WO2023140246A1 - 床材 - Google Patents

床材 Download PDF

Info

Publication number
WO2023140246A1
WO2023140246A1 PCT/JP2023/001170 JP2023001170W WO2023140246A1 WO 2023140246 A1 WO2023140246 A1 WO 2023140246A1 JP 2023001170 W JP2023001170 W JP 2023001170W WO 2023140246 A1 WO2023140246 A1 WO 2023140246A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
underfloor
less
flooring
thickness
Prior art date
Application number
PCT/JP2023/001170
Other languages
English (en)
French (fr)
Inventor
貴之 塚本
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2023542642A priority Critical patent/JP7364132B1/ja
Priority to CN202380017232.5A priority patent/CN118574972A/zh
Priority to KR1020247020561A priority patent/KR20240114750A/ko
Publication of WO2023140246A1 publication Critical patent/WO2023140246A1/ja
Priority to JP2023171471A priority patent/JP2023175895A/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/22Resiliently-mounted floors, e.g. sprung floors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/14Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood board or veneer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/16Flooring, e.g. parquet on flexible web, laid as flexible webs; Webs specially adapted for use as flooring; Parquet on flexible web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/04Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire
    • E04F2290/044Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire against impact

Definitions

  • the present disclosure relates to flooring materials, and in particular to flooring materials capable of reducing the risk of fractures due to falls and the like.
  • the flooring of the present disclosure is equipped with a floor material, a floor material provided below the floor material, and a neutral material formed between the floors, and an intermediate material provided between the floor and the floor material, and the neutral material is 40 % or more mass of calcium carbonate. It is formed with a thermoplastic resin containing the following, the thickness of the intermediate material is 3 mm or more and 5 mm or less, and the bending rigidity in the unit width of the intermediate material is 15 nm. 2 90 Nm or more 2 The thickness of the underfloor material is 4 mm or more and 15 mm or less, and the Asker C hardness of the underfloor material is 20 or more and 60 or less.
  • FIG. 2 is a cross-sectional view showing a positional configuration example of a flooring material according to the present disclosure. It is a schematic diagram for demonstrating the impact load measuring apparatus used for evaluation of a shock-absorbing floor material.
  • the flooring material 1 includes a flooring material 11, an underfloor material 12 provided below the flooring material 11 (a surface to which the flooring material 1 is adhered), and an intermediate material 13 provided between the flooring material 11 and the flooring material 12.
  • the flooring 1 has the function of suppressing the fracture of the femur caused by the impact of the fall of the user, that is, the person walking on the flooring 1 .
  • the flooring material 11 has surface functions such as improving the scratch resistance and stain resistance of the flooring material 1 and imparting design to the flooring material 1 .
  • the underfloor material 12 has a function of absorbing the pressure when the user falls over and enhancing the cushioning properties of the floor material 1 .
  • the intermediate member 13 serves as a support layer to distribute the load applied from the floor upper member 11 to the underfloor member 12 and improve shock absorption and load resistance.
  • the flooring material 1 is configured by laminating the flooring material 11, the intermediate material 13, and the subfloor material 12 in this order, thereby improving walkability and reducing the risk of fracture of the femur when falling.
  • the total thickness of the floor material 1 is preferably more than 7 mm and 22 mm or less.
  • the total thickness of the floor material 1 is more than 7 mm, it becomes easier for pedestrians to balance impact absorption, walking feeling, and durability.
  • the total thickness of the floor material 1 is 22 mm or less, the difference in level between the non-constructed portion of the floor material 1 and the floor material 1 becomes too large, so that construction problems tend to occur.
  • a method for evaluating the impact absorption of the floor material 1 will be described with reference to FIG.
  • the impact absorption of the floor material is evaluated by "impact load F", which is a simulated measurement of the impact load applied to the femur when falling on the floor material.
  • the impact load F is measured by the method described in JP-A-2020-76764.
  • the impact load measuring device 100 includes a measuring table 110, an impact applying body 120, a cushioning material 130, and a load measuring means 140.
  • the impact applying body 120 has a weight 121 and a hitting portion 122 .
  • the weight 121 has a mass based on the pressure distribution applied to the trochanter of the femur due to a simulated fall, and the hitting part 122 is formed in a shape simulating the trochanter of the femur.
  • the cushioning material 130 is made of a material that simulates human soft tissue.
  • Impact load F is determined by placing an evaluation flooring material 140 (a flooring material having the same configuration as the flooring material to be evaluated) between the measuring table 110 and the cushioning material 130, and dropping the impact imparting body 120 onto the cushioning material 130 from a predetermined height corresponding to the height of the simulated fall.
  • the impact load F of the floor material 1 is 2000 N or more and 4000 N or less under the condition (drop height of the impact applying body) set so that the standard impact load Fs generated when impact is applied only to the cushioning material without using the evaluation floor material in the above-described measurement method is set to 5600 N. If the impact load F is less than 2000 N, there is a high possibility that the pedestrian will lose his/her balance when walking on the floor material 1 and fall over. If the impact load exceeds 4000N, the femur fracture risk due to a fall is not sufficiently suppressed. Below, the upper floor member 11, the underfloor member 12 and the intermediate member 13 will be described in detail.
  • the upper floor material 11 is a layer forming the surface of the floor material 1 and is made of a harder material than the underfloor material 12 .
  • the thickness of the floor covering 11 is preferably 5 mm or less. Since the thickness of the flooring material 11 is 5 mm or less, the weight of the flooring material 1 does not become too heavy, and the burden during construction can be reduced.
  • Such a floor covering 11 may comprise a base material layer 111, a pattern layer 112, and a protective layer 113, as shown in FIG. 1, for example. In addition, it is preferable that the flooring material 11 has at least the base material layer 111 .
