WO2023141790A1 - 一种用于超深竖井开凿过程中的排水系统及排水方法 - Google Patents

一种用于超深竖井开凿过程中的排水系统及排水方法 Download PDF

Info

Publication number
WO2023141790A1
WO2023141790A1 PCT/CN2022/073890 CN2022073890W WO2023141790A1 WO 2023141790 A1 WO2023141790 A1 WO 2023141790A1 CN 2022073890 W CN2022073890 W CN 2022073890W WO 2023141790 A1 WO2023141790 A1 WO 2023141790A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
shaft
tank
intercepting
pump
Prior art date
Application number
PCT/CN2022/073890
Other languages
English (en)
French (fr)
Inventor
张馨
李艮桥
董晓辉
Original Assignee
中铁十八局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁十八局集团有限公司 filed Critical 中铁十八局集团有限公司
Priority to PCT/CN2022/073890 priority Critical patent/WO2023141790A1/zh
Priority to CN202280035601.9A priority patent/CN117377811A/zh
Publication of WO2023141790A1 publication Critical patent/WO2023141790A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D1/00Sinking shafts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage

Definitions

  • the invention relates to the technical field of shaft construction, in particular to a drainage system and a drainage method during excavation of an ultra-deep shaft.
  • a shaft with a depth of less than 300 meters is a shallow shaft
  • a shaft with a depth of 300-600 meters is a medium-depth shaft
  • a shaft with a depth of 600-1000 meters is a deep shaft
  • a shaft with a depth of more than 1000 meters is an ultra-deep shaft.
  • the water sprayed on the shaft wall flows into the working face of the shaft bottom along the shaft wall, and the water gushing from the bare wall of the shaft after blasting flows into the working face .
  • the electric sewage pump discharges water into the water tank of the suspension plate (volume 2m 3 -5m 3 ), and then installs a high-lift water pump on the suspension plate to drain water to the ground.
  • the high-lift water pump can discharge water from the well, the plane size of the high-lift water pump Large (up to 4*1m), heavy (up to 3 tons), when constructing a deep shaft with a diameter of less than 8m, it takes up a lot of space on the hanging pan, and the weight deviates from the center of gravity of the hanging pan.
  • the diameter requirement is high, and the force on the suspension plate is unbalanced during construction, which affects the construction safety.
  • This kind of pump needs to be customized through consultation with the manufacturer.
  • the production cycle of the water pump is long. Once damaged, it is difficult to repair and seriously affects the construction period of the shaft.
  • the present invention provides a drainage system used in the excavation process of an ultra-deep shaft, including a first pump for pumping out water from the working face of the shaft, and a water receiving station is arranged on the wall of the shaft.
  • the water receiving station is provided with a water storage tank for storing the water in the working face of the shaft, and the water receiving station is also provided with a second pump for pumping the water in the water storage tank to the outside of the shaft.
  • the above solution also includes a water tank arranged on the suspension plate in the shaft and a third pump for pumping the water in the water tank and transporting it to the water storage bin; the water tank is used to receive the working surface drawn by the first pump of water.
  • the water storage bin is also used to receive water from the shaft wall above the water receiving station.
  • the water sprayed on the shaft wall is collected by a water interception device;
  • the water interception device includes a water interception tank arranged around the shaft shaft wall and a water delivery pipe for transporting the water in the water interception tank to the water storage bin.
  • the water storage bin includes a sedimentation water bin and a clean water bin; the sedimentation water bin is used to receive the water from the working face of the shaft and settle the sediment in the water; the clean water bin is used for receiving the water after sedimentation in the sedimentation tank; the second pump is used to extract the water in the clean water tank and deliver the water to the outside of the vertical shaft.
  • This patent also provides a drainage method in the excavation process of an ultra-deep shaft.
  • a water receiving station is excavated on the wall of the shaft.
  • the water receiving station is provided with a water storage tank for storing the water on the working face of the shaft.
  • the water in the water storage tank is pumped and transported to the second pump outside the shaft.
  • the first pump installed on the working face of the shaft is turned on, and the water on the working face of the shaft is pumped and transported to the water storage tank, and then the second pump pumps the water from The water storage tank draws and conveys to the outside of the shaft.
