WO2023142812A1 - 制动系统试验台及制动系统的测试方法 - Google Patents

制动系统试验台及制动系统的测试方法 Download PDF

Info

Publication number
WO2023142812A1
WO2023142812A1 PCT/CN2022/141308 CN2022141308W WO2023142812A1 WO 2023142812 A1 WO2023142812 A1 WO 2023142812A1 CN 2022141308 W CN2022141308 W CN 2022141308W WO 2023142812 A1 WO2023142812 A1 WO 2023142812A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
test
brake system
brake
braking system
Prior art date
Application number
PCT/CN2022/141308
Other languages
English (en)
French (fr)
Inventor
郭笑通
李论
王仕伟
侯杰
陈志刚
吕满意
王伟
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023142812A1 publication Critical patent/WO2023142812A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the present application relates to the braking system testing technology, for example, to a braking system test bench and a testing method of the braking system.
  • IBC integrated Brake Control
  • the test rig for performing in-the-loop bench tests on the performance of IBCs needs to take into account the tests of multiple IBCs.
  • the IBC when it is necessary to carry out an IBC test, the IBC is mounted on the test bench, connected to the brake system load, and after the test module is exhausted from the brake system and the test is debugged, the IBC Carry out the test; when the IBC test is completed, the IBC will be removed and replaced with the next IBC so that the next IBC is connected to the brake system load.
  • the application provides a brake system test bench and a brake system test method to save manpower and time, and shorten the test period of different brake systems.
  • the embodiment of the present application provides a braking system test bench, which is configured to perform a performance test on the braking system, the braking system includes a braking load and an IBC assembly, and the IBC assembly includes an input push rod , the IBC assembly is set to control the action of the braking load, and the braking system test bench includes:
  • N braking system carrying modules arranged in sequence along the first direction; each of the braking system carrying modules is configured to carry and fix a braking system; wherein, N ⁇ 2, and N is an integer;
  • the test module is located on one side of the N brake system load modules; the test module and the brake system load modules are arranged along the second direction; the test module is set to each brake system load module
  • the input push rod of the brake system provides a test signal to perform a performance test on the brake system; wherein the second direction intersects the first direction;
  • the position adjustment module is configured to control the movement of the testing module along the first direction; and/or, configured to control the movement of the N brake system carrying modules along the first direction.
  • the position adjustment module includes a power system adjustment module and a braking system adjustment module
  • the powertrain adjustment module is configured to control the movement of the test module along the first direction
  • the braking system adjustment module is configured to control the movement of the N braking system carrying modules along the first direction.
  • the test module includes a subjective test module and an objective test module; the subjective test module and the objective test module are arranged along the first direction;
  • the subjective testing module includes a brake pedal; the brake pedal is detachably connected to the input push rod;
  • the objective test module includes an actuator and an actuator base; the actuator is fixed on the actuator base; the actuator base is arranged on the power system adjustment module.
  • the cylinder is connected to the input push rod through a clamp.
  • the subjective test module further includes a seat and a seat base; the seat is fixed on the seat base; and the seat base is arranged on the power system adjustment module.
  • the power system adjustment module includes a first motor, a first ball screw mechanism, a first slide rail, and a first displacement sensor;
  • the first ball screw mechanism runs through the cylinder base and the seat base in sequence; and the cylinder base and the seat base are both slidably arranged on the first slide rail;
  • the first motor is configured to drive the first ball screw mechanism so that the first ball screw mechanism drives the cylinder base and the seat base along the first slide rail. the movement in the first direction;
  • the first displacement sensor is configured to acquire the displacement of the cylinder base and/or the seat base.
  • the width of the seat base in the first direction is the same as the width of the actuator base in the first direction, and in the first direction, the seat base The distance from the cylinder base is a fixed value.
  • the brake system bearing module includes a brake bracket and a load base; the brake bracket is fixed on the load base; the load base is arranged on the brake system adjustment module;
  • the load base is configured to carry and secure the braking load
  • the brake bracket is configured to carry and be fixed on the IBC assembly;
  • the brake bracket includes a through-hole structure;
  • the input push rod passes through the through-hole structure and extends to the side of the test module;
  • the IBC assembly fixed on the brake bracket is located between the brake bracket and the brake load fixed on the load base.
  • the brake system adjustment module includes a second motor, a second ball screw mechanism, a second slide rail and a second displacement sensor
  • the second ball screw mechanism sequentially runs through N load bases; and the N load bases are slidably arranged on the second slide rail;
  • the second motor is configured to drive the second ball screw mechanism, so that the second ball screw mechanism drives the N load bases to move along the first direction on the second slide rail;
  • the second displacement sensor is configured to acquire the displacement of the load base.
  • the N braking system carrying modules have the same width in the first direction, and in the first direction, the distance between two adjacent braking system carrying modules is the same and is a fixed value.
  • the brake load includes a brake caliper and a brake disc;
  • the IBC assembly includes an IBC controller and an IBC mechanical structure.
  • the brake system test bench further includes:
  • the locking mechanism is configured to lock the test module and the N braking system carrying modules.
  • the embodiment of the present application also provides a method for testing a braking system, which is implemented by using the above-mentioned braking system test bench, and the method for testing the braking system includes:
  • the position adjustment module controls the test module to move along the first direction, and/or the position adjustment module Controlling the N brake system bearing modules to move along the first direction until the test module is connected to the i-th brake system; wherein, 1 ⁇ i ⁇ N, and i is a positive integer;
  • the test module provides a test signal to the input push rod of the i-th braking system, so as to perform a performance test on the i-th braking system;
  • An implementation manner, before S1, further includes:
  • the position adjustment module controls the test module to move along the first direction, and/or the position adjustment module controls the N brake system carrying modules to move along the first direction until the test module and the N brake system The system bearing modules are all in the initial state.
  • the position adjustment module includes a power system adjustment module and a braking system adjustment module
  • S1 includes:
  • the power system adjustment module controls the movement of the test module in the forward direction of the first direction, and the brake system The adjusting module controls the N braking system carrying modules to move along the negative direction of the first direction until the testing module is connected to the i-th braking system.
  • the test module includes a subjective test module and an objective test module; the subjective test module and the objective test module are arranged along the first direction; the subjective test module includes a brake pedal, a seat and a seat chair base; the brake pedal is detachably connected to the input push rod; the seat is fixed on the seat base; the seat base is set on the power system adjustment module; the objective test The module includes an actuator and an actuator base; the actuator is fixed on the actuator base; the actuator base is set on the power system adjustment module;
  • S2 includes:
  • the brake pedal After the brake pedal is connected to the input push rod of the i-th brake system, the brake pedal receives the tester's brake command and transmits it to the input push rod to control the i-th brake system. Subjective performance test of the braking system;
  • the cylinder After the cylinder is connected and coaxial with the input push rod of the i-th braking system, the cylinder provides a test signal to the input push rod under the control of an external controller, so as to The i-th braking system is subjected to an objective performance test.
  • the cylinder when the test module and the N braking system carrying modules are in the initial state, the cylinder is connected to the input push rod of the first braking system on the first braking system carrying module And coaxial.
  • the power system adjustment module controls the movement of the test module in the positive direction of the first direction, and the The brake system adjustment module controls the N brake system bearing modules to move in the negative direction of the first direction until the test module is connected to the i-th brake system, including:
  • the power system adjustment module controls the seat base and the cylinder base to move forward along the first direction direction to generate a displacement of S1
  • the brake system adjustment module controls the N brake system carrying modules to generate a displacement of S2 along the negative direction of the first direction;
  • the power system adjustment module controls the seat base and the cylinder base to move along the first direction
  • a displacement of S3 is generated in the positive direction
  • the brake system adjustment module controls the N brake system carrying modules to generate a displacement of S4 along the negative direction of the first direction
  • the width of the seat base in the first direction, the width of the cylinder base in the first direction, and the width of each brake system carrying module in the first direction Both are L; the distance between the seat base and the actuator base in the first direction, and the distance between two adjacent braking system load modules in the first direction are both M .
  • Fig. 1 is a structural block diagram of a braking system test bench provided by the embodiment of the present application
  • Fig. 2 is a structural block diagram of another braking system test bench provided by the embodiment of the present application.
  • Fig. 3 is a structural block diagram of another brake system test bench provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of a three-dimensional structure of a braking system test bench provided in an embodiment of the present application
  • Fig. 5 is a three-dimensional structural schematic diagram of another brake system test bench provided by the embodiment of the present application.
  • Fig. 6 is a top structural schematic diagram of a braking system test bench provided in an embodiment of the present application.
  • Fig. 7 is a flow chart of a testing method for a braking system provided by an embodiment of the present application.
  • FIG. 1 is a structural block diagram of a brake system test bench provided by the embodiment of the present application.
  • the brake system 10 includes a brake load 102 and an IBC assembly 101, and the IBC assembly 101 includes an input push rod 1011 , the IBC assembly 101 is configured to control the action of the braking load 102; the braking load 102 may include a brake caliper and a brake disc, etc., and the IBC assembly 101 may include an IBC controller and an IBC mechanical structure.
  • the brake system test bench includes: N brake system carrying modules 20 arranged in sequence along the first direction X; each brake system carrying module (21, 22, ..., 2N) It is set to carry and fix a brake system (11, 12, ..., 1N); wherein, N ⁇ 2, and N is an integer; the test module 30 is located on one side of the N brake system bearing modules; the test module 30 and The braking system carrying modules 20 are arranged along the second direction Y; the testing module 30 is configured to provide a test signal to the input push rod 1011 of the braking system 10 on each braking system carrying module 30, so as to test each braking system 10 Carrying out performance testing; wherein, the second direction Y intersects the first direction X; the position adjustment module 40 is configured to control the movement of the testing module 30 along the first direction X.
  • the N braking system carrying modules 20 are respectively the first braking system carrying module 21, the second braking system carrying module 22, ..., and the Nth braking system carrying module 2N.
  • the first braking system carrying module 21 Set to carry and fix the first brake system 11
  • the second brake system carrying module 22 is set to carry and fix the second brake system 12
  • the Nth brake system carrying module 2N is set to carry and fix the Nth brake system Dynamic system 1N.
  • the position adjustment module 40 can be used to control the test module 30 along the The first direction X moves, and the braking system (11, 12, ..., 1N) carried and fixed by the N braking system carrying modules (21, 22, ..., 2N) remains motionless until the test module 30 and the first
  • the test module 30 provides a test signal to the input push rod 1011 of the first braking system 11 to perform a performance test on the first braking system 11;
  • the position adjustment module 40 continues to control the testing module 30 to move along the first direction X, while the N braking system carrying modules (21, 22, ..., 2N) carry and fix the braking system (11 , 12, ..., 1N) remain motionless until after the test module 30 is connected with the input push rod 1011 of the second brake system 12, the
  • multiple braking system bearing modules are set in the braking system test bench to carry and fix multiple identical or different braking systems, so that the same test module can be used to test multiple braking systems, and During the test process, the test module only needs to be controlled to move along the first direction through the position adjustment module, so that the test module is connected with each brake system in turn, and the performance test of a plurality of different brake systems can be performed in sequence;