  • the base material layer 111 is made of a wood base material such as plywood, a composite base material obtained by mixing wood flour and plastics, polyolefins such as polyethylene (PE) and polypropylene (PP), and hard resin materials such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and vinyl chloride (PVC).
  • the base material layer 111 has a function of adjusting walking feeling and elasticity, and may be appropriately provided as necessary.
  • the pattern layer 112 is formed on the surface of the base layer 111 opposite to the intermediate member 13 .
  • the pattern layer 112 is an ink layer with a pattern such as wood grain or geometric patterns attached to the base material layer 111 .
  • the pattern layer 112 is a layer for imparting a design to the flooring material 1, and may be appropriately provided as necessary.
  • the protective layer 113 is formed on the surface of the pattern layer 112 opposite to the base layer 111 .
  • the protective layer 113 is made of a resin material such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), vinyl chloride (PVC), acrylic resin, or the like.
  • the protective layer 113 is made of a transparent resin material that allows the pattern layer 112 to pass through the surface of the flooring material 1 .
  • the protective layer 113 has a function of protecting the surface so as to improve durability such as chemical resistance, scratch resistance, and dent resistance, and may be appropriately provided as necessary.
  • Examples of methods for providing such a flooring material 11 include a method of laminating it on the intermediate material 13 using an adhesive, a method of thermal lamination in an extrusion molding production line for the intermediate material 13, and the like.
  • the underfloor material 12 is provided below the upper floor material 11 (the side opposite to the surface of the upper floor material 11).
  • the underfloor material 12 is made of a softer material than the upper floor material 11, and has a function of absorbing impact to the floor material 1 by appropriately deforming when falling.
  • the underfloor material 12 may have a foamed structure such as independent foaming or continuous foaming by a method such as chemical foaming, physical foaming, or supercritical foaming.
  • the underfloor material 12 is preferably made of a soft thermoplastic resin such as polyolefin such as polyethylene (PE) or polypropylene (PP), polyvinyl chloride (PVC), ethylene vinyl acetate copolymer (EVA), polystyrene (PS), polyurethane (PU), or the like.
  • a soft thermoplastic resin such as polyolefin such as polyethylene (PE) or polypropylene (PP), polyvinyl chloride (PVC), ethylene vinyl acetate copolymer (EVA), polystyrene (PS), polyurethane (PU), or the like.
  • the Asker C hardness of the underfloor material 12 is 20 or more and 60 or less.
  • “Asker C” is a measuring instrument for measuring hardness, and is one of durometers (spring-type hardness testers) defined in SRIS0101 (the standard of the Rubber Society of Japan). That is, “Asker C hardness” refers to a value measured by the above-mentioned Asker C hardness tester.
  • the underfloor material 12 has an Asker C hardness of less than 20, the underfloor material 12 deforms excessively when walking or falling, leading to deterioration of walking ability and reduced cushioning effect, leading to an increased risk of falls and bone fractures. If the Asker C hardness exceeds 60, the deformation of the underfloor material 12 is insufficient and a sufficient cushioning effect cannot be obtained.
  • the thickness of the underfloor material 12 is 4 mm or more and 15 mm or less. If the thickness is less than 4 mm, a sufficient cushioning effect cannot be obtained when falling. If the thickness exceeds 15 mm, the deformation of the floor material 1 due to the load increases, and not only does the load resistance decrease, but also the sinking during walking increases, increasing the risk of overturning.
  • the intermediate member 13 serves as a support layer to disperse the load applied from the upper floor member 11 to the underfloor member 12 , thereby improving the impact absorption and load resistance of the floor member 1 .
  • the intermediate material 13 is made of a thermoplastic resin and contains an inorganic filler. Further, the intermediate material 13 may have a foamed structure such as independent foaming or continuous foaming by a method such as chemical foaming, physical foaming, or supercritical foaming for weight reduction.
  • the intermediate material 13 preferably contains a thermoplastic resin, which is a hard material such as a polyolefin such as polyethylene (PE) or polypropylene (PP), or a resin base material such as polyvinyl chloride (PVC), and preferably contains polyvinyl chloride (PVC) from the viewpoint of moldability and versatility.
  • a thermoplastic resin which is a hard material such as a polyolefin such as polyethylene (PE) or polypropylene (PP), or a resin base material such as polyvinyl chloride (PVC), and preferably contains polyvinyl chloride (PVC) from the viewpoint of moldability and versatility.
  • the intermediate material 13 contains 40% by mass or more and 85% by mass or less of inorganic filler. If the content of the inorganic filler in the intermediate material 13 is less than 40% by mass, the bending rigidity of the intermediate material 13 is insufficient, and the impact absorption of the floor material 1 is insufficient. In addition, if the content of the inorganic filler in the intermediate material 13 exceeds 85% by mass, the intermediate material 13 becomes brittle, increasing the possibility of breakage due to impact during use.
  • inorganic fillers examples include talc, silica, calcium carbonate, barium sulfate, aluminum hydroxide, carbon fiber, and glass fiber, but calcium carbonate is preferred as a general-purpose material with excellent workability.
  • the bending rigidity of the intermediate member 13 per unit width is 15 Nm 2 or more and 90 Nm 2 or less. If the flexural rigidity per unit width of the intermediate member 13 is less than 15 Nm 2 , the bending of the intermediate member 13 due to a local impact at the time of a fall is large, and the load cannot be dispersed, resulting in insufficient impact absorption. Also, if the bending rigidity per unit width of the intermediate member 13 exceeds 90 Nm 2 , the impact absorption is likely to be insufficient due to insufficient deflection at the time of impact.
  • the intermediate member 13 has a thickness of 3 mm or more and 5 mm or less. If the thickness of the intermediate member 13 is less than 3 mm, the bending of the intermediate member at the time of overturning becomes excessive and a sufficient impact dispersion effect cannot be obtained. If the intermediate member 13 has a thickness of more than 5 mm, the intermediate member 13 is not sufficiently flexed to provide a sufficient impact dispersion effect.
  • the flooring according to the present disclosure described above has the following effects. (1) ⁇ 40 ⁇ % ⁇ 85 ⁇ % ⁇ 3mm ⁇ 5mm ⁇ 15Nm 2 ⁇ 90Nm 2 ⁇ 4mm ⁇ 15mm ⁇ C ⁇ 20 ⁇ 60 ⁇ As a result, the floor material is excellent in load resistance and shock absorption.