  • a water tank is installed on the hanging pan in the vertical shaft, and a third pump is added to extract the water in the water tank and transport it to the water storage bin.
  • the performance (lift and power) requirements of the shaft drainage pump can be effectively reduced, and the requirements for the strength and diameter of the steel wire rope of the suspension pan can be reduced, thereby reducing the equipment cost .
  • the reduction in volume and weight of the drainage pump is beneficial to the arrangement of equipment and suspension points on the suspension plate, so that the force is relatively balanced and the impact on safety is reduced. Reducing the head is beneficial to choose a pump with a larger drainage capacity. Set up an intermediate water transfer station to facilitate sewage sedimentation, improve the working condition of the drainage pump, and reduce the maintenance amount and failure rate of the drainage pump.
  • Fig. 1 is the structural representation of the drainage system of this patent
  • Fig. 2 is the structural representation of the intercepting device in the drainage system of this patent
  • Fig. 3 is the structural representation of the water interception tank module in the water interception device
  • Fig. 4 is a schematic sectional view of the A-A direction of the intercepting tank module in Fig. 3;
  • Fig. 5 is a structural schematic diagram of splicing together two intercepting tank modules
  • Fig. 6 is a structural schematic diagram of the water storage tank in the water receiving station in the drainage system of the present patent.
  • a drainage system used in the excavation process of an ultra-deep shaft includes a first pump 8 for extracting water from the shaft face, and a water receiving station 1 (water receiving station 1) is arranged on the wall of the shaft. 1 is obtained by carrying out horizontal excavation on the wall of the vertical shaft), the water storage bin 4 for storing the water on the working surface of the vertical shaft (that is: the bottom of the well) is arranged in the water receiving station 1, and the water storage bin 4 for storing The water inside is drawn and sent to the second pump 5 outside the shaft.
  • the first pump 8 can use the turbine-type wind-driven sewage pump, and is powered by compressed air, which can effectively solve the leakage risk of the electric sewage pump.
  • the setting of the water receiving station 1 and the second pump 5 can effectively reduce the requirement on the performance of the drainage equipment. If the amount of water gushing in the shaft is large, the quantity of the second pump 5 can be increased.
  • the water tank 2 can be installed on the suspension plate 7 in the shaft, and the water in the water tank 2 can be pumped out at the same time. And deliver to the third pump 3 of the water storage bin 4; the water tank 2 is used to receive the water on the working face pumped by the first pump 8. If the water receiving station 1 is used as a fixed relay point, then the setting of the water tank 2 and the third pump 3 can be understood as a movable relay point, and this fixed relay point can cooperate with a movable relay point. It is more effective to reduce the requirements on the performance of the drainage equipment. At the same time, with the continuous increase of the excavation depth of the shaft (for example, reaching more than 1600m), there is no need to add a new water receiving station.
  • the position can be placed on the top of the water receiving station 1 (that is: the height is higher than the water receiving station 1)
  • the water sprayed on the well wall of the vertical shaft is directly guided into the water storage bin 4, specifically, the water interception device 6 can be used, and the water interception device 6 can collect the water sprayed on the shaft shaft wall above the water receiving station 1 and guide it into the water storage bin 4.
  • the water interception device 6 includes a water interception tank 6-1 arranged around the shaft wall and a water delivery pipe 6-3 for delivering the water in the water interception tank 6-1 to the water storage bin 4.
  • the water tank 6-1 is provided with a water outlet 6-2, and the water intercepted by the water intercepting tank 6-1 will enter the water delivery pipe 6-3 through the water outlet 6-2, and finally enter the water storage bin 4.
  • the height of the side away from the water outlet 6-2 is higher than the height of the water outlet 6-2 side, so that the water intercepting groove 6-1 is inclined to the side of the water outlet 6-2 as a whole, which is convenient The outflow of shower water.
  • intercepting channels such as using channel steel to fix on the shaft wall or directly cutting out the intercepting channel on the shaft wall, etc.
  • the material is preferably plastic (such as high-density polyethylene HDPE or polypropylene PP).
