WO2023015928A1 - 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法 - Google Patents

多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法 Download PDF

Info

Publication number
WO2023015928A1
WO2023015928A1 PCT/CN2022/087325 CN2022087325W WO2023015928A1 WO 2023015928 A1 WO2023015928 A1 WO 2023015928A1 CN 2022087325 W CN2022087325 W CN 2022087325W WO 2023015928 A1 WO2023015928 A1 WO 2023015928A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
shaft
ultra
deep
receiving station
Prior art date
Application number
PCT/CN2022/087325
Other languages
English (en)
French (fr)
Inventor
于建新
张馨
李艮桥
张湘平
李波
赵志涛
席居法
Original Assignee
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学 filed Critical 河南理工大学
Priority to PCT/CN2022/087325 priority Critical patent/WO2023015928A1/zh
Publication of WO2023015928A1 publication Critical patent/WO2023015928A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage

Definitions

  • the invention relates to the technical field of shaft construction, in particular to a drainage system shared during the construction of multiple adjacent ultra-deep shafts and a common drainage method during the construction of multiple adjacent ultra-deep shafts.
  • a shaft with a depth of less than 300 meters is a shallow shaft
  • a shaft with a depth of 300-600 meters is a medium-depth shaft
  • a shaft with a depth of 600-1000 meters is a deep shaft
  • a shaft with a depth of more than 1000 meters is an ultra-deep shaft.
  • the water pouring from the shaft wall flows into the working face at the bottom of the shaft along the wall, and the water gushing from the bare wall of the shaft after blasting flows into the working face.
  • the electric sewage pump with a head of 40-70m 3 /h drains water into the water tank of the suspension plate (volume 2m 3 -5m 3 ), and then installs a high-lift water pump on the suspension plate to drain water to the ground.
  • the high-lift water pump can discharge water from the well , but the plane size of the high-lift water pump is large (up to 4*1m), and the weight is large (up to 3 tons or more).
  • ultra-deep shafts The construction of ultra-deep shafts is limited by the narrow working space in the underground. For ultra-deep shafts exceeding 1200m, it is difficult to directly drain the gushing water from the working face at the bottom of the shaft to the ground with drainage pumps. In the actual construction process of multiple adjacent ultra-deep shafts (such as the main shaft, auxiliary shaft and air shaft), separate drainage systems need to be installed for drainage. The investment in drainage electromechanical equipment and materials has increased significantly, and the maintenance of the drainage system has to be increased. personnel and costs.
  • the present invention provides a common drainage system during the construction of multiple adjacent ultra-deep shafts and a common drainage method during the construction of multiple adjacent ultra-deep shafts.
  • This patent firstly provides a common drainage system during the construction of multiple adjacent ultra-deep shafts, including a plurality of first pumps, and the first pumps are used to pump out water from the working face of the ultra-deep shafts;
  • a water receiving station is provided on the wall of one of the ultra-deep shafts, and the water receiving station is provided with a water storage tank for storing water drawn from a plurality of adjacent vertical shaft working faces, and the water receiving station is also provided with a water storage tank for pumping the water in the water storage tank And sent to the second pump outside the shaft.
  • a settling bin is provided on the well wall of the ultra-deep shaft without a water receiving station, and the settling bin is used to receive the water from the working face of the shaft pumped by the first pump in the shaft and treat the mud in the water.
  • the sand is deposited;
  • a connecting water pipe is provided between the sedimentation bin and the water storage bin, and the connecting water pipe is used to transport the settled water in the sedimentation bin to the water storage bin.
  • the height of the water inlet of the communicating water pipe is 1.5-1.8m higher than the bottom surface of the sedimentation bin; a filter is provided at the water inlet of the communicating water pipe.
  • the water storage bin is also used to receive water sprayed on the shaft wall above the water receiving station; the sedimentation bin is also used to receive water sprayed on the shaft wall above the sedimentation bin.
  • the water on the shaft wall is collected by a water interception device;
  • the water interception device includes a water interception tank arranged around the shaft shaft wall and a water delivery pipe for transporting the water in the water interception tank to the water storage tank or the sedimentation tank .
  • the cut-off tank is formed by plugging several cut-off tank modules; the cut-off tank module is U-shaped, and one of the side walls is used to fix the cut-off tank module on the shaft wall; the cut-off tank One end of the module is the receiving end, and the other end is the inserting end; the receiving end of a intercepting tank module is used for inserting the inserting end of a intercepting tank module connected to it, and its inserting end is used for inserting the other The receiving end of a interceptor tank module.
  • both the receiving end and the inserting end of the intercepting tank module gradually become thicker from the end to the center, and meanwhile, the thickness at the beginning of the receiving end is greater than that at the beginning of the inserting end.
  • two parallel concave sealing grooves are arranged on the inner wall of the receiving end of the water intercepting tank module, and one raised sealing protrusion is arranged on the outer wall of the inserting end of the water intercepting tank module;
  • the sealing protrusion of one water intercepting channel module is located between the two sealing grooves of the other water intercepting channel module.
  • an elastic plate is arranged on the outside of the side wall of the water intercepting channel module near the side of the shaft wall.
  • the water intercepting tank module is integrally formed by injection molding.
  • This patent also provides a common drainage method during the construction of multiple adjacent ultra-deep shafts, in which a first pump for pumping out water from the working face of the ultra-deep shaft is installed in each shaft;
  • a water receiving station is set on the well wall of one of the shafts, and a water storage bin and a second pump for pumping and transporting the water in the water storage bin to the outside of the shaft are arranged in the water receiving station; the water pumped out by the first pump in the shaft is transported into the water storage tank;