  • the inorganic filler may contain calcium carbonate. This makes it easy to form floor materials because of its high versatility and excellent workability.
  • an impact applying body having a weight and a shape based on the pressure distribution applied to the trochanter of the femur when the user falls is dropped from a predetermined drop height corresponding to the height of the user's hips, and an impact is applied to a cushioning material made of a material that simulates soft tissue of the human body. It is preferable that the impact load F generated when applied is 2000N or more and 4000N or less. As a result, the possibility of losing balance and falling while walking is reduced, and the risk of fracture of the femur due to a fall of the walker is sufficiently suppressed.
  • the flooring material according to the present disclosure will be described below with reference to examples. Note that the flooring according to the present disclosure is not limited to these examples.
  • Example 1 The flooring material of Example 1 is formed by laminating an intermediate material (polyvinyl chloride resin plate, calcium carbonate content of 80% by mass, dimensions 600 mm ⁇ 600 mm ⁇ thickness 3 mm, bending rigidity 20 Nm 2 ) and a flooring material (polyvinyl chloride resin sheet, dimensions 600 mm ⁇ 600 mm ⁇ thickness 2 mm) using an adhesive on the underfloor material (polyethylene resin foam, dimensions 600 mm ⁇ 600 mm ⁇ thickness 7 mm, Asker C hardness 40). did.
  • an intermediate material polyvinyl chloride resin plate, calcium carbonate content of 80% by mass, dimensions 600 mm ⁇ 600 mm ⁇ thickness 3 mm, bending rigidity 20 Nm 2
  • a flooring material polyvinyl chloride resin sheet, dimensions 600 mm ⁇ 600 mm ⁇ thickness 2 mm
  • an adhesive on the underfloor material polyethylene resin foam, dimensions 600 mm ⁇ 600 mm ⁇ thickness 7 mm, Asker C hardness 40.
  • Example 2 A floor material of Example 2 was formed in the same manner as in Example 1 except that the thickness of the intermediate material was 4 mm and the bending rigidity was 40 Nm 2 .
  • Example 3 A floor material of Example 3 was formed in the same manner as in Example 2, except that the thickness of the underfloor material was 5 mm.
  • Example 4 A flooring material of Example 4 was formed in the same manner as in Example 2 except that the inorganic filler of the intermediate material was replaced with barium sulfate instead of calcium carbonate.
  • Example 5 A floor material of Example 5 was formed in the same manner as in Example 4 except that the content of barium sulfate in the intermediate material was 85% and the bending rigidity of the intermediate material was 50 Nm 2 .
  • Example 6 A floor material of Example 6 was formed in the same manner as in Example 1 except that the thickness of the intermediate material was 5 mm and the bending rigidity was 85 Nm 2 .
  • Example 7 A floor material of Example 7 was formed in the same manner as in Example 2 except that the Asker C hardness of the base material was set to 55.
  • Example 8 A floor material of Example 8 was formed in the same manner as in Example 2 except that the Asker C hardness of the base material was set to 22.
  • Example 9 A floor material of Example 9 was formed in the same manner as in Example 2, except that the thickness of the base material was 15 mm.
  • Example 10 A flooring material of Example 10 was formed in the same manner as in Example 2, except that the intermediate material had a calcium carbonate content of 45% and a bending rigidity of 15 Nm 2 .
  • Comparative Example 1 A floor material of Comparative Example 1 was formed in the same manner as in Example 2 except that the thickness of the intermediate material was 2 mm and the bending rigidity was 5 Nm 2 .
  • Comparative Example 2 A floor material of Comparative Example 2 was formed in the same manner as in Example 2 except that the thickness of the intermediate material was 6 mm and the bending rigidity was 140 Nm 2 .
  • Comparative Example 3 A floor material of Comparative Example 3 was formed in the same manner as in Example 4 except that the intermediate material had a barium sulfate content of 87% and a bending rigidity of 55 Nm 2 .
  • Comparative Example 4 A floor material of Comparative Example 3 was formed in the same manner as in Example 2 except that the inorganic filler of the intermediate material was replaced with barium sulfate instead of calcium carbonate, the calcium carbonate content was 35%, and the bending rigidity was 10 Nm 2 .
  • Comparative Example 5 A floor material of Comparative Example 5 was formed in the same manner as in Example 2, except that the Asker C hardness of the base material was 65.
  • Comparative Example 6 A floor material of Comparative Example 6 was formed in the same manner as in Example 2 except that the Asker C hardness of the base material was set to 18.
  • Comparative Example 7 A floor material of Comparative Example 7 was formed in the same manner as in Example 2, except that the thickness of the underfloor material was 3 mm.
  • Comparative Example 8 A floor material of Comparative Example 8 was formed in the same manner as in Example 2, except that the thickness of the underfloor material was 20 mm.
  • the floor materials of Examples and Comparative Examples were cut into 300 mm x 600 mm rectangles, two cut floor materials were prepared, and these specimens were arranged side by side on a silicate board (600 mm x 600 mm, thickness 12 mm) and bonded to obtain specimens.
  • the load resistance was evaluated by the appearance of the floor material and the intermediate material after the caster test of each specimen. Caster test conditions were as follows.
  • Table 1 below shows the evaluation results of each example and comparative example.
  • the flooring material of each example comprising an overfloor material, an underfloor material, and an intermediate material, wherein the intermediate material has an inorganic filler content of 40% by mass or more and 85% by mass or less, the thickness of the intermediate material is 3 mm or more and 5 mm or less, the bending rigidity per unit width is 15 Nm2 or more and 90 Nm2 or less, the thickness of the underfloor material is 4 mm or more and 15 mm or less, and the Asker C hardness is 20 or more and less than 60, both shock absorption and load resistance are good.
  • the floor materials of Comparative Example 1 in which the thickness of the intermediate material was less than 3 mm and the floor materials of Comparative Example 2 in which the thickness of the intermediate material exceeded 5 mm were low in impact absorption.
  • the intermediate material is formed of a thermoplastic resin containing 40% by mass or more and 85% by mass or less of calcium carbonate, the thickness of the intermediate material is 3 mm or more and 5 mm or less, the bending rigidity of the intermediate material per unit width is 15 Nm or more and 90 Nm or less, the thickness of the underfloor material is 4 mm or more and 15 mm or less, and the Asker C hardness of the underfloor material is 20 or more and 60 or less. Excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Abstract