  • the system repeatedly performs exhaust and test debugging, which can save manpower and time, shorten the test cycle of different braking systems, and meet the short-cycle product development method.
  • Fig. 1 is only an exemplary drawing of the embodiment of the present application. It is only exemplary shown in Fig. 1 that the position adjustment module 40 controls the movement of the testing module 20 along the first direction X, and in the embodiment of the present application, its movement The method is not limited to this.
  • Fig. 2 is a structural block diagram of another braking system test bench provided by the embodiment of the present application.
  • the position adjustment module 40 is configured to control the movement of N braking system bearing modules 20 along the first direction X.
  • N when performing a performance test on the brake system (11, 12, ..., 1N) carried and fixed by N braking system load modules (21, 22, ..., 2N), N can be controlled by the position adjustment module 40
  • Each braking system carrying module (21, 22, ..., 2N) moves along the first direction X, while the testing module 30 remains stationary, so that the input push rod 1011 of each braking system (11, 12, ..., 1N) They are sequentially connected to the test module 30 so as to perform performance tests on N brake systems (11, 12, . . . , 1N) in sequence.
  • Fig. 3 is a structural block diagram of another brake system test bench provided by the embodiment of the present application.
  • the position adjustment module 40 can not only control the test module 20 along the The movement in the first direction X can also control the N braking system bearing modules (21, 22, . . . , 2N) to move in the first direction X.
  • the position adjustment module 40 includes a power system adjustment module 41 and a brake system adjustment module 42; the power system adjustment module 41 is configured to control the movement of the test module 30 along the first direction X; the brake system adjustment module 42 is configured to control N The brake system carrying modules (21, 22, . . . , 2N) move along the first direction X.
  • the power system adjustment module 41 can control the test module 30 to The positive direction +X of the first direction X moves, and the brake system adjustment module 42 controls N brake system carrying modules (21, 22, ..., 2N) to move along the negative direction -X of the first direction X until The input push rod 1011 of the i-th brake system is connected to the test module 30, so that the test module 30 can provide a test signal to the input push rod 1011 of the i-th brake system to perform a performance test on the i-th brake system.
  • the power system adjustment module 41 and the brake system adjustment module 42 cooperate with each other to respectively control the test module 30 and the N brake system carrying modules (21, 22, . . . , 2N) to move in opposite directions, so that the test module 30 Quickly connect with corresponding brake system 10, thereby can save test time, improve test efficiency; Simultaneously, power system adjustment module 41 and brake system adjustment module 42 respectively control test module 30 and N brake system carrying modules (21, 22, ..., 2N) move in the opposite direction.
  • the power system adjustment module 41 can control the displacement deviation of the test module 30 movement and the brake system adjustment module 42 can control N brake system carrying modules 20
  • the displacement deviations of the motion cancel each other out, so that the displacements of the test module 30 and the N brake system bearing modules 20 can be more accurately controlled, so that the test module 30 is accurately connected with the corresponding brake system 10, thereby improving the test efficiency and testing efficiency.
  • Accuracy when the power system adjustment module 41 and the brake system adjustment module 42 respectively control the test module 30 and N brake system carrying modules (21, 22, ..., 2N) to move in opposite directions, it is also conducive to The size of the brake system test bench in the X direction is reduced, thereby helping to reduce the volume of the brake system test bench.
  • the braking system test bench in the embodiment of the present application includes N braking system carrying modules 20 , which can respectively carry and fix N braking systems 10 .
  • N may be any integer greater than or equal to 2, that is, N may be 2, 3, 4, . . . , and the value of N is not limited in this embodiment of the present application.
  • the technical solution of the embodiment of the present application will be exemplarily described below by taking N equal to 3 as an example.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a brake system test bench provided in an embodiment of the present application.
  • the test module 30 includes a subjective test module 31 and an objective test module 32;
  • the test module 31 and the objective test module 32 are arranged along the first direction X;
  • the subjective test module 31 includes a brake pedal 311;
  • the brake pedal 311 is detachably connected to the input push rod 1011;
  • the objective test module 32 includes an actuator 322 and an actuator
  • the actuating cylinder 322 is fixed on the actuating cylinder base 321 ;
  • the actuating cylinder base 321 is arranged on the power system adjustment module 41 .
  • Fig. 5 is a three-dimensional structural schematic diagram of another brake system test bench provided by the embodiment of the present application.
  • the brake pedal 311 when performing an objective performance test, the brake pedal 311 is in a disassembled state, that is, the brake pedal 311 Not connected to the input push rod 1011 of any braking system (11, 12, 13); at this time, the power system adjustment module 41 controls the cylinder base 321 to move along the first direction X, so that the cylinder 322 is connected with the corresponding
  • the input push rod 1011 of the braking system (11, 12 or 13) is connected and coaxial; an external controller (not shown in the figure) will send a corresponding control signal to the actuator 322, so that the actuator 322 acts to
  • the input push rod 1011 of the corresponding braking system (11, 12 or 13) transmits kinetic energy, so that the input push rod 1011 makes a corresponding reaction when receiving the kinetic energy transmitted by the cylinder 322, so that the IBC assembly 101 controls the braking load 102 makes corresponding
  • the power system adjustment module 41 controls the cylinder base 321 to move along the first direction X until the cylinder 322 is coaxial with the input push rod 1011 of the corresponding braking system (11, 12 or 13), it can also be A corresponding clamp is provided at the contact position between the input push rod 1011 and the cylinder 322 , so that the cylinder 322 is connected to the input push rod 1011 through the clamp, so as to ensure the stability of the connection between the cylinder 322 and the input push rod 1011 .
  • the brake pedal 311 can be connected to the input push rod 1011 of the corresponding brake system (11, 12 or 13), and the brake pedal 311 is stepped on by the tester so that the brake pedal 311 moves toward the corresponding
  • the input push rod 1011 of the braking system (11, 12 or 13) transmits kinetic energy, so that when the input push rod 1011 receives the kinetic energy transmitted by the brake pedal 311, it reacts accordingly, so that the IBC assembly 101 controls the braking load 102 Make corresponding actions, and detect the action of the braking load 102 through corresponding sensors (such as pressure sensors, clamping sensors, etc.), and feed back corresponding sensor signals to the external controller, so that the external controller
  • the signal outputs the test result corresponding to the braking system (11, 12 or 13), so that the tester can determine the subjective braking performance of the corresponding braking system (11, 12 or 13) according to the test result output by the external controller.
  • the subjective braking performance test and the objective braking performance test of the N braking systems can be realized, so that the braking performance of the N braking systems can be fully known, and the test results more accurate and complete.
  • the subjective test module 31 also includes a seat 313 and a seat base 312; the seat 313 is fixed on the seat base 312; the seat base 312 is arranged on the power system adjustment module 41; thus, When performing a subjective performance test, the power system adjustment module 41 also needs to control the seat base 312 to move along the first direction X, so that the seat 313 is opposite to the corresponding braking system (11, 12 or 13), so that the tester can sit
  • the brake pedal 311 is stepped on the seat 313, so as to perform a subjective braking performance test on the corresponding braking system (11, 12 or 13).
  • the seat 313 arranged on the seat base 312 can also move along the second direction Y to adjust the distance between the seat 313 and the input push rod 1011 in the second direction Y, so that when performing a subjective performance test, the The position of the seat 313 is adjusted according to the needs of the tester to meet the ergonomic size.
  • the brake system bearing module 20 includes a brake bracket 201 and a load base 202; the brake bracket 201 is fixed on the load base 202; the load base 202 is arranged on the brake system adjustment module 42 Above; the load base 202 is set to carry and fix the braking load 102; the brake bracket 201 is set to carry and fix the IBC assembly 101; the brake bracket 201 includes a through-hole structure; the input push rod 1011 runs through the through-hole structure and extends to the test module 30 side.
  • the IBC assembly 101 fixed on the brake bracket 201 is located between the brake bracket 201 and the brake load 102 fixed on the load base 202 .
  • the load base 202 can be controlled to move along the first direction X through the brake system adjustment module 42, so that the load base 202 drives the IBC assembly 101 fixed on the brake bracket 201 and the brake load 102 fixed on the load base 202 Move along the first direction X, so that the test module 30 can perform a performance test on the corresponding braking system 10 .
  • the power system adjustment module 41 includes a first motor 411 , a first ball screw mechanism 412 , a first slide rail 413 and a first displacement sensor 414 ;
  • the cylinder base 321 and the seat base 312; and the cylinder base 321 and the seat base 312 are both slidably arranged on the first slide rail 413;
  • the first motor 411 is configured to drive the first ball screw mechanism 412, so that the first A ball screw mechanism 412 drives the actuator base 321 and the seat base 312 to move along the first direction X on the first slide rail 413;
  • the first displacement sensor 414 is configured to obtain the actuator base 321 and/or the seat base 312 displacement.
  • the power system adjustment module 41 controls the movement of the subjective test module 31 and the objective test module 32 along the first direction X: by controlling the rotation of the first motor 411, the first motor 411 drives the first ball screw mechanism 412 to rotate; When the first ball screw mechanism 412 rotates, the cylinder base 321 and the seat base 312 are driven by the first ball screw mechanism 412 to be displaced along the first direction X on the first slide rail 413; at this time, The displacement of the cylinder base 321 and/or the seat base 312 is obtained in real time through the first displacement sensor 414, so as to control the first displacement when the cylinder base 321 and the seat base 312 move a preset displacement in the first direction.
  • a motor 411 drives the first ball screw mechanism 412 to stop rotating, so that the subjective test module 31 or the objective test module 32 performs a performance test on the corresponding braking system (11, 12 or 13).
  • the first motor 411 may be a servo motor.
  • the brake system adjustment module 42 includes a second motor 421 , a second ball screw mechanism 422 , a second slide 423 rail and a second displacement sensor 424 ;
  • the second ball screw mechanism 422 runs through the N load bases 202; and N load bases 202 are slidably disposed on the second slide rail 423;
  • the second motor 421 is configured to drive the second ball screw mechanism 422, so that the second ball screw mechanism 422 controls N loads
  • the base 202 moves along the first direction X on the second slide rail 423 ;
  • the second displacement sensor 424 is configured to acquire the displacement of the load base 202 .
  • the specific implementation method for the braking system adjustment module 42 to control the N braking system carrying modules 20 to move along the first direction X is: by controlling the rotation of the second motor 421, the second motor 421 drives the second ball screw mechanism 422 to rotate ;
  • the second ball screw mechanism 422 rotates, the load base 202 is driven by the second ball screw mechanism 422 to move along the first direction X on the second slide rail 423; at this time, the second displacement sensor 424 Obtain the displacement of the load base 202 in real time, so that when the load base 202 moves a preset displacement in the first direction, control the second motor 421 to drive the second ball screw mechanism 422 to stop rotating, so that the corresponding braking system (11 , 12 or 13) receiving the performance test performed by the test module.
  • the second motor 421 can also be a servo motor.
  • the width of the seat base 312 in the first direction X is the same as the width of the actuator base 321 in the first direction X, and in the first direction X, the seat base The distance between 312 and the cylinder base 321 is a fixed value.
  • the power system adjustment module 41 controls the seat base 312 and the cylinder base 321 to move simultaneously along the positive direction +X or the negative direction ⁇ X of the first direction X.
  • the N braking system carrying modules 20 have the same width in the first direction X, and in the first direction X, the distance between two adjacent braking system carrying modules 20 is the same and is a fixed value. In this way, the brake system adjustment module 42 will control the N brake system carrying modules 20 to move simultaneously in the same direction.
  • FIG. 6 is a top structural schematic diagram of a brake system test bench provided in an embodiment of the present application.
  • N is equal to 3
  • the seat base 312 is in the first direction X
