WO2023140071A1 - Motor stator and motor provided with same - Google Patents

Motor stator and motor provided with same Download PDF

Info

Publication number
WO2023140071A1
WO2023140071A1 PCT/JP2022/048153 JP2022048153W WO2023140071A1 WO 2023140071 A1 WO2023140071 A1 WO 2023140071A1 JP 2022048153 W JP2022048153 W JP 2022048153W WO 2023140071 A1 WO2023140071 A1 WO 2023140071A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
coil
motor
bus bar
coils
Prior art date
Application number
PCT/JP2022/048153
Other languages
French (fr)
Japanese (ja)
Inventor
直嗣 北山
隼人 小林
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023140071A1 publication Critical patent/WO2023140071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor stator and a motor including the same, and more particularly to a three-phase brushless motor stator that can be suitably used as a drive source for electrical equipment mounted on a vehicle (automobile) such as an electric oil pump and an electric parking brake.
  • Patent Document 1 discloses an inner-rotor type three-phase brushless motor (hereinafter simply referred to as "motor”) having a motor stator in which a coil (a U-phase coil, a V-phase coil, or a W-phase coil) is wound on each of a plurality of teeth provided at intervals in the circumferential direction on a cylindrical stator core via an insulating member also called an insulator, and a motor rotor disposed radially inward of the motor stator.
  • the motor stator further includes a busbar unit arranged axially outside the stator core.
  • the busbar unit includes a plurality of busbars (a U-phase busbar, a V-phase busbar, a W-phase busbar, a neutral point busbar, etc.) made of a conductive material such as copper, and a busbar holder made of an insulating material such as resin and holding the plurality of busbars in a non-contact state.
  • a coil wire connection terminal is provided on each phase bus bar, and a motor drive circuit (power supply circuit) is formed by connecting the end portion of each coil drawn out to the axially outer side of the stator core to the corresponding bus bar connection terminal.
  • brushless motors can be broadly classified into “integer groove motors” in which the "number of slots per pole and phase q" is a positive integer, and “fractional groove motors” in which the "number of slots per pole and phase q” is a fraction (not a positive integer).
  • the brushless motor is an integer groove motor or a fractional groove motor is appropriately selected according to the required characteristics, but if the number of slots is the same, the fractional groove motor can make the cogging torque smaller than the integer groove motor, so it is said that it is easy to realize a quiet and high output efficiency motor.
  • V phase 2 points each
  • N phase neutral point
  • totaling 12 points As described above, if there are 12 coil connection points, it becomes difficult to reduce the cost of the motor stator and, in turn, the motor.
  • the main object of the present invention is to enable the low-cost formation of a drive circuit for a motor (three-phase brushless motor) formed by interconnecting a plurality of U-phase coils, V-phase coils and W-phase coils, thereby reducing the cost of a motor stator having the drive circuit.
  • a motor stator comprising a cylindrical stator core having a plurality of teeth spaced apart in a circumferential direction, and a plurality of U-phase coils, V-phase coils, and W-phase coils formed by winding coil wires around each of the plurality of teeth via an insulating member
  • a plurality of U-phase coils, a plurality of V-phase coils, and a plurality of W-phase coils are sequentially formed along the longitudinal direction of the coil wire by sequentially winding one continuous coil wire around each of the plurality of teeth by concentrated winding,
  • the crossover wire portion connecting the U-phase coils in parallel, the crossover wire portion connecting the V-phase coils in parallel, and the crossover wire portion connecting the W-phase coils in parallel are respectively connected to the connection terminal of the U-phase bus bar, the connection terminal of the V-phase busbar, and the connection terminal of the W-phase busbar.
  • a star-connected motor drive circuit is formed by connecting the
  • the above configuration can be applied, for example, to a stator for a 12-slot three-phase brushless motor described above, specifically, a stator for a 12-slot three-phase brushless motor having four U-phase coils connected in two parallel and two series, four V-phase coils connected in two parallel and two series, and four W-phase coils connected in two parallel and two series, which are star-connected.
  • the number of U-phase to W-phase coils can be reduced to 1 each, and the number of neutral points can be reduced to 3, totaling 6 (reduced by half from the maximum of 12).
  • the cost of the motor stator can be reduced through the simplification of the connection work.
  • a total of four bus bars, each having a coil wire connection terminal can be held in a non-contact state with the insulating member on one axial end side of the stator core.
  • the insulating member for insulating between the teeth and the coil wound thereon integrally has a portion corresponding to the busbar holder of the conventional busbar unit.
  • the number of parts can be reduced as compared with the conventional product.
  • the planned connection point of the coil wire to the busbar can be reliably brought into contact with the connection terminal of the busbar, so that the connection work performed after the coil winding can be easily and accurately performed. Therefore, it is possible to reduce the cost by reducing the number of parts and to reduce the cost by facilitating the connection work.
  • the U-phase to W-phase busbars and the neutral point busbar can be held by the insulating member by, for example, outserting (fitting) into grooves provided in the insulating member.
  • the connecting wire portion of the coil wire can be connected to the connection terminal of the bus bar that is relatively movable with respect to the insulating member. Therefore, even if the formation position of the connecting wire portion is deviated from the predetermined position, the connection work can be performed with high accuracy.
  • the relative movement of the busbar with respect to the insulating member can be restricted (the busbar is fixedly held with respect to the insulating member), so that the busbar can be prevented from being separated from the insulating member when handling the motor stator.
  • Each crossover portion can be connected to a corresponding connection terminal by, for example, fusing, which is also referred to as thermal crimping.
  • fusing which is also referred to as thermal crimping.
  • the wire can be connected to the terminal almost at the same time as the insulating film of the coil wire made of the wire with the insulating film is removed, so the wire connection work can be performed efficiently and accurately.
  • each connecting wire portion can all be the same.
  • the motor stator becomes longer in the axial direction due to the overlapping of the connecting wire portions in the axial direction. Therefore, if all the connecting wire portions are wound in the same direction in the circumferential direction, it is advantageous to make the motor stator, and thus the motor, compact in the axial direction.
  • the present invention can be applied to a motor stator in which the parallel number of U-phase coils in the U-phase coil section, the parallel number of V-phase coils in the V-phase coil section, and the parallel number of W-phase coils in the W-phase coil section are all even numbers (same and even numbers).
  • the motor stator according to the present invention has the above features, the motor (three-phase brushless motor) including the motor stator according to the present invention and the motor rotor can be provided at low cost.
  • a motor (three-phase brushless motor) drive circuit formed by star-connecting a plurality of U-phase coils, V-phase coils, and W-phase coils can be formed at low cost. As a result, it is possible to reduce the cost of the stator for the motor having the drive circuit, and thus the cost of the motor.
  • FIG. 1 is a schematic perspective view of a motor stator according to an embodiment of the present invention before coil winding;
  • FIG. FIG. 2 is a view of a bus bar separated from the motor stator of FIG. 1;
  • 1 is a schematic plan view of a motor stator according to an embodiment of the invention;
  • FIG. 4 is a diagram for explaining a winding structure of a coil in the motor stator of FIG. 3;
  • FIG. 5 is a diagram showing a star-connected motor drive circuit obtained by the winding structure of FIG. 4;
  • FIG. 5 is a diagram showing a star-connected motor drive circuit obtained when a winding structure different from the coil winding structure of FIG. 4 is adopted;
  • FIG. 1 is a longitudinal sectional view conceptually showing one configuration example of a motor provided with a motor stator according to an embodiment of the present invention;
  • a motor 30 shown in FIG. 7 includes a motor stator 1, a motor rotor 32 disposed radially inside the motor stator 1 with a radial gap (not shown) therebetween, and a casing 31 housing them.
  • the illustrated motor rotor 32 includes an output shaft 33, a rotor core 34 provided to be rotatable integrally with the output shaft 33, and a plurality of (e.g., 10 poles) permanent magnets 35 held by the rotor core 34 at regular intervals in the circumferential direction.
  • the motor 30 shown in FIG. 7 can be used, for example, as a drive source for an electric pump mounted on a vehicle, more specifically, an electric pump (electric oil pump) that is attached to the transmission case of the vehicle and used to ensure the oil pressure required inside the transmission by pumping oil to the transmission while the engine is stopped.
  • an electric pump electric oil pump
  • a pump rotor that can rotate integrally with the output shaft 33 is provided at the free end of the output shaft 33 outside the casing 31 .
  • FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding
  • FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated
  • FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding
  • FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated
  • FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding
  • FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated
  • FIG. 1 is a schematic perspective
  • the motor stator 1 includes a cylindrical stator core 2 made of a metal material (for example, an electromagnetic steel sheet) with excellent magnetic properties, a U-phase busbar 5, a V-phase busbar 6, a W-phase busbar 7 and a neutral point busbar (N-phase busbar) 8, an insulating member 10 made of an insulating material such as a resin material, and a plurality of coils C.
  • a metal material for example, an electromagnetic steel sheet
  • the stator core 2 has a tubular portion 3 and teeth 4 protruding from the inner peripheral surface of the tubular portion 3 toward the center of the stator core 2 and around which a coil C (see FIG. 3) is wound via an insulating member 10.
  • a total of 12 teeth 4 are provided at regular intervals in the circumferential direction.
  • the twelve teeth 4 arranged in order along the circumferential direction of the stator core 2 are referred to as the first teeth 4A to the twelfth teeth 4L (see FIG. 3).
  • the first tooth 4A is arranged at the 12 o'clock position of the stator core 2, and thereafter, the remaining 11 teeth 4 (the second tooth 4B to the 12th tooth 4L) are arranged in order at a pitch of 30° counterclockwise.
  • the motor stator 1 of this embodiment has a total of 12 teeth 4 (slots formed between the teeth 4), and the motor rotor 32 arranged radially inward of the motor stator 1 is provided with a ten-pole permanent magnet 35 (see FIG. 7). Therefore, the motor stator 1 of this embodiment is a motor stator for a three-phase brushless motor with 10 poles and 12 slots.
  • the insulating member 10 includes a first covering portion 11 that covers the inner peripheral surface of the cylindrical portion 3 of the stator core 2, a second covering portion 12 that covers the teeth 4 of the stator core 2 (more specifically, portions of the teeth 4 on which the coils 20 are wound), and a holding portion 13 that is provided at one axial end of the stator core 2 and holds the bus bars 5 to 8 in a non-contact state.
  • the bus bars 5 to 8 are members that supply (distribute) the motor driving current output from an external power source (not shown) to the coil C. Therefore, the busbars 5 to 8 are all made of a highly conductive metal material such as copper or aluminum alloy.
  • the U-phase bus bar 5, V-phase bus bar 6, and W-phase bus bar 7 of the present embodiment each have one connection terminal 5a, 6a, 7a to which the coil wire CL is connected, and one power supply terminal 5b, 6b, 7b to be connected to an external power supply (see FIG. 2).
  • These U-phase bus bar 5, V-phase bus bar 6, and W-phase bus bar 7 are held by a holding portion 13 with terminals 5a, 5b, 6a, 6b, 7a, and 7b exposed to the outside, as shown in FIG.
  • the neutral point bus bar 8 has connection terminals 8a, 8b, and 8c that form neutral points respectively with a U-phase coil portion 21, a V-phase coil portion 22, and a W-phase coil portion 23, which will be described later (see FIG. 2). As shown in FIG. 1, the neutral point bus bar 8 is also held by the holding portion 13 with the terminals 8a, 8b, and 8c exposed to the outside.
  • the coil C is wound around each of a total of 12 teeth 4 via (the second covering portion 12 of) the insulating member 10 attached to the stator core 2 .
  • the coil C includes a total of four U-phase coils CU1 to CU4, a total of four V-phase coils CV1 to CV4, and a total of four W-phase coils CW1 to CW4, and these are star-connected using the bus bars 5 to 8 to form a motor drive circuit (power supply circuit) 20 as shown in FIGS.
  • a total of 12 coils C are formed by sequentially winding a single continuous coil wire (a conductive wire made of a metal material such as copper coated with an insulating film) CL around each of a total of 12 teeth 4 covered with (the second covering portion 12 of) an insulating member 10 by concentrated winding.
  • the U-phase coil CU1 is first formed (wound), and thereafter, the coils C are formed in the order of CU2 ⁇ CU3 ⁇ CU4 ⁇ CV3 ⁇ CV4 ⁇ CV1 ⁇ CV2 ⁇ CW1 ⁇ CW2 ⁇ CW3 ⁇ CW4.
  • a coil winding process for winding the coil C around each tooth 4 and a wire connection process performed after the coil winding process will be described below.
  • the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer periphery of the second tooth 4B.
  • the U-phase coil CU2 is wound around the outer periphery of the second tooth 4B by concentrated winding.
  • the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the seventh tooth 4G.
  • the U-phase coil CU3 is wound around the outer periphery of the seventh tooth 4G by concentrated winding.
  • the connecting wire portion CL 2 of the coil wire CL interposed between the U-phase coils CU2 and CU3 to connect the two coils is wound around the connection terminal 5a of the U-phase bus bar 5 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer periphery of the eighth tooth 4H.
  • the U-phase coil CU4 is wound around the outer periphery of the eighth tooth 4H by concentrated winding.
  • the busbars 5 to 8 may be held by the holding portion 13 so as not to be relatively movable with respect to the insulating member 10, or may be held by the holding portion 13 so as to be relatively movable with respect to the insulating member 10.
  • the former configuration can be obtained, for example, by injection-molding the insulating member 10 (holding portion 13) with resin using the busbars 5 to 8 as insert parts.
  • the latter configuration can be obtained by injection-molding an insulating member 10 (holding portion 13) having grooves 13a to 13d for fitting busbars with resin, and then outserting the busbars 5 to 8 into the grooves 13a to 13d, as shown in FIG.
  • connection wire portion connection terminal of the bus bar performed in the coil winding process
  • relative movement of the busbars 5 to 8 with respect to the insulating member 10 can be restricted (busbars 5 to 8 fixed to the holding portion 13) by connecting coil wires to the connection terminals of each busbar.
  • the coil wire CL is wound from one end of the stator core 2 in the axial direction around the outer circumference of the ninth tooth 4I in the counterclockwise direction for a predetermined number of times.
  • the V-phase coil CV3 is wound around the outer periphery of the ninth tooth 4I by concentrated winding.
  • (part of) the crossover portion CL 4 of the coil wire CL connecting the U-phase coil CU4 and the V-phase coil CV3 is wound around the connection terminal 8a of the neutral point bus bar 8 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise around the outer circumference of the tenth tooth 4J from one end in the axial direction of the stator core 2 .
  • the V-phase coil CV4 is wound around the outer circumference of the tenth tooth 4J by concentrated winding.
  • the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the third tooth 4C.
  • the V-phase coil CV1 is wound around the outer periphery of the third tooth 4C by concentrated winding.
  • the crossover portion CL 6 of the coil wire CL connecting the V-phase coils CV4 and CV1 is wound around the connection terminal 6a of the V-phase bus bar 6 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 around the outer circumference of the fourth tooth 4D.
  • the V-phase coil CV2 is wound around the outer periphery of the fourth tooth 4D by concentrated winding.
  • the coil wire CL is wound from one axial end of the stator core 2 around the outer periphery of the fifth tooth 4E in the counterclockwise direction for a predetermined number of times.
  • the W-phase coil CW1 is wound around the outer periphery of the fifth tooth 4E by concentrated winding.
  • the crossover portion CL 8 of the coil wire CL connecting the V-phase coil CV2 and the W-phase coil CW1 is wound around the connection terminal 8b of the neutral point bus bar 8 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 to the outer periphery of the sixth tooth 4F.
  • the W-phase coil CW2 is wound around the outer periphery of the sixth tooth 4F by concentrated winding.
  • the coil wire CL After winding the W-phase coil CW2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one end of the stator core 2 in the axial direction around the outer periphery of the eleventh tooth 4K. As a result, the W-phase coil CW3 is wound around the outer circumference of the eleventh tooth 4K by concentrated winding. Before winding the coil wire CL around the outer circumference of the eleventh tooth 4K, (part of) the crossover portion CL 10 of the coil wire CL connecting the W-phase coils CW2 and CW3 is wound around the connection terminal 7a of the W-phase bus bar 7 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise around the outer periphery of the twelfth tooth 4L from one end in the axial direction of the stator core 2 .
  • the W-phase coil CW4 is wound around the outer periphery of the twelfth tooth 4L by concentrated winding.
  • a total of four U-phase coils, a total of four V-phase coils, and a total of four W-phase coils are sequentially formed along the longitudinal direction of one continuous coil wire CL.
  • a winding start portion CL s and a winding end portion CL f of a single continuous coil wire CL in which a total of 12 coils C are formed are both wrapped around the connection terminal 8 c of the neutral point bus bar 8 .
  • the coil winding process of winding the coil C on each of the total 12 teeth 4 by concentrated winding is completed.
  • connection step the coil wire CL (the connecting wire portion thereof) that is bound by the connection terminals of the bus bars 5 to 8 is connected to the connection terminal that is bound. in particular, -
  • the connecting wire portion CL2 of the coil wire CL is connected to the connection terminal 5a of the U-phase bus bar 5
  • the connecting wire portion CL6 of the coil wire CL is connected to the connection terminal 6a of the V-phase bus bar 6
  • the connecting wire portion CL 10 of the coil wire CL is connected to the connection terminal 7a of the W-phase bus bar 7
  • the connecting wire portion CL4 of the coil wire CL is connected to the connection terminal 8a of the neutral point bus bar 8
  • the connecting wire portion CL 8 of the coil wire CL is connected to the connection terminal 8b of the neutral point bus bar 8
  • the connecting wire portion CL 12 of the coil wire CL (the start line CL s and finish line CL f of the coil wire CL) is connected to the connection terminal 8 c of the neutral point bus bar 8 .
  • connection of the coil wire CL is performed by so-called fusing (thermal crimping) in which a pair of electrodes compresses the coil wire CL, which is entwined with the connection terminals of the busbar, in the direction of the wire diameter and energizes the pair of electrodes for a predetermined period of time.
  • fusing thermal crimping
  • the conductor wire can be joined to the connection terminal at substantially the same time as the insulation film of the coil wire CL made of the conductor wire with the insulation film is removed, so that the coil wire CL can be connected efficiently.
  • connection of the coil wire CL (the connecting wire portion thereof) to the six connection terminals may be performed individually or collectively.
  • the insulating coating may be removed from the portion of the coil wire CL that is bound around the connection terminal (the region to be bonded to the terminal).
  • the coil wire CL can be connected to the connection terminal only by crimping the portion of the coil wire CL that is wrapped around the connection terminal (the portion where the insulation film is removed), and the coil wire CL can also be connected to the connection terminal by welding such as TIG welding or laser welding.
  • a U-phase coil section 21 in which a total of four U-phase coils CU1-CU4 are connected in 2-parallel and 2-series
  • a V-phase coil section 22 in which a total of 4 V-phase coils CV1-CV4 are connected in 2-parallel and 2-series
  • a total of 4 W-phase coils CW1-CW4 are connected in 2-parallel and 2-series.
  • a motor drive circuit 20 is obtained in which the W-phase coil portion 23 is connected to each other (star connection) using the bus bars 5-8.
  • a first row formed by connecting the U-phase coils CU1 and CU2 in series and a second row formed by connecting the U-phase coils CU3 and CU4 in series are connected in parallel by a connecting wire portion CL 2 of the coil wire CL that connects the U-phase coils CU2 and CU3.
  • a first row formed by connecting the V-phase coils CV3 and CV4 in series and a second row formed by connecting the V-phase coils CV1 and CV2 in series are connected in parallel by a connecting wire portion CL 6 of the coil wire CL that connects the V-phase coils CV4 and CV1.
  • a first row formed by connecting the W-phase coils CW1 and CW2 in series and a second row formed by connecting the W-phase coils CW3 and CW4 in series are connected in parallel by a connecting wire portion CL 10 of the coil wire CL that connects the W-phase coils CW2 and CW3.
  • a total of four U-phase coils CU1 to CU4 By sequentially winding one continuous coil wire CL around each of a total of 12 teeth 4 by concentrated winding, a total of four U-phase coils CU1 to CU4, a total of four V-phase coils CV1 to CV4 (in the order of CV3 ⁇ CV4 ⁇ CV1 ⁇ CV2), and a total of four W-phase coils CW1 to CW4 are formed in order along the longitudinal direction of the coil wire CL,
  • a connecting wire portion CL 2 that connects the U-phase coils CU2 and CU3 in parallel
  • a connecting wire portion CL 6 that connects the V-phase coils CV4 and CV1 in parallel
  • a connecting wire portion CL 10 that connects the W-phase coils CW2 and CW3 in parallel are connected to the connecting terminal 5a of the U-phase bus bar 5, the connecting terminal 6a of the V-phase bus bar 6, and the connecting terminal 7a of the W-phase bus bar 7, respectively.
  • a crossover portion CL4 that connects the U-phase coil CU4 and the V-phase coil CV3 the U-phase coil portion 21 and the V-phase coil portion 22
  • a crossover portion CL8 that connects the V-phase coil CV2 and the W-phase coil CW1 the V-phase coil portion 22 and the W-phase coil portion 23
  • a total of four busbars 5 to 8 are held by (the holding portion 13 of) the insulating member 10 on one axial end side of the stator core 2 in a non-contact state.
  • the insulating member 10 for insulating between the teeth 4 and the coil C wound thereon integrally has a portion corresponding to the busbar holder of the conventional busbar unit. In this case, the number of parts can be reduced because the bus bar unit, which is generally provided separately from the motor stator, is not required.
  • the planned connection points (connection wire portions) of the coil wire CL to the busbars 5 to 8 can be brought into contact with the connection terminals of the busbars 5 to 8 (in this embodiment, they are bound), so that the connection work after the coil winding can be performed easily and accurately. Therefore, the cost of the stator core 1 can be reduced by reducing the number of parts and facilitating the connection work.
  • the motor stator 1 can be appropriately modified as long as the gist of the present invention is not changed.
  • the winding order of the coils C when one continuous coil wire CL is sequentially wound around each of a total of 12 teeth 4 by concentrated winding can be changed as shown in FIG. Specifically, after winding the U-phase coil CU4 around the eighth tooth 4H, and before winding the W-phase coil CW1 around the fifth tooth 4E, the V-phase coil may be wound in the order of CV4 ⁇ CV3 ⁇ CV2 ⁇ CV1.
  • the connecting wire portions that connect two coils that are adjacent in the longitudinal direction include those in which the winding direction in the circumferential direction of the stator core 2 is in the positive direction and those in which the winding direction is in the opposite direction.
  • the winding directions in the circumferential direction of the connecting wire portions are all the same (when the coils are wound in the order shown in FIG. 4 on each of the teeth 4 arranged in the manner shown in FIG. 3, the winding directions of the connecting wire portions are all counterclockwise).
  • the coil wire CL is not folded back when the coil is successively wound around each tooth 4 by concentrated winding, it is possible to prevent the motor stator 1 from becoming larger and the coil wire CL from breaking due to stacking of the crossover portions in the axial direction.
  • the coil C is wound in the order shown in FIG.
  • the motor stator 1 may be enlarged in the axial direction, or the coil wire CL may be broken. Therefore, it is preferable that all of the connecting wire portions (CL 1 to CL 12 ) have the same winding direction in the circumferential direction.
  • the present invention can also be applied to stators for other fractional-groove motors, such as stators for 14-pole, 12-slot, three-phase brushless motors, and stators for 14-pole, 18-slot, three-phase brushless motors.
  • a motor drive circuit is formed by star-connecting U-phase to W-phase coils connected in two parallel and three series.