  • a connecting water pipe is set between the ultra-deep shaft without a water receiving station and the ultra-deep shaft with a water receiving station; the connecting water pipe is used to transport the water in the sedimentation bin to the water storage bin.
  • a water interception device is installed in each shaft; in the ultra-deep shaft with a water receiving station, the water intercepting device is used to receive water from the shaft wall above the water receiving station and transport the water to In the water storage bin; in the ultra-deep shaft where the sedimentation bin is installed, the water interception device is used to receive the water sprayed from the shaft wall above the sedimentation bin and transport the water to the sedimentation bin.
  • the drainage system of the present invention can realize the sharing of an intermediate water receiving station during the construction process of multiple adjacent ultra-deep vertical shafts, which reduces the investment in setting up the drainage equipment of the intermediate water receiving station and the excavation of the chamber of the water receiving station when other adjacent vertical shafts are drained.
  • the engineering quantity shortens the construction period of the mine; the drainage system of the present invention reduces the maintenance personnel and costs of the drainage system of the intermediate water receiving station, and reduces the input of multiple sets of water receiving station equipment and personnel. Only one water receiving station is used, and the water transfer stations in other shafts are canceled. Therefore, the wellbore layout is simplified and the safety and reliability are increased.
  • the water in the sedimentation tank enters the water storage tank of the water receiving station through gravity flow, which is beneficial to the sedimentation of sewage, can improve the working condition of the second pump, and reduce the maintenance amount and failure rate of the second pump.
  • Multiple shafts share one water receiving station, which is conducive to centralized management, so that the drainage system can be rationally utilized and maximize its effectiveness.
  • Fig. 1 is the structural representation (shown as 3 vertical shafts) of the shared drainage system in the construction process of a plurality of adjacent ultra-deep vertical shafts of this patent;
  • FIG. 2 Fig. 1 A-A direction sectional schematic diagram
  • Fig. 3 is a schematic diagram of the internal structure of the vertical shaft where the water receiving station is set in this patent;
  • Fig. 4 is the structural representation of the intercepting device in the drainage system of this patent.
  • Fig. 5 is the structural representation of the water interception tank module in the water interception device
  • Fig. 6 is a schematic cross-sectional view of the A-A direction of the intercepting tank module in Fig. 5;
  • Fig. 7 is a structural schematic diagram of splicing together two interceptor tank modules.
  • the common drainage system in the construction process of a plurality of adjacent ultra-deep shafts includes a plurality of first pumps 8, and the first pumps 8 are used to separate the ultra-deep shaft working face (i.e. the bottom of a shaft) is pumped out;
  • a water receiving station 1 On the wall of one of the ultra-deep shafts, a water receiving station 1 is provided, and a water storage bin 4 for storing water extracted from a plurality of adjacent vertical shaft working faces is arranged in the water receiving station 1, and a water storage bin 4 for storing water extracted from a plurality of adjacent shaft working faces is arranged in the water receiving station 1.
  • the water in the water storage bin 4 is drawn and delivered to the second pump 5 outside the shaft.
  • the first pump 8 can use a turbine-type wind-driven sewage pump, powered by compressed air, which can effectively solve the leakage risk of the electric sewage pump.
  • the setting of the water receiving station 1 and the second pump 5 can effectively reduce the requirement on the performance of the drainage equipment. If the amount of water gushing in the shaft is large, the quantity of the second pump 5 can be increased.
  • the first pumps 8 are respectively installed in the three vertical shafts in Fig. In the water storage bin 4.
  • the concrete method that the water in the vertical shaft not provided with the water receiving station is delivered to the water storage bin 4 is:
  • a settling bin 9 is excavated and installed on the shaft wall of an ultra-deep shaft without a water receiving station 1, and the settling bin 9 is used to receive the water on the working face of the shaft pumped by the first pump 8 in the shaft and remove the sediment in the water.
  • the distance between a plurality of adjacent ultra-deep vertical shafts should not be too far, generally within 100m, otherwise, it will be too difficult to arrange the connecting water pipe 10 between the two wells, and the connection error will be too large.
  • the water receiving station is preferably set in a vertical shaft with a large shaft section, which is convenient for arranging drainage pipelines and ensuring the safety of lifting and transportation.
  • the three ultra-deep shafts in Fig. 3 can be the main shaft, the auxiliary shaft and the wind shaft respectively. Because the cross section of the auxiliary shaft is relatively large, a water receiving station 1 is set in the auxiliary shaft, and a settling bin 9 is set in the main shaft and the air shaft.
  • the water inlet height of the communicating water pipe 10 is 1.5-1.8m higher than the floor surface of the sedimentation bin 9; the water inlet of the communicating water pipe 10 is provided with a filter screen (not shown in the figure).
  • the settling bin 9 has a certain water storage capacity, which can settle part of the silt, avoiding blocking the connecting water pipe 10, and simultaneously avoiding the dredging pressure of the water storage bin 4 caused by excessive silt.
  • the water tank 2 can be installed on the hanging pan 7 in the shaft , while increasing the third pump 3 that draws the water in the water tank 2 and delivers it to the water storage bin 4; If the water receiving station 1 is used as a fixed relay point, then the setting of the water tank 2 and the third pump 3 can be understood as a movable relay point, and this fixed relay point can cooperate with a movable relay point. It is more effective to reduce the requirements on the performance of the drainage equipment. At the same time, with the continuous increase of the excavation depth of the shaft (for example, reaching 1600m), there is no need to add a new water receiving station.