  • the width of the cylinder base 321 in the first direction X, and the width of each braking system bearing module 20 (ie, the load base 202 ) in the first direction X are all L, and the seat base 312 and the working seat base 312
  • the distance between the cylinder base 321 in the first direction X and the distance between two adjacent brake system bearing modules 20 (that is, two adjacent load bases 202 ) in the first direction X are M as examples.
  • the testing process of N brake systems is divided into subjective testing process and objective testing process, and the testing process is as follows;
  • the brake pedal 311 Before performing the performance test, the brake pedal 311 is removed; the first motor 411 is controlled to drive the subjective test module 31 and the objective test module 32 to slide synchronously along the first slide rail 413, and the second motor 421 is controlled to drive N brakes.
  • the system carrying modules (21, 22, 23) slide synchronously along the second slide rail 423, so that the axis of the input push rod 1011 of the first braking system 11 is coaxial with the axis of the cylinder 322 in the objective test module 32 , define this state as an initial state; at this time, adjust the displacement detection structures of the first displacement sensor 414 and the second displacement sensor 424 to an initial value, such as 0, and define it as an initial displacement.
  • the first motor 411 is controlled to drive the subjective test module 31 and the objective test module synchronously along the first slide rail 413 Sliding until the displacement S1 measured by the first displacement sensor 414 is:
  • the axis of the input push rod 1011 of the i-th braking system is coaxial with the axis of the cylinder 322 in the objective test module 32, and the input push rod 1011 and the cylinder of the i-th brake system are clamped by a clamp After 322, the objective braking performance test can be performed on the i-th braking system until all the braking systems (11, 12, 13) complete the objective braking performance test, and the N modules can be controlled to return to the initial state.
  • the first motor 411 is controlled to drive the subjective test module 31 and the objective test module synchronously along the first The slide rail 413 slides until the displacement S3 measured by the first displacement sensor 414 is:
  • the input push rod 1011 of the i-th brake system is opposite to the seat 313 in the subjective test module 31, and by installing the brake pedal 311 to the input push rod 1011 of the i-th brake system, the Subjective braking performance tests are performed on the braking system until all the braking systems (11, 12, 13) complete the subjective braking performance tests, and the N modules can be controlled to return to the initial state.
  • the braking system test bench may further include a locking mechanism configured as a locking test module and N braking system load-bearing modules.
  • a locking mechanism configured as a locking test module and N braking system load-bearing modules.
  • the lock mechanism can be used to lock the test module and the N brake system load modules to prevent the N brake system load modules from being damaged.
  • the testing module and the N braking system load-carrying modules move relative to each other, which affects the testing process, thereby improving the testing efficiency and testing accuracy.
  • Fig. 7 is a flow chart of a method for testing a braking system provided in an embodiment of the present application. As shown in Fig. 7, the method for testing the braking system includes:
  • the position adjustment module controls the test module to move along the first direction, and/or the position adjustment module controls N brake system load-bearing modules Moving along the first direction until the test module is connected to the i-th braking system; wherein, 1 ⁇ i ⁇ N, and i is a positive integer.
  • the test module provides a test signal to the input push rod of the i-th braking system, so as to perform a performance test on the i-th braking system.
  • the position adjustment module 40 controls the movement of the testing module 30 along the first direction X, and/or controls the brake system ( 11, 12, ..., 1N) move along the first direction X until the test module 30 is connected to the input push rod 1011 of the first brake system 11, and the test module 30 sends the input push rod 1011 of the first brake system 11 Provide a test signal to perform a performance test on the first braking system 11; after completing the performance test on the first braking system 11, the position adjustment module 40 continues to control the movement of the testing module 30 along the first direction X, and/or controls The brake system carrying modules (21, 22, ..., 2N) carry and fix the brake system (11, 12, ..., 1N) to continue to move along the first direction X until the test module 30 and the second brake system 12 After the input push rod 1011 is connected, the test module 30 provides a test signal to the input push rod 1011 of the second braking system 12 to perform a performance test on the second braking system 12; After the test, the position
  • the position adjustment module controls the test module and/or N brake system carrying modules to move along the first direction, so as to sequentially test the braking performance of different braking systems; thus, when testing multiple braking systems During the performance test, there is no need to frequently disassemble and assemble the brake system, and it is only necessary to exhaust and test the brake system of the test module once at the beginning of the test, without repeating the exhaust and test for each brake system Debugging, which can save manpower and time, and meet the short-cycle product development method.
  • test method of the brake system also includes S0 before S1, which is:
  • the position adjustment module controls the test module to move along the first direction, and/or the position adjustment module controls the N brake system load modules to move along the first direction until the test module and the N brake system load modules are in the initial state .
  • test module and the N brake system load modules Before the performance test, it is also necessary to adjust the test module and the N brake system load modules to the initial position, so that the test module and the N brake system load modules are in the initial state, so that in the subsequent test process, the The initial state is used as a reference, and the test module and/or the N brake system carrying modules are controlled to move along the first direction.
  • S1 includes: when pre-testing the braking system on the i-th brake system carrying module, the power system adjustment module controls the test module Moving in the positive direction of the first direction, and the brake system adjustment module controls N brake system carrying modules to move in the negative direction of the first direction until the test module is connected to the i-th brake system.
  • the power system adjustment module 41 can control the test module 30 to move along the positive direction +X of the first direction X
  • the brake system adjustment module 42 controls N brake system bearing modules (21, 22, ..., 2N) to move along the negative direction -X of the first direction X until the input push rod 1011 of the i-th brake system is connected to
  • the test module 30 is connected so that the test module 30 can provide a test signal to the input push rod 1011 of the i-th braking system, so as to perform a performance test on the i-th braking system.
  • the power system adjustment module 41 and the brake system adjustment module 42 cooperate with each other to respectively control the test module 30 and the N brake system carrying modules (21, 22, . . . , 2N) to move in opposite directions, so that the test module 30 Quickly connect with the corresponding braking system 10 to offset the displacement deviation in the positive direction +X of the first direction X and the negative direction -X of the first direction X, thereby saving test time, improving test efficiency and test accuracy .
  • the test module includes a subjective test module and an objective test module; the subjective test module and the objective test module are arranged along the first direction; the subjective test module includes a brake pedal, a seat and a seat base; the brake pedal and the input
  • the push rod is detachably connected; the seat is fixed on the seat base; the seat base is set on the power system adjustment module; the objective test module includes the actuator and the actuator base; the actuator is fixed on the actuator base; The cylinder base is set on the power system adjustment module; at this time, S2 includes: after the brake pedal is connected with the input push rod of the i-th brake system, the brake pedal receives the tester’s braking command and transmits it to Input the push rod to perform subjective performance test on the i-th brake system; or, after the actuator is connected and coaxial with the input push rod of the i-th brake system, the actuator is under the control of an external controller to input to The push rod provides a test signal for objective performance testing of the i-th braking system.
  • the subjective braking performance test and the objective braking performance test of the N braking systems can be tested, so that the braking performance of the N braking systems can be fully known, making the test results more accurate. Accurate and complete.
  • the cylinder is connected and coaxial with the input push rod of the first braking system on the first braking system carrying module.
  • the power system adjustment module controls the movement of the test module in the forward direction of the first direction, and the brake system adjusts The module controls N braking system carrying modules to move in the negative direction of the first direction until the test module is connected to the i-th braking system, including:
  • the power system adjustment module controls the seat base and the actuator base to generate a displacement of S 1 along the positive direction of the first direction, And the brake system adjustment module controls the N brake system bearing modules to generate a displacement of S2 along the negative direction of the first direction:
  • the power system adjustment module controls the seat base and the cylinder base to generate a displacement of S3 in the positive direction along the first direction amount
  • the brake system adjustment module controls the N brake system bearing modules to generate a displacement of S4 along the negative direction of the first direction:
  • the width of the seat base in the first direction, the width of the actuator base in the first direction, and the width of each braking system load module in the first direction are all L; the seat base and the actuating Both the distance between the cylinder bases in the first direction and the distance between two adjacent brake system carrying modules in the first direction are M.
  • the power system adjustment module 41 controls the seat base 312 and the cylinder base 321 to move synchronously along the positive direction +X of the first direction X
  • the brake system adjustment module 42 controls the N brake system bearing modules (21, 22, 23) to move synchronously along the negative direction -X of the first direction X, so that the input push rod 1011 of the first brake system 11
  • the axis is coaxial with the axis of the cylinder 322, and this state is defined as the initial state.
  • the power system adjustment module 41 controls the seat base 312 and the cylinder base 321 to move along the first direction synchronously
  • the positive direction of X + the displacement of S 1 in X, S 1 is:
  • the brake system adjustment module 42 controls the N brake system bearing modules (21, 22, 23) to move synchronously along the negative direction -X of the first direction X to generate the displacement of S2 , and S2 is:
  • the axis of the input push rod 1011 of the i-th braking system is coaxial with the axis of the cylinder 322 in the objective test module 32, and the input push rod 1011 and the cylinder of the i-th brake system are clamped by a clamp After 322, an objective braking performance test can be performed on the i-th braking system until all the braking systems (11, 12, 13) complete the objective braking performance test, and multiple modules can be controlled to return to the initial state.
  • the power system adjustment module 41 controls the seat base 312 and the cylinder base 321 to move synchronously along the The displacement of S 3 in the forward direction +X of the first direction X, S 3 is:
  • the brake system adjustment module 42 controls the N brake system bearing modules (21, 22, 23) to move synchronously along the negative direction -X of the first direction X to generate the displacement of S4 , and S4 is:
  • the input push rod 1011 of the i-th brake system is opposite to the seat 313 in the subjective test module 31, and by installing the brake pedal 311 to the input push rod 1011 of the i-th brake system, the Subjective braking performance tests are performed on the braking systems until all the braking systems (11, 12, 13) complete the subjective braking performance tests, and multiple modules can be controlled to return to the initial state.
  • This application can be compatible with multiple brake systems in-ring bench tests at the same time.
  • the power system adjustment module and the brake system adjustment module need to be operated, so that the subjective test module and the objective test module are compatible with the corresponding It is enough to align the brake system of the brake system without re-exhausting the brake system, without refitting and debugging the test bench hardware, which greatly shortens the test cycle;
  • the power system adjustment module and the brake system adjustment module are used to control the test module separately (subjective test module and the objective test module) and N brake system load-bearing modules move in opposite directions, and the deviation of displacement can be offset by the principle of difference, so that the displacement control is more precise, and both the test module and the brake system load-bearing module can move , which is beneficial to reduce the volume of the brake system test bench.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种制动系统试验台及制动系统(10)的测试方法,设置为对制动系统(10)进行性能测试,制动系统(10)包括制动负载(102)和IBC总成(101),IBC总成(101)包括输入推杆(1011),IBC总成(101)设置为控制制动负载(102)动作,制动系统试验台包括:沿第一方向依序排列的N个制动系统承载模块(20):每个制动系统承载模块(20)设置为承载和固定一制动系统(10);测试模块(30),设置为向每个制动系统承载模块(20)上的制动系统(10)的输入推杆(1011)提供测试信号,以对每个制动系统(10)进行性能测试;位置调节模决(40),设置为控制测试模块(30)沿第一方向运动;和/或,设置为控制N个制动系统承载模块(20)沿第一方向运动。