  • the hardness of this material can meet the requirements and it also has a certain degree of elasticity. It can allow a certain deformation along with the arc of the well wall.
  • the cut-off tank module 6-11 is U-shaped (the U-shaped bottom surface can be a plane or an arc surface), and one of the side walls is used to fix the cut-off tank module 6-11 on the shaft wall ( Fixed can use expansion bolt); One end of cut-off tank module 6-11 is receiving end (as the left end of Fig. 3), and the other end is inserting end (as shown in the right side end of Fig.
  • One cut-off tank module 6-11 The receiving end is used for inserting the insertion end of a cut-off tank module 6-11 that is connected with it, and its insertion end is used for inserting the receiving end of another cut-off tank module 6-11 that is connected with it simultaneously (as shown in Figure 5 shown).
  • the intercepting tank is directly fixed and installed on the shaft wall during installation.
  • the receiving end and the inserting end of the intercepting tank module (6-11) are gradually thickened from the end to the center, and at the same time , the thickness at the beginning of the receiving end is greater than the thickness at the beginning of the insertion end.
  • This setting can directly put the receiving end of a cut-off tank module on the insert end of the cut-off tank module installed on the well wall (there is a certain distance between the insert end of the cut-off tank module installed on the well wall and the well wall gap), or directly insert the insertion end of a water intercepting tank module into the receiving end of the water intercepting tank module already installed on the well wall, so as to realize random installation on both sides, easy installation, and at the same time, it is convenient for two water intercepting tank modules to carry out seal.
  • the inner wall of the receiving end of the intercepting tank module 6-11 is provided with 2 parallel concave sealing grooves 6-12, and the sealing groove 6 -12 is used to install the sealing strip; a raised sealing protrusion 6-13 is set on the outer wall of the insertion end of the cut-off tank module 6-11; as shown in Figure 5, two cut-off tank modules 6-11 are plugged together
  • the sealing protrusion 6-13 of one water intercepting groove module 6-11 is located between the two sealing grooves 6-12 of another water intercepting groove module 6-11, through two sealing strip clips installed in the sealing groove 6-12 Hold the sealing protrusion 6-13 to realize the sealing between the two intercepting tank modules 6-11.
  • an elastic plate 6-4 is arranged outside the side wall of the water interception tank module 6-11 near the side of the shaft wall, and the elastic plate 6-
  • the material of 4 can use a rubber plate, and when the intercepting tank module 6-11 is fixed on the shaft wall, the elastic plate 6-4 will be compressed, thereby effectively reducing the gap between the intercepting tank module 6-11 and the well wall , to achieve a good water interception effect.
  • the interceptor tank module 6-11 with the above structure is preferably prepared by injection molding.
  • the water storage bin 4 includes a sedimentation water bin 4-1 and a clean water bin 4-2; 4-1 is used to receive the water from the working face of the shaft and settle the sediment in the water; the clean water tank 4-2 is used to receive the water after sedimentation from the sedimentation tank 4-1; the second pump 5 is used for extracting the water in the clean water tank 4-2 and delivering the water to the outside of the shaft. Simultaneously, the water that enters the water tank 2 on the suspension plate 7 can also be deposited in the water tank 2 first, and then the water is pumped into the sedimentation water tank 4-1 by the third pump 3.
  • this embodiment provides a drainage method in the excavation process of an ultra-deep shaft.
  • a water receiving station 1 is excavated on the wall of the shaft, and a water receiving station 1 is provided for storing shaft work.
  • the water storage bin 4 of the water on the surface, the water receiving station 1 is also provided with the second pump 5 for extracting the water in the water storage bin 4 and transporting it to the outside of the shaft.
  • the water in the working face of the shaft is extracted and transported to the water storage bin 4, and then the water is extracted from the water storage bin 4 by the second pump 5 and transported to the outside of the shaft.
  • the water tank 2 is installed on the suspension plate 7 in the vertical shaft, and the third pump 3 that pumps the water in the water tank 2 and transports it to the water storage bin 4 is added at the same time .
  • a water interception device 6 is added to directly guide the water on the shaft wall at the top of the water storage bin 4 into the water storage bin 4 .
  • the water cutoff device 6 uses the structure shown in Embodiment 1.

