WO2023140194A1 - 光学部材、その製造方法、および光学素子 - Google Patents

光学部材、その製造方法、および光学素子 Download PDF

Info

Publication number
WO2023140194A1
WO2023140194A1 PCT/JP2023/000809 JP2023000809W WO2023140194A1 WO 2023140194 A1 WO2023140194 A1 WO 2023140194A1 JP 2023000809 W JP2023000809 W JP 2023000809W WO 2023140194 A1 WO2023140194 A1 WO 2023140194A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical member
solution
member according
region
Prior art date
Application number
PCT/JP2023/000809
Other languages
English (en)
French (fr)
Inventor
建次郎 竿本
直之 松尾
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023140194A1 publication Critical patent/WO2023140194A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • Patent Document 1 As a method for extracting light from the light guide layer, a method using a light extraction layer having two regions with different refractive indices is known (for example, Patent Document 1).
  • Patent Document 1 The entire disclosure of Patent Document 1 is incorporated herein by reference.
  • the light extraction layer in Patent Document 1 may be referred to as a "light coupling layer”.
  • extract light in Patent Document 1 may be referred to as “extracting light” or “combining light.”
  • an object of the present invention is to provide a method capable of forming regions with different refractive indices in a pattern as designed more accurately than conventionally, and furthermore, to provide an optical member having such an optical layer.
  • [Item 1] having a first layer having a porous structure;
  • the first layer includes a first region having the porous structure and a second region in which the voids of the porous structure are filled with a resin composition, the second region includes a plurality of discretely arranged island regions,
  • each of the plurality of island regions has an equiperipheral elliptical equivalent diameter of about 1 ⁇ m or more and about 500 ⁇ m or less.
  • Step A of preparing a porous layer A step B in which a solution Sa containing a curable resin composition is used to form a plurality of discrete island-shaped regions on the porous layer, wherein the concentration of the solution Sa is more than 60% by mass and less than 99% by mass; A step C of filling the voids of the porous layer with the solution Sa; and a step D of curing the curable resin composition contained in the solution Sa in the voids.
  • step B includes a step BS1 of forming a plurality of discrete island regions on a film with the solution Sa, and a step BS2 of transferring the solution Sa on the film onto the porous layer.
  • step B includes a step BS1 of forming a plurality of discrete island-like regions with the solution Sa on the adhesive layer, and a step BS2 of transferring the solution Sa on the adhesive layer onto the porous layer.
  • step BS1 includes a step BS3 of forming a plurality of discrete island regions on a film with the solution Sa, and a step BS4 of transferring the solution Sa on the film onto the adhesive layer.
  • a method for forming a light extraction layer having a relatively high-definition pattern more efficiently than conventional methods is provided, and furthermore, an optical member having such a light extraction layer, a method for manufacturing the same, and an optical element having such an optical member are provided.
  • FIG. 1 is a schematic cross-sectional view of an optical element 100 having an optical member according to an embodiment of the invention
  • FIG. FIG. 3 is a schematic plan view showing an arrangement example of the first region 12a and the second region 14a in the first layer 10a of the optical member according to the embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the optical member 100
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the optical member 100
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the optical member 100
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the optical member 100
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the optical member 100
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the optical member 100
  • FIG. 3 is a schematic cross-sectional view showing one step of the manufacturing process of the
  • FIG. 1 shows a schematic cross-sectional view of an optical element 100 having an optical member according to an embodiment of the invention.
  • An optical member according to an embodiment of the invention has a first layer 10 having a porous structure.
  • the optical member may be composed of the first layer 10 and the substrate layer 30 , or may be composed of the first layer 10 and the adhesive layer 20 .
  • the optical member according to the embodiment of the invention only needs to have at least the first layer 10 .
  • the optical member according to the embodiment of the present invention can, for example, extract light propagating through the light guide layer from the main surface of the light guide layer or guide it to the optical member arranged so as to be in contact with the main surface. It is called optical coupling to guide the light propagating through the light guide layer to the optical member arranged so as to be in contact with the main surface of the light guide layer, and the layer that acts in this way is called the light coupling layer.
  • the optical member according to the embodiment of the present invention is preferably used as the optical coupling layer of the light guide member described in Japanese Patent Application No. 2020-127530 (filed on July 28, 2020) filed by the applicant of the present application.
  • an optical coupling layer may be provided between the light guiding layer and the redirecting layer.
  • the redirecting layer has, for example, a plurality of internal spaces forming interfaces that direct light toward the major surface of the redirecting layer by total internal reflection.
  • a redirecting layer having such an interior space may be, for example, a light distribution structure disclosed in WO2019/087118.
  • the direction changing layer may be a known prism sheet.
  • the optical element 100 has a first layer 10, a light guide layer 50, an adhesive layer 20 provided between the first layer 10 and the light guide layer 50, and a base layer 30 supporting the first layer 10.
  • the first layer 10 exemplified here is formed on the base material layer 30 .
  • the first layer 10 includes a first region 12 having a porous structure and a second region 14 in which voids of the porous structure are filled with the resin composition.
  • the second region 14 includes a plurality of discrete island regions.
  • the first layer 10 is characterized in that H/P is less than 0.20, where P% is the area ratio of the second region 14 in the first layer 10 and H% is the haze value of the first layer, as will be described later with examples. Note that the area ratio P is obtained for, for example, a 10 mm ⁇ 10 mm area centering on the location where the haze value is measured.
  • n 1 is the refractive index of the first region 12
  • n 2 is the refractive index of the second region 14
  • n 3 is the refractive index of the second layer 20, n 1 ⁇ n 2 and n 1 ⁇ n 3 .
  • n1 may for example be 1.30 or less
  • n2 may for example be 1.43 or more
  • n3 may for example be 1.45 or more.
  • the first layer 10 can be made of porous silica, for example.
  • the porosity of the silica porous body is more than 0% and less than 100%.
  • the porosity is preferably 40% or more, more preferably 50% or more, and even more preferably 55% or more.
  • the upper limit of the porosity is not particularly limited, it is preferably 95% or less, more preferably 85% or less, from the viewpoint of strength.
  • the refractive index of silica is preferably, for example, 1.41 or more and 1.43 or less.
  • the resin composition with which the voids of the first layer 10 are filled is obtained by curing a curable resin composition (sometimes referred to as a "cured resin composition").
  • the curable resin composition is preferably a photocurable resin composition from the viewpoint of mass production.
  • the photocurable resin composition is, for example, a polyfunctional silicon compound (e.g., silsesquioxane derivative: a compound having a plurality of photocurable functional groups in the silsesquioxane skeleton) or an acrylic resin (e.g., urethane acrylate).
  • the refractive index of general resin is approximately 1.45 or more and 1.70 or less.
  • is preferably 0.1 or less. The occurrence of total internal reflection at the interface between the second layer 20 and the second region 14 of the first layer 10 can be suppressed.
  • the first layer 10 that functions as an optical coupling layer is obtained.
  • a light coupling layer is disposed between two optical layers, eg, between a light guide layer and a redirecting layer, to direct a portion of the light propagating in the light guide layer to the redirecting layer.
  • a redirecting layer for example, has an interface (or surface) that imparts a layer-normal component to propagating light.
  • the redirecting layer can be, for example, a prismatic sheet.
  • optical element 100 The function of the optical element 100 according to the embodiment of the present invention will be described with reference to FIG. 1 again.
  • the first layer 10, the adhesive layer 20, the light guide layer 50, and the base material layer 30 of the optical element 100 have main surfaces parallel to the XY plane.
  • Light emitted from the light source LS toward the light receiving end surface (not shown) of the light guide layer 50 propagates in the light guide layer 50 in the Y direction (guided light L P ).
  • Part of the light that has entered the light guide layer 50 is optically coupled (extracted) to the base layer 30 by the first layer 10 and the adhesive layer 20 (optical member) and emitted in the Z direction (outgoing light L E ).
  • the light propagation direction has variations (distribution) from the Y direction
  • the light emission direction also has variations (distribution) from the Z direction.
  • the X direction is orthogonal to the Y and Z directions.
  • the light L P propagating in the light guide layer 50 is totally internally reflected at the interface between the second layer 20 and the first region 12 of the first layer 10, and the light incident on the interface between the second layer 20 and the second region 14 of the first layer passes through the second region 14 of the first layer 10 and the base layer 30 without undergoing total internal reflection, and is emitted from the optical element 200B.
  • the light distribution (emission intensity distribution, emission angle distribution, etc.) extracted from the light guide layer 50 by the optical member 100a (optically coupled with the base material layer 30) can be controlled.
  • the arrangement of the first region 12 and the second region 14 in the first layer 10 is appropriately set according to the required light distribution. Therefore, the desired light distribution cannot be obtained unless the second region 14 is formed in a pattern as designed.
  • the first layer 10 has a plurality of circular second regions 14b discretely arranged within the first region 12.
  • the diameter of the second region 14 is, for example, about 1 ⁇ m or more and about 500 ⁇ m or less.
  • the pitch Px of the second regions 14 adjacent in the X direction and the pitch Py of the second regions 14 adjacent in the Y direction are each independently, for example, approximately 2 ⁇ m or more and approximately 5000 ⁇ m or less.