  • the device in Fig. 3 is also used in the ultra-deep shaft without the water receiving station 1, such as the water tank 2 and the third pump 3, which can also reduce the performance requirements of the drainage equipment.
  • the position can be placed on the top of the water receiving station 1 or the sedimentation bin 9 (that is: the height is higher than Water receiving station 1 or higher than the vertical shaft wall of the sedimentation bin 9) is directly guided to the water storage bin 4 or the sedimentation bin 9.
  • the water interception device 6 can be used, and the water interception device 6 can connect the water receiving station 1 or the sedimentation bin 9
  • the above vertical well wall spraying water is collected and guided into the water storage bin 4 or the sedimentation bin 9 .
  • the water interception device 6 includes a water interception tank 6-1 arranged around the shaft wall and a water delivery pipe 6 for transporting the water in the water interception tank 6-1 to the water storage bin 4 or the sedimentation bin 9 -3.
  • a water outlet 6-2 is arranged on the water interception tank 6-1, and the water intercepted by the water interception tank 6-1 will enter the water delivery pipe 6-3 through the water outlet 6-2, and finally enter the water storage bin 4 or the sedimentation bin 9.
  • the side away from the water outlet 6-2 is higher than the side of the water outlet 6-2, so that the water intercepting groove 6-1 is inclined to the side of the water outlet 6-2 as a whole, so that the water can flow out easily .
  • the material is preferably plastic (such as high-density polyethylene HDPE or polypropylene PP).
  • the hardness of this material can meet the requirements and it also has a certain degree of elasticity. It can allow a certain deformation along with the arc of the well wall.
  • the cut-off groove 6-1 is inserted by several cut-off groove modules 6-11.
  • the cut-off tank module 6-11 is U-shaped (the U-shaped bottom surface can be a plane or an arc surface), and one of the side walls is used to fix the cut-off tank module 6-11 on the shaft wall ( Fixing can use expansion bolt);
  • One end of cut-off tank module 6-11 is receiving end (as the left end of Fig. 5), and the other end is inserting end (as shown in the right side end of Fig. 5);
  • One cut-off tank module 6-11 The receiving end is used to insert the insertion end of a water intercepting tank module 6-11 that is connected with it, and its insertion end is used to insert the receiving end of another water intercepting tank module 6-11 that is connected with it simultaneously (as shown in Figure 7 shown).
  • the intercepting tank is directly fixed and installed on the shaft wall during installation.
  • the receiving end and the inserting end of the intercepting tank module 6-11 are gradually thickened from the end to the center.
  • receiving The thickness at the beginning of the end is greater than the thickness at the beginning of the insertion end.
  • This setting can directly put the receiving end of a cut-off tank module on the insert end of the cut-off tank module installed on the well wall (there is a certain distance between the insert end of the cut-off tank module installed on the well wall and the well wall gap), or directly insert the insertion end of a water interception tank module into the receiving end of the water interception tank module already installed on the well wall, so as to realize random installation on both sides, easy installation, and at the same time, it is convenient for two water interception tank modules to carry out seal.
  • the inner wall of the receiving end of the intercepting tank module 6-11 is provided with 2 parallel concave sealing grooves 6-12, and the sealing groove 6 -12 is used to install the sealing strip; a raised sealing protrusion 6-13 is set on the outer wall of the insertion end of the cut-off tank module 6-11; as shown in Figure 7, two cut-off tank modules 6-11 are plugged together
  • the sealing protrusion 6-13 of one water intercepting groove module 6-11 is located between the two sealing grooves 6-12 of another water intercepting groove module 6-11, through two sealing strip clips installed in the sealing groove 6-12 Hold the sealing protrusion 6-13 to realize the sealing between the two intercepting tank modules 6-11.
  • an elastic plate 6-4 is arranged outside the side wall of the water intercepting groove module 6-11 near the side of the shaft wall, and the elastic plate 6-
  • the material of 4 can use a rubber plate, and when the intercepting tank module 6-11 is fixed on the shaft wall, the elastic plate 6-4 will be compressed, thereby effectively reducing the gap between the intercepting tank module 6-11 and the well wall , to achieve a good water interception effect.
  • the interceptor tank module 6-11 with the above structure is preferably prepared by injection molding.
  • this embodiment provides a common drainage method during the construction of multiple adjacent ultra-deep shafts.
  • the water is pumped out by the first pump 8;
  • a water receiving station 1 On the well wall of one of the shafts, a water receiving station 1 is set, and a water storage bin 4 and a second pump 5 for extracting water in the water storage bin 4 and being delivered to the outside of the shaft are arranged in the water receiving station 1; The water pumped out by the first pump 8 in the shaft is delivered to the water storage bin 4;
  • Settling bins 9 are respectively arranged on the shaft walls of the ultra-deep shafts without the water receiving station 1; the settling bins 9 are used to receive the water from the working face drawn by the first pump 8 in the shaft and settle the sediment in the water;
  • a connecting water pipe 10 is set between the ultra-deep shaft without the water receiving station 1 and the ultra-deep shaft provided with the water receiving station 1;
  • the water inside is pumped out by the second pump 5 and transported to the outside of the shaft.
  • a water interception device 6 is provided in each vertical shaft; in the ultra-deep vertical shaft where the water receiving station 1 is set, the water intercepting device 6 is used to receive water from the shaft wall above the water receiving station 1 and pour water on the wall of the shaft above the water receiving station 1 The water is delivered to the water storage bin 4; in the ultra-deep vertical shaft where the sedimentation bin 9 is installed, the water interception device 6 is used to receive the water sprayed from the well wall of the shaft above the sedimentation bin 9 and transport the water to the sedimentation bin 9.
  • the water intercepting device 6 adopts the structure shown in Embodiment 1, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Sewage (AREA)