衝撃吸収性と耐荷重性とに優れた床材を提供する。床材は、床上材と、床上材の下方に設けられ、軟質材料で形成された床下地材と、床上材と床下地材との間に設けられた中間材と、を備え、中間材は、炭酸カルシウムを40質量%以上85質量%以下含む熱可塑性樹脂で形成されており、中間材の厚みは、3mm以上5mm以下であり、中間材の単位幅における曲げ剛性は、15Nm以上90Nm以下であり、床下地材の厚みは、4mm以上15mm以下であり、床下地材のアスカーC硬度は、20以上60以下となっている。

Description

床材
 本開示は、床材に関し、特に転倒等による骨折のリスクを低減可能な床材に関する。
 近年、高齢者の転倒骨折が社会問題化しており、高齢者が要介護となる要因の10%を転倒骨折が占めている。転倒による骨折箇所は年代によって大きく異なり、60歳代以降になると大腿骨骨折のリスクが急増している。大腿骨骨折は入院治療が必要となり、歩行できない状態が長期間続くため、骨量が減少して症状が深刻化し易く、要介護状態を招き易くなっている。また、転倒骨折は医療事故においても20%から25%を占め、幼稚園、保育園、認定こども園等の幼児保育関連施設においても全体の2割強を占めている。このため、転倒したときの衝撃を吸収することにより、骨折のリスクを低減させる床材が提案されている(例えば、特許文献1及び2)。このような床材では、床材自体を発泡させたり、床材の裏面側に下地となる衝撃吸収用の発泡樹脂製シートを積層させたりする等、床材に軟質層を設けることで衝撃を吸収する機能を持たせている場合が多い。
特許第3600726号公報 特許第5244927号公報
 しかしながら、このような床材を病院等の施設の床材として用いた場合、床材上にベッド等の重量物が置かれたり、キャスター付きの重量物が床材上を移動する等の負荷がかかった際に床材が変形しやすく、耐荷重性に問題が生じやすい。また、転倒時にも転倒箇所の床材が過度に変形し、十分な衝撃吸収性が得られないこともある。
 本開示は、このような問題に鑑みてなされたもので、耐荷重性と衝撃吸収性とに優れた床材を提供することを目的とする。
 上述の課題を解決するために、本開示の一態様に係る床材は、床上材と、床上材の下方に設けられ、軟質材料で形成された床下地材と、床上材と床下地材との間に設けられた中間材と、を備え、中間材は、炭酸カルシウムを40質量%以上85質量%以下含む熱可塑性樹脂で形成されており、中間材の厚みは、3mm以上5mm以下であり、中間材の単位幅における曲げ剛性は、15Nm以上90Nm以下であり、床下地材の厚みは、4mm以上15mm以下であり、床下地材のアスカーC硬度は、20以上60以下となっている。
 本開示によれば、耐荷重性と衝撃吸収性とに優れた床材を得ることができる。
本開示に係る床材の位置構成例を示す断面図である。 衝撃吸収床材の評価に用いられる衝撃荷重測定装置を説明するための模式図である。
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に示す実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものである。また、本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において種々の変更を加えることが可能である。
<床材の基本構成>
 以下、図1を参照して、本開示に係る床材(以下、床材と称する)1について説明する。
 床材1は、床上材11と、床上材11の下方(床材1の貼り付け面)に設けられた床下地材12と、床上材11及び床下地材12との間に設けられた中間材13とを備えている。床材1は、使用者、すなわち床材1上を歩行等する人の転倒による衝撃で生じる大腿骨の骨折を抑制する機能を有している。
 床上材11は、床材1の耐傷性、耐汚染性を向上させ、床材1に意匠性を付与するなどの表面機能を有する。
 床下地材12は、使用者の転倒時の圧力を吸収して床材1の緩衝性を高める機能を有する。
 中間材13は、支持層として床上材11から床下地材12にかかる荷重を分散し、衝撃吸収性と耐荷重性とを向上させる役割を有している。
 床材1は、床上材11と中間材13と床下地材12とがこの順で積層された構成とされることにより、歩行性を向上させつつ、転倒時の大腿骨骨折リスクを低減することができる。
 床材1の総厚は、7mm超22mm以下であることが好ましい。
 床材1の総厚が7mm超であると、歩行者が、衝撃吸収、歩行感、耐久性のバランスをとりやすくなる。また、床材1の総厚が22mm以下である場合、床材1の非施工部との段差が大きくなりすぎるため施工上の問題が発生しやすい。
<床材の衝撃吸収性の評価方法>
 床材1の衝撃吸収性の評価方法を、図2を参照して説明する。床材の衝撃吸収性は、床材上で転倒時に大腿骨に加わる衝撃荷重を模擬的に測定した「衝撃荷重F」により評価する。衝撃荷重Fは、特開2020-76764号公報に記載の方法で測定される。
 図2に示すように、衝撃荷重測定装置100は、測定台110、衝撃付与体120、緩衝材130、荷重計測手段140を備える。