Description

制动系统试验台及制动系统的测试方法
本申请要求在2022年01月28日提交中国专利局、申请号为202210105069.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及制动系统测试技术,例如涉及一种制动系统试验台及制动系统的测试方法。
背景技术
随着汽车智能化的发展,越来越多的车辆的制动系统开始采用集成式制动控制(Integrated Brake Control,IBC)单元的形式。在IBC开发完成后,需要对IBC的性能进行在环台架试验,以确保IBC投入使用时,能够满足相应的制动性能。
由于汽车主机厂会同时开发多个车型,因此会存在多个车型IBC同时参与开发的情况。因此,对IBC的性能进行在环台架试验的试验台需要兼顾多个IBC的试验。相关技术中,当需要进行一个IBC的试验时,将该IBC装在试验台上,使其与制动系统负载连接,在对测试模块进行制动系统排气,以及试验调试后,对该IBC进行测试;当该IBC测试完成后,会将该IBC拆下,换装下一IBC,使得下一IBC与制动系统负载连接,此时需要重新进行制动系统排气,以及重新进行试验调试。如此,在对不同IBC进行测试时,需要耗费大量的人力及时间,不满足短周期的产品开发方式。
发明内容
本申请提供一种制动系统试验台及制动系统的测试方法,以节省人力及时间,缩短不同制动系统的测试周期。
第一方面,本申请实施例提供一种制动系统试验台,设置为对制动系统进行性能测试,所述制动系统包括制动负载和IBC总成,所述IBC总成包括输入推杆,所述IBC总成设置为控制所述制动负载动作,所述制动系统试验台包括:
沿第一方向依序排列的N个制动系统承载模块;每个所述制动系统承载模块设置为承载和固定一制动系统;其中,N≥2,且N为整数;
测试模块,位于所述N个制动系统承载模块的一侧;所述测试模块和所述制动系统承载模块沿第二方向排列;所述测试模块设置为向每个制动系统承载 模块上的所述制动系统的所述输入推杆提供测试信号,以对所述制动系统进行性能测试;其中,所述第二方向与所述第一方向交叉;
位置调节模块,设置为控制所述测试模块沿所述第一方向运动;和/或,设置为控制所述N个制动系统承载模块沿所述第一方向运动。
一实施方式,所述位置调节模块包括动力系统调节模块和制动系统调节模块;
所述动力系统调节模块设置为控制所述测试模块沿所述第一方向运动;
所述制动系统调节模块设置为控制所述N个制动系统承载模块沿所述第一方向运动。
一实施方式,所述测试模块包括主观测试模块和客观测试模块;所述主观测试模块与所述客观测试模块沿所述第一方向排列;
所述主观测试模块包括制动踏板;所述制动踏板与所述输入推杆可拆卸连接;
所述客观测试模块包括作动缸和作动缸底座;所述作动缸固定于所述作动缸底座上;所述作动缸底座设置于所述动力系统调节模块上。
一实施方式,所述作动缸通过夹具与所述输入推杆连接。
一实施方式,所述主观测试模块还包括座椅和座椅底座;所述座椅固定于所述座椅底座上;所述座椅底座设置于所述动力系统调节模块上。
一实施方式,所述动力系统调节模块包括第一电机、第一滚珠丝杠机构、第一滑轨和第一位移传感器;
所述第一滚珠丝杠机构依次贯穿所述作动缸底座和所述座椅底座;且所述作动缸底座和所述座椅底座均滑动设置于所述第一滑轨上;
所述第一电机设置为驱动所述第一滚珠丝杠机构,以使所述第一滚珠丝杠机构带动所述作动缸底座和所述座椅底座在所述第一滑轨上沿所述第一方向运动;
所述第一位移传感器设置为获取所述作动缸底座和/或所述座椅底座的位移量。
一实施方式,所述座椅底座在所述第一方向上的宽度与所述作动缸底座在所述第一方向上的宽度相同,且在所述第一方向上,所述座椅底座与所述作动缸底座的间距为固定值。
一实施方式,所述制动系统承载模块包括制动支架和负载底座;所述制动 支架固定于所述负载底座上;所述负载底座设置于所述制动系统调节模块上;
所述负载底座设置为承载和固定所述制动负载;
所述制动支架设置为承载和固定于所述IBC总成;所述制动支架包括通孔结构;所述输入推杆贯穿所述通孔结构,并延伸至所述测试模块侧;
其中,固定于所述制动支架上的所述IBC总成位于所述制动支架与固定于所述负载底座上的所述制动负载之间。
一实施方式,所述制动系统调节模块包括第二电机、第二滚珠丝杠机构、第二滑轨和第二位移传感器
所述第二滚珠丝杠机构依次贯穿N个负载底座;且所述N个负载底座滑动设置于所述第二滑轨上;
所述第二电机设置为驱动所述第二滚珠丝杠机构,以使所述第二滚珠丝杠机构带动所述N个负载底座在所述第二滑轨上沿所述第一方向运动;
所述第二位移传感器设置为获取所述负载底座的位移量。
一实施方式,所述N个制动系统承载模块在所述第一方向上的宽度相同,且在所述第一方向上,相邻两个所述制动系统承载模块之间的间距相同且为固定值。
一实施方式,所述制动负载包括制动钳和制动盘;所述IBC总成包括IBC控制器和IBC机械结构。
一实施方式,所述制动系统试验台还包括:
锁止机构,设置为锁止所述测试模块和所述N个制动系统承载模块。
第二方面,本申请实施例还提供了一种制动系统的测试方法,采用上述制动系统试验台执行,该制动系统的测试方法包括:
S1、在预对第i制动系统承载模块上的第i制动系统进行性能测试时,所述位置调节模块控制所述测试模块沿所述第一方向运动,和/或所述位置调节模块控制所述N个制动系统承载模块沿所述第一方向运动,直至所述测试模块与所述第i制动系统连接;其中,1≤i≤N,且i为正整数;
S2、所述测试模块向所述第i制动系统的输入推杆提供测试信号,以对所述第i制动系统进行性能测试;
S3、重复执行S1~S2,直至完成所需性能测试。
一实施方式,在S1之前,还包括:
S0、位置调节模块控制所述测试模块沿所述第一方向运动,和/或位置调节 模块控制N个制动系统承载模块沿所述第一方向运动,直至所述测试模块和N个制动系统承载模块均处于初始状态。
一实施方式,所述位置调节模块包括动力系统调节模块和制动系统调节模块;
S1包括:
在预对第i制动系统承载模块上的第i制动系统进行测试时,所述动力系统调节模块控制所述测试模块沿所述第一方向的正向方向运动,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向运动,直至所述测试模块与所述第i制动系统连接。
一实施方式,所述测试模块包括主观测试模块和客观测试模块;所述主观测试模块与所述客观测试模块沿所述第一方向排列;所述主观测试模块包括制动踏板、座椅和座椅底座;所述制动踏板与所述输入推杆可拆卸连接;所述座椅固定于所述座椅底座上;所述座椅底座设置于所述动力系统调节模块上;所述客观测试模块包括作动缸和作动缸底座;所述作动缸固定于所述作动缸底座上;所述作动缸底座设置于所述动力系统调节模块上;
S2包括:
在将所述制动踏板与所述第i制动系统的输入推杆连接后,所述制动踏板接收测试员的制动指令,并传递至所述输入推杆,以对所述第i制动系统进行主观性能测试;
或者,在所述作动缸与所述第i制动系统的输入推杆连接且同轴后,所述作动缸在外部控制器的控制下向所述输入推杆提供测试信号,以对所述第i制动系统进行客观性能测试。
一实施方式,在所述测试模块和所述N个制动系统承载模块均处于初始状态时,所述作动缸与第一制动系统承载模块上的第一制动系统的输入推杆连接且同轴。
一实施方式,在预对第i制动系统承载模块上的第i制动系统进行测试时,所述动力系统调节模块控制所述测试模块沿所述第一方向的正向方向运动,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向运动,直至所述测试模块与所述第i制动系统连接,包括:
在预对第i制动系统承载模块上的第i制动系统进行客观性能测试时,所述动力系统调节模块控制所述座椅底座和所述作动缸底座沿所述第一方向正向方向产生S 1的位移量,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向产生S 2的位移量;
Figure PCTCN2022141308-appb-000001
Figure PCTCN2022141308-appb-000002
或者,在预对第i制动系统承载模块上的第i制动系统进行主观性能测试时,所述动力系统调节模块控制所述座椅底座和所述作动缸底座沿所述第一方向正向方向产生S 3的位移量,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向产生S 4的位移量;
Figure PCTCN2022141308-appb-000003
Figure PCTCN2022141308-appb-000004
其中,所述座椅底座在所述第一方向上的宽度、所述作动缸底座在所述第一方向上的宽度、以及每个制动系统承载模块在所述第一方向上的宽度均为L;所述座椅底座与所述作动缸底座在所述第一方向上的间距、以及相邻两个所述制动系统承载模块在所述第一方向上的间距均为M。
附图说明
图1是本申请实施例提供的一种制动系统试验台的结构框图;
图2是本申请实施例提供的另一种制动系统试验台的结构框图;
图3是本申请实施例提供的又一种制动系统试验台的结构框图;