Abstract

一种用于超深竖井开凿过程中的排水系统,包括用于将竖井工作面的水抽出的第一泵(8),竖井的壁上设置有接水站(1),接水站(1)内设置有用于存储竖井工作面的水的储水仓(4),接水站(1)内还设置有用于将储水仓(4)内的水抽取并输送至竖井外的第二泵(5);还包括设置在竖井内的吊盘(7)上的水箱(2)和用于将水箱(2)中的水抽取并输送至储水仓(4)的第三泵(3);水箱(2)用于接收第一泵(8)抽取的工作面的水。

Description

一种用于超深竖井开凿过程中的排水系统及排水方法 技术领域
本发明涉及竖井施工技术领域,具体涉及一种超深竖井开凿过程中的排水系统及排水方法。
背景技术
一般认为:深度在300米内的竖井为浅竖井,300-600米为中深竖井,600-1000米为深竖井,1000米以上为超深竖井。
井壁淋水顺井壁流入竖井井底工作面,爆破后竖井裸壁的涌水流入工作面,现有的排水方法是在井底工作面设置集水坑,采用扬程40-70m 3/h的电动排污泵排水到吊盘的水箱中(体积2m 3-5m 3),再由吊盘上安装高扬程水泵排水到地面,高扬程水泵虽然可以将水从井内排出,但是高扬程水泵的平面尺寸大(达到4*1m),重量大(达到3吨以上),对直径8m以下的深竖井施工时,在吊盘上占用空间大,重量偏离吊盘重心较大,吊盘悬吊钢丝绳强度和直径要求高,施工中吊盘受力不平衡,对施工安全造成影响,这种泵需要与生产厂家协商定制,水泵生产周期较长,一旦损坏,维修难度大,而且严重影响竖井施工工期。
发明内容
针对现有技术中存在的问题,本发明提供一种用于超深竖井开凿过程中的排水系统,包括用于将竖井工作面的水抽出的第一泵,竖井的壁上设置有接水站,接水站内设置有用于存储竖井工作面的水的储水仓,接水站内还设置有用于将储水仓内的水抽取并输送至竖井外的第二泵。
在上述方案的基础上,还包括设置在竖井内的吊盘上的水箱和用于将水箱中的水抽取并输送至储水仓的第三泵;所述水箱用于接收第一泵抽取的工作面的水。
在上述方案的基础上,所述储水仓还用于接收接水站以上的竖井井壁淋水。竖井井壁淋水使用截水装置收集;所述截水装置包括绕竖井井壁设置的截水槽和用于将截水槽内的水输送至储水仓的输水管。
在上述方案的基础上,所述储水仓包括沉淀水仓和净水水仓;所述沉淀水仓用于接收竖井工作面的水并将水中的泥沙进行沉淀;所述净水水仓用于接收沉淀水仓沉淀泥沙后的水;所述第二泵用于抽取净水水仓内的水并将水输送至竖井外。
本专利还提供一种超深竖井开凿过程中的排水方法,在竖井的壁上挖掘一个接水站,接水站内设置有用于存储竖井工作面的水的储水仓,接水站内还设置有用于将储水仓内的水抽取并输送至竖井外的第二泵,排水时,打开设置于竖井工作面的第一泵,将竖井工作面的水抽取并输送至储水仓内,再由第二泵将水从储水仓抽取并输送至竖井外。当第一泵与接水站之间的高度差过大时,在竖井内的吊盘上设置水箱,同时增加将水箱中的水抽取并输送至储水仓的第三泵。
本发明的通过设置接水站、储水仓和第二泵,可以有效降低对竖井排水水泵的性能(扬程和功率)要求,还可以降低对悬吊吊盘钢丝绳强度和直径的要求,从而减少设备成本。排水泵体积和重量的减小,有利于吊盘上设备和悬吊点的布置,使其受力相对平衡,减少安全方面的影响。降低扬程,有利于选择排水能力较大的水泵。设置中间转水站,利于污水沉淀,改善排水泵工况,减低排水泵维修量和故障率。
附图说明