 衝撃付与体120は、錘121と、打撃部122とを有する。錘121は模擬する転倒により大腿骨の転子部に加わる圧力分布に基づいた質量を有し、打撃部122は大腿骨の転子部に模擬した形状で形成されている。
 緩衝材130は、人体軟組織に模擬した材料で形成されている。
 衝撃荷重Fは、測定台110と緩衝材130との間に評価床材140(評価したい床材と同一構成の床材)を配置させた状態で、模擬する転倒の高さに応じた所定の高さから衝撃付与体120を緩衝材130の上に落下させ、落下時に評価床材140に印加された荷重の最大値を荷重計測手段150で計測する。
 床材1の衝撃荷重Fは、上述した測定方法において評価床材を用いず緩衝材のみに衝撃を付与したときに生じる基準衝撃荷重Fsが5600Nとなるように設定した条件(衝撃付与体の落下高さ)において、2000N以上4000N以下である。衝撃荷重Fが2000N未満である場合、床材1上を歩行時に歩行者がバランスを崩し転倒が生じる可能性が大きくなる。衝撃荷重が4000Nを超える場合、転倒による大腿骨骨折リスクが十分に抑制されない。
 以下、床上材11、床下地材12及び中間材13について詳細に説明する。
<床上材>
 床上材11は、床材1の表面を構成する層であり、床下地材12と比較して硬質の材料で形成されている。
 床上材11の厚さは5mm以下であることが好ましい。床上材11の厚さが5mm以下であることにより、床材1の重量が重くなりすぎず、施工時の負担を低減することができる。
 このような床上材11は、例えば図1に示すように、基材層111と、絵柄層112と、保護層113とを備えていてもよい。なお、床上材11は、少なくとも基材層111を有していることが好ましい。
(基材層)
 基材層111は、合板等の木質基材、木粉とプラスチックスとを混合した複合基材、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンや、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、塩化ビニル(PVC)等の硬質性樹脂材料で形成されている。基材層111は、歩行感や弾力性を調整する機能を有しており、必要に応じて適宜設けられればよい。
(絵柄層)
 絵柄層112は、基材層111の中間材13と反対側の面に形成されている。
 絵柄層112は、基材層111に付した、木目や幾何学模様等の絵柄のインキ層である。絵柄層112は、床材1に意匠性を付与するための層であり、必要に応じて適宜設けられればよい。
(保護層)
 保護層113は、絵柄層112の基材層111と反対側の面に形成されている。
 保護層113は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、塩化ビニル(PVC)、アクリル樹脂等の樹脂材料で形成されている。床上材11が絵柄層112を有している場合、保護層113は、絵柄層112を床材1の表面に透過させる透明な樹脂材料で形成されている。保護層113は、耐薬品性、耐傷付き性、耐へこみ性等の耐久性を向上させるように表面を保護する機能を有しており、必要に応じて適宜設けられればよい。
 このような床上材11を設ける方法としては、例えば接着剤を用いて中間材13に積層する方法、中間材13の押出成形製造ラインにおいて熱ラミネートする方法などが挙げられる。
<床下地材>
 床下地材12は、床上材11の下方(床上材11の表面と反対側)に設けられている。床下地材12は、床上材11よりも軟質の材料で形成され、転倒時に適度に変形することにより床材1への衝撃を吸収する機能を有している。床下地材12は、化学発泡もしくは物理発泡、又は超臨界発泡等の方法により独立発泡や連続発泡等の発泡構造を有していてもよい。
 床下地材12は、例えばポリエチレン(PE)又はポリプロピレン(PP)等のポリオレフィン、ポリ塩化ビニル(PVC)、エチレン酢酸ビニルコポリマー(EVA)、ポリスチレン(PS)、ポリウレタン(PU)等の樹脂等の軟質の熱可塑性樹脂で形成されていることが好ましい。
 また、床下地材12のアスカーC硬度は、20以上60以下となっている。
 ここで、「アスカーC」とは、硬さを測定するための測定器であり、SRIS0101(日本ゴム協会標準規格)に規定されたデュロメータ(スプリング式硬度計)の一つである。すなわち、「アスカーC硬度」とは、上述したアスカーC硬度計で測定した値をいう。
 床下地材12のアスカーC硬度が20未満の場合、歩行や転倒における床下地材12の変形が過大となり、歩行性の悪化や緩衝効果の低下による転倒や骨折リスクの増大につながる。アスカーC硬度が60を超える場合、床下地材12の変形が不足し十分な緩衝効果が得られない。
 床下地材12の厚さは、4mm以上15mm以下である。厚さが4mm未満の場合、転倒時に十分な緩衝効果が得られない。厚さが15mmを超える場合、荷重による床材1の変形が大きくなり耐荷重性が低下するだけでなく、歩行時の沈み込みが大きくなり転倒リスクが増大する。
<中間材>