图4是本申请实施例提供的一种制动系统试验台的立体结构示意图;
图5是本申请实施例提供的另一种制动系统试验台的立体结构示意图;
图6是本申请实施例提供的一种制动系统试验台的俯视结构示意图;
图7是本申请实施例提供的一种制动系统的测试方法的流程图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
本申请实施例提供一种制动系统试验台,该制动系统试验台能够对制动系统进行性能测试。图1是本申请实施例提供的一种制动系统试验台的结构框图,如图1所示,制动系统10包括制动负载102和IBC总成101,IBC总成101包括输入推杆1011,该IBC总成101设置为控制制动负载102动作;制动负载102可以包括制动钳和制动盘等,IBC总成101可以包括IBC控制器和IBC机械结 构等。
相应的,如图1所示,制动系统试验台包括:沿第一方向X依序排列的N个制动系统承载模块20;每个制动系统承载模块(21、22、…、2N)设置为承载和固定一制动系统(11、12、…、1N);其中,N≥2,且N为整数;测试模块30,位于N个制动系统承载模块的一侧;测试模块30和制动系统承载模块20沿第二方向Y排列;测试模块30设置为向每个制动系统承载模块30上的制动系统10的输入推杆1011提供测试信号,以对每个制动系统10进行性能测试;其中,第二方向Y与第一方向X交叉;位置调节模块40,设置为控制测试模块30沿第一方向X运动。
N个制动系统承载模块20分别为第一制动系统承载模块21、第二制动系统承载模块22、…、以及第N制动系统承载模块2N,此时第一制动系统承载模块21设置为承载和固定第一制动系统11、第二制动系统承载模块22设置为承载和固定第二制动系统12,…,第N制动系统承载模块2N设置为承载和固定第N制动系统1N。
在对N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)进行性能测试时,可通过位置调节模块40控制测试模块30沿第一方向X运动,而N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)保持不动,直至测试模块30与第一制动系统11的输入推杆1011连接后,该测试模块30向第一制动系统11的输入推杆1011提供测试信号,以对第一制动系统11进行性能测试;在完成对第一制动系统11的性能测试后,位置调节模块40继续控制测试模块30沿第一方向X运动,而N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)仍然保持不动,直至测试模块30与第二制动系统12的输入推杆1011连接后,该测试模块30向第二制动系统12的输入推杆1011提供测试信号,以对第二制动系统12进行性能测试;在完成对第二制动系统12的性能测试后,位置调节模块40继续控制测试模块30沿第一方向X运动,而N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)仍然保持不动,直至测试模块30与下一制动系统的输入推杆1011连接,以此类推,直至完成对第N制动系统1N的性能测试后,结束此次测试过程。
本申请实施例通过在制动系统试验台中设置多个制动系统承载模块,以承载和固定多个相同或不同的制动系统,以能够采用同一测试模块对多个制动系统的测试,且在测试过程中,只需通过位置调节模块控制测试模块沿第一方向运动,使得测试模块依次与每个制动系统连接,即可依次对多个不同制动系统进行性能测试;如此,在对多个制动系统进行性能测试时,无需频繁拆装每个 制动系统,且只需在试验开始时对测试模块的制动系统进行一次排气和试验调试即可,无需针对每个制动系统重复进行排气和试验调试,从而能够节省人力及时间,缩短不同制动系统的测试周期,满足短周期的产品开发方式。
图1仅为本申请实施例示例性的附图,图1中仅示例性的示出了,位置调节模块40控制测试模块20沿第一方向X运动,而在本申请实施例中,其运动方式不限于此。
示例性的,图2是本申请实施例提供的另一种制动系统试验台的结构框图,图2中与图1中相同之处可参照上述对图1的描述,在此不再赘述,此处仅对图2中与图1中不同之处进行示例性的说明。如图2所示,位置调节模块40设置为控制N个制动系统承载模块20沿第一方向X运动。此时,在对N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)进行性能测试时,可通过位置调节模块40控制N个制动系统承载模块(21、22、…、2N)沿第一方向X运动,而测试模块30保持不动,使得每个制动系统(11、12、…、1N)的输入推杆1011依次与测试模块30连接,以能够依次对N个制动系统(11、12、…、1N)进行性能测试。如此,在对多个制动系统进行性能测试时,同样无需频繁拆装制动系统,且只需在试验开始时对测试模块的制动系统进行一次排气和试验调试即可,无需针对每个制动系统重复进行排气和试验调试,从而能够节省人力及时间,满足短周期的产品开发方式。
在上述实施例的基础上,可选的,图3是本申请实施例提供的又一种制动系统试验台的结构框图,如图3所示,位置调节模块40不仅能够控制测试模块20沿第一方向X运动,还能够控制N个制动系统承载模块(21、22、…、2N)沿第一方向X运动。此时,位置调节模块40包括动力系统调节模块41和制动系统调节模块42;动力系统调节模块41设置为控制测试模块30沿第一方向X运动;制动系统调节模块42设置为控制N个制动系统承载模块(21、22、…、2N)沿第一方向X运动。
在对其中一制动系统承载模块上的制动系统进行性能测试,例如对第i制动系统承载模块上的第i制动系统进行性能测试时,动力系统调节模块41可控制测试模块30沿第一方向X的正向方向+X运动,而制动系统调节模块42控制N个制动系统承载模块(21、22、…、2N)沿第一方向X的负向方向-X运动,直至第i制动系统的输入推杆1011与测试模块30连接,使得测试模块30能够向第i制动系统的输入推杆1011提供测试信号,以对i制动系统进行性能测试。如此,动力系统调节模块41和制动系统调节模块42相互配合,分别控制测试模块30和N个制动系统承载模块(21、22、…、2N)沿相反的方向运动,以使测试模块30快速与对应的制动系统10连接,从而能够节省测试时间,提高 测试效率;同时,动力系统调节模块41和制动系统调节模块42分别控制测试模块30和N个制动系统承载模块(21、22、…、2N)沿相反的方向运动,此时通过差分的原理,能够使动力系统调节模块41控制测试模块30运动的位移偏差与制动系统调节模块42控制N个制动系统承载模块20运动的位移偏差相互抵消,从而能够更加准确地控制测试模块30和N个制动系统承载模块20的位移量,使得测试模块30与对应的制动系统10准确连接,进而能够提高测试效率和测试准确度;此外,在动力系统调节模块41和制动系统调节模块42分别控制测试模块30和N个制动系统承载模块(21、22、…、2N)沿相反的方向运动时,还有利于减小制动系统试验台在X方向的尺寸,从而有利于减小制动系统试验台的体积。
本申请实施例中制动系统试验台包括N个制动系统承载模块20,也就可以分别承载和固定N个制动系统10。其中,N可以为大于或等于2的任意整数,即N可以为2、3、4、…,本申请实施例对N的取值不做限定。为便于描述,在没有特殊说明的情况下,以下均以N等于3为例,对本申请实施例的技术方案进行示例性的说明。
可选的,图4是本申请实施例提供的一种制动系统试验台的立体结构示意图,结合参考图3和图4所示,测试模块30包括主观测试模块31和客观测试模块32;主观测试模块31与客观测试模块32沿第一方向X排列;主观测试模块31包括制动踏板311;制动踏板311与输入推杆1011可拆卸连接;客观测试模块32包括作动缸322和作动缸底座321;作动缸322固定于作动缸底座321上;作动缸底座321设置于动力系统调节模块41上。
图5是本申请实施例提供的另一种制动系统试验台的立体结构示意图,结合参考图4和图5,在进行客观性能测试时,制动踏板311处于拆卸状态,即制动踏板311未与任何制动系统(11、12、13)的输入推杆1011连接;此时,动力系统调节模块41控制作动缸底座321沿第一方向X运动,以使作动缸322与相应的制动系统(11、12或13)的输入推杆1011连接且同轴;外部控制器(图中未示出)会向作动缸322发送相应的控制信号,使得作动缸322动作,向对应制动系统(11、12或13)的输入推杆1011传递动能,使得输入推杆1011接收到作动缸322传递的动能时做出相应的反映,以使IBC总成101控制制动负载102做出相应的动作,通过相应的传感器(例如压力传感器、夹紧传感器等)检测制动负载102的动作,并反馈相应的传感器信号至外部控制器,使得外部控制器根据其所接收到的传感器信号确定出对应制动系统(11、12或13)的客观制动性能。其中,在动力系统调节模块41控制作动缸底座321沿第一方向X运动至作动缸322与相应的制动系统(11、12或13)的输入推杆1011同轴时,还可以在输入推杆1011与作动缸322的接触位置设置相应的夹具,使得作动缸 322通过夹具与输入推杆1011连接,以确保作动缸322能够与输入推杆1011的连接稳定性。