  • the pitches Px and Py are the distances between the centers (area centroids) of the second regions 14 adjacent in the X and Y directions, respectively.
  • each of the second regions 14 is not limited to a circular shape, and may be various shapes.
  • each second region 14 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less.
  • the diameter of the circle is preferably 100 ⁇ m or less. It is possible to prevent the second region 14 from being visually recognized in applications such as mobile displays and small signages in which a device having an optical member is observed at a relatively short distance. If the second region is not circular, it can be evaluated, for example, by the equiperipheral ellipse equivalent diameter.
  • the first layer 10 is characterized in that H/P is less than 0.20, where P% is the area ratio of the second region 14 in the first layer 10 and H% is the haze value of the first layer. If the haze value is greater than 0.20%, the desired light distribution characteristics may not be obtained due to the influence of diffused light (scattered light from the peripheral area of the second area 14).
  • the method for manufacturing an optical member according to the embodiment of the present invention includes a step A of preparing a porous layer, a step B of forming a plurality of discrete island-like regions on the porous layer with a solution Sa containing a curable resin composition, wherein the solution Sa has a concentration of more than 60% by mass, a step C of filling the voids of the porous layer with the solution Sa, and a step D of curing the curable resin composition contained in the solution Sa in the voids.
  • the curable resin composition is photocurable, it can be cured, for example, by irradiation with ultraviolet rays.
  • the step B includes a step BS1 of forming a plurality of discrete island regions on the film with the solution Sa, and a step BS2 of transferring the solution Sa on the film onto the porous layer.
  • Step BS2 is preferably performed at a lamination pressure of 0.3 MPa or less.
  • the step B may include, for example, a step BS1 of forming a plurality of discrete island regions with the solution Sa on the adhesive layer, and a step BS2 of transferring the solution Sa on the adhesive layer onto the porous layer.
  • the step BS1 may include, for example, a step BS3 of forming a plurality of discrete island regions on the film with the solution Sa, and a step BS4 of transferring the solution Sa on the film onto the adhesive layer.
  • the step of forming a plurality of discrete island-shaped regions with the solution Sa may include a step of forming a plurality of discrete island-shaped regions with the solution Sb containing the curable resin composition at a concentration of 60% by mass or less, and a step of removing part of the solvent contained in the solution Sb.
  • the step of forming a plurality of discrete island-like regions with the solution Sb containing the curable resin composition at a concentration of 60% by mass or less can be formed using, for example, various printing methods. Since the gravure printing method can handle a solution Sb having a viscosity of 0.1 to 1 Pa ⁇ s, it is preferable to the inkjet method and the like, which can handle only a solution Sb having a relatively low viscosity.
  • the curable resin composition (e.g., silsesquioxane derivatives and acrylic resins) is liquid, but from the viewpoint of coating properties during gravure printing and filling properties (permeability, penetration) into the porous structure, it is preferable to dilute with a solvent (e.g., an organic solvent such as alcohol or toluene) and use it as a solution.
  • a solvent e.g., an organic solvent such as alcohol or toluene
  • the step of removing part of the solvent contained in the solution Sb is performed, for example, by heating a film (adhesive layer, substrate layer) in which a plurality of discrete island regions are formed with the solution Sb.
  • a layer 10P having a porous structure is formed on the base material layer 30. Then, as shown in FIG.
  • the porous layer 10P can be formed, for example, by a method exemplified below.
  • An element having a layer 10P to be the first layer 10 is given reference numeral 10SA. Although the structure changes as the process progresses, they are indicated by the same reference numerals.
  • a plurality of discrete island-like regions are formed on a transfer substrate (for example, PET) 30T with a solution Sb containing a curable resin composition at a concentration of 60% by mass or less, for example, by gravure printing.
  • a transfer substrate for example, PET
  • a solution Sb containing a curable resin composition at a concentration of 60% by mass or less, for example, by gravure printing.
  • the pattern shown in FIG. 2 is formed using a gravure plate (circular cell diameter 50 ⁇ m, cell depth 8 ⁇ m, cell pitch Px, Py both 200 ⁇ m).
  • the circular island regions in the pattern formed with the solution Sb have a diameter of about 100 ⁇ m.
  • the gravure roll prints on the peripheral surface of the roll with a diameter of 130 mm and a width of 110 mm at a printing speed of 14 m/min and an impression cylinder nip pressure of 0.86 MPa.
  • Elements having a curable resin composition are referenced 10SB. Although the structure changes as the process progresses, they are indicated by the same reference numerals.
  • a layer containing no curable resin may be formed on the substrate 30 side or the opposite side (the first region exists continuously).
  • An element including element 10SA and element 10SB is denoted by reference numeral 10SAB.
  • the transfer base material 30T is peeled off, and the adhesive layer 20 formed on the release sheet 40 is attached onto the first layer 10 as shown in FIG. 3E.
  • An optical element (for example, an optical element 200A shown in FIG. 7) is obtained by peeling off the release sheet 40 of the element 10SAB and attaching it to another optical element.
  • FIGS. 5A to 5C sample No. in FIG. 11, it can be seen that the area of the white region is particularly large.
  • the extent to which this white area adversely affects the optical properties was evaluated by the haze value (a numerical value expressed as a percentage of diffuse transmittance/total light transmittance).
  • the haze value was measured in accordance with JIS K 7136 using a haze meter (HM-150N, manufactured by Murakami Color Research Laboratory Co., Ltd.). Table 1 shows the results.
  • the haze value Ha indicates the haze value obtained by measuring the first layer 10 on the acrylic plate
  • the haze value H indicates the value (Ha ⁇ Hb) obtained by subtracting the haze value Hb (0.4325) of the acrylic plate alone from the haze value Ha.
  • the area ratio P indicates the area ratio (design value) of the second region 14 in the first layer 10, and sample No.
  • the haze value H/area ratio P of No. 11 is 0.233 and 0.205 (0.21), which are values of 0.20 or more.
  • the size of the haze value H/area ratio P corresponds to the size of the white region in the optical microscope images shown in FIGS. 4A to 4C and FIGS. 5A to 5C. Therefore, in order to suppress scattering from the peripheral region of the second region, the haze value H/area ratio P is preferably less than 0.20, more preferably 0.15 or less, and even more preferably 0.10 or less.
  • residual solvent may be removed, for example, by drying.
  • the solvent in the second region may remain, although slightly, without being completely removed even after completion of the optical member or during use. Residual solvent can be detected, for example, by micromass spectrometry, such as gas chromatography-mass spectrometry.
  • the thickness of the light guide layer can be, for example, 100 ⁇ m or more and 100 mm or less.
  • the thickness of the light guide layer is preferably 50 mm or less, more preferably 30 mm or less, and even more preferably 10 mm or less.
  • the refractive index n GP of the light guide layer is, for example, a value in the range of ⁇ 0.1 to +0.1 with respect to the refractive index n 3 of the second layer, and the lower limit is preferably 1.43 or more, more preferably 1.47 or more.
  • the upper limit of the refractive index of the light guide layer is 1.7.
  • the refractive index n GP of the light guiding layer is set such that light is totally internally reflected at the interface between the light guiding layer and the first region of the first layer when the first region of the first layer is arranged in direct contact with the light guiding layer. Further, when the first region of the first layer is arranged in the light guide layer through the second layer, the refractive index n1 of the first region and the refractive index n3 of the second layer are set so that light is totally internally reflected at the interface between the second layer and the first region, and the refractive index nGP of the light guide layer and the refractive index n2 of the second region are set so that total internal reflection hardly occurs at the interface between the light guide layer and the second region.
  • is preferably 0.1 or less.
  • the first layer has a porous structure.
  • the first layer may be formed from a porous layer.
  • the porous layer suitably used as the first layer includes substantially spherical particles such as silica particles, silica particles having fine pores, hollow silica nanoparticles, fibrous particles such as cellulose nanofibers, alumina nanofibers, silica nanofibers, tabular particles such as nanoclay composed of bentonite, and the like.
  • the porous layer is a porous body configured by directly chemically bonding particles (for example, microporous particles) to each other.
  • the particles forming the porous layer may be bonded together via a small amount (for example, the mass of the particles or less) of one component of the binder.
  • the porosity and refractive index of the porous layer can be adjusted by the particle size, particle size distribution, etc. of the particles forming the porous layer.
  • a method for obtaining a porous layer for example, in addition to the method of forming a low refractive index layer described in International Publication No. 2019/146628, JP 2010-189212, JP 2008-040171, JP 2006-011175, WO 2004/113966, JP 2017-054111, JP 2018- 123233 and JP-A-2018-123299 and the methods described in their references.
  • the entire disclosure of these publications is incorporated herein by reference.
  • Silsesquioxane is a silicon compound having (RSiO 1.5 , R is a hydrocarbon group) as a basic structural unit, and although it is strictly different from silica having SiO 2 as a basic structural unit, it has a network structure crosslinked by siloxane bonds in common with silica.
  • the silica porous body can be composed of microporous particles of a gel-like silicon compound bonded together.
  • pulverized bodies of the gelled silicon compound can be mentioned.
  • the silica porous body can be formed, for example, by coating a base material with a coating liquid containing a pulverized gel-like silicon compound.
  • the pulverized gel-like silicon compound can be chemically bonded (for example, siloxane bond) by the action of a catalyst, light irradiation, heating, or the like.
  • the lower limit of the thickness of the porous layer (first layer) should be, for example, greater than the wavelength of the light used. Specifically, the lower limit is, for example, 0.3 ⁇ m or more.
