WO2023141785A1 - 转向手感模拟助力器、转向助力器、转向系统及控制方法 - Google Patents

转向手感模拟助力器、转向助力器、转向系统及控制方法 Download PDF

Info

Publication number
WO2023141785A1
WO2023141785A1 PCT/CN2022/073884 CN2022073884W WO2023141785A1 WO 2023141785 A1 WO2023141785 A1 WO 2023141785A1 CN 2022073884 W CN2022073884 W CN 2022073884W WO 2023141785 A1 WO2023141785 A1 WO 2023141785A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
hydraulic
booster
control valve
pipeline
Prior art date
Application number
PCT/CN2022/073884
Other languages
English (en)
French (fr)
Inventor
王兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/073884 priority Critical patent/WO2023141785A1/zh
Priority to CN202280052773.7A priority patent/CN117813232A/zh
Publication of WO2023141785A1 publication Critical patent/WO2023141785A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle

Definitions

  • the present application relates to the field of steering, and more specifically, to a steering feel simulation booster, a steering booster, a steering system and a control method.
  • the steering system of a vehicle is a series of devices used to change or maintain the driving direction or reverse direction of the vehicle. Its function is to control the driving direction or reverse direction of the vehicle according to the driver's wishes or the control instructions of the automatic driving system.
  • the steering system of the vehicle is very important to the driving safety of the vehicle.
  • the traditional steering system is a mechanical system, the driver manipulates the steering wheel, and the steering wheel is transmitted to the steering wheel through the steering gear and a series of rods to realize the steering of the vehicle.
  • the steer-by-wire technology can be applied to the steering system of the vehicle.
  • the steering by wire cancels the mechanical connection between the steering wheel and the steering wheel, and the steering is completely realized by electric energy. Since the mechanical connection is canceled by the steer-by-wire, the driver will not feel the steering resistance and bumps transmitted by the road surface, and will lose the sense of the road. Therefore, it is necessary to apply a force feedback on the steering wheel to feed back road condition information.
  • the existing steer-by-wire system usually simulates the road feeling through a road feeling assembly, and the road feeling assembly usually includes a road feeling motor and a transmission component, for example, a worm gear.
  • the road sense motor is used to output torque, which is transmitted to the steering wheel through the transmission parts.
  • the road feel assembly has a single function, and only has a feel simulation function, without a power redundant backup function.
  • Embodiments of the present application provide a steering feel simulation booster, a steering mechanism, a steering system, and a control method, so as to improve the redundancy performance of the steering system.
  • a steering feel simulation booster including a housing 113, a first transmission mechanism 112, a piston 111 and an intermediate piece;
  • the housing 113 includes a first structure 1131 and a second structure 1132, the first structure 1131.
  • the second structure 1132 and the piston 111 enclose a hydraulic chamber;
  • the first transmission mechanism 112 is accommodated in the housing 113, and the first transmission mechanism 112 can convert rotary motion into linear motion, or convert linear motion It is a rotary motion;
  • the middle piece is connected with the first transmission mechanism 112, and the middle piece drives the piston 111 to move under the action of the first transmission mechanism 112 to change the hydraulic pressure in the hydraulic chamber, or, the middle piece is in the first transmission mechanism 112. Under the action of the piston 111, the first transmission mechanism 112 is driven to rotate in the housing.
  • the hydraulic pressure in the hydraulic chamber can drive the piston in the hydraulic chamber to move in a straight line, and then drive the first transmission mechanism connected to the piston to undergo rotary motion.
  • the first transmission mechanism The steering wheel can be connected, so that the steering feel simulation can be realized.
  • the hydraulic chamber is surrounded by a casing and an intermediate piece, the first transmission mechanism is accommodated in the casing, and the first transmission mechanism is connected to the piston; meanwhile, the first transmission mechanism can also be connected to the power part or the steering wheel. Under the action, the hydraulic pressure in the hydraulic chamber changes to provide steering assist for the steering wheels, thereby improving the redundancy performance of the steering system including the feel analog booster.
  • the first transmission mechanism 112 is a ball screw mechanism
  • the ball screw mechanism includes a lead screw and a lead screw nut, the lead screw nut and the intermediate piece 1121 connection.
  • one end of the lead screw is provided with a first limiter 1171, and the other end of the lead screw is provided with a second limiter 1172, the first limiter
  • the positioning component and the second limiting component are fixed in position, and the lead screw nut moves within the displacement interval formed by the first limiting component 1171 and the second limiting component 1172 .
  • the first structure 1131 is provided with a first hydraulic pressure adjustment port 11321
  • the second structure 1132 is provided with a second hydraulic pressure adjustment port 11322.
  • the hydraulic adjustment port 11321 is connected to one end of the first hydraulic pipeline 1311
  • the second hydraulic pressure adjustment port 11322 is connected to one end of the second hydraulic pipeline 1312
  • the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the reservoir.
  • the liquid outlet pipeline 1313 of the liquid device 133; the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are provided with a first control valve 1321, and the first control valve 1321 is used to control the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 to control whether the hydraulic chamber and the liquid storage device 133 are connected or disconnected.
  • the steering feel simulation booster further includes a steering column 102, one end of the steering column 102 is connected to the first transmission mechanism 112, and the steering column 102 The other end is connected to the steering wheel 101 .
  • the steering feel simulation booster further includes a first power component 114, the output shaft of the first power component 114 is connected to one end of the first transmission mechanism 112 , the first power component 114 is used to output power to the first transmission mechanism 112; the angle sensor 104, the angle sensor 104 is connected with the first power component 114, and the angle sensor 104 is used to sense the first power component 114 Rotation angle information.
  • the steering feel simulation booster further includes: a third power component 115 and a third transmission mechanism 116, the position of the third power component 115 is fixed, and the first
  • the three transmission mechanisms 116 include a gear 1161 and a rack 1162 that mesh with each other, the gear 1161 is connected to the output shaft of the third power component 115 , and the rack 1162 is fixedly connected to the housing 113 .
  • a steering booster including: a housing 1213, a second transmission mechanism 122, a piston 1211 and a piston push rod 1212; the piston 1211 is fixedly connected to the piston push rod 1212, and the piston 1211 is placed on the In the casing 1213, the second piston 1211, the piston push rod 1212 and the casing 1213 enclose a hydraulic chamber; the piston push rod 1212 is connected with the second transmission mechanism 122, and the piston push rod 1212 is in the second transmission mechanism Under the action of the mechanism 122, the piston 1211 is driven to move to change the hydraulic pressure in the hydraulic chamber.
  • the piston in the hydraulic chamber can be driven to move linearly through the action of the second transmission mechanism, and then the hydraulic pressure in the hydraulic chamber can be changed to provide steering assist for the steering wheels, or the hydraulic pressure can be
  • the action of the steering wheel makes the steering column connected to the steering wheel rotate, so that the steering feel simulation can be realized.
  • the second transmission mechanism 122 is a ball screw mechanism
  • the ball screw mechanism includes a screw and a screw nut, the screw and the piston push rod 1212 coaxial connection.
  • limit blocks 1214 are provided at both ends of the piston push rod 1212, and the limit block 1214, the piston push rod 1212 and the housing 1213 are enclosed to form an airtight In the hydraulic chamber, the position of the limiting block 1214 is fixed relative to the housing 1213 , and the piston 1211 moves in the sealed hydraulic chamber.
  • the housing 1213 is provided with a third hydraulic pressure adjustment port and a fourth hydraulic pressure adjustment port, and the third hydraulic pressure adjustment port and the fourth hydraulic pressure adjustment port are respectively Located on both sides of the piston 1211, the third hydraulic adjustment port is connected to one end of the first hydraulic pipeline 1311, the fourth hydraulic pressure adjustment port is connected to one end of the second hydraulic pipeline 1312, the first hydraulic pipeline 1311 and The second hydraulic pipeline 1312 communicates with the liquid outlet pipeline 1313 of the liquid storage device 133; the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are provided with a second control valve 1322, and the second control valve 1322 is used to It is used to control the on-off of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, so as to control whether the closed hydraulic chamber and the liquid storage device 133 are in a connected or disconnected state.
  • the steering booster further includes: a steering tie rod 124, the two ends of the steering tie rod 124 are respectively connected to steering wheels, the steering tie rod 124, the wire The rod 1222 and the piston push rod 1212 are axially fixedly connected with the axis.
  • the steering booster further includes: a second power component 123, the output shaft of the second power component 123 is connected to the second transmission mechanism 122, and the second The power part 123 is used to output power to the second transmission mechanism 122; the angle sensor 105, the angle sensor 105 is connected with the second power part 123, and the angle sensor 105 is used to sense the angle information of the rotation of the second power part 115 .
  • a steering system including: a steering feel simulation booster, a steering booster and a hydraulic module; the steering feel simulation booster includes a first transmission mechanism 112 and a first hydraulic device, and the first transmission mechanism 112
  • the rotary motion can be converted into linear motion or the linear motion can be converted into rotary motion.
  • the first hydraulic device generates hydraulic pressure under the action of the first transmission mechanism 112, or the first transmission mechanism 112 generates hydraulic pressure under the action of the first hydraulic device.
  • the hydraulic module includes a hydraulic pipeline 131 and a control valve 132, one end of the hydraulic pipeline 131 is connected to the first hydraulic device, and the other end of the hydraulic pipeline 131 is connected to the steering booster, and the steering booster is used to The hydraulic pressure generated by the first hydraulic device is converted into the steering power of the steering wheel.
  • the control valve 132 is arranged on the hydraulic pipeline 132.
  • the control valve 132 is used to control the steering by controlling the on-off of the hydraulic pipeline 132.
  • the feel simulation booster 110 is coupled or decoupled from the steering booster.
  • the first hydraulic device includes a housing 113 and a piston 111
  • the housing 113 includes a first structure 1131 and a second structure 1132, the first structure 1131.
  • the second structure 1132 and the piston 111 enclose a hydraulic chamber;
  • the first transmission mechanism 112 is connected to an intermediate piece, and the intermediate piece drives the piston 111 to move under the action of the first transmission mechanism 112 to make the hydraulic chamber
  • the hydraulic pressure changes, or the intermediate piece 1121 drives the first transmission mechanism 112 to rotate under the action of the piston 111 .
  • the first transmission mechanism 112 is a ball screw mechanism
  • the ball screw mechanism includes a lead screw and a lead screw nut, the lead screw nut and the intermediate piece connect.
  • one end of the lead screw is provided with a first limiter 1171, and the other end of the lead screw is provided with a second limiter 1172, and the first limiter
  • the positioning component and the second limiting component are fixed in position, and the lead screw nut moves within the displacement interval formed by the first limiting component 1171 and the second limiting component 1172 .
  • the hydraulic pipeline 131 includes a first hydraulic pipeline 1311 and a second hydraulic pipeline 1312, and the first structure 1131 is provided with a first hydraulic pressure adjustment port 11321, the second structure 1132 is provided with a second hydraulic pressure adjustment port 11322, the first hydraulic pressure adjustment port 11321 is connected with one end of the first hydraulic pipeline 1311, and the second hydraulic pressure adjustment port 11322 is connected with the second hydraulic pressure pipeline 1312 One end is connected, the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 communicate with the liquid outlet pipeline 1313 of the liquid storage device 133; the control valve 132 includes a first control valve 1321, and the first control valve 1321 is located on the On the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, the first control valve 1321 is used to control the on-off of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, so as to control the hydraulic chamber and The liquid storage device 133 is in a connected or disconnected state.
  • the other ends of the first hydraulic line 1311 and the second hydraulic line 1312 are connected to the steering booster, and the control valve 132 also includes a second control Valve 1322, the second control valve 1322 is set on the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, the second control valve 1321 is used to control the first hydraulic pipeline 1311 and the second hydraulic pipeline
  • the on-off of the passage 1312 is used to control whether the steering booster and the liquid storage device 133 are connected or disconnected.
  • the hydraulic module further includes a third control valve 1323, the third control valve 1323 is arranged in the liquid outlet pipeline 1313, and the third control valve is used for Controlling the connection and disconnection of the liquid storage device 133 with the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 .
  • the steering system further includes a steering wheel 101 connected to the first transmission mechanism 112 through a steering column 102 .
  • the steering feel simulation booster further includes a first power component 114 and an angle sensor 104, and the first power component 114 is used to provide the first transmission mechanism 112 with To output power, the angle sensor 104 is connected to the first power component 114 , and the angle sensor 104 is used to sense the rotation angle information of the first power component 114 .
  • the steering feel simulation booster further includes a third power component 115 and a third transmission mechanism 116, the position of the third power component 115 is fixed, and the third The transmission mechanism 116 includes a gear 1161 and a rack 1162 that mesh with each other, the gear 1161 is connected to the output shaft of the third power component 115 , and the rack 1162 is fixedly connected to the housing 113 .
  • a steering system including: a steering feel simulation booster, a steering booster and a hydraulic module; the steering booster includes a second transmission mechanism 122 and a second hydraulic device, and the second transmission mechanism 122 can The rotary motion is converted into linear motion, and the second hydraulic device generates hydraulic pressure under the action of the second transmission mechanism 122 to provide steering power for the steering wheel; the hydraulic module includes a hydraulic pipeline 131 and a control valve 132, and the hydraulic pipeline 131 One end is connected to the second hydraulic device, and the other end of the hydraulic pipeline 131 is connected to the steering feel simulation booster, and the steering booster provides power to the steering feel simulation booster through the hydraulic pipeline 131, so that the steering feel simulation The booster drives the steering wheel 101 to rotate, and the control valve 132 is arranged on the hydraulic pipeline 132. The control valve 132 is used to control the steering feel simulation booster 110 and the steering assist by controlling the on-off of the hydraulic pipeline 132. coupling or decoupling between devices.
  • the second hydraulic device includes a housing 1213, a piston 1211 and a piston push rod 1212, the piston 1211 is fixedly connected to the piston push rod 1212, and the piston 1211 Placed in the housing 1213, the second piston 1211, the piston push rod 1212 and the housing 1213 enclose a hydraulic chamber; the second transmission mechanism 122 is connected with the piston push rod 1212, and the second transmission mechanism 122 Under the action of the piston push rod 1212 drives the piston 1211 to move to change the hydraulic pressure in the hydraulic chamber.
  • the second transmission mechanism 122 is a ball screw mechanism
  • the ball screw mechanism includes a lead screw and a lead screw nut, the lead screw and the piston push rod 1212 coaxial axial fixed connection.
  • limit blocks 1214 are provided at both ends of the piston push rod 1212, and the limit block 1214, the piston push rod 1212 and the housing 1213 are enclosed to form an airtight In the hydraulic chamber, the position of the limiting block 1214 is fixed relative to the housing 1213 , and the piston 1211 moves in the sealed hydraulic chamber.
  • the hydraulic pipeline 131 includes a first hydraulic pipeline 1311 and a second hydraulic pipeline 1312, and the housing 1213 is provided with a third hydraulic pressure adjustment port and The fourth hydraulic adjustment port, the third hydraulic adjustment port and the fourth hydraulic adjustment port are respectively located on both sides of the piston 1211, the third hydraulic adjustment port is connected to one end of the first hydraulic pipeline 1311, the fourth hydraulic adjustment The port is connected to one end of the second hydraulic pipeline 1312, and the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 communicate with the outlet pipeline 1313 of the liquid storage device 133; the control valve 132 includes a second control valve 1322, The second control valve 1322 is arranged on the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, and the second control valve 1322 is used to control the flow of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312. On and off, so as to control whether the hydraulic chamber and the liquid storage device 133 are connected or disconnected.
  • the other ends of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the steering feel simulation booster, and the control valve 132 also includes a first A control valve 1321, the first control valve 1321 is set on the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, the first control valve 1321 is used to control the first hydraulic pipeline 1311 and the second hydraulic pipeline 1311
  • the on-off of the hydraulic pipeline 1312 is used to control whether the steering feel simulation booster and the liquid storage device 133 are connected or disconnected.
  • the hydraulic module further includes a third control valve 1323, the third control valve 1323 is arranged on the liquid outlet pipeline 1313, and the third control valve is used for It is used to control the on-off of the liquid storage device 133 and the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 .
  • the steering booster further includes a steering tie rod 124, the two ends of the steering tie rod 124 are respectively connected to the steering wheel, the steering tie rod 124, the wire The rod 1222 and the piston push rod 1212 are axially fixedly connected with the axis.
  • the steering booster further includes a second power component 123 and an angle sensor 105, the second power component 123 is used to output power to the second transmission mechanism 122 , the angle sensor 105 is connected to the second power component 123 , and the angle sensor 105 is used to sense the rotation angle information of the second power component 115 .
  • a steering system control method includes a controller, a steering feel simulation booster, a steering booster and a hydraulic module;
  • the steering feel simulation booster includes a first transmission mechanism 112 and a first hydraulic pressure device, the first transmission mechanism 112 can convert rotary motion into linear motion or convert linear motion into rotary motion, the first hydraulic device generates hydraulic pressure under the action of the first transmission mechanism 112, or the first transmission mechanism 112 Rotate under the action of the first hydraulic device;
  • the hydraulic module includes a hydraulic pipeline 131 and a control valve 132, one end of the hydraulic pipeline 131 is connected to the first hydraulic device, and the other end of the hydraulic pipeline 131 is connected to the power steering
  • the steering booster is used to convert the hydraulic pressure generated by the first hydraulic device into the steering power of the steering wheel.
  • the control valve 132 is arranged on the hydraulic pipeline 132.
  • the control valve 132 is used to to control the coupling or decoupling between the steering feel simulation booster 110 and the steering booster; the control method includes: the controller controls the control valve 132 to be in a conduction state, so that the steering feel simulation booster Coupling with the steering booster; the controller controls the power components to drive the first transmission mechanism 112 to rotate, and the first transmission mechanism 112 acts on the first hydraulic device so that the first hydraulic device generates hydraulic pressure for steering wheels Provides steering power.
  • the first hydraulic device includes a housing 113 and a piston 111
  • the housing 113 includes a first structure 1131 and a second structure 1132
  • the first The structure 1131, the second structure 1132 and the piston 111 enclose a hydraulic chamber
  • the first transmission mechanism 112 is connected to the middle piece, and the middle piece drives the piston 111 to move under the action of the first transmission mechanism 112 to make the hydraulic chamber Internal hydraulic pressure changes.
  • the first transmission mechanism 112 is a ball screw mechanism
  • the ball screw mechanism includes a screw and a screw nut, the screw nut and the intermediate piece 1121 is connected.
  • one end of the lead screw is provided with a first stopper 1171, and the other end of the lead screw is provided with a second stopper 1172.
  • the position of the limiting component and the second limiting component is fixed, and the lead screw nut moves within the displacement interval formed by the first limiting component 1171 and the second limiting component 1172 .
  • the hydraulic pipeline 131 includes a first hydraulic pipeline 1311 and a second hydraulic pipeline 1312, and the first structure 1131 is provided with a first hydraulic adjustment port 11321, the second structure 1132 is provided with a second hydraulic pressure adjustment port 11322, the first hydraulic pressure adjustment port 11321 is connected with one end of the first hydraulic pipeline 1311, and the second hydraulic pressure adjustment port 11322 is connected with the second hydraulic pressure pipeline 1312
  • the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 communicate with the outlet pipeline 1313 of the liquid storage device 133;
  • the control valve 132 includes a first control valve 1321, and the first control valve 1321 is located at On the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 ;
  • the controller controlling the control valve 132 to be in a conduction state includes: the controller controlling the first control valve 1321 to be in a conduction state.
  • the other ends of the first hydraulic line 1311 and the second hydraulic line 1312 are connected to the steering booster, and the control valve 132 also includes a second The control valve 1322, the second control valve 1322 is arranged on the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, and the controller controlling the control valve 132 to be in a conduction state includes: the controller controls the second The control valve 1321 is in a conduction state.
  • the hydraulic module further includes a third control valve 1323, the third control valve 1323 is arranged in the liquid outlet pipeline 1313, and the controller supplies the power Before the component sends the second control instruction, the method further includes: the controller controls the third control valve to be in a disconnected state.
  • the steering system further includes a steering wheel 101 connected to the first transmission mechanism 112 through a steering column 102 .
  • the power component includes a first power component 114, and the first power component 114 is connected to the angle sensor 104, and the method further includes: the controller receives the angle The signal sent by the sensor 104 includes the rotation angle information of the first power component 114 .
  • the steering feel simulation booster further includes a third power component 115 and a third transmission mechanism 116, the position of the third power component 115 is fixed, and the first The three transmission mechanisms 116 include a gear 1161 and a rack 1162 that mesh with each other, the gear 1161 is connected to the output shaft of the third power component 115, the rack 1162 is fixedly connected to the housing 113, and the method further includes: the controller Control the second control valve 1322 to be in a disconnected state, so that the steering feel simulation booster 110 is decoupled from the steering booster; the controller controls the third control valve to be in a disconnected state, so that the steering feel The simulated booster and the liquid storage device 133 are in a disconnected state; the controller controls the third power component 115 to work so that the steering wheel 101 expands and contracts.
  • the method further includes: the controller determines that the first power component and The working state of the third power component 115 is normal.
  • a sixth aspect provides a method for controlling a steering system
  • the steering system includes a controller, a steering feel simulation booster, a steering booster and a hydraulic module
  • the steering booster includes a second transmission mechanism 122 and a second hydraulic device,