而在进行主观性能测试时,可将制动踏板311连接于相应制动系统(11、12或13)的输入推杆1011处,由测试员踩踏制动踏板311,使得制动踏板311向对应制动系统(11、12或13)的输入推杆1011传递动能,使得输入推杆1011接收到制动踏板311传递的动能时做出相应的反映,以使IBC总成101控制制动负载102做出相应的动作,并通过相应的传感器(例如压力传感器、夹紧传感器等)检测制动负载102的动作,反馈相应的传感器信号至外部控制器,使得外部控制器根据其所接收到的传感器信号输出对应制动系统(11、12或13)的测试结果,以使测试员能够根据外部控制器输出的测试结果确定出对应制动系统(11、12或13)的主观制动性能。
如此,通过设置客观测试模块和主观测试模块能够实现对N个制动系统的主观制动性能测试和客观制动性能测试,从而能够全面地获知N个制动系统的制动性能,使得测试结果更加准确、完整。
可选的,继续参考图4,主观测试模块31还包括座椅313和座椅底座312;座椅313固定于座椅底座312上;座椅底座312设置于动力系统调节模块41上;如此,在进行主观性能测试时,动力系统调节模块41还需控制座椅底座312沿第一方向X运动,以使座椅313与相应制动系统(11、12或13)相对,使得测试员能够坐在座椅313上踩踏制动踏板311,从而对相应的制动系统(11、12或13)进行主观制动性能测试。
此外,设置于座椅底座312上的座椅313还能够沿第二方向Y运动,以调节座椅313与输入推杆1011在第二方向Y上的距离,从而在进行主观性能测试时,能够根据测试员的需求对座椅313的位置进行调节,以满足人体工程学尺寸。
可选的,继续结合参考图3和4,制动系统承载模块20包括制动支架201和负载底座202;制动支架201固定于负载底座202上;负载底座202设置于制动系统调节模块42上;负载底座202设置为承载和固定制动负载102;制动支架201设置为承载和固定于IBC总成101;制动支架201包括通孔结构;输入推杆1011贯穿通孔结构,并延伸至测试模块30侧。其中,固定于制动支架201上的IBC总成101位于制动支架201与固定于负载底座202上的制动负载102之间。如此,可通过制动系统调节模块42控制负载底座202沿第一方向X运动,使得负载底座202带动固定于制动支架201上的IBC总成101和固定于负载底座202上的制动负载102沿第一方向X运动,以使得测试模块30能够对相应的制动系统10进行性能测试。
可选的,继续参考图4,动力系统调节模块41包括第一电机411、第一滚珠丝杠机构412、第一滑轨413和第一位移传感器414;第一滚珠丝杠机构412依次贯穿作动缸底座321和座椅底座312;且作动缸底座321和座椅底座312均滑动设置于第一滑轨413上;第一电机411设置为驱动第一滚珠丝杠机构412,以使第一滚珠丝杠机构412带动作动缸底座321和座椅底座312在第一滑轨413上沿第一方向X运动;第一位移传感器414设置为获取作动缸底座321和/或座椅底座312的位移量。
动力系统调节模块41控制主观测试模块31和客观测试模块32沿第一方向X运动的实现方式为:通过控制第一电机411转动,使得第一电机411驱动第一滚珠丝杠机构412进行转动;在第一滚珠丝杠机构412转动时,作动缸底座321和座椅底座312在第一滚珠丝杠机构412的带动下在第一滑轨413上沿第一方向X发生位移;此时,通过第一位移传感器414实时获取作动缸底座321和/或座椅底座312的位移量,以在作动缸底座321和座椅底座312在第一方向上运动预设位移量时,控制第一电机411驱动第一滚珠丝杠机构412停止转动,使得主观测试模块31或客观测试模块32对相应的制动系统(11、12或13)进行性能测试。其中,第一电机411可以为伺服电机。
可选的,继续参考图4,制动系统调节模块42包括第二电机421、第二滚珠丝杠机构422、第二滑423轨和第二位移传感器424;第二滚珠丝杠机构422依次贯穿N个负载底座202;且N个负载底座202滑动设置于第二滑轨423上;第二电机421设置为驱动第二滚珠丝杠机构422,以使第二滚珠丝杠机构422控制N个负载底座202在第二滑轨423上沿第一方向X运动;第二位移传感器424设置为获取负载底座202的位移。
制动系统调节模块42控制N个制动系统承载模块20沿第一方向X运动的具体实现方式为:通过控制第二电机421转动,使得第二电机421驱动第二滚珠丝杠机构422进行转动;在第二滚珠丝杠机构422转动时,负载底座202在第二滚珠丝杠机构422的带动下在第二滑轨423上沿第一方向X发生位移;此时,通过第二位移传感器424实时获取负载底座202的位移量,以在负载底座202在第一方向上运动预设位移量时,控制第二电机421驱动第二滚珠丝杠机构422停止转动,使得相应的制动系统(11、12或13)接收测试模块对其进行的性能测试。其中,第二电机421同样可以为伺服电机。
可选的,继续参考图4,座椅底座312在所述第一方向X上的宽度与作动缸底座321在第一方向X上的宽度相同,且在第一方向X上,座椅底座312与作动缸底座321的间距为固定值。如此,动力系统调节模块41会控制座椅底座312和作动缸底座321沿第一方向X的正向方向+X或负向方向-X同时运动。
相应的,继续参考图4,N个制动系统承载模块20在第一方向X上的宽度相同,且在第一方向X上,相邻两个制动系统承载模块20之间的间距相同且为固定值。如此,制动系统调节模块42会控制N个制动系统承载模块20沿同一方向同时运动。
示例性的,图6是本申请实施例提供的一种制动系统试验台的俯视结构示意图,结合参考图4和图6所示,以N等于3,座椅底座312在第一方向X上的宽度、作动缸底座321在第一方向X上的宽度、以及每个制动系统承载模块20(即负载底座202)在第一方向X上的宽度均为L,座椅底座312与作动缸底座321在第一方向X上的间距、以及相邻两个制动系统承载模块20(即相邻两个负载底座202)在第一方向X上的间距均为M为例。N个制动系统的测试过程分为主观测试过程和客观测试过程,测试过程如下;
在进行性能测试前,将制动踏板311拆下;控制第一电机411驱动主观测试模块31和客观测试模块32同步沿着第一滑轨413进行滑动,控制第二电机421驱动N个制动系统承载模块(21、22、23)同步沿着第二滑轨423进行滑动,使得第一制动系统11的输入推杆1011的轴线与客观测试模块32中的作动缸322的轴线同轴,将此状态定义为初始状态;此时,将第一位移传感器414和第二位移传感器424的位移检测结构调整为初始值,该初始值例如为0,并将其定义为初始位移。
以初始状态为基准,在对第i制动系统(i=1、2或3)进行客观性能测试时,控制第一电机411驱动主观测试模块31和客观测试模块同步沿着第一滑轨413进行滑动,直至第一位移传感器414测得的位移量S 1为:
Figure PCTCN2022141308-appb-000005
同时,控制第二电机421驱动N个制动系统承载模块(21、22、23)同步沿着第二滑轨423进行滑动,直至第二位移传感器424测得的位移量S 2为:
Figure PCTCN2022141308-appb-000006
此时,认为第i制动系统的输入推杆1011的轴线与客观测试模块32中的作动缸322的轴线同轴,通过夹具夹紧第i制动系统的输入推杆1011与作动缸322后,可对第i制动系统进行客观制动性能测试,直至所有的制动系统(11、12、13)完成客观制动性能测试后,可控制N个模块返回至初始状态。
同样的,以初始状态为基准,在对第i制动系统(i=1、2或3)进行主观性能测试时,控制第一电机411驱动主观测试模块31和客观测试模块同步沿着第一滑轨413进行滑动,直至第一位移传感器414测得的位移量S 3为:
Figure PCTCN2022141308-appb-000007
同时,控制第二电机421驱动N个制动系统承载模块(21、22、23)同步沿着第二滑轨423进行滑动,直至第二位移传感器424测得的位移量S 4为:
Figure PCTCN2022141308-appb-000008
此时,认为第i制动系统的输入推杆1011与主观测试模块31中的座椅313相对,通过将制动踏板311安装至第i制动系统的输入推杆1011,可对第i制动系统进行主观制动性能测试,直至所有的制动系统(11、12、13)完成主观制动性能测试后,可控制N个模块返回至初始状态。
在上述实施例的基础上,可选的,制动系统试验台还可以包括锁止机构,设置为锁止测试模块和N个制动系统承载模块。如此,在位置调节模块控制测试模块和/或N个制动系统承载模块运动至相应的位置后,可采用锁止机构锁止测试模块和N个制动系统承载模块,以防对N个制动系统进行性能测试的过程中,测试模块和N个制动系统承载模块发生相对移动,而影响测试过程,从而能够提高测试的测试效率和测试准确性。