Abstract

一种多个相邻超深竖井施工过程中共用的排水系统,包括多个第一泵(8),所述第一泵(8)用于分别将超深竖井工作面的水抽出;在其中一个超深竖井的壁上设置有接水站(1),接水站(1)内设置有用于存储从多个相邻的竖井工作面抽出的水的储水仓(4),接水站(1)内还设置有用于将储水仓(4)内的水抽取并输送至竖井外的第二泵(5)。上述排水系统可以实现多个相邻超深竖井施工过程中共用一个中间接水站(1),减少了相邻的其它竖井排水时设置中间接水站排水设备的投入和接水站硐室挖掘的工程量,缩短了矿井建设工期;减少了中间接水站排水系统的维护人员及费用,减少了多套接水站设备投入及人员投入。

Description

多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法 技术领域
本发明涉及竖井施工技术领域,具体涉及多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法。
背景技术
一般认为:深度在300米内的竖井为浅竖井,300-600米为中深竖井,600-1000米为深竖井,1000米以上为超深竖井。
超深竖井在施工过程中,井壁淋水顺井壁流入竖井井底工作面,爆破后竖井裸壁的涌水流入工作面,现有的排水方法是在井底工作面设置集水坑,采用扬程40-70m 3/h的电动排污泵排水到吊盘的水箱中(体积2m 3-5m 3),再由吊盘上安装高扬程水泵排水到地面,高扬程水泵虽然可以将水从井内排出,但是高扬程水泵的平面尺寸大(达到4*1m),重量大(达到3吨以上),对直径8m以下的超深竖井施工时,在吊盘上占用空间大,重量偏离吊盘重心较大,吊盘悬吊钢丝绳强度和直径要求高,施工中吊盘受力不平衡,对施工安全造成影响,这种泵需要与生产厂家协商定制,水泵生产周期较长,一旦损坏,维修难度大,而且严重影响竖井施工工期。
超深竖井施工受井下作业空间狭小限制,超过1200m的超深竖井超深采用排水泵难以直接将井底工作面的涌水排至地面。相邻的多个超深竖井(比如主井、副井和风井)在实际施工的过程中,排水时需要安装各自独立的排水系统,排水机电设备和材料投入增加巨大,需增加排水系统的维护人员及费用。
发明内容
针对现有技术中存在的问题,本发明提供多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法。
本专利首先提供一种多个相邻超深竖井施工过程中共用的排水系统,包括多个第一泵,所述第一泵用于分别将超深竖井工作面的水抽出;
在其中一个超深竖井的壁上设置有接水站,接水站内设置有用于存储从多个相邻的竖井工作面抽出的水的储水仓,接水站内还设置有用于将储水仓内的水抽取并输送至竖井外 的第二泵。
在上述方案的基础上,未设置接水站的超深竖井的井壁上设置有沉淀仓,沉淀仓用于接收该竖井内的第一泵抽取的该竖井工作面的水并对水中的泥沙进行沉淀;沉淀仓与储水仓之间设置有连通水管,连通水管用于将沉淀仓内的沉淀后的水输送至储水仓内。
在上述方案的基础上,所述连通水管的进水口高度高于沉淀仓的底面1.5-1.8m;所述连通水管的进水口处设置有过滤网。
在上述方案的基础上,所述储水仓还用于接收接水站以上的竖井井壁淋水;所述沉淀仓还用于接收沉淀仓以上的竖井井壁淋水。
在上述方案的基础上,竖井井壁淋水使用截水装置收集;所述截水装置包括绕竖井井壁设置的截水槽和用于将截水槽内的水输送至储水仓或沉淀仓的输水管。
在上述方案的基础上,所述截水槽由若干个截水槽模块插接而成;所述截水槽模块为U形,其中一个侧壁用于将截水槽模块固定在竖井井壁上;截水槽模块的一端为接收端,另一端为插入端;一个截水槽模块的接收端用于与它相连接的一个截水槽模块的插入端插入,同时它的插入端用于插入与它相连接的另一个截水槽模块的接收端。
在上述方案的基础上,所述截水槽模块的接收端和插入端均从端部向中心部逐渐变厚,同时,接收端的起始处厚度比插入端的起始处的厚度大。
在上述方案的基础上,所述截水槽模块的接收端的内壁设置2条并行的内凹的密封槽,截水槽模块的插入端的外壁上设置1条凸起的密封凸;两个截水槽模块插接在一起时,一个截水槽模块的密封凸位于另一个截水槽模块的2个密封槽之间。
在上述方案的基础上,所述截水槽模块靠近竖井井壁侧的侧壁外部设置有弹性板。
在上述方案的基础上,所述截水槽模块为注塑一体成型。
本专利还提供一种多个相邻超深竖井施工时的共同排水方法,在每个竖井内均安装用于将超深竖井工作面的水抽出的第一泵;
在其中的一个竖井的井壁上设置接水站,接水站内设置储水仓和用于将储水仓内的水抽取并输送至竖井外的第二泵;该竖井内的第一泵抽出的水被输送至储水仓内;
在未设置接水站的超深竖井的井壁上分别设置沉淀仓;沉淀仓用于接收该竖井内的第一泵抽取的工作面的水并对水中的泥沙进行沉淀;
