除氧装置,其中,
    所述壳体为扁平状,所述第一开口和所述第二开口分别开设于所述壳体上两个相对立的较宽的侧面。
  3. 根据权利要求1所述的电解除氧装置,其中,
    所述壳体还限定出与所述储液腔相连通的排气腔,所述排气腔上设置有连通所述排气腔和所述壳体外部的排气口,所述排气腔配置成允许所述储液腔内生成的氧气依次经所述排气腔和所述排气口流向所述壳体外部。
  4. 根据权利要求3所述的电解除氧装置,其中,
    所述排气腔设置于所述储液腔的上方,所述排气口设置于所述排气腔的顶壁;且
    所述排气腔的顶壁上还设置有用于向所述储液腔注入电解液的注液口。
  5. 根据权利要求3所述的电解除氧装置,其中,
    所述排气腔的顶壁上还设置有连通所述排气腔和所述壳体外部的避让开口,所述阳极板的正极连接端经所述避让开口伸出到所述壳体外部以与电源正极连接。
  6. 根据权利要求1-5中任一项所述的电解除氧装置,其中,
    所述电解除氧单元为多个;且
    所述储液腔的侧壁上设置有至少一个连通所述储液腔和所述壳体外部的管道接口,至少一个所述管道接口配置成通过管路与其他所述电解除氧单元上位置对应的所述管道接口相连通,以使多个所述电解除氧单元的电解液保持一致。
  7. 根据权利要求1-5中任一项所述的电解除氧装置,其中,
    所述电解除氧单元为多个,并且依次叠置;且
    相邻所述电解除氧单元的阳极板相连并接至电源正极,同一所述电解除氧单元的第一阴极板和第二阴极板相连并接至电源负极,以实现并联;
    同一所述电解除氧单元的第一阴极板和第二阴极板相连并与相邻下一电解除氧单元的阳极板串接,首个电解除氧单元的阳极板接至电源正极,末个电解除氧单元的第一阴极板和第二阴极板相连并接至电源负极,以实现串联。
  8. 根据权利要求1-5中任一项所述的电解除氧装置,还包括:
    第一固定框和第二固定框,分别设置在所述第一阴极板和所述第二阴极板的周向外侧,以将所述第一阴极板和所述第二阴极板分别装配至所述第一开口和所述第二开口处;且
    所述第一开口的边缘形成有第一环状凸缘,所述第一固定框上相应形成有与所述第一环状凸缘相对以实现密封接合的第一环状凸起;
    所述第二开口的边缘形成有第二环状凸缘,所述第二固定框上相应形成有与所述第二环状凸缘相对以实现密封接合的第二环状凸起。
  9. 根据权利要求1-5中任一项所述的电解除氧装置,其中,
    所述阳极板与所述阴极板平行且相对设置;
    所述阳极板与所述阴极板之间的间距配置成处于5mm至10mm之间。
  10. 一种冰箱,包括如权利要求1-9任一项所述的电解除氧装置。
PCT/CN2022/141948 2022-01-29 2022-12-26 电解除氧装置和冰箱 WO2023142829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210113147.6A CN116558204A (zh) 2022-01-29 2022-01-29 电解除氧装置和冰箱
CN202210113147.6 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023142829A1 true WO2023142829A1 (zh) 2023-08-03

Family

ID=87470404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141948 WO2023142829A1 (zh) 2022-01-29 2022-12-26 电解除氧装置和冰箱

Country Status (2)

Country Link
CN (1) CN116558204A (zh)
WO (1) WO2023142829A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602698A (zh) * 2015-10-27 2018-09-28 蒂莫·科尔佩拉 利用电流对废水进行净化和消毒的装置的改进的结构
JP2018154923A (ja) * 2017-03-15 2018-10-04 株式会社アルマックス 水素捕集装置及び水素回収システム
CN109850386A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN210175579U (zh) * 2019-05-13 2020-03-24 佛山顺德歌林美电子产品有限公司 一种带除氧装置的储物箱
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
US20210395903A1 (en) * 2020-06-18 2021-12-23 Saudi Arabian Oil Company Tandem electrolysis cell
WO2021257384A1 (en) * 2020-06-18 2021-12-23 Saudi Arabian Oil Company Tandem electrolysis cell
CN217686125U (zh) * 2022-01-29 2022-10-28 青岛海尔电冰箱有限公司 电解除氧装置和冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602698A (zh) * 2015-10-27 2018-09-28 蒂莫·科尔佩拉 利用电流对废水进行净化和消毒的装置的改进的结构
JP2018154923A (ja) * 2017-03-15 2018-10-04 株式会社アルマックス 水素捕集装置及び水素回収システム
CN109850386A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN210175579U (zh) * 2019-05-13 2020-03-24 佛山顺德歌林美电子产品有限公司 一种带除氧装置的储物箱
US20210395903A1 (en) * 2020-06-18 2021-12-23 Saudi Arabian Oil Company Tandem electrolysis cell
WO2021257384A1 (en) * 2020-06-18 2021-12-23 Saudi Arabian Oil Company Tandem electrolysis cell
CN217686125U (zh) * 2022-01-29 2022-10-28 青岛海尔电冰箱有限公司 电解除氧装置和冰箱

Also Published As

Publication number Publication date
CN116558204A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN217844419U (zh) 冰箱及其电解除氧装置
JP4594357B2 (ja) 殺菌剤製造装置
US10164306B2 (en) Battery cell having inward extending cup edge and method of manufacture
JP6001646B2 (ja) 電解液が縁部に浸出することを防止する封止材の代替物としてのガスケットフレームを備える電気化学セル
CN210267753U (zh) 水路结构、热交换器及燃气热水器
WO2023142829A1 (zh) 电解除氧装置和冰箱
CN217686125U (zh) 电解除氧装置和冰箱
CN216409399U (zh) 冰箱
JP4302386B2 (ja) 電解装置
WO2023155665A1 (zh) 冰箱及其电解除氧装置
WO2022242241A1 (zh) 冰箱及其电解除氧装置
CN216409400U (zh) 冰箱及其电解除氧装置
CN216409398U (zh) 冰箱及其电解除氧装置
CN205429052U (zh) 一种空气电池的壳体结构及镁空气电池
JP5150104B2 (ja) 電解槽及びこれを備えた電解水生成装置
CN213061041U (zh) 一种氢气制备装置
CN213266716U (zh) 制氧装置及具有该制氧装置的空调器
CN216114844U (zh) 冰箱及其电解除氧装置
CN205607916U (zh) 一种电化学甲醛传感器
JP2007508456A (ja) 複極式電解槽のための構造ユニット
US11111588B2 (en) Electrolytic reactor of oxyhydrogen machine
CN104852107B (zh) 金属空气燃料电池
CN216409395U (zh) 冰箱
CN217465007U (zh) 冰箱
CN217465006U (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923615

Country of ref document: EP

Kind code of ref document: A1