WO2017126381A1 - Motor - Google Patents
Motor Download PDFInfo
- Publication number
- WO2017126381A1 WO2017126381A1 PCT/JP2017/000595 JP2017000595W WO2017126381A1 WO 2017126381 A1 WO2017126381 A1 WO 2017126381A1 JP 2017000595 W JP2017000595 W JP 2017000595W WO 2017126381 A1 WO2017126381 A1 WO 2017126381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- segment
- tooth
- phase
- wound
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K23/00—DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
- H02K23/26—DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
Definitions
- the present invention relates to a motor.
- This application claims priority based on Japanese Patent Application No. 2016-008886 filed in Japan on January 20, 2016, the contents of which are incorporated herein by reference.
- an armature is rotatably supported inside a cylindrical motor housing having a permanent magnet attached to an inner peripheral surface.
- the armature includes a rotating shaft, an armature core that is externally fitted and fixed to the rotating shaft, and a commutator that is externally fixed to the rotating shaft.
- armature core In the armature core, a plurality of teeth that are long in the axial direction are radially formed, and slots that are long in the axial direction are formed between the teeth.
- the armature core functions as a magnetic circuit, and a winding is wound around each tooth of the armature core through a slot.
- a plurality of segments are arranged along the circumferential direction, and a winding is connected to each segment. Each segment can be slidably contacted with the brush, and a current is supplied to the winding by applying a voltage from the brush to the segment.
- a winding is wound around a predetermined tooth to form an armature coil, and segments having the same potential are short-circuited with the winding to form a connection line, and the armature coil and the connection line are connected to a single tooth.
- the segment to which the winding drawn from the teeth is connected is the first segment
- the segment to which the winding drawn into the teeth is the second segment
- the first segment and the second segment are arranged adjacent to each other, and the winding connected to the first segment and the winding connected to the second segment intersect between the commutator and the armature core.
- the present invention provides a motor capable of further reducing the size and reducing the number of winding man-hours.
- a motor includes a motor housing having a plurality of magnetic poles, a rotating shaft that is rotatably supported by the motor housing, and a fixed winding method for windings.
- An armature core having a plurality of teeth wound by: a commutator fixed to the rotating shaft adjacent to the armature core; and a plurality of segments arranged in a circumferential direction; and a sliding contact with the commutator
- a brush for supplying power to the winding, and the segment has a riser around which the winding is wound, and the winding drawn out from the armature core is hung in the same direction on the rotating shaft.
- a turned-up portion is formed and drawn toward the commutator through the turned-up portion, and the winding wound around the riser is hung. Forming a riser side intersection intersect at the armature core side of the riser that is.
- the motor includes a motor housing having a plurality of magnetic poles, a rotating shaft that is rotatably supported by the motor housing, and a fixed winding method on the rotating shaft.
- An armature core having a plurality of teeth wound by: a commutator fixed to the rotating shaft adjacent to the armature core; and a plurality of segments arranged in a circumferential direction; and a sliding contact with the commutator And a brush for supplying power to the windings, and two lead lines of the windings drawn from both sides of the teeth intersect with each other to form a tooth side intersection.
- the number of teeth is set to 6 and the number of segments is set to 12,
- Each of the teeth has a winding start end of the winding connected to one of the segments adjacent to each other and the other segment or the other segment.
- a winding end end of the winding is connected to the short-circuited segment, the first coil formed by winding the winding in a forward direction so as to be continuous between the teeth corresponding to the same phase, and the other adjacent to each other
- the winding start end of the winding is connected to one segment of the segment, and the winding is connected to the other segment or a segment short-circuited to the other segment.
- a second coil formed by winding the windings in opposite directions so that the teeth corresponding to the same phase are connected to each other.
- U-phase, -V-phase, and -W-phase coils are used, the U-phase, -W-phase, V-phase, -U-phase, W-phase, and -V-phase coils are electrically connected in this order between the adjacent segments. Connect.
- the number of teeth is set to 6, and the number of segments is set to 12,
- the winding is connected to the 7th segment at the winding start end.
- the winding is wound point-symmetrically around the rotation axis. Has been.
- the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size. Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
- FIG. 1 is a longitudinal sectional view of the motor 1
- FIG. 2 is a transverse sectional view of the motor 1.
- the motor 1 serves as a drive source for electrical components (for example, a radiator fan) mounted on the vehicle.
- an armature 3 is rotatably disposed in a bottomed cylindrical motor housing 2.
- Four permanent magnets 4 are fixed to the inner peripheral surface of the motor housing 2 in the circumferential direction. That is, the motor 1 has four magnetic poles.
- the armature 3 is externally fitted and fixed so as to be adjacent to the armature core 6 on one end side of the rotary shaft 5 and the armature core 6 wound around the rotary shaft 5 and wound around the armature core 6.
- Commutator 13 The armature core 6 is obtained by laminating a plurality of ring-shaped metal plates 8 in the axial direction. Six T-shaped teeth 9 (see FIG. 2) are radially formed on the outer peripheral portion of the metal plate 8 at regular intervals along the circumferential direction. By stacking a plurality of metal plates 8, dovetail-shaped slots 11 are formed between the teeth 9 on the outer periphery of the armature core 6. The slots 11 extend along the axial direction, and six slots 11 are formed at equal intervals along the circumferential direction. And the coil
- segments 14 made of a conductive material are attached to the outer peripheral surface of the commutator 13 disposed adjacent to the armature core 6. That is, the commutator 13 is provided with twice as many segments 14 as the number of slots 11.
- the segments 14 are made of plate-like metal pieces that are long in the axial direction, and are fixed at equal intervals along the circumferential direction in a state of being insulated from each other.
- a riser 15 is integrally formed at an end portion of each segment 14 on the armature core 6 side and is bent in a manner of being folded back to the outer diameter side.
- a winding 7 drawn out from the armature core 6 is wound around the riser 15. Then, the winding 14 is fixed to the riser 15 by fusing or the like, so that the segment 14 and the winding 7 are electrically connected.
- the winding 7 is also wound around the riser 15 corresponding to the segments 14 having the same potential (every five segments 14 in this embodiment) and fixed by fusing or the like.
- the winding 7 connecting the segments 14 having the same potential is a connection line 25 that short-circuits the segments 14 having the same potential.
- the connection line 25 is wired between the commutator 13 and the armature core 6.
- the other end side of the rotating shaft 5 is rotatably supported by a bearing 16 in a boss protruding from the motor housing 2.
- a cover 17 is provided at the opening end of the motor housing 2.
- a holder stay 18 is attached to the inside of the cover 17.
- the holder stay 18 is provided with a pair of brush holders 19 with an interval of 90 ° in the circumferential direction.
- Each brush holder 19 is provided with a brush 21 that can be moved in and out in a state where the brush 21 is urged through a spring 29. Since the tip of each brush 21 is biased by a spring 29, it is in sliding contact with the segment 14 of the commutator 13.
- a pigtail 22 is connected to the base end side of each brush 21. The pigtail 22 is electrically connected to an external power source (not shown). As a result, the power of the external power source is supplied to the winding 7 via the pigtail 22, the brush 21, and the segment 14.
- the so-called 4-pole 6-slot 12-segment brushed motor 1 having 4 permanent magnets 4 (magnetic poles) (4 magnetic poles), 6 slots 11 and 12 segments 14 is provided in the motor 1 with a brush.
- the winding 7 is wound around the armature core 6 and the riser 15 as follows.
- FIG. 3 is a developed view of the segment 14 (the riser 15) and the teeth 9 of the armature 3, and the gap between the adjacent teeth 9 corresponds to the slot 11.
- each tooth 9 and each segment 14 will be described with numbers in order. That is, the teeth 9 are numbered from 1 to 6, and the segments 14 are numbered from 1 to 12.
- the winding machine (not shown) used for the winding work of the winding 7 employs a so-called double flyer system including two flyers (not shown) for feeding the winding 7. Then, the winding 7 is wound around the rotating shaft 5 simultaneously at two points symmetrically.
- a winding method of the winding 7 at one place (first flyer) out of two places (two flyers) will be described in detail, and the winding 7 at the other place (second flyer) will be wound.
- first flyer first flyer
- second flyer the winding 7 at the other place
- each tooth 9 is assigned with U, V, and W phases in this order. That is, No. 1 and No. 4 teeth 9 are the U phase, No. 2 and No. 5 teeth 9 are the V phase, and No. 3 and No. 6 teeth 9 are the W phase.
- the winding start end 7a starts to be wound from the seventh segment 14
- the winding 7 is first wound around the riser 15 of the seventh segment 14, and then in one direction (from left to right in FIG. 3).
- the first segment 14 is pulled around the riser 15 of the first segment 14 having the same potential as the seventh segment 14.
- a winding portion 80 is formed by winding the winding 7 around the rotating shaft 5 (not shown in FIG. 3) between the armature core 6 and the commutator 13 in one direction. Then, the winding 7 is drawn into the slot 11 between the 1-6th teeth 9 existing in the vicinity of the 1st segment 14. Thereafter, the winding 7 is wound around the first tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 71a.
- the rotating shaft 5 between the armature core 6 and the commutator 13 will be simply referred to as the rotating shaft 5 for easy understanding.
- the N turns described above is the desired number of turns of the winding 7 wound around each tooth 9. That is, N / 2 times is half the desired number of turns.
- the forward direction refers to the clockwise direction in FIG. 3, and the counterclockwise direction is referred to as the reverse direction.
- the present invention is not limited to this, and the forward direction may be the counterclockwise direction in FIG. 3, and the reverse direction may be the clockwise direction in FIG.
- the winding 7 is pulled out from the slot 11 between the first and second teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is wound around the riser 15 of the second segment 14 adjacent to the first segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the eighth segment 14 having the same potential as the second segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 3rd and 4th teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the reverse direction to form the reverse winding coil 73b.
- the winding 7 is pulled out from the slot 11 between the second and third teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is hung around the riser 15 of the third segment 14 adjacent to the second segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the ninth segment 14 having the same potential as the third segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 4th and 5th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 75a.
- the winding 7 is pulled out from the slot 11 between the 5th and 6th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is wound around the riser 15 of the 10th segment 14 adjacent to the 9th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fourth segment 14 having the same potential as the tenth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the first and second teeth 9. Then, the winding 7 is wound around the first tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 71b.
- the winding 7 is pulled out from the slot 11 between the 1-6th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is wound around the riser 15 of the 11th segment 14 adjacent to the 10th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fifth segment 14 having the same potential as the eleventh segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the second and third teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 73a.
- the winding 7 is pulled out from the slot 11 between the 3rd and 4th teeth 9, and this winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is wound around the riser 15 of the sixth segment 14 adjacent to the fifth segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the twelfth segment 14 having the same potential as the sixth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 5th and 6th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 75b.
- the winding 7 is pulled out from the slot 11 between the 4th and 5th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, the winding end 7 b is hung around the riser 15 of the seventh segment 14 adjacent to the sixth segment 14.
- the U-phase forward winding coil (U) 71a and the reverse winding coil (-U) 71b are formed on the first tooth 9.
- the terminal of the U-phase forward coil 71 a of the first tooth 9 is connected to the 1-2 segment 14.
- the terminals of the U-phase reverse winding coil 71 b of the first tooth 9 are connected to the fourth segment 14 and the eleventh segment 14.
- the eleventh segment 14 is short-circuited to the fifth segment 14 by the connection line 25
- the terminal of the U-phase reverse coil 71 b of the first tooth 9 is connected to the fourth to fifth segment 14. Is the same as
- a forward winding coil (W) 73a and a reverse winding coil (-W) 73b are formed on the third tooth 9.
- the terminal of the W-phase forward winding coil 73a of the third tooth 9 is connected to the 5-6th segment 14.
- the terminals of the W-phase reverse winding coil 73 b of the third tooth 9 are connected to the third segment 14 and the eighth segment 14. Since the 8th segment 14 is short-circuited to the 2nd segment 14 by the connection line 25, the terminal of the W-phase reverse winding coil 73b of the 3rd tooth 9 is the same as that connected to the 2-3th segment 14 It is.
- a forward winding coil (V) 75a and a reverse winding coil (-V) 75b are formed on the fifth tooth 9.
- the terminal of the V-phase forward winding coil 75 a of the fifth tooth 9 is connected to the 9th to 10th segments 14.
- the terminal of the W-phase reverse winding coil 75 b of the fifth tooth 9 is connected to the seventh segment 14 and the twelfth segment 14. Since the 12th segment 14 is short-circuited to the 6th segment 14 by the connection line 25, the terminal of the V-phase reverse winding coil 75b of the 5th tooth 9 is the same as that connected to the 6th-7th segment 14 It is.
- the winding work of the winding 7 in the other place is centered on the rotating shaft 5 from the seventh segment 14 to which the winding start end 7a of the first place (first flyer) is connected. It starts from the first segment 14 that exists at a point-symmetrical position. That is, after the winding start end 7a is wound around the riser 15 of the first segment 14, the winding 7 is wound symmetrically with the winding 7 in the first flyer about the rotary shaft 5. It is advanced.