通过阅读下文的具体实施方式的详细描述,本发明的优点和益处对于本领域普通技术人员将变得清楚明了。附图是说明性的,并不认为是对本发明的限制。在附图中:
图1为本专利的排水系统结构示意图;
图2为本专利的排水系统中的截水装置结构示意图;
图3为截水装置中的截水槽模块的结构示意图;
图4为图3中截水槽模块的A-A向剖视示意图;
图5为两个截水槽模块拼接在一起的结构示意图;
图6为本专利的排水系统中接水站内的储水仓的结构示意图。
具体实施方式
现列举以下实施例用来说明本发明所述的技术方案。需要说明的是,以下实施例对本发明要求的保护范围不构成限制作用。
实施例1
如图1所示,一种用于超深竖井开凿过程中的排水系统,包括用于将竖井工作面的水抽出的第一泵8,竖井的壁上设置有接水站1(接水站1是在竖井的壁上进行横向挖掘得到的),接水站1内设置有用于存储竖井工作面(即:井底)的水的储水仓4,接水站1内还设置有用于将储水仓4内的水抽取并输送至竖井外的第二泵5。第一泵8可以使用涡轮式风 动排污泵,以压缩空气为动力,可以有效解决电动排污泵的漏电风险。接水站1和第二泵5的设置可以有效降低对排水设备性能的要求。如果竖井内的涌水量大,可以增加第二泵5的数量。
随着竖井的深度不断加大,当第一泵8与接水站1之间的高度差过大时,可以在竖井内的吊盘7上设置水箱2,同时增加将水箱2中的水抽取并输送至储水仓4的第三泵3;所述水箱2用于接收第一泵8抽取的工作面的水。如果以接水站1作为一个固定的接力点,那么,水箱2和第三泵3的设置,就可以理解为是一个活动的接力点,这一个固定的接力点配合一个活动的接力点,可以更为有效的减少对排水设备性能的要求,同时,随着竖井挖掘深度的不断增大(比如达到1600m以上),无需再增设新的接水站。
竖井工作面的水主要有两个来源,一个是工作面的涌水,一个是井壁的淋水,对于井壁淋水,如果都汇集到井底的工作面,不但会增大工作面的水量,还增大了排水的工作量,为了解决这一问题,作为一个具体的实施方案,在上述方案的基础上,可以将位置在接水站1上部(即:高度高于接水站1)的竖井井壁淋水直接引导至储水仓4内,具体可以使用截水装置6,截水装置6可以将接水站1以上的竖井井壁淋水汇集并引导至储水仓4内,
如图1和2所示,所述截水装置6包括绕竖井井壁设置的截水槽6-1和用于将截水槽6-1内的水输送至储水仓4的输水管6-3,截水槽6-1上设置有出水口6-2,截水槽6-1截流的水会通过出水口6-2进入输水管6-3,最终进入储水仓4。布设截水槽6-1时,远离出水口6-2的一侧的高度高于出水口6-2一侧的高度,使截水槽6-1整体向出水口6-2的一侧倾斜,便于淋水的流出。
目前,截水槽有很多种类,比如使用槽钢固定在竖井壁上或者直接在竖井壁上开凿出截水槽等,但是这些方式的截水槽存在很多问题,比如使用槽钢会因为槽钢的重量过大,安装时工作量比较大且风险比较高,同时优于井壁是弧形的,槽钢的刚性很难与井壁卡合,再比如直接在竖井壁上开凿出截水槽,这种方式会破坏井壁的防护层(混凝土层),而且施工成本比较高。针对现有的问题,本专利提供一种新型的截水槽,材料优选使用塑料(比如高密度聚乙烯HDPE或聚丙烯PP),这种材料硬度可以达到要求同时还带有一定的弹性,安装时可以允许随着井壁的弧形有一定的变形,具体结构上,如图2、图3、图4和图5所示,所述截水槽6-1由若干个截水槽模块6-11插接而成;所述截水槽模块6-11为U形(U型的底部面可以是平面也可以弧面),其中一个侧壁用于将截水槽模块6-11固定在竖井井壁上(固定可以使用膨胀螺栓);截水槽模块6-11的一端为接收端(如图3的左侧端),另一端为插入端(如图3的右侧端);一个截水槽模块6-11的接收端用于与它相连接的一个截水 槽模块6-11的插入端插入,同时它的插入端用于插入与它相连接的另一个截水槽模块6-11的接收端(如图5所示)。