本申请实施例还提供一种制动系统的测试方法,还制动系统的测试方法能够对不同的制动系统进行制动性能测试,该制动系统的测试方法采用本申请实施例提供的制动系统试验台执行。图7是本申请实施例提供的一种制动系统的测试方法的流程图,如图7所示,该制动系统的测试方法包括:
S1、在预对第i制动系统承载模块上的第i制动系统进行性能测试时,位置调节模块控制测试模块沿第一方向运动,和/或位置调节模块控制N个制动系统承载模块沿第一方向运动,直至测试模块与第i制动系统连接;其中,1≤i≤N,且i为正整数。
S2、测试模块向第i制动系统的输入推杆提供测试信号,以对第i制动系统进行性能测试。
S3、重复执行S1~S2,直至完成所需性能测试。
继续参考图3所示,位置调节模块40控制测试模块30沿第一方向X运动,和/或控制N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)沿第一方向X运动,直至测试模块30与第一制动系统11的输入推杆1011连接后,该测试模块30向第一制动系统11的输入推杆1011提供测试信号,以对第一制动系统11进行性能测试;在完成对第一制动系统11的性能测试后,位置调节模块40继续控制测试模块30沿第一方向X运动,和/或控 制制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)继续沿第一方向X运动,直至测试模块30与第二制动系统12的输入推杆1011连接后,该测试模块30向第二制动系统12的输入推杆1011提供测试信号,以对第二制动系统12进行性能测试;在完成对第二制动系统12的性能测试后,位置调节模块40继续控制测试模块30沿第一方向X运动,而N个制动系统承载模块(21、22、…、2N)承载和固定的制动系统(11、12、…、1N)仍然保持不动,直至测试模块30与下一制动系统的输入推杆1011连接,以此类推,直至完成对第N制动系统1N的性能测试后,结束此次测试过程。
本申请实施例通过位置调节模块控制测试模块和/或N个制动系统承载模块沿第一方向运动,以依次对不同的制动系统进行制动性能测试;如此,在对多个制动系统进行性能测试时,无需频繁拆装制动系统,且只需在试验开始时对测试模块的制动系统进行一次排气和试验调试即可,无需针对每个制动系统重复进行排气和试验调试,从而能够节省人力及时间,满足短周期的产品开发方式。
可选的,继续参考图7,该制动系统的测试方法还包括在S1之前的S0,为:
S0、位置调节模块控制测试模块沿第一方向运动,和/或位置调节模块控制N个制动系统承载模块沿第一方向运动,直至测试模块和N个制动系统承载模块均处于位于初始状态。
在进行性能测试前,还需要将测试模块和N个制动系统承载模块调节至初始位置,使得测试模块和N个制动系统承载模块均处于位于初始状态,以在后续测试过程中均以该初始状态为基准,控制测试模块和/或N个制动系统承载模块沿第一方向运动。
可选的,当位置调节模块包括动力系统调节模块和制动系统调节模块时,S1包括:在预对第i制动系统承载模块上的制动系统进行测试时,动力系统调节模块控制测试模块沿第一方向的正向方向运动,以及制动系统调节模块控制N个制动系统承载模块沿第一方向的负向方向运动,直至测试模块与第i制动系统连接。
继续参考图3所示,在对第i制动系统承载模块上的第i制动系统进行性能测试时,动力系统调节模块41可控制测试模块30沿第一方向X的正向方向+X运动,而制动系统调节模块42控制N个制动系统承载模块(21、22、…、2N)沿第一方向X的负向方向-X运动,直至第i制动系统的输入推杆1011与测试模块30连接,使得测试模块30能够向第i制动系统的输入推杆1011提供测试信号,以对i制动系统进行性能测试。如此,动力系统调节模块41和制动系统调节模块42相互配合,分别控制测试模块30和N个制动系统承载模块(21、22、…、 2N)沿相反的方向运动,以使测试模块30快速与对应的制动系统10连接,抵消第一方向X的正向方向+X和第一方向X的负向方向-X上的位移偏差,从而能够节省测试时间,提高测试效率和测试准确度。
可选的,测试模块包括主观测试模块和客观测试模块;主观测试模块与客观测试模块沿第一方向排列;主观测试模块包括制动踏板、座椅和座椅底座;制动踏板与所述输入推杆可拆卸连接;座椅固定于座椅底座上;座椅底座设置于动力系统调节模块上;客观测试模块包括作动缸和作动缸底座;作动缸固定于作动缸底座上;作动缸底座设置于动力系统调节模块上;此时,S2包括:在将制动踏板与第i制动系统的输入推杆连接后,制动踏板接收测试员的制动指令,并传递至输入推杆,以对第i制动系统进行主观性能测试;或者,在作动缸与第i制动系统的输入推杆连接且同轴后,作动缸在外部控制器的控制下向输入推杆提供测试信号,以对第i制动系统进行客观性能测试。
如此,通过客观测试模块和主观测试模块能够分别对N个制动系统的主观制动性能测试和客观制动性能测试,从而能够全面地获知N个制动系统的制动性能,使得测试结果更加准确、完整。
可选的,在测试模块和N个制动系统承载模块均处于初始状态时,作动缸与第一制动系统承载模块上的第一制动系统的输入推杆连接且同轴。
此时,在预对第i制动系统承载模块上的第i制动系统进行测试时,动力系统调节模块控制所述测试模块沿所述第一方向的正向方向运动,以及制动系统调节模块控制N个制动系统承载模块沿第一方向的负向方向运动,直至测试模块与第i制动系统连接,包括:
在预对第i制动系统承载模块上的第i制动系统进行客观性能测试时,动力系统调节模块控制座椅底座和作动缸底座沿第一方向正向方向产生S 1的位移量,以及制动系统调节模块控制N个制动系统承载模块沿第一方向的负向方向产生S 2的位移量:
Figure PCTCN2022141308-appb-000009
Figure PCTCN2022141308-appb-000010
或者,在预对第i制动系统承载模块上的第i制动系统进行主观性能测试时,动力系统调节模块控制座椅底座和作动缸底座沿第一方向正向方向产生S 3的位移量,以及制动系统调节模块控制N个制动系统承载模块沿第一方向的负向方向产生S 4的位移量:
Figure PCTCN2022141308-appb-000011
Figure PCTCN2022141308-appb-000012
其中,座椅底座在第一方向上的宽度、作动缸底座在第一方向上的宽度、以及每个制动系统承载模块在第一方向上的宽度均为L;座椅底座与作动缸底座在第一方向上的间距、以及相邻两个制动系统承载模块在第一方向上的间距均为M。
结合参考图4和图6,在制动踏板311处于拆下的状态时,动力系统调节模块41控制座椅底座312和作动缸底座321同步沿着第一方向X的正向方向+X运动,制动系统调节模块42控制N个制动系统承载模块(21、22、23)同步沿着第一方向X的负向方向-X运动,使得第一制动系统11的输入推杆1011的轴线与作动缸322的轴线同轴,将此状态定义为初始状态。
以初始状态为基准,在对第i制动系统(i=1、2或3)进行客观性能测试时,动力系统调节模块41控制座椅底座312和作动缸底座321同步沿着第一方向X的正向方向+X发生S 1的位移量,S 1为:
Figure PCTCN2022141308-appb-000013
同时,制动系统调节模块42控制N个制动系统承载模块(21、22、23)同步沿着第一方向X的负向方向-X运动发生S 2的位移量,S 2为:
Figure PCTCN2022141308-appb-000014
此时,认为第i制动系统的输入推杆1011的轴线与客观测试模块32中的作动缸322的轴线同轴,通过夹具夹紧第i制动系统的输入推杆1011与作动缸322后,可对第i制动系统进行客观制动性能测试,直至所有的制动系统(11、12、13)完成客观制动性能测试后,可控制多个模块返回至初始状态。
同样的,以初始状态为基准,在对第i制动系统(i=1、2或3)进行主观性能测试时,动力系统调节模块41控制座椅底座312和作动缸底座321同步沿着第一方向X的正向方向+X发生S 3的位移量,S 3为:
Figure PCTCN2022141308-appb-000015
同时,制动系统调节模块42控制N个制动系统承载模块(21、22、23)同步沿着第一方向X的负向方向-X运动发生S 4的位移量,S 4为:
Figure PCTCN2022141308-appb-000016
此时,认为第i制动系统的输入推杆1011与主观测试模块31中的座椅313相对,通过将制动踏板311安装至第i制动系统的输入推杆1011,可对第i制动系统进行主观制动性能测试,直至所有的制动系统(11、12、13)完成主观制动性能测试后,可控制多个模块返回至初始状态。
本申请可同时兼容多个制动系统在环台架试验,在对不同制动系统进行测试时,只需要操作动力系统调节模块和制动系统调节模块,使得主观测试模块、客观测试模块与相应的制动系统对齐即可,无需重新进行制动系统排气、无需改装及调试试验台硬件,大大缩短试验周期;同时,采用动力系统调节模块和制动系统调节模块分别控制测试模块(主观测试模块和客观测试模块)和N个制动系统承载模块沿相反的方向运动,可以通过差分的原理抵消掉位移的偏差,使位移控制更加精确,并且使测试模块和制动系统承载模块都能够移动,从而有利于减小制动系统试验台的体积。