Abstract

The present invention involves sequentially winding one continuous coil wire CL around each of a total of 12 teeth 4 by concentrated winding to form four U-phase coils, four V-phase coils, and four W-phase coils in the stated order along the length direction of the coil wire CL. Crossover wire portions CL2, CL6, and CL10 of the coil wire CL for connecting in parallel the coils of the same phase to each other are connected to a connection terminal 5a of a U-phase bus bar 5, a connection terminal 6a of a V-phase bus bar 6, and a connection terminal 7a of a W-phase bus bar 7, respectively, and crossover wire portions CL4, CL8, and CL12 of the coil wire CL for connecting the coils of different phases to each other are connected to connection terminals 8a, 8b, and 8c of a neutral point bus bar 8, respectively, to form a star-connected motor drive circuit 20.

Description

モータステータ及びこれを備えるモータMotor stator and motor provided with the same
 本発明は、モータステータ及びこれを備えるモータに関し、特に、電動オイルポンプや電動パーキングブレーキなどといった車両(自動車)に搭載される電装機器の駆動源として好適に用い得る三相ブラシレスモータのステータに関する。 The present invention relates to a motor stator and a motor including the same, and more particularly to a three-phase brushless motor stator that can be suitably used as a drive source for electrical equipment mounted on a vehicle (automobile) such as an electric oil pump and an electric parking brake.
 例えば下記の特許文献1には、筒状のステータコアに周方向に間隔を空けて設けられた複数のティースのそれぞれに、インシュレータなどとも称される絶縁部材を介してコイル(U相コイル、V相コイル又はW相コイル)を巻装してなるモータステータと、このモータステータの径方向内側に配されたモータロータとを備えたインナロータ型の三相ブラシレスモータ(以下、単に「モータ」とも言う。)が開示されている。このモータにおいて、モータステータは、ステータコアの軸方向外側に配置されたバスバーユニットをさらに備える。バスバーユニットは、銅等の導電性材料で形成された複数のバスバー(U相バスバー、V相バスバー、W相バスバー及び中性点バスバー等)と、樹脂等の絶縁材料で形成され、複数のバスバーを互いに非接触の状態で保持したバスバーホルダとを備える。各相のバスバーにはコイル線の結線用端子がそれぞれ設けられており、ステータコアの軸方向外側に引き出された各コイルの端末部が対応するバスバーの結線用端子に結線されることによってモータの駆動回路(給電回路)が形成されている。 For example, Patent Document 1 below discloses an inner-rotor type three-phase brushless motor (hereinafter simply referred to as "motor") having a motor stator in which a coil (a U-phase coil, a V-phase coil, or a W-phase coil) is wound on each of a plurality of teeth provided at intervals in the circumferential direction on a cylindrical stator core via an insulating member also called an insulator, and a motor rotor disposed radially inward of the motor stator. In this motor, the motor stator further includes a busbar unit arranged axially outside the stator core. The busbar unit includes a plurality of busbars (a U-phase busbar, a V-phase busbar, a W-phase busbar, a neutral point busbar, etc.) made of a conductive material such as copper, and a busbar holder made of an insulating material such as resin and holding the plurality of busbars in a non-contact state. A coil wire connection terminal is provided on each phase bus bar, and a motor drive circuit (power supply circuit) is formed by connecting the end portion of each coil drawn out to the axially outer side of the stator core to the corresponding bus bar connection terminal.
 ところで、ブラシレスモータは、「毎極毎相のスロット数q」が正の整数となる“整数溝モータ”と、「毎極毎相のスロット数q」が(正の整数とはならずに)分数となる“分数溝モータ”とに大別することができる。「毎極毎相のスロット数q」は、周方向で隣り合うティース間に形成される溝(スロット)の数をN、モータの相数をm、モータの極数(永久磁石の数)をPとした場合、q=N/(m×P)の計算式によって算出される。そのため、例えば、10極12スロットの三相ブラシレスモータ(N=12、m=3、P=10)は、q=12/(3・10)=2/5であることから“分数溝モータ”である。 By the way, brushless motors can be broadly classified into "integer groove motors" in which the "number of slots per pole and phase q" is a positive integer, and "fractional groove motors" in which the "number of slots per pole and phase q" is a fraction (not a positive integer). “The number of slots q per pole per phase” is calculated by the formula q=N/(m×P), where N is the number of grooves (slots) formed between adjacent teeth in the circumferential direction, m is the number of phases of the motor, and P is the number of poles (number of permanent magnets) of the motor. Therefore, for example, a 10-pole 12-slot three-phase brushless motor (N=12, m=3, P=10) is a "fractional groove motor" because q=12/(3·10)=2/5.
 ブラシレスモータを整数溝モータとするか、あるいは分数溝モータとするかは要求特性等に応じて適宜選択されるが、スロット数が同じ場合、分数溝モータは、整数溝モータよりもコギングトルクを小さくできる分、静粛で出力効率が高いモータを実現し易い、とされている。 Whether the brushless motor is an integer groove motor or a fractional groove motor is appropriately selected according to the required characteristics, but if the number of slots is the same, the fractional groove motor can make the cogging torque smaller than the integer groove motor, so it is said that it is easy to realize a quiet and high output efficiency motor.
国際公開WO2020/013078号公報International publication WO2020/013078
 近年、自動車の電動化が急速に進展し、自動車に搭載される各種電装機器用のモータの需要が増加する傾向にある関係上、モータに対するコスト低減の要請が厳しさを増している。モータのコスト低減を図る上では、駆動回路の形成時におけるコイルの結線箇所をできるだけ少なくするのが望ましいところ、例えば、上述した10極12スロットの三相ブラシレスモータにおいて、2並列2直列で接続された計4個のU相コイルと、2並列2直列で接続された計4個のV相コイルと、2並列2直列で接続された計4個のW相コイルとがスター結線された駆動回路を形成する場合、結線箇所は、最大で、U相~V相:各2箇所、N相(中性点):6箇所の計12箇所にもなる。このように、コイルの結線箇所が12箇所にもなると、モータステータ、ひいてはモータのコスト低減を図ることが難しくなる。 In recent years, the electrification of automobiles has progressed rapidly, and the demand for motors for various electrical equipment installed in automobiles tends to increase. In order to reduce the cost of the motor, it is desirable to reduce the number of coil connection locations as much as possible when forming the drive circuit. V phase: 2 points each, N phase (neutral point): 6 points, totaling 12 points. As described above, if there are 12 coil connection points, it becomes difficult to reduce the cost of the motor stator and, in turn, the motor.
 上記の実情に鑑み、本発明の主な目的は、複数のU相コイル、V相コイル及びW相コイルを互いに結線することで形成されるモータ(三相ブラシレスモータ)の駆動回路を低コストに形成可能とし、これにより、上記駆動回路を有するモータステータのコスト低減を図ることにある。 In view of the above circumstances, the main object of the present invention is to enable the low-cost formation of a drive circuit for a motor (three-phase brushless motor) formed by interconnecting a plurality of U-phase coils, V-phase coils and W-phase coils, thereby reducing the cost of a motor stator having the drive circuit.
 上記の目的を達成するために創案された本発明は、
 周方向に間隔を空けて設けられた複数のティースを有する円筒状のステータコアと、複数のティースのそれぞれに絶縁部材を介してコイル線を巻装することで形成された複数のU相コイル、V相コイル及びW相コイルと、を備えたモータステータにおいて、
 一本の連続したコイル線を複数のティースのそれぞれに集中巻きで順次巻装することにより、複数のU相コイル、複数のV相コイル、及び複数のW相コイルをコイル線の長手方向に沿って順に形成し、
 上記コイル線のうち、U相コイル同士を並列接続する渡り線部、V相コイル同士を並列接続する渡り線部、及びW相コイル同士を並列接続する渡り線部を、それぞれ、U相バスバーの結線用端子、V相バスバーの結線用端子及びW相バスバーの結線用端子に結線すると共に、上記コイル線のうち、U相コイルとV相コイルを接続する渡り線部、V相コイルとW相コイルを接続する渡り線部、及びW相コイルとU相コイルを接続する渡り線部を中性点バスバーの結線用端子に結線することにより、スター結線のモータ駆動回路を形成したことを特徴とする。
The present invention, which has been devised to achieve the above objects,
A motor stator comprising a cylindrical stator core having a plurality of teeth spaced apart in a circumferential direction, and a plurality of U-phase coils, V-phase coils, and W-phase coils formed by winding coil wires around each of the plurality of teeth via an insulating member,
A plurality of U-phase coils, a plurality of V-phase coils, and a plurality of W-phase coils are sequentially formed along the longitudinal direction of the coil wire by sequentially winding one continuous coil wire around each of the plurality of teeth by concentrated winding,
Of the coil wire, the crossover wire portion connecting the U-phase coils in parallel, the crossover wire portion connecting the V-phase coils in parallel, and the crossover wire portion connecting the W-phase coils in parallel are respectively connected to the connection terminal of the U-phase bus bar, the connection terminal of the V-phase busbar, and the connection terminal of the W-phase busbar. A star-connected motor drive circuit is formed by connecting the connecting wire portion to the connection terminal of the neutral point bus bar.
 上記の構成は、例えば、前述した12スロットの三相ブラスレスモータ用のステータ、具体的には、2並列2直列で接続された4個のU相コイル、2並列2直列で接続された4個のV相コイル、及び2並列2直列で接続された4個のW相コイルを有し、かつこれらがスター結線された12スロットの三相ブラシレスモータ用のステータに適用することができる。この場合には、U相~W相コイル:各1箇所、中性点:3箇所の計6箇所に減じる(最大の12箇所から半減する)ことができる。これにより、結線作業の簡素化を通じてモータステータのコスト低減を図ることができる。 The above configuration can be applied, for example, to a stator for a 12-slot three-phase brushless motor described above, specifically, a stator for a 12-slot three-phase brushless motor having four U-phase coils connected in two parallel and two series, four V-phase coils connected in two parallel and two series, and four W-phase coils connected in two parallel and two series, which are star-connected. In this case, the number of U-phase to W-phase coils can be reduced to 1 each, and the number of neutral points can be reduced to 3, totaling 6 (reduced by half from the maximum of 12). As a result, the cost of the motor stator can be reduced through the simplification of the connection work.
 上記構成において、それぞれがコイル線の結線用端子を有する計4個のバスバーは、ステータコアの軸方向一端側で絶縁部材に互いに非接触の状態で保持させることができる。これはすなわち、ティースとこれに巻装されたコイルの間を絶縁するための絶縁部材が、従来品で言うバスバーユニットのバスバーホルダに相当する部分を一体的に有していることを意味する。この場合、従来品よりも部品点数を削減できる。また、この場合、コイルの巻装時に、バスバーに対するコイル線の結線予定箇所をバスバーの結線用端子に確実に接触させることができるので、コイル巻装後に実施される結線作業を容易にかつ正確に実施することができる。従って、部品点数削減による低コスト化、及び結線作業の容易化による低コスト化を図ることができる。 In the above configuration, a total of four bus bars, each having a coil wire connection terminal, can be held in a non-contact state with the insulating member on one axial end side of the stator core. This means that the insulating member for insulating between the teeth and the coil wound thereon integrally has a portion corresponding to the busbar holder of the conventional busbar unit. In this case, the number of parts can be reduced as compared with the conventional product. Further, in this case, when the coil is wound, the planned connection point of the coil wire to the busbar can be reliably brought into contact with the connection terminal of the busbar, so that the connection work performed after the coil winding can be easily and accurately performed. Therefore, it is possible to reduce the cost by reducing the number of parts and to reduce the cost by facilitating the connection work.
 U相~W相バスバー及び中性点バスバーは、例えば、絶縁部材に設けた溝部にアウトサート(嵌合)することにより、絶縁部材に保持させることができる。このようにすれば、絶縁部材に対して相対移動可能な状態のバスバーの結線用端子に対してコイル線の渡り線部を結線することができる。このため、仮に、渡り線部の形成位置が所定位置からずれていた場合でも、結線作業を精度良く実施することができる。なお、この場合、渡り線部を結線用端子に結線すると、絶縁部材に対するバスバーの相対移動を規制(バスバーを絶縁部材に対して固定的に保持)することができるので、モータステータの取り扱い時等にバスバーが絶縁部材から分離する事態は回避することができる。 The U-phase to W-phase busbars and the neutral point busbar can be held by the insulating member by, for example, outserting (fitting) into grooves provided in the insulating member. With this configuration, the connecting wire portion of the coil wire can be connected to the connection terminal of the bus bar that is relatively movable with respect to the insulating member. Therefore, even if the formation position of the connecting wire portion is deviated from the predetermined position, the connection work can be performed with high accuracy. In this case, when the crossover portion is connected to the connection terminal, the relative movement of the busbar with respect to the insulating member can be restricted (the busbar is fixedly held with respect to the insulating member), so that the busbar can be prevented from being separated from the insulating member when handling the motor stator.
 各渡り線部は、例えば、熱加締めとも称されるヒュージングにより、対応する結線用端子に結線することができる。ヒュージングであれば、絶縁皮膜付の導線からなるコイル線の絶縁皮膜が除去されるのと略同時に、導線を端子に対して接合することができるので、結線作業を効率良くかつ精度良く行うことができる。 Each crossover portion can be connected to a corresponding connection terminal by, for example, fusing, which is also referred to as thermal crimping. In the case of fusing, the wire can be connected to the terminal almost at the same time as the insulating film of the coil wire made of the wire with the insulating film is removed, so the wire connection work can be performed efficiently and accurately.
 以上の構成において、各渡り線部の周方向における巻き方向は、全て同じにすることができる。渡り線部は折り返すことも可能であるが、この場合には、渡り線部が軸方向に積み重なることによってモータステータが軸方向に長寸化する懸念がある。そのため、各渡り線部の周方向における巻き方向を全て同じにしておけば、モータステータ、ひいてはモータを軸方向にコンパクト化する上で有利となる。 In the above configuration, the winding directions in the circumferential direction of each connecting wire portion can all be the same. Although it is possible to fold the connecting wire portion, in this case, there is a concern that the motor stator becomes longer in the axial direction due to the overlapping of the connecting wire portions in the axial direction. Therefore, if all the connecting wire portions are wound in the same direction in the circumferential direction, it is advantageous to make the motor stator, and thus the motor, compact in the axial direction.
 本発明は、U相コイル部におけるU相コイルの並列数、V相コイル部におけるV相コイルの並列数、及びW相コイル部におけるW相コイルの並列数が何れも偶数(同数でかつ偶数)であるモータステータに適用することができる。 The present invention can be applied to a motor stator in which the parallel number of U-phase coils in the U-phase coil section, the parallel number of V-phase coils in the V-phase coil section, and the parallel number of W-phase coils in the W-phase coil section are all even numbers (same and even numbers).
 本発明に係るモータステータが上記のような特長を有することから、本発明に係るモータステータと、モータロータとを備えたモータ(三相ブラシレスモータ)は、低コストに提供することができる。 Since the motor stator according to the present invention has the above features, the motor (three-phase brushless motor) including the motor stator according to the present invention and the motor rotor can be provided at low cost.
 以上のことから、本発明によれば、複数のU相コイル、V相コイル及びW相コイルを互いにスター結線することで形成されるモータ(三相ブラシレスモータ)の駆動回路を低コストに形成することが可能となる。これにより、上記駆動回路を有するモータ用のステータ、ひいてはモータのコスト低減を図ることができる。 As described above, according to the present invention, a motor (three-phase brushless motor) drive circuit formed by star-connecting a plurality of U-phase coils, V-phase coils, and W-phase coils can be formed at low cost. As a result, it is possible to reduce the cost of the stator for the motor having the drive circuit, and thus the cost of the motor.
コイル巻装前の状態における本発明の実施形態に係るモータステータの概略斜視図である。1 is a schematic perspective view of a motor stator according to an embodiment of the present invention before coil winding; FIG. 図1のモータステータからバスバーを分離した図である。FIG. 2 is a view of a bus bar separated from the motor stator of FIG. 1; 本発明の実施形態に係るモータステータの概略平面図である。1 is a schematic plan view of a motor stator according to an embodiment of the invention; FIG. 図3のモータステータにおけるコイルの巻装構造を説明するための図である。4 is a diagram for explaining a winding structure of a coil in the motor stator of FIG. 3; FIG. 図4の巻装構造により得られるスター結線のモータ駆動回路を示す図である。5 is a diagram showing a star-connected motor drive circuit obtained by the winding structure of FIG. 4; FIG. 図4のコイルの巻装構造とは異なる巻装構造を採用した場合に得られるスター結線のモータ駆動回路を示す図である。5 is a diagram showing a star-connected motor drive circuit obtained when a winding structure different from the coil winding structure of FIG. 4 is adopted; FIG. 本発明の実施形態に係るモータステータを備えたモータの一構成例を概念的に示す縦断面図である。1 is a longitudinal sectional view conceptually showing one configuration example of a motor provided with a motor stator according to an embodiment of the present invention; FIG.
 以下、本発明の実施の形態を図面(図1~図7)に基づいて説明する。以下の説明においては、方向性を示すために「軸方向」、「径方向」及び「周方向」との語句を使用するが、これらはそれぞれ、モータステータ1の軸心と平行な方向、軸心を中心とする円の径方向、及び軸心を中心とする円の周方向である。 Embodiments of the present invention will be described below with reference to the drawings (FIGS. 1 to 7). In the following description, the terms "axial direction," "radial direction," and "circumferential direction" are used to indicate directionality, and these are respectively the direction parallel to the axis of the motor stator 1, the radial direction of a circle centered on the axis, and the circumferential direction of a circle centered on the axis.
 まず、図7に基づき、本発明の一実施形態に係るモータステータ1を備えたモータ30の一構成例を簡単に説明する。図7に示すモータ30は、モータステータ1と、径方向隙間(図示省略)を介してモータステータ1の径方向内側に配置されたモータロータ32と、これらを収容したケーシング31とを備える。図示例のモータロータ32は、出力軸33と、出力軸33と一体回転可能に設けられたロータコア34と、ロータコア34に周方向等間隔で保持された複数(例えば10極)の永久磁石35とを備え、出力軸33は、軸方向に離間して配設された2つの転がり軸受36,37によりケーシング31に対して回転自在に支持されている。 First, based on FIG. 7, a configuration example of a motor 30 having a motor stator 1 according to an embodiment of the present invention will be briefly described. A motor 30 shown in FIG. 7 includes a motor stator 1, a motor rotor 32 disposed radially inside the motor stator 1 with a radial gap (not shown) therebetween, and a casing 31 housing them. The illustrated motor rotor 32 includes an output shaft 33, a rotor core 34 provided to be rotatable integrally with the output shaft 33, and a plurality of (e.g., 10 poles) permanent magnets 35 held by the rotor core 34 at regular intervals in the circumferential direction.
 図7に示すモータ30は、例えば車両に搭載される電動ポンプ、より具体的には、車両のトランスミッションケースに取り付けられ、エンジンの停止中にトランスミッションにオイルを圧送することによってトランスミッション内部で必要とされる油圧を確保するために使用される電動ポンプ(電動オイルポンプ)の駆動源として用いることができる。図示は省略するが、モータ30を電動オイルポンプの駆動源として用いる場合、ケーシング31の外側にある出力軸33の自由端に、出力軸33と一体回転可能なポンプロータが設けられる。 The motor 30 shown in FIG. 7 can be used, for example, as a drive source for an electric pump mounted on a vehicle, more specifically, an electric pump (electric oil pump) that is attached to the transmission case of the vehicle and used to ensure the oil pressure required inside the transmission by pumping oil to the transmission while the engine is stopped. Although not shown, when the motor 30 is used as a drive source for an electric oil pump, a pump rotor that can rotate integrally with the output shaft 33 is provided at the free end of the output shaft 33 outside the casing 31 .
 次に、図1~図3に基づき、本発明の一実施形態に係るモータステータ1を説明する。なお、図1は、コイル巻装前のモータステータ1(モータステータ1の構成部材であるステータコアに絶縁部材及びバスバーを組み付けたアセンブリ)の概略斜視図、図2は、図1のモータステータ1からバスバーを分離した図、図3は、本発明の実施形態に係るモータステータ1(コイルが巻装されたモータステータ1)の概略平面図である。 Next, a motor stator 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding, FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated, and FIG.
 モータステータ1は、磁気特性に優れた金属材料(例えば電磁鋼板)で形成された円筒状のステータコア2と、U相バスバー5、V相バスバー6、W相バスバー7及び中性点バスバー(N相バスバー)8と、樹脂材料等の絶縁材料で形成された絶縁部材10と、複数のコイルCとを備える。 The motor stator 1 includes a cylindrical stator core 2 made of a metal material (for example, an electromagnetic steel sheet) with excellent magnetic properties, a U-phase busbar 5, a V-phase busbar 6, a W-phase busbar 7 and a neutral point busbar (N-phase busbar) 8, an insulating member 10 made of an insulating material such as a resin material, and a plurality of coils C.
 ステータコア2は、筒部3と、筒部3の内周面からステータコア2の中心に向けて突出し、絶縁部材10を介してコイルC(図3参照)が巻装されるティース4とを有し、本実施形態では計12個のティース4が周方向等間隔で設けられている。なお、以下、計12個のティース4を区別して説明する場合には、ステータコア2の周方向に沿って順に配置した計12個のティース12を、それぞれ、第1ティース4A~第12ティース4Lという(図3参照)。図3に示すモータステータ1においては、ステータコア2の12時の位置に第1ティース4Aを配置し、以降、反時計回りに30°ピッチで残り11個のティース4(第2ティース4B~第12ティース4L)を順に配置している。 The stator core 2 has a tubular portion 3 and teeth 4 protruding from the inner peripheral surface of the tubular portion 3 toward the center of the stator core 2 and around which a coil C (see FIG. 3) is wound via an insulating member 10. In this embodiment, a total of 12 teeth 4 are provided at regular intervals in the circumferential direction. In the following description, the twelve teeth 4 arranged in order along the circumferential direction of the stator core 2 are referred to as the first teeth 4A to the twelfth teeth 4L (see FIG. 3). In the motor stator 1 shown in FIG. 3, the first tooth 4A is arranged at the 12 o'clock position of the stator core 2, and thereafter, the remaining 11 teeth 4 (the second tooth 4B to the 12th tooth 4L) are arranged in order at a pitch of 30° counterclockwise.
 上記のように、本実施形態のモータステータ1は計12個のティース4(ティース4間に形成されるスロット)を備え、モータステータ1の径方向内側に配置されるモータロータ32には10極の永久磁石35が設けられる(図7参照)。そのため、本実施形態のモータステータ1は、10極12スロットの三相ブラシレスモータ用のモータステータである。このようなブラシレスモータは、スロットの数をN、モータの相数をm、モータロータに設けられる永久磁石の数(極数)をPとした場合、q=N/(m×P)の計算式によって算出される「毎極毎相のスロット数q」が分数(=2/5)となる、いわゆる分数溝モータである。 As described above, the motor stator 1 of this embodiment has a total of 12 teeth 4 (slots formed between the teeth 4), and the motor rotor 32 arranged radially inward of the motor stator 1 is provided with a ten-pole permanent magnet 35 (see FIG. 7). Therefore, the motor stator 1 of this embodiment is a motor stator for a three-phase brushless motor with 10 poles and 12 slots. Such a brushless motor is a so-called fractional groove motor in which "the number of slots per pole per phase q" calculated by the formula q=N/(m×P) is a fraction (=2/5), where N is the number of slots, m is the number of phases of the motor, and P is the number of permanent magnets (number of poles) provided in the motor rotor.
 絶縁部材10は、ステータコア2の筒部3の内周面を被覆する第1被覆部11と、ステータコア2のティース4(詳細には、ティース4のうち、コイル20が巻装される部分)を被覆する第2被覆部12と、ステータコア2の軸方向一端部に設けられ、バスバー5~8を互いに非接触の状態で保持する保持部13と、を備える。 The insulating member 10 includes a first covering portion 11 that covers the inner peripheral surface of the cylindrical portion 3 of the stator core 2, a second covering portion 12 that covers the teeth 4 of the stator core 2 (more specifically, portions of the teeth 4 on which the coils 20 are wound), and a holding portion 13 that is provided at one axial end of the stator core 2 and holds the bus bars 5 to 8 in a non-contact state.
 バスバー5~8は、図示しない外部電源から出力されたモータの駆動電流をコイルCに供給(分配)する部材である。このため、バスバー5~8は、何れも、銅やアルミニウム合金等の高い導電性を有する金属材料で形成される。 The bus bars 5 to 8 are members that supply (distribute) the motor driving current output from an external power source (not shown) to the coil C. Therefore, the busbars 5 to 8 are all made of a highly conductive metal material such as copper or aluminum alloy.
 本実施形態のU相バスバー5、V相バスバー6及びW相バスバー7は、それぞれ、コイル線CLが結線される1個の結線用端子5a,6a,7aと、外部電源に接続される1個の電源用端子5b,6b,7bとを有している(図2参照)。これらU相バスバー5、V相バスバー6及びW相バスバー7は、図1に示すように、端子5a,5b,6a,6b,7a,7bを外部に露出させた状態で保持部13に保持される。また、中性点バスバー8は、後述するU相コイル部21、V相コイル部22及びW相コイル部23との間にそれぞれ中性点を形成する結線用端子8a、8b,8cを有する(図2参照)。この中性点バスバー8も、図1に示すように、端子8a,8b,8cを外部に露出させた状態で保持部13に保持される。 The U-phase bus bar 5, V-phase bus bar 6, and W-phase bus bar 7 of the present embodiment each have one connection terminal 5a, 6a, 7a to which the coil wire CL is connected, and one power supply terminal 5b, 6b, 7b to be connected to an external power supply (see FIG. 2). These U-phase bus bar 5, V-phase bus bar 6, and W-phase bus bar 7 are held by a holding portion 13 with terminals 5a, 5b, 6a, 6b, 7a, and 7b exposed to the outside, as shown in FIG. Further, the neutral point bus bar 8 has connection terminals 8a, 8b, and 8c that form neutral points respectively with a U-phase coil portion 21, a V-phase coil portion 22, and a W-phase coil portion 23, which will be described later (see FIG. 2). As shown in FIG. 1, the neutral point bus bar 8 is also held by the holding portion 13 with the terminals 8a, 8b, and 8c exposed to the outside.
 図3に示すように、コイルCは、ステータコア2に取り付けられた絶縁部材10(の第2被覆部12)を介して、計12個のティース4のそれぞれに巻装されている。コイルCには、計4個のU相コイルCU1~CU4と、計4個のV相コイルCV1~CV4と、計4個のW相コイルCW1~CW4とがあり、これらが上記のバスバー5~8を用いてスター結線されることにより、図4及び図5に示すようなモータの駆動回路(給電回路)20が形成される。 As shown in FIG. 3, the coil C is wound around each of a total of 12 teeth 4 via (the second covering portion 12 of) the insulating member 10 attached to the stator core 2 . The coil C includes a total of four U-phase coils CU1 to CU4, a total of four V-phase coils CV1 to CV4, and a total of four W-phase coils CW1 to CW4, and these are star-connected using the bus bars 5 to 8 to form a motor drive circuit (power supply circuit) 20 as shown in FIGS.
 計12個設けられるコイルCは、一本の連続したコイル線(銅等の金属材料からなる導線を絶縁皮膜で被覆したもの)CLを絶縁部材10(の第2被覆部12)で被覆された計12個のティース4のそれぞれに集中巻きで順次巻装することにより形成される。本実施形態では、図4及び図5に示すように、最初にU相コイルCU1が形成(巻装)され、以降、CU2→CU3→CU4→CV3→CV4→CV1→CV2→CW1→CW2→CW3→CW4の順にコイルCが形成される。以下、各ティース4にコイルCを巻装するコイル巻装工程、及びコイル巻装工程後に実施される結線工程について説明する。 A total of 12 coils C are formed by sequentially winding a single continuous coil wire (a conductive wire made of a metal material such as copper coated with an insulating film) CL around each of a total of 12 teeth 4 covered with (the second covering portion 12 of) an insulating member 10 by concentrated winding. In this embodiment, as shown in FIGS. 4 and 5, the U-phase coil CU1 is first formed (wound), and thereafter, the coils C are formed in the order of CU2→CU3→CU4→CV3→CV4→CV1→CV2→CW1→CW2→CW3→CW4. A coil winding process for winding the coil C around each tooth 4 and a wire connection process performed after the coil winding process will be described below.
[コイル巻装工程]
 図4に示すように、この工程では、まず、第1ティース4Aの外周にコイル線CLが反時計回り方向に所定回数巻き回される。これにより、U相コイルCU1が第1ティース4Aの外周に集中巻きで巻装される。なお、第1ティース4Aの外周へのコイル線CLの巻き回しは、ステータコア2の軸方向一端側(保持部13が設けられた側であり、図4では紙面上側。以下の説明においても同様。)から開始し、ステータコア2の軸方向一端側で終了させる。つまり、U相コイルCU1を第1ティース4Aに巻装する際、コイル線CLの巻き始め部及び巻き終わり部は、何れも、ステータコア2の軸方向一端側に引き出す。残りのU相コイルCU2~CU4、V相コイルCV1~CV4、及びW相コイルCW1~CW4を対応するティースに巻装する際も同様である。これは、コイル線CLのうち、その長手方向で隣り合う2つのコイル間に介在して両コイルを接続する部分(渡り線部CL1~CL12)をステータコア2の軸方向一端側に配置し、これらを保持部13に保持されたバスバー5~8の結線用端子に結線するためである。
[Coil winding process]
As shown in FIG. 4, in this step, first, the coil wire CL is wound around the outer periphery of the first tooth 4A counterclockwise a predetermined number of times. As a result, the U-phase coil CU1 is wound around the outer periphery of the first tooth 4A by concentrated winding. The winding of the coil wire CL around the outer periphery of the first tooth 4A is started from one axial end side of the stator core 2 (the side where the holding portion 13 is provided, which is the upper side of the paper surface in FIG. 4; the same applies to the following description), and ends at the one axial end side of the stator core 2. That is, when the U-phase coil CU1 is wound around the first teeth 4A, both the winding start portion and the winding end portion of the coil wire CL are pulled out to one end side of the stator core 2 in the axial direction. The same applies when the remaining U-phase coils CU2-CU4, V-phase coils CV1-CV4, and W-phase coils CW1-CW4 are wound around the corresponding teeth. This is because the portions (crossover portions CL 1 to CL 12 ) of the coil wire CL that are interposed between and connect two coils adjacent in the longitudinal direction are arranged on one end side in the axial direction of the stator core 2, and are connected to the connection terminals of the bus bars 5 to 8 held by the holding portion 13.
 U相コイルCU1を巻装した後、コイル線CLをステータコア2の軸方向一端側から第2ティース4Bの外周に時計回り方向に所定回数巻き回す。これにより、U相コイルCU2が第2ティース4Bの外周に集中巻きで巻装される。 After winding the U-phase coil CU1, the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer periphery of the second tooth 4B. As a result, the U-phase coil CU2 is wound around the outer periphery of the second tooth 4B by concentrated winding.
 U相コイルCU2を巻装した後、コイル線CLをステータコア2の軸方向一端側から第7ティース4Gの外周に反時計回り方向に所定回数巻き回す。これにより、U相コイルCU3が第7ティース4Gの外周に集中巻きで巻装される。なお、コイル線CLを第7ティース4Gの外周に巻き回す前には、コイル線CLのうち、U相コイルCU2,CU3の間に介在して両コイルを接続する渡り線部CL2(の一部)を、保持部13に保持されたU相バスバー5の結線用端子5aに絡げておく。U相コイルCU3を巻装した後、コイル線CLをステータコア2の軸方向一端側から第8ティース4Hの外周に時計回り方向に所定回数巻き回す。これにより、U相コイルCU4が第8ティース4Hの外周に集中巻きで巻装される。 After winding the U-phase coil CU2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the seventh tooth 4G. As a result, the U-phase coil CU3 is wound around the outer periphery of the seventh tooth 4G by concentrated winding. Before the coil wire CL is wound around the outer periphery of the seventh tooth 4G, (a part of) the connecting wire portion CL 2 of the coil wire CL interposed between the U-phase coils CU2 and CU3 to connect the two coils is wound around the connection terminal 5a of the U-phase bus bar 5 held by the holding portion 13. After winding the U-phase coil CU3, the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer periphery of the eighth tooth 4H. As a result, the U-phase coil CU4 is wound around the outer periphery of the eighth tooth 4H by concentrated winding.
 ここで、当該コイル巻装工程の実施段階において、バスバー5~8は、絶縁部材10に対して相対移動不可能に保持部13に保持させておいても良いし、絶縁部材10に対して相対移動可能に保持部13に保持させておいても良い。前者の構成は、例えば、バスバー5~8をインサート部品として絶縁部材10(保持部13)を樹脂で射出成形することにより得ることができる。また、後者の構成は、図2に示すように、バスバー嵌合用の溝部13a~13dを有する絶縁部材10(保持部13)を樹脂で射出成形した後、上記溝部13a~13dにバスバー5~8をアウトサートすることにより得ることができる。後者の構成であれば、前者の構成に比べ、当該コイル巻装工程で実施されるバスバーの結線用端子へのコイル線(渡り線部)の絡げ作業を容易化することができる。なお、後者の構成を採用した場合、各バスバーの結線用端子にコイル線を結線することにより、絶縁部材10に対するバスバー5~8の相対移動を規制(保持部13に対してバスバー5~8を固定)することができる。 Here, in the implementation stage of the coil winding process, the busbars 5 to 8 may be held by the holding portion 13 so as not to be relatively movable with respect to the insulating member 10, or may be held by the holding portion 13 so as to be relatively movable with respect to the insulating member 10. The former configuration can be obtained, for example, by injection-molding the insulating member 10 (holding portion 13) with resin using the busbars 5 to 8 as insert parts. The latter configuration can be obtained by injection-molding an insulating member 10 (holding portion 13) having grooves 13a to 13d for fitting busbars with resin, and then outserting the busbars 5 to 8 into the grooves 13a to 13d, as shown in FIG. With the latter configuration, the work of winding the coil wire (connection wire portion) to the connection terminal of the bus bar performed in the coil winding process can be facilitated as compared with the former configuration. When the latter configuration is adopted, relative movement of the busbars 5 to 8 with respect to the insulating member 10 can be restricted (busbars 5 to 8 fixed to the holding portion 13) by connecting coil wires to the connection terminals of each busbar.
 U相コイルCU4(計4つのU相コイルCU1~CU4)を巻装した後、コイル線CLをステータコア2の軸方向一端側から第9ティース4Iの外周に反時計回り方向に所定回数巻き回す。これにより、V相コイルCV3が第9ティース4Iの外周に集中巻きで巻装される。なお、コイル線CLを第9ティース4Iの外周に巻き回す前には、コイル線CLのうち、U相コイルCU4とV相コイルCV3を接続する渡り線部CL4(の一部)を、保持部13に保持された中性点バスバー8の結線用端子8aに絡げておく。V相コイルCV3を巻装した後、コイル線CLをステータコア2の軸方向一端側から第10ティース4Jの外周に時計回り方向に所定回数巻き回す。これにより、V相コイルCV4が第10ティース4Jの外周に集中巻きで巻装される。 After winding the U-phase coil CU4 (a total of four U-phase coils CU1 to CU4), the coil wire CL is wound from one end of the stator core 2 in the axial direction around the outer circumference of the ninth tooth 4I in the counterclockwise direction for a predetermined number of times. As a result, the V-phase coil CV3 is wound around the outer periphery of the ninth tooth 4I by concentrated winding. Before winding the coil wire CL around the outer circumference of the ninth tooth 4I, (part of) the crossover portion CL 4 of the coil wire CL connecting the U-phase coil CU4 and the V-phase coil CV3 is wound around the connection terminal 8a of the neutral point bus bar 8 held by the holding portion 13. After winding the V-phase coil CV3, the coil wire CL is wound a predetermined number of times clockwise around the outer circumference of the tenth tooth 4J from one end in the axial direction of the stator core 2 . As a result, the V-phase coil CV4 is wound around the outer circumference of the tenth tooth 4J by concentrated winding.
 V相コイルCV4を巻装した後、コイル線CLをステータコア2の軸方向一端側から第3ティース4Cの外周に反時計回り方向に所定回数巻き回す。これにより、V相コイルCV1が第3ティース4Cの外周に集中巻きで巻装される。なお、コイル線CLを第3ティース4Cの外周に巻き回す前には、コイル線CLのうち、V相コイルCV4,CV1を接続する渡り線部CL6(の一部)を、保持部13に保持されたV相バスバー6の結線用端子6aに絡げておく。V相コイルCV1を巻装した後、コイル線CLをステータコア2の軸方向一端側から第4ティース4Dの外周に時計回り方向に所定回数巻き回す。これにより、V相コイルCV2が第4ティース4Dの外周に集中巻きで巻装される。 After winding the V-phase coil CV4, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the third tooth 4C. As a result, the V-phase coil CV1 is wound around the outer periphery of the third tooth 4C by concentrated winding. Before winding the coil wire CL around the outer periphery of the third teeth 4C, (part of) the crossover portion CL 6 of the coil wire CL connecting the V-phase coils CV4 and CV1 is wound around the connection terminal 6a of the V-phase bus bar 6 held by the holding portion 13. After winding the V-phase coil CV1, the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 around the outer circumference of the fourth tooth 4D. As a result, the V-phase coil CV2 is wound around the outer periphery of the fourth tooth 4D by concentrated winding.
 V相コイルCV2(計4つのV相コイルCV1~CV4)を巻装した後、コイル線CLをステータコア2の軸方向一端側から第5ティース4Eの外周に反時計回り方向に所定回数巻き回す。これにより、W相コイルCW1が第5ティース4Eの外周に集中巻きで巻装される。なお、コイル線CLを第5ティース4Eの外周に巻き回す前には、コイル線CLのうち、V相コイルCV2とW相コイルCW1を接続する渡り線部CL8(の一部)を、保持部13に保持された中性点バスバー8の結線用端子8bに絡げておく。W相コイルCW1を巻装した後、コイル線CLをステータコア2の軸方向一端側から第6ティース4Fの外周に時計回り方向に所定回数巻き回す。これにより、W相コイルCW2が第6ティース4Fの外周に集中巻きで巻装される。 After winding the V-phase coil CV2 (four V-phase coils CV1 to CV4 in total), the coil wire CL is wound from one axial end of the stator core 2 around the outer periphery of the fifth tooth 4E in the counterclockwise direction for a predetermined number of times. As a result, the W-phase coil CW1 is wound around the outer periphery of the fifth tooth 4E by concentrated winding. Before winding the coil wire CL around the outer circumference of the fifth tooth 4E, (part of) the crossover portion CL 8 of the coil wire CL connecting the V-phase coil CV2 and the W-phase coil CW1 is wound around the connection terminal 8b of the neutral point bus bar 8 held by the holding portion 13. After winding the W-phase coil CW1, the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 to the outer periphery of the sixth tooth 4F. As a result, the W-phase coil CW2 is wound around the outer periphery of the sixth tooth 4F by concentrated winding.
 W相コイルCW2を巻装した後、コイル線CLをステータコア2の軸方向一端側から第11ティース4Kの外周に反時計回り方向に所定回数巻き回す。これにより、W相コイルCW3が第11ティース4Kの外周に集中巻きで巻装される。なお、コイル線CLを第11ティース4Kの外周に巻き回す前には、コイル線CLのうち、W相コイルCW2,CW3を接続する渡り線部CL10(の一部)を、保持部13に保持されたW相バスバー7の結線用端子7aに絡げておく。W相コイルCW3を巻装した後、コイル線CLをステータコア2の軸方向一端側から第12ティース4Lの外周に時計回り方向に所定回数巻き回す。これにより、W相コイルCW4が第12ティース4Lの外周に集中巻きで巻装される。 After winding the W-phase coil CW2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one end of the stator core 2 in the axial direction around the outer periphery of the eleventh tooth 4K. As a result, the W-phase coil CW3 is wound around the outer circumference of the eleventh tooth 4K by concentrated winding. Before winding the coil wire CL around the outer circumference of the eleventh tooth 4K, (part of) the crossover portion CL 10 of the coil wire CL connecting the W-phase coils CW2 and CW3 is wound around the connection terminal 7a of the W-phase bus bar 7 held by the holding portion 13. After the W-phase coil CW3 is wound, the coil wire CL is wound a predetermined number of times clockwise around the outer periphery of the twelfth tooth 4L from one end in the axial direction of the stator core 2 . As a result, the W-phase coil CW4 is wound around the outer periphery of the twelfth tooth 4L by concentrated winding.
 以上により、一本の連続したコイル線CLの長手方向に沿って計4個のU相コイル、計4個のV相コイル、及び計4個のW相コイルが順に形成される。なお、計12個のコイルCが形成された一本の連続したコイル線CLの巻き始め部CLs及び巻き終わり部CLfは、何れも、中性点バスバー8の結線用端子8cに絡げられる。これにより、計12個のティース4のそれぞれにコイルCを集中巻きで巻装するコイル巻装工程が完了する。 As described above, a total of four U-phase coils, a total of four V-phase coils, and a total of four W-phase coils are sequentially formed along the longitudinal direction of one continuous coil wire CL. A winding start portion CL s and a winding end portion CL f of a single continuous coil wire CL in which a total of 12 coils C are formed are both wrapped around the connection terminal 8 c of the neutral point bus bar 8 . As a result, the coil winding process of winding the coil C on each of the total 12 teeth 4 by concentrated winding is completed.
[結線工程]
 この結線工程では、バスバー5~8の結線用端子に絡げられたコイル線CL(の渡り線部)が、絡げ先の結線用端子に結線される。具体的には、
・コイル線CLの渡り線部CL2がU相バスバー5の結線用端子5aに結線され、
・コイル線CLの渡り線部CL6がV相バスバー6の結線用端子6aに結線され、
・コイル線CLの渡り線部CL10がW相バスバー7の結線用端子7aに結線され、
・コイル線CLの渡り線部CL4が中性点バスバー8の結線用端子8aに結線され、
・コイル線CLの渡り線部CL8が中性点バスバー8の結線用端子8bに結線され、
・コイル線CLの渡り線部CL12(コイル線CLのスタート線CLs及びフィニッシュ線CLf)が中性点バスバー8の結線用端子8cに結線される。
[Connection process]
In this connection step, the coil wire CL (the connecting wire portion thereof) that is bound by the connection terminals of the bus bars 5 to 8 is connected to the connection terminal that is bound. in particular,
- The connecting wire portion CL2 of the coil wire CL is connected to the connection terminal 5a of the U-phase bus bar 5,
The connecting wire portion CL6 of the coil wire CL is connected to the connection terminal 6a of the V-phase bus bar 6,
The connecting wire portion CL 10 of the coil wire CL is connected to the connection terminal 7a of the W-phase bus bar 7,
- The connecting wire portion CL4 of the coil wire CL is connected to the connection terminal 8a of the neutral point bus bar 8,
The connecting wire portion CL 8 of the coil wire CL is connected to the connection terminal 8b of the neutral point bus bar 8,
The connecting wire portion CL 12 of the coil wire CL (the start line CL s and finish line CL f of the coil wire CL) is connected to the connection terminal 8 c of the neutral point bus bar 8 .
 図示は省略するが、コイル線CLの結線は、一対の電極でバスバーの結線用端子に絡げられたコイル線CLを線径方向に圧縮しながら一対の電極間に所定時間通電する、いわゆるヒュージング(熱加締め)により行われる。ヒュージングであれば、絶縁皮膜付の導線からなるコイル線CLの絶縁皮膜が除去されるのと略同時に、結線用端子に対して導線を接合することができるので、コイル線CLの結線作業を効率良く行い得る。 Although illustration is omitted, the connection of the coil wire CL is performed by so-called fusing (thermal crimping) in which a pair of electrodes compresses the coil wire CL, which is entwined with the connection terminals of the busbar, in the direction of the wire diameter and energizes the pair of electrodes for a predetermined period of time. In the case of fusing, the conductor wire can be joined to the connection terminal at substantially the same time as the insulation film of the coil wire CL made of the conductor wire with the insulation film is removed, so that the coil wire CL can be connected efficiently.
 なお、上記6つの結線用端子に対するコイル線CL(の渡り線部)の結線は、個別に施すようにしても良いし、まとめて施すようにしても良い。また、前述したコイル巻装工程を実施するのに先立って、コイル線CLのうち、結線用端子に絡げられる部分(端子に対して接合される接合予定領域)の絶縁皮膜を除去しておいても良い。この場合、結線工程では、例えば、コイル線CLのうち結線用端子に絡げられた部分(絶縁皮膜の除去部)を加締めるだけでもコイル線CLを結線用端子に対して結線することができる他、TIG溶接やレーザ溶接等の溶接によってコイル線CLを結線用端子に対して結線することもできる。 The connection of the coil wire CL (the connecting wire portion thereof) to the six connection terminals may be performed individually or collectively. In addition, prior to performing the coil winding process described above, the insulating coating may be removed from the portion of the coil wire CL that is bound around the connection terminal (the region to be bonded to the terminal). In this case, in the connection step, for example, the coil wire CL can be connected to the connection terminal only by crimping the portion of the coil wire CL that is wrapped around the connection terminal (the portion where the insulation film is removed), and the coil wire CL can also be connected to the connection terminal by welding such as TIG welding or laser welding.
 上記態様でバスバー5~8の結線用端子にコイル線CL(の渡り線部)が結線されると、図5に示すように、計4個のU相コイルCU1~CU4が2並列2直列で接続されたU相コイル部21と、計4個のV相コイルCV1~CV4が2並列2直列で接続されたV相コイル部22と、計4個のW相コイルCW1~CW4が2並列2直列で接続されたW相コイル部23とがバスバー5~8を用いて互いに結線(スター結線)されたモータ駆動回路20が得られる。 When the coil wire CL is connected to the connection terminals of the bus bars 5-8 in the above manner, as shown in FIG. 5, a U-phase coil section 21 in which a total of four U-phase coils CU1-CU4 are connected in 2-parallel and 2-series, a V-phase coil section 22 in which a total of 4 V-phase coils CV1-CV4 are connected in 2-parallel and 2-series, and a total of 4 W-phase coils CW1-CW4 are connected in 2-parallel and 2-series. A motor drive circuit 20 is obtained in which the W-phase coil portion 23 is connected to each other (star connection) using the bus bars 5-8.
 本実施形態のU相コイル部21は、U相コイルCU1,CU2を直列に接続してなる第1列と、U相コイルCU3,CU4を直列に接続してなる第2列とが、コイル線CLのうちU相コイルCU2,CU3を接続する渡り線部CL2によって並列接続されたものである。また、V相コイル部22は、V相コイルCV3,CV4を直列に接続してなる第1列と、V相コイルCV1,CV2を直列に接続してなる第2列とが、コイル線CLのうちV相コイルCV4,CV1を接続する渡り線部CL6によって並列接続されたものである。また、W相コイル部23は、W相コイルCW1,CW2を直列接続してなる第1列と、W相コイルCW3,CW4を直列接続してなる第2列とが、コイル線CLのうちW相コイルCW2,CW3を接続する渡り線部CL10によって並列接続されたものである。 In the U-phase coil section 21 of the present embodiment, a first row formed by connecting the U-phase coils CU1 and CU2 in series and a second row formed by connecting the U-phase coils CU3 and CU4 in series are connected in parallel by a connecting wire portion CL 2 of the coil wire CL that connects the U-phase coils CU2 and CU3. In the V-phase coil section 22, a first row formed by connecting the V-phase coils CV3 and CV4 in series and a second row formed by connecting the V-phase coils CV1 and CV2 in series are connected in parallel by a connecting wire portion CL 6 of the coil wire CL that connects the V-phase coils CV4 and CV1. In the W-phase coil section 23, a first row formed by connecting the W-phase coils CW1 and CW2 in series and a second row formed by connecting the W-phase coils CW3 and CW4 in series are connected in parallel by a connecting wire portion CL 10 of the coil wire CL that connects the W-phase coils CW2 and CW3.
 以上で説明したように、本実施形態のモータステータ1においては、
 一本の連続したコイル線CLを計12個のティース4のそれぞれに集中巻きで順次巻装することにより、計4個のU相コイルCU1~CU4、計4個のV相コイルCV1~CV4(並び順は、CV3→CV4→CV1→CV2)、及び計4個のW相コイルCW1~CW4をコイル線CLの長手方向に沿って順に形成し、
 コイル線CLのうち、U相コイルCU2,CU3同士を並列接続する渡り線部CL2、V相コイルCV4,CV1同士を並列接続する渡り線部CL6、及びW相コイルCW2,CW3同士を並列接続する渡り線部CL10を、それぞれ、U相バスバー5の結線用端子5a、V相バスバー6の結線用端子6a及びW相バスバー7の結線用端子7aに結線すると共に、
 コイル線CLのうち、U相コイルCU4とV相コイルCV3(U相コイル部21とV相コイル部22)を接続する渡り線部CL4、V相コイルCV2とW相コイルCW1(V相コイル部22とW相コイル部23)を接続する渡り線部CL8、及びW相コイルCW4とU相コイルCU1(W相コイル部23とU相コイル部21)を接続する渡り線部CL12を中性点バスバー8の結線用端子8a~8cにそれぞれ結線することにより、スター結線のモータ駆動回路20を形成した。
As described above, in the motor stator 1 of this embodiment,
By sequentially winding one continuous coil wire CL around each of a total of 12 teeth 4 by concentrated winding, a total of four U-phase coils CU1 to CU4, a total of four V-phase coils CV1 to CV4 (in the order of CV3 → CV4 → CV1 → CV2), and a total of four W-phase coils CW1 to CW4 are formed in order along the longitudinal direction of the coil wire CL,
Of the coil wire CL, a connecting wire portion CL 2 that connects the U-phase coils CU2 and CU3 in parallel, a connecting wire portion CL 6 that connects the V-phase coils CV4 and CV1 in parallel , and a connecting wire portion CL 10 that connects the W-phase coils CW2 and CW3 in parallel are connected to the connecting terminal 5a of the U-phase bus bar 5, the connecting terminal 6a of the V-phase bus bar 6, and the connecting terminal 7a of the W-phase bus bar 7, respectively. Along with connecting
Of the coil wire CL, a crossover portion CL4 that connects the U-phase coil CU4 and the V-phase coil CV3 (the U-phase coil portion 21 and the V-phase coil portion 22), a crossover portion CL8 that connects the V-phase coil CV2 and the W-phase coil CW1 (the V-phase coil portion 22 and the W-phase coil portion 23), and a crossover portion CL12 that connects the W-phase coil CW4 and the U-phase coil CU1 (the W-phase coil portion 23 and the U-phase coil portion 21). are respectively connected to the connection terminals 8a to 8c of the neutral point bus bar 8, a star-connected motor drive circuit 20 is formed.
 例えば10極12スロットの三相ブラシレスモータ用の駆動回路(スター結線)を形成する際、計4個のバスバー(U相バスバー、V相バスバー、W相バスバー及び中性点バスバー)に対する結線箇所は最大で12箇所にも及ぶ。これに対し、上記態様でモータ駆動回路20を形成すれば、計4個のバスバー5~8に対する結線箇所を6箇所にまで減じることができる。これにより、結線作業の簡素化を通じてモータステータ1のコスト低減を図ることができる。 For example, when forming a drive circuit (star connection) for a three-phase brushless motor with 10 poles and 12 slots, there are a maximum of 12 connection points for a total of 4 busbars (U-phase busbar, V-phase busbar, W-phase busbar, and neutral point busbar). On the other hand, if the motor drive circuit 20 is formed in the manner described above, the number of connection points for the four bus bars 5 to 8 can be reduced to six. As a result, the cost of the motor stator 1 can be reduced through the simplification of the wire connection work.
 また、本実施形態のモータステータ1では、計4個のバスバー5~8を、ステータコア2の軸方向一端側で絶縁部材10(の保持部13)に互いに非接触の状態で保持している。これはすなわち、ティース4とこれに巻装されたコイルCの間を絶縁するための絶縁部材10が、従来品で言うバスバーユニットのバスバーホルダに相当する部分を一体的に有していることを意味する。この場合、モータステータとは別とに設けられるのが一般的であるバスバーユニットが不要となるので部品点数を削減できる。また、この場合、コイルCの巻装時に、バスバー5~8に対するコイル線CLの結線予定箇所(各渡り線部)をバスバー5~8の結線用端子に接触させることができる(本実施形態では絡げている)ので、コイル巻装後の結線作業を容易にかつ正確に実行することができる。従って、部品点数削減及び結線作業の容易化によりステータコア1を低コスト化することができる。 In addition, in the motor stator 1 of the present embodiment, a total of four busbars 5 to 8 are held by (the holding portion 13 of) the insulating member 10 on one axial end side of the stator core 2 in a non-contact state. This means that the insulating member 10 for insulating between the teeth 4 and the coil C wound thereon integrally has a portion corresponding to the busbar holder of the conventional busbar unit. In this case, the number of parts can be reduced because the bus bar unit, which is generally provided separately from the motor stator, is not required. Further, in this case, when the coil C is wound, the planned connection points (connection wire portions) of the coil wire CL to the busbars 5 to 8 can be brought into contact with the connection terminals of the busbars 5 to 8 (in this embodiment, they are bound), so that the connection work after the coil winding can be performed easily and accurately. Therefore, the cost of the stator core 1 can be reduced by reducing the number of parts and facilitating the connection work.
 以上、本発明の実施形態に係るモータステータ1について説明を行ったが、モータステータ1には、本発明の要旨を変更しない限りにおいて適宜の変形を施すことができる。例えば、一本の連続したコイル線CLを計12個のティース4のそれぞれに集中巻きで順次コイルCを巻装する際のコイルCの巻装順は、図6に示すように変更することもできる。具体的には、第8ティース4HにU相コイルCU4を巻装した後、第5ティース4EにW相コイルCW1を巻装する前に、CV4→CV3→CV2→CV1の順でV相コイルを巻装しても構わない。但し、この場合、コイル線CLのうち、その長手方向で隣り合う2つのコイル同士を接続する渡り線部には、ステータコア2の周方向における巻き方向が正方向であるものと逆方向であるものとが混在することになる。 Although the motor stator 1 according to the embodiment of the present invention has been described above, the motor stator 1 can be appropriately modified as long as the gist of the present invention is not changed. For example, the winding order of the coils C when one continuous coil wire CL is sequentially wound around each of a total of 12 teeth 4 by concentrated winding can be changed as shown in FIG. Specifically, after winding the U-phase coil CU4 around the eighth tooth 4H, and before winding the W-phase coil CW1 around the fifth tooth 4E, the V-phase coil may be wound in the order of CV4→CV3→CV2→CV1. However, in this case, among the coil wires CL, the connecting wire portions that connect two coils that are adjacent in the longitudinal direction include those in which the winding direction in the circumferential direction of the stator core 2 is in the positive direction and those in which the winding direction is in the opposite direction.
 一方、前述した実施形態では、渡り線部(CL1~CL12)の周方向における巻き方向が全て同じ(図3に示す態様で配列されたティース4のそれぞれに図4に示す順番でコイルを巻装する場合、渡り線部の巻き方向は全て反時計回り)である。この場合には、各ティース4にコイルを集中巻きで順次巻装するときに、コイル線CLが折り返されないため、渡り線部が軸方向に積み重なることによるモータステータ1の大型化やコイル線CLの断線を防止することができる。逆に言えば、図6に示す順番でコイルCを巻装することにより、周方向における巻き方向が正方向である渡り線部と、周方向における巻き方向が逆方向である渡り線部とが混在することになると、モータステータ1が軸方向に大型化したり、コイル線CLが断線したりする可能性がある。従って、渡り線部(CL1~CL12)の周方向における巻き方向は、全て同じにするのが好ましい。 On the other hand, in the above-described embodiment, the winding directions in the circumferential direction of the connecting wire portions (CL 1 to CL 12 ) are all the same (when the coils are wound in the order shown in FIG. 4 on each of the teeth 4 arranged in the manner shown in FIG. 3, the winding directions of the connecting wire portions are all counterclockwise). In this case, since the coil wire CL is not folded back when the coil is successively wound around each tooth 4 by concentrated winding, it is possible to prevent the motor stator 1 from becoming larger and the coil wire CL from breaking due to stacking of the crossover portions in the axial direction. Conversely, when the coil C is wound in the order shown in FIG. 6, if the crossover wire portion with the positive winding direction in the circumferential direction and the crossover wire portion with the opposite winding direction in the circumferential direction coexist, the motor stator 1 may be enlarged in the axial direction, or the coil wire CL may be broken. Therefore, it is preferable that all of the connecting wire portions (CL 1 to CL 12 ) have the same winding direction in the circumferential direction.
 以上では、10極12スロットの三相ブラシレスモータ(分数溝モータ)用のステータ1に本発明を適用する場合について説明したが、本発明は、その他の分数溝モータ用のステータ、例えば14極12スロットの三相ブラシレスモータ用のステータや、14極18スロットの三相ブラシレスモータ用のステータに適用することもできる。後者の場合、例えば2並列3直列で接続されたU相~W相コイルをスター結線することでモータ駆動回路が形成される。 Although the case where the present invention is applied to the stator 1 for a 10-pole, 12-slot three-phase brushless motor (fractional groove motor) has been described above, the present invention can also be applied to stators for other fractional-groove motors, such as stators for 14-pole, 12-slot, three-phase brushless motors, and stators for 14-pole, 18-slot, three-phase brushless motors. In the latter case, for example, a motor drive circuit is formed by star-connecting U-phase to W-phase coils connected in two parallel and three series.
 本発明は以上で説明した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは言うまでもない。本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is by no means limited to the embodiments described above, and it goes without saying that it can be embodied in various forms without departing from the gist of the present invention. The scope of the present invention is indicated by the claims, and includes equivalent meanings and all changes within the scope of the claims.
 1    モータステータ
 2    ステータコア
 4    ティース
 5    U相バスバー
 5a   結線用端子
 6    V相バスバー
 6a   結線用端子
 7    W相バスバー
 7a   結線用端子
 8    中性点バスバー
 8a,8b,8c 結線用端子
 10   絶縁部材
 13   保持部
 20   モータ駆動回路
 30   モータ
 32   モータロータ
 33   出力軸
 35   永久磁石
 C    コイル
 CU1,CU2,CU3,CU4 U相コイル
 CV1,CV2,CV3,CV4 V相コイル
 CW1,CW2,CW3,CW4 W相コイル
 CL   コイル線
 CL1~CL12 渡り線部
Reference Signs List 1 motor stator 2 stator core 4 teeth 5 U-phase busbar 5a connection terminal 6 V-phase busbar 6a connection terminal 7 W-phase busbar 7a connection terminal 8 neutral point busbars 8a, 8b, 8c connection terminal 10 insulating member 13 holding portion 20 motor drive circuit 30 motor 32 motor rotor 33 output shaft 35 Permanent magnet C Coil CU1, CU2, CU3, CU4 U-phase coil CV1, CV2, CV3, CV4 V-phase coil CW1, CW2, CW3, CW4 W-phase coil CL Coil wire CL 1 to CL 12 connecting wire

Claims (8)

  1.  周方向に間隔を空けて設けられた複数のティースを有する円筒状のステータコアと、前記複数のティースのそれぞれに絶縁部材を介してコイル線を巻装することで形成された複数のU相コイル、V相コイル及びW相コイルと、を備えたモータステータにおいて、
     一本の連続した前記コイル線を前記複数のティースのそれぞれに集中巻きで順次巻装することにより、前記複数のU相コイル、前記複数のV相コイル、及び前記複数のW相コイルを前記コイル線の長手方向に沿って順に形成し、
     前記コイル線のうち、前記U相コイル同士を並列接続する渡り線部、前記V相コイル同士を並列接続する渡り線部、及び前記W相コイル同士を並列接続する渡り線部を、それぞれ、U相バスバーの結線用端子、V相バスバーの結線用端子及び前記W相バスバーの結線用端子に結線すると共に、前記コイル線のうち、前記U相コイルと前記V相コイルを接続する渡り線部、前記V相コイルと前記W相コイルを接続する渡り線部、及び前記W相コイルと前記U相コイルを接続する渡り線部を中性点バスバーの結線用端子に結線することにより、スター結線のモータ駆動回路を形成したことを特徴とするモータステータ。
    A motor stator comprising a cylindrical stator core having a plurality of teeth spaced apart in a circumferential direction, and a plurality of U-phase coils, V-phase coils and W-phase coils formed by winding a coil wire around each of the plurality of teeth via an insulating member,
    The plurality of U-phase coils, the plurality of V-phase coils, and the plurality of W-phase coils are sequentially formed along the longitudinal direction of the coil wire by sequentially winding one continuous coil wire around each of the plurality of teeth by concentrated winding,
    Among the coil wires, a crossover wire portion that connects the U-phase coils in parallel, a crossover wire portion that connects the V-phase coils in parallel, and a crossover wire portion that connects the W-phase coils in parallel are respectively connected to a connection terminal of the U-phase bus bar, a connection terminal of the V-phase bus bar, and a connection terminal of the W-phase bus bar. A motor stator, wherein a star-connected motor drive circuit is formed by connecting a connecting wire portion connecting said W-phase coil and said U-phase coil to a connection terminal of a neutral point bus bar.
  2.  前記U相バスバー、前記V相バスバー、前記W相バスバー及び前記中性点バスバーが、前記ステータコアの軸方向一端側で前記絶縁部材に互いに非接触の状態で保持されている請求項1に記載のモータステータ。 The motor stator according to claim 1, wherein the U-phase bus bar, the V-phase bus bar, the W-phase bus bar, and the neutral point bus bar are held in non-contact with the insulating member on one axial end side of the stator core.
  3.  前記U相バスバー、前記V相バスバー、前記W相バスバー及び前記中性点バスバーが、前記絶縁部材に設けた溝部にアウトサートされている請求項2に記載のモータステータ。 The motor stator according to claim 2, wherein the U-phase busbar, the V-phase busbar, the W-phase busbar and the neutral point busbar are outserted into grooves provided in the insulating member.
  4.  ヒュージングにより、各渡り線部が対応する結線用端子に結線されている請求項1~3の何れか一項に記載のモータステータ。 The motor stator according to any one of claims 1 to 3, wherein each connecting wire portion is connected to a corresponding connection terminal by fusing.
  5.  各渡り線部の周方向における巻き方向を全て同じにした請求項1~4の何れか一項に記載のモータステータ。 The motor stator according to any one of claims 1 to 4, wherein the winding directions in the circumferential direction of each connecting wire portion are all the same.
  6.  前記U相コイルの並列数、前記V相コイルの並列数、及び前記W相コイルの並列数が何れも偶数である請求項1~5の何れか一項に記載のモータステータ。 The motor stator according to any one of claims 1 to 5, wherein the parallel number of the U-phase coils, the parallel number of the V-phase coils, and the parallel number of the W-phase coils are all even numbers.
  7.  10極12スロットの三相ブラシレスモータ用である請求項1~6の何れか一項に記載のモータステータ。 The motor stator according to any one of claims 1 to 6, which is for a three-phase brushless motor with 10 poles and 12 slots.
  8.  請求項1~7の何れか一項に記載のモータステータと、モータロータとを備えたモータ。 A motor comprising the motor stator according to any one of claims 1 to 7 and a motor rotor.
PCT/JP2022/048153 2022-01-20 2022-12-27 Motor stator and motor provided with same WO2023140071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007134 2022-01-20
JP2022007134A JP2023106031A (en) 2022-01-20 2022-01-20 Motor stator and motor provided with the same

Publications (1)

Publication Number Publication Date
WO2023140071A1 true WO2023140071A1 (en) 2023-07-27

Family

ID=87348702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048153 WO2023140071A1 (en) 2022-01-20 2022-12-27 Motor stator and motor provided with same

Country Status (2)

Country Link
JP (1) JP2023106031A (en)
WO (1) WO2023140071A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182236A (en) * 1994-12-26 1996-07-12 Kokusan Denki Co Ltd Winding method of armature coil for electric rotating machine
JP2006050690A (en) * 2004-07-30 2006-02-16 Ichinomiya Denki:Kk Stator and brushless motor
WO2009139067A1 (en) * 2008-05-16 2009-11-19 三菱電機株式会社 Electric motor
JP2017022930A (en) * 2015-07-14 2017-01-26 日本電産株式会社 Motor and motor manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182236A (en) * 1994-12-26 1996-07-12 Kokusan Denki Co Ltd Winding method of armature coil for electric rotating machine
JP2006050690A (en) * 2004-07-30 2006-02-16 Ichinomiya Denki:Kk Stator and brushless motor
WO2009139067A1 (en) * 2008-05-16 2009-11-19 三菱電機株式会社 Electric motor
JP2017022930A (en) * 2015-07-14 2017-01-26 日本電産株式会社 Motor and motor manufacturing method

Also Published As

Publication number Publication date
JP2023106031A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US10044236B2 (en) Stator for rotating electric machine
US7521828B2 (en) Segment connection type electric rotating machine
US9859764B2 (en) Rotary electric machine with distributed armature winding
US10355547B2 (en) Rotary electric machine
JP5070248B2 (en) Rotating electric machine and manufacturing method thereof
USRE45912E1 (en) Electric motor
US10236738B2 (en) Rotary electric machine
US9847684B2 (en) Stator and rotating electric machine
US20160056679A1 (en) Stator for rotary electric machine
US9641036B2 (en) Rotary electric machine
JP4331231B2 (en) Stator and rotating electric machine
WO2009096426A1 (en) Electric motor
WO2017110760A1 (en) Rotating electrical machine and method of manufacturing same
CN116195172A (en) Stator and motor
JP2006187164A (en) Rotary electric machine
JP4961197B2 (en) DC motor armature and DC motor
JP2007336725A (en) Stator of rotating electric machine
WO2023140071A1 (en) Motor stator and motor provided with same
CN211908498U (en) Motor stator and motor
JP5909790B2 (en) Rotating electric machine, rotating electric stator and vehicle
WO2023140074A1 (en) Motor stator and motor equipped with same
CN111478485A (en) Motor stator and motor
JP6582973B2 (en) Rotating electric machine and manufacturing method thereof
JP5909789B2 (en) Rotating electric machine, rotating electric stator and vehicle
WO2017126381A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922221

Country of ref document: EP

Kind code of ref document: A1