 中間材13は、支持層として床上材11から床下地材12にかかる荷重を分散することで、床材1の衝撃吸収性と耐荷重性を向上させる機能を有している。
 中間材13は、熱可塑性樹脂で形成され、無機フィラーを含んでいる。また、中間材13は、軽量化の為に化学発泡もしくは物理発泡、又は超臨界発泡等の方法により独立発泡や連続発泡等の発泡構造を有していてもよい。
 中間材13は、ポリエチレン(PE)又はポリプロピレン(PP)等のポリオレフィン、ポリ塩化ビニル(PVC)等の樹脂基材等の硬質材料である熱可塑性樹脂を含むことが好ましく、成形性と汎用性の観点からポリ塩化ビニル(PVC)を含むことが好ましい。
 中間材13は、無機フィラーを40質量%以上85質量%以下含んでいる。
 中間材13における無機フィラーの含有量が40質量%未満の場合、中間材13の曲げ剛性が不足し床材1の衝撃吸収性が不足する。また、中間材13における無機フィラーの含有量が85質量%超の場合、中間材13が脆くなって、使用時の衝撃により破損する可能性が大きくなる。
 無機フィラーとしては、例えばタルク、シリカ、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、炭素繊維、ガラス繊維などを用いることができるが、加工性に優れる汎用材料として炭酸カルシウムが好ましい。
 中間材13の単位幅における曲げ剛性は、15Nm以上90Nm以下である。
 中間材13の単位幅における曲げ剛性が15Nm未満の場合、転倒時の局所的な衝撃に対する撓みが大きく荷重を分散できず、十分な衝撃吸収性が得られない。また、中間材13の単位幅における曲げ剛性が90Nmを上回る場合も、衝撃時の撓みが不足するため衝撃吸収性が不足しやすい。
 中間材13の厚みは、3mm以上5mm以下である。
 中間材13の厚さが3mm未満の場合、転倒時の中間材の撓みが過大となり十分な衝撃分散効果が得られない。また、中間材13の厚さが5mmを超える場合、中間材13の撓みが不足するため衝撃分散効果が十分に得られず、何れの場合も床材1の衝撃吸収効果が不足しやすい。
<本開示に係る床材の効果>
 以上説明した本開示に係る床材では、以下の効果を有する。
(1)本開示に係る床材は、床上材と、床上材の下方に設けられ、軟質材料で形成された床下地材と、床上材と床下地材との間に設けられた中間材と、を備え、中間材は、無機フィラーを40質量%以上85質量%以下含む熱可塑性樹脂で形成されており、中間材の厚みは、3mm以上5mm以下であり、中間材の単位幅における曲げ剛性は、15Nm以上90Nm以下であり、床下地材の厚みは、4mm以上15mm以下であり、床下地材のアスカーC硬度は、20以上60以下となっている。
 これにより、床材は、耐荷重性と衝撃吸収性に優れる。
(2)本開示に係る床材では、無機フィラーが炭酸カルシウムを含んでいてもよい。
 これにより、汎用性が高く、加工性に優れるため、床材を形成しやすくなる。
(3)本開示に係る床材は、使用者が転倒した時の大腿骨転子部に加わる圧力分布に基づく重さ及び形状の衝撃付与体を前記使用者の腰の高さに相当する所定の落下高さから落下させて、人体軟組織を模した材料で形成された緩衝材へ衝撃を付与したときに生じる基準衝撃荷重Fsが5600Nとなるように設定された条件において、前記衝撃付与体を前記落下高さから落下させて、前記緩衝材を介して前記床材へ衝撃を付与した時に生じる衝撃荷重Fが2000N以上4000N以下であることが好ましい。
 これにより、歩行時にバランスを崩し転倒が生じる可能性が低くなり、また、歩行者の転倒による大腿骨骨折リスクが十分に抑制される。
 以下、本開示に係る床材を実施例により説明する。なお、本開示に係る床材は、これら実施例に限定されない。
<実施例1>
 床下地材(ポリエチレン樹脂発泡体、寸法600mm×600mm×厚さ7mm、アスカーC硬度40)に、接着剤を用い、中間材(ポリ塩化ビニル樹脂板、炭酸カルシウム含有率80質量%、寸法600mm×600mm×厚さ3mm、曲げ剛性20Nm)および床上材(ポリ塩化ビニル樹脂シート、寸法600mm×600mm×厚さ2mm)を積層し実施例1の床材を形成した。
<実施例2>
 中間材の厚みを4mm、曲げ剛性を40Nmとした以外は実施例1と同様にして実施例2の床材を形成した。
<実施例3>
 床下地材の厚みを5mmとした以外は実施例2と同様にして実施例3の床材を形成した。
<実施例4>
 中間材の無機フィラーを炭酸カルシウムから硫酸バリウムに置き換えた以外は実施例2と同様にして実施例4の床材を形成した。
<実施例5>
 中間材の硫酸バリウムの含有量を85%、中間材の曲げ剛性を50Nmとした以外は実施例4と同様にして実施例5の床材を形成した。
<実施例6>
 中間材の厚みを5mm、曲げ剛性を85Nmとした以外は実施例1と同様にして実施例6の床材を形成した。
<実施例7>
 下地材のアスカーC硬度を55をとした以外は実施例2と同様にして実施例7の床材を形成した。
<実施例8>
 下地材のアスカーC硬度を22をとした以外は実施例2と同様にして実施例8の床材を形成した。
<実施例9>