Claims (10)

  1. 一种制动系统试验台,设置为对制动系统进行性能测试,所述制动系统包括制动负载和集成式制动控制IBC总成,所述IBC总成包括输入推杆,所述IBC总成设置为控制所述制动负载动作,所述制动系统试验台包括:
    沿第一方向依序排列的N个制动系统承载模块;每个制动系统承载模块设置为承载和固定一制动系统;其中,N≥2,且N为整数;
    测试模块,位于所述N个制动系统承载模块的一侧;所述测试模块和所述N个制动系统承载模块沿第二方向排列;所述测试模块设置为向每个制动系统承载模块上的制动系统的输入推杆提供测试信号,以对所述制动系统进行性能测试;其中,所述第二方向与所述第一方向交叉;
    位置调节模块,设置为以下至少之一:控制所述测试模块沿所述第一方向运动;或者,控制所述N个制动系统承载模块沿所述第一方向运动。
  2. 根据权利要求1所述的制动系统试验台,其中,所述位置调节模块包括动力系统调节模块和制动系统调节模块;
    所述动力系统调节模块设置为控制所述测试模块沿所述第一方向运动;
    所述制动系统调节模块设置为控制所述N个制动系统承载模块沿所述第一方向运动。
  3. 根据权利要求2所述的制动系统试验台,其中,所述测试模块包括主观测试模块和客观测试模块;所述主观测试模块与所述客观测试模块沿所述第一方向排列;
    所述主观测试模块包括制动踏板;所述制动踏板与所述输入推杆可拆卸连接;
    所述客观测试模块包括作动缸和作动缸底座;所述作动缸固定于所述作动缸底座上;所述作动缸底座设置于所述动力系统调节模块上;
    所述主观测试模块还包括座椅和座椅底座;所述座椅固定于所述座椅底座上;所述座椅底座设置于所述动力系统调节模块上;所述动力系统调节模块包括第一电机、第一滚珠丝杠机构、第一滑轨和第一位移传感器;
    所述第一滚珠丝杠机构依次贯穿所述作动缸底座和所述座椅底座;且所述作动缸底座和所述座椅底座均滑动设置于所述第一滑轨上;
    所述第一电机设置为驱动所述第一滚珠丝杠机构,以使所述第一滚珠丝杠机构带动所述作动缸底座和所述座椅底座在所述第一滑轨上沿所述第一方向运动;
    所述第一位移传感器设置为获取所述作动缸底座和所述座椅底座中的至少 之一的位移量。
  4. 根据权利要求2所述的制动系统试验台,其中,所述制动系统承载模块包括制动支架和负载底座;所述制动支架固定于所述负载底座上;所述负载底座设置于所述制动系统调节模块上;
    所述负载底座设置为承载和固定所述制动负载;
    所述制动支架设置为承载和固定于所述IBC总成;所述制动支架包括通孔结构;所述输入推杆贯穿所述通孔结构,并延伸至所述测试模块侧;
    其中,固定于所述制动支架上的所述IBC总成位于所述制动支架与固定于所述负载底座上的所述制动负载之间;
    所述制动系统调节模块包括第二电机、第二滚珠丝杠机构、第二滑轨和第二位移传感器
    所述第二滚珠丝杠机构依次贯穿N个负载底座;且所述N个负载底座滑动设置于所述第二滑轨上;
    所述第二电机设置为驱动所述第二滚珠丝杠机构,以使所述第二滚珠丝杠机构带动N个负载底座在所述第二滑轨上沿所述第一方向运动;
    所述第二位移传感器设置为获取所述负载底座的位移量。
  5. 一种制动系统的测试方法,采用如权利要求1-4任一项所述的制动系统试验台执行,包括:
    S1、在预对第i制动系统承载模块上的第i制动系统进行性能测试的情况下,所述位置调节模块控制以下至少之一,直至所述测试模块与所述第i制动系统连接:所述测试模块沿所述第一方向运动,或者,所述位置调节模块控制所述N个制动系统承载模块沿所述第一方向运动;其中,1≤i≤N,且i为正整数;
    S2、所述测试模块向所述第i制动系统的输入推杆提供测试信号,以对所述第i制动系统进行性能测试;
    S3、重复执行S1~S2,直至完成所需性能测试。
  6. 根据权利要求5所述的制动系统的测试方法,其中,在S1之前,还包括:
    S0、执行以下至少之一,直至所述测试模块和所述N个制动系统承载模块均处于初始状态:
    所述位置调节模块控制所述测试模块沿所述第一方向运动;或者,
    所述位置调节模块控制所述N个制动系统承载模块沿所述第一方向运动。
  7. 根据权利要求6所述的制动系统的测试方法,其中,所述位置调节模块包括动力系统调节模块和制动系统调节模块;
    S1包括:
    在预对所述第i制动系统承载模块上的第i制动系统进行测试的情况下,所述动力系统调节模块控制所述测试模块沿所述第一方向的正向方向运动,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向运动,直至所述测试模块与所述第i制动系统连接。
  8. 根据权利要求7所述的制动系统的测试方法,其中,所述测试模块包括主观测试模块和客观测试模块;所述主观测试模块与所述客观测试模块沿所述第一方向排列;所述主观测试模块包括制动踏板、座椅和座椅底座;所述制动踏板与所述输入推杆可拆卸连接;所述座椅固定于所述座椅底座上;所述座椅底座设置于所述动力系统调节模块上;所述客观测试模块包括作动缸和作动缸底座;所述作动缸固定于所述作动缸底座上;所述作动缸底座设置于所述动力系统调节模块上;
    S2包括:
    在将所述制动踏板与所述第i制动系统的输入推杆连接后,所述制动踏板接收测试员的制动指令,并传递至所述输入推杆,以对所述第i制动系统进行主观性能测试;或者,
    在所述作动缸与所述第i制动系统的输入推杆连接且同轴后,所述作动缸在外部控制器的控制下向所述输入推杆提供测试信号,以对所述第i制动系统进行客观性能测试。
  9. 根据权利要求8所述的制动系统的测试方法,其中,在所述测试模块和所述N个制动系统承载模块均处于初始状态时,所述作动缸与第一制动系统承载模块上的第一制动系统的输入推杆连接且同轴。
  10. 根据权利要求9所述的制动系统的测试方法,其中,所述在预对所述第i制动系统承载模块上的第i制动系统进行测试的情况下,所述动力系统调节模块控制所述测试模块沿所述第一方向的正向方向运动,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向运动,直至所述测试模块与所述第i制动系统连接,包括:
    在预对所述第i制动系统承载模块上的第i制动系统进行客观性能测试的情况下,所述动力系统调节模块控制所述座椅底座和所述作动缸底座沿所述第一方向正向方向产生S 1的位移量,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向产生S 2的位移量;
    Figure PCTCN2022141308-appb-100001
    Figure PCTCN2022141308-appb-100002
    或者,在预对所述第i制动系统承载模块上的第i制动系统进行主观性能测试的情况下,所述动力系统调节模块控制所述座椅底座和所述作动缸底座沿所述第一方向正向方向产生S 3的位移量,以及所述制动系统调节模块控制所述N个制动系统承载模块沿所述第一方向的负向方向产生S 4的位移量;
    Figure PCTCN2022141308-appb-100003
    Figure PCTCN2022141308-appb-100004
    其中,所述座椅底座在所述第一方向上的宽度、所述作动缸底座在所述第一方向上的宽度、以及每个制动系统承载模块在所述第一方向上的宽度均为L;所述座椅底座与所述作动缸底座在所述第一方向上的间距、以及相邻两个制动系统承载模块在所述第一方向上的间距均为M。
PCT/CN2022/141308 2022-01-28 2022-12-23 制动系统试验台及制动系统的测试方法 WO2023142812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210105069.5A CN114441193A (zh) 2022-01-28 2022-01-28 一种制动系统试验台及制动系统的测试方法
CN202210105069.5 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023142812A1 true WO2023142812A1 (zh) 2023-08-03

Family

ID=81370448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141308 WO2023142812A1 (zh) 2022-01-28 2022-12-23 制动系统试验台及制动系统的测试方法

Country Status (2)

Country Link
CN (1) CN114441193A (zh)
WO (1) WO2023142812A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441193A (zh) * 2022-01-28 2022-05-06 中国第一汽车股份有限公司 一种制动系统试验台及制动系统的测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372035A (en) * 1991-12-07 1994-12-13 Horiba, Ltd. Robot for driving an automobile on a chassis dynamometer
US20020134168A1 (en) * 2001-03-23 2002-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle performance evaluation test method and apparatus
CN109580255A (zh) * 2018-12-29 2019-04-05 北京新能源汽车股份有限公司 制动试验台及其踏板感测试方法
CN110514426A (zh) * 2019-09-18 2019-11-29 华南理工大学 一种机电液复合制动系统的性能测试装置
CN113447258A (zh) * 2021-08-12 2021-09-28 中汽创智科技有限公司 一种制动系统耐久测试装置及制动系统耐久测试方法
CN113884311A (zh) * 2021-03-31 2022-01-04 中汽创智科技有限公司 一种评价测试台及评价方法
CN113945395A (zh) * 2021-11-22 2022-01-18 中国第一汽车股份有限公司 一种ibc制动系统试验台架
CN215598714U (zh) * 2021-09-14 2022-01-21 浙江力邦合信智能制动系统股份有限公司 一种电子制动助力器踏板感的检测装置
CN114441193A (zh) * 2022-01-28 2022-05-06 中国第一汽车股份有限公司 一种制动系统试验台及制动系统的测试方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969920B (zh) * 2017-02-27 2018-03-02 吉林大学 车辆线控液压制动系统硬件在环试验台
CN113324767A (zh) * 2021-06-24 2021-08-31 郑州日产汽车有限公司 一种多功能制动系统硬件在环测试台架

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372035A (en) * 1991-12-07 1994-12-13 Horiba, Ltd. Robot for driving an automobile on a chassis dynamometer
US20020134168A1 (en) * 2001-03-23 2002-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle performance evaluation test method and apparatus
CN109580255A (zh) * 2018-12-29 2019-04-05 北京新能源汽车股份有限公司 制动试验台及其踏板感测试方法
CN110514426A (zh) * 2019-09-18 2019-11-29 华南理工大学 一种机电液复合制动系统的性能测试装置
CN113884311A (zh) * 2021-03-31 2022-01-04 中汽创智科技有限公司 一种评价测试台及评价方法
CN113447258A (zh) * 2021-08-12 2021-09-28 中汽创智科技有限公司 一种制动系统耐久测试装置及制动系统耐久测试方法
CN215598714U (zh) * 2021-09-14 2022-01-21 浙江力邦合信智能制动系统股份有限公司 一种电子制动助力器踏板感的检测装置
CN113945395A (zh) * 2021-11-22 2022-01-18 中国第一汽车股份有限公司 一种ibc制动系统试验台架
CN114441193A (zh) * 2022-01-28 2022-05-06 中国第一汽车股份有限公司 一种制动系统试验台及制动系统的测试方法

Also Published As

Publication number Publication date
CN114441193A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023142812A1 (zh) 制动系统试验台及制动系统的测试方法
CN105136477B (zh) 一种踏板总成性能试验台
CN203587441U (zh) 一种电液伺服卧式拉力试验机
CN102507214B (zh) 驻车制动器耐久试验装置
CN107063103A (zh) 一种薄壁件多点柔性定位与变形测量实验装置
CN109502052A (zh) 一种用于变形机翼形变参数测试试验台
CN105372061A (zh) 一种滚珠丝杠副轴向加载装置
CN113237761A (zh) 一种用于测试钢筋与约束混凝土粘结性能的试验装置及方法
CN212539654U (zh) 一种电动缸性能测试平台
CN103926039B (zh) 一种可双向加载的机电式力源装置
CN1385260A (zh) 快速调形的板材多点成形装置
CN102620703A (zh) 一种测角仪器标准器
CN104416846B (zh) 用于运行成型机的闭合单元的方法
CN206095662U (zh) 一种家具结构节点抗弯疲劳强度测试装置
CN110286028A (zh) 一种多维动静组合加载岩石力学实验装置
CN103116130A (zh) 一种汽车开关检测方法
CN203479524U (zh) 液压离合测试装置
CN212320969U (zh) 一种电动缸效率测试装置
CN109696118A (zh) 一种飞机方向舵间隙测试设备
CN110658860B (zh) 一种位置模式下的伺服电机压力和间隙控制装置
CN102706758A (zh) 一种安全压杠试验装置
CN208254810U (zh) 用于副车架的两轴道路模拟台架试验工装
CN209310970U (zh) 一种环形结构连接螺栓预紧力检测系统
CN215448476U (zh) 一种线控制动系统中的制动主缸负载模拟装置
CN219178803U (zh) 一种实验室与现场两用的便携式多维力校准装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923598

Country of ref document: EP

Kind code of ref document: A1