  • the second transmission mechanism 122 can convert rotary motion into linear motion, and the second hydraulic device generates hydraulic pressure under the action of the second transmission mechanism 122 to provide steering power for the steering wheels
  • the hydraulic module includes a hydraulic pipeline 131 and a control valve 132, one end of the hydraulic line 131 is connected to the second hydraulic device, the other end of the hydraulic line 131 is connected to the steering feel simulation booster, and the steering booster provides the steering feel simulation booster through the hydraulic line 131 Power, so that the steering feel analog booster drives the steering wheel 101 to rotate, the control valve 132 is arranged on the hydraulic pipeline 132, and the control valve 132 is used to control the steering feel by controlling the on-off of the hydraulic pipeline 132 Coupling or decoupling between the analog booster 110 and the steering booster;
  • the control method includes:
  • the second hydraulic device includes a housing 1213, a piston 1211 and a piston push rod 1212, the piston 1211 is fixedly connected to the piston push rod 1212, and the piston 1211 is placed in the housing 1213, the second piston 1211, the piston push rod 1212 and the housing 1213 enclose a hydraulic chamber; the second transmission mechanism 122 is connected with the piston push rod 1212, and in the second transmission mechanism Under the action of 122, the piston push rod 1212 drives the piston 1211 to move to change the hydraulic pressure in the hydraulic chamber.
  • the second transmission mechanism 122 is a ball screw mechanism
  • the ball screw mechanism includes a screw and a screw nut, and the screw and the piston push The rod 1212 is fixedly connected with the axial direction of the axis.
  • limit blocks 1214 are provided at both ends of the piston push rod 1212, and the limit block 1214, the piston push rod 1212 and the housing 1213 are enclosed to form The hydraulic cavity is sealed, the position of the limit block 1214 is fixed relative to the housing 1213, and the piston 1211 moves in the sealed hydraulic cavity.
  • the hydraulic pipeline 131 includes a first hydraulic pipeline 1311 and a second hydraulic pipeline 1312, and the housing 1213 is provided with a third hydraulic pressure adjustment port and the fourth hydraulic pressure adjustment port, the third hydraulic pressure adjustment port and the fourth hydraulic pressure adjustment port are respectively located on both sides of the piston 1211, the third hydraulic pressure adjustment port is connected with one end of the first hydraulic pipeline 1311, the fourth hydraulic pressure adjustment port
  • the regulating port is connected to one end of the second hydraulic pipeline 1312, and the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the outlet pipeline 1313 of the liquid storage device 133;
  • the control valve 132 includes a second control valve 1322 , the second control valve 1322 is arranged on the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312;
  • the controller controlling the control valve 132 to be in a conducting or disconnecting state includes: the controller controlling the second The control valve 1322 is on or off.
  • the other ends of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the steering feel simulation booster, and the control valve 132 also includes The first control valve 1321, the first control valve 1321 is arranged on the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312; the controller controlling the control valve 132 to be on or off includes: the control The controller controls the second control valve 1321 to be in a conduction or disconnection state.
  • the hydraulic module further includes a third control valve 1323, and the third control valve 1323 is arranged in the liquid outlet pipeline 1313; the method further includes: the The controller controls the third control valve to be on or off.
  • the steering booster further includes a steering tie rod 124, the two ends of the steering tie rod 124 are respectively connected to the steering wheel, the steering tie rod 124, the steering tie rod 124
  • the lead screw 1222 and the piston push rod 1212 are axially fixedly connected with the axis.
  • the power component includes a second power component 123
  • the second power component 123 is connected to the angle sensor 105
  • the method further includes: the controller receives the angle
  • the signal sent by the sensor 105 includes the rotation angle information of the second power component 123 .
  • a vehicle including the steering system in any of the third aspect or the fourth aspect or any possible design of the third aspect or any possible design of the fourth aspect, or any of the third aspect or the third aspect Steering system in one possible design.
  • a control device which includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the control device executes the fifth aspect or the fifth aspect
  • the method in any possible implementation manner, or execute the sixth aspect or the method in any possible implementation manner of the sixth aspect.
  • the above-mentioned control device may be an independent controller in the vehicle, or a chip with a control function in the vehicle.
  • the above-mentioned processing unit may be a processor
  • the above-mentioned storage unit may be a memory, wherein the memory may be a storage unit (for example, a register, a cache, etc.) in a chip, or a storage unit (for example, a read-only memory, random access memory, etc.).
  • the memory is coupled to the processor.
  • the memory is coupled with the processor, which may be understood as the memory is located inside the processor, or the memory is located outside the processor, thus being independent from the processor.
  • a computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the fifth aspect or any possible implementation manner of the fifth aspect The method in the sixth aspect, or execute the method in the sixth aspect or any possible implementation manner of the sixth aspect.
  • a computer-readable medium stores program codes, and when the computer program codes run on a computer, the computer executes the fifth aspect or any possible implementation of the fifth aspect The method in the manner, or execute the method in the sixth aspect or any possible implementation manner of the sixth aspect.
  • FIG. 1 is a schematic diagram of a steering feel simulation booster according to an embodiment of the present application.
  • Fig. 2 is another schematic diagram of the steering feel simulation booster according to the embodiment of the present application.
  • Fig. 3 is another schematic diagram of the steering feel simulation booster according to the embodiment of the present application.
  • Fig. 4 is a schematic diagram of a steering booster according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a steering system according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the power flow when the steering system of the embodiment of the present application works in the steer-by-wire mode.
  • Fig. 7 is a schematic diagram of power flow when the steering system of the embodiment of the present application works in the coupled steering mode.
  • Fig. 8 is a schematic diagram of power flow when the steering system of the embodiment of the present application works in the silent steering mode of the steering wheel.
  • FIG. 9 is another schematic diagram of power flow when the steering system of the embodiment of the present application works in the steering wheel silent steering mode.
  • Fig. 10 is another schematic diagram of power flow when the steering system of the embodiment of the present application works in the steering wheel silent steering mode.
  • FIG. 11 is another schematic diagram of power flow when the steering system of the embodiment of the present application works in the steering wheel silent steering mode.
  • Fig. 12 is a schematic diagram of power flow when the steering system of the embodiment of the present application works in a redundant steering mode.
  • FIG. 13 is another schematic diagram of power flow when the steering system of the embodiment of the present application is working in a redundant steering mode.
  • Fig. 14 is a schematic diagram of power flow when the steering system of the embodiment of the present application works in the mechanical steering mode.
  • Fig. 15 is a schematic flowchart of a control method of a steering system according to an embodiment of the present application.
  • Fig. 16 is a structural block diagram of a steering controller according to an embodiment of the present application.
  • Fig. 17 is a structural block diagram of a controller according to an embodiment of the present application.
  • the existing steering system usually realizes the mechanical decoupling between the steering wheel and the steering wheel through the electromagnetic clutch, so as to realize the steering by wire of the steering system, and, through the steering column between the electromagnetic clutch and the steering wheel Connected to the road sense assembly to simulate the road sense.
  • the road sensor assembly generally includes a road sensor motor and a transmission component, such as a worm gear, wherein the road sensor motor outputs torque, and the torque is transmitted to the steering wheel through the transmission component.
  • the sense of road assembly has a single function and has no power redundant backup function. In other words, in order to improve the redundancy performance of the steering system, it is usually provided with multiple power components, thereby increasing the control difficulty and cost of the steering system.
  • the application provides a steering feel simulation booster, which can drive the piston in the hydraulic chamber to move linearly through the action of the hydraulic pressure in the hydraulic chamber, and then drive the first transmission mechanism connected to the piston to rotate.
  • the first transmission mechanism can be connected with the steering wheel, so as to realize the simulation of steering feel.
  • the hydraulic chamber is surrounded by a casing and an intermediate piece, the first transmission mechanism is accommodated in the casing, and the first transmission mechanism is connected to the piston; meanwhile, the first transmission mechanism can also be connected to the power part or the steering wheel. Under the action, the hydraulic pressure in the hydraulic chamber changes, providing steering assist for the steering wheels, and improving the redundancy performance of the steering system including the feel analog booster.
  • FIG. 1 is a schematic diagram of a steering feel simulation booster according to an embodiment of the present application.
  • the steering feel simulation booster includes: a housing 113 , a first transmission mechanism 112 , a first piston 111 and an intermediate piece.
  • the housing includes a first structure 1131 and a second structure 1132, the first structure 1131, the second structure 1132 and the piston (first piston) 111 enclose a first hydraulic chamber;
  • the first transmission mechanism 112 accommodates In the housing, the first transmission mechanism 112 is connected with the middle piece, the first transmission mechanism 112 can convert the rotary motion into the linear motion of the middle piece, under the action of the middle piece 1134, the first piston 111 It can slide in the hydraulic chamber, and then the hydraulic pressure in the hydraulic chamber can be changed to realize power steering; or, the middle piece drives the first transmission mechanism 112 to rotate in the housing under the action of the first piston 111, Realize the steering feel simulation when turning.
  • the first transmission mechanism 112 can be a ball screw mechanism, which includes a lead screw and a lead screw nut that work together, and the rotary motion of the lead screw can be converted into the linear motion of the lead screw nut, or the Linear motion can be converted into rotary motion of the lead screw.
  • One end of the screw can be connected to the steering wheel 101 through the steering column, so that the rotation of the steering wheel 101 can cause the screw nut in the ball screw to be displaced; or the hydraulic pressure in the first hydraulic chamber can be generated through the first piston. function, the lead screw nut can be displaced, and then the steering wheel 101 can be rotated to realize the steering wheel's road feeling simulation, angle following and other functions.
  • the first piston 111 is in the shape of an "H", and the first transmission mechanism 112 can act on the first piston 111 through an intermediate piece, or, the first The transmission mechanism 112 can directly act on the first piston 111 .
  • One end of the first transmission mechanism 112 can also be connected with a first power component 114, and the first power component is used to output power to the first transmission mechanism 112, so that the lead screw nut of the first transmission mechanism 112 moves, thereby Drive the first piston 111 to move; the displacement of the first piston 111 can change the hydraulic pressure in the first hydraulic chamber.
  • the first power component 114 can also cause the lead screw of the first transmission mechanism 112 to rotate, so that the steering wheel 101 is driven to rotate through the steering column 102 to realize the road feeling simulation of the steering wheel.
  • a first angle sensor 104 may also be provided at the connection between the first power component 114 and the first transmission mechanism 112, and the first angle sensor 104 is used for sensing steering torque or angle.
  • the first angle sensor 104 may sense a steering torque or angle generated by the steering wheel 101 and/or the first powered component 114 .
  • the first transmission mechanism 112 can also be connected to the first power component 114 through the speed reducer 103 .
  • the speed reducer 103 may be a common gear reducer, worm gear reducer, etc., which is not limited in this application.
  • the steering feel simulation booster may also include a first limiting component 1171 and a second limiting component 1172 .
  • the first limiting component 1171 and the second limiting component 1172 are respectively arranged at both ends of the first transmission mechanism 112, and are used to limit the movable displacement range of the first transmission mechanism 112, so that the rotation range of the steering wheel 101 can be restricted.
  • the first limiting component 1171 and the second limiting component 1172 can be connected with the steering column 102 through the bearing 108 , the first limiting component 1171 and the second limiting component 1172 are fixed in position, and are fixedly connected with the housing 113 .
  • the first structure 1131 may also be provided with a first hydraulic adjustment port 11321, and the second structure 1132 may be provided with a second hydraulic adjustment port 11322, the first hydraulic adjustment port 11321 is connected to one end of the first hydraulic pipeline 1311, The second hydraulic pressure adjustment port 11322 is connected to one end of the second hydraulic pipeline 1312, and the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the outlet pipeline 1313 of the liquid storage device 133; the first hydraulic pipeline A first control valve 1321 is provided on the road 1311 and the second hydraulic pipeline 1312, and the first control valve 1321 is used to control the on-off of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312, so as to control the The first hydraulic chamber and the liquid storage device 133 are connected or disconnected.
  • the change of hydraulic pressure in the first hydraulic chamber can be controlled, or, by controlling the first hydraulic chamber and the liquid storage device 133 to be in a connected state, it is possible to The hydraulic pressure in the first hydraulic chamber changes within a certain range, so that the rotation range of the steering wheel 101 can be restricted.
  • a guide device 1134 with a fixed position may also be provided in the steering feel simulation booster.
  • the moving direction of the first piston 111 can be restricted by the guide device 1134 , so as to ensure the certainty of the moving direction of the first piston 111 .
  • the first piston 111 is placed in the housing 113, and a groove is provided on the first piston 111, and the third piston 111 fitted with the groove
  • the structure 11341 can ensure the certainty of the moving direction of the first piston 111; the third structure 11341 is fixedly connected with the fourth structure 11342, and the fourth structure 11342 is fixedly connected with the second limiting member 1172; or, the third structure 11341 and the fourth structure 11342 can be combined into one structure.
  • the first piston 111 can be connected with the guide device 1134 by a sliding key, and the first piston 111 is provided with a keyway.
  • the first piston 111 is in the shape of a "T"
  • the housing 113 includes a first structure 1131 and a second structure 1132, and the first structure 1131 and the second structure 1132 can be connected by a structure 1135, and the first structure 1131 and the second structure 1132 encircle to form a first hydraulic chamber, and an opening is provided on the first hydraulic chamber; the first piston 111 is placed in the housing 113 through the opening Inside, and the moving direction of the first piston 111 is constrained by the shape of the opening.
  • the steering feel simulation booster may also include a third power component 115 and a third transmission component 116, the position of the third power component 115 is fixed; the third transmission component 116 may include a gear 1161 and a tooth
  • the gear 1162 is connected to the output shaft of the third power component 115 , and the rack 1162 can be fixedly connected to the limiting component 117 .
  • the rack 1162 can be fixedly connected to the second structure 1132 , or, as shown in FIGS. 2 and 3 , the rack 1162 can be fixedly connected to the fourth structure 11342 .
  • the third power component 115 works to drive the gear 1161 to rotate, so that the rack 1162 fixedly connected with the second structure 1132 can drive the steering feel simulation booster to expand and contract.
  • the hydraulic pressure in the hydraulic chamber can drive the piston in the hydraulic chamber to move in a straight line, and then drive the first transmission mechanism connected to the piston to undergo rotary motion.
  • the first transmission mechanism The steering wheel can be connected, so that the steering feel simulation can be realized.
  • the hydraulic chamber is surrounded by a casing and an intermediate piece, the first transmission mechanism is accommodated in the casing, and the first transmission mechanism is connected to the piston; meanwhile, the first transmission mechanism can also be connected to the power part or the steering wheel. Under the action, the hydraulic pressure in the hydraulic chamber changes to provide steering assist for the steering wheels, thereby improving the redundancy performance of the steering system including the feel analog booster.
  • Fig. 4 is a schematic diagram of a steering booster provided by an embodiment of the present application.
  • the steering booster may include a second hydraulic device 121 for generating hydraulic pressure to provide steering power to steered wheels (141, 142).
  • the second hydraulic device 121 includes a second piston 1211 , a piston push rod 1212 , a housing 1213 and a limiting block 1214 .
  • the casing 1213 and the limit block 1214 form a second hydraulic chamber
  • the piston push rod 1212 is located in the second hydraulic chamber;
  • the second piston 1211 can be driven to move, and then the hydraulic pressure in the second hydraulic chamber can be changed.
  • the second transmission mechanism 122 may be a lead screw nut mechanism, which includes a lead screw nut 1221 and a lead screw 1222 , the lead screw nut 1221 is connected to the output shaft of the second power component 123 , and the lead screw 1222 is connected to the piston push rod 1212 .
  • the second power component 123 works to drive the lead screw 1222 to move in translation, thereby driving the second piston 1211 to slide in the second hydraulic chamber, so that the hydraulic pressure on both sides of the second piston 1211 changes.
  • a second angle sensor 105 may also be provided on the second power component 123 for sensing the torque or angle output by the second power component.
  • the steering booster also includes a steering tie rod 124 coaxially arranged with the lead screw 1222 and the piston push rod 1212 , and the two sides of the steering tie rod 124 are respectively connected to steering wheels ( 141 , 142 ).
  • the steering tie rod 124 can be axially fixedly connected with the piston push rod 1212 and the lead screw 1222 in the screw nut mechanism, and the displacements of the piston push rod 1212 and the lead screw 1222 are superimposed on the steering tie rod 124, so that the The displacement movement of the steering tie rod 124 is transformed into the steering power of the steering wheels (141, 142) to complete the steering action of the vehicle.
  • the steering booster can be hydraulically connected to the steering feel simulation booster through a hydraulic module.
  • the hydraulic module may include a hydraulic pipeline 131 , for example, the hydraulic pipeline 131 includes a first hydraulic pipeline 1311 and a second hydraulic pipeline 1312 .
  • One end of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 is connected to the steering feel simulation booster.
  • one end of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are respectively connected to the first hydraulic pressure adjustment port 11321 and the second hydraulic pressure adjustment port 11322 in the steering feel simulation booster.
  • the steering feel simulation booster can use the generated hydraulic pressure as steering power for the steering wheels.
  • the other ends of the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the steering booster.
  • the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312 are connected to the second hydraulic device 121, and are respectively connected to the The third hydraulic adjustment port 11323 and the fourth hydraulic adjustment port 11324 on both sides of the second piston 1211.
  • a control valve 132 can also be arranged on the hydraulic pipeline, and the coupling or decoupling between the steering feel simulation booster and the steering booster can be controlled by controlling the opening or closing of the control valve 132 .
  • the steering feel simulation booster according to the embodiment of the present application is described above with reference to FIGS. 1 to 4 .
  • the steering system including the above steering feel simulation booster, steering booster and hydraulic module is described in detail below with reference to FIG. 5 . It should be understood that in the steering system shown in Figure 5, the parts with the same function as the steering feel simulation booster, steering booster and hydraulic module use the same numbers, and the connection relationship between the components and the specific working mode of each component can be referred to above. For the sake of brevity, it will not be described in detail below.
  • the steering system includes the steering feel simulation booster and the steering booster, and the steering feel simulation booster can be hydraulically connected to the steering booster through a hydraulic module.
  • the specific connection between the steering feel simulation booster and the steering booster can refer to the above description, wherein the hydraulic module can include a first control valve 1321 and a second control valve 1322, by controlling the first control valve 1321 and the second control valve 1322
  • the opening or closing of the second control valve 1322 can control the coupling or decoupling between the steering feel simulation booster and the steering booster.
  • the hydraulic module may further include a fluid storage device 133 , which communicates with the hydraulic pipeline 131 through a fluid outlet pipeline 1313 , and the fluid storage device 133 is used to provide oil for the hydraulic device in the steering mechanism 100 .
  • a third control valve 134 can also be provided on the liquid outlet line 1313 of the liquid storage device 133, and the third control valve 134 can be used to control the fluid between the liquid storage device 133 and the steering feel simulation booster and steering booster. Secondly, the third control valve 134 can also cooperate with the first control valve 1321 and the second control valve 1322 to control the on-off of oil between the liquid storage device 133 and one of the steering gears. .
  • the oil fluid communication between the steering feel simulation booster and the liquid storage device 133 can be controlled, and at the same time, the power steering The oil between the device and the liquid storage device 133 is disconnected.
  • the oil fluid communication between the steering booster and the liquid storage device 133 can be controlled, so that in the steering booster A closed loop is formed between the hydraulic chambers on both sides of the second piston 1211 , and at the same time, the oil fluid between the steering feel simulation booster and the fluid storage device 133 is disconnected.
  • the hydraulic module may also include a first branch 135, which is used to communicate with the first hydraulic line 1311 and the second hydraulic line 1311 between the second control valve 1322 and the second hydraulic device 121.
  • a fourth control valve 136 may also be provided on the first branch 135 , and the closing of the closed circuit formed between the second hydraulic chambers on both sides of the second piston 1211 can be controlled by controlling the closing of the fourth control valve 136 .
  • first control valve 1321, the second control valve 1322 and the third control valve 134 may be two-position four-way solenoid valves for simultaneously controlling two parallel pipelines, and the fourth control valve 136 may be Two position two way solenoid valve. It should be understood that the first control valve 1321, the second control valve 1322 and the third control valve 134 can also be two or more independent solenoid valves, respectively controlling two independent pipelines (the first hydraulic pipeline 1311 and the second hydraulic pipeline 1312), which is not limited in this application.
  • a first pressure sensor 106 and a second pressure sensor 107 may be respectively arranged on the hydraulic pipeline 131 and the first branch 135 for sensing the hydraulic pressure in the hydraulic pipeline connected thereto.
  • the steering feel simulation booster and the steering booster are connected through a hydraulic module
  • the hydraulic device 130 may include hydraulic pipelines (1311, 1312) connecting the steering feel simulation booster and the steering booster, and The control valves (1131, 1132) used to control the on-off of the hydraulic pipelines (1311, 1312).
  • the structure of the steering mechanism is relatively simple, thereby reducing the control difficulty and cost of the steering system.
  • the steering system may also include a steering controller 210 to steer the wheels (141, 142).
  • the steering controller 210 is used to determine a steering request, which may include a required steering torque or a required steering angle.
  • the steering controller 210 can control the steering system 100 to provide steering power to the steering wheels (141, 142) according to the steering demand.
  • the steering system further includes a steering wheel 101, and the user can operate the steering wheel 101 to provide steering power for the steering wheels (141, 142) through the steering system.
  • the steering system can realize the steer-by-wire mode, the coupled steering mode, the steering wheel silent steering mode, the redundant steering mode and the mechanical steering mode.
  • the steering controller 210 acquires a steering demand based on the rotation of the steering wheel 101, and controls the second power component 123 to provide steering power for the steering wheels (141, 142) based on the steering demand. That is to say, in this mode, the steering feel simulation booster and the steering booster are in a decoupled state.
  • the steering controller 210 In the coupled steering mode, the steering controller 210 also obtains the steering demand based on the rotation of the steering wheel 101, and controls the second power component 123 to provide steering power for the steering wheels (141, 142) based on the steering demand; it is different from the steer-by-wire mode , in this mode, the steering feel simulation booster and the steering booster are in a coupled state, and when the output power of the second power component 123 is insufficient, the steering controller can also control the first power component 114 to work, for Steering wheels (141, 142) provide steering power.
  • the steering system can also work in the silent steering mode of the steering wheel.
  • the steering controller 210 can judge the steering demand of the vehicle by analyzing information such as environmental conditions, vehicle status, advanced driving assistant system (advanced driving assistant system, ADAS) status and driver input, and control the vehicle based on the steering demand.
  • the power components work to provide steering power for the steering wheels (141, 142).
  • the steering controller 210 can also control the steering system Working in the redundant steering mode, that is, the steering controller 210 realizes the coupling between the steering feel simulation booster and the steering booster by controlling the relevant control valves, so that the steering system can realize the transmission of steering power, and then realize the redundant backup of the steering system Function.
  • the steering system can also work in the mechanical steering mode.
  • the steering system can make the steering feel simulation booster output hydraulic pressure based on the steering demand input by the driver through the steering wheel 101, and transfer the steering feel simulation booster to the steering feel simulation booster through the hydraulic module.
  • the hydraulic pressure is transmitted to the steering booster to provide steering power to the steering wheels (141, 142).
  • the first control valve 1321 and the second control valve 1322 are normally open valves, and the third control valve 134 and the fourth control valve 136 are normally closed valves.
  • normally open can be understood as the control valve is in the conduction state, and normally closed as the control valve is in the disconnected state; secondly, the above normally open and normally closed states are when the control valve is not powered, the control valve the default state of .
  • the control valve in the state to be adjusted can be powered to control it to be in the disconnected state or the conductive state.
  • the steering controller 210 can control the second control valve 1322 to be in a disconnected state, so that the steering feel simulation booster and the steering booster are in a decoupling state; the third control valve 134 is in a conductive state, so that The steering feel simulation booster is in communication with the liquid storage device 133; the fourth control valve 136 is in a conduction state, so that the closed loop is formed between the hydraulic chambers on both sides of the second piston 1211 of the steering booster; other controls in the steering system The valve remains in the default state.
  • the driver rotates the steering wheel 101 to output torque, so that the first transmission mechanism 112 rotates; the rotation of the first transmission mechanism 112 drives the first piston 111 to move, thereby causing the hydraulic pressure in the first hydraulic chamber to change; under the action of the hydraulic pressure , the oil in the first hydraulic chamber flows into or out of the liquid storage device 133 through the first hydraulic line 1311 and the second hydraulic line 1312 to ensure reliable rotation of the steering wheel 101; at the same time, the first angle sensor 104 can sense The steering torque or angle information output by the steering column 102 is fed back to the steering controller 210 so that the steering controller 210 can determine the driver's steering demand; the steering controller 210 controls the second power according to the steering demand The component 123 outputs torque; the second power component 123 can convert the output torque into the displacement movement of the steering tie rod 124 through the second transmission member 122, so as to provide steering power for the steering wheels (141, 142).
  • the steering wheel 101 cannot directly drive the steering wheels (141, 142) to turn through the hydraulic connection, that is to say, the driver cannot obtain the real road feeling when controlling the steering wheels (141, 142) from the steering wheel 101. Therefore, in order to improve the driver's driving experience, the steering controller 210 can control the first power component 114 to work, simulate the road feeling and give feedback to the driver through the steering wheel 101 .
  • the steering controller 210 can set or change the transmission ratio between the steering wheel and the steering wheel according to the vehicle speed condition. For example, in the parking state, the transmission ratio between the steering wheel and the steering wheel can be reduced, and the maximum number of turns of the steering wheel can be reduced, thereby saving the driver's physical strength; Transmission ratio, in order to reduce the driver's influence on the vehicle and improve the stability of the vehicle in driving.
  • FIG. 5 only shows the flow direction of the oil when the steering system controls the steering wheels (141, 142) to rotate in a certain direction.
  • the flow direction of the oil can also be in the opposite direction.
  • the control valves in the steering system remain in the default state.
  • the driver rotates the steering wheel 101 to output torque;
  • the first angle sensor 104 can sense the angle or torque information of the steering wheel rotation, and transmit it to the steering controller 210;
  • the steering controller 210 determines the driver's steering angle based on the angle or torque information.
  • demand and control the second power component 123 to output torque based on the steering demand; under the action of the second power component 123, the steering tie rod 124 undergoes a displacement movement to provide steering power for the steering wheels (141, 142).
  • the steering controller 210 can also control the first power component 114 to work, and the first piston 111 is driven to move through the first transmission mechanism 112, so that the first hydraulic chamber The hydraulic pressure in the first hydraulic chamber changes; under the joint action of the hydraulic pressure in the first hydraulic chamber and the second power component 123, the steering tie rod 124 undergoes a displacement movement to provide steering power for the steering wheels (141, 142).
  • the steering controller 210 can control the first power component 114 and/or the second power component 123 to work, simulate road feeling and give feedback to the driver through the steering wheel 101 .
  • the steering controller 210 can control the first power component 114 and/or the second power component 123 to work, simulate road feeling and give feedback to the driver through the steering wheel 101 .
  • Figure 7 for the oil flow path in the steering system in this mode.
  • the silent steering mode of the steering wheel can be applied to scenarios controlled by ADAS such as adaptive cruise control and obstacle avoidance.
  • ADAS adaptive cruise control and obstacle avoidance.
  • the steering controller 210 can determine the steering demand of the vehicle by analyzing information such as environmental conditions, vehicle status, ADAS status, and driver input.
  • the steering controller 210 can also control the steering wheel to shrink through power components. Specifically, the steering controller 210 can control the third power component 115 to work, and drive the gear 1161 in the third transmission mechanism to rotate; the gear 1161 meshes with the rack 1162, and the rack 1162 is fixedly connected with the piston housing 1132, thereby The rotation of the gear 1161 can drive the steering feel simulation booster to move, thereby realizing the expansion and contraction of the steering wheel 101 .
  • the steering controller 210 can control the second control valve 1322 to be in a disconnected state, so that the steering feel simulation booster and the steering booster are in a decoupling state; the fourth control valve 136 In the conduction state, the closed loop is formed between the hydraulic chambers on both sides of the second piston 1211 of the steering booster; other control valves in the steering system remain in the default state.
  • the steering controller 210 controls the second power component 123 to output torque according to the determined steering demand; the second power component 123 converts the output torque into the displacement movement of the steering tie rod 124 through the second transmission member 122, which is the steering wheel (141, 142 ) to provide steering power.
  • the second transmission member 122 which is the steering wheel (141, 142 ) to provide steering power.
  • the steering controller 210 can also control the first control valve 1321 to be in the disconnected state, so that the steering feel between the steering feel simulation booster and the steering booster In the decoupling state; at this time, the steering controller 210 controls the power components to provide steering power for the steering wheels (141, 142), which can be divided into three situations.
  • the steering controller 210 may control the third control valve 134 to be in a conduction state, and the other control valves remain in a default state.
  • the third control valve 134 is in a conductive state so that the steering booster is in communication with the liquid storage device 133 , and at the same time, a closed circuit is formed between the hydraulic chambers on both sides of the second piston 1211 of the steering booster.
  • the steering controller 210 can control the output torque of the second power component 123 according to the determined steering demand; the second power component 123 converts the output torque into the displacement movement of the second piston 1211 through the second transmission member 122, thereby making the steering traverse
  • the pull rod 124 undergoes a displacement movement to provide steering power for the steering wheels (141, 142). In this case, refer to Fig. 9 for the oil flow path in the steering system.
  • the steering controller 210 can also control the second control valve 1322 to be in the disconnected state, so that the steering booster and the liquid storage device 133 are in the disconnected state; the fourth control valve 136 is in the conductive state, so that the steering booster is in the second A closed loop is formed between the hydraulic chambers on both sides of the piston 1211; other control valves in the steering system remain in the default state.
  • the steering controller 210 can control the output torque of the second power component 123 according to the determined steering demand, and convert the output torque into the displacement movement of the steering tie rod 124 through the second transmission member 122 to provide steering wheels (141, 142) Provides steering power.
  • Fig. 10 for the oil flow path in the steering system.
  • the steering controller 210 can also only control the fourth control valve 136 to be in the conduction state, and the other control valves remain in the default state, which can also form a closed circuit between the hydraulic chambers on both sides of the second piston 1211 of the steering booster.
  • the steering controller 210 can provide steering power to the steering wheels (141, 142) by controlling the second power component 123 . See Figure 11 for the oil flow path in the steering system in this case.
  • the above three situations can be understood as, when the steering controller 210 controls the first control valve 1321 to be disconnected, the steering controller 210 controls the other control valves so that the pressure between the hydraulic chambers on both sides of the second piston 1211 of the steering booster Three cases of closed loops formed.
  • the steering The controller 210 can also control the steering system to work in a redundant steering mode.
  • the steering controller 210 determines that the first power component 114 or the second power component 123 fails, the steering controller 210 can control the second control valve 1322 to be in a conduction state, and the third control valve 134 and the fourth control valve 136 are in a disconnected state, so that the steering feel simulation booster and the steering booster are in a coupled state.
  • the steering controller 210 can control the second power component 123 to work to simulate the real road feel, and feed back to the driver through the hydraulic module and the steering feel simulation booster.
  • the oil flow path in the steering system is shown in Figure 12.
  • the steering controller 210 can control the output torque of the first power component 114, and convert the output torque into the displacement motion of the first piston 111 through the first transmission mechanism 112, thereby making the first
  • the steering controller 210 determines that the first power component 114 fails, the steering controller 210 can control the second power component 123 to work to simulate the real road feel, and simulate the power assist through the hydraulic module and steering feel if the second power component 123 fails, the steering controller 210 can control the first power component 114 to output power, and transmit the power to the steering wheels (141, 142) through the hydraulic module and the steering booster , so that the steering wheel completes the steering action.
  • the steering controller 210 can control the steering system to return to the steer-by-wire mode. or coupled steering mode.
  • the steering system can also work in the mechanical steering mode.
  • the steering wheel 101 and the steering wheels (141, 142) are in a state of hydraulic connection, and the driver can obtain real road feeling through the steering wheel.
  • the steering controller 210 can also control the steering system to switch from one working mode to another. For example, when the state of the vehicle is switched from the automatic driving state to the driver taking over state, it is necessary to control the steering system to switch from the silent steering mode of the steering wheel to the steer-by-wire mode or the mechanical steering mode. In the process of switching between different steering modes, when the steering controller 210 determines that the steering system is switched from the decoupling state of the steering feel simulation booster and steering booster to the coupled state, it is also necessary to implement the upper and lower hydraulic lines formed by the control valve barrier ( 1311, 1312), and synchronization between steering wheel 101 and steering wheel (141, 142) angles.
  • the steering controller 210 can obtain the sensing data from the second pressure sensor 107 and the second angle sensor 105 respectively, and determine the pressure signal of the hydraulic pressure in the steering booster and the pressure signal of the second power component 123 through the sensing data. angle signal; the steering controller 210 can control the first power component 114 to work according to the pressure signal and the angle signal, so as to realize the adjustment of the steering wheel 101 rotation angle and the hydraulic pressure in the steering feel analog booster.
  • the first angle sensor 104 and the first pressure sensor 106 can also feed back signals to the steering controller 210, and compare and check with the input signal in the steering controller 210 to realize closed-loop control, and then realize the steering wheel angle and hydraulic pressure. Synchronization of pressure in lines.
  • the steering controller 210 can first control the third control valve 134 and the fourth control valve 136 to be in the disconnected state, Next, the first control valve 1321 and the second control valve 1322 are controlled to be in a conduction state to complete the switching of the steering mode.
  • the steering system can also work in the hydraulic exhaust mode. That is, the steering controller 210 can determine whether there are air bubbles in the steering system through the pressure sensor (the first pressure sensor 106 and/or the second pressure sensor 107), and if there is, the steering controller 210 can realize steering control by controlling the corresponding control valve. Hand feel simulates the exhaust and inspection of a booster or steering booster.
  • the steering controller 210 can control the first control valve 1321 and the third controller 134 to be in a conduction state, so that the steering feel simulation booster is in a communication state with the liquid storage device 133 ;
  • the second control valve 1322 is in the disconnected state, so that the steering feel simulation booster and the steering booster are in a decoupling state, and the exhaust and inspection of the first hydraulic device in the steering feel simulation booster are realized.
  • the steering controller 210 can control the first control valve 1321 to be in the disconnected state, the second control valve 1322 and the third controller 134 to be in the conductive state, and the fourth control valve to be in the disconnected state.
  • the steering feel simulation booster and the steering booster are in a decoupling state, and the second steering gear 110 is in communication with the fluid storage device 133, thereby realizing the exhaust and inspection of the second hydraulic device 121 in the steering booster .
  • FIG. 15 The steering mechanism and the steering system of the embodiment of the present application are introduced above, and the control method of the embodiment of the present application is described below in conjunction with Fig. 15 .
  • the method shown in FIG. 15 can be implemented in cooperation with any steering mechanism or steering system in the embodiments of the present application.
  • Fig. 15 is a flowchart of a control method provided by an embodiment of the present application.
  • the method may be executed by the steering controller 210, or by other devices with control functions in the vehicle, which is not limited in the present application.
  • the method at least includes the following steps.
  • the status information of the steering system may include the status information of each component in the steering system, for example, information about whether each component (such as a booster motor, a hydraulic line, a sensor, and a control valve, etc.) is faulty. Based on the status information of the components, the steering controller 210 can determine selectable operating modes of the steering system.
  • the controller can send a signal to the booster motor to control the booster motor to perform corresponding operations to determine whether the booster motor is working normally; for another example, the controller can control the steering system to generate hydraulic pressure of a preset value to detect whether the pressure sensor is working normally wait.
  • the status information of the steering system may also include information on whether there is air bubble in the hydraulic device of the steering system.
  • the steering controller 210 can determine whether there are air bubbles in the steering system through the first pressure sensor 106 or the second pressure sensor 107. If there is, then the steering controller 210 can simulate the steering feel by controlling the corresponding control valve. Hydraulic exhaust of the booster.
  • the method may further include S1120, controlling the steering system to work in a hydraulic exhaust mode, so as to realize hydraulic exhaust of the steering system.
  • S1530 Determine an optional working mode of the steering system according to the status information of the steering system.
  • the selectable working mode of the steering system can be used by the driver to determine the working mode of the steering system to be executed.
  • the working modes of the steering system may include a steer-by-wire mode, a coupled steering mode, a steering wheel silent steering mode, a redundant steering mode and a mechanical steering mode.
  • the controller may determine that the selectable working modes of the steering system include all or part of the above working modes.
  • the controller determines that the optional working mode of the steering system does not include steering wheel silent steering mode; if the controller determines that the first power component 114 and the second power component 123 are working normally, then the controller determines that the optional working modes of the steering system include steer-by-wire mode and coupled steering mode; if the controller determines that the second If a power component 114 or a second power component 123 fails, the controller determines that the optional working mode of the steering system includes a redundant steering mode; if the controller determines that the first power component 114 and the second power component 123 fail, then the control The controller determines that the optional working mode of the steering system includes the mechanical steering mode. In each working mode of the steering system, the working state of each power component is shown in Table 1.
  • indicates that the booster motor is working normally
  • X indicates that the booster motor is faulty
  • / indicates that the booster motor is in any state.
  • the controller can determine the steering operation mode to be executed by the steering system according to the received upper layer input information.
  • controlling the operation of the steering system according to the working mode to be executed by the steering system may include controlling the opening or closing of a control valve in the steering system, and the control valve may include a first control valve 1321, a second control valve 1322, a third control valve 134 and At least one of the fourth control valves 136; controlling the operation of the steering system also includes controlling the steering feel simulation booster and/or the steering booster to provide steering power for the steering wheels (141, 142).
  • controlling the operation of the steering system also includes controlling the steering feel simulation booster and/or the steering booster to provide steering power for the steering wheels (141, 142).
  • the controller can also monitor the deflection angle of the steering wheels (141, 142) in real time, and compare it with the input steering demand information to realize closed-loop control.
  • Fig. 16 is a schematic diagram of a control device according to an embodiment of the present application.
  • the control device 1600 shown in FIG. 16 includes: an acquisition unit 1610 and a processing unit 1620 .
  • the acquiring unit 1610 is configured to acquire first information, and the first information may include at least one of steering demand information, upper layer input signal and vehicle speed information.
  • the steering demand information can refer to the introduction in the specific working mode; the upper layer input signal can be used to determine the upcoming working mode of the steering system; the vehicle speed information can be used to set the transmission ratio between the steering wheel and the steering wheel.
  • the processing unit 1620 is configured to control the steering feel simulation booster and the steering booster to be decoupled or coupled by controlling a control valve, and the control valve includes at least one of the first control valve 1321 and the second control valve 1322 .
  • the processing unit 1620 is also used to control the connection between the liquid storage device 133 and the steering feel simulation booster and/or the steering booster. Specifically, the processing unit 1620 can control the liquid storage device 133 and simulate the steering feel by controlling the third control valve 134, or by controlling the opening and closing of the third control valve 134, the first control valve 1321, and the second control valve 1322. Switching between booster and/or steering booster.
  • the processing unit 1620 is also used to control the on-off of the first branch 135 . Specifically, the processing unit 1620 can control the opening and closing of the first branch 135 by controlling the opening and closing of the fourth control valve 136 .
  • the processing unit 1620 is also used to control a power component to provide steering power for the steering wheel, and the power component may include at least one of the first power component 114 and the second power component 123 .
  • the processing unit 1620 is also used to control the operation of the third power component 115 to control the expansion and contraction of the steering wheel 101 .
  • Fig. 17 is a schematic block diagram of a controller according to an embodiment of the present application.
  • the controller 1700 shown in FIG. 17 may include: a memory 1710 , a processor 1720 , and a communication interface 1730 .
  • the memory 1710, the processor 1720, and the communication interface 1730 are connected through an internal connection path, the memory 1710 is used to store instructions, and the processor 1720 is used to execute the instructions stored in the memory 1720 to control the communication interface 1730 to receive/send information, For example, the first information is received, or the information of the optional working mode of the steering system is sent.
  • the memory 1710 may be coupled to the processor 1720 through an interface, or may be integrated with the processor 1720 .
  • the above-mentioned communication interface 1730 includes but not limited to a transceiving device such as a transceiver, which is used to realize communication between the controller 1700 and other devices or communication networks.
  • the above-mentioned communication interface 1730 may also include an input/output interface (input/output interface).
  • first hydraulic pipeline 1321 can be understood as one or more sections of hydraulic pipelines that realize a certain function.
  • first hydraulic pipeline 1321 may include a multi-section hydraulic pipeline for connecting the steering feel simulation booster and the steering booster.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种转向手感模拟助力器、转向助力器、转向系统及控制方法,转向手感模拟助力器包括壳体(113)、第一传动机构(112)、活塞(111)以及中间件;壳体(113)包括第一结构(1131)和第二结构(1132),第一结构(1131)、第二结构(1132)和活塞(111)合围成液压腔;第一传动机构(112)容于壳体(113)内,第一传动机构(112)可将回转运动转化为直线运动,或将直线运动转化为回转运动;中间件与第一传动机构(112)连接,中间件在第一传动机构(112)的作用下带动活塞(111)移动使液压腔内液压发生变化,从而为转向车轮(141,142)提供转向助力,或者,中间件在活塞(111)的作用下带动第一传动机构(112)在壳体(113)内转动,实现转向时的路感模拟。

Description

转向手感模拟助力器、转向助力器、转向系统及控制方法 技术领域
本申请涉及转向领域,并且更具体地,涉及转向手感模拟助力器、转向助力器、转向系统及控制方法。
背景技术
车辆的转向系统(steering system)是用来改变或保持汽车行驶方向或倒退方向的一系列装置,其功能就是按照驾驶员的意愿或者自动驾驶系统的控制指令,控制车辆的行驶方向或倒退方向。车辆的转向系统对车辆的行驶安全至关重要。
传统的转向系统是机械系统,由驾驶员操纵方向盘,通过转向器和一系列的杆件传递到转向车轮来实现车辆的转向。为了实现更加灵活的转向功能,可以将线控转向技术应用于车辆的转向系统中。线控转向取消了方向盘与转向轮之间的机械连接,完全由电能实现转向。由于线控转向取消了机械连接,驾驶员感觉不到路面传导来的转向阻力和颠簸,会失去路感,因此,需要在方向盘上施加一个力回馈来反馈路况信息。
现有的线控转向系统通常通过路感总成来模拟路感,该路感总成通常包括路感电机和传动部件,例如,蜗轮蜗杆。其中,路感电机用于输出力矩,通过传动部件将力矩传递至方向盘。但是,对于该线控转向系统来说,该路感总成功能单一,仅具备手感模拟功能,无动力的冗余备份功能。
发明内容
本申请实施例提供一种转向手感模拟助力器、转向机构、转向系统及控制方法,以提升转向系统的冗余性能。
第一方面,提供了一种转向手感模拟助力器,包括壳体113,第一传动机构112、活塞111以及中间件;该壳体113包括第一结构1131和第二结构1132,该第一结构1131、该第二结构1132和该活塞111合围成液压腔;该第一传动机构112容于该壳体113内,该第一传动机构112可将回转运动转化为直线运动,或将直线运动转化为回转运动;该中间件与该第一传动机构112连接,该中间件在该第一传动机构112的作用下带动该活塞111移动使该液压腔内液压发生变化,或者,该中间件在该活塞111的作用下带动该第一传动机构112在该壳体内转动。
通过本申请提供的转向手感模拟助力器,通过液压腔中液压的作用可以带动该液压腔中的活塞发生直线运动,进而带动与该活塞连接的第一传动机构发生回转运动,该第一传动机构可以连接方向盘,从而可以实现转向手感模拟。其中,该液压腔由壳体以及中间件合围而成,该第一传动机构容于该壳体内,该第一传动机构连接该活塞;同时,该第一传动机构还可以在动力部件或方向盘的作用下使该液压腔中的液压发生变化,为转向车轮提供转向助力,从而可以提升包括该手感模拟助力器的转向系统的冗余性能。
结合第一方面,在第一方面的一种可能的设计中,该第一传动机构112为滚珠丝杠机构,该滚珠丝杠机构包括丝杠和丝杠螺母,该丝杠螺母和该中间件1121连接。
结合第一方面,在第一方面的一种可能的设计中,该丝杠的一端设有第一限位部件1171,该丝杠的另一端设有第二限位部件1172,该第一限位部件和该第二限位部件位置固定,该丝杠螺母在该第一限位部件1171和该第二限位部件1172形成的位移区间内移动。
结合第一方面,在第一方面的一种可能的设计中,该第一结构1131上设有第一液压调节口11321,该第二结构1132上设有第二液压调节口11322,该第一液压调节口11321与第一液压管路1311的一端相连,该第二液压调节口11322与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该第一液压管路1311和该第二液压管路1312上设有第一控制阀1321,该第一控制阀1321用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该液压腔和该储液装置133处于连通或断开状态。
结合第一方面,在第一方面的一种可能的设计中,该转向手感模拟助力器还包括转向管柱102,该转向管柱102的一端连接该第一传动机构112,该转向管柱的另一端连接方向盘101。
结合第一方面,在第一方面的一种可能的设计中,该转向手感模拟助力器还包括第一动力部件114,该第一动力部件114的输出轴与该第一传动机构112的一端相连,该第一动力部件114用于向该第一传动机构112输出动力;角度传感器104,该角度传感器104与该第一动力部件114连接,该角度传感器104用于感测该第一动力部件114转动的角度信息。
结合第一方面,在第一方面的一种可能的设计中,该转向手感模拟助力器还包括:第三动力部件115和第三传动机构116,该第三动力部件115的位置固定,该第三传动机构116包括互相啮合的齿轮1161和齿条1162,该齿轮1161和该第三动力部件115的输出轴连接,该齿条1162和该壳体113固定连接。
第二方面,提供了一种转向助力器,包括:壳体1213,第二传动机构122,活塞1211以及活塞推杆1212;该活塞1211与该活塞推杆1212固定连接,该活塞1211置于该壳体1213内,该第二活塞1211、该活塞推杆1212以及该壳体1213合围成液压腔;该活塞推杆1212与该第二传动机构122连接,该活塞推杆1212在该第二传动机构122的作用下带动该活塞1211移动使该液压腔内液压发生变化。
通过本申请提供的转向助力器,通过第二传动机构的作用可以带动该液压腔中的活塞发生直线运动,进而使得液压腔内液压发生变化,为转向车轮提供转向助力,或者,可以将该液压的作用使得连接方向盘的转向管柱转动,从而可以实现转向手感模拟。
结合第二方面,在第二方面的一种可能的设计中,该第二传动机构122为滚珠丝杠机构,该滚珠丝杠机构包括丝杠和丝杠螺母,该丝杠和该活塞推杆1212同轴连接。
结合第二方面,在第二方面的一种可能的设计中,该活塞推杆1212的两端设置有限位块1214,该限位块1214、该活塞推杆1212和该壳体1213合围成密闭液压腔,该限位块1214相对于该壳体1213位置固定,该活塞1211在该密闭液压腔内移动。
结合第二方面,在第二方面的一种可能的设计中,该壳体1213上设有第三液压调节口和第四液压调节口,该第三液压调节口和该第四液压调节口分别位于该活塞1211的两 侧,该第三液压调节口与第一液压管路1311的一端相连,该第四液压调节口与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该第一液压管路1311和该第二液压管路1312上设有第二控制阀1322,该第二控制阀1322用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该密闭液压腔和该储液装置133处于连通或断开状态。
结合第二方面,在第二方面的一种可能的设计中,该转向助力器还包括:转向横拉杆124,该转向横拉杆124的两端分别连接转向车轮,该转向横拉杆124、该丝杠1222以及该活塞推杆1212同轴线轴向固定连接。
结合第二方面,在第二方面的一种可能的设计中,该转向助力器还包括:第二动力部件123,该第二动力部件123的输出轴连接该第二传动机构122,该第二动力部件123用于向该第二传动机构122输出动力;角度传感器105,该角度传感器105与该第二动力部件123连接,该角度传感器105用于感测该第二动力部件115转动的角度信息。
第三方面,提供了一种转向系统,包括:转向手感模拟助力器,转向助力器和液压模块;该转向手感模拟助力器包括第一传动机构112和第一液压装置,该第一传动机构112可将回转运动转化为直线运动或将直线运动转化为回转运动,该第一液压装置在该第一传动机构112的作用下产生液压,或该第一传动机构112在该第一液压装置的作用下转动;该液压模块包括液压管路131和控制阀132,该液压管路131的一端连接该第一液压装置,该液压管路131的另一端连接该转向助力器,该转向助力器用于将该第一液压装置产生的液压转化为转向车轮的转向动力,该控制阀132设置于该液压管路132上,该控制阀132用于通过控制该液压管路132的通断,以控制该转向手感模拟助力器110与该转向助力器之间耦合或解耦。
结合第三方面,在第三方面的一种可能的设计中,该第一液压装置包括壳体113,和活塞111,该壳体113包括第一结构1131和第二结构1132,该第一结构1131、该第二结构1132和该活塞111合围成液压腔;该第一传动机构112和中间件连接,该中间件在该第一传动机构112的作用下带动该活塞111移动使该液压腔内液压发生变化,或者,该中间件1121在该活塞111的作用下带动该第一传动机构112转动。
结合第三方面,在第三方面的一种可能的设计中,该第一传动机构112为滚珠丝杠机构,该滚珠丝杠机构包括丝杠和丝杠螺母,该丝杠螺母和该中间件连接。
结合第三方面,在第三方面的一种可能的设计中,该丝杠的一端设有第一限位部件1171,该丝杠的另一端设有第二限位部件1172,该第一限位部件和该第二限位部件位置固定,该丝杠螺母在该第一限位部件1171和该第二限位部件1172形成的位移区间内移动。
结合第三方面,在第三方面的一种可能的设计中,该液压管路131包括第一液压管路1311和第二液压管路1312,该第一结构1131上设有第一液压调节口11321,该第二结构1132上设有第二液压调节口11322,该第一液压调节口11321与第一液压管路1311的一端相连,该第二液压调节口11322与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该控制阀132包括第一控制阀1321,该第一控制阀1321设于该第一液压管路1311和该第二液压管路1312上,该第一控制阀1321用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该液压腔和该储液装置133处于连通或断开状态。
结合第三方面,在第三方面的一种可能的设计中,该第一液压管路1311和该第二液压管路1312的另一端连接该转向助力器,该控制阀132还包括第二控制阀1322,该第二控制阀1322设于该第一液压管路1311和该第二液压管路1312上,该第二控制阀1321用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该转向助力器和该储液装置133处于连通或断开状态。
结合第三方面,在第三方面的一种可能的设计中,该液压模块还包括第三控制阀1323,该第三控制阀1323设于该出液管路1313,该第三控制阀用于控制该储液装置133与该第一液压管路1311和该第二液压管路1312的通断。
结合第三方面,在第三方面的一种可能的设计中,该转向系统还包括方向盘101,该方向盘101通过转向管柱102连接该第一传动机构112。
结合第三方面,在第三方面的一种可能的设计中,该转向手感模拟助力器还包括第一动力部件114和角度传感器104,该第一动力部件114用于向该第一传动机构112输出动力,该角度传感器104与该第一动力部件114连接,该角度传感器104用于感测该第一动力部件114转动的角度信息。
结合第三方面,在第三方面的一种可能的设计中,该转向手感模拟助力器还包括第三动力部件115和第三传动机构116,该第三动力部件115的位置固定,该第三传动机构116包括互相啮合的齿轮1161和齿条1162,该齿轮1161和该第三动力部件115的输出轴连接,该齿条1162和该壳体113固定连接。
第四方面,提供了一种转向系统,包括:转向手感模拟助力器,转向助力器和液压模块;该转向助力器包括第二传动机构122和第二液压装置,该第二传动机构122可将回转运动转化为直线运动,该第二液压装置在该第二传动机构122的作用下产生液压为转向车轮提供转向动力;该液压模块包括液压管路131和控制阀132,该液压管路131的一端连接该第二液压装置,该液压管路131的另一端连接该转向手感模拟助力器,该转向助力器通过该液压管路131向该转向手感模拟助力器提供动力,以使该转向手感模拟助力器带动方向盘101转动,该控制阀132设置于该液压管路132上,该控制阀132用于通过控制该液压管路132的通断,以控制该转向手感模拟助力器110与该转向助力器之间耦合或解耦。
结合第四方面,在第四方面的一种可能的设计中,该第二液压装置包括壳体1213,活塞1211以及活塞推杆1212,该活塞1211与该活塞推杆1212固定连接,该活塞1211置于该壳体1213内,该第二活塞1211、该活塞推杆1212以及该壳体1213合围成液压腔;该第二传动机构122与该活塞推杆1212连接,在该第二传动机构122的作用下该活塞推杆1212带动该活塞1211移动使该液压腔内液压发生变化。
结合第四方面,在第四方面的一种可能的设计中,该第二传动机构122为滚珠丝杠机构,该滚珠丝杠机构包括丝杠和丝杠螺母,该丝杠和该活塞推杆1212同轴线轴向固定连接。
结合第四方面,在第四方面的一种可能的设计中,该活塞推杆1212的两端设置有限位块1214,该限位块1214、该活塞推杆1212和该壳体1213合围成密闭液压腔,该限位块1214相对于该壳体1213位置固定,该活塞1211在密闭液压腔内移动。
结合第四方面,在第四方面的一种可能的设计中,该液压管路131包括第一液压管路1311和第二液压管路1312,该壳体1213上设有第三液压调节口和第四液压调节口,该第 三液压调节口和该第四液压调节口分别位于该活塞1211的两侧,该第三液压调节口与第一液压管路1311的一端相连,该第四液压调节口与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该控制阀132包括第二控制阀1322,该第二控制阀1322设于该第一液压管路1311和该第二液压管路1312上,该第二控制阀1322用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该液压腔和该储液装置133处于连通或断开状态。
结合第四方面,在第四方面的一种可能的设计中,该第一液压管路1311和该第二液压管路1312的另一端连接该转向手感模拟助力器,该控制阀132还包括第一控制阀1321,该第一控制阀1321设于该第一液压管路1311和该第二液压管路1312上,该第一控制阀1321用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该转向手感模拟助力器和该储液装置133处于连通或断开状态。
结合第四方面,在第四方面的一种可能的设计中,该液压模块还包括第三控制阀1323,该第三控制阀1323设于该出液管路1313上,该第三控制阀用于控制该储液装置133与该第一液压管路1311和该第二液压管路1312的通断。
结合第四方面,在第四方面的一种可能的设计中,该转向助力器还包括转向横拉杆124,该转向横拉杆124的两端分别连接该转向车轮,该转向横拉杆124、该丝杠1222以及该活塞推杆1212同轴线轴向固定连接。
结合第四方面,在第四方面的一种可能的设计中,该转向助力器还包括第二动力部件123和角度传感器105,该第二动力部件123用于向该第二传动机构122输出动力,该角度传感器105与该第二动力部件123连接,该角度传感器105用于感测该第二动力部件115转动的角度信息。
第五方面,提供了一种转向系统的控制方法,该转向系统包括控制器,转向手感模拟助力器,转向助力器和液压模块;该转向手感模拟助力器包括第一传动机构112和第一液压装置,该第一传动机构112可将回转运动转化为直线运动或将直线运动转化为回转运动,该第一液压装置在该第一传动机构112的作用下产生液压,或该第一传动机构112在该第一液压装置的作用下转动;该液压模块包括液压管路131和控制阀132,该液压管路131的一端连接该第一液压装置,该液压管路131的另一端连接该转向助力器,该转向助力器用于将该第一液压装置产生的液压转化为转向车轮的转向动力,该控制阀132设置于该液压管路132上,该控制阀132用于通过控制该液压管路132的通断,以控制该转向手感模拟助力器110与该转向助力器之间耦合或解耦;该控制方法包括:该控制器控制该控制阀132处于导通状态,使得该转向手感模拟助力器与该转向助力器之间耦合;该控制器控制动力部件工作以带动该第一传动机构112转动,该第一传动机构112作用于该第一液压装置使得该第一液压装置产生液压为转向车轮提供转向动力。
结合第五方面,在第五方面的一种可能的实现方式中,该第一液压装置包括壳体113,和活塞111,该壳体113包括第一结构1131和第二结构1132,该第一结构1131、该第二结构1132和该活塞111合围成液压腔;该第一传动机构112和中间件连接,该中间件在该第一传动机构112的作用下带动该活塞111移动使该液压腔内液压发生变化。
结合第五方面,在第五方面的一种可能的实现方式中,该第一传动机构112为滚珠丝杠机构,该滚珠丝杠机构包括丝杠和丝杠螺母,该丝杠螺母和该中间件1121连接。
结合第五方面,在第五方面的一种可能的实现方式中,该丝杠的一端设有第一限位部件1171,该丝杠的另一端设有第二限位部件1172,该第一限位部件和该第二限位部件位置固定,该丝杠螺母在该第一限位部件1171和该第二限位部件1172形成的位移区间内移动。
结合第五方面,在第五方面的一种可能的实现方式中,该液压管路131包括第一液压管路1311和第二液压管路1312,该第一结构1131上设有第一液压调节口11321,该第二结构1132上设有第二液压调节口11322,该第一液压调节口11321与第一液压管路1311的一端相连,该第二液压调节口11322与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该控制阀132包括第一控制阀1321,该第一控制阀1321设于该第一液压管路1311和该第二液压管路1312上;该控制器控制该控制阀132处于导通状态包括:该控制器控制该第一控制阀1321处于导通状态。
结合第五方面,在第五方面的一种可能的实现方式中,该第一液压管路1311和该第二液压管路1312的另一端连接该转向助力器,该控制阀132还包括第二控制阀1322,该第二控制阀1322设于该第一液压管路1311和该第二液压管路1312上,该控制器控制该控制阀132处于导通状态包括:该控制器控制该第二控制阀1321处于导通状态。
结合第五方面,在第五方面的一种可能的实现方式中,该液压模块还包括第三控制阀1323,该第三控制阀1323设于该出液管路1313,在该控制器向动力部件发送第二控制指令之前,该方法还包括:该控制器控制该第三控制阀处于断开状态。
结合第五方面,在第五方面的一种可能的实现方式中,该转向系统还包括方向盘101,该方向盘101通过转向管柱102连接该第一传动机构112。
结合第五方面,在第五方面的一种可能的实现方式中,该动力部件包括第一动力部件114,该第一动力部件114连接角度传感器104,该方法还包括:该控制器接收该角度传感器104发送的信号,该信号包括该第一动力部件114转动的角度信息。
结合第五方面,在第五方面的一种可能的实现方式中,该转向手感模拟助力器还包括第三动力部件115和第三传动机构116,该第三动力部件115的位置固定,该第三传动机构116包括互相啮合的齿轮1161和齿条1162,该齿轮1161和该第三动力部件115的输出轴连接,该齿条1162和该壳体113固定连接,该方法还包括:该控制器控制该第二控制阀1322处于断开状态,以使得该转向手感模拟助力器110与该转向助力器处于解耦状态;该控制器控制该第三控制阀处于断开状态,以使该转向手感模拟助力器和该储液装置133处于断开状态;该控制器控制该第三动力部件115工作以使得该方向盘101伸缩。
结合第五方面,在第五方面的一种可能的实现方式中,在该控制器控制该第二控制阀1322处于断开状态之前,该方法还包括:该控制器确定该第一动力部件和该第三动力部件115工作状态正常。
第六方面,提供了一种转向系统的控制方法,该转向系统包括控制器,转向手感模拟助力器,转向助力器和液压模块;该转向助力器包括第二传动机构122和第二液压装置,该第二传动机构122可将回转运动转化为直线运动,该第二液压装置在该第二传动机构122的作用下产生液压为转向车轮提供转向动力;该液压模块包括液压管路131和控制阀132,该液压管路131的一端连接该第二液压装置,该液压管路131的另一端连接该转向 手感模拟助力器,该转向助力器通过该液压管路131向该转向手感模拟助力器提供动力,以使该转向手感模拟助力器带动方向盘101转动,该控制阀132设置于该液压管路132上,该控制阀132用于通过控制该液压管路132的通断,以控制该转向手感模拟助力器110与该转向助力器之间耦合或解耦;该控制方法包括:该控制器控制该控制阀132处于导通或断开状态,以使得该转向手感模拟助力器与该转向助力器之间耦合或解耦;该控制器控制该转向手感模拟助力器工作和/或动力部件工作使得该第二液压装置产生液压,为转向车轮提供转向动力。
结合第六方面,在第六方面的一种可能的实现方式中,该第二液压装置包括壳体1213,活塞1211以及活塞推杆1212,该活塞1211与该活塞推杆1212固定连接,该活塞1211置于该壳体1213内,该第二活塞1211、该活塞推杆1212以及该壳体1213合围成液压腔;该第二传动机构122与该活塞推杆1212连接,在该第二传动机构122的作用下该活塞推杆1212带动该活塞1211移动使该液压腔内液压发生变化。
结合第六方面,在第六方面的一种可能的实现方式中,该第二传动机构122为滚珠丝杠机构,该滚珠丝杠机构包括丝杠和丝杠螺母,该丝杠和该活塞推杆1212同轴线轴向固定连接。
结合第六方面,在第六方面的一种可能的实现方式中,该活塞推杆1212的两端设置有限位块1214,该限位块1214、该活塞推杆1212和该壳体1213合围成密闭液压腔,该限位块1214相对于该壳体1213位置固定,该活塞1211在密闭液压腔内移动。
结合第六方面,在第六方面的一种可能的实现方式中,该液压管路131包括第一液压管路1311和第二液压管路1312,该壳体1213上设有第三液压调节口和第四液压调节口,该第三液压调节口和该第四液压调节口分别位于该活塞1211的两侧,该第三液压调节口与第一液压管路1311的一端相连,该第四液压调节口与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该控制阀132包括第二控制阀1322,该第二控制阀1322设于该第一液压管路1311和该第二液压管路1312上;该控制器控制该控制阀132处于导通或断开状态包括:该控制器控制该第二控制阀1322处于导通或断开状态。
结合第六方面,在第六方面的一种可能的实现方式中,该第一液压管路1311和该第二液压管路1312的另一端连接该转向手感模拟助力器,该控制阀132还包括第一控制阀1321,该第一控制阀1321设于该第一液压管路1311和该第二液压管路1312上;该控制器控制该控制阀132处于导通或断开状态包括:该控制器控制该第以控制阀1321处于导通或断开状态。
结合第六方面,在第六方面的一种可能的实现方式中,该液压模块还包括第三控制阀1323,该第三控制阀1323设于该出液管路1313;该方法还包括:该控制器控制该第三控制阀处于导通或断开状态。
结合第六方面,在第六方面的一种可能的实现方式中,该转向助力器还包括转向横拉杆124,该转向横拉杆124的两端分别连接该转向车轮,该转向横拉杆124、该丝杠1222以及该活塞推杆1212同轴线轴向固定连接。
结合第六方面,在第六方面的一种可能的实现方式中,该动力部件包括第二动力部件123,该第二动力部件123连接角度传感器105,该方法还包括:该控制器接收该角度传 感器105发送的信号,该信号包括该第二动力部件123转动的角度信息。
第七方面,提供一种车辆,包括上述第三方面或第四方面或第三方面任一种或第四方面任一种可能的设计中的转向系统,或者上述第三方面或第三方面任一种可能的设计中的转向系统。
第八方面,提供一种控制装置,该控制装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使控制装置执行第五方面或第五方面任一种可能的实现方式中的方法,或者执行第六方面或第六方面任一种可能的实现方式中的方法。
可选地,上述控制装置可以是车辆中独立的控制器,也可以是车辆中具有控制功能的芯片。上述处理单元可以是处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是车辆内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制器中存储器与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第九方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行第五方面或第五方面任一种可能的实现方式中的方法,或者执行第六方面或第六方面任一种可能的实现方式中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第十方面,提供了一种计算机可读介质,该计算机可读介质存储有程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行第五方面或第五方面任一种可能的实现方式中的方法,或者执行第六方面或第六方面任一种可能的实现方式中的方法。
附图说明
图1是本申请实施例的转向手感模拟助力器的示意图。
图2是本申请实施例的转向手感模拟助力器的另一示意图。
图3是本申请实施例的转向手感模拟助力器的另一示意图。
图4是本申请实施例的转向助力器的示意图。
图5是本申请实施例的转向系统的示意图。
图6是本申请实施例的转向系统工作在线控转向模式时的动力流示意图。
图7是本申请实施例的转向系统工作在耦合转向模式时的动力流示意图。
图8是本申请实施例的转向系统工作在方向盘静默转向模式时的一种动力流示意图。
图9是本申请实施例的转向系统工作在方向盘静默转向模式时的另一种动力流示意图。
图10是本申请实施例的转向系统工作在方向盘静默转向模式时的另一种动力流示意图。
图11是本申请实施例的转向系统工作在方向盘静默转向模式时的另一种动力流示意图。
图12是本申请实施例的转向系统工作在冗余转向模式时的一种动力流示意图。
图13是本申请实施例的转向系统工作在冗余转向模式时的另一种动力流示意图。
图14是本申请实施例的转向系统工作在机械转向模式时的动力流示意图。
图15是本申请实施例的转向系统的控制方法的示意性流程图。
图16是本申请实施例的转向控制器的结构框图。
图17是本申请实施例的控制器的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
如上文所述,现有的转向系统通常通过电磁离合器来实现方向盘和转向轮之间的机械解耦,从而实现该转向系统的线控转向,并且,通过电磁离合器和方向盘之间的转向管柱上连接的路感总成来模拟路感。该路感总成通常包括路感电机和传动部件,例如,蜗轮蜗杆,其中,路感电机输出力矩,通过传动部件将力矩传递至方向盘。但是,对于该线控转向系统来说,该路感总成功能单一,无动力的冗余备份功能。或者说,为了提高该转向系统的冗余性能,其通常还设置有多个动力部件,从而增加了转向系统的控制难度及成本。
为此,本申请提供了一种转向手感模拟助力器,通过液压腔中液压的作用可以带动该液压腔中的活塞发生直线运动,进而带动与该活塞连接的第一传动机构发生回转运动,该第一传动机构可以连接方向盘,从而实现转向手感模拟。其中,该液压腔由壳体以及中间件合围而成,该第一传动机构容于该壳体内,该第一传动机构连接该活塞;同时,该第一传动机构还可以在动力部件或方向盘的作用下使该液压腔中的液压发生变化,为转向车轮提供转向助力,提升包括该手感模拟助力器的转向系统的冗余性能。
下面结合图1至图3详细介绍本申请实施例的转向手感模拟助力器的结构。图1是本申请实施例的转向手感模拟助力器的示意图。
该转向手感模拟助力器包括:壳体113,第一传动机构112、第一活塞111以及中间件。其中,该壳体包括第一结构1131和第二结构1132,该第一结构1131、该第二结构1132和该活塞(第一活塞)111合围成第一液压腔;该第一传动机构112容于该壳体内,该第一传动机构112与该中间件连接,该第一传动机构112可将回转运动转化为该中间件的直线运动,在该中间件1134的作用下,该第一活塞111可在该液压腔内滑动,进而可以使得液压腔中的液压发生变化,实现转向助力;或者,该中间件在该第一活塞111的作用下带动该第一传动机构112在该壳体内转动,实现转向时的转向手感模拟。
示例性地,该第一传动机构112可以是滚珠丝杠机构,其包括配合工作的丝杠和丝杠螺母,丝杠的回转运动可以转化为丝杠螺母的直线运动,或者,丝杠螺母的直线运动可以转化为丝杠的回转运动。该丝杠的一端可以通过转向管柱连接方向盘101,从而方向盘101转动可以使得该滚珠丝杠中的丝杠螺母发生位移运动;或者该第一液压腔中的液压发生,通过该第一活塞的作用,可以使得该丝杠螺母发生位移运动,进而使得方向盘101发生回转运动,实现方向盘的路感模拟、角度跟随等功能。
在一种可能的设计中,如图1的中所示,该第一活塞111呈“H”字形,该第一传动机构112可通过中间件作用于该第一活塞111,或者,该第一传动机构112可直接作用于该第一活塞111。
在该第一传动机构112的一端还可以连接第一动力部件114,该第一动力部件用于向该第一传动机构112输出动力,使得该第一传动机构112的丝杠螺母发生移动,从而带动第一活塞111发生运动;该第一活塞111发生位移运动可以使得该第一液压腔中的液压发生变化。该第一动力部件114还可以使得该第一传动机构112的丝杠发生回转运动,从而通过转向管柱102带动方向盘101发生回转运动,实现方向盘的路感模拟。
在该第一动力部件114和第一传动机构112的连接处还可以设置第一角度传感器104,该第一角度传感器104用于感测转向扭矩或角度。该第一角度传感器104可以感测由方向盘101和/或第一动力部件114产生的转向扭矩或角度。
该第一传动机构112还可以通过减速器103连接该第一动力部件114。该减速器103可以是常见的齿轮减速器、涡轮减速器等,本申请对此不作限定。
可选地,该转向手感模拟助力器还可以包括第一限位部件1171和第二限位部件1172。该第一限位部件1171和第二限位部件1172分别设置于该第一传动机构112的两端,用于限制该第一传动机构112可移动的位移范围,从而可以约束方向盘101的转动范围。该第一限位部件1171和第二限位部件1172可以通过轴承108与转向管柱102连接,该第一限位部件1171和第二限位部件1172位置固定,且和壳体113固定连接。
该第一结构1131上还可以设有第一液压调节口11321,该第二结构1132上设有第二液压调节口11322,该第一液压调节口11321与第一液压管路1311的一端相连,该第二液压调节口11322与第二液压管路1312的一端相连,该第一液压管路1311和该第二液压管路1312连通储液装置133的出液管路1313;该第一液压管路1311和该第二液压管路1312上设有第一控制阀1321,该第一控制阀1321用于控制该第一液压管路1311和该第二液压管路1312的通断,以控制该第一液压腔和该储液装置133处于连通或断开状态。通过控制该第一液压腔和该储液装置133处于断开状态,可以控制该第一液压腔中液压的变化,或者,通过控制该第一液压腔和该储液装置133处于连通状态,可以使得该第一液压腔中液压在一定的范围内变化,从而可以约束方向盘101的转动范围。
可选地,为了保证第一活塞111移动方向的确定性,该转向手感模拟助力器中还可以设置位置固定的导向装置1134。该第一活塞111的移动方向可以受该导向装置1134的约束,从而保证该第一活塞111移动方向的确定性。
在另一种可能的设计中,如图2中所示,该第一活塞111置于该壳体113内,该第一活塞111上设有凹槽,通过与该凹槽嵌合的第三结构11341可以保证该第一活塞111移动方向的确定性;该第三结构11341与第四结构11342固定连接,该第四结构11342与该第二限位部件1172固定连接;或者,该第三结构11341与该第四结构11342可以合为一个结构。例如,该第一活塞111可以和该导向装置1134滑键连接,该第一活塞111上设有键槽。
再一种可能的设计中,如图3中所示,该第一活塞111呈“T”字形,该壳体113包括第一结构1131和第二结构1132,该第一结构1131和第二结构1132可通过结构1135连接,且该第一结构1131和第二结构1132合围形成第一液压腔,且该第一液压腔上设有开口;该第一活塞111通过该开口置于该壳体113内,且该第一活塞111的移动方向受该开口形状的约束。
可选地,该转向手感模拟助力器还可以包括第三动力部件115和第三传动部件116, 该第三动力部件115的位置固定;该第三传动部件116可以包括相互啮合的齿轮1161和齿条1162,该齿轮1161连接该第三动力部件115的输出轴,该齿条1162可固定连接该限位部件117。例如,如图1所示,该齿条1162可与该第二结构1132固定连接,或者,如图2以及图3中所示,该齿条1162可与第四结构11342固定连接。该第三动力部件115工作带动齿轮1161转动,从而可以通过与该第二结构1132固定连接的齿条1162带动该转向手感模拟助力器伸缩。
通过本申请提供的转向手感模拟助力器,通过液压腔中液压的作用可以带动该液压腔中的活塞发生直线运动,进而带动与该活塞连接的第一传动机构发生回转运动,该第一传动机构可以连接方向盘,从而可以实现转向手感模拟。其中,该液压腔由壳体以及中间件合围而成,该第一传动机构容于该壳体内,该第一传动机构连接该活塞;同时,该第一传动机构还可以在动力部件或方向盘的作用下使该液压腔中的液压发生变化,为转向车轮提供转向助力,从而可以提升包括该手感模拟助力器的转向系统的冗余性能。
以上结合图1至图3介绍本申请实施例的转向手感模拟助力器的结构,该转向手感模拟助力器可通过转向助力器120向转向车轮提供转向动力,并且,该转向助力器还可以通过该转向手感模拟助力器实现转向时的路感模拟。图4是本申请实施例提供的转向助力器的示意图。
该转向助力器可以包括第二液压装置121,该第二液压装置121用于产生液压,以为转向车轮(141,142)提供转向动力。该第二液压装置121包括第二活塞1211、活塞推杆1212、壳体1213以及限位块1214。其中,该壳体1213和限位块1214合围形成第二液压腔,该活塞推杆1212位于该第二液压腔内;该活塞推杆1212上固定连接第二活塞1211,通过活塞推杆1212移动可以带动第二活塞1211移动,进而可以使得该第二液压腔中的液压发生变化。
该活塞推杆1212的一端还可以连接第二传动机构122,该第二传动机构122用于将第二动力部件123产生的动力传递至该活塞推杆1212,以使活塞推杆1212发生位移运动。该第二传动机构122可以是丝杠螺母机构,其包括丝杆螺母1221和丝杠1222,该丝杠螺母1221连接第二动力部件123的输出轴,该丝杠1222连接该活塞推杆1212。该第二动力部件123工作带动该丝杠1222平动,从而可以带动第二活塞1211在该第二液压腔内滑动,使得第二活塞1211两侧的液压发生变化。
在该第二动力部件123上还可以设置第二角度传感器105,用于感测该第二动力部件输出的扭矩或角度。
该转向助力器还包括与该丝杠1222以及活塞推杆1212同轴设置的转向横拉杆124,该转向横拉杆124的两侧分别连接转向车轮(141,142)。该转向横拉杆124可以与活塞推杆1212、丝杠螺母机构中的丝杠1222轴向固定连接,活塞推杆1212和丝杠1222的位移在该转向横拉杆124上进行叠加,从而可以实现将转向横拉杆124的位移运动转化为转向车轮(141,142)的转向动力,完成车辆的转向动作。
该转向助力器可以通过液压模块实现与该转向手感模拟助力器之间的液压连接。
该液压模块可以包括液压管路131,示例性地,该液压管路131包括第一液压管路1311和第二液压管路1312。该第一液压管路1311和第二液压管路1312的一端连接该转向手感模拟助力器。具体地,该第一液压管路1311和第二液压管路1312的一端分别连接转向 手感模拟助力器中第一液压调节口11321和第二液压调节口11322。通过该第一液压管路1311和第二液压管路1312,该转向手感模拟助力器可以通过产生的液压为转向车轮的转向动力。
该第一液压管路1311和第二液压管路1312的另一端连接转向助力器可以是,该第一液压管路1311和第二液压管路1312连接该第二液压装置121,且分别连接该第二活塞1211两侧的第三液压调节口11323和第四液压调节口11324。
由以上结构可知,通过液压模块中的第一液压管路1311和第二液压管路1312可以实现转向手感模拟助力器和转向助力器之间的液压连接。在该液压管路上还可以设置控制阀132,通过控制该控制阀132的开启或关闭可以控制该转向手感模拟助力器和转向助力器之间耦合或解耦。
上文结合图1至图4介绍了本申请实施例的转向手感模拟助力器,下文结合图5详细介绍包含上述转向手感模拟助力器、转向助力器以及液压模块的转向系统。应理解,图5所示的转向系统中与转向手感模拟助力器、转向助力器以及液压模块中功能相同的部件使用的编号相同,部件之间的连接关系、各部件具体的工作方式可以参见上文介绍,为了简洁,下文不再赘述。
该转向系统包括该转向手感模拟助力器以及该转向助力器,该转向手感模拟助力器可以通过液压模块实现与该转向助力器的液压连接。
该转向手感模拟助力器与该转向助力器的具体连接方式可参考上文中的描述,其中,该液压模块可以包括第一控制阀1321和第二控制阀1322,通过控制该第一控制阀1321和第二控制阀1322的开启或关闭可以控制转向手感模拟助力器和转向助力器之间耦合或解耦。
该液压模块还可以包括储液装置133,该储液装置133通过出液管路1313连通该液压管路131,该储液装置133用于为该转向机构100中的液压装置提供油液。
在储液装置133的出液管路1313上还可以设置第三控制阀134,该第三控制阀134可以用于控制储液装置133与该转向手感模拟助力器和转向助力器之间油液的通断;其次,该第三控制阀134还可以分别与该第一控制阀1321、第二控制阀1322配合工作,用于控制储液装置133与其中一个转向器之间油液的通断。
例如,通过控制第三控制阀134开启,第一控制阀1321开启以及第二控制阀1322关闭可以控制该转向手感模拟助力器和储液装置133之间的油液导通,同时,该转向助力器和该储液装置133之间的油液断开。
又如,通过控制第三控制阀134开启,第一控制阀1321关闭以及第二控制阀1322开启可以控制该转向助力器和储液装置133之间的油液导通,使得该转向助力器中第二活塞1211两侧的液压腔之间形成闭合回路,同时,该转向手感模拟助力器和该储液装置133之间的油液断开。
可选地,该液压模块还可以包括第一支路135,该第一支路135用于连通该第二控制阀1322和该第二液压装置121之间的第一液压管路1311和第二液压管路1312。在该第一支路135上还可以设置第四控制阀136,通过控制该第四控制阀136的闭合可以控制第二活塞1211两侧的第二液压腔之间形成的闭合回路的通断。
其中,该第一控制阀1321、第二控制阀1322以及该第三控制阀134可以为两位四通 的电磁阀,用于同时控制两条并联的管路,该第四控制阀136可以是两位两通电磁阀。应理解,该第一控制阀1321、第二控制阀1322和该第三控制阀134还可以是独立的两个或多个电磁阀,分别控制两条独立的管路(第一液压管路1311和第二液压管路1312),本申请对此不做限定。
可选地,在该液压管路131和该第一支路135上还可以分别设置第一压力传感器106和第二压力传感器107,用于感测其连接的液压管路中的液压。
通常,为了保证上述转向机构100中各液压装置工作的可靠性,还可以在第一液压装置的第一活塞111与活塞壳体1312之间、第二液压装置121的限位块12141与活塞推杆1212之间,以及第二活塞1212与壳体1213之间设置密封圈109。
在本申请的实施例中,通过液压模块连接转向手感模拟助力器和转向助力器,该液压装置130可以包括连接转向手感模拟助力器和转向助力器的液压管路(1311,1312),以及用于控制该液压管路(1311,1312)的通断的控制阀(1131,1132)。如此,可以通过控制该液压管路(1311,1312)的通断,控制转向手感模拟助力器和转向助力器之间耦合或解耦,从而可以实现转向机构的冗余性能。该转向机构结构较简单,从而可以降低转向系统的控制难度以及成本。
上文结合图5介绍了本申请实施例的转向系统,下文结合图6至图14,介绍本申请提供的转向系统的工作模式。为了简洁,上述转向系统中已经涉及的元件在下文中不再具体介绍。
该转向系统还可以包括转向控制器210,转向车轮(141,142)。该转向控制器210用于确定转向需求,该转向需求可以包括需转向的扭矩,或需转向的角度。转向控制器210可以根据该转向需求控制该转向系统100为转向车轮(141,142)提供转向动力。
可选地,该转向系统还包括方向盘101,用户可以操作方向盘101通过该转向系统为转向车轮(141,142)提供转向动力。
该转向系统可以实现线控转向模式、耦合转向模式,方向盘静默转向模式、冗余转向模式以及机械转向模式。
其中,在线控转向模式下,由转向控制器210基于方向盘101的转动获取转向需求,并基于该转向需求控制第二动力部件123为转向车轮(141,142)提供转向动力。也就是说,在该模式下,该转向手感模拟助力器和转向助力器的处于解耦状态。
在耦合转向模式下,同样由转向控制器210基于方向盘101的转动获取转向需求,并基于该转向需求控制第二动力部件123为转向车轮(141,142)提供转向动力;区别于线控转向模式,在该模式下,该转向手感模拟助力器和转向助力器的处于耦合状态,在该第二动力部件123输出动力不足的情况下,该转向控制器还可以控制第一动力部件114工作,为转向车轮(141,142)提供转向动力。
为了适应自动驾驶技术对转向系统的需求,转向系统还可以工作在方向盘静默转向模式下。在该模式下,转向控制器210可以通过分析环境条件、车辆状态、高级驾驶辅助系统(advanced driving assistant system,ADAS)状态和驾驶员输入等信息,判断车辆的转向需求,并基于该转向需求控制动力部件工作为转向车轮(141,142)提供转向动力。
在上述线控转向模式或耦合转向模式下,如果转向系统中任意一个动力源(例如,第一动力部件114或第二动力部件123)或者相关传感器发生故障,转向控制器210还可以 控制转向系统工作在冗余转向模式,即转向控制器210通过控制相关控制阀实现转向手感模拟助力器和转向助力器之间的耦合,使得该转向系统实现转向动力的传递,进而实现转向系统的冗余备份功能。
转向系统还可以工作在机械转向模式下,在该模式下,转向系统可以基于驾驶员通过方向盘101输入的转向需求,使得转向手感模拟助力器输出液压,并通过液压模块将转向手感模拟助力器中的液压传递至转向助力器,以向转向车轮(141,142)提供转向动力。
下面详细介绍转向系统的各工作模式。
假设转向系统中,第一控制阀1321、第二控制阀1322为常开阀,第三控制阀134第四控制阀136为常闭阀。
需要说明的是,常开可以理解为该控制阀处于导通状态,常闭为该控制阀处于断开状态;其次,上述常开、常闭状态为未给该控制阀供电时,该控制阀的默认状态。当需要调整该控制阀的状态时,可以为待调整状态的控制阀供电,控制其处于断开状态或导通状态。
(1)线控转向模式
在线控转向模式下,转向控制器210可以控制第二控制阀1322处于断开状态,使得转向手感模拟助力器和转向助力器之间处于解耦状态;第三控制阀134处于导通状态,使得转向手感模拟助力器与储液装置133处于连通状态;第四控制阀136处于导通状态,使得转向助力器第二活塞1211两侧的液压腔之间形成的闭合回路;转向系统中的其他控制阀保持默认状态。
如此,驾驶员转动方向盘101输出扭矩,使得第一传动机构112转动;该第一传动机构112转动带动第一活塞111移动,从而使得第一液压腔中的液压发生变化;在该液压的作用下,该第一液压腔中的油液通过该第一液压管路1311和第二液压管路1312流入或流出储液装置133,保证方向盘101的可靠转动;同时,第一角度传感器104可以感测转向管柱102输出的转向扭矩或角度信息,再将该传感信息反馈给转向控制器210,以使转向控制器210确定驾驶员的转向需求;转向控制器210按照该转向需求控制第二动力部件123输出扭矩;第二动力部件123可以通过第二传动构件122将输出的扭矩转化为转向横拉杆124的位移运动,为转向车轮(141,142)提供转向动力。
在该模式下,方向盘101无法通过液压连接直接驱动转向车轮(141,142)转向,也就是说,驾驶员无法从方向盘101处获取控制转向车轮(141,142)转向时的真实的路感。因此,为了提高驾驶员的驾驶感受,转向控制器210可以控制第一动力部件114工作,模拟路感并通过方向盘101反馈给驾驶员。
其次,在该模式下,转向控制器210可以根据车速工况设置或改变方向盘与转向车轮之间的传动比。例如,在驻车状态下,可以降低方向盘和转向车轮之间的传动比,减少方向盘旋转的最大圈数,进而可以节省驾驶员的体力;在高速状态下,可以提高方向盘和转向车轮之间的传动比,以降低驾驶员对车辆的影响,提高行车中车辆的稳定性。
该模式下转向系统中油液流动的路径参见图6。应理解,该油液的流动路径仅为示例,图5仅示出了转向系统控制转向车轮(141,142)向某个方向旋转时,油液的流动方向。在控制转向车轮(141,142)向其他方向转动时,该油液的流动方向还可以是相反的方向。
(2)耦合转向模式
在耦合转向模式下,转向系统中的控制阀均保持默认状态。如此,驾驶员转动方向盘 101输出扭矩;第一角度传感器104可以感测该方向盘转动的角度或扭矩信息,并传递给转向控制器210;转向控制器210基于该角度或扭矩信息确定驾驶员的转向需求,并基于该转向需求控制第二动力部件123输出扭矩;在该第二动力部件123的作用下,转向横拉杆124发生位移运动,为转向车轮(141,142)提供转向动力。在该第二动力部件123输出动力不足的情况下,该转向控制器210还可以控制第一动力部件114工作,通过第一传动机构112带动第一活塞111移动,从而使得该第一液压腔中的液压发生变化;在该第一液压腔中的液压和该第二动力部件123的共同作用下,转向横拉杆124发生位移运动,为转向车轮(141,142)提供转向动力。
为了提高驾驶员的驾驶感受,转向控制器210可以控制第一动力部件114和/或第二动力部件123工作,模拟路感并通过方向盘101反馈给驾驶员。该模式下转向系统中油液流动的路径参见图7。
(3)方向盘静默转向模式
方向盘静默转向模式可以应用于自适应巡航控制、避障等由ADAS控制的场景中。在方向盘静默转向模式下,无需驾驶员操作方向盘101,转向控制器210可以通过分析环境条件、车辆状态、ADAS状态和驾驶员输入等信息,判断车辆的转向需求。
由于无需驾驶员操作方向盘101,转向控制器210还可以通过动力部件控制方向盘收缩。具体地,转向控制器210可以控制第三动力部件115工作,带动第三传动机构中的齿轮1161旋转;该齿轮1161和齿条1162啮合,且该齿条1162与活塞壳体1132固定连接,从而通过齿轮1161旋转可以带动转向手感模拟助力器移动,进而实现方向盘101的伸缩。
在该模式下的一种可能的实现中,转向控制器210可以控制第二控制阀1322处于断开状态,使得转向手感模拟助力器和转向助力器之间处于解耦状态;第四控制阀136处于导通状态,使得转向助力器第二活塞1211两侧的液压腔之间形成的闭合回路;转向系统中的其他控制阀保持默认状态。
转向控制器210根据确定的转向需求控制第二动力部件123输出扭矩;第二动力部件123通过第二传动构件122将输出的扭矩转化为转向横拉杆124的位移运动,为转向车轮(141,142)提供转向动力。该模式下转向系统中油液流动的路径参见图8。
在该模式下的另一种可能实现方式中,由于无需驾驶员操作方向盘101,转向控制器210还可以控制第一控制阀1321处于断开状态,使得转向手感模拟助力器和转向助力器之间处于解耦状态;此时,转向控制器210控制动力部件为转向车轮(141,142)提供转向动力可以分为三种情况。
情况一,转向控制器210可以控制第三控制阀134处于导通状态,其他控制阀保持默认状态。第三控制阀134处于导通状态使得转向助力器与储液装置133处于连通状态,同时,使得转向助力器第二活塞1211两侧的液压腔之间形成的闭合回路。如此,转向控制器210可以根据确定的转向需求控制第二动力部件123输出扭矩;第二动力部件123通过第二传动构件122将输出的扭矩转化为第二活塞1211的位移运动,进而使得转向横拉杆124发生位移运动,为转向车轮(141,142)提供转向动力。该情况下转向系统中油液流动的路径参见图9。
情况二,转向控制器210还可以控制第二控制阀1322处于断开状态,使得转向助力器与储液装置133处于断开状态;第四控制阀136处于导通状态,使得转向助力器第二活 塞1211两侧的液压腔之间形成的闭合回路;转向系统中的其他控制阀保持默认状态。同样,转向控制器210可以根据确定的转向需求控制第二动力部件123输出扭矩,并通过第二传动构件122将输出的扭矩转化为转向横拉杆124的位移运动,为转向车轮(141,142)提供转向动力。该情况下转向系统中油液流动的路径参见图10。
情况三,转向控制器210还可以只控制第四控制阀136处于导通状态,其他控制阀保持默认状态,同样可以使得转向助力器第二活塞1211两侧的液压腔之间形成的闭合回路。转向控制器210可以通过控制第二动力部件123为转向车轮(141,142)提供转向动力。该情况下转向系统中油液流动的路径参见图11。
以上三种情况可以理解为,在转向控制器210控制第一控制阀1321处于断开的状态下,转向控制器210通过控制其他控制阀使得转向助力器第二活塞1211两侧的液压腔之间形成的闭合回路的三种情况。
(4)冗余转向模式
在上述线控转向模式或耦合转向模式下,如果转向手感模拟助力器或转向助力器中的任意一个动力源(例如,第一动力部件114或第二动力部件123)或者相关传感器发生故障,转向控制器210还可以控制转向系统工作在冗余转向模式。
例如,在线控转向模式下,如果转向控制器210确定第一动力部件114或第二动力部件123发生故障,则转向控制器210可以控制第二控制阀1322处于导通状态,第三控制阀134和第四控制阀136处于断开状态,使得转向手感模拟助力器和转向助力器之间处于耦合状态。如此,在第一动力部件114发生故障的情况下,转向控制器210可以控制第二动力部件123工作以模拟真实路感,并通过液压模块和转向手感模拟助力器反馈给驾驶员,该模式下转向系统中油液流动的路径参见图12。在第二动力部件123发生故障的情况下,转向控制器210可以控制第一动力部件114输出扭矩,通过第一传动机构112将输出的扭矩转化为第一活塞111的位移运动,进而使得第一液压腔中的液压发生变化;该转向手感模拟助力器通过液压模块将液压传递至转向助力器;在转向助力器中,该液压转化为转向横拉杆124的位移运动,为转向车轮(141,142)提供转向动力。该模式下转向系统中油液流动的路径参见图13。
类似地,在耦合转向模式下,如果转向控制器210确定第一动力部件114发生故障,转向控制器210可以控制第二动力部件123工作以模拟真实路感,并通过液压模块和转向手感模拟助力器反馈给驾驶员;如果第二动力部件123发生故障,转向控制器210可以控制第一动力部件114输出动力,并通过该液压模块和该转向助力器将动力传递至转向车轮(141,142),以使转向车轮完成转向动作。
应理解,在方向盘静默模式下,如果该第一动力部件114或该第二动力部件123发生故障,为了确保行车安全,转向控制器210可以控制该转向系统的工作模式回退到线控转向模式或耦合转向模式。
此外,如果转向手感模拟助力器和转向助力器中的动力部件同时故障,转向系统还可以工作在机械转向模式下。
(5)机械转向模式
在机械转向模式下,转向系统中的所有控制阀均处于默认状态。驾驶员转动方向盘101产生的转向力矩,使得该第一传动机构112中的螺母发生位移运动;该第一传动机构 112中的螺母发生位移运动可以带动第一活塞111移动,从而使得第一液压装置中的第一液压腔102和第二液压腔103中的液压发生变化;在该液压的作用下,该第一液压腔102和第二液压腔103中的油液可以通过该第一液压管路1311和第二液压管路1312流入或流出,例如,第一液压腔102中的油液通过第一液压管路1311流出,第二液压腔103中的油液通过第二液压管路1312流入,使得转向助力器中第二活塞1211两侧液压腔中的液压发生变化;在液压的作用下,第二活塞1211发生位移运动,带动活塞推杆1212移动,进而带动转向横拉杆124移动,为转向车轮(141,142)提供转向动力。其中,转向系统中油液流动的路径参见图14。
在该模式下,方向盘101与转向车轮(141,142)之间处于液压连接状态,驾驶员可通过方向盘获取真实路感。
在一些场景下,转向控制器210还可以控制转向系统从一种工作模式切换至另一种工作模式。例如,当车辆的状态由自动驾驶状态切换至驾驶人员接管状态时,需要控制转向系统从方向盘静默转向模式切换至线控转向模式或机械转向模式。在不同转向模式转换的过程中,当转向控制器210确定转向系统从转向手感模拟助力器和转向助力器解耦状态切换至耦合状态时,还需要实现由控制阀阻隔形成的上下液压管路(1311,1312)中的液压,以及方向盘101与转向车轮(141,142)角度之间的同步。
在转向模式切换之前,转向控制器210可以分别获取第二压力传感器107和第二角度传感器105中的传感数据,通过该传感数据确定转向助力器中液压的压力信号以及第二动力部件123的角度信号;转向控制器210可以根据该压力信号和角度信号控制第一动力部件114工作,实现方向盘101转角以及转向手感模拟助力器中液压的调节。可选地,第一角度传感器104与第一压力传感器106还可以反馈信号到转向控制器210,与转向控制器210中输入的信号进行对比和校核,实现闭环控制,进而实现方向盘角度以及液压管路中压力的同步。在实现上下液压管路中的液压,以及方向盘101与转向车轮(141,142)转动角度的同步之后,转向控制器210可以先控制第三控制阀134和第四控制阀136处于断开状态,接着控制第一控制阀1321和第二控制阀1322处于导通状态,完成转向模式的切换。
在上述任一种转向模式工作之前,为了保证转向精度,转向系统还可以工作在液压排气模式。即转向控制器210可以通过压力传感器(第一压力传感器106和/或第二压力传感器107)确定转向系统中是否存在气泡,如果存在,则转向控制器210可以通过控制相应的控制阀实现对转向手感模拟助力器或转向助力器的排气与检查。
当需要对转向手感模拟助力器进行排气检查时,转向控制器210可以控制第一控制阀1321、第三控制器134处于导通状态,使得转向手感模拟助力器与储液装置133处于连通状态;第二控制阀1322处于断开状态,使得转向手感模拟助力器和转向助力器之间处于解耦状态,实现转向手感模拟助力器中第一液压装置的排气与检查。
当需要对转向助力器进行排气检查时,转向控制器210可以控制第一控制阀1321处于断开状态,第二控制阀1322、第三控制器134处于导通状态,第四控制阀处于断开状态,使得转向手感模拟助力器和转向助力器之间处于解耦状态,第二转向器110与储液装置133处于连通状态,从而实现转向助力器中第二液压装置121的排气与检查。
上文介绍了本申请实施例的转向机构和转向系统,下文结合图15介绍本申请实施例 的控制方法。图15所示的方法可以与本申请实施例中的任意一种转向机构、转向系统配合实施。
图15是本申请实施例提供的控制方法的流程图。该方法可以由转向控制器210执行,或者由车辆中其他具有控制功能的装置执行,本申请对此不作限定。该方法至少包括以下几个步骤。
S1510,确定转向系统的状态信息。
该转向系统的状态信息可以包括转向系统中各部件的状态信息,例如,各部件(例如,助力电机,液压管路、传感器以及控制阀等)是否故障的信息,后续,基于该转向系统中各部件的状态信息,转向控制器210可以确定转向系统的可选的工作模式。
例如,控制器可以发送信号至助力电机,控制助力电机执行相应的操作,以判断助力电机是否正常工作;再例如,控制器可以控制转向系统产生预设值大小的液压以检测压力传感器是否正常工作等。
该转向系统的状态信息还可以包括转向系统的液压装置中是否存在气泡的信息。转向控制器210可以通过第一压力传感器106或第二压力传感器107确定转向系统中是否存在气泡,如果存在,后续,转向控制器210可以通过控制相应的控制阀实现对转向手感模拟助力器或转向助力器的液压排气。
可选地,该方法还可以包括S1120,控制转向系统工作在液压排气模式,以实现转向系统的液压排气。
S1530,根据转向系统的状态信息确定转向系统可选的工作模式。
该转向系统可选的工作模式可以用于驾驶员确定即将执行的转向系统的工作模式。
通常,该转向系统的工作模式可以包括线控转向模式、耦合转向模式、方向盘静默转向模式、冗余转向模式以及机械转向模式。在控制器根据转向系统的状态信息确定转向系统的某些部件出现故障的情况下,控制器可以确定该转向系统可选的工作模式包括上述工作模式中的全部或部分。
具体地,如果控制器确定该第一动力部件114、第二动力部件123以及第三动力部件123中的任一个动力部件故障,则控制器确定该转向系统可选的工作模式不包括方向盘静默转向模式;如果控制器确定该第一动力部件114和第二动力部件123工作状态正常,则控制器确定该转向系统可选的工作模式包括线控转向模式和耦合转向模式;如果控制器确定该第一动力部件114或第二动力部件123故障,则控制器确定该转向系统可选的工作模式包括冗余转向模式;如果控制器确定该第一动力部件114和第二动力部件123故障,则控制器确定该转向系统可选的工作模式包括机械转向模式。在转向系统的各工作模式下,各动力部件的工作状态如表1中所示。
表1
Figure PCTCN2022073884-appb-000001
Figure PCTCN2022073884-appb-000002
其中,√表示助力电机工作状态正常,X表示助力电机故障,/表示助力电机处于任意状态。
S1540,确定转向系统即将执行的工作模式。
该控制器可以根据接收的上层输入信息确定转向系统即将执行的转向工作模式。
S1550,根据转向系统即将执行的工作模式控制转向系统工作,以实现车辆的转向功能。
其中,根据转向系统即将执行的工作模式控制转向系统工作可以包括,控制转向系统中控制阀打开或者关闭,该控制阀可以包括第一控制阀1321、第二控制阀1322、第三控制阀134以及第四控制阀136中的至少一个;控制转向系统工作还包括控制转向手感模拟助力器和/或转向助力器为转向车轮(141,142)提供转向动力。具体的控制过程可参考具体工作模式中的描述,在此不再赘述。
在控制转向车轮(141,142)转动的过程中,控制器还可以实时监测转向车轮(141,142)偏转的角度,并与输入的转向需求信息进行对比,实现闭环控制。
图16是本申请实施例的控制装置的示意图。图16所示的控制装置1600包括:获取单元1610和处理单元1620。其中,获取单元1610用于获取第一信息,该第一信息可以包括转向需求信息,上层输入信号以及车速信息中的至少一种。该转向需求信息可参考具体工作模式中的介绍;该上层输入信号可以用于确定转向系统即将执行的工作模式;该车速信息可以用于设置方向盘与转向车轮之间的传动比。
处理单元1620,用于通过控制控制阀控制转向手感模拟助力器与转向助力器处于解耦或耦合状态,该控制阀包括第一控制阀1321和第二控制阀1322中的至少一个。
该处理单元1620还用于控制储液装置133与转向手感模拟助力器和/或转向助力器之间的通断。具体地,该处理单元1620可以通过控制第三控制阀134,或者通过控制第三控制阀134、第一控制阀1321以及第二控制阀1322的开闭来实现控制储液装置133与转向手感模拟助力器和/或转向助力器之间的通断。
该处理单元1620还用于控制第一支路135的通断。具体地,该处理单元1620可以通过控制第四控制阀136的开闭实现控制该第一支路135的通断。
该处理单元1620还用于控制动力部件为转向车轮提供转向动力,该动力部件可以包括该第一动力部件114和该第二动力部件123中的至少一个。
该处理单元1620还用于控制第三动力部件115工作,以控制方向盘101的伸缩。
图17是本申请实施例的控制器的示意性框图。图17所示的控制器1700可以包括:存储器1710、处理器1720、以及通信接口1730。其中,存储器1710、处理器1720,通信接口1730通过内部连接通路相连,该存储器1710用于存储指令,该处理器1720用于执行该存储器1720存储的指令,以控制通信接口1730接收/发送信息,例如,接收该第一信息,或者,发送转向系统可选的工作模式的信息。可选地,存储器1710既可以和处理器1720通过接口耦合,也可以和处理器1720集成在一起。
上述通信接口1730包括但不限于收发器一类的收发装置,用于实现控制器1700与其他设备或通信网络之间的通信。上述通信接口1730还可以包括输入/输出接口(input/output  interface)。
需要说明的是,本申请中涉及的“第一液压管路1321”、“第二液压管路1322”以及其他液压管路等可以理解为实现某一功能的一段或多段液压管路。例如,第一液压管路1321可以包括用于连接转向手感模拟助力器与转向助力器的多段液压管路。
另外,本申请在结合附图介绍转向系统时,附图中示意性地示出了每个控制阀可以实现的两种工作状态(断开或连通),并不限定控制阀当前的工作状态如图所示。
另外,本申请在结合附图介绍各转向器、转向系统等架构时,各个实施例对应的附图中功能相同的部件使用的编号相同,为了简洁,各部件的功能不会在每个实施例中说明,可以参见全文中关于各部件功能的介绍。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (53)