- V-phase forward winding coil (V) 72a and a reverse winding coil (-U) 72b are formed on the second tooth 9.
- a forward winding coil (U) 74 a and a reverse winding coil ( ⁇ U) 74 b are formed on the fourth tooth 9.
- a forward winding coil (W) 76 a and a reverse winding coil ( ⁇ W) 76 b are formed on the sixth tooth 9.
- the terminals of the coils 72a to 76b are connected between the predetermined segments 14.
- phase coils (coils 71a to 76b for each phase) are arranged so that both sides are different from each other and forward and reverse. Are sequentially connected in this order.
- FIG. 4 is an explanatory view showing a state where the winding 7 is wound around the riser 15.
- the winding 7 is always drawn around in one direction (the direction from left to right in FIG. 3). Therefore, as shown in FIG. 4, the winding 7 drawn into the riser 15 from one direction is further drawn out in one direction after being wound around the riser 15. For this reason, the windings 7 intersect on the armature core 6 side (the upper side in FIG. 4) of the riser 15 to form a riser side intersecting portion 77. In other words, the winding 7 is wound around the riser 15 by the ⁇ winding method.
- the winding 7 drawn out from the armature core 6 is hung around the rotating shaft 5 in one direction (the direction from left to right in FIG. 3) to form a hung portion 80. . Then, the winding 7 is pulled out toward the commutator 13 through the hanging portion 80.
- the winding 7 wound around the riser 15 intersects on the armature core 6 side of the wound riser 15 to form a riser side intersection 77. For this reason, it is possible to prevent the winding 7 from loosening at a portion (under the neck) between the commutator 13 and the armature core 6. Therefore, the winding thickness of the winding 7 under the neck of the commutator 13 is eliminated, and the motor 1 can be reduced in size.
- the winding 7 drawn out from the armature core 6 is hung on the rotary shaft 5 to form a hung portion 80, thereby preventing loosening of the winding 7 wired between the armature core 6 and the commutator 13.
- the motor 1 can be further downsized. Furthermore, since the winding 7 is pulled out from the armature core 6 in the same direction (right direction in FIG. 3), the winding work of the winding 7 can be performed efficiently, and the number of winding steps can be reduced.
- the winding structure of the winding 7 is such that the winding 7 can be wound simultaneously at two points symmetrically about the rotating shaft 5. For this reason, a so-called double flyer system including two flyers (not shown) for feeding the winding 7 can be employed. Therefore, the winding man-hour can be further reduced.
- FIG. 5 is a developed view of the segment 14 (the riser 15) and the teeth 9 of the armature 3 in the second embodiment, and the gap between the adjacent teeth 9 corresponds to the slot 11.
- the motor 1 includes a motor housing 2 and an armature 3, and the motor 1 is a so-called 4-pole 6-slot 12-segment brushed motor 1.
- the winding 7 is wound around each tooth 9 by the concentrated winding method, and between adjacent segments 14, U, -W, V,
- the basic configuration in which the -U, W, -V phase coils (the coils 71a to 76b of each phase) are electrically connected in this order is the same as in the first embodiment.
- the difference between the first embodiment and the second embodiment is that the winding method of the winding 7 is different.
- a method of routing the winding 7 according to the second embodiment will be described in detail. For example, when the winding start end 7a starts to be wound from the seventh segment 14, the winding 7 is first wound around the riser 15 of the seventh segment 14, and then in one direction (from left to right in FIG. 3). The first segment 14 is pulled around the riser 15 of the first segment 14 having the same potential as the seventh segment 14.
- the winding portion 7 is wound around the rotating shaft 5 (not shown in FIG. 3) between the armature core 6 and the commutator 13 in the other direction (the direction from right to left in FIG. 3). Form. Then, the winding 7 is drawn into the slot 11 between the 1-6th teeth 9 existing in the vicinity of the 1st segment 14. Thereafter, the winding 7 is wound around the first tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 71a.
- the winding 7 is pulled out from the slot 11 between the first and second teeth 9, and this winding 7 is wound around the rotary shaft 5 in the other direction to form a winding portion 80. Further, it is wound around the riser 15 of the second segment 14 adjacent to the first segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the eighth segment 14 having the same potential as the second segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 3rd and 4th teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the reverse direction to form the reverse winding coil 73b.
- the winding 7 is pulled out from the slot 11 between the second and third teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is hung around the riser 15 of the third segment 14 adjacent to the second segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the ninth segment 14 having the same potential as the third segment 14. Thereafter, the winding portion 7 is hung around the rotating shaft 5 in the other direction to form a hung portion 80. Further, it is pulled into the slot 11 between the 4th and 5th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 75a.
- the winding 7 is pulled out from the slot 11 between the 5th and 6th teeth 9, and this winding 7 is hung around the rotating shaft 5 in the other direction to form a hung portion 80. Further, it is wound around the riser 15 of the 10th segment 14 adjacent to the 9th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fourth segment 14 having the same potential as the tenth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the first and second teeth 9. Then, the winding 7 is wound around the first tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 71b.
- the winding 7 is pulled out from the slot 11 between the 1-6th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is wound around the riser 15 of the 11th segment 14 adjacent to the 10th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fifth segment 14 having the same potential as the eleventh segment 14. Thereafter, the winding portion 7 is hung around the rotating shaft 5 in the other direction to form a hung portion 80. Further, it is pulled into the slot 11 between the second and third teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 73a.
- the winding 7 is drawn out from the slot 11 between the 3rd and 4th teeth 9, and this winding 7 is wound around the rotating shaft 5 in the other direction to form a wound portion 80. Further, it is wound around the riser 15 of the sixth segment 14 adjacent to the fifth segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the twelfth segment 14 having the same potential as the sixth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 5th and 6th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 75b.
- the winding 7 is pulled out from the slot 11 between the 4th and 5th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, the winding end 7 b is hung around the riser 15 of the seventh segment 14 adjacent to the sixth segment 14.
- a U-phase forward winding coil (U) 71a and a reverse winding coil (-U) 71b are formed on the first tooth 9.
- the terminal of the U-phase forward coil 71 a of the first tooth 9 is connected to the 1-2 segment 14.
- the terminals of the U-phase reverse winding coil 71 b of the first tooth 9 are connected to the fourth segment 14 and the eleventh segment 14.
- a forward winding coil (W) 73 a and a reverse winding coil ( ⁇ W) 73 b are formed on the third tooth 9.
- the terminal of the W-phase forward winding coil 73a of the third tooth 9 is connected to the 5-6th segment 14.
- the terminals of the W-phase reverse winding coil 73 b of the third tooth 9 are connected to the third segment 14 and the eighth segment 14.
- a forward winding coil (V) 75a and a reverse winding coil (-V) 75b are formed on the fifth tooth 9.
- the terminal of the V-phase forward winding coil 75 a of the fifth tooth 9 is connected to the 9th to 10th segments 14.
- the terminal of the W-phase reverse winding coil 75 b of the fifth tooth 9 is connected to the seventh segment 14 and the twelfth segment 14.
- the winding work of the winding 7 in the other place is centered on the rotating shaft 5 from the seventh segment 14 to which the winding start end 7a of the first place (first flyer) is connected. It starts from the first segment 14 that exists at a point-symmetrical position. That is, after the winding start end 7a is wound around the riser 15 of the first segment 14, the winding 7 is wound symmetrically with the winding 7 in the first flyer about the rotary shaft 5. It is advanced.
- V-phase forward winding coil (V) 72a and a reverse winding coil (-U) 72b are formed on the second tooth 9.
- a forward winding coil (U) 74 a and a reverse winding coil ( ⁇ U) 74 b are formed on the fourth tooth 9.
- a forward winding coil (W) 76 a and a reverse winding coil ( ⁇ W) 76 b are formed on the sixth tooth 9.
- the terminals of the coils 72a to 76b are connected between the predetermined segments 14.
- phase coils (coils 71a to 76b for each phase) are arranged so that both sides are different from each other and forward and reverse. Are sequentially connected in this order.
- the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
- the motor 1 is a drive source of an electrical component (for example, a radiator fan) mounted on the vehicle.
- the present invention is not limited to this, and the above-described motor 1 can be applied as a drive source for various devices.
- the motor 1 is a so-called 4-pole 6-slot 12 segment in which four permanent magnets 4 (magnetic poles) (the number of magnetic poles is four), six slots 11 and twelve segments 14 are provided.
- the case of the motor 1 with a brush has been described.
- the present invention is not limited to this, and the above-described embodiment can be applied to motors having various numbers of magnetic poles, slots, and segments.
- the winding 7 drawn from the armature core 6 is wound around the rotary shaft 5 in the same direction to form a wound portion 80. Then, it suffices to pull out toward the commutator 13 through the hanging portion 80. Then, the riser 15 may be formed by winding the winding 7 around the riser 15 by the ⁇ winding method. Moreover, what is necessary is just to comprise so that the coil
- the armature core 6 is formed by laminating a plurality of ring-shaped metal plates 8 in the axial direction. Further, in the armature core 6, the case where a plurality of T-shaped teeth 9 are radially formed on the outer peripheral portion of the metal plate 8 at equal intervals along the circumferential direction has been described.
- the present invention is not limited to this, and the armature core 6 may be formed by pressure-molding soft magnetic powder. Moreover, it is good also as a division
- the teeth 9 may have a predetermined skew angle so as to be inclined while twisting with respect to the axial direction.
- connection line 25 is used to short-circuit the segments 14 having the same potential.
- the present invention is not limited to this, and any conductive member that can short-circuit the segments 14 having the same potential may be used.
- winding 7 was wound around the armature core 6 by what was called a double flyer system was demonstrated.
- the present invention is not limited to this, and the winding 7 may be wound around the armature core 6 by a so-called single flyer method in which only one flyer (not shown) that feeds the winding 7 is used. In this case, the winding work of the winding 7 at the first place (first flyer) and the winding work of the winding 7 at the other place (second flyer) in the double flyer system may be performed continuously.
- the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size. Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc Machiner (AREA)
- Windings For Motors And Generators (AREA)
Abstract
In the present invention segments (14) have risers (15) around which winding wires (7) are wound, and the winding wires (7) leading out from the armature core (6) form a winding part (80) wound in the same direction on the rotary shaft, and lead out toward a commutator (13) via this winding part (80). The winding wires (7) wound around the risers (15) intersect on the armature core (6) side of the risers (15) around which they are wound, and form riser-side intersection parts.
Description
本発明は、モータに関するものである。
本願は、2016年1月20日に、日本に出願された特願2016-008886号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a motor.
This application claims priority based on Japanese Patent Application No. 2016-008886 filed in Japan on January 20, 2016, the contents of which are incorporated herein by reference.
本願は、2016年1月20日に、日本に出願された特願2016-008886号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a motor.
This application claims priority based on Japanese Patent Application No. 2016-008886 filed in Japan on January 20, 2016, the contents of which are incorporated herein by reference.
一般に、車両等に搭載されるブラシ付きの3相直流の電動モータは、内周面に永久磁石を取り付けた円筒状のモータハウジングの内側に、アーマチュアが回転自在に支持されている。アーマチュアは、回転軸と、回転軸に外嵌固定されたアーマチュアコアと、回転軸に外嵌固定されたコンミテータとを有している。
Generally, in a brushed three-phase DC electric motor mounted on a vehicle or the like, an armature is rotatably supported inside a cylindrical motor housing having a permanent magnet attached to an inner peripheral surface. The armature includes a rotating shaft, an armature core that is externally fitted and fixed to the rotating shaft, and a commutator that is externally fixed to the rotating shaft.
アーマチュアコアには、軸方向に長いティースが放射状に複数形成され、各ティース間に、軸方向に長いスロットが形成されている。アーマチュアコアは磁気回路として機能し、アーマチュアコアの各ティースに、スロットを介して巻線が巻回される。コンミテータには、複数のセグメントが周方向に沿って配置されており、各セグメントに巻線が接続されている。各セグメントはブラシと摺接可能になっており、このブラシからセグメントに電圧を印加することによって巻線に電流が供給される。
In the armature core, a plurality of teeth that are long in the axial direction are radially formed, and slots that are long in the axial direction are formed between the teeth. The armature core functions as a magnetic circuit, and a winding is wound around each tooth of the armature core through a slot. In the commutator, a plurality of segments are arranged along the circumferential direction, and a winding is connected to each segment. Each segment can be slidably contacted with the brush, and a current is supplied to the winding by applying a voltage from the brush to the segment.
ところで、電動モータの小型化、軽量化を図ろうとした場合の手段として、永久磁石の多極化が考えられる。多極化することによって磁極の1極当たりの有効磁束量を低減することが可能になり、この結果、磁気回路を形成するアーマチュアコアの小型化、軽量化を図ることができる。
ここで、単純に多極化しようとするとスロット数が多くなるので、アーマチュアコアの外径を一定に保とうとすると、スロットが小さくなってしまい、巻線の巻回作業が困難になってしまう。 By the way, as a means for reducing the size and weight of the electric motor, it is conceivable to increase the number of permanent magnets. By increasing the number of poles, the amount of effective magnetic flux per pole can be reduced, and as a result, the armature core forming the magnetic circuit can be reduced in size and weight.