截水槽在安装时是直接在竖井壁上进行固定安装,为了更方便的进行安装,所述截水槽模块(6-11)的接收端和插入端均从端部向中心部逐渐变厚,同时,接收端的起始处厚度比插入端的起始处的厚度大。这种设置,可以直接将一个截水槽模块的接收端套在已经安装在井壁上的截水槽模块的插入端(已经安装在井壁上的截水槽模块的插入端与井壁之间存在一定的间隙),也可以直接将一个截水槽模块的插入端插入到已经安装在井壁上的截水槽模块的接收端,实现两侧随意安装,安装方便,同时便于两个截水槽模块之间进行密封。
为了防止截水槽6内的水从两个截水槽模块6-11之间流出,所述截水槽模块6-11的接收端的内壁设置2条并行的内凹的密封槽6-12,密封槽6-12内用于安装密封条;截水槽模块6-11的插入端的外壁上设置1条凸起的密封凸6-13;如图5所示,两个截水槽模块6-11插接在一起时,一个截水槽模块6-11的密封凸6-13位于另一个截水槽模块6-11的2个密封槽6-12之间,通过两个安装在密封槽6-12内的密封条夹住密封凸6-13,实现两个截水槽模块6-11之间的密封。
因为竖井的井壁并非是一个光滑的壁,如果直接将截水槽模块6-11固定在井壁上,会在截水槽模块6-11与井壁之间存在一定的间隙,减弱了截水的效果,为了解决这一问题,作为一种实施方案,如图3所示,在所述截水槽模块6-11靠近竖井井壁侧的侧壁外部设置有弹性板6-4,弹性板6-4的材料可以使用橡胶板,将截水槽模块6-11固定在竖井井壁上时,会对弹性板6-4进行压缩,从而有效的减少截水槽模块6-11与井壁之间的间隙,达到很好的截水效果。
上述结构的截水槽模块6-11优选使用注塑一体成型的方式制备。
竖井工作面的水中有很多泥沙,为了减轻泥沙对泵的损坏,如图6所示,所述储水仓4包括沉淀水仓4-1和净水水仓4-2;所述沉淀水仓4-1用于接收竖井工作面的水并将水中的泥沙进行沉淀;所述净水水仓4-2用于接收沉淀水仓4-1沉淀泥沙后的水;所述第二泵5用于抽取净水水仓4-2内的水并将水输送至竖井外。同时,进入吊盘7上的水箱2中的水也可以先在水箱2中进行沉淀,再通过第三泵3将水抽至沉淀水仓4-1内。
实施例2
基于实施例1的排水系统,本实施例提供一种超深竖井开凿过程中的排水方法,具体的,在竖井的壁上挖掘一个接水站1,接水站1内设置有用于存储竖井工作面的水的储水仓 4,接水站1内还设置有用于将储水仓4内的水抽取并输送至竖井外的第二泵5,排水时,打开设置于竖井工作面的第一泵8,将竖井工作面的水抽取并输送至储水仓4内,再由第二泵5将水从储水仓4抽取并输送至竖井外。
当第一泵8与接水站1之间的高度差过大时,在竖井内的吊盘7上设置水箱2,同时增加将水箱2中的水抽取并输送至储水仓4的第三泵3。
井壁的淋水量大时,加设截水装置6,将储水仓4上部的竖井井壁淋水直接引导至储水仓4内。截水装置6使用实施例1中示出的结构。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (11)