在未设置接水站的超深竖井与设置接水站的超深竖井之间设置连通水管;连通水管用于将沉淀仓内的水输送至储水仓内。
在上述方案的基础上,在每个竖井内设置截水装置;在设置接水站的超深竖井内,截 水装置用于接收接水站以上的竖井井壁淋水并将淋水输送至储水仓内;在设置沉淀仓的超深竖井内,截水装置用于接收沉淀仓以上的竖井井壁淋水并将淋水输送至沉淀仓内。
本发明的排水系统可以实现多个相邻超深竖井施工过程中共用一个中间接水站,减少了相邻的其它竖井排水时设置中间接水站排水设备的投入和接水站硐室挖掘的工程量,缩短了矿井建设工期;本发明的排水系统减少了中间接水站排水系统的维护人员及费用,减少了多套接水站设备投入及人员投入。仅使用一个接水站,取消其他竖井内的转水站,因此,简化了井筒布置,增加了安全可靠性。
沉淀仓内的水经自流进入接水站的储水仓,利于污水沉淀,可改善第二泵的工况,减低第二泵维修量和故障率。多个竖井共用一个接水站,有利于集中管理,使排水系统得到合理利用,发挥其最大效能。
附图说明
通过阅读下文的具体实施方式的详细描述,本发明的优点和益处对于本领域普通技术人员将变得清楚明了。附图是说明性的,并不认为是对本发明的限制。在附图中:
图1为本专利的多个相邻超深竖井施工过程中共用的排水系统的结构示意图(图示为3个竖井);
图2图1中A-A向剖视示意图;
图3为本专利设置接水站的竖井内部结构示意图;
图4为本专利的排水系统中的截水装置结构示意图;
图5为截水装置中的截水槽模块的结构示意图;
图6为图5中截水槽模块的A-A向剖视示意图;
图7为两个截水槽模块拼接在一起的结构示意图。
具体实施方式
现列举以下实施例用来说明本发明所述的技术方案。需要说明的是,以下实施例对本发明要求的保护范围不构成限制作用。
实施例1
如图1、图2和图3所示,多个相邻超深竖井施工过程中共用的排水系统,包括多个第一泵8,所述第一泵8用于分别将超深竖井工作面(即:竖井的井底)的水抽出;
在其中一个超深竖井的壁上设置有接水站1,接水站1内设置有用于存储从多个相邻的 竖井工作面抽出的水的储水仓4,接水站1内还设置有用于将储水仓4内的水抽取并输送至竖井外的第二泵5。第一泵8可以使用涡轮式风动排污泵,以压缩空气为动力,可以有效解决电动排污泵的漏电风险。接水站1和第二泵5的设置可以有效降低对排水设备性能的要求。如果竖井内的涌水量大,可以增加第二泵5的数量。
以三个竖井共用一个接水站为例,图1中的三个竖井中分别设置第一泵8,第一泵8分别将各自对应的超深竖井工作面的水抽出,最终将水送入储水仓4内。
将未设置接水站的竖井内的水输送至储水仓4内的具体方法是:
未设置接水站1的超深竖井的井壁上挖掘并设置有沉淀仓9,沉淀仓9用于接收该竖井内的第一泵8抽取的该竖井工作面的水并对水中的泥沙进行沉淀;沉淀仓9与储水仓4之间设置有连通水管10,连通水管10用于将沉淀仓9内的沉淀后的水输送至储水仓4内。
使用本专利的排水系统时,多个相邻的超深竖井距离不宜太远,一般在100m以内,否则,两井之间设置连通水管10的难度太大,贯通误差太大。接水站最好设置在井筒断面大的竖井中,便于布置排水管路,保证提升运输安全。
图3中的三个超深竖井可以分别时主井、副井和风井,其中因为副井的断面较大,因此在副井中设置接水站1,在主井和风井内设置沉淀仓9。
先在选好的竖井中的井壁上挖掘并设置接水站1,之后从设置接水站的硐室迎面向相邻的竖井钻孔,按接水站的底板面以上1.5-2.0m定钻孔标高,按坡度10-14‰的上坡定钻孔走向;这样既能保证钻孔贯通,又能使钻孔的出口位置高,便于后期水流入储水仓4;钻孔完成后,设置好连通水管10。如图2所示,连通水管10的进水口高度高于沉淀仓9的底板面1.5-1.8m;所述连通水管10的进水口处设置有过滤网(图中不再示出)。这样,沉淀仓9有一定的蓄水量,能沉淀部分泥沙,避免堵塞连通水管10,同时可以避免过大的泥沙造成储水仓4的清淤压力。
随着竖井的深度不断加大,当第一泵8与接水站1或沉淀仓9之间的高度差过大时,如图3所示,可以在竖井内的吊盘7上设置水箱2,同时增加将水箱2中的水抽取并输送至储水仓4的第三泵3;所述水箱2用于接收第一泵8抽取的工作面的水。如果以接水站1作为一个固定的接力点,那么,水箱2和第三泵3的设置,就可以理解为是一个活动的接力点,这一个固定的接力点配合一个活动的接力点,可以更为有效的减少对排水设备性能的要求,同时,随着竖井挖掘深度的不断增大(比如达到1600m),无需再增设新的接水站。
在未设置接水站1的超深竖井内也使用图3中的装置,比如水箱2、第三泵3,这样可以同样减少对排水设备性能的要求。
竖井工作面的水主要有两个来源,一个是工作面的涌水,一个是井壁的淋水,对于井壁淋水,如果都汇集到井底的工作面,不但会增大工作面的水量,还增大了排水的工作量,为了解决这一问题,作为一个具体的实施方案,在上述方案的基础上,可以将位置在接水站1或沉淀仓9的上部(即:高度高于接水站1或高于沉淀仓9)的竖井井壁淋水直接引导至储水仓4或沉淀仓9内,具体可以使用截水装置6,截水装置6可以将接水站1或沉淀仓9以上的竖井井壁淋水汇集并引导至储水仓4或沉淀仓9内。