  • the upper limit of the thickness of the first layer is not particularly limited, it is, for example, 5 ⁇ m or less, more preferably 3 ⁇ m or less. When the thickness of the first layer is within the above range, the unevenness of the surface does not become so large as to affect lamination, so that it is easy to form a composite or laminate with other members.
  • the lower limit of the porosity of the porous layer that is, the porosity of the first region of the first layer is, for example, 40% or more, preferably 50% or more, more preferably 55% or more, and more preferably 70% or more.
  • the upper limit of the porosity of the porous layer is, for example, 90% or less, more preferably 85% or less.
  • the refractive index of the first region can be set within an appropriate range.
  • the porosity can be calculated by Lorentz-Lorenz's formula, for example, from refractive index values measured with an ellipsometer.
  • the film density of the porous layer that is, the film density of the first region of the first layer is, for example, 1 g/cm 3 or more, preferably 10 g/cm 3 or more, and more preferably 15 g/cm 3 or more.
  • the film density is, for example, 50 g/cm 3 or less, preferably 40 g/cm 3 or less, more preferably 30 g/cm 3 or less, still more preferably 2.1 g/cm 3 or less.
  • the range of film density is, for example, 5 g/cm 3 or more and 50 g/cm 3 or less, preferably 10 g/cm 3 or more and 40 g/cm 3 or less, more preferably 15 g/cm 3 or more and 30 g/cm 3 or less. Alternatively, the range is, for example, 1 g/cm 3 or more and 2.1 g/cm 3 or less. Film density can be measured by known methods.
  • the second region of the first layer is formed by filling the voids of the porous layer with the cured resin composition.
  • the refractive index n2 of the second region satisfies the relationship n1 ⁇ n2 and n1 ⁇ n3 with the refractive index n1 of the first region and the refractive index n3 of the second layer.
  • n2 satisfies this relationship, scattering of light due to reflection and refraction at the interface between the first region and the second region in the plane direction of the first layer can be suppressed.
  • the lower limit of n2 is, for example, more than 1.30, preferably 1.35 or more, more preferably 1.40 or more.
  • the first region and the second region of the first layer are formed from a common porous layer. That is, the first layer has a continuous porous structure throughout the first region and the second region.
  • the refractive index of the material constituting the matrix portion of the porous layer is nM
  • the refractive index of the porous layer i.e., the refractive index n1 of the first region, is determined by nM , the porosity , and the refractive index of air.
  • nM is, for example, 1.41 or more and 1.43 or less
  • the refractive index of the resin is larger than nM (for example, 1.45 or more and 1.70 or less)
  • the relationship of n1 ⁇ n2 ⁇ n3 is obtained.
  • Gelation of Silicon Compound Mixture A was prepared by dissolving 0.95 g of methyltrimethoxysilane (MTMS), which is a precursor of a gelled silicon compound, in 2.2 g of dimethylsulfoxide (DMSO). 0.5 g of a 0.01 mol/L oxalic acid aqueous solution was added to this mixed solution A, and the mixture was stirred at room temperature for 30 minutes to hydrolyze MTMS, thereby producing a mixed solution B containing tris(hydroxy)methylsilane.
  • MTMS methyltrimethoxysilane
  • DMSO dimethylsulfoxide
  • the pulverization treatment uses a homogenizer (manufactured by SMT Co., Ltd., trade name "UH-50"), and 1.85 g of the gel compound and 1.15 g of IPA in the mixed liquid D are weighed into a 5 cc screw bottle, and then pulverized for 2 minutes under the conditions of 50 W and 20 kHz.
  • a homogenizer manufactured by SMT Co., Ltd., trade name "UH-50”
  • the gelled silicon compound in the mixed liquid D was pulverized, and the mixed liquid D' became a pulverized sol liquid.
  • the volume average particle diameter which indicates the variation in particle size of the pulverized material contained in the mixed liquid D', was confirmed with a dynamic light scattering Nanotrack particle size analyzer (UPA-EX150, manufactured by Nikkiso Co., Ltd.), and was 0.50 to 0.70.
  • this sol liquid contains 0.062 g of a 1.5 mass % concentration MEK (methyl ethyl ketone) solution of a photobase generator (Wako Pure Chemical Industries, Ltd.: trade name WPBG266) and 0.036 g of a 5% concentration MEK solution of bis(trimethoxysilyl)ethane were added at a ratio of 0.036 g to obtain a coating liquid for forming a porous layer (liquid containing microporous particles).
  • the porous layer-forming coating liquid contains a silica porous body containing silsesquioxane as a basic structure.
  • the coating liquid was applied (coated) onto the surface of an acrylic resin film (thickness: 40 ⁇ m) prepared according to Production Example 1 of JP-A-2012-234163 to form a coating film.
  • the coating film was treated at a temperature of 100° C. for 1 minute and dried, and then the coating film after drying was irradiated with UV at a light irradiation amount (energy) of 300 mJ/cm using light with a wavelength of 360 nm to obtain a laminate (acrylic film with a porous silica layer) in which a porous layer (a silica porous body formed by chemical bonding between silica microporous particles) was formed on the acrylic resin film.
  • the refractive index of the porous layer was 1.15.
  • optical members for example, the following optical elements can be obtained.
  • FIG. 7 is a schematic cross section of an optical element 200A according to an embodiment of the present invention
  • FIG. 8 is a schematic cross section of an optical element 200B according to an embodiment of the present invention
  • FIG. 9 is a schematic cross section of an optical element 200C according to an embodiment of the present invention.
  • the optical elements 200A to 200C shown in FIGS. 7, 8 and 9 have a first layer 10, base layers 30A and 30B, a shaping film 70, and adhesive layers 92, 94 and 96.
  • the shaping film 70 and the adhesive layer 94 constitute a direction changing layer having a plurality of internal spaces 74 .
  • shaping film 70 for example, the concave-convex shaping film shown in FIGS. 10A and 10B can be used.
  • FIG. 10A shows a plan view of a portion of the uneven-shaped film 70 as seen from the uneven surface side.
  • FIG. 10B shows a 10B-10B' cross-sectional view of the concave-convex shaped film of FIG. 10A.
  • a plurality of concave portions 74 having a triangular cross section and having a length L of 80 ⁇ m, a width W of 14 ⁇ m, and a depth H of 10 ⁇ m were arranged at intervals of a width E (155 ⁇ m) in the X-axis direction. Furthermore, such a pattern of recesses 74 was arranged at intervals of width D (100 ⁇ m) in the Y-axis direction.
  • the density of the concave portions 74 on the concave-convex shaped film surface was 3612/cm 2 .
  • Both ⁇ a and ⁇ b in FIG. 10B were 41°, and the occupied area ratio of the recesses 74 when the film was viewed from the uneven surface side was 4.05%.
  • Such an unevenness-shaped film can be produced according to the method described in Japanese Patent Application Laid-Open No. 2013-524288. Specifically, the surface of a polymethyl methacrylate (PMMA) film is coated with a lacquer (Fine Cure RM-64 manufactured by Sanyo Chemical Industries, Ltd.: an acrylate-based photocurable resin), an optical pattern is embossed on the film surface containing the lacquer, and then the lacquer is cured (for example, UV irradiation conditions: D bulb, 1000 mJ / cm 2, 320 mW / cm 2 ) to produce the desired unevenness-shaped film.
  • the unevenness-imparting film had a total thickness of 130 ⁇ m and a haze of 0.8%.
  • optical elements can be mass-produced by a roll-to-roll method or a roll-to-sheet method.
  • the thicknesses of the base layers 30A and 30B are each independently, for example, 1 ⁇ m or more and 1000 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 80 ⁇ m.
  • the refractive indices of the base material layers 30A and 30B are each independently preferably 1.40 or more and 1.70 or less, more preferably 1.43 or more and 1.65 or less.
  • the thicknesses of the adhesive layers 92, 94, and 96 are each independently, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, preferably 0.3 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the refractive indices of the adhesive layers 92, 94, and 96 are each independently preferably 1.42 or more and 1.60 or less, and more preferably 1.47 or more and 1.58 or less.
  • the refractive index of the adhesive layers 92, 94, and 96 is preferably close to the refractive index of the light guide layer 50 or shaping film 70 with which they are in contact, and the absolute value of the refractive index difference is preferably 0.2 or less.
  • the transfer process described with reference to FIG. 3C is preferably performed at a lamination pressure of 0.3 MPa or less. That is, if the lamination pressure in the step of transferring the solution Sa on the transfer base material (film) 30T onto the porous layer 10P exceeds 0.3 MPa, the voids of the porous structure are filled with the resin composition. As the white area increases (that is, as H/P increases), the light distribution of the light emitted from the optical element deviates from the desired distribution.
  • the transfer process was performed using a hand roller (laminating pressure of less than 0.1 MPa).
  • a sample optical element having the same structure as the optical element 200A shown in FIG. 7 was produced by changing the lamination pressure in the transfer process, and the half-value angle of the emitted light was measured.
  • the shaping film 70 the shaping film 70 described with reference to FIGS. 10A and 10B was used.
  • the formation of the first layer 10 was carried out according to the above sample No. 1 except for the lamination pressure. 8 (laminating pressure: 0.0 MPa).
  • a roll-type laminator LPA330 manufactured by Fujipla Co., Ltd.
  • the lamination pressure was measured using Prescale (manufactured by Fuji Film Co., Ltd., for low pressure (4LW) and for extremely low pressure (LLLW)).
  • the lamination pressure was 0.3 MPa (sample No. 8A) and 0.6 MPa (sample No. 8B).
  • An LED light source was arranged at the end of the light guide layer 50 of each sample optical element obtained, and the light distribution of the emitted light LE was measured (see FIGS. 1 and 7).
  • the light distribution was measured using an imaging colorimeter (ProMetric I-Plus manufactured by RADIANT).
  • the size of the measurement area was 35 mm square (same as the size of the detector lens).
  • the half-value angle of the emitted light LE was calculated from the measured light distribution.
  • the half-value angle of the optical element No. 8 is 27°.
  • the half-value angle of the optical element of 8A is 30°.
  • the half-value angle of the 8B optical element was 32°.
  • the optical member of the present invention is, for example, an optical element (light distribution element) together with a light guide layer and the like, and can be applied to public or general lighting such as front lights, backlights, window/facade lighting, signage, signal lighting, window lighting, wall lighting, desk lighting, solar applications, decorative illumination, light shields, light masks, roof lighting, and the like.
  • the optical member of the present invention is suitably used as a front light component of a reflective display, which is an example of signage.
  • the optical members of the present invention allow viewing of images or graphics on reflective displays without optical defects such as visible blurring caused by scattered or diffracted light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