  1. 用于超深竖井开凿过程中的排水系统,包括用于将竖井工作面的水抽出的第一泵(8),其特征在于,竖井的壁上设置有接水站(1),接水站(1)内设置有用于存储竖井工作面的水的储水仓(4),接水站(1)内还设置有用于将储水仓(4)内的水抽取并输送至竖井外的第二泵(5)。
  2. 根据权利要求1所述的用于超深竖井开凿过程中的排水系统,其特征在于,还包括设置在竖井内的吊盘(7)上的水箱(2)和用于将水箱(2)中的水抽取并输送至储水仓(4)的第三泵(3);所述水箱(2)用于接收第一泵(8)抽取的工作面的水。
  3. 根据权利要求1所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述储水仓(4)还用于接收接水站(1)以上的竖井井壁淋水。
  4. 根据权利要求3所述的用于超深竖井开凿过程中的排水系统,其特征在于,竖井井壁淋水使用截水装置(6)收集;所述截水装置(6)包括绕竖井井壁设置的截水槽(6-1)和用于将截水槽(6-1)内的水输送至储水仓(4)的输水管(6-3)。
  5. 根据权利要求4所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述截水槽(6-1)由若干个截水槽模块(6-11)插接而成;所述截水槽模块(6-11)为U形,其中一个侧壁用于将截水槽模块(6-11)固定在竖井井壁上;截水槽模块(6-11)的一端为接收端,另一端为插入端;一个截水槽模块(6-11)的接收端用于与它相连接的一个截水槽模块(6-11)的插入端插入,同时它的插入端用于插入与它相连接的另一个截水槽模块(6-11)的接收端。
  6. 根据权利要求4所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述截水槽模块(6-11)的接收端和插入端均从端部向中心部逐渐变厚,同时,接收端的起始处厚度比插入端的起始处的厚度大。
  7. 根据权利要求5所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述截水槽模块(6-11)的接收端的内壁设置2条并行的内凹的密封槽(6-12),截水槽模块(6-11)的插入端的外壁上设置1条凸起的密封凸(6-13);两个截水槽模块(6-11)插接在一起时,一个截水槽模块(6-11)的密封凸(6-13)位于另一个截水槽模块(6-11)的2个密封槽(6-12)之间。
  8. 根据权利要求5所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述截水槽模块(6-11)靠近竖井井壁侧的侧壁外部设置有弹性板(6-4)。
  9. 根据权利要求4所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述截水槽模块(6-11)为注塑一体成型。
  10. 根据权利要求1所述的用于超深竖井开凿过程中的排水系统,其特征在于,所述储水仓(4)包括沉淀水仓(4-1)和净水水仓(4-2);所述沉淀水仓(4-1)用于接收竖井工作面的水并将水中的泥沙进行沉淀;所述净水水仓(4-2)用于接收沉淀水仓(4-1)沉淀泥沙后的水;所述第二泵(5)用于抽取净水水仓(4-2)内的水并将水输送至竖井外。
  11. 一种超深竖井开凿过程中的排水方法,其特征在于,在竖井的壁上挖掘一个接水站(1),接水站(1)内设置有用于存储竖井工作面的水的储水仓(4),接水站(1)内还设置有用于将储水仓(4)内的水抽取并输送至竖井外的第二泵(5),排水时,打开设置于竖井工作面的第一泵(8),将竖井工作面的水抽取并输送至储水仓(4)内,再由第二泵(5)将水从储水仓(4)抽取并输送至竖井外。
PCT/CN2022/073890 2022-01-26 2022-01-26 一种用于超深竖井开凿过程中的排水系统及排水方法 WO2023141790A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/073890 WO2023141790A1 (zh) 2022-01-26 2022-01-26 一种用于超深竖井开凿过程中的排水系统及排水方法
CN202280035601.9A CN117377811A (zh) 2022-01-26 2022-01-26 一种用于超深竖井开凿过程中的排水系统及排水方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073890 WO2023141790A1 (zh) 2022-01-26 2022-01-26 一种用于超深竖井开凿过程中的排水系统及排水方法