Here, since the number of slots increases when trying to simply increase the number of poles, if the outer diameter of the armature core is kept constant, the slots become small, and the winding work becomes difficult.
ここで、単純に多極化しようとするとスロット数が多くなるので、アーマチュアコアの外径を一定に保とうとすると、スロットが小さくなってしまい、巻線の巻回作業が困難になってしまう。 By the way, as a means for reducing the size and weight of the electric motor, it is conceivable to increase the number of permanent magnets. By increasing the number of poles, the amount of effective magnetic flux per pole can be reduced, and as a result, the armature core forming the magnetic circuit can be reduced in size and weight.
Here, since the number of slots increases when trying to simply increase the number of poles, if the outer diameter of the armature core is kept constant, the slots become small, and the winding work becomes difficult.
このため、所定のティースに、巻線を巻回してアーマチュアコイルを形成すると共に、同電位となるセグメント同士を巻線で短絡して接続線を形成し、アーマチュアコイルおよび接続線を、1本の巻線で一連に形成し、複数のセグメントのうち、ティースから引き出した巻線が接続されるセグメントを第1セグメントとし、ティースに引き込む巻線が接続されるセグメントを第2セグメントとしたとき、これら第1セグメントと第2セグメントとが隣り合うように配置され、第1セグメントに接続されている巻線と、第2セグメントに接続されている巻線とが、コンミテータとアーマチュアコアとの間で交差して複数の交差部を形成している技術が開示されている(例えば、特許文献1参照)。
For this reason, a winding is wound around a predetermined tooth to form an armature coil, and segments having the same potential are short-circuited with the winding to form a connection line, and the armature coil and the connection line are connected to a single tooth. When a segment is formed in a series of windings, the segment to which the winding drawn from the teeth is connected is the first segment, and the segment to which the winding drawn into the teeth is the second segment, these are the segments. The first segment and the second segment are arranged adjacent to each other, and the winding connected to the first segment and the winding connected to the second segment intersect between the commutator and the armature core. Thus, a technique for forming a plurality of intersecting portions is disclosed (for example, see Patent Document 1).
ところで近年、さらなる小型化の要望が高まっている。また、上述の従来技術では、巻線の引き回し方向が常に一定にならず、巻線工数を減少するのに限界があった。
In recent years, demand for further miniaturization has increased. In the above-described prior art, the winding direction is not always constant, and there is a limit to reducing the number of winding steps.
本発明は、さらなる小型化を図ることができると共に、巻線工数を減少することが可能なモータを提供する。
The present invention provides a motor capable of further reducing the size and reducing the number of winding man-hours.
本発明の第1の態様によれば、モータは、複数の磁極を有するモータハウジングと、前記モータハウジングに回転自在に支持される回転軸と、前記回転軸に固定され、巻線が集中巻方式により巻回される複数のティースを有するアーマチュアコアと、前記回転軸に前記アーマチュアコアと隣接して固定され、複数のセグメントが周方向に並んで配置されているコンミテータと、前記コンミテータに摺接され、前記巻線に給電を行うブラシと、を備え、前記セグメントは、前記巻線が掛け回されるライザを有し、前記アーマチュアコアから引き出される前記巻線は、前記回転軸に同一方向に掛け回された掛け回し部を形成し、該掛け回し部を介して前記コンミテータに向かって引き出されており、前記ライザに掛け回された前記巻線は、掛け回された前記ライザの前記アーマチュアコア側で交差してライザ側交差部を形成している。
According to the first aspect of the present invention, a motor includes a motor housing having a plurality of magnetic poles, a rotating shaft that is rotatably supported by the motor housing, and a fixed winding method for windings. An armature core having a plurality of teeth wound by: a commutator fixed to the rotating shaft adjacent to the armature core; and a plurality of segments arranged in a circumferential direction; and a sliding contact with the commutator A brush for supplying power to the winding, and the segment has a riser around which the winding is wound, and the winding drawn out from the armature core is hung in the same direction on the rotating shaft. A turned-up portion is formed and drawn toward the commutator through the turned-up portion, and the winding wound around the riser is hung. Forming a riser side intersection intersect at the armature core side of the riser that is.
このように、ライザに掛け回された巻線を、ライザのアーマチュアコア側で交差させてライザ側交差部を形成することにより、コンミテータの首下の巻線の弛みを防止できる。このため、コンミテータの首下における巻線の巻太りが解消され、モータの小型化を図ることができる。
また、アーマチュアコアから引き出された巻線を回転軸に掛け回すことにより、アーマチュアコアとコンミテータとの間に配線される巻線の弛みも防止でき、モータをさらに小型化できる。さらに、アーマチュアコアから巻線を引き出す際、同一方向に引き回しているので、巻線の巻回作業を効率よく行うことができ、巻線工数を減少できる。 In this way, the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size.
Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
また、アーマチュアコアから引き出された巻線を回転軸に掛け回すことにより、アーマチュアコアとコンミテータとの間に配線される巻線の弛みも防止でき、モータをさらに小型化できる。さらに、アーマチュアコアから巻線を引き出す際、同一方向に引き回しているので、巻線の巻回作業を効率よく行うことができ、巻線工数を減少できる。 In this way, the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size.
Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
本発明の第2の態様によれば、モータは、複数の磁極を有するモータハウジングと、前記モータハウジングに回転自在に支持される回転軸と、前記回転軸に固定され、巻線が集中巻方式により巻回される複数のティースを有するアーマチュアコアと、前記回転軸に前記アーマチュアコアと隣接して固定され、複数のセグメントが周方向に並んで配置されているコンミテータと、前記コンミテータに摺接され、前記巻線に給電を行うブラシと、を備え、各前記ティースの両側から引き出される前記巻線の2本の引出線は、互いに交差してティース側交差部を形成している。
According to the second aspect of the present invention, the motor includes a motor housing having a plurality of magnetic poles, a rotating shaft that is rotatably supported by the motor housing, and a fixed winding method on the rotating shaft. An armature core having a plurality of teeth wound by: a commutator fixed to the rotating shaft adjacent to the armature core; and a plurality of segments arranged in a circumferential direction; and a sliding contact with the commutator And a brush for supplying power to the windings, and two lead lines of the windings drawn from both sides of the teeth intersect with each other to form a tooth side intersection.
このように構成することで、ティース近傍の巻線の弛みを防止でき、モータの小型化を図ることができる。
By configuring in this way, it is possible to prevent loosening of the windings near the teeth and to reduce the size of the motor.
本発明の第3の態様によれば、本発明の第1の態様または第2の態様に係るモータは、前記ティースの数が6、前記セグメントの数が12に設定されており、同電位とする前記セグメント同士を短絡する短絡部材を備え、各前記ティースは、互いに隣接する前記セグメントの一方のセグメントに前記巻線の巻き始め端が接続されると共に、他方の前記セグメントまたは該他方のセグメントに短絡したセグメントに前記巻線の巻き終わり端が接続され、同じ相に相当する前記ティース同士に連続するように順方向に前記巻線を巻回してなる第1コイルと、互いに隣接する他の前記セグメントの一方のセグメントに前記巻線の巻き始め端が接続されると共に、他方の前記セグメントまたは該他方のセグメントに短絡したセグメントに前記巻線の巻き終わり端が接続され、同じ相に相当するティース同士に連続するように逆方向に前記巻線を巻回してなる第2コイルと、を備え、各前記ティースを周回り方向にU相、V相、W相の順で割り当て、各相に巻回されている前記第1コイルをそれぞれU相、V相、W相のコイルとし、各相に巻回されている前記第2コイルをそれぞれ-U相、-V相、-W相のコイルとしたとき、隣接する前記セグメント間に、U相、-W相、V相、-U相、W相、-V相のコイルをこの順で電気的に接続する。
According to a third aspect of the present invention, in the motor according to the first or second aspect of the present invention, the number of teeth is set to 6 and the number of segments is set to 12, Each of the teeth has a winding start end of the winding connected to one of the segments adjacent to each other and the other segment or the other segment. A winding end end of the winding is connected to the short-circuited segment, the first coil formed by winding the winding in a forward direction so as to be continuous between the teeth corresponding to the same phase, and the other adjacent to each other The winding start end of the winding is connected to one segment of the segment, and the winding is connected to the other segment or a segment short-circuited to the other segment. And a second coil formed by winding the windings in opposite directions so that the teeth corresponding to the same phase are connected to each other. Assign the first coil wound in each phase in the order of phase and W phase, and make the U coil, V phase and W phase coil respectively, and the second coil wound in each phase − When U-phase, -V-phase, and -W-phase coils are used, the U-phase, -W-phase, V-phase, -U-phase, W-phase, and -V-phase coils are electrically connected in this order between the adjacent segments. Connect.
また、本発明の第4の態様によれば、本発明の第1の態様または第2の態様に係るモータにおいて、前記ティースの数が6、前記セグメントの数が12に設定されており、前記ティースに周回り方向に1から6まで順に番号を付すると共に、前記セグメントに周回り方向に1から12まで順に番号を付したとき、前記巻線は、巻き始め端が7番セグメントに接続され、7番セグメントから1番セグメントに接続され、1番セグメントから1番ティースに順方向に巻回され、1番ティースから2番セグメントに接続され、2番セグメントから8番セグメントに接続され、8番セグメントから3番ティースに逆方向に巻回され、3番ティースから3番セグメントに接続され、3番セグメントから9番セグメントに接続され、9番セグメントから5番ティースに順方向に巻回され、5番ティースから10番セグメントに接続され、10番セグメントから4番セグメントに接続され、4番セグメントから1番ティースに逆方向に巻回され、1番ティースから11番セグメントに接続され、11番セグメントから5番セグメントに接続され、5番セグメントから3番ティースに順方向に巻回され、3番ティースから6番セグメントに接続され、6番セグメントから12番セグメントに接続され、12番セグメントから5番ティースに逆方向に巻回され、5番ティースから引きだれた巻き終わり端が再び7番セグメントに接続されていてもよい。
According to a fourth aspect of the present invention, in the motor according to the first aspect or the second aspect of the present invention, the number of teeth is set to 6, and the number of segments is set to 12, When teeth are sequentially numbered from 1 to 6 in the circumferential direction and numbers are sequentially numbered from 1 to 12 in the circumferential direction, the winding is connected to the 7th segment at the winding start end. , Connected from the 7th segment to the 1st segment, wound in the forward direction from the 1st segment to the 1st tooth, connected from the 1st tooth to the 2nd segment, connected from the 2nd segment to the 8th segment, 8 No. 3 segment is wound in the reverse direction to No. 3 tooth, No. 3 tooth is connected to No. 3 segment, No. 3 segment is connected to No. 9 segment, From No. 9 segment No. 1 teeth are wound in the forward direction, No. 5 teeth are connected to No. 10 segment, No. 10 segments are connected to No. 4 segment, No. 4 segments are wound in the reverse direction to No. 1 teeth, No. 1 teeth To the 11th segment, from the 11th segment to the 5th segment, wound from the 5th segment to the 3rd tooth in the forward direction, connected from the 3rd tooth to the 6th segment, and from the 6th segment to the 12th segment. It is connected to the No. segment, wound in the reverse direction from the No. 12 segment to the No. 5 tooth, and the winding end drawn from the No. 5 tooth may be connected to the No. 7 segment again.
このように構成することで、さらなる小型化を図ることができると共に、巻線工数を減少することが可能なモータを提供できる。
With this configuration, it is possible to provide a motor that can be further reduced in size and can reduce the number of winding steps.
本発明の第5の態様によれば、本発明の第1の態様から第4の態様の何れか一の態様に係るモータは、前記巻線が、前記回転軸を中心に点対称に巻回されている。
According to a fifth aspect of the present invention, in the motor according to any one of the first to fourth aspects of the present invention, the winding is wound point-symmetrically around the rotation axis. Has been.
このように構成することで、コイルを形成する際に用いるフライヤの数を2つに増大し、一度に2つのコイルを形成する、いわゆるダブルフライヤ方式が採用できる。このため、巻線工数をさらに減少することができる。
With this configuration, the so-called double flyer method in which the number of flyers used when forming the coils is increased to two and two coils are formed at a time can be adopted. For this reason, the number of winding man-hours can be further reduced.
上記のモータによれば、ライザに掛け回された巻線を、ライザのアーマチュアコア側で交差させてライザ側交差部を形成することにより、コンミテータの首下の巻線の弛みを防止できる。このため、コンミテータの首下における巻線の巻太りが解消され、モータの小型化を図ることができる。
また、アーマチュアコアから引き出された巻線を回転軸に掛け回すことにより、アーマチュアコアとコンミテータとの間に配線される巻線の弛みも防止でき、モータをさらに小型化できる。さらに、アーマチュアコアから巻線を引き出す際、同一方向に引き回しているので、巻線の巻回作業を効率よく行うことができ、巻線工数を減少できる。 According to the motor described above, the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size.
Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
また、アーマチュアコアから引き出された巻線を回転軸に掛け回すことにより、アーマチュアコアとコンミテータとの間に配線される巻線の弛みも防止でき、モータをさらに小型化できる。さらに、アーマチュアコアから巻線を引き出す際、同一方向に引き回しているので、巻線の巻回作業を効率よく行うことができ、巻線工数を減少できる。 According to the motor described above, the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size.
Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
次に、本発明の実施形態を図面に基づいて説明する。
Next, an embodiment of the present invention will be described based on the drawings.
(モータ)
図1は、モータ1の縦断面図、図2は、モータ1の横断面図である。
図1、図2に示すように、モータ1は、車両に搭載する電装品(例えば、ラジエータファン)の駆動源となるものである。モータ1は、有底円筒形状のモータハウジング2内にアーマチュア3を回転自在に配置している。モータハウジング2の内周面には周方向に永久磁石4が4つ固定されている。つまり、モータ1は、磁極が4極に設定されている。 (motor)
FIG. 1 is a longitudinal sectional view of themotor 1, and FIG. 2 is a transverse sectional view of the motor 1.
As shown in FIGS. 1 and 2, themotor 1 serves as a drive source for electrical components (for example, a radiator fan) mounted on the vehicle. In the motor 1, an armature 3 is rotatably disposed in a bottomed cylindrical motor housing 2. Four permanent magnets 4 are fixed to the inner peripheral surface of the motor housing 2 in the circumferential direction. That is, the motor 1 has four magnetic poles.
図1は、モータ1の縦断面図、図2は、モータ1の横断面図である。
図1、図2に示すように、モータ1は、車両に搭載する電装品(例えば、ラジエータファン)の駆動源となるものである。モータ1は、有底円筒形状のモータハウジング2内にアーマチュア3を回転自在に配置している。モータハウジング2の内周面には周方向に永久磁石4が4つ固定されている。つまり、モータ1は、磁極が4極に設定されている。 (motor)
FIG. 1 is a longitudinal sectional view of the
As shown in FIGS. 1 and 2, the
アーマチュア3は、回転軸5に外嵌固定されたアーマチュアコア6と、アーマチュアコア6に巻回された巻線7と、回転軸5の一端側にアーマチュアコア6と隣接するように外嵌固定されたコンミテータ13と、を備えている。
アーマチュアコア6は、リング状の金属板8を軸方向に複数枚積層したものである。金属板8の外周部にはT字型のティース9(図2参照)が周方向に沿って等間隔に6つ放射状に形成されている。複数枚の金属板8を積層することにより、アーマチュアコア6の外周には、各ティース9間に蟻溝状のスロット11が形成される。スロット11は軸方向に沿って延びており、周方向に沿って等間隔に6つ形成されている。そして、スロット11を通して各ティース9に巻線7が巻回される(巻線7の巻回方法についての詳細は後述する)。 Thearmature 3 is externally fitted and fixed so as to be adjacent to the armature core 6 on one end side of the rotary shaft 5 and the armature core 6 wound around the rotary shaft 5 and wound around the armature core 6. Commutator 13.
Thearmature core 6 is obtained by laminating a plurality of ring-shaped metal plates 8 in the axial direction. Six T-shaped teeth 9 (see FIG. 2) are radially formed on the outer peripheral portion of the metal plate 8 at regular intervals along the circumferential direction. By stacking a plurality of metal plates 8, dovetail-shaped slots 11 are formed between the teeth 9 on the outer periphery of the armature core 6. The slots 11 extend along the axial direction, and six slots 11 are formed at equal intervals along the circumferential direction. And the coil | winding 7 is wound around each teeth 9 through the slot 11 (details about the winding method of the coil | winding 7 are mentioned later).
アーマチュアコア6は、リング状の金属板8を軸方向に複数枚積層したものである。金属板8の外周部にはT字型のティース9(図2参照)が周方向に沿って等間隔に6つ放射状に形成されている。複数枚の金属板8を積層することにより、アーマチュアコア6の外周には、各ティース9間に蟻溝状のスロット11が形成される。スロット11は軸方向に沿って延びており、周方向に沿って等間隔に6つ形成されている。そして、スロット11を通して各ティース9に巻線7が巻回される(巻線7の巻回方法についての詳細は後述する)。 The
The
アーマチュアコア6に隣接配置されたコンミテータ13の外周面には、導電材で形成されたセグメント14が12個取り付けられている。すなわち、コンミテータ13には、スロット11の個数に対して2倍の数のセグメント14が設けられている。
セグメント14は軸方向に長い板状の金属片からなり、互いに絶縁された状態で周方向に沿って等間隔に固定されている。各セグメント14のアーマチュアコア6側の端部には、外径側に折り返す形で折り曲げられたライザ15が一体形成されている。このライザ15に、アーマチュアコア6から引き出された巻線7が掛け回わされる。そして、ヒュージング等により、ライザ15に巻線7が固定されることで、セグメント14と巻線7とが電気的に接続される。 Twelvesegments 14 made of a conductive material are attached to the outer peripheral surface of the commutator 13 disposed adjacent to the armature core 6. That is, the commutator 13 is provided with twice as many segments 14 as the number of slots 11.
Thesegments 14 are made of plate-like metal pieces that are long in the axial direction, and are fixed at equal intervals along the circumferential direction in a state of being insulated from each other. A riser 15 is integrally formed at an end portion of each segment 14 on the armature core 6 side and is bent in a manner of being folded back to the outer diameter side. A winding 7 drawn out from the armature core 6 is wound around the riser 15. Then, the winding 14 is fixed to the riser 15 by fusing or the like, so that the segment 14 and the winding 7 are electrically connected.
セグメント14は軸方向に長い板状の金属片からなり、互いに絶縁された状態で周方向に沿って等間隔に固定されている。各セグメント14のアーマチュアコア6側の端部には、外径側に折り返す形で折り曲げられたライザ15が一体形成されている。このライザ15に、アーマチュアコア6から引き出された巻線7が掛け回わされる。そして、ヒュージング等により、ライザ15に巻線7が固定されることで、セグメント14と巻線7とが電気的に接続される。 Twelve
The
また、図2に示すように、同電位となるセグメント14(本実施形態では5つ置きのセグメント14)に対応するライザ15にも巻線7が掛け回され、ヒュージング等により固定される。同電位となるセグメント14同士を接続する巻線7は、同電位となるセグメント14同士を短絡する接続線25とされる。この接続線25は、コンミテータ13とアーマチュアコア6との間に配線される。
Further, as shown in FIG. 2, the winding 7 is also wound around the riser 15 corresponding to the segments 14 having the same potential (every five segments 14 in this embodiment) and fixed by fusing or the like. The winding 7 connecting the segments 14 having the same potential is a connection line 25 that short-circuits the segments 14 having the same potential. The connection line 25 is wired between the commutator 13 and the armature core 6.
図1に示すように、回転軸5の他端側は、モータハウジング2に突出形成されたボス内の軸受16によって回転自在に支持されている。また、モータハウジング2の開口端にはカバー17が設けられている。このカバー17の内側には、ホルダーステー18が取り付けられている。ホルダーステー18には、周回り方向に90°の間隔を開けて一対のブラシホルダ19が設けられている。
As shown in FIG. 1, the other end side of the rotating shaft 5 is rotatably supported by a bearing 16 in a boss protruding from the motor housing 2. A cover 17 is provided at the opening end of the motor housing 2. A holder stay 18 is attached to the inside of the cover 17. The holder stay 18 is provided with a pair of brush holders 19 with an interval of 90 ° in the circumferential direction.
各ブラシホルダ19には、それぞれブラシ21がスプリング29を介して付勢された状態で出没自在に内装されている。各ブラシ21の先端部は、スプリング29によって付勢されているためコンミテータ13のセグメント14に摺接している。また、各ブラシ21の基端側には、ピグテール22が接続されている。このピグテール22は、不図示の外部電源に電気的に接続されている。これにより、外部電源の電力が、ピグテール22、ブラシ21、セグメント14を介して巻線7に供給される。
Each brush holder 19 is provided with a brush 21 that can be moved in and out in a state where the brush 21 is urged through a spring 29. Since the tip of each brush 21 is biased by a spring 29, it is in sliding contact with the segment 14 of the commutator 13. A pigtail 22 is connected to the base end side of each brush 21. The pigtail 22 is electrically connected to an external power source (not shown). As a result, the power of the external power source is supplied to the winding 7 via the pigtail 22, the brush 21, and the segment 14.
このように、永久磁石4(磁極)が4つ(磁極数が4極)、スロット11が6つ、セグメント14が12個設けられたいわゆる4極6スロット12セグメントのブラシ付きのモータ1には、アーマチュアコア6およびライザ15に、以下のように巻線7が巻回されている。
Thus, the so-called 4-pole 6-slot 12-segment brushed motor 1 having 4 permanent magnets 4 (magnetic poles) (4 magnetic poles), 6 slots 11 and 12 segments 14 is provided in the motor 1 with a brush. The winding 7 is wound around the armature core 6 and the riser 15 as follows.
(第1実施形態)
(巻線の巻回方法)
図3は、アーマチュア3のセグメント14(ライザ15)、およびティース9を展開した図であり、隣接するティース9間の空隙がスロット11に相当している。なお、以下の図面においては、各ティース9および各セグメント14に、順に番号を付して説明する。つまり、ティース9には、1~6番まで番号を付し、セグメント14には1~12番まで番号を付して説明する。 (First embodiment)
(Wound winding method)
FIG. 3 is a developed view of the segment 14 (the riser 15) and theteeth 9 of the armature 3, and the gap between the adjacent teeth 9 corresponds to the slot 11. In the following drawings, each tooth 9 and each segment 14 will be described with numbers in order. That is, the teeth 9 are numbered from 1 to 6, and the segments 14 are numbered from 1 to 12.
(巻線の巻回方法)
図3は、アーマチュア3のセグメント14(ライザ15)、およびティース9を展開した図であり、隣接するティース9間の空隙がスロット11に相当している。なお、以下の図面においては、各ティース9および各セグメント14に、順に番号を付して説明する。つまり、ティース9には、1~6番まで番号を付し、セグメント14には1~12番まで番号を付して説明する。 (First embodiment)
(Wound winding method)
FIG. 3 is a developed view of the segment 14 (the riser 15) and the
ここで、巻線7の巻回作業に用いられる巻線機(不図示)には、巻線7を繰出すフライヤ(不図示)を2つ備えた、いわゆるダブルフライヤ方式が採用されている。そして、回転軸5を中心に、点対称に巻線7が2箇所同時に巻回されていく。以下の説明では、2箇所(2つのフライヤ)のうち、1箇所(第1フライヤ)の巻線7の巻回方法を詳述し、もう1箇所(第2フライヤ)の巻線7の巻回方法については、1箇所の巻線7と同一作業なので、説明を簡単にする。
Here, the winding machine (not shown) used for the winding work of the winding 7 employs a so-called double flyer system including two flyers (not shown) for feeding the winding 7. Then, the winding 7 is wound around the rotating shaft 5 simultaneously at two points symmetrically. In the following description, a winding method of the winding 7 at one place (first flyer) out of two places (two flyers) will be described in detail, and the winding 7 at the other place (second flyer) will be wound. About the method, since it is the same work as the winding 7 of one place, description is simplified.
図3に示すように、各ティース9は、それぞれU,V,W相がこの順で割り当てられている。つまり、1番、4番ティース9がU相、2番、5番ティース9がV相、3番、6番ティース9がW相になる。
巻線7は、例えば、その巻き始め端7aが7番セグメント14より巻き始められた場合、まず、7番セグメント14のライザ15に掛け回された後、一方向(図3における左から右に向かう方向)に引き回され、7番セグメント14と同電位となる1番セグメント14のライザ15に掛け回される。 As shown in FIG. 3, eachtooth 9 is assigned with U, V, and W phases in this order. That is, No. 1 and No. 4 teeth 9 are the U phase, No. 2 and No. 5 teeth 9 are the V phase, and No. 3 and No. 6 teeth 9 are the W phase.
For example, when the winding start end 7a starts to be wound from theseventh segment 14, the winding 7 is first wound around the riser 15 of the seventh segment 14, and then in one direction (from left to right in FIG. 3). The first segment 14 is pulled around the riser 15 of the first segment 14 having the same potential as the seventh segment 14.
巻線7は、例えば、その巻き始め端7aが7番セグメント14より巻き始められた場合、まず、7番セグメント14のライザ15に掛け回された後、一方向(図3における左から右に向かう方向)に引き回され、7番セグメント14と同電位となる1番セグメント14のライザ15に掛け回される。 As shown in FIG. 3, each
For example, when the winding start end 7a starts to be wound from the
続いて、アーマチュアコア6とコンミテータ13との間の回転軸5(図3では不図示)に、巻線7を一方向に掛け回して掛け回し部80を形成する。そして、1番セグメント14の近傍に存在する1-6番ティース9の間のスロット11に、巻線7を引き込む。この後、1番ティース9に、巻線7をN/2回順方向に集中巻方式により巻回し、順巻きコイル71aを形成する。
Subsequently, a winding portion 80 is formed by winding the winding 7 around the rotating shaft 5 (not shown in FIG. 3) between the armature core 6 and the commutator 13 in one direction. Then, the winding 7 is drawn into the slot 11 between the 1-6th teeth 9 existing in the vicinity of the 1st segment 14. Thereafter, the winding 7 is wound around the first tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 71a.
なお、以下の巻線7の巻回方法の説明では、説明を分かり易くするために、アーマチュアコア6とコンミテータ13との間の回転軸5を、単に回転軸5と称して説明する。
また、上述のN回とは、各ティース9に巻回する巻線7の所望の巻回数である。すなわち、N/2回とは、所望の巻回数の半分ということになる。さらに、本実施形態では、順方向とは、図3における時計回り方向をいい、反時計回りを逆方向という。しかしながら、これに限られるものではなく、順方向を、図3における反時計回り方向とし、逆方向を図3における時計回り方向としてもよい。 In the following description of the winding method of the winding 7, therotating shaft 5 between the armature core 6 and the commutator 13 will be simply referred to as the rotating shaft 5 for easy understanding.
The N turns described above is the desired number of turns of the winding 7 wound around eachtooth 9. That is, N / 2 times is half the desired number of turns. Furthermore, in this embodiment, the forward direction refers to the clockwise direction in FIG. 3, and the counterclockwise direction is referred to as the reverse direction. However, the present invention is not limited to this, and the forward direction may be the counterclockwise direction in FIG. 3, and the reverse direction may be the clockwise direction in FIG.
また、上述のN回とは、各ティース9に巻回する巻線7の所望の巻回数である。すなわち、N/2回とは、所望の巻回数の半分ということになる。さらに、本実施形態では、順方向とは、図3における時計回り方向をいい、反時計回りを逆方向という。しかしながら、これに限られるものではなく、順方向を、図3における反時計回り方向とし、逆方向を図3における時計回り方向としてもよい。 In the following description of the winding method of the winding 7, the
The N turns described above is the desired number of turns of the winding 7 wound around each
続いて、1-2番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、1番セグメント14に隣接する2番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、2番セグメント14と同電位となる8番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、3-4番ティース9の間のスロット11に引き込む。そして、3番ティース9に、巻線7をN/2回逆方向に集中巻方式により巻回し、逆巻きコイル73bを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the first and second teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is wound around the riser 15 of the second segment 14 adjacent to the first segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the eighth segment 14 having the same potential as the second segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 3rd and 4th teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the reverse direction to form the reverse winding coil 73b.
続いて、2-3番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、2番セグメント14に隣接する3番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、3番セグメント14と同電位となる9番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、4-5番ティース9の間のスロット11に引き込む。そして、5番ティース9に、巻線7をN/2回順方向に集中巻方式により巻回し、順巻きコイル75aを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the second and third teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is hung around the riser 15 of the third segment 14 adjacent to the second segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the ninth segment 14 having the same potential as the third segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 4th and 5th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 75a.
続いて、5-6番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、9番セグメント14に隣接する10番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、10番セグメント14と同電位となる4番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、1-2番ティース9の間のスロット11に引き込む。そして、1番ティース9に、巻線7をN/2回逆方向に集中巻方式により巻回し、逆巻きコイル71bを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the 5th and 6th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is wound around the riser 15 of the 10th segment 14 adjacent to the 9th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fourth segment 14 having the same potential as the tenth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the first and second teeth 9. Then, the winding 7 is wound around the first tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 71b.
続いて、1-6番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、10番セグメント14に隣接する11番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、11番セグメント14と同電位となる5番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、2-3番ティース9の間のスロット11に引き込む。そして、3番ティース9に、巻線7をN/2回順方向に集中巻方式により巻回し、順巻きコイル73aを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the 1-6th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is wound around the riser 15 of the 11th segment 14 adjacent to the 10th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fifth segment 14 having the same potential as the eleventh segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the second and third teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 73a.
続いて、3-4番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、5番セグメント14に隣接する6番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、6番セグメント14と同電位となる12番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、5-6番ティース9の間のスロット11に引き込む。そして、5番ティース9に、巻線7をN/2回逆方向に集中巻方式により巻回し、逆巻きコイル75bを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the 3rd and 4th teeth 9, and this winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is wound around the riser 15 of the sixth segment 14 adjacent to the fifth segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the twelfth segment 14 having the same potential as the sixth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 5th and 6th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 75b.
続いて、4-5番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、6番セグメント14に隣接する7番セグメント14のライザ15に、巻き終わり端7bを掛け回す。
Subsequently, the winding 7 is pulled out from the slot 11 between the 4th and 5th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, the winding end 7 b is hung around the riser 15 of the seventh segment 14 adjacent to the sixth segment 14.
これにより、1番ティース9にU相の順巻きコイル(U)71a、および逆巻きコイル(-U)71bが形成される。そして、1番ティース9のU相の順巻きコイル71aの端末は、1-2番セグメント14に接続される。1番ティース9のU相の逆巻きコイル71bの端末は、4番セグメント14と11番セグメント14とに接続される。ここで、11番セグメント14は、接続線25により5番セグメント14と短絡されているので、1番ティース9のU相の逆巻きコイル71bの端末は、4-5番セグメント14に接続されているのと同じである。
Thus, the U-phase forward winding coil (U) 71a and the reverse winding coil (-U) 71b are formed on the first tooth 9. The terminal of the U-phase forward coil 71 a of the first tooth 9 is connected to the 1-2 segment 14. The terminals of the U-phase reverse winding coil 71 b of the first tooth 9 are connected to the fourth segment 14 and the eleventh segment 14. Here, since the eleventh segment 14 is short-circuited to the fifth segment 14 by the connection line 25, the terminal of the U-phase reverse coil 71 b of the first tooth 9 is connected to the fourth to fifth segment 14. Is the same as
また、3番ティース9に順巻きコイル(W)73a、および逆巻きコイル(-W)73bが形成される。そして、3番ティース9のW相の順巻きコイル73aの端末は、5-6番セグメント14に接続される。3番ティース9のW相の逆巻きコイル73bの端末は、3番セグメント14と8番セグメント14とに接続される。8番セグメント14は、接続線25により2番セグメント14と短絡されているので、3番ティース9のW相の逆巻きコイル73bの端末は、2-3番セグメント14に接続されているのと同じである。
Further, a forward winding coil (W) 73a and a reverse winding coil (-W) 73b are formed on the third tooth 9. The terminal of the W-phase forward winding coil 73a of the third tooth 9 is connected to the 5-6th segment 14. The terminals of the W-phase reverse winding coil 73 b of the third tooth 9 are connected to the third segment 14 and the eighth segment 14. Since the 8th segment 14 is short-circuited to the 2nd segment 14 by the connection line 25, the terminal of the W-phase reverse winding coil 73b of the 3rd tooth 9 is the same as that connected to the 2-3th segment 14 It is.
さらに、5番ティース9に順巻きコイル(V)75a、および逆巻きコイル(-V)75bが形成される。そして、5番ティース9のV相の順巻きコイル75aの端末は、9-10番セグメント14に接続される。5番ティース9のW相の逆巻きコイル75bの端末は、7番セグメント14と12番セグメント14とに接続される。12番セグメント14は、接続線25により6番セグメント14と短絡されているので、5番ティース9のV相の逆巻きコイル75bの端末は、6-7番セグメント14に接続されているのと同じである。
Further, a forward winding coil (V) 75a and a reverse winding coil (-V) 75b are formed on the fifth tooth 9. The terminal of the V-phase forward winding coil 75 a of the fifth tooth 9 is connected to the 9th to 10th segments 14. The terminal of the W-phase reverse winding coil 75 b of the fifth tooth 9 is connected to the seventh segment 14 and the twelfth segment 14. Since the 12th segment 14 is short-circuited to the 6th segment 14 by the connection line 25, the terminal of the V-phase reverse winding coil 75b of the 5th tooth 9 is the same as that connected to the 6th-7th segment 14 It is.
一方、もう1箇所(第2フライヤ)における巻線7の巻回作業は、1箇所目(第1フライヤ)の巻き始め端7aが接続された7番セグメント14とは回転軸5を中心にして点対称の位置に存在する1番セグメント14から開始される。つまり、巻線7は、巻き始め端7aが1番セグメント14のライザ15に掛け回された後、上記第1フライヤにおける巻線7とは回転軸5を中心にして点対称に巻回作業が進められる。
On the other hand, the winding work of the winding 7 in the other place (second flyer) is centered on the rotating shaft 5 from the seventh segment 14 to which the winding start end 7a of the first place (first flyer) is connected. It starts from the first segment 14 that exists at a point-symmetrical position. That is, after the winding start end 7a is wound around the riser 15 of the first segment 14, the winding 7 is wound symmetrically with the winding 7 in the first flyer about the rotary shaft 5. It is advanced.
これにより、2番ティース9にV相の順巻きコイル(V)72a、および逆巻きコイル(-U)72bが形成される。また、4番ティース9に順巻きコイル(U)74a、および逆巻きコイル(-U)74bが形成される。さらに、6番ティース9に順巻きコイル(W)76a、および逆巻きコイル(-W)76bが形成される。そして、これらコイル72a~76bの端末は、所定のセグメント14間に接続される。
この結果、各々隣接するセグメント14間には、両隣が互いに異相、且つ順逆交互となるようにU,-W,V,-U,W,-V相のコイル(各相のコイル71a~76b)がこの順で電気的に順次接続される。 As a result, a V-phase forward winding coil (V) 72a and a reverse winding coil (-U) 72b are formed on thesecond tooth 9. Further, a forward winding coil (U) 74 a and a reverse winding coil (−U) 74 b are formed on the fourth tooth 9. Further, a forward winding coil (W) 76 a and a reverse winding coil (−W) 76 b are formed on the sixth tooth 9. The terminals of the coils 72a to 76b are connected between the predetermined segments 14.
As a result, between theadjacent segments 14, U, -W, V, -U, W, -V phase coils (coils 71a to 76b for each phase) are arranged so that both sides are different from each other and forward and reverse. Are sequentially connected in this order.
この結果、各々隣接するセグメント14間には、両隣が互いに異相、且つ順逆交互となるようにU,-W,V,-U,W,-V相のコイル(各相のコイル71a~76b)がこの順で電気的に順次接続される。 As a result, a V-phase forward winding coil (V) 72a and a reverse winding coil (-U) 72b are formed on the
As a result, between the
ここで、図4に基づいて、各セグメント14のライザ15に掛け回される巻線7の状態について詳述する。
図4は、ライザ15への巻線7の掛け回し状態を示す説明図である。
上述の巻線の巻回方法で説明したように、巻線7は、常に一方向(図3における左から右に向かう方向)に引き回される。このため、図4に示すように、一方向からライザ15に引き込まれた巻線7は、ライザ15に掛け回された後、さらに一方向へと引き出される。このため、巻線7は、ライザ15のアーマチュアコア6側(図4における上側)で交差し、ライザ側交差部77を形成する。換言すれば、ライザ15に、巻線7がα巻方式によって掛け回される。 Here, the state of the winding 7 wound around theriser 15 of each segment 14 will be described in detail with reference to FIG.
FIG. 4 is an explanatory view showing a state where the winding 7 is wound around theriser 15.
As described in the winding method described above, the winding 7 is always drawn around in one direction (the direction from left to right in FIG. 3). Therefore, as shown in FIG. 4, the winding 7 drawn into theriser 15 from one direction is further drawn out in one direction after being wound around the riser 15. For this reason, the windings 7 intersect on the armature core 6 side (the upper side in FIG. 4) of the riser 15 to form a riser side intersecting portion 77. In other words, the winding 7 is wound around the riser 15 by the α winding method.
図4は、ライザ15への巻線7の掛け回し状態を示す説明図である。
上述の巻線の巻回方法で説明したように、巻線7は、常に一方向(図3における左から右に向かう方向)に引き回される。このため、図4に示すように、一方向からライザ15に引き込まれた巻線7は、ライザ15に掛け回された後、さらに一方向へと引き出される。このため、巻線7は、ライザ15のアーマチュアコア6側(図4における上側)で交差し、ライザ側交差部77を形成する。換言すれば、ライザ15に、巻線7がα巻方式によって掛け回される。 Here, the state of the winding 7 wound around the
FIG. 4 is an explanatory view showing a state where the winding 7 is wound around the
As described in the winding method described above, the winding 7 is always drawn around in one direction (the direction from left to right in FIG. 3). Therefore, as shown in FIG. 4, the winding 7 drawn into the
このような構成のもと、各ブラシ21間に電圧を印加すると、各コイル71a~76bに所定の向きの電流が供給される。そして、所定のティース9に所定の向きの磁界が発生し、この磁界とモータハウジング2の永久磁石4との間で磁気的な吸引力や反発力が生じ、アーマチュア3が回転する。この回転によって、ブラシ21が摺接するセグメント14が順次変更され、各コイル71a~76bに流れる電流の向きが切替えられる、いわゆる整流が行われる。このため、アーマチュア3が継続的に回転する。
In such a configuration, when a voltage is applied between the brushes 21, a current in a predetermined direction is supplied to the coils 71a to 76b. A magnetic field in a predetermined direction is generated in a predetermined tooth 9, and a magnetic attractive force or a repulsive force is generated between the magnetic field and the permanent magnet 4 of the motor housing 2, and the armature 3 rotates. As a result of this rotation, the segments 14 in sliding contact with the brush 21 are sequentially changed, and so-called rectification is performed in which the direction of the current flowing through each of the coils 71a to 76b is switched. For this reason, the armature 3 rotates continuously.
このように上述の第1実施形態では、アーマチュアコア6から引き出される巻線7は、回転軸5に一方向(図3における左から右に向かう方向)に掛け回して掛け回し部80を形成する。そして、この掛け回し部80を介し、巻線7をコンミテータ13に向かって引き出さしている。そして、ライザ15に掛け回された巻線7は、その掛け回されたライザ15のアーマチュアコア6側で交差してライザ側交差部77を形成している。このため、コンミテータ13とアーマチュアコア6の間の部位(首下)の巻線7の弛みを防止できる。よって、コンミテータ13の首下における巻線7の巻太りが解消され、モータ1の小型化を図ることができる。
As described above, in the first embodiment described above, the winding 7 drawn out from the armature core 6 is hung around the rotating shaft 5 in one direction (the direction from left to right in FIG. 3) to form a hung portion 80. . Then, the winding 7 is pulled out toward the commutator 13 through the hanging portion 80. The winding 7 wound around the riser 15 intersects on the armature core 6 side of the wound riser 15 to form a riser side intersection 77. For this reason, it is possible to prevent the winding 7 from loosening at a portion (under the neck) between the commutator 13 and the armature core 6. Therefore, the winding thickness of the winding 7 under the neck of the commutator 13 is eliminated, and the motor 1 can be reduced in size.
また、アーマチュアコア6から引き出された巻線7を回転軸5に掛け回して掛け回し部80を形成することにより、アーマチュアコア6とコンミテータ13との間に配線される巻線7の弛みも防止でき、モータ1をさらに小型化できる。さらに、アーマチュアコア6から巻線7を引き出す際、同一方向(図3における右方向)に引き回しているので、巻線7の巻回作業を効率よく行うことができ、巻線工数を減少できる。
Further, the winding 7 drawn out from the armature core 6 is hung on the rotary shaft 5 to form a hung portion 80, thereby preventing loosening of the winding 7 wired between the armature core 6 and the commutator 13. The motor 1 can be further downsized. Furthermore, since the winding 7 is pulled out from the armature core 6 in the same direction (right direction in FIG. 3), the winding work of the winding 7 can be performed efficiently, and the number of winding steps can be reduced.
また、巻線7の巻回構造は、回転軸5を中心に、点対称に巻線7が2箇所同時に巻回できる構造になっている。このため、巻線7を繰出すフライヤ(不図示)を2つ備えた、いわゆるダブルフライヤ方式を採用できる。よって、巻線工数をさらに減少することができる。
Further, the winding structure of the winding 7 is such that the winding 7 can be wound simultaneously at two points symmetrically about the rotating shaft 5. For this reason, a so-called double flyer system including two flyers (not shown) for feeding the winding 7 can be employed. Therefore, the winding man-hour can be further reduced.
(第2実施形態)
次に、図5に基づいて、本発明の第2実施形態について説明する。なお、第1実施形態と同一態様には、同一符号を付して説明する。
図5は、第2実施形態におけるアーマチュア3のセグメント14(ライザ15)、およびティース9を展開した図であり、隣接するティース9間の空隙がスロット11に相当している。 (Second Embodiment)
Next, a second embodiment of the present invention will be described based on FIG. In addition, the same code | symbol is attached | subjected and demonstrated to the same aspect as 1st Embodiment.
FIG. 5 is a developed view of the segment 14 (the riser 15) and theteeth 9 of the armature 3 in the second embodiment, and the gap between the adjacent teeth 9 corresponds to the slot 11.
次に、図5に基づいて、本発明の第2実施形態について説明する。なお、第1実施形態と同一態様には、同一符号を付して説明する。
図5は、第2実施形態におけるアーマチュア3のセグメント14(ライザ15)、およびティース9を展開した図であり、隣接するティース9間の空隙がスロット11に相当している。 (Second Embodiment)
Next, a second embodiment of the present invention will be described based on FIG. In addition, the same code | symbol is attached | subjected and demonstrated to the same aspect as 1st Embodiment.
FIG. 5 is a developed view of the segment 14 (the riser 15) and the
同図に示すように、この第2実施形態において、モータ1は、モータハウジング2とアーマチュア3とを備えている点、モータ1は、いわゆる4極6スロット12セグメントのブラシ付きのモータ1である点、各ティース9に巻線7が集中巻方式にて巻回されている点、各々隣接するセグメント14間には、両隣が互いに異相、且つ順逆交互となるようにU,-W,V,-U,W,-V相のコイル(各相のコイル71a~76b)がこの順で電気的に順次接続される点の基本的構成は、前述の第1実施形態と同様である。
As shown in the figure, in the second embodiment, the motor 1 includes a motor housing 2 and an armature 3, and the motor 1 is a so-called 4-pole 6-slot 12-segment brushed motor 1. The winding 7 is wound around each tooth 9 by the concentrated winding method, and between adjacent segments 14, U, -W, V, The basic configuration in which the -U, W, -V phase coils (the coils 71a to 76b of each phase) are electrically connected in this order is the same as in the first embodiment.
(巻線の巻回方法)
ここで、第1実施形態と第2実施形態との相違点は、巻線7の引き回し方法が異なる点にある。以下、第2実施形態の巻線7の引き回し方法について詳述する。
巻線7は、例えば、その巻き始め端7aが7番セグメント14より巻き始められた場合、まず、7番セグメント14のライザ15に掛け回された後、一方向(図3における左から右に向かう方向)に引き回され、7番セグメント14と同電位となる1番セグメント14のライザ15に掛け回される。 (Wound winding method)
Here, the difference between the first embodiment and the second embodiment is that the winding method of the winding 7 is different. Hereinafter, a method of routing the winding 7 according to the second embodiment will be described in detail.
For example, when the winding start end 7a starts to be wound from theseventh segment 14, the winding 7 is first wound around the riser 15 of the seventh segment 14, and then in one direction (from left to right in FIG. 3). The first segment 14 is pulled around the riser 15 of the first segment 14 having the same potential as the seventh segment 14.
ここで、第1実施形態と第2実施形態との相違点は、巻線7の引き回し方法が異なる点にある。以下、第2実施形態の巻線7の引き回し方法について詳述する。
巻線7は、例えば、その巻き始め端7aが7番セグメント14より巻き始められた場合、まず、7番セグメント14のライザ15に掛け回された後、一方向(図3における左から右に向かう方向)に引き回され、7番セグメント14と同電位となる1番セグメント14のライザ15に掛け回される。 (Wound winding method)
Here, the difference between the first embodiment and the second embodiment is that the winding method of the winding 7 is different. Hereinafter, a method of routing the winding 7 according to the second embodiment will be described in detail.
For example, when the winding start end 7a starts to be wound from the
続いて、アーマチュアコア6とコンミテータ13との間の回転軸5(図3では不図示)に、巻線7を他方向(図3における右から左に向かう方向)に掛け回して掛け回し部80を形成する。そして、1番セグメント14の近傍に存在する1-6番ティース9の間のスロット11に、巻線7を引き込む。この後、1番ティース9に、巻線7をN/2回順方向に集中巻方式により巻回し、順巻きコイル71aを形成する。
Subsequently, the winding portion 7 is wound around the rotating shaft 5 (not shown in FIG. 3) between the armature core 6 and the commutator 13 in the other direction (the direction from right to left in FIG. 3). Form. Then, the winding 7 is drawn into the slot 11 between the 1-6th teeth 9 existing in the vicinity of the 1st segment 14. Thereafter, the winding 7 is wound around the first tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 71a.
続いて、1-2番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に他方向に掛け回して掛け回し部80を形成する。さらに、1番セグメント14に隣接する2番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、2番セグメント14と同電位となる8番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、3-4番ティース9の間のスロット11に引き込む。そして、3番ティース9に、巻線7をN/2回逆方向に集中巻方式により巻回し、逆巻きコイル73bを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the first and second teeth 9, and this winding 7 is wound around the rotary shaft 5 in the other direction to form a winding portion 80. Further, it is wound around the riser 15 of the second segment 14 adjacent to the first segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the eighth segment 14 having the same potential as the second segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 3rd and 4th teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the reverse direction to form the reverse winding coil 73b.
続いて、2-3番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、2番セグメント14に隣接する3番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、3番セグメント14と同電位となる9番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を他方向に掛け回して掛け回し部80を形成する。さらに、4-5番ティース9の間のスロット11に引き込む。そして、5番ティース9に、巻線7をN/2回順方向に集中巻方式により巻回し、順巻きコイル75aを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the second and third teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is hung around the riser 15 of the third segment 14 adjacent to the second segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the ninth segment 14 having the same potential as the third segment 14. Thereafter, the winding portion 7 is hung around the rotating shaft 5 in the other direction to form a hung portion 80. Further, it is pulled into the slot 11 between the 4th and 5th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 75a.
続いて、5-6番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に他方向に掛け回して掛け回し部80を形成する。さらに、9番セグメント14に隣接する10番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、10番セグメント14と同電位となる4番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、1-2番ティース9の間のスロット11に引き込む。そして、1番ティース9に、巻線7をN/2回逆方向に集中巻方式により巻回し、逆巻きコイル71bを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the 5th and 6th teeth 9, and this winding 7 is hung around the rotating shaft 5 in the other direction to form a hung portion 80. Further, it is wound around the riser 15 of the 10th segment 14 adjacent to the 9th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fourth segment 14 having the same potential as the tenth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the first and second teeth 9. Then, the winding 7 is wound around the first tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 71b.
続いて、1-6番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに、10番セグメント14に隣接する11番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、11番セグメント14と同電位となる5番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を他方向に掛け回して掛け回し部80を形成する。さらに、2-3番ティース9の間のスロット11に引き込む。そして、3番ティース9に、巻線7をN/2回順方向に集中巻方式により巻回し、順巻きコイル73aを形成する。
Subsequently, the winding 7 is pulled out from the slot 11 between the 1-6th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a winding portion 80. Further, it is wound around the riser 15 of the 11th segment 14 adjacent to the 10th segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the fifth segment 14 having the same potential as the eleventh segment 14. Thereafter, the winding portion 7 is hung around the rotating shaft 5 in the other direction to form a hung portion 80. Further, it is pulled into the slot 11 between the second and third teeth 9. Then, the winding 7 is wound around the third tooth 9 by the concentrated winding method N / 2 times in the forward direction to form the forward winding coil 73a.
続いて、3-4番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に他方向に掛け回して掛け回し部80を形成する。さらに、5番セグメント14に隣接する6番セグメント14のライザ15に掛け回す。次に、巻線7を一方向に引き回し、6番セグメント14と同電位となる12番セグメント14のライザ15に掛け回す。この後、回転軸5に巻線7を一方向に掛け回して掛け回し部80を形成する。さらに、5-6番ティース9の間のスロット11に引き込む。そして、5番ティース9に、巻線7をN/2回逆方向に集中巻方式により巻回し、逆巻きコイル75bを形成する。
Subsequently, the winding 7 is drawn out from the slot 11 between the 3rd and 4th teeth 9, and this winding 7 is wound around the rotating shaft 5 in the other direction to form a wound portion 80. Further, it is wound around the riser 15 of the sixth segment 14 adjacent to the fifth segment 14. Next, the winding 7 is routed in one direction and is wound around the riser 15 of the twelfth segment 14 having the same potential as the sixth segment 14. Thereafter, the winding portion 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, it is pulled into the slot 11 between the 5th and 6th teeth 9. Then, the winding 7 is wound around the fifth tooth 9 N / 2 times in the reverse direction by the concentrated winding method to form the reverse winding coil 75b.
続いて、4-5番ティース9の間のスロット11から巻線7を引き出し、この巻線7を回転軸5に一方向に掛け回して掛け回し部80を形成する。さらに6番セグメント14に隣接する7番セグメント14のライザ15に、巻き終わり端7bを掛け回す。
Subsequently, the winding 7 is pulled out from the slot 11 between the 4th and 5th teeth 9, and the winding 7 is wound around the rotating shaft 5 in one direction to form a wound portion 80. Further, the winding end 7 b is hung around the riser 15 of the seventh segment 14 adjacent to the sixth segment 14.
これにより、1番ティース9にU相の順巻きコイル(U)71a、および逆巻きコイル(-U)71bが形成される。そして、1番ティース9のU相の順巻きコイル71aの端末は、1-2番セグメント14に接続される。1番ティース9のU相の逆巻きコイル71bの端末は、4番セグメント14と11番セグメント14とに接続される。
また、3番ティース9に順巻きコイル(W)73a、および逆巻きコイル(-W)73bが形成される。そして、3番ティース9のW相の順巻きコイル73aの端末は、5-6番セグメント14に接続される。3番ティース9のW相の逆巻きコイル73bの端末は、3番セグメント14と8番セグメント14とに接続される。 As a result, a U-phase forward winding coil (U) 71a and a reverse winding coil (-U) 71b are formed on thefirst tooth 9. The terminal of the U-phase forward coil 71 a of the first tooth 9 is connected to the 1-2 segment 14. The terminals of the U-phase reverse winding coil 71 b of the first tooth 9 are connected to the fourth segment 14 and the eleventh segment 14.
Further, a forward winding coil (W) 73 a and a reverse winding coil (−W) 73 b are formed on thethird tooth 9. The terminal of the W-phase forward winding coil 73a of the third tooth 9 is connected to the 5-6th segment 14. The terminals of the W-phase reverse winding coil 73 b of the third tooth 9 are connected to the third segment 14 and the eighth segment 14.
また、3番ティース9に順巻きコイル(W)73a、および逆巻きコイル(-W)73bが形成される。そして、3番ティース9のW相の順巻きコイル73aの端末は、5-6番セグメント14に接続される。3番ティース9のW相の逆巻きコイル73bの端末は、3番セグメント14と8番セグメント14とに接続される。 As a result, a U-phase forward winding coil (U) 71a and a reverse winding coil (-U) 71b are formed on the
Further, a forward winding coil (W) 73 a and a reverse winding coil (−W) 73 b are formed on the
さらに、5番ティース9に順巻きコイル(V)75a、および逆巻きコイル(-V)75bが形成される。そして、5番ティース9のV相の順巻きコイル75aの端末は、9-10番セグメント14に接続される。5番ティース9のW相の逆巻きコイル75bの端末は、7番セグメント14と12番セグメント14とに接続される。
Further, a forward winding coil (V) 75a and a reverse winding coil (-V) 75b are formed on the fifth tooth 9. The terminal of the V-phase forward winding coil 75 a of the fifth tooth 9 is connected to the 9th to 10th segments 14. The terminal of the W-phase reverse winding coil 75 b of the fifth tooth 9 is connected to the seventh segment 14 and the twelfth segment 14.
一方、もう1箇所(第2フライヤ)における巻線7の巻回作業は、1箇所目(第1フライヤ)の巻き始め端7aが接続された7番セグメント14とは回転軸5を中心にして点対称の位置に存在する1番セグメント14から開始される。つまり、巻線7は、巻き始め端7aが1番セグメント14のライザ15に掛け回された後、上記第1フライヤにおける巻線7とは回転軸5を中心にして点対称に巻回作業が進められる。
On the other hand, the winding work of the winding 7 in the other place (second flyer) is centered on the rotating shaft 5 from the seventh segment 14 to which the winding start end 7a of the first place (first flyer) is connected. It starts from the first segment 14 that exists at a point-symmetrical position. That is, after the winding start end 7a is wound around the riser 15 of the first segment 14, the winding 7 is wound symmetrically with the winding 7 in the first flyer about the rotary shaft 5. It is advanced.
これにより、2番ティース9にV相の順巻きコイル(V)72a、および逆巻きコイル(-U)72bが形成される。また、4番ティース9に順巻きコイル(U)74a、および逆巻きコイル(-U)74bが形成される。さらに、6番ティース9に順巻きコイル(W)76a、および逆巻きコイル(-W)76bが形成される。そして、これらコイル72a~76bの端末は、所定のセグメント14間に接続される。
この結果、各々隣接するセグメント14間には、両隣が互いに異相、且つ順逆交互となるようにU,-W,V,-U,W,-V相のコイル(各相のコイル71a~76b)がこの順で電気的に順次接続される。 As a result, a V-phase forward winding coil (V) 72a and a reverse winding coil (-U) 72b are formed on thesecond tooth 9. Further, a forward winding coil (U) 74 a and a reverse winding coil (−U) 74 b are formed on the fourth tooth 9. Further, a forward winding coil (W) 76 a and a reverse winding coil (−W) 76 b are formed on the sixth tooth 9. The terminals of the coils 72a to 76b are connected between the predetermined segments 14.
As a result, between theadjacent segments 14, U, -W, V, -U, W, -V phase coils (coils 71a to 76b for each phase) are arranged so that both sides are different from each other and forward and reverse. Are sequentially connected in this order.
この結果、各々隣接するセグメント14間には、両隣が互いに異相、且つ順逆交互となるようにU,-W,V,-U,W,-V相のコイル(各相のコイル71a~76b)がこの順で電気的に順次接続される。 As a result, a V-phase forward winding coil (V) 72a and a reverse winding coil (-U) 72b are formed on the
As a result, between the
このように巻線7を引き回すことにより、各ティース9の両側から引き出される巻線7は、引き出されたティース9の近傍で必ず互いに交差してティース側交差部78を形成する。
したがって、上述の第2実施形態によれば、ティース9近傍の巻線7の弛みを防止でき、ティース9とコンミテータ13との間の巻線7の巻太りを解消できる。このため、モータ1の小型化を図ることができる。 By winding thewindings 7 in this way, the windings 7 drawn from both sides of each tooth 9 always intersect each other in the vicinity of the drawn teeth 9 to form a tooth side intersection 78.
Therefore, according to the second embodiment described above, loosening of the winding 7 in the vicinity of thetooth 9 can be prevented, and the winding of the winding 7 between the tooth 9 and the commutator 13 can be eliminated. For this reason, size reduction of the motor 1 can be achieved.
したがって、上述の第2実施形態によれば、ティース9近傍の巻線7の弛みを防止でき、ティース9とコンミテータ13との間の巻線7の巻太りを解消できる。このため、モータ1の小型化を図ることができる。 By winding the
Therefore, according to the second embodiment described above, loosening of the winding 7 in the vicinity of the
なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
例えば上述の実施形態では、モータ1は、車両に搭載する電装品(例えば、ラジエータファン)の駆動源となるものである場合について説明した。しかしながら、これに限られるものではなく、さまざまな装置の駆動源として、上述のモータ1を適用することが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
For example, in the above-described embodiment, the case where themotor 1 is a drive source of an electrical component (for example, a radiator fan) mounted on the vehicle has been described. However, the present invention is not limited to this, and the above-described motor 1 can be applied as a drive source for various devices.
例えば上述の実施形態では、モータ1は、車両に搭載する電装品(例えば、ラジエータファン)の駆動源となるものである場合について説明した。しかしながら、これに限られるものではなく、さまざまな装置の駆動源として、上述のモータ1を適用することが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
For example, in the above-described embodiment, the case where the
また、上述の実施形態では、モータ1は、永久磁石4(磁極)が4つ(磁極数が4極)、スロット11が6つ、セグメント14が12個設けられたいわゆる4極6スロット12セグメントのブラシ付きのモータ1である場合について説明した。しかしながら、これに限られるものではなく、さまざまな磁極数、スロット数、セグメント数のモータに上述の実施形態を適用することが可能である。
In the above-described embodiment, the motor 1 is a so-called 4-pole 6-slot 12 segment in which four permanent magnets 4 (magnetic poles) (the number of magnetic poles is four), six slots 11 and twelve segments 14 are provided. The case of the motor 1 with a brush has been described. However, the present invention is not limited to this, and the above-described embodiment can be applied to motors having various numbers of magnetic poles, slots, and segments.
すなわち、4極6スロット12セグメント以外のモータでは、上述の第1実施形態のように、アーマチュアコア6から引き出される巻線7を、回転軸5に同一方向に掛け回して掛け回し部80を形成し、この掛け回し部80を介してコンミテータ13に向かって引き出せばよい。そして、ライザ15に、α巻方式によって巻線7を掛け回し、ライザ側交差部77を形成すればよい。
また、上述の第2実施形態のように、各ティース9の両側から引き出される巻線7が、互いに交差してティース側交差部78を形成するように構成すればよい。 In other words, in motors other than the 4-pole 6-slot 12-segment segment, as in the first embodiment described above, the winding 7 drawn from thearmature core 6 is wound around the rotary shaft 5 in the same direction to form a wound portion 80. Then, it suffices to pull out toward the commutator 13 through the hanging portion 80. Then, the riser 15 may be formed by winding the winding 7 around the riser 15 by the α winding method.
Moreover, what is necessary is just to comprise so that the coil | winding 7 pulled out from the both sides of each tooth |gear 9 may mutually cross | intersect and form the teeth side cross | intersection part 78 like the above-mentioned 2nd Embodiment.
また、上述の第2実施形態のように、各ティース9の両側から引き出される巻線7が、互いに交差してティース側交差部78を形成するように構成すればよい。 In other words, in motors other than the 4-pole 6-slot 12-segment segment, as in the first embodiment described above, the winding 7 drawn from the
Moreover, what is necessary is just to comprise so that the coil | winding 7 pulled out from the both sides of each tooth |
また、上述の実施形態では、アーマチュアコア6は、リング状の金属板8を軸方向に複数枚積層したものである場合について説明した。また、アーマチュアコア6は、金属板8の外周部にはT字型のティース9が周方向に沿って等間隔に複数個放射状に形成されている場合について説明した。しかしながら、これに限られるものではなく、アーマチュアコア6を、軟磁性粉を加圧成形することにより形成してもよい。また、周方向に分割可能な分割コア方式としてもよい。さらに、ティース9は、軸方向に対して捩れつつ傾斜するように所定のスキュー角を有していてもよい。
In the above-described embodiment, the case where the armature core 6 is formed by laminating a plurality of ring-shaped metal plates 8 in the axial direction has been described. Further, in the armature core 6, the case where a plurality of T-shaped teeth 9 are radially formed on the outer peripheral portion of the metal plate 8 at equal intervals along the circumferential direction has been described. However, the present invention is not limited to this, and the armature core 6 may be formed by pressure-molding soft magnetic powder. Moreover, it is good also as a division | segmentation core system which can be divided | segmented in the circumferential direction. Furthermore, the teeth 9 may have a predetermined skew angle so as to be inclined while twisting with respect to the axial direction.
また、上述の実施形態では、同電位となるセグメント14同士を短絡するために、接続線25を用いた場合について説明した。しかしながら、これに限られるものではなく、同電位となるセグメント14同士を短絡できる導電性の部材であればよい。
さらに、上述の実施形態では、いわゆるダブルフライヤ方式により、アーマチュアコア6に巻線7を巻回した場合について説明した。しかしながら、これに限られるものではなく、巻線7を繰出すフライヤ(不図示)が1つだけの、いわゆるシングルフライヤ方式により、アーマチュアコア6に巻線7を巻回してもよい。この場合、ダブルフライヤ方式における1箇所目(第1フライヤ)の巻線7の巻回作業と、もう1箇所(第2フライヤ)の巻線7の巻回作業とを連続して行えばよい。 In the above-described embodiment, the case where theconnection line 25 is used to short-circuit the segments 14 having the same potential has been described. However, the present invention is not limited to this, and any conductive member that can short-circuit the segments 14 having the same potential may be used.
Furthermore, in the above-mentioned embodiment, the case where the coil | winding 7 was wound around thearmature core 6 by what was called a double flyer system was demonstrated. However, the present invention is not limited to this, and the winding 7 may be wound around the armature core 6 by a so-called single flyer method in which only one flyer (not shown) that feeds the winding 7 is used. In this case, the winding work of the winding 7 at the first place (first flyer) and the winding work of the winding 7 at the other place (second flyer) in the double flyer system may be performed continuously.
さらに、上述の実施形態では、いわゆるダブルフライヤ方式により、アーマチュアコア6に巻線7を巻回した場合について説明した。しかしながら、これに限られるものではなく、巻線7を繰出すフライヤ(不図示)が1つだけの、いわゆるシングルフライヤ方式により、アーマチュアコア6に巻線7を巻回してもよい。この場合、ダブルフライヤ方式における1箇所目(第1フライヤ)の巻線7の巻回作業と、もう1箇所(第2フライヤ)の巻線7の巻回作業とを連続して行えばよい。 In the above-described embodiment, the case where the
Furthermore, in the above-mentioned embodiment, the case where the coil | winding 7 was wound around the
上記のモータによれば、ライザに掛け回された巻線を、ライザのアーマチュアコア側で交差させてライザ側交差部を形成することにより、コンミテータの首下の巻線の弛みを防止できる。このため、コンミテータの首下における巻線の巻太りが解消され、モータの小型化を図ることができる。
また、アーマチュアコアから引き出された巻線を回転軸に掛け回すことにより、アーマチュアコアとコンミテータとの間に配線される巻線の弛みも防止でき、モータをさらに小型化できる。さらに、アーマチュアコアから巻線を引き出す際、同一方向に引き回しているので、巻線の巻回作業を効率よく行うことができ、巻線工数を減少できる。 According to the motor described above, the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size.
Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
また、アーマチュアコアから引き出された巻線を回転軸に掛け回すことにより、アーマチュアコアとコンミテータとの間に配線される巻線の弛みも防止でき、モータをさらに小型化できる。さらに、アーマチュアコアから巻線を引き出す際、同一方向に引き回しているので、巻線の巻回作業を効率よく行うことができ、巻線工数を減少できる。 According to the motor described above, the windings wound around the riser are crossed on the armature core side of the riser to form the riser side crossing portion, thereby preventing loosening of the winding under the neck of the commutator. For this reason, the winding thickness of the winding under the neck of the commutator is eliminated, and the motor can be reduced in size.
Further, by winding the winding drawn from the armature core around the rotating shaft, it is possible to prevent loosening of the winding wired between the armature core and the commutator, and to further reduce the size of the motor. Furthermore, since the winding is drawn out from the armature core in the same direction, the winding work can be efficiently performed and the number of winding steps can be reduced.
1…モータ
2…モータハウジング
3…アーマチュア
4…永久磁石(磁極)
5…回転軸
6…アーマチュアコア
7…巻線
9…ティース
11…スロット
13…コンミテータ
14…セグメント
15…ライザ
21…ブラシ
25…接続線(短絡部材)
71a,73a,75a…順巻きコイル
71b,73b,75b…逆巻きコイル
77…ライザ側交差部
78…ティース側交差部
80…掛け回し部 DESCRIPTION OFSYMBOLS 1 ... Motor 2 ... Motor housing 3 ... Armature 4 ... Permanent magnet (magnetic pole)
5 ...Rotating shaft 6 ... Armature core 7 ... Winding 9 ... Teeth 11 ... Slot 13 ... Commutator 14 ... Segment 15 ... Riser 21 ... Brush 25 ... Connecting wire (short-circuit member)
71a, 73a, 75a ... forward winding coils 71b, 73b, 75b ... reverse winding coil 77 ... riser side intersection 78 ... teeth side intersection 80 ... hung portion
2…モータハウジング
3…アーマチュア
4…永久磁石(磁極)
5…回転軸
6…アーマチュアコア
7…巻線
9…ティース
11…スロット
13…コンミテータ
14…セグメント
15…ライザ
21…ブラシ
25…接続線(短絡部材)
71a,73a,75a…順巻きコイル
71b,73b,75b…逆巻きコイル
77…ライザ側交差部
78…ティース側交差部
80…掛け回し部 DESCRIPTION OF
5 ...
71a, 73a, 75a ... forward winding
Claims (5)
- 複数の磁極を有するモータハウジングと、
前記モータハウジングに回転自在に支持される回転軸と、
前記回転軸に固定され、巻線が集中巻方式により巻回される複数のティースを有するアーマチュアコアと、
前記回転軸に前記アーマチュアコアと隣接して固定され、複数のセグメントが周方向に並んで配置されているコンミテータと、
前記コンミテータに摺接され、前記巻線に給電を行うブラシと、
を備え、
前記セグメントは、前記巻線が掛け回されるライザを有し、
前記アーマチュアコアから引き出される前記巻線は、前記回転軸に同一方向に掛け回された掛け回し部を形成し、該掛け回し部を介して前記コンミテータに向かって引き出されており、
前記ライザに掛け回された前記巻線は、掛け回された前記ライザの前記アーマチュアコア側で交差してライザ側交差部を形成しているモータ。 A motor housing having a plurality of magnetic poles;
A rotating shaft rotatably supported by the motor housing;
An armature core having a plurality of teeth fixed to the rotating shaft and wound by a concentrated winding method;
A commutator fixed to the rotating shaft adjacent to the armature core and having a plurality of segments arranged in a circumferential direction;
A brush that is in sliding contact with the commutator and that feeds power to the winding;
With
The segment has a riser around which the winding is wound,
The winding drawn from the armature core forms a hanging portion that is wound around the rotation shaft in the same direction, and is drawn toward the commutator through the hanging portion,
The motor wound around the riser intersects the armature core side of the wound riser to form a riser side intersection. - 複数の磁極を有するモータハウジングと、
前記モータハウジングに回転自在に支持される回転軸と、
前記回転軸に固定され、巻線が集中巻方式により巻回される複数のティースを有するアーマチュアコアと、
前記回転軸に前記アーマチュアコアと隣接して固定され、複数のセグメントが周方向に並んで配置されているコンミテータと、
前記コンミテータに摺接され、前記巻線に給電を行うブラシと、
を備え、
各前記ティースの両側から引き出される前記巻線の2本の引出線は、互いに交差してティース側交差部を形成しているモータ。 A motor housing having a plurality of magnetic poles;
A rotating shaft rotatably supported by the motor housing;
An armature core having a plurality of teeth fixed to the rotating shaft and wound by a concentrated winding method;
A commutator fixed to the rotating shaft adjacent to the armature core and having a plurality of segments arranged in a circumferential direction;
A brush that is in sliding contact with the commutator and that feeds power to the winding;
With
A motor in which two lead lines of the winding drawn from both sides of each tooth intersect each other to form a tooth side intersection. - 前記ティースの数が6、前記セグメントの数が12に設定されており、
同電位とする前記セグメント同士を短絡する短絡部材を備え、
各前記ティースは、
互いに隣接する前記セグメントの一方のセグメントに前記巻線の巻き始め端が接続されると共に、他方の前記セグメントまたは該他方のセグメントに短絡したセグメントに前記巻線の巻き終わり端が接続され、同じ相に相当する前記ティース同士に連続するように順方向に前記巻線を巻回してなる第1コイルと、
互いに隣接する他の前記セグメントの一方のセグメントに前記巻線の巻き始め端が接続されると共に、他方の前記セグメントまたは該他方のセグメントに短絡したセグメントに前記巻線の巻き終わり端が接続され、同じ相に相当するティース同士に連続するように逆方向に前記巻線を巻回してなる第2コイルと、
を備え、
各前記ティースを周回り方向にU相、V相、W相の順で割り当て、各相に巻回されている前記第1コイルをそれぞれU相、V相、W相のコイルとし、各相に巻回されている前記第2コイルをそれぞれ-U相、-V相、-W相のコイルとしたとき、
隣接する前記セグメント間に、U相、-W相、V相、-U相、W相、-V相のコイルをこの順で電気的に接続する請求項1または請求項2に記載のモータ。 The number of teeth is set to 6, and the number of segments is set to 12,
A short-circuit member that short-circuits the segments with the same potential,
Each said tooth
The winding start end of the winding is connected to one segment of the segments adjacent to each other, and the winding end of the winding is connected to the other segment or a segment short-circuited to the other segment. A first coil formed by winding the winding in a forward direction so as to be continuous between the teeth corresponding to
A winding start end of the winding is connected to one of the other segments adjacent to each other, and a winding end of the winding is connected to the other segment or a segment short-circuited to the other segment; A second coil formed by winding the winding in the opposite direction so as to be continuous between teeth corresponding to the same phase;
With
Each of the teeth is assigned in the circumferential direction in the order of U phase, V phase, and W phase, and the first coil wound around each phase is used as a U phase, V phase, and W phase coil. When the wound second coil is a -U phase, -V phase, -W phase coil, respectively,
3. The motor according to claim 1, wherein coils of U phase, -W phase, V phase, -U phase, W phase, and -V phase are electrically connected in this order between the adjacent segments. - 前記ティースの数が6、前記セグメントの数が12に設定されており、
前記ティースに周回り方向に1から6まで順に番号を付すると共に、前記セグメントに周回り方向に1から12まで順に番号を付したとき、
前記巻線は、
巻き始め端が7番セグメントに接続され、
7番セグメントから1番セグメントに接続され、
1番セグメントから1番ティースに順方向に巻回され、
1番ティースから2番セグメントに接続され、
2番セグメントから8番セグメントに接続され、
8番セグメントから3番ティースに逆方向に巻回され、
3番ティースから3番セグメントに接続され、
3番セグメントから9番セグメントに接続され、
9番セグメントから5番ティースに順方向に巻回され、
5番ティースから10番セグメントに接続され、
10番セグメントから4番セグメントに接続され、
4番セグメントから1番ティースに逆方向に巻回され、
1番ティースから11番セグメントに接続され、
11番セグメントから5番セグメントに接続され、
5番セグメントから3番ティースに順方向に巻回され、
3番ティースから6番セグメントに接続され、
6番セグメントから12番セグメントに接続され、
12番セグメントから5番ティースに逆方向に巻回され、
5番ティースから引きだれた巻き終わり端が再び7番セグメントに接続されている請求項1または請求項2に記載のモータ。 The number of teeth is set to 6, and the number of segments is set to 12,
When the teeth are numbered sequentially from 1 to 6 in the circumferential direction, and the segments are numbered sequentially from 1 to 12 in the circumferential direction,
The winding is
The winding start end is connected to the 7th segment,
Connected from segment 7 to segment 1,
Winded forward from No. 1 segment to No. 1 tooth,
Connected from the 1st tooth to the 2nd segment,
Connected from segment 2 to segment 8,
Wound in the reverse direction from the 8th segment to the 3rd tooth,
Connected from the 3rd tooth to the 3rd segment,
Connected from segment 3 to segment 9,
Winded forward from the 9th segment to the 5th tooth,
Connected from the 5th tooth to the 10th segment,
Connected from segment 10 to segment 4,
Wrapped in the reverse direction from the 4th segment to the 1st tooth,
Connected from the 1st tooth to the 11th segment,
Connected from segment 11 to segment 5,
Winded forward from the 5th segment to the 3rd tooth,
Connected from the 3rd tooth to the 6th segment,
Connected from segment 6 to segment 12,
Wound in the reverse direction from the 12th segment to the 5th tooth,
The motor according to claim 1 or 2, wherein a winding end end drawn from the fifth tooth is connected to the seventh segment again. - 前記巻線が、前記回転軸を中心に点対称に巻回されている請求項1~請求項4の何れか1項に記載のモータ。 The motor according to any one of claims 1 to 4, wherein the winding is wound point-symmetrically around the rotation axis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016008886A JP6579967B2 (en) | 2016-01-20 | 2016-01-20 | motor |
JP2016-008886 | 2016-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126381A1 true WO2017126381A1 (en) | 2017-07-27 |
Family
ID=59362736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000595 WO2017126381A1 (en) | 2016-01-20 | 2017-01-11 | Motor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6579967B2 (en) |
WO (1) | WO2017126381A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118432312A (en) * | 2024-07-02 | 2024-08-02 | 瑞声光电科技(常州)有限公司 | Stepping motor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6928563B2 (en) | 2018-01-10 | 2021-09-01 | 株式会社ミツバ | motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008113485A (en) * | 2006-10-30 | 2008-05-15 | Mitsuba Corp | Armature for dc motor, dc motor, and armature winding method for the dc motor |
JP2014096859A (en) * | 2012-11-07 | 2014-05-22 | Mitsuba Corp | Electric motor |
-
2016
- 2016-01-20 JP JP2016008886A patent/JP6579967B2/en not_active Expired - Fee Related
-
2017
- 2017-01-11 WO PCT/JP2017/000595 patent/WO2017126381A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008113485A (en) * | 2006-10-30 | 2008-05-15 | Mitsuba Corp | Armature for dc motor, dc motor, and armature winding method for the dc motor |
JP2014096859A (en) * | 2012-11-07 | 2014-05-22 | Mitsuba Corp | Electric motor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118432312A (en) * | 2024-07-02 | 2024-08-02 | 瑞声光电科技(常州)有限公司 | Stepping motor |
CN118432312B (en) * | 2024-07-02 | 2024-09-17 | 瑞声光电科技(常州)有限公司 | Stepping motor |
Also Published As
Publication number | Publication date |
---|---|
JP6579967B2 (en) | 2019-09-25 |
JP2017131035A (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8378547B2 (en) | Electric motor | |
US8274193B2 (en) | Electric motor | |
JP5523318B2 (en) | 3-phase DC motor | |
JP2010035405A (en) | Dynamo-electric motor | |
JP2008136343A (en) | Dc motor armature, dc motor, and winding method of dc motor armature | |
JP5231879B2 (en) | Electric motor | |
WO2017126381A1 (en) | Motor | |
JP2010213490A (en) | Commutator and three-phase dc motor | |
JP2008099416A (en) | Armature for motor, motor, and winding method of armature for motor | |
JP7074557B2 (en) | Electric motor | |
JP2011041389A (en) | Three-phase direct-current motor | |
JP2008306913A (en) | Armature for electric motor and electric motor | |
JP2008131780A (en) | Armature of dc motor and dc motor | |
JP2012196043A (en) | Method for winding coil of dc motor and dc motor | |
JP5980096B2 (en) | Electric motor | |
JP6889066B2 (en) | Stator and motor | |
JP6928563B2 (en) | motor | |
WO2023140071A1 (en) | Motor stator and motor provided with same | |
JP5714948B2 (en) | DC motor winding method and DC motor | |
JP5546146B2 (en) | DC motor | |
JP5044360B2 (en) | Electric motor | |
JP6934373B2 (en) | motor | |
JP2020058173A (en) | Armature and electric motor | |
JP2021191015A (en) | Electric motor | |
JP2019009933A (en) | motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17741261 Country of ref document: EP Kind code of ref document: A1 |