光学部材は、多孔質構造を有する第1の層(10)を有し、前記第1の層(10)は、前記多孔質構造を有する第1の領域(12)と、前記多孔質構造が有する空隙に樹脂組成物が充填されている第2の領域(14)とを含み、第2の領域(14)は、離散的に配置された複数の島状領域を含み、第2の領域(14)の前記第1の層(10)に占める面積率をP%とし、前記第1の層のヘイズ値をH%とするとき、H/Pが0.20未満である。

Description

光学部材、その製造方法、および光学素子
 本発明は、光学部材、その製造方法、および光学素子に関する。
 導光層から光を取り出す方法として、屈折率の異なる2つの領域を有する光抽出層を利用する方法が知られている(例えば、特許文献1)。
 特許文献1によると、例えば、多孔質層の上に感圧接着剤層を形成し、感圧接着剤層に所定のパターンでレーザー光を照射し、溶融された感圧接着剤で多孔質層の空隙を充填することによって、空隙が残っている低屈折率領域と、空隙が感圧接着剤で充填された高屈折率領域とが所定のパターンで配列された光抽出層を形成することができる。
 特許文献1の開示内容のすべてを参照により本明細書に援用する。なお、本明細書においては、特許文献1における光抽出層を「光結合層」ということがある。また、特許文献1における「光を抽出する」ことを「光を取り出す」または「光を結合させる」ということがある。
 また、特許文献2、3には、ナノボイド高分子層上に、追加の材料がナノボイド高分子層に侵入するように、印刷によって追加の材料を付与し、追加の材料が侵入した領域と、侵入していない領域とを形成することによって、屈折率が互いに異なる領域を有する光抽出層を形成する方法が開示されている。
国際公開第2019/182100号 米国特許出願公開第2015330597号明細書 米国特許出願公開第20170031078号明細書
 しかしながら、本発明者の検討によると、特許文献1に記載のレーザー光照射を利用する方法では、例えば、比較的高精細なパターンを効率よく形成することが難しい場合があった。また、特許文献2、3に記載の方法を用いても、屈折率が互いに異なる領域を設計通りのパターンに正確に形成することが難しいことがあった。
 そこで、本発明の目的は、屈折率が互いに異なる領域を設計通りのパターンに従来よりも正確に形成することができる方法を提供すること、さらには、そのような光学層を有する光学部材を提供することにある。
 本発明の実施形態によると、以下の項目に記載の解決手段が提供される。
[項目1]
 多孔質構造を有する第1の層を有し、
 前記第1の層は、前記多孔質構造を有する第1の領域と、前記多孔質構造が有する空隙に樹脂組成物が充填されている第2の領域とを含み、
 前記第2の領域は、離散的に配置された複数の島状領域を含み、
 前記第2の領域の前記第1の層に占める面積率をP%とし、前記第1の層のヘイズ値をH%とするとき、H/Pが0.20未満である、光学部材。
[項目2]
 前記複数の島状領域のそれぞれの等周長円相当径は、直径約1μm以上約500μm以下である、項目1に記載の光学部材。
[項目3]
 前記樹脂組成物は、硬化された硬化性樹脂組成物を含む、項目1または2に記載の光学部材。
[項目4]
 前記樹脂組成物は、多官能ケイ素化合物を含む、項目3に記載の光学部材。
[項目5]
 前記樹脂組成物は、アクリル系樹脂を含む、項目3に記載の光学部材。
[項目6]
 前記樹脂組成物は、溶媒をさらに含む、項目3から5のいずれかに記載の光学部材。
[項目7]
 前記第1の層の第1主面に接する第2の層をさらに有し、
 前記第1の領域の屈折率をn、前記第2の領域の屈折率をn、前記第2の層の屈折率をnとしたとき、n<nであり、かつ、n<nである、項目1から6のいずれかに記載の光学部材。
[項目8]
 nが1.30以下であり、nが1.43以上である、項目7に記載の光学部材。
[項目9]
 前記第2の層は、接着剤層または基材層である、項目7または8に記載の光学部材。
[項目10]
 前記第1の層は、シリカ多孔体を含む、項目1から9のいずれかに記載の光学部材。
[項目11]
 項目1から10のいずれかに記載の光学部材と、
 導光層と
を有する、光学素子。
[項目12]
 前記光学部材の前記導光層とは反対側に配置された方向変換層をさらに含む、
項目11に記載の光学素子。
[項目13]
 多孔質層を用意する工程Aと、
 前記多孔質層上に、硬化性樹脂組成物を含む溶液Saで、離散的な複数の島状領域を形成する工程であって、前記溶液Saの濃度は60質量%超99質量%未満である工程Bと、
 前記多孔質層が有する空隙に前記溶液Saを充填する工程Cと、
 前記空隙内の前記溶液Sa内に含まれていた前記硬化性樹脂組成物を硬化させる工程Dと
を包含する、光学部材の製造方法。
[項目14]
 前記工程Bは、フィルム上に、前記溶液Saで離散的な複数の島状領域を形成する工程BS1と、前記フィルム上の前記溶液Saを前記多孔質層上に転写する工程BS2とを包含する、項目13に記載の光学部材の製造方法。
[項目15]
 前記工程BS2は、0.3MPa以下のラミネート圧で行われる、項目14に記載の光学部材の製造方法。
[項目16]
 前記工程Bは、接着剤層上に、前記溶液Saで離散的な複数の島状領域を形成する工程BS1と、前記接着剤層上の前記溶液Saを前記多孔質層上に転写する工程BS2とを包含する、項目13に記載の光学部材の製造方法。
[項目17]
 前記工程BS1は、フィルム上に、前記溶液Saで離散的な複数の島状領域を形成する工程BS3と、前記フィルム上の前記溶液Saを前記接着剤層上に転写する工程BS4とを包含する、項目16に記載の光学部材の製造方法。
[項目18]
 前記溶液Saで離散的な複数の島状領域を形成する工程は、前記硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで前記離散的な複数の島状領域を形成する工程と、前記溶液Sbに含まれる溶媒の一部を除去する工程とを包含する、項目13から17のいずれかに記載の光学部材の製造方法。
 本発明の実施形態によると、比較的高精細なパターンを有する光抽出層を従来よりも効率よく形成する方法が提供され、さらには、そのような光抽出層を有する光学部材およびその製造方法、ならびに、そのような光学部材を有する光学素子が提供される。
本発明の実施形態による光学部材を有する光学素子100の模式的な断面図である。 本発明の実施形態による光学部材が有する第1の層10aにおける第1の領域12aおよび第2の領域14aの配置例を示す模式的な平面図である。 光学部材100の製造プロセスの1工程を示す模式的な断面図である。 光学部材100の製造プロセスの1工程を示す模式的な断面図である。 光学部材100の製造プロセスの1工程を示す模式的な断面図である。 光学部材100の製造プロセスの1工程を示す模式的な断面図である。 光学部材100の製造プロセスの1工程を示す模式的な断面図である。 試料No.7の光学顕微鏡の像である。 試料No.8の光学顕微鏡の像である。 試料No.9の光学顕微鏡の像である。 試料No.10の光学顕微鏡の像である。 試料No.11の光学顕微鏡の像である。 試料No.12の光学顕微鏡の像である。 溶液Saの濃度と、ヘイズ値H/面積率Pとの関係を示すグラフである。 本発明の実施形態による光学素子200Aの模式的な断面図である。 光学素子200Bの模式的な断面図である。 光学素子200Cの模式的な断面図である。 賦形フィルム70の模式的な断面図である。 賦形フィルム70の凹部74を示す模式的な断面図である。
 以下、図面を参照して、本発明の実施形態による光学部材、光学部材の製造方法および光学部材を備える光学素子を説明する。本発明の実施形態は、以下で例示するものに限定されない。
 図1に本発明の実施形態による光学部材を有する光学素子100の模式的な断面図を示す。本発明の実施形態による光学部材は、多孔質構造を有する第1の層10を有する。光学部材は、第1の層10と基材層30とで構成されてもよいし、第1の層10と接着剤層20とで構成されてもよい。本発明の実施形態による光学部材は、少なくとも第1の層10を有していればよい。
 本発明の実施形態による光学部材は、例えば、導光層を伝搬する光を、導光層の主面から取り出す、または、主面に接するように配置された光学部材へと導くことができる。導光層を伝搬する光を導光層の主面に接するように配置された光学部材に導くことを、光学的に結合させるといい、そのように作用する層を光結合層という。例えば、本発明の実施形態による光学部材は、例えば、本願出願人による特願2020-127530号(出願日:2020年7月28日)に記載の導光部材が有する光結合層として好適に用いられる。上記特許出願に記載されているように、光結合層は、導光層と方向変換層との間に設けられ得る。方向変換層は、例えば、内部全反射によって光を方向変換層の主面側に向ける界面を形成する複数の内部空間を有する。このような内部空間を有する方向転換層は、例えば、国際公開第2019/087118号に開示された配光構造体であってもよい。また、方向変換層は、公知のプリズムシートであってもよい。特願2020-127530号および国際公開第2019/087118号の開示内容のすべてを参照により本明細書に援用する。
 光学素子100は、第1の層10と、導光層50と、第1の層10と導光層50との間に設けられた接着剤層20と、第1の層10を支持する基材層30とを有している。後述するように、ここで例示する第1の層10は、基材層30上に形成されている。
 第1の層10は、多孔質構造を有する第1の領域12と、多孔質構造が有する空隙に樹脂組成物が充填されている第2の領域14とを含む。第2の領域14は、離散的に配置された複数の島状領域を含む。第1の層10は、実施例を示して後述するように、第2の領域14の第1の層10に占める面積率をP%とし、第1の層のヘイズ値をH%とするとき、H/Pが0.20未満であるという特徴を有している。なお、面積率Pは、例えば、ヘイズ値を測定する箇所を中心に例えば10mm×10mmの領域について求められる。
 第1の層10の第1主面に接する層を第2の層(ここでは、接着剤層20)とすると、第1の領域12の屈折率をn、第2の領域14の屈折率をn、第2の層20の屈折率をnとすると、n<nであり、かつ、n<nとなる。このとき、例えば、n<nの関係を満足する。nは例えば1.30以下であり、nは例えば1.43以上であり、nは例えば1.45以上であり得る。
 第1の層10は、例えばシリカ多孔体で形成され得る。シリカ多孔体の空隙率は0%超100%未満である。空隙率は、低い屈折率を得るために、40%以上が好ましく、50%以上がさらに好ましく、55%以上がより好ましい。空隙率の上限は、特に制限されないが、強度の観点から、95%以下が好ましく、85%以下がさらに好ましい。