Publications (1)

Publication Number Publication Date
WO2023141790A1 true WO2023141790A1 (zh) 2023-08-03

Family

ID=87470054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073890 WO2023141790A1 (zh) 2022-01-26 2022-01-26 一种用于超深竖井开凿过程中的排水系统及排水方法

Country Status (2)

Country Link
CN (1) CN117377811A (zh)
WO (1) WO2023141790A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181852A (ja) * 1997-09-02 1999-03-26 Taisei Corp 立坑掘削工法
JP2001303882A (ja) * 2000-04-24 2001-10-31 Mitsui Constr Co Ltd 立坑の集水装置
CN107829745A (zh) * 2017-11-01 2018-03-23 中国恩菲工程技术有限公司 竖井井筒截水装置
CN214944420U (zh) * 2021-04-08 2021-11-30 河北钢铁集团矿业有限公司 一种矿山竖井带水施工交替掘进结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181852A (ja) * 1997-09-02 1999-03-26 Taisei Corp 立坑掘削工法
JP2001303882A (ja) * 2000-04-24 2001-10-31 Mitsui Constr Co Ltd 立坑の集水装置
CN107829745A (zh) * 2017-11-01 2018-03-23 中国恩菲工程技术有限公司 竖井井筒截水装置
CN214944420U (zh) * 2021-04-08 2021-11-30 河北钢铁集团矿业有限公司 一种矿山竖井带水施工交替掘进结构

Also Published As

Publication number Publication date
CN117377811A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN106149783A (zh) 一种城市水利工程清淤装置
WO2023141790A1 (zh) 一种用于超深竖井开凿过程中的排水系统及排水方法
CN110374124B (zh) 地铁施工排水系统
CN210010244U (zh) 一种带有循环水系统的施工现场除尘设备
WO2023015928A1 (zh) 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法
CN202148922U (zh) 一种地下采矿的排水装置
CN211685016U (zh) 一种基坑地下水利用系统
JP6147010B2 (ja) 河川内の土砂等堆積防止方法及びこれに用いる土砂等排出システム
CN102108721A (zh) 布水出水装置及带布水出水装置的雨水收集池
CN107035404A (zh) 一种首级潜没全正压高效矿用多级离心泵站
US10563368B2 (en) Pumping system for bodies of water
CN211200626U (zh) 一种施工场地内逆坡排水u型连通管路
CN211863947U (zh) 一种金属液压打包机污油分离器
CN206987884U (zh) 一种首级潜没全正压高效矿用多级离心泵站
RU2796668C1 (ru) Дренажная система, применяемая при строительстве смежных сверхглубоких вертикальных стволов, и метод дренажа, применяемый при строительстве смежных сверхглубоких вертикальных стволов
CN105604076A (zh) 一种适用于隧洞开挖的真空泵降水装置
CN206829340U (zh) 一种整体式污水提升装置
CN206298948U (zh) 一种水力除灰装置
CN220228050U (zh) 一种压力管道排气、排泥系统
CN2134517Y (zh) 高效负压抽水装置
CN210422689U (zh) 一种金矿叠层空区使用的排水系统
CN109812645A (zh) 一种可有效防止泥沙沉积的水利预埋管道
CN213978900U (zh) 一种用于船闸检修的排水系统
CN203362224U (zh) 一种吊盘用子母水箱
CN217232022U (zh) 一种水利清淤疏通装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922641

Country of ref document: EP

Kind code of ref document: A1