 下地材の厚みを15mmとした以外は実施例2と同様にして実施例9の床材を形成した。
<実施例10>
 中間材の炭酸カルシウム含量を45%、曲げ剛性を15Nmとした以外は実施例2と同様にして実施例10の床材を形成した。
<比較例1>
 中間材の厚みを2mm、曲げ剛性を5Nmとした以外は実施例2と同様にして比較例1の床材を形成した。
<比較例2>
 中間材の厚みを6mm、曲げ剛性を140Nmとした以外は実施例2と同様にして比較例2の床材を形成した。
<比較例3>
 中間材の硫酸バリウム含量を87%、曲げ剛性を55Nmとした以外は実施例4と同様にして比較例3の床材を形成した。
<比較例4>
 中間材の無機フィラーを炭酸カルシウムから硫酸バリウムに置き換え、炭酸カルシウム含量を35%、曲げ剛性を10Nmとした以外は実施例2と同様にして比較例3の床材を形成した。
<比較例5>
 下地材のアスカーC硬度を65をとした以外は実施例2と同様にして比較例5の床材を形成した。
<比較例6>
 下地材のアスカーC硬度を18をとした以外は実施例2と同様にして比較例6の床材を形成した。
<比較例7>
 床下地材の厚みを3mmとした以外は実施例2と同様にして比較例7の床材を形成した。
<比較例8>
 床下地材の厚みを20mmとした以外は実施例2と同様にして比較例8の床材を形成した。
[評価]
(衝撃吸収性)
 各実施例および比較例の床材を100mm角の正方形にカットして試験体とし、特開2020-076764号公報に記載の方法で衝撃荷重Fを測定した。
・測定条件
 ロードセル:株式会社東京測器研究所製「TCLU-5A」
 打撃部曲率半径R:100mm
 衝撃付与体質量:5.85kg
 衝撃付与体の落下高さ:50cm
 緩衝材:株式会社エクシール「人肌のゲル」20mm厚、アスカーC硬度7
・評価基準
 2000N≦Fs≦3400N:○(合格)
 3400N<Fs≦4000N:△(合格)
 4000N<Fs:×(不合格)
(耐荷重性)
 実施例および比較例の床材を300mm×600mmの長方形にカットし、カットした床材を2点準備し、これら試験体をケイカル板(600mm×600mm、厚み12mm)上に並べて接着し試験体とした。耐荷重性は、各試験体のキャスター試験後の床材および中間材の外観により評価した。キャスター試験条件は以下の通りとした。
・キャスター試験条件:スチール車輪(直径100mm、巾30mm)、荷重100kgf、2点の床材の境界部に垂直な方向に500往復
・評価基準
 床材および中間材の外観変化が軽微~皆無:○(合格)
 床材または中間材に中程度の外観変化が認められる:△(合格)
 床材または中間材に顕著な外観変化が認められる:×(不合格)
 以下の表1に、各実施例及び比較例の評価結果を示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、床上材、床下地材及び中間材を備え、中間材における無機フィラーの含有量が40質量%以上85質量%以下、中間材の厚みが3mm以上5mm以下、単位幅における曲げ剛性が15Nm以上90Nm以下であり、床下地材の厚みが4mm以上15mm以下かつアスカーC硬度が20以上60未満である各実施例の床材は、衝撃吸収性と耐荷重性の何れもが良好であった。
 一方、中間材の厚さが3mm未満の比較例1及び中間材の厚さが5mmを超える比較例2の床材は、衝撃吸収性が低くなった。
 また、中間材における無機フィラーの含有量が85質量%超の比較例3の床材は、衝撃吸収性は十分であるものの、耐荷重性が不十分となった。また、中間材における無機フィラーの含有量が40質量%未満の比較例3の床材は、耐荷重性は十分であるものの、衝撃吸収性が不十分となった。
 また、床下地材のアスカーC硬度が60を超える比較例5及びアスカーC硬度が20未満の比較例6の床材は、いずれも衝撃吸収性が不十分となった。
 さらに、床下地材の厚さが4mm未満の比較例7の床材は、衝撃吸収性が不十分となった。一方、床下地材の厚さが15mmを超える比較例8の床材は、衝撃吸収性が十分であるものの、耐荷重性が不十分であった。
 以上から、本開示の床材は、中間材が炭酸カルシウムを40質量%以上85質量%以下含む熱可塑性樹脂で形成されており、中間材の厚みが3mm以上5mm以下であり、中間材の単位幅における曲げ剛性が15Nm以上90Nm以下であり、床下地材の厚みが4mm以上15mm以下であり、床下地材のアスカーC硬度が20以上60以下となっていることで、耐荷重性と衝撃吸収性とに優れる。
 以上、本開示の実施形態を説明したが、上記実施形態は、本開示の技術的思想を具体化するための装置や方法を例示するものであって、本開示の技術的思想は、構成部品の材質、形状、構造、配置等を特定するものでない。本開示の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
1 床材
11 床下地材
111 基材層
112 絵柄層
113 保護層
12 中間材
13 床上材
100 衝撃荷重測定装置
110 測定台
120 衝撃付与体
121 錘
122 打撃部
130 緩衝材
140 荷重計測手段