如图3和4所示,所述截水装置6包括绕竖井井壁设置的截水槽6-1和用于将截水槽6-1内的水输送至储水仓4或沉淀仓9的输水管6-3。截水槽6-1上设置有出水口6-2,截水槽6-1截流的水会通过出水口6-2进入输水管6-3,最终进入储水仓4或沉淀仓9。设置截水槽6-1时,远离出水口6-2的一侧高于出水口6-2一侧,使截水槽6-1整体向出水口6-2的一侧倾斜,便于淋水的流出。
目前,截水槽有很多种类,比如使用槽钢固定在竖井壁上或者直接在竖井壁上开凿出截水槽等,但是这些方式的截水槽存在很多问题,比如使用槽钢会因为槽钢的重量过大,安装时工作量比较大且风险比较高,同时优于井壁是弧形的,槽钢的刚性很难与井壁卡合,再比如直接在竖井壁上开凿出截水槽,这种方式会破坏井壁的防护层(混凝土层),而且施工成本比较高。针对现有的问题,本专利提供一种新型的截水槽,材料优选使用塑料(比如高密度聚乙烯HDPE或聚丙烯PP),这种材料硬度可以达到要求同时还带有一定的弹性,安装时可以允许随着井壁的弧形有一定的变形,具体结构上,如图4、图5、图6和图7所示,所述截水槽6-1由若干个截水槽模块6-11插接而成;所述截水槽模块6-11为U形(U型的底部面可以是平面也可以弧面),其中一个侧壁用于将截水槽模块6-11固定在竖井井壁上(固定可以使用膨胀螺栓);截水槽模块6-11的一端为接收端(如图5的左侧端),另一端为插入端(如图5的右侧端);一个截水槽模块6-11的接收端用于与它相连接的一个截水槽模块6-11的插入端插入,同时它的插入端用于插入与它相连接的另一个截水槽模块6-11的接收端(如图7所示)。
截水槽在安装时是直接在竖井壁上进行固定安装,为了更方便的进行安装,所述截水槽模块6-11的接收端和插入端均从端部向中心部逐渐变厚,同时,接收端的起始处厚度比插入端的起始处的厚度大。这种设置,可以直接将一个截水槽模块的接收端套在已经安装在井壁上的截水槽模块的插入端(已经安装在井壁上的截水槽模块的插入端与井壁之间存在一定的间隙),也可以直接将一个截水槽模块的插入端插入到已经安装在井壁上的截水槽模块的接收端,实现两侧随意安装,安装方便,同时便于两个截水槽模块之间进行密封。
为了防止截水槽6内的水从两个截水槽模块6-11之间流出,所述截水槽模块6-11的接收端的内壁设置2条并行的内凹的密封槽6-12,密封槽6-12内用于安装密封条;截水槽模块6-11的插入端的外壁上设置1条凸起的密封凸6-13;如图7所示,两个截水槽模块6-11插接在一起时,一个截水槽模块6-11的密封凸6-13位于另一个截水槽模块6-11的2个密封槽6-12之间,通过两个安装在密封槽6-12内的密封条夹住密封凸6-13,实现两个截水槽模块6-11之间的密封。
因为竖井的井壁并非是一个光滑的壁,如果直接将截水槽模块6-11固定在井壁上,会在截水槽模块6-11与井壁之间存在一定的间隙,减弱了截水的效果,为了解决这一问题,作为一种实施方案,如图5所示,在所述截水槽模块6-11靠近竖井井壁侧的侧壁外部设置有弹性板6-4,弹性板6-4的材料可以使用橡胶板,将截水槽模块6-11固定在竖井井壁上时,会对弹性板6-4进行压缩,从而有效的减少截水槽模块6-11与井壁之间的间隙,达到很好的截水效果。
上述结构的截水槽模块6-11优选使用注塑一体成型的方式制备。
实施例2
结合图1-图7,基于实施例1的排水系统,本实施例提供一种多个相邻超深竖井施工时的共同排水方法,在每个竖井内均安装用于将超深竖井工作面的水抽出的第一泵8;
在其中的一个竖井的井壁上设置接水站1,接水站1内设置储水仓4和用于将储水仓4内的水抽取并输送至竖井外的第二泵5;设置接水站1的竖井内的第一泵8抽出的水被输送至储水仓4内;
在未设置接水站1的超深竖井的井壁上分别设置沉淀仓9;沉淀仓9用于接收该竖井内的第一泵8抽取的工作面的水并对水中的泥沙进行沉淀;
在未设置接水站1的超深竖井与设置接水站1的超深竖井之间设置连通水管10;连通水管10用于将沉淀仓9内的水输送至储水仓4内,最终,储水仓4内的水由第二泵5抽出并输送至竖井外。
作为一个优选的方案,在每个竖井内设置截水装置6;在设置接水站1的超深竖井内,截水装置6用于接收接水站1以上的竖井井壁淋水并将淋水输送至储水仓4内;在设置沉淀仓9的超深竖井内,截水装置6用于接收沉淀仓9以上的竖井井壁淋水并将淋水输送至沉淀仓9内。截水装置6使用实施例1中示出的结构,在此不再赘述。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实 施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (12)

  1. 多个相邻超深竖井施工过程中共用的排水系统,其特征在于,包括多个第一泵(8),所述第一泵(8)用于分别将超深竖井工作面的水抽出;
    在其中一个超深竖井的壁上设置有接水站(1),接水站(1)内设置有用于存储从多个相邻的竖井工作面抽出的水的储水仓(4),接水站(1)内还设置有用于将储水仓(4)内的水抽取并输送至竖井外的第二泵(5)。
  2. 根据权利要求1所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,未设置接水站(1)的超深竖井的井壁上设置有沉淀仓(9),沉淀仓(9)用于接收该竖井内的第一泵(8)抽取的该竖井工作面的水并对水中的泥沙进行沉淀;沉淀仓(9)与储水仓(4)之间设置有连通水管(10),连通水管(10)用于将沉淀仓(9)内的沉淀后的水输送至储水仓(4)内。
  3. 根据权利要求1所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述连通水管(10)的进水口高度高于沉淀仓(9)的底面1.5-1.8m;所述连通水管(10)的进水口处设置有过滤网(10-1)。
  4. 根据权利要求1所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述储水仓(4)还用于接收接水站(1)以上的竖井井壁淋水;所述沉淀仓(9)还用于接收沉淀仓(9)以上的竖井井壁淋水。
  5. 根据权利要求4所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,竖井井壁淋水使用截水装置(6)收集;所述截水装置(6)包括绕竖井井壁设置的截水槽(6-1)和用于将截水槽(6-1)内的水输送至储水仓(4)或沉淀仓(9)的输水管(6-3)。
  6. 根据权利要求5所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述截水槽(6-1)由若干个截水槽模块(6-11)插接而成;所述截水槽模块(6-11)为U形,其中一个侧壁用于将截水槽模块(6-11)固定在竖井井壁上;截水槽模块(6-11)的一端为接收端,另一端为插入端;一个截水槽模块(6-11)的接收端用于与它相连接的一个截水槽模块(6-11)的插入端插入,同时它的插入端用于插入与它相连接的另一个截水槽模块(6-11)的接收端。
  7. 根据权利要求6所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述截水槽模块(6-11)的接收端和插入端均从端部向中心部逐渐变厚,同时,接收端的起始处厚度比插入端的起始处的厚度大。
  8. 根据权利要求6所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述截水槽模块(6-11)的接收端的内壁设置2条并行的内凹的密封槽(6-12),截水槽模块(6-11)的插入端的外壁上设置1条凸起的密封凸(6-13);两个截水槽模块(6-11)插接在一起时,一个截水槽模块(6-11)的密封凸(6-13)位于另一个截水槽模块(6-11)的2个密封槽(6-12)之间。
  9. 根据权利要求6所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述截水槽模块(6-11)靠近竖井井壁侧的侧壁外部设置有弹性板(6-4)。
  10. 根据权利要求6所述的多个相邻超深竖井施工过程中共用的排水系统,其特征在于,所述截水槽模块(6-11)为注塑一体成型。
  11. 多个相邻超深竖井施工时的共同排水方法,其特征在于,在每个竖井内均安装用于将超深竖井工作面的水抽出的第一泵(8);
    在其中的一个竖井的井壁上设置接水站(1),接水站(1)内设置储水仓(4)和用于将储水仓(4)内的水抽取并输送至竖井外的第二泵(5);该竖井内的第一泵(8)抽出的水被输送至储水仓(4)内;
    在未设置接水站(1)的超深竖井的井壁上分别设置沉淀仓(9);沉淀仓(9)用于接收该竖井内的第一泵(8)抽取的工作面的水并对水中的泥沙进行沉淀;
    在未设置接水站(1)的超深竖井与设置接水站(1)的超深竖井之间设置连通水管(10);连通水管(10)用于将沉淀仓(9)内的水输送至储水仓(4)内。
  12. 根据权利要求11所述的多个相邻超深竖井施工时的共同排水方法,其特征在于,在每个竖井内设置截水装置(6);在设置接水站(1)的超深竖井内,截水装置(6)用于接收接水站(1)以上的竖井井壁淋水并将淋水输送至储水仓(4)内;在设置沉淀仓(9)的超深竖井内,截水装置(6)用于接收沉淀仓(9)以上的竖井井壁淋水并将淋水输送至沉淀仓(9)内。
PCT/CN2022/087325 2022-04-18 2022-04-18 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法 WO2023015928A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087325 WO2023015928A1 (zh) 2022-04-18 2022-04-18 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087325 WO2023015928A1 (zh) 2022-04-18 2022-04-18 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法