 シリカ(シリカ多孔体のマトリクス部分)の屈折率は、例えば、1.41以上1.43以下であることが好ましい。第1の層10の空隙に充填される樹脂組成物は、硬化性樹脂組成物を硬化したもの(「硬化樹脂組成物」ということがある。)である。硬化性樹脂組成物は、量産性の観点から、光硬化性樹脂組成物であることが好ましい、光硬化性樹脂組成物は、例えば、多官能ケイ素化合物(例えば、シルセスキオキサン誘導体:シルセスキオキサン骨格に複数の光硬化性の官能基を有する化合物)やアクリル系樹脂(例えば、ウレタンアクリレート)である。一般的な樹脂の屈折率は概ね1.45以上1.70以下である。第1の層10に含まれる多孔質構造の空隙率および硬化樹脂組成物の屈折率nを調整することによって、第2の領域14の屈折率nを制御することができる。|n-n|は、0.1以下であることが好ましい。第2の層20と第1の層10の第2の領域14との界面で内部全反射が起こることを抑制することができる。
 第1の領域12と第2の領域14とを所定のパターンで配置することによって、例えば、光結合層として機能する第1の層10が得られる。光結合層は、2つの光学層の間、例えば導光層と方向変換層との間に配置され、導光層を伝搬する光の一部を方向変換層へ導く。方向変換層は、例えば、伝搬する光に層法線方向の成分を与える界面(または表面)を有する。方向変換層は、例えば、プリズムシートであり得る。
 再び図1を参照して、本発明の実施形態による光学素子100の機能を説明する。
 光学素子100の第1の層10、接着剤層20、導光層50、基材層30は、XY面に平行な主面を有しているとする。導光層50の受光端面(不図示)に向けて光源LSから出射された光は、導光層50内をY方向に伝搬する(導波光L)。導光層50内に入射した光の一部は、第1の層10および接着剤層20(光学部材)によって基材層30に光学的に結合され(取り出され)、Z方向に出射される(出射光L)。もちろん、光の伝搬方向はY方向からばらつき(分布)を有し、光の出射方向もZ方向からばらつき(分布)を有している。X方向はY方向およびZ方向と直交する。
 導光層50内を伝搬する光Lは、第2の層20と第1の層10の第1の領域12との界面で内部全反射され、第2の層20と第1の層の第2の領域14との界面に入射した光は、内部全反射されることなく、第1の層10の第2の領域14および基材層30を通過し、光学素子200Bから出射される。
 第1の層10の第1の領域12および第2の領域14の層面内(XY面に平行)における配置を調整することによって、光学部材100aによって導光層50から取り出される(基材層30と光結合される)光の配光分布(出射強度分布、出射角度分布など)を制御することができる。第1の層10における第1の領域12と第2の領域14との配置は要求される配光分布に応じて適宜設定される。したがって、設計通りのパターンで第2の領域14を形成できないと、所望の配光分布が得られないことになる。
 図2に示すように、例えば、第1の層10は、第1の領域12内に、複数の円形の第2の領域14bが離散的に配置されている。第2の領域14の直径は、例えば、約1μm以上約500μm以下である。また、X方向に隣接する第2の領域14のピッチPx、Y方向に隣接する第2の領域14のピッチPyは、それぞれ独立に、例えば、約2μm以上約5000μm以下である。ピッチPx、Pyは、それぞれX方向およびY方向に隣接する第2の領域14の中心(面積重心)間の距離である。
 第1の層10における第1の領域12と第2の領域14との配置は種々に改変され得る。また、第2の領域14の個々の形状は、円形に限られず、種々の形状であり得る。
 第2の領域14の形状、寸法、第1の層10の面内における密度および第1の層10内における占有率は、光学部材が用いられる目的および用途に応じて適宜変更され得る。例えば、透明性などの良好な視認性が求められる場合、第2の領域14の個々の長径が100μm以下であることが好ましく、70μm以下であることがより好ましい。例えば、図2に示したように、円形の第2の領域14の場合、円の直径が100μm以下であることが好ましい。モバイルディスプレイや小型サイネージ等の比較的に近い距離で、光学部材を備えた機器が観察される用途において、第2の領域14が視認されることを抑制することができる。第2の領域が円形でない場合には、例えば、等周長円相当径で評価することができる。
 次に、本発明の実施形態による第1の層10を有する光学部材の製造方法を説明する。第1の層10は、第2の領域14の第1の層10に占める面積率をP%とし、第1の層のヘイズ値をH%とするとき、H/Pが0.20未満であるという特徴を有している。ヘイズ値が0,20%よりも大きいと、拡散光(第2の領域14の周辺領域からの散乱光)の影響によって所望の配光特性が得られないことがある。
 上記の特徴を有する第1の層10を有する光学部材は、例えば、以下の製造方法によって製造され得る。
 本発明の実施形態による光学部材の製造方法は、多孔質層を用意する工程Aと、多孔質層上に、硬化性樹脂組成物を含む溶液Saで、離散的な複数の島状領域を形成する工程であって、溶液Saの濃度は60質量%超である工程Bと、多孔質層が有する空隙に溶液Saを充填する工程Cと、空隙内の溶液Sa内に含まれていた硬化性樹脂組成物を硬化させる工程Dとを包含する。硬化性樹脂組成物が光硬化性の場合、例えば、紫外線を照射することによって硬化することができる。
 例えば、工程Bは、フィルム上に、溶液Saで離散的な複数の島状領域を形成する工程BS1と、フィルム上の溶液Saを多孔質層上に転写する工程BS2とを包含する。工程BS2は、0.3MPa以下のラミネート圧で行われることが好ましい。また、工程Bは、例えば、接着剤層上に、溶液Saで離散的な複数の島状領域を形成する工程BS1と、接着剤層上の溶液Saを多孔質層上に転写する工程BS2とを包含してもよい。さらに、工程BS1は、例えば、フィルム上に、溶液Saで離散的な複数の島状領域を形成する工程BS3と、フィルム上の溶液Saを接着剤層上に転写する工程BS4とを包含してもよい。
 上記の溶液Saで離散的な複数の島状領域を形成する工程は、硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで離散的な複数の島状領域を形成する工程と、溶液Sbに含まれる溶媒の一部を除去する工程とを包含してもよい。
 硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで離散的な複数の島状領域を形成する工程は、例えば、種々の印刷方法を用いて形成できる。グラビア印刷法は、粘度が0.1~1Pa・sの溶液Sbを扱うことができるので、比較的低い粘度の溶液Sbしか扱えないインクジェット法などに比べて好ましい。なお、硬化性樹脂組成物(例えば、シルセスキオキサン誘導体やアクリル系樹脂)は、液状であるが、グラビア印刷時の塗工性の観点や、多孔質構造への充填性(浸透性、侵入性)の観点から、溶媒(例えば、アルコール、トルエンなどの有機溶媒)で希釈し、溶液として用いることが好ましい。溶液Sbに含まれる溶媒の一部を除去する工程は、例えば、溶液Sbで離散的な複数の島状領域を形成したフィルム(接着剤層、基材層)を加熱することによって行われる。
 次に、図3A~図3Eを参照して、光学部材の具体的な製造方法の例を説明する。
 まず、図3Aに示すように、基材層30の上に多孔質構造を有する層10Pを形成する。多孔質層10Pは、例えば、下記に例示する方法によって形成できる。第1の層10となる層10Pを有する要素に参照符号10SAを付す。工程の進行につれて構造が変化するが、同じ参照符号で示す。
 一方、図3Bに示すように、転写用基材(例えば、PET)30T上に、硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで離散的な複数の島状領域を、例えば、グラビア印刷法で形成する。例えば、グラビア版(円形のセルの直径50μm、セルの深さ8μm、セルピッチPx、Pyとも200μm)を用いて、図2に示したパターンを形成する。溶液Sbで形成されるパターンにおける円形の島状領域の直径は約100μmである。グラビアロールは、直径130mm、幅110mmのロールの周面に、印刷速度14m/min、圧胴ニップ圧:0.86MPaで印刷する。硬化性樹脂組成物を有する要素に参照符号10SBを付す。工程の進行につれて構造が変化するが、同じ参照符号で示す。
 この要素10SBを乾燥し、溶液Sbの溶液に含まれる溶媒の一部を除去し、溶液Saを得る。このようにして、硬化性樹脂組成物を含む溶液Saで形成された離散的な複数の島状領域が得られる。
 次に、図3Cに示すように、要素10SAの層10P上に、硬化性樹脂組成物を含む溶液Saで形成された離散的な複数の島状領域を転写する。要素10SAの層10Pの多孔質構造の空隙に、溶液Saが充填される。この後、紫外線を基材30側から照射(例えば、フュージョンUVをUVA波長が600mJ/cmになるように照射(ランプ:Vバルブ))し、硬化性樹脂組成物を硬化することによって、硬化性樹脂組成物を含む溶液Saで形成された離散的な複数の島状領域に対応する領域が第2の領域となり、それ以外の領域が第1の領域となり、第1の層10が得られる。なお、このとき、各島状領域を形成する溶液Saの量などによっては、基材30側または反対側に硬化性樹脂を含まない層が形成される(第1の領域が連続的に存在する)ことがある。要素10SAと要素10SBとを含む要素を参照符号10SABで示す。
 次に、図3Dに示すように、転写基材30Tを剥離し、図3Eに示すように、剥離シート40上に形成された接着剤層20を第1の層10上に貼り付ける。この要素10SABの剥離シート40を剥がし、他の光学要素に貼り合わせることによって、光学素子(例えば、図7に示す光学素子200A)が得られる。
 ここでは、転写用基材30T上に、硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで離散的な複数の島状領域を形成したが、接着剤層上に形成してもよい。また、転写用基材30T上に、硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで離散的な複数の島状領域を形成した後、一旦、接着剤層上に転写し、その後、要素10SAの層10P上に、硬化性樹脂組成物を含む溶液Saで形成された離散的な複数の島状領域を転写してもよい。また、要素10SAの層10P上に直接、硬化性樹脂組成物を含む溶液Saを離散的な複数の島状領域を形成するように付与してもよい。
 上記の製造方法において、多孔質層上に、硬化性樹脂組成物を含む溶液Saで、離散的な複数の島状領域を形成する工程において、溶液Saの濃度は60質量%超であることが重要であることを、実験例を示して説明する。
 ここでは、溶液Sbとして、下記の2種類を用意した。
 第1の溶液
 A:TX100(東亜合成/シルセスキオキサン誘導体) 90部
 B:セロキサイド(ダイセル/脂環式2官能エポキシ) 10部
 C:CPI101(サンアプロ/カチオン開始剤) 5部
 その後に,D:イソブチルアルコールを投入して、(A+B+C)の濃度が70質量%になるように希釈調整、その後、撹拌機で均一になるように混合。
 第2の溶液
 AとBを以下の部数になるように配合。
 A:UV-1700TL(三菱ケミカル/ポリウレタンアクリレート+アクリル酸エステル+トルエン混合物 固形分80wt%) 100部
 B:Omirad184(BASF/光重合開始剤) 3部
 その後に、C:トルエンを投入して、(A+B+C)の濃度が60質量%になるように希釈調整、その後、撹拌機で均一に用なるように混合。
 溶液Sbの乾燥条件(なし、80℃で2分、80℃で5分)を変えることによって、濃度が異なる溶液Saを得た。上記第1の溶液および第2の溶液を用いて、図3A~図3Eを参照して例示した方法で、セルピッチPx、Pyを150μmとして、サンプルNo.1~6を作製した。また、セルピッチPx、Pyを200μmに変更した以外はサンプルNo.1~6と同じサンプルNo.7~12を作製した。更に、溶液Sa濃度を99質量%したサンプルNo.13を作製した(下記の表1参照)。
 溶液Saの濃度によって、アクリル板上に形成された第1の層10の第2の領域の形態が異なることが分かった。
 図4A~図4Cに第1の溶液を用いて形成した試料No.7~9、図5A~図5Cに第2の溶液を用いて形成した試料No.10~12の光学顕微鏡の像を示す。
 図4A~図4Cをみると、ほぼ円形(直径約100μm)に近い第2の領域(暗い領域)の周辺に光の散乱による白い領域が存在することがわかる。光が散乱すると、所望の配光特性が得られないことがあるので、図中の白い領域の面積は小さいことが好ましい。溶液Saの濃度が高いほど、白い領域の面積が小さいことがわかる。
 図5A~図5Cをみると、図5Bの試料No.11で特に白い領域の面積が大きいことがわかる。
 この白い領域が光学特性に悪影響を与える程度を、ヘイズ値(拡散透過率/全光線透過率を百分率で表した数値)で評価した。ヘイズ値の測定は、ヘイズメーター(株式会社村上色彩技術研究所製、HM-150N)を用いてJIS K 7136に準拠した方法で行った。結果を表1に示す。ヘイズ値Haは、アクリル板上の第1の層10を測定して得られたヘイズ値を示し、ヘイズ値Hは、ヘイズ値Haからアクリル板単体のヘイズ値Hb(0.4325)を差し引いた値(Ha-Hb)を示している。面積率Pは、第2の領域14の第1の層10に占める面積率(設計値)を示しており、サンプルNo.1~6では、34.91%であり、サンプルNo.7~13では、19.63%であった。ヘイズ値H/面積率Pは、第2の領域14によるヘイズ値の上昇への寄与を表すパラメータである。図6に、溶液Saの濃度と、ヘイズ値H/面積率Pとの関係を示すグラフを示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図6の結果からわかるように、溶液Saの濃度が60質量%の試料No.5および試料No.11のヘイズ値H/面積率Pが、0.233および0.205(0.21)と0.20以上の数値となっている。このヘイズ値H/面積率Pの値の大きさは、図4A~図4C、図5A~図5Cに示した光学顕微鏡像の白い領域の大きさと対応している。したがって、第2の領域の周辺領域からの散乱を抑制するためには、ヘイズ値H/面積率Pが、0.20未満となることが好ましく、0.15以下であることがさらに好ましく、0.10以下であることがさらに好ましい。
 このような第2の領域を形成すためには、溶液Saの濃度は60質量%超であることが好ましく、65質量%以上であることがさらに好ましく、70質量%以上であることがさらに好ましく、96質量%以上であることがさらに好ましい。一方で、溶媒を含まない硬化性樹脂組成物(液状)を用いることもできるが、溶液Saの濃度が99質量%以上であると、すなわち、溶液Saの濃度が高すぎると、光の散乱が増大するおそれがあるので、溶液Saの濃度は、99質量%未満であることが好ましく、98質量%以下であることがより好ましい。少量であっても、溶媒を含むことにより、多孔質構造との親和性(濡れ性)が向上し、多孔質構造の空隙内への硬化性樹脂組成物の浸透性・充填性が向上するためと考えられる。硬化性樹脂組成物を多孔質構造の空隙内へ浸透させた後に、例えば乾燥することによって、残存溶媒を除去してもよい。なお、硬化性樹脂組成物と溶媒とを含む溶液を用いて第2の領域が形成された光学部材において、第2の領域中の溶媒は、光学部材の完成後または使用中であっても、完全に除去されることはなく、わずかではあるが残存することがある。残存する溶媒は、例えば、ガスクロマトグラフィー質量分析法などの微量質量分析法で検出することができる。
 次に、本発明の実施形態による光学素子に好適に用いられる構成要素の例を説明する。
 (導光層)
 導光層には、公知の導光層(導光体)を広く用いることができる。導光層は、代表的には、樹脂(好ましくは、透明樹脂)のフィルムまたは板状物で構成され得る。樹脂は、熱可塑性樹脂であってもよいし、光硬化性樹脂であってもよい。熱可塑性樹脂は、例えば、ポリメタクリル酸メチル(PMMA)、ポリアクリロニトリル等の(メタ)アクリル系樹脂、ポリカーボネート(PC)樹脂、PET等のポリエステル樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂である。光硬化性樹脂としては、例えば、エポキシアクリレート系樹脂、ウレタンアクリレート系樹脂などの光硬化性樹脂が好適に用いられる。これらの樹脂は、単独で用いてもよく2種以上を併用してもよい。
 導光層の厚さは、例えば、100μm以上100mm以下であり得る。導光層の厚さは、好ましくは50mm以下であり、より好ましくは30mm以下であり、さらに好ましくは10mm以下である。
 導光層の屈折率nGPは、例えば、第2の層の屈折率nに対して-0.1~+0.1の範囲の値であり、下限値は、好ましくは1.43以上であり、より好ましくは1.47以上である。一方、導光層の屈折率の上限値は、1.7である。
 導光層の屈折率nGPは、第1の層の第1の領域が導光層に直接接するように配置される場合、導光層と第1の層の第1の領域との界面で光が内部全反射されるように設定される。また、第1の層の第1の領域が第2の層を介して導光層に配置される場合、第2の層と第1の領域との界面で光が内部全反射されるように第1の領域の屈折率nおよび第2の層の屈折率nが設定され、導光層と第2の領域との界面では内部全反射が起こり難いように、導光層の屈折率nGPおよび第2の領域の屈折率nが設定される。|nGP-n|は0.1以下であることが好ましい。
 導光層として、表面に凹凸形状を有する従来の導光層を用いることもできるが、図1に示した導光層50のように、表面が実質的に平坦な導光層を好適に用いることができる。本発明の実施形態による、光結合層として機能する光学部材100は、実質的に平坦な主面を有しているので、実質的に平坦な表面を有する導光層50と容易に積層することができるとともに、実質的に平坦な表面を有する他の光学要素と容易に積層することができる。実質的に平坦な表面とは、表面の凹凸形状によって、光を屈折あるいは拡散反射しないことをいう。
 (多孔質層、第1の層の第1の領域)
 第1の層は、多孔質構造を有する。第1の層は、多孔質層から形成され得る。第1の層として好適に用いられる多孔質層は、シリカ粒子、微細孔を有するシリカ粒子、シリカ中空ナノ粒子等の略球状粒子、セルロースナノファイバー、アルミナナノファイバー、シリカナノファイバー等の繊維状粒子、ベントナイトから構成されるナノクレイ等の平板状粒子等を含む。1つの実施形態において、多孔質層は、粒子(例えば微細孔粒子)同士が直接的に化学的に結合して構成される多孔体である。また、多孔質層を構成する粒子同士は、その少なくとも一部が、少量(例えば、粒子の質量以下)のバインダ一成分を介して結合していてもよい。多孔質層の空隙率および屈折率は、当該多孔質層を構成する粒子の粒径、粒径分布等により調整することができる。
 多孔質層を得る方法としては、例えば、国際公開第2019/146628号に記載の低屈折率層の形成方法の他、特開2010-189212号公報、特開2008-040171号公報、特開2006-011175号公報、国際公開第2004/113966号、特開2017-054111号公報、特開2018-123233号公報および特開2018-123299号公報およびそれらの参考文献に記載された方法が挙げられる。これらの公報の開示内容のすべてを参照により本明細書に援用する。
 多孔質層として、シリカ多孔体を好適に用いることができる。シリカ多孔体は、例えば、以下の方法で製造される。ケイ素化合物;加水分解性シラン類および/またはシルセスキオキサン、ならびにその部分加水分解物および脱水縮合物の少なくともいずれか1つを加水分解および重縮合させる方法、多孔質粒子および/または中空微粒子を用いる方法、ならびにスプリングバック現象を利用してエアロゲル層を生成する方法、ゾルゲル法により得られたゲル状ケイ素化合物を粉砕し、得られた粉砕体である微細孔粒子同士を触媒等で化学的に結合させた粉砕ゲルを用いる方法、等が挙げられる。ただし、多孔質層は、シリカ多孔体に限定されず、製造方法も例示した製造方法に限定されず、どのような製造方法により製造しても良い。なお、シルセスキオキサンは、(RSiO1.5、Rは炭化水素基)を基本構成単位とするケイ素化合物であり、SiOを基本構成単位とするシリカとは厳密には異なるが、シロキサン結合で架橋されたネットワーク構造を有する点でシリカと共通しているので、ここではシルセスキオキサンを基本構成単位として含む多孔体もシリカ多孔体またはシリカ系多孔体という。
 シリカ多孔体は、互いに結合したゲル状ケイ素化合物の微細孔粒子から構成され得る。ゲル状ケイ素化合物の微細孔粒子としては、ゲル状ケイ素化合物の粉砕体が挙げられる。シリカ多孔体は、例えば、ゲル状ケイ素化合物の粉砕体を含む塗工液を、基材に塗工して形成され得る。ゲル状ケイ素化合物の粉砕体は、例えば、触媒の作用、光照射、加熱等により化学的に結合(例えば、シロキサン結合)し得る。
 多孔質層(第1の層)の厚さの下限値は、例えば、用いる光の波長より大きければよい。具体的には、下限値は、例えば0.3μm以上である。第1の層の厚さの上限値に特に限定はないが、例えば5μm以下であり、より好ましくは3μm以下である。第1の層の厚さが上記範囲内であれば、表面の凹凸が積層に影響を与えるほど大きくならないので、他の部材との複合化または積層が容易である。
 多孔質層の屈折率、すなわち、第1の層の第1の領域の屈折率nは、1.30以下であることが好ましい。第1の領域と接する界面で内部全反射が起こりやすく、すなわち臨界角を小さくできる。第1の領域の屈折率n1は、1.25以下がより好ましく、1.18以下がさらに好ましく、1.15以下が特に好ましい。nの下限は特に限定されないが、機械強度の観点から、1.05以上が好ましい。
 多孔質層の空隙率、すなわち、第1の層の第1の領域の空隙率の下限値は、例えば、40%以上であり、好ましくは50%以上であり、より好ましくは55%以上、70%以上がより好ましい。多孔質層の空隙率の上限値は、例えば、90%以下であり、より好ましくは85%以下である。空隙率が上記範囲内であることにより、第1の領域の屈折率を適切な範囲とすることができる。空隙率は、例えば、エリプソメーターで測定した屈折率の値から、Lorentz‐Lorenz’s formula(ローレンツ-ローレンツの式)より算出され得る。
 多孔質層の膜密度、すなわち、第1の層の第1の領域の膜密度は、例えば、1g/cm以上であり、好ましくは10g/cm以上であり、より好ましくは15g/cm以上である。一方、膜密度は、例えば50g/cm以下であり、好ましくは40g/cm以下であり、より好ましくは30g/cm以下であり、さらに好ましくは2.1g/cm以下である。膜密度の範囲は、例えば5g/cm以上50g/cm以下であり、好ましくは10g/cm以上40g/cm以下であり、より好ましくは15g/cm以上30g/cm以下である。あるいは、当該範囲は、例えば1g/cm以上2.1g/cm以下である。膜密度は、公知の方法で測定され得る。
 (第1の層の第2の領域)
 第1の層の第2の領域は、多孔質層が有する空隙に、硬化樹脂組成物が充填されることによって形成されている。第2の領域の屈折率nは、第1の領域の屈折率nおよび第2の層の屈折率nと、n<nであって、かつn<nの関係を満たす。nがこの関係を満たすことで、第1の層の面方向における第1の領域と第2の領域の界面における反射および屈折による光の散乱を抑制することができる。nの下限値は、例えば、1.30超であり、好ましくは1.35以上であり、より好ましくは1.40以上である。
 第1の層の第1の領域および第2の領域は、共通の多孔質層から形成されている。すなわち、第1の層は、第1の領域と第2の領域の全体にわたって連続した多孔質構造を有している。多孔質層のマトリクス部分(多孔質層の空隙以外の部分)を構成する材料の屈折率をnとすると、多孔質層の屈折率、すなわち第1の領域の屈折率nは、nと空隙率と空気の屈折率で決まり、第2の領域の屈折率nは、nと空隙率と第2の層(樹脂組成物)の屈折率nと、空隙に対する樹脂組成物の充填率で決まる。例えば、上述したように、多孔質層としてシリカ多孔体を用いると、nは、例えば、1.41以上1.43以下であり、樹脂の屈折率がnよりも大きい場合(例えば1.45以上1.70以下である場合)には、n<n<nの関係が得られる。
 多孔質層(第1の層の第1の領域)形成用塗工液(微細孔粒子含有液)の調製例
 (1)ケイ素化合物のゲル化
 2.2gのジメチルスルホキシド(DMSO)に、ゲル状ケイ素化合物の前駆体であるメチルトリメトキシシラン(MTMS)を0.95g溶解させて混合液Aを調製した。この混合液Aに、0.01mol/Lのシュウ酸水溶液を0.5g添加し、室温で30分撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを含む混合液Bを生成した。
 5.5gのDMSOに、28質量%のアンモニア水0.38g、および純水0.2gを添加した後、さらに、上記混合液Bを追添し、室温で15分撹拌することで、トリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物(ポリメチルシルセスキオキサン)を含む混合液Cを得た。
 (2)熟成処理
 上記のように調製したゲル状ケイ素化合物を含む混合液Cを、そのまま、40℃で20時間インキュベートして、熟成処理を行った。
 (3)粉砕処理
 つぎに、上記のように熟成処理したゲル状ケイ素化合物を、スパチュラを用いて数mm~数cmサイズの顆粒状に砕いた。次いで、混合液Cにイソプロピルアルコール(IPA)を40g添加し、軽く撹拌した後、室温で6時間静置して、ゲル中の溶媒および触媒をデカンテーションした。同様のデカンテーション処理を3回行うことにより、溶媒置換し、混合液Dを得た。次いで、混合液D中のゲル状ケイ素化合物を粉砕処理(高圧メディアレス粉砕)した。粉砕処理(高圧メディアレス粉砕)は、ホモジナイザー(エスエムテー社製、商品名「UH-50」)を使用し、5ccのスクリュー瓶に、混合液D中のゲル状化合物1.85gおよびIPAを1.15g秤量した後、50W、20kHzの条件で2分間の粉砕を行った。
 この粉砕処理によって、上記混合液D中のゲル状ケイ素化合物が粉砕されたことにより、該混合液D’は、粉砕物のゾル液となった。混合液D’に含まれる粉砕物の粒度バラツキを示す体積平均粒子径を、動的光散乱式ナノトラック粒度分析計(日機装社製、UPA-EX150型)にて確認したところ、0.50~0.70であった。さらに、このゾル液(混合液C’)0.75gに対し、光塩基発生剤(和光純薬工業株式会社:商品名WPBG266)の1.5質量%濃度MEK(メチルエチルケトン)溶液を0.062g、ビス(トリメトキシシリル)エタンの5%濃度MEK溶液を0.036gの比率で添加し、多孔質層形成用塗工液(微細孔粒子含有液)を得た。多孔質層形成用塗工液は、シルセスキオキサンを基本構造として含むシリカ多孔体を含有している。
 特開2012-234163号公報の製造例1に従って準備したアクリル系樹脂フィルム(厚さ:40μm)の表面に、上記塗工液を塗布(塗工)して、塗工膜を形成した。前記塗工膜を、温度100℃で1分処理して乾燥し、さらに、乾燥後の塗工膜に、波長360nmの光を用いて300mJ/cmの光照射量(エネルギー)でUV照射し、前記アクリル系樹脂フィルム上に多孔質層(シリカ微細孔粒子同士の化学的結合によるシリカ多孔体)が形成された積層体(シリカ多孔質層付アクリルフィルム)を得た。上記多孔質層の屈折率は1.15であった。
 本発明の実施形態による光学部材を用いて、例えば、以下のような光学素子を得ることができる。
 図7は、本発明の実施形態による光学素子200Aの模式的な断面であり、図8は、本発明の実施形態による光学素子200Bの模式的な断面であり、図9は、本発明の実施形態による光学素子200Cの模式的な断面である。
 図7、図8および図9に示す光学素子200A~200Cは、第1の層10と、基材層30A、30Bと、賦形フィルム70と、接着剤層92、94、96とを有している。賦形フィルム70と接着剤層94とが複数の内部空間74を有する方向変換層を構成している。
 賦形フィルム70としては、例えば、図10Aおよび図10Bに示す凹凸賦形フィルムを用いることができる。
 凹凸賦形フィルム70の一部について凹凸面側から見た平面図を図10Aに示す。また、図10Aの凹凸賦形フィルムの10B-10B’断面図を図10Bに示す。長さLが80μm、幅Wが14μm、深さHが10μmの、断面が三角形である複数の凹部74が、X軸方向に幅E(155μm)の間隔を空けて配置された。さらにこのような凹部74のパターンが、Y軸方向に幅D(100μm)の間隔を空けて配置された。凹凸賦形フィルム表面における凹部74の密度は、3612個/cmであった。図10Bにおけるθaおよびθbはいずれも41°であり、フィルムを凹凸面側から平面視した際の凹部74の占有面積率は4.05%であった。
 このような凹凸賦形フィルムは、特表2013-524288号公報に記載の方法にしたがって製造できる。具体的には、ポリメタクリル酸メチル(PMMA)フィルムの表面をラッカー(三洋化成工業社製ファインキュアー RM-64:アクリレート系の光硬化性樹脂)でコーティングし、当該ラッカーを含むフィルム表面上に光学パターンをエンボス加工し、その後ラッカーを硬化(例えば、紫外線照射条件:Dバルブ、1000mJ/cm2、320mW/cm)させることによって目的の凹凸賦形フィルムを製造した。凹凸賦形フィルムの総厚さは130μmであり、ヘイズは0.8%であった。
 このように、複数の基材層上に積層した積層体を接着剤層で貼り合せた構成を採用することによって、光学素子をロール・ツー・ロール法またはロール・ツー・シート法で量産することができる。
 基材層30A、30Bの厚さはそれぞれ独立に、例えば1μm以上1000μm以下であり、10μm以上100μm以下が好ましく、20μm以上80μmがさらに好ましい。基材層30A、30Bの屈折率は、それぞれ独立に、1.40以上1.70以下が好ましく、1.43以上1.65以下がさらに好ましい。
 接着剤層92、94、96の厚さは、それぞれ独立に、例えば0.1μm以上100μm以下であり、0.3μm以上100μm以下が好ましく、0.5μm以上50μm以下がさらに好ましい。接着剤層92、94、96の屈折率は、それぞれ独立に、好ましくは1.42以上1.60以下であり、より好ましくは1.47以上1.58以下である。また、接着剤層92、94、96の屈折率は、それが接する導光層50または賦形フィルム70の屈折率と近いことが好ましく、屈折率の差の絶対値が0.2以下であることが好ましい。
 このような光学素子をロール・ツー・ロール法またはロール・ツー・シート法で量産する際、図3Cを参照して説明した転写工程は、0.3MPa以下のラミネート圧で行われることが好ましい。すなわち、転写基材(フィルム)30T上の溶液Saを多孔質層10P上に転写する工程におけるラミネート圧が0.3MPaを超えると、多孔質構造が有する空隙に樹脂組成物が充填されている第2の領域の周辺に形成される白い領域が増大する恐れがある。白い領域が増大すると(すなわち、H/Pが増大すると)、光学素子から出射される光の配光分布が所望の分布からずれる。例えば、白い領域が増大すると、光学素子から出射される光の指向性が低下し、出射光の半値角(半値全幅)が増大する。なお、上記の実験例では、転写工程をハンドローラー(ラミネート圧0.1MPa未満)で行った。
 図7に示した光学素子200Aと同じ構造を有する試料光学素子を、転写工程のラミネート圧を変えて作製し、出射光の半値角を測定した。賦形フィルム70には、図10Aおよび10Bを参照して説明した賦形フィルム70を用いた。第1の層10の形成は、ラミネート圧以外は、上記試料No.8(ラミネート圧0.0MPa)と同じ条件で行った。ラミネートには、ロール式ラミネータ(フジプラ株式会社製LPA330)を用い、ラミネート圧は、プレスケール(富士フイルム株式会社製、微圧用(4LW)と極低圧用(LLLW))を用いて測定した。ラミネート圧は、0.3MPa(試料No.8A)と0.6MPa(試料No.8B)とした。
 得られた各試料光学素子の導光層50の端部にLED光源を配置し、出射光Lの配光分布を測定した(図1、図7参照)。配光分布は、イメージング色度計(RADIANT社製ProMetric I-Plus)を用いて測定した。測定エリアのサイズは、35mm角(検出器レンズのサイズと同じ)であった。測定された配光分布から、出射光Lの半値角を算出した。
 試料No.8の光学素子の半値角は27°、試料No.8Aの光学素子の半値角は30°、試料No.8Bの光学素子の半値角は32°であった。このように、上記転写工程におけるラミネート圧が高いほど、半値角が増大し、出射光の指向性が低下することが分かる。例えば、30°以下の半値角を得るためには、ラミネート圧は0.3MPa以下とすることが好ましい。
 本発明の光学部材は、例えば、導光層等とともに光学素子(配光素子)とされ、フロントライト、バックライト、ウィンドウ/ファサードの照明、サイネージ、信号点灯、窓照明、壁面照明、卓上照明、ソーラーアプリケーション、装飾イルミネーション、ライトシールド、ライトマスク、ルーフライティング等の公共または一般の照明等に適用可能である。例えば、本発明の光学部材は、サイネージの一例である反射型ディスプレイのフロントライトの構成部材として好適に用いられる。本発明の光学部材を用いることで、散乱または回折された光によって生じる視認可能なぼやけ等の光学的欠点のない、反射型ディスプレイ上の画像またはグラフィックを見ることが可能になる。
 10:第1の層、12:第1の領域、14:第2の領域、30:基材層、50:導光層、70:凹凸賦形フィルム、74:凹部、内部空間、200A、200B、200C:光学素子

Claims (18)

  1.  多孔質構造を有する第1の層を有し、
     前記第1の層は、前記多孔質構造を有する第1の領域と、前記多孔質構造が有する空隙に樹脂組成物が充填されている第2の領域とを含み、
     前記第2の領域は、離散的に配置された複数の島状領域を含み、
     前記第2の領域の前記第1の層に占める面積率をP%とし、前記第1の層のヘイズ値をH%とするとき、H/Pが0.20未満である、光学部材。
  2.  前記複数の島状領域のそれぞれの等周長円相当径は、直径約1μm以上約500μm以下である、請求項1に記載の光学部材。
  3.  前記樹脂組成物は、硬化された硬化性樹脂組成物を含む、請求項1または2に記載の光学部材。
  4.  前記樹脂組成物は、多官能ケイ素化合物を含む、請求項3に記載の光学部材。
  5.  前記樹脂組成物は、アクリル系樹脂を含む、請求項3に記載の光学部材。
  6.  前記樹脂組成物は、溶媒をさらに含む、請求項3から5のいずれか1項に記載の光学部材。
  7.  前記第1の層の第1主面に接する第2の層をさらに有し、
     前記第1の領域の屈折率をn、前記第2の領域の屈折率をn、前記第2の層の屈折率をnとしたとき、n<nであり、かつ、n<nである、請求項1から6のいずれか1項に記載の光学部材。
  8.  nが1.30以下であり、nが1.43以上である、請求項7に記載の光学部材。
  9.  前記第2の層は、接着剤層または基材層である、請求項7または8に記載の光学部材。
  10.  前記第1の層は、シリカ多孔体を含む、請求項1から9のいずれか1項に記載の光学部材。
  11.  請求項1から10のいずれか1項に記載の光学部材と、
     導光層と
    を有する、光学素子。
  12.  前記光学部材の前記導光層とは反対側に配置された方向変換層をさらに含む、
    請求項11に記載の光学素子。
  13.  多孔質層を用意する工程Aと、
     前記多孔質層上に、硬化性樹脂組成物を含む溶液Saで、離散的な複数の島状領域を形成する工程であって、前記溶液Saの濃度は60質量%超99質量%未満である工程Bと、
     前記多孔質層が有する空隙に前記溶液Saを充填する工程Cと、
     前記空隙内の前記溶液Sa内に含まれていた前記硬化性樹脂組成物を硬化させる工程Dと
    を包含する、光学部材の製造方法。
  14.  前記工程Bは、フィルム上に、前記溶液Saで離散的な複数の島状領域を形成する工程BS1と、前記フィルム上の前記溶液Saを前記多孔質層上に転写する工程BS2とを包含する、請求項13に記載の光学部材の製造方法。
  15.  前記工程BS2は、0.3MPa以下のラミネート圧で行われる、請求項14に記載の光学部材の製造方法。
  16.  前記工程Bは、接着剤層上に、前記溶液Saで離散的な複数の島状領域を形成する工程BS1と、前記接着剤層上の前記溶液Saを前記多孔質層上に転写する工程BS2とを包含する、請求項13に記載の光学部材の製造方法。
  17.  前記工程BS1は、フィルム上に、前記溶液Saで離散的な複数の島状領域を形成する工程BS3と、前記フィルム上の前記溶液Saを前記接着剤層上に転写する工程BS4とを包含する、請求項16に記載の光学部材の製造方法。
  18.  前記溶液Saで離散的な複数の島状領域を形成する工程は、前記硬化性樹脂組成物を60質量%以下の濃度で含む溶液Sbで前記離散的な複数の島状領域を形成する工程と、前記溶液Sbに含まれる溶媒の一部を除去する工程とを包含する、請求項13から17のいずれか1項に記載の光学部材の製造方法。
PCT/JP2023/000809 2022-01-20 2023-01-13 光学部材、その製造方法、および光学素子 WO2023140194A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007153 2022-01-20
JP2022-007153 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023140194A1 true WO2023140194A1 (ja) 2023-07-27

Family

ID=87348751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000809 WO2023140194A1 (ja) 2022-01-20 2023-01-13 光学部材、その製造方法、および光学素子

Country Status (2)

Country Link
TW (1) TW202339941A (ja)
WO (1) WO2023140194A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133727A1 (ja) * 2011-03-30 2012-10-04 日東電工株式会社 シート状有機基材
JP2013524295A (ja) * 2010-04-14 2013-06-17 スリーエム イノベイティブ プロパティズ カンパニー パターン付き勾配ポリマーフィルム及び方法
JP2015531149A (ja) * 2012-08-13 2015-10-29 スリーエム イノベイティブ プロパティズ カンパニー 回折抽出フィーチャのパターン化印刷を有する照明装置
JP2015534100A (ja) * 2012-08-24 2015-11-26 スリーエム イノベイティブ プロパティズ カンパニー 可変屈折率光抽出層及びその作製方法
JP2016001200A (ja) * 2012-10-15 2016-01-07 旭硝子株式会社 防汚性反射防止膜、物品およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524295A (ja) * 2010-04-14 2013-06-17 スリーエム イノベイティブ プロパティズ カンパニー パターン付き勾配ポリマーフィルム及び方法
WO2012133727A1 (ja) * 2011-03-30 2012-10-04 日東電工株式会社 シート状有機基材
JP2015531149A (ja) * 2012-08-13 2015-10-29 スリーエム イノベイティブ プロパティズ カンパニー 回折抽出フィーチャのパターン化印刷を有する照明装置
JP2015534100A (ja) * 2012-08-24 2015-11-26 スリーエム イノベイティブ プロパティズ カンパニー 可変屈折率光抽出層及びその作製方法
JP2016001200A (ja) * 2012-10-15 2016-01-07 旭硝子株式会社 防汚性反射防止膜、物品およびその製造方法

Also Published As

Publication number Publication date
TW202339941A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
TWI816767B (zh) 光學構件及其製造方法
JP2018010306A (ja) 光学拡散性低屈折率要素
JP5232448B2 (ja) 防眩材料
KR20140001749A (ko) 방현성 필름의 제조 방법, 방현성 필름, 편광판 및 화상 표시 장치
KR101530452B1 (ko) 광확산 소자 및 광확산 소자를 가진 편광판의 제조 방법, 그리고, 이들 방법으로 얻어진 광확산 소자 및 광확산 소자를 가진 편광판
KR20130041337A (ko) 광확산 필름, 광확산 필름이 부착된 편광판, 액정 표시 장치 및 조명 기구
KR20120008463A (ko) 광 산란 시트 및 그 제조 방법
US11231543B2 (en) Light extraction member
JP6586805B2 (ja) エッジライト型バックライト及び液晶表示装置
TW202200726A (zh) 雙面附黏著劑層之光學積層體及光學裝置
TW202213807A (zh) 照明裝置用導光構件、照明裝置及建築構件
WO2023140194A1 (ja) 光学部材、その製造方法、および光学素子
KR102091901B1 (ko) 광 확산 소자의 제조 방법 및 광 확산 소자
JP6046733B2 (ja) 反射防止フィルム及びその製造方法、並びに、表示装置
WO2022064782A1 (ja) 光学積層体
JP7479784B2 (ja) 光取り出し部材
WO2023189036A1 (ja) 光学部材の製造方法
WO2023189633A1 (ja) 光学部材および光学素子
TW202413076A (zh) 光學積層體
TWI452352B (zh) A light diffusion element and a method for manufacturing the light diffusion element
TWM298514U (en) Anti-glare-reflecting film for polaroid and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743188

Country of ref document: EP

Kind code of ref document: A1