  1. 一种转向手感模拟助力器,其特征在于,包括:壳体(113),第一传动机构(112)、活塞(111)以及中间件;
    所述壳体(113)包括第一结构(1131)和第二结构(1132),所述第一结构(1131)、所述第二结构(1132)和所述活塞(111)合围成液压腔;
    所述第一传动机构(112)容于所述壳体(113)内,所述第一传动机构(112)可将回转运动转化为直线运动,或将直线运动转化为回转运动;
    所述中间件与所述第一传动机构(112)连接,所述中间件在所述第一传动机构(112)的作用下带动所述活塞(111)移动使所述液压腔内液压发生变化,或者,所述中间件在所述活塞(111)的作用下带动所述第一传动机构(112)在所述壳体内转动。
  2. 根据权利要求1所述的转向手感模拟助力器,其特征在于,
    所述第一传动机构(112)为滚珠丝杠机构,所述滚珠丝杠机构包括丝杠和丝杠螺母,所述丝杠螺母和所述中间件(1121)连接。
  3. 根据权利要求2所述的转向手感模拟助力器,其特征在于,
    所述丝杠的一端设有第一限位部件(1171),所述丝杠的另一端设有第二限位部件(1172),所述第一限位部件和所述第二限位部件位置固定,所述丝杠螺母在所述第一限位部件(1171)和所述第二限位部件(1172)形成的位移区间内移动。
  4. 根据权利要求1至3中任一项所述的转向手感模拟助力器,其特征在于,
    所述第一结构(1131)上设有第一液压调节口(11321),所述第二结构(1132)上设有第二液压调节口(11322),所述第一液压调节口(11321)与第一液压管路(1311)的一端相连,所述第二液压调节口(11322)与第二液压管路(1312)的一端相连,所述第一液压管路(1311)和所述第二液压管路(1312)连通储液装置(133)的出液管路(1313);
    所述第一液压管路(1311)和所述第二液压管路(1312)上设有第一控制阀(1321),所述第一控制阀(1321)用于控制所述第一液压管路(1311)和所述第二液压管路(1312)的通断,以控制所述液压腔和所述储液装置(133)处于连通或断开状态。
  5. 根据权利要求1至4所述的转向手感模拟助力器,其特征在于,所述转向手感模拟助力器还包括:
    转向管柱(102),所述转向管柱(102)的一端连接所述第一传动机构(112),所述转向管柱的另一端连接方向盘(101)。
  6. 根据权利要求1至5中任一项所述的转向手感模拟助力器,其特征在于,所述转向手感模拟助力器还包括:
    第一动力部件(114),所述第一动力部件(114)的输出轴与所述第一传动机构(112)的一端相连,所述第一动力部件(114)用于向所述第一传动机构(112)输出动力;
    角度传感器(104),所述角度传感器(104)与所述第一动力部件(114)连接,所述角度传感器(104)用于感测所述第一动力部件(114)转动的角度信息。
  7. 根据权利要求1至6中任一项所述的转向手感模拟助力器,其特征在于,所述转向手感模拟助力器还包括:
    第三动力部件(115)和第三传动机构(116),所述第三动力部件(115)的位置固定,所述第三传动机构(116)包括互相啮合的齿轮(1161)和齿条(1162),所述齿轮(1161)和所述第三动力部件(115)的输出轴连接,所述齿条(1162)和所述壳体(113)固定连接。
  8. 一种转向助力器,其特征在于,包括:壳体(1213),第二传动机构(122),活塞(1211)以及活塞推杆(1212);
    所述活塞(1211)与所述活塞推杆(1212)固定连接,所述活塞(1211)置于所述壳体(1213)内,所述第二活塞(1211)、所述活塞推杆(1212)以及所述壳体(1213)合围成液压腔;
    所述活塞推杆(1212)与所述第二传动机构(122)连接,所述活塞推杆(1212)在所述第二传动机构(122)的作用下带动所述活塞(1211)移动使所述液压腔内液压发生变化。
  9. 根据权利要求8所述的转向助力器,其特征在于,
    所述第二传动机构(122)为滚珠丝杠机构,所述滚珠丝杠机构包括丝杠和丝杠螺母,所述丝杠和所述活塞推杆(1212)同轴连接。
  10. 根据权利要求8或9所述的转向助力器,其特征在于,
    所述活塞推杆(1212)的两端设置有限位块(1214),所述限位块(1214)、所述活塞推杆(1212)和所述壳体(1213)合围成密闭液压腔,所述限位块(1214)相对于所述壳体(1213)位置固定,所述活塞(1211)在所述密闭液压腔内移动。
  11. 根据权利要求8至10中任一项所述的转向助力器,其特征在于,
    所述壳体(1213)上设有第三液压调节口和第四液压调节口,所述第三液压调节口和所述第四液压调节口分别位于所述活塞(1211)的两侧,所述第三液压调节口与第一液压管路(1311)的一端相连,所述第四液压调节口与第二液压管路(1312)的一端相连,所述第一液压管路(1311)和所述第二液压管路(1312)连通储液装置(133)的出液管路(1313);
    所述第一液压管路(1311)和所述第二液压管路(1312)上设有第二控制阀(1322),所述第二控制阀(1322)用于控制所述第一液压管路(1311)和所述第二液压管路(1312)的通断,以控制所述密闭液压腔和所述储液装置(133)处于连通或断开状态。
  12. 根据权利要求8至11中任一项所述的转向助力器,其特征在于,所述转向助力器还包括:
    转向横拉杆(124),所述转向横拉杆(124)的两端分别连接转向车轮,所述转向横拉杆(124)、所述丝杠(1222)以及所述活塞推杆(1212)同轴线轴向固定连接。
  13. 根据权利要求8至12中任一项所述的转向助力器,其特征在于,所述转向助力器还包括:
    第二动力部件(123),所述第二动力部件(123)的输出轴连接所述第二传动机构(122),所述第二动力部件(123)用于向所述第二传动机构(122)输出动力;
    角度传感器(105),所述角度传感器(105)与所述第二动力部件(123)连接,所述角度传感器(105)用于感测所述第二动力部件(115)转动的角度信息。
  14. 一种转向系统,其特征在于,包括:转向手感模拟助力器,转向助力器和液压模 块;
    所述转向手感模拟助力器包括第一传动机构(112)和第一液压装置,所述第一传动机构(112)可将回转运动转化为直线运动或将直线运动转化为回转运动,所述第一液压装置在所述第一传动机构(112)的作用下产生液压,或所述第一传动机构(112)在所述第一液压装置的作用下转动;
    所述液压模块包括液压管路(131)和控制阀(132),所述液压管路(131)的一端连接所述第一液压装置,所述液压管路(131)的另一端连接所述转向助力器,所述转向助力器用于将所述第一液压装置产生的液压转化为转向车轮的转向动力,所述控制阀(132)设置于所述液压管路(132)上,所述控制阀(132)用于通过控制所述液压管路(132)的通断,以控制所述转向手感模拟助力器(110)与所述转向助力器之间耦合或解耦。
  15. 根据权利要求14所述的转向系统,其特征在于,
    所述第一液压装置包括壳体(113),和活塞(111),所述壳体(113)包括第一结构(1131)和第二结构(1132),所述第一结构(1131)、所述第二结构(1132)和所述活塞(111)合围成液压腔;
    所述第一传动机构(112)和中间件连接,所述中间件在所述第一传动机构(112)的作用下带动所述活塞(111)移动使所述液压腔内液压发生变化,或者,所述中间件(1121)在所述活塞(111)的作用下带动所述第一传动机构(112)转动。
  16. 根据权利要求14或15所述的转向系统,其特征在于,
    所述第一传动机构(112)为滚珠丝杠机构,所述滚珠丝杠机构包括丝杠和丝杠螺母,所述丝杠螺母和所述中间件连接。
  17. 根据权利要求16所述的转向系统,其特征在于,
    所述丝杠的一端设有第一限位部件(1171),所述丝杠的另一端设有第二限位部件(1172),所述第一限位部件和所述第二限位部件位置固定,所述丝杠螺母在所述第一限位部件(1171)和所述第二限位部件(1172)形成的位移区间内移动。
  18. 根据权利要求15至17中任一项所述的转向系统,其特征在于,
    所述液压管路(131)包括第一液压管路(1311)和第二液压管路(1312),所述第一结构(1131)上设有第一液压调节口(11321),所述第二结构(1132)上设有第二液压调节口(11322),所述第一液压调节口(11321)与第一液压管路(1311)的一端相连,所述第二液压调节口(11322)与第二液压管路(1312)的一端相连,所述第一液压管路(1311)和所述第二液压管路(1312)连通储液装置(133)的出液管路(1313);
    所述控制阀(132)包括第一控制阀(1321),所述第一控制阀(1321)设于所述第一液压管路(1311)和所述第二液压管路(1312)上,所述第一控制阀(1321)用于控制所述第一液压管路(1311)和所述第二液压管路(1312)的通断,以控制所述液压腔和所述储液装置(133)处于连通或断开状态。
  19. 根据权利要求18所述的转向系统,其特征在于,所述第一液压管路(1311)和所述第二液压管路(1312)的另一端连接所述转向助力器,所述控制阀(132)还包括第二控制阀(1322),所述第二控制阀(1322)设于所述第一液压管路(1311)和所述第二液压管路(1312)上,所述第二控制阀(1321)用于控制所述第一液压管路(1311)和所 述第二液压管路(1312)的通断,以控制所述转向助力器和所述储液装置(133)处于连通或断开状态。
  20. 根据权利要求18或19所述的转向系统,其特征在于,所述液压模块还包括第三控制阀(1323),所述第三控制阀(1323)设于所述出液管路(1313),所述第三控制阀用于控制所述储液装置(133)与所述第一液压管路(1311)和所述第二液压管路(1312)的通断。
  21. 根据权利要求14至20中任一项所述的转向系统,其特征在于,所述转向系统还包括方向盘(101),所述方向盘(101)通过转向管柱(102)连接所述第一传动机构(112)。
  22. 根据权利要求14至21中任一项所述的转向系统,其特征在于,所述转向手感模拟助力器还包括第一动力部件(114)和角度传感器(104),所述第一动力部件(114)用于向所述第一传动机构(112)输出动力,所述角度传感器(104)与所述第一动力部件(114)连接,所述角度传感器(104)用于感测所述第一动力部件(114)转动的角度信息。
  23. 根据权利要求14至22中任一项所述的转向系统,其特征在于,所述转向手感模拟助力器还包括第三动力部件(115)和第三传动机构(116),所述第三动力部件(115)的位置固定,所述第三传动机构(116)包括互相啮合的齿轮(1161)和齿条(1162),所述齿轮(1161)和所述第三动力部件(115)的输出轴连接,所述齿条(1162)和所述壳体(113)固定连接。
  24. 一种转向系统,其特征在于,包括:转向手感模拟助力器,转向助力器和液压模块;
    所述转向助力器包括第二传动机构(122)和第二液压装置,所述第二传动机构(122)可将回转运动转化为直线运动,所述第二液压装置在所述第二传动机构(122)的作用下产生液压为转向车轮提供转向动力;
    所述液压模块包括液压管路(131)和控制阀(132),所述液压管路(131)的一端连接所述第二液压装置,所述液压管路(131)的另一端连接所述转向手感模拟助力器,所述转向助力器通过所述液压管路(131)向所述转向手感模拟助力器提供动力,以使所述转向手感模拟助力器带动方向盘(101)转动,所述控制阀(132)设置于所述液压管路(132)上,所述控制阀(132)用于通过控制所述液压管路(132)的通断,以控制所述转向手感模拟助力器(110)与所述转向助力器之间耦合或解耦。
  25. 根据权利要求24所述的转向系统,其特征在于,所述第二液压装置包括壳体(1213),活塞(1211)以及活塞推杆(1212),所述活塞(1211)与所述活塞推杆(1212)固定连接,所述活塞(1211)置于所述壳体(1213)内,所述第二活塞(1211)、所述活塞推杆(1212)以及所述壳体(1213)合围成液压腔;
    所述第二传动机构(122)与所述活塞推杆(1212)连接,在所述第二传动机构(122)的作用下所述活塞推杆(1212)带动所述活塞(1211)移动使所述液压腔内液压发生变化。
  26. 根据权利要求24或25所述的转向系统,其特征在于,
    所述第二传动机构(122)为滚珠丝杠机构,所述滚珠丝杠机构包括丝杠和丝杠螺母,所述丝杠和所述活塞推杆(1212)同轴线轴向固定连接。
  27. 根据权利要求24至26中任一项所述的转向系统,其特征在于,所述活塞推杆 (1212)的两端设置有限位块(1214),所述限位块(1214)、所述活塞推杆(1212)和所述壳体(1213)合围成密闭液压腔,所述限位块(1214)相对于所述壳体(1213)位置固定,所述活塞(1211)在密闭液压腔内移动。
  28. 根据权利要求24至27中任一项所述的转向系统,其特征在于,
    所述液压管路(131)包括第一液压管路(1311)和第二液压管路(1312),所述壳体(1213)上设有第三液压调节口和第四液压调节口,所述第三液压调节口和所述第四液压调节口分别位于所述活塞(1211)的两侧,所述第三液压调节口与第一液压管路(1311)的一端相连,所述第四液压调节口与第二液压管路(1312)的一端相连,所述第一液压管路(1311)和所述第二液压管路(1312)连通储液装置(133)的出液管路(1313);
    所述控制阀(132)包括第二控制阀(1322),所述第二控制阀(1322)设于所述第一液压管路(1311)和所述第二液压管路(1312)上,所述第二控制阀(1322)用于控制所述第一液压管路(1311)和所述第二液压管路(1312)的通断,以控制所述液压腔和所述储液装置(133)处于连通或断开状态。
  29. 根据权利要求28所述的转向系统,其特征在于,所述第一液压管路(1311)和所述第二液压管路(1312)的另一端连接所述转向手感模拟助力器,所述控制阀(132)还包括第一控制阀(1321),所述第一控制阀(1321)设于所述第一液压管路(1311)和所述第二液压管路(1312)上,所述第一控制阀(1321)用于控制所述第一液压管路(1311)和所述第二液压管路(1312)的通断,以控制所述转向手感模拟助力器和所述储液装置(133)处于连通或断开状态。
  30. 根据权利要求28或29所述的转向系统,其特征在于,所述液压模块还包括第三控制阀(1323),所述第三控制阀(1323)设于所述出液管路(1313)上,所述第三控制阀用于控制所述储液装置(133)与所述第一液压管路(1311)和所述第二液压管路(1312)的通断。
  31. 根据权利要求24至29中任一项所述的转向系统,其特征在于,所述转向助力器还包括转向横拉杆(124),所述转向横拉杆(124)的两端分别连接所述转向车轮,所述转向横拉杆(124)、所述丝杠(1222)以及所述活塞推杆(1212)同轴线轴向固定连接。
  32. 根据权利要求24至31中任一项所述的转向系统,其特征在于,所述转向助力器还包括第二动力部件(123)和角度传感器(105),所述第二动力部件(123)用于向所述第二传动机构(122)输出动力,所述角度传感器(105)与所述第二动力部件(123)连接,所述角度传感器(105)用于感测所述第二动力部件(115)转动的角度信息。
  33. 一种转向系统的控制方法,其特征在于,所述转向系统包括控制器,转向手感模拟助力器,转向助力器和液压模块;
    所述转向手感模拟助力器包括第一传动机构(112)和第一液压装置,所述第一传动机构(112)可将回转运动转化为直线运动或将直线运动转化为回转运动,所述第一液压装置在所述第一传动机构(112)的作用下产生液压,或所述第一传动机构(112)在所述第一液压装置的作用下转动;
    所述液压模块包括液压管路(131)和控制阀(132),所述液压管路(131)的一端连接所述第一液压装置,所述液压管路(131)的另一端连接所述转向助力器,所述转向助力器用于将所述第一液压装置产生的液压转化为转向车轮的转向动力,所述控制阀 (132)设置于所述液压管路(132)上,所述控制阀(132)用于通过控制所述液压管路(132)的通断,以控制所述转向手感模拟助力器(110)与所述转向助力器之间耦合或解耦;
    所述控制方法包括:
    所述控制器控制所述控制阀(132)处于导通状态,使得所述转向手感模拟助力器与所述转向助力器之间耦合;
    所述控制器控制动力部件工作以带动所述第一传动机构(112)转动,所述第一传动机构(112)作用于所述第一液压装置使得所述第一液压装置产生液压为转向车轮提供转向动力。
  34. 根据权利要求33所述的控制方法,其特征在于,
    所述第一液压装置包括壳体(113),和活塞(111),所述壳体(113)包括第一结构(1131)和第二结构(1132),所述第一结构(1131)、所述第二结构(1132)和所述活塞(111)合围成液压腔;
    所述第一传动机构(112)和中间件连接,所述中间件在所述第一传动机构(112)的作用下带动所述活塞(111)移动使所述液压腔内液压发生变化。
  35. 根据权利要求33或34所述的控制方法,其特征在于,
    所述第一传动机构(112)为滚珠丝杠机构,所述滚珠丝杠机构包括丝杠和丝杠螺母,所述丝杠螺母和所述中间件(1121)连接。
  36. 根据权利要求35所述的控制方法,其特征在于,
    所述丝杠的一端设有第一限位部件(1171),所述丝杠的另一端设有第二限位部件(1172),所述第一限位部件和所述第二限位部件位置固定,所述丝杠螺母在所述第一限位部件(1171)和所述第二限位部件(1172)形成的位移区间内移动。
  37. 根据权利要求34至36中任一项所述的控制方法,其特征在于,
    所述液压管路(131)包括第一液压管路(1311)和第二液压管路(1312),所述第一结构(1131)上设有第一液压调节口(11321),所述第二结构(1132)上设有第二液压调节口(11322),所述第一液压调节口(11321)与第一液压管路(1311)的一端相连,所述第二液压调节口(11322)与第二液压管路(1312)的一端相连,所述第一液压管路(1311)和所述第二液压管路(1312)连通储液装置(133)的出液管路(1313);
    所述控制阀(132)包括第一控制阀(1321),所述第一控制阀(1321)设于所述第一液压管路(1311)和所述第二液压管路(1312)上;
    所述控制器控制所述控制阀(132)处于导通状态包括:
    所述控制器控制所述第一控制阀(1321)处于导通状态。
  38. 根据权利要求37所述的控制方法,其特征在于,所述第一液压管路(1311)和所述第二液压管路(1312)的另一端连接所述转向助力器,所述控制阀(132)还包括第二控制阀(1322),所述第二控制阀(1322)设于所述第一液压管路(1311)和所述第二液压管路(1312)上,所述控制器控制所述控制阀(132)处于导通状态包括:
    所述控制器控制所述第二控制阀(1321)处于导通状态。
  39. 根据权利要求37或38所述的控制方法,其特征在于,所述液压模块还包括第三控制阀(1323),所述第三控制阀(1323)设于所述出液管路(1313),在所述控制器向 动力部件发送第二控制指令之前,所述方法还包括:
    所述控制器控制所述第三控制阀处于断开状态。
  40. 根据权利要求33至39中任一项所述的控制方法,其特征在于,所述转向系统还包括方向盘(101),所述方向盘(101)通过转向管柱(102)连接所述第一传动机构(112)。
  41. 根据权利要求33至40中任一项所述的控制方法,其特征在于,所述动力部件包括第一动力部件(114),所述第一动力部件(114)连接角度传感器(104),所述方法还包括:
    所述控制器接收所述角度传感器(104)发送的信号,所述信号包括所述第一动力部件(114)转动的角度信息。
  42. 根据权利要求40或41所述的控制方法,其特征在于,所述转向手感模拟助力器还包括第三动力部件(115)和第三传动机构(116),所述第三动力部件(115)的位置固定,所述第三传动机构(116)包括互相啮合的齿轮(1161)和齿条(1162),所述齿轮(1161)和所述第三动力部件(115)的输出轴连接,所述齿条(1162)和所述壳体(113)固定连接,所述方法还包括:
    所述控制器控制所述第二控制阀(1322)处于断开状态,以使得所述转向手感模拟助力器(110)与所述转向助力器处于解耦状态;
    所述控制器控制所述第三控制阀处于断开状态,以使所述转向手感模拟助力器和所述储液装置(133)处于断开状态;
    所述控制器控制所述第三动力部件(115)工作以使得所述方向盘(101)伸缩。
  43. 根据权利要求42所述的控制方法,其特征在于,在所述控制器控制所述第二控制阀(1322)处于断开状态之前,所述方法还包括:
    所述控制器确定所述第一动力部件和所述第三动力部件(115)工作状态正常。
  44. 一种转向系统的控制方法,其特征在于,所述转向系统包括控制器,转向手感模拟助力器,转向助力器和液压模块;
    所述转向助力器包括第二传动机构(122)和第二液压装置,所述第二传动机构(122)可将回转运动转化为直线运动,所述第二液压装置在所述第二传动机构(122)的作用下产生液压为转向车轮提供转向动力;
    所述液压模块包括液压管路(131)和控制阀(132),所述液压管路(131)的一端连接所述第二液压装置,所述液压管路(131)的另一端连接所述转向手感模拟助力器,所述转向助力器通过所述液压管路(131)向所述转向手感模拟助力器提供动力,以使所述转向手感模拟助力器带动方向盘(101)转动,所述控制阀(132)设置于所述液压管路(132)上,所述控制阀(132)用于通过控制所述液压管路(132)的通断,以控制所述转向手感模拟助力器(110)与所述转向助力器之间耦合或解耦;
    所述控制方法包括:
    所述控制器控制所述控制阀(132)处于导通或断开状态,以使得所述转向手感模拟助力器与所述转向助力器之间耦合或解耦;
    所述控制器控制所述转向手感模拟助力器工作和/或动力部件工作使得所述第二液压装置产生液压,为转向车轮提供转向动力。
  45. 根据权利要求44所述的控制方法,其特征在于,所述第二液压装置包括壳体 (1213),活塞(1211)以及活塞推杆(1212),所述活塞(1211)与所述活塞推杆(1212)固定连接,所述活塞(1211)置于所述壳体(1213)内,所述第二活塞(1211)、所述活塞推杆(1212)以及所述壳体(1213)合围成液压腔;
    所述第二传动机构(122)与所述活塞推杆(1212)连接,在所述第二传动机构(122)的作用下所述活塞推杆(1212)带动所述活塞(1211)移动使所述液压腔内液压发生变化。
  46. 根据权利要求44或45所述的控制方法,其特征在于,所述第二传动机构(122)为滚珠丝杠机构,所述滚珠丝杠机构包括丝杠和丝杠螺母,所述丝杠和所述活塞推杆(1212)同轴线轴向固定连接。
  47. 根据权利要求44至46中任一项所述的控制方法,其特征在于,所述活塞推杆(1212)的两端设置有限位块(1214),所述限位块(1214)、所述活塞推杆(1212)和所述壳体(1213)合围成密闭液压腔,所述限位块(1214)相对于所述壳体(1213)位置固定,所述活塞(1211)在密闭液压腔内移动。
  48. 根据权利要求44至47中任一项所述的控制方法,其特征在于,
    所述液压管路(131)包括第一液压管路(1311)和第二液压管路(1312),所述壳体(1213)上设有第三液压调节口和第四液压调节口,所述第三液压调节口和所述第四液压调节口分别位于所述活塞(1211)的两侧,所述第三液压调节口与第一液压管路(1311)的一端相连,所述第四液压调节口与第二液压管路(1312)的一端相连,所述第一液压管路(1311)和所述第二液压管路(1312)连通储液装置(133)的出液管路(1313);
    所述控制阀(132)包括第二控制阀(1322),所述第二控制阀(1322)设于所述第一液压管路(1311)和所述第二液压管路(1312)上;
    所述控制器控制所述控制阀(132)处于导通或断开状态包括:
    所述控制器控制所述第二控制阀(1322)处于导通或断开状态。
  49. 根据权利要求48所述的控制方法,其特征在于,所述第一液压管路(1311)和所述第二液压管路(1312)的另一端连接所述转向手感模拟助力器,所述控制阀(132)还包括第一控制阀(1321),所述第一控制阀(1321)设于所述第一液压管路(1311)和所述第二液压管路(1312)上;
    所述控制器控制所述控制阀(132)处于导通或断开状态包括:
    所述控制器控制所述第以控制阀(1321)处于导通或断开状态。
  50. 根据权利要求48或49所述的控制方法,其特征在于,所述液压模块还包括第三控制阀(1323),所述第三控制阀(1323)设于所述出液管路(1313);
    所述方法还包括:
    所述控制器控制所述第三控制阀处于导通或断开状态。
  51. 根据权利要求44至50中任一项所述的控制方法,其特征在于,所述转向助力器还包括转向横拉杆(124),所述转向横拉杆(124)的两端分别连接所述转向车轮,所述转向横拉杆(124)、所述丝杠(1222)以及所述活塞推杆(1212)同轴线轴向固定连接。
  52. 根据权利要求44至51中任一项所述的控制方法,其特征在于,所述动力部件包括第二动力部件(123),所述第二动力部件(123)连接角度传感器(105),所述方法还包括:
    所述控制器接收所述角度传感器(105)发送的信号,所述信号包括所述第二动力部 件(123)转动的角度信息。
  53. 一种控制器,其特征在于,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行如权利要求33至43中任一项所述的控制方法,或者,执行如权利要求44至52中任一项所述的控制方法。
PCT/CN2022/073884 2022-01-25 2022-01-25 转向手感模拟助力器、转向助力器、转向系统及控制方法 WO2023141785A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/073884 WO2023141785A1 (zh) 2022-01-25 2022-01-25 转向手感模拟助力器、转向助力器、转向系统及控制方法
CN202280052773.7A CN117813232A (zh) 2022-01-25 2022-01-25 转向手感模拟助力器、转向助力器、转向系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073884 WO2023141785A1 (zh) 2022-01-25 2022-01-25 转向手感模拟助力器、转向助力器、转向系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023141785A1 true WO2023141785A1 (zh) 2023-08-03

Family

ID=87470005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073884 WO2023141785A1 (zh) 2022-01-25 2022-01-25 转向手感模拟助力器、转向助力器、转向系统及控制方法

Country Status (2)

Country Link
CN (1) CN117813232A (zh)
WO (1) WO2023141785A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029430A (ja) * 2000-07-13 2002-01-29 Koyo Seiko Co Ltd 車両用操舵装置
JP2006327425A (ja) * 2005-05-26 2006-12-07 Jtekt Corp 車両用操舵装置
CN101161532A (zh) * 2006-10-13 2008-04-16 株式会社日立制作所 转向装置
DE102009018976A1 (de) * 2009-04-25 2010-10-28 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug-Lenksystem der by-wire-Bauart
CN107150718A (zh) * 2017-06-06 2017-09-12 吉林大学 多模式汽车线控转向系统
CN112654931A (zh) * 2020-08-31 2021-04-13 华为技术有限公司 一种控制系统、控制方法、智能汽车以及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029430A (ja) * 2000-07-13 2002-01-29 Koyo Seiko Co Ltd 車両用操舵装置
JP2006327425A (ja) * 2005-05-26 2006-12-07 Jtekt Corp 車両用操舵装置
CN101161532A (zh) * 2006-10-13 2008-04-16 株式会社日立制作所 转向装置
DE102009018976A1 (de) * 2009-04-25 2010-10-28 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug-Lenksystem der by-wire-Bauart
CN107150718A (zh) * 2017-06-06 2017-09-12 吉林大学 多模式汽车线控转向系统
CN112654931A (zh) * 2020-08-31 2021-04-13 华为技术有限公司 一种控制系统、控制方法、智能汽车以及装置

Also Published As

Publication number Publication date
CN117813232A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CA2595256C (en) Dual motor dual concentric valve
JP5192058B2 (ja) 制御システム
EP1911659A2 (en) Steering system
JPH04504700A (ja) 車両用ステアリングシステム
JP2005518303A (ja) 油圧式サーボ操舵装置
JPH02120187A (ja) 全輪かじ取り装置
CN104405709A (zh) 有限转角力矩电机直接驱动的两级滑阀式电液伺服阀
CN112918548A (zh) 一种磁流变阻尼路感的无级变速线控转向装置及方法
US8210206B2 (en) Dual redundant servovalve
CN110040120A (zh) 一种无反馈盘部分解耦的电动助力制动系统
CN103171620B (zh) 一种多桥转向系统和多桥转向车辆
CN107010106B (zh) 一种带路感模拟的双转向动力缸液压线控转向系统及方法
WO2023141785A1 (zh) 转向手感模拟助力器、转向助力器、转向系统及控制方法
CN106364669A (zh) 一种丝杠拨叉式机电伺服机构
JPH01317873A (ja) 車両用舵角制御装置
CN204344558U (zh) 一种由有限转角电机直接驱动的二级电液伺服阀装置
WO2012054969A1 (en) A new mechanism for fluid power transmission and control
JP3883677B2 (ja) 液圧装置
US11318986B2 (en) Steering device
CN109334755A (zh) 一种用于线控转向系统的转向盘总成
EP3089906B1 (en) Hydraulically assisted steering system for motor vehicles
CN113147891A (zh) 一种单回路整体式转向器、转向助力系统及起重机
US20240124054A1 (en) Valve Device for a Steering Device of a Vehicle, Steering Device and Method and Control Device for Controlling a Valve Device
CN113147885B (zh) 一种双回路半整体式转向器、转向助力系统及起重机
CN112455536B (zh) 一种电液冗余全轮转向系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052773.7

Country of ref document: CN