Publications (1)

Publication Number Publication Date
WO2023015928A1 true WO2023015928A1 (zh) 2023-02-16

Family

ID=85200576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087325 WO2023015928A1 (zh) 2022-04-18 2022-04-18 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法

Country Status (1)

Country Link
WO (1) WO2023015928A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1434135A1 (ru) * 1987-01-05 1988-10-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт По Осушению Месторождений Полезных Ископаемых,Специальным Горным Работам,Рудничной Геологии И Маркшейдерскому Делу Способ шахтного дренажа
CN101975087A (zh) * 2010-09-21 2011-02-16 山东新矿赵官能源有限责任公司 矿井水综合处理利用技术
CN107701231A (zh) * 2017-11-17 2018-02-16 安徽马钢罗河矿业有限责任公司 一种集约化整体结构井下水仓系统及其施工方法
CN210637109U (zh) * 2019-07-29 2020-05-29 河北钢铁集团矿业有限公司 一种地下矿山井下临时排水结构
AU2021102085A4 (en) * 2021-04-20 2021-08-12 China Railway 18 Bureau Group Co. Ltd. Bottom-valve-free automatic drainage method using improved jet device for deep shaft construction
CN114991775A (zh) * 2022-05-10 2022-09-02 中铁广州工程局集团第三工程有限公司 应用于狭小空间内超深竖井防水结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1434135A1 (ru) * 1987-01-05 1988-10-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт По Осушению Месторождений Полезных Ископаемых,Специальным Горным Работам,Рудничной Геологии И Маркшейдерскому Делу Способ шахтного дренажа
CN101975087A (zh) * 2010-09-21 2011-02-16 山东新矿赵官能源有限责任公司 矿井水综合处理利用技术
CN107701231A (zh) * 2017-11-17 2018-02-16 安徽马钢罗河矿业有限责任公司 一种集约化整体结构井下水仓系统及其施工方法
CN210637109U (zh) * 2019-07-29 2020-05-29 河北钢铁集团矿业有限公司 一种地下矿山井下临时排水结构
AU2021102085A4 (en) * 2021-04-20 2021-08-12 China Railway 18 Bureau Group Co. Ltd. Bottom-valve-free automatic drainage method using improved jet device for deep shaft construction
CN114991775A (zh) * 2022-05-10 2022-09-02 中铁广州工程局集团第三工程有限公司 应用于狭小空间内超深竖井防水结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN YUN, XIE JIANBO; LIN WEIMING: "Super Deep Water Seepage Shaft Construction under Complicated Geological Conditions", SICHUAN WATER POWER, vol. 37, no. 5, 31 October 2018 (2018-10-31), XP093035210, ISSN: 1001-2184 *

Similar Documents

Publication Publication Date Title
CN103541345B (zh) 水气分离真空预压法及装置
CN110454223B (zh) 反坡tbm掘进隧洞排水施工方法
CN110185493A (zh) 一种复杂地质条件下长大隧道反坡排水施工方法
WO2023015928A1 (zh) 多个相邻超深竖井施工过程中共用的排水系统及多个相邻超深竖井施工时的共同排水方法
CN106103856A (zh) 启动用于虹吸液体的排水装置的方法以及排水装置
CN110374124B (zh) 地铁施工排水系统
CN201810345U (zh) 矿井水仓排泥系统
WO2023141790A1 (zh) 一种用于超深竖井开凿过程中的排水系统及排水方法
RU2796668C1 (ru) Дренажная система, применяемая при строительстве смежных сверхглубоких вертикальных стволов, и метод дренажа, применяемый при строительстве смежных сверхглубоких вертикальных стволов
CN216240796U (zh) 一种隧道清污分流施工结构
CN211685016U (zh) 一种基坑地下水利用系统
CN215630570U (zh) 倒虹系统
CN210737725U (zh) 一种滑雪场地下阶梯式蓄水池群
CN107724424B (zh) 城市综合管廊排水汇流系统
US20170247849A1 (en) Pumping system for bodies of water
CN114109395B (zh) 一种隧道清污分流施工方法及结构
CN213868210U (zh) 一种地铁区间组合式排水系统
CN111005761A (zh) 一种矿山法隧道的集水、排水结构及其施工方法
CN220228050U (zh) 一种压力管道排气、排泥系统
CN107740438A (zh) 城市综合管廊排水管系统
CN117364808A (zh) 一种基于基坑支护结构的暗埋降排水再利用系统
CN211549621U (zh) 一种基坑内泥浆循环系统
CN217629441U (zh) 一种组合式多用途露天矿中间搭桥装置
CN104963383B (zh) 一种有压输水管道倒虹吸管水力自动冲淤装置
CN218407533U (zh) 一种回风大巷自动排水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22854933

Country of ref document: EP

Kind code of ref document: A1