Claims (3)

  1.  床上材と、
     前記床上材の下方に設けられ、軟質材料で形成された床下地材と、
     前記床上材と前記床下地材との間に設けられた中間材と、
    を備え、
     前記中間材は、無機フィラーを40質量%以上85質量%以下含む熱可塑性樹脂で形成されており、
     前記中間材の厚みは、3mm以上5mm以下であり、
     前記中間材の単位幅における曲げ剛性は、15Nm以上90Nm以下であり、
     前記床下地材の厚みは、4mm以上15mm以下であり、
     前記床下地材のアスカーC硬度は、20以上60以下である
    床材。
  2.  前記無機フィラーが炭酸カルシウムを含む
    請求項1に記載の床材。
  3.  使用者が転倒した時の大腿骨転子部に加わる圧力分布に基づく重さ及び形状の衝撃付与体を前記使用者の腰の高さに相当する所定の落下高さから落下させて、人体軟組織を模した材料で形成された緩衝材へ衝撃を付与したときに生じる基準衝撃荷重Fsが5600Nとなるように設定された条件において、前記衝撃付与体を前記落下高さから落下させて、前記緩衝材を介して前記床材へ衝撃を付与した時に生じる衝撃荷重Fが2000N以上4000N以下である
    請求項1又は2に記載の床材。
PCT/JP2023/001170 2022-01-21 2023-01-17 床材 WO2023140246A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023542642A JP7364132B1 (ja) 2022-01-21 2023-01-17 床材
CN202380017232.5A CN118574972A (zh) 2022-01-21 2023-01-17 地板材料
KR1020247020561A KR20240114750A (ko) 2022-01-21 2023-01-17 바닥재
JP2023171471A JP2023175895A (ja) 2022-01-21 2023-10-02 床材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007940 2022-01-21
JP2022-007940 2022-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/774,658 Continuation US20240367425A1 (en) 2022-01-21 2024-07-16 Flooring material

Publications (1)

Publication Number Publication Date
WO2023140246A1 true WO2023140246A1 (ja) 2023-07-27

Family

ID=87348836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001170 WO2023140246A1 (ja) 2022-01-21 2023-01-17 床材

Country Status (5)

Country Link
JP (2) JP7364132B1 (ja)
KR (1) KR20240114750A (ja)
CN (1) CN118574972A (ja)
TW (1) TW202342858A (ja)
WO (1) WO2023140246A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101648A (ja) * 2007-10-25 2009-05-14 Daiken Corp 木質複合板およびその製造方法
JP2012207466A (ja) * 2011-03-30 2012-10-25 Eidai Co Ltd 床材
JP2015203202A (ja) * 2014-04-11 2015-11-16 株式会社ノダ 床材
WO2020189531A1 (ja) * 2019-03-15 2020-09-24 ロンシール工業株式会社 床仕上げ材
JP2021143504A (ja) * 2020-03-11 2021-09-24 凸版印刷株式会社 衝撃吸収床材
JP2022156607A (ja) * 2021-03-31 2022-10-14 凸版印刷株式会社 衝撃吸収床材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441230Y2 (ja) 1975-09-23 1979-12-03
US4225649A (en) 1978-09-27 1980-09-30 The Flamemaster Corporation Fire retardant composition and cables coated therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101648A (ja) * 2007-10-25 2009-05-14 Daiken Corp 木質複合板およびその製造方法
JP2012207466A (ja) * 2011-03-30 2012-10-25 Eidai Co Ltd 床材
JP2015203202A (ja) * 2014-04-11 2015-11-16 株式会社ノダ 床材
WO2020189531A1 (ja) * 2019-03-15 2020-09-24 ロンシール工業株式会社 床仕上げ材
JP2021143504A (ja) * 2020-03-11 2021-09-24 凸版印刷株式会社 衝撃吸収床材
JP2022156607A (ja) * 2021-03-31 2022-10-14 凸版印刷株式会社 衝撃吸収床材

Also Published As

Publication number Publication date
TW202342858A (zh) 2023-11-01
JPWO2023140246A1 (ja) 2023-07-27
JP7364132B1 (ja) 2023-10-18
CN118574972A (zh) 2024-08-30
KR20240114750A (ko) 2024-07-24
JP2023175895A (ja) 2023-12-12

Similar Documents

Publication Publication Date Title
AU2008230037B2 (en) Anti-Skid Exercise Mat
JP7336705B2 (ja) 衝撃吸収床材
KR20000076200A (ko) 에너지 흡수용 삽입물을 가진 유연성 경량 보호용 패드
CN103945905A (zh) 训练垫、训练垫装置、一个或多个训练垫的应用
JP7416319B2 (ja) 衝撃吸収床材
JP2010047979A (ja) 木質床材
US20180243166A1 (en) Proprioceptor Stimulation Material
JP5244927B2 (ja) 衝撃吸収用木質フロア
JP2012046899A (ja) 床材
WO2023140246A1 (ja) 床材
US20240367425A1 (en) Flooring material
JP7494498B2 (ja) 衝撃吸収床材
JP2024143988A (ja) 衝撃吸収床材
JPH06341216A (ja) 転倒安全性に優れた保護床材
JPH09189118A (ja) 床 材
JP2022071784A (ja) 衝撃吸収床材
JP7415691B2 (ja) 衝撃吸収床材
JPH0536901Y2 (ja)
WO2022092111A1 (ja) 衝撃吸収床材
JP3186793U (ja) 衝撃吸収用木質床材
JP3244989U (ja) 衝撃吸収畳
WO2022131326A1 (ja) 手すり
JPH0536899Y2 (ja)
JP2022162846A (ja) 床材
JPH03133Y2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023542642

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247020561

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247020561

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202380017232.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE