WO2023140074A1 - Motor stator and motor equipped with same - Google Patents

Motor stator and motor equipped with same Download PDF

Info

Publication number
WO2023140074A1
WO2023140074A1 PCT/JP2022/048254 JP2022048254W WO2023140074A1 WO 2023140074 A1 WO2023140074 A1 WO 2023140074A1 JP 2022048254 W JP2022048254 W JP 2022048254W WO 2023140074 A1 WO2023140074 A1 WO 2023140074A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
connection terminal
phase
motor
coil wire
Prior art date
Application number
PCT/JP2022/048254
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 小林
直嗣 北山
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023140074A1 publication Critical patent/WO2023140074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor stator and a motor including the same, and more particularly to a brushless motor stator that can be suitably used as a drive source for electrical equipment mounted on a vehicle (automobile) such as an electric oil pump and an electric parking brake.
  • a vehicle autonomous
  • a brushless motor stator that can be suitably used as a drive source for electrical equipment mounted on a vehicle (automobile) such as an electric oil pump and an electric parking brake.
  • Patent Document 1 discloses an inner rotor type three-phase brushless motor that includes a motor stator in which a coil (a U-phase coil, a V-phase coil, or a W-phase coil) is wound on each of a plurality of teeth spaced apart in the circumferential direction on a cylindrical stator core via an insulating member also called an insulator, and a motor rotor arranged radially inward of the motor stator.
  • a coil wire also referred to as a “lead wire” drawn out from the coil wound around the teeth to the axially outer side of the stator core is connected (electrically connected) to the bus bar to form a motor drive circuit (power supply circuit).
  • the motor stator of Patent Document 1 includes a busbar unit arranged coaxially with the stator core, and the busbar unit holds a U-phase busbar, a V-phase busbar, a W-phase busbar, and a neutral point busbar, each having a coil wire connection terminal, in a non-contact state.
  • the busbars having coil wire connection terminals are held by a busbar unit provided separately from the stator core. (1) After the coil is wound, it is necessary to align the coil wire drawn from the coil with the connection terminal of the bus bar. (2) After the coil is wound, there is a risk that the shape accuracy of the coil may deteriorate due to looseness in the winding of the coil, etc. during the period from the time the coil is wound until the coil wire pulled out from the coil is connected. And so on.
  • the main object of the present invention is to provide a motor stator that is excellent in coil shape accuracy and capable of stably exerting a predetermined output at low cost.
  • a motor stator comprising a cylindrical stator core, coils wound around radial teeth provided on the stator core via an insulating member, and bus bars having connection terminals and external connection terminals
  • the insulating member has a holding portion that holds the busbar on one axial end side of the stator core, a coil wire drawn out from the coil to one axial end side of the stator core is connected to the connection terminal in a state of being entwined with the connection terminal of the busbar held by the holding portion;
  • the holding portion is provided with a relief portion that relieves a tensile force acting on the connection terminal due to the coil wire being entwined around the connection terminal.
  • the insulating member has a holding portion that holds the busbar on one axial end side of the stator core. This means that the insulating member for insulating between the teeth and the coil wound thereon integrally has a portion that holds the bus bar of the conventional product disclosed in Patent Document 1. Therefore, the number of parts can be reduced compared to the conventional product.
  • the coil wire pulled out from the coil is connected to the connection terminal in a state of being entwined with the connection terminal of the busbar held by the holding portion.
  • a configuration can be obtained, for example, by entwining the intended connection portion of the coil wire with respect to the connection terminal when winding the coil, and then connecting the intended connection portion (entangled portion) of the coil wire to the connection terminal.
  • the coil wire connection operation can be performed in a state in which the coil wire connection planned locations are positioned with respect to the connection terminals. Therefore, the coil wire connection operation can be smoothly (efficiently) performed with respect to the connection terminals while preventing deterioration in the shape accuracy of the coil as much as possible.
  • connection terminals of the busbar when the coil wire is entwined with the connection terminals of the busbar, the associated tensile force is continuously applied to the connection terminals, so there is a possibility that the connection terminals will be deformed or damaged, making it impossible to maintain a proper connection state.
  • the holding portion of the insulating member is provided with the relief portion for relieving the tensile force, it is possible to prevent such a problem from occurring as much as possible.
  • the relief part can have, for example, a first projection and a second projection provided separately from each other.
  • first projection and a second projection provided separately from each other.
  • At least a part of the first projection and the second projection that constitute the relief portion can be provided so as to be arranged within a projection plane in which the connection terminal is projected in the axial direction. In this way, it is possible to enhance the ability to relax the tensile force.
  • the coil wire can be connected to the connection terminal by fusing, which is also called heat crimping, for example.
  • fusing which is also called heat crimping, for example.
  • the conductor wire can be joined to the connection terminal at substantially the same time as the insulation film of the coil wire made of the conductor wire with the insulation film is removed, so that the wire connection work can be performed efficiently and accurately.
  • the present invention can be preferably applied to a motor stator in which a plurality of teeth and coils wound thereon are provided at intervals in the circumferential direction, and a plurality of coils are formed by successively intensive winding of a single continuous coil wire around each of the plurality of teeth.
  • the present invention can be preferably applied, for example, to a motor stator for a 10-pole, 12-slot three-phase brushless motor.
  • the 10-pole, 12-slot three-phase brushless motor includes, for example, an SPM type (a surface magnet type in which permanent magnets are attached to the outer periphery of the rotor) and an IPM type (an embedded magnet type in which permanent magnets are embedded in the rotor), in which the motor rotor has 10 permanent magnets and the motor stator has 12 slots, and a motor having a ring-shaped magnet with 10 circumferential poles and 12 slots.
  • the motor (three-phase brushless motor) comprising the motor stator and the motor rotor according to the present invention has the feature that it can stably produce a predetermined output and is highly reliable.
  • FIG. 1 is a schematic perspective view of a motor stator according to an embodiment of the present invention before coil winding;
  • FIG. FIG. 2 is a view of a bus bar separated from the motor stator of FIG. 1;
  • 1 is a schematic plan view of a motor stator according to an embodiment of the invention;
  • FIG. FIG. 2 is an enlarged view of a main part of the motor stator shown in FIG. 1;
  • FIG. 2 is an enlarged view of a main portion of a motor stator wound with a coil;
  • FIG. 5B is a cross-sectional view taken along the line AA in FIG. 5A;
  • 4 is a diagram for explaining a winding structure of a coil in the motor stator of FIG. 3;
  • FIG. FIG. 7 is a diagram showing a star-connected motor drive circuit obtained by the winding structure of FIG. 6 ;
  • 1 is a longitudinal sectional view conceptually showing one configuration example of a motor provided with a motor stator according to an embodiment of the present invention
  • a motor 30 shown in FIG. 8 includes a motor stator 1, a motor rotor 32 arranged radially inside the motor stator 1 with a radial gap (not shown) therebetween, and a casing 31 housing them.
  • the illustrated motor rotor 32 includes an output shaft 33, a rotor core 34 provided to be rotatable integrally with the output shaft 33, and a plurality of (e.g., 10 poles) permanent magnets 35 held by the rotor core 34 at regular intervals in the circumferential direction.
  • the motor 30 shown in FIG. 8 can be used, for example, as a drive source for an electric pump mounted on a vehicle, more specifically, an electric pump (electric oil pump) that is attached to the transmission case of the vehicle and used to ensure the hydraulic pressure required inside the transmission by pumping oil to the transmission while the engine is stopped.
  • an electric pump electric oil pump
  • a pump rotor that can rotate integrally with the output shaft 33 is provided at the free end of the output shaft 33 outside the casing 31 .
  • FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding
  • FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated
  • FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding
  • FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated
  • FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding
  • FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated
  • FIG. 1 is a schematic perspective
  • the motor stator 1 includes a cylindrical stator core 2 made of a metal material (for example, an electromagnetic steel sheet) with excellent magnetic properties, a U-phase busbar 5, a V-phase busbar 6, a W-phase busbar 7 and a neutral point busbar (N-phase busbar) 8, an insulating member 10 made of an insulating material (here, a resin material), and a plurality of coils C.
  • a metal material for example, an electromagnetic steel sheet
  • the stator core 2 has a cylindrical portion 3 and radial teeth 4 protruding from the inner peripheral surface of the cylindrical portion 3 toward the center of the stator core 2.
  • a total of 12 teeth 4 are provided at equal intervals in the circumferential direction.
  • the twelve teeth 4 arranged in order along the circumferential direction will be referred to as the first tooth 4A to the twelfth tooth 4L (see FIG. 3).
  • the first tooth 4A is arranged at the 12 o'clock position of the stator core 2, and thereafter, the remaining 11 teeth 4 (the second tooth 4B to the twelfth tooth 4L) are arranged in order at a pitch of 30° counterclockwise.
  • the motor stator 1 of this embodiment has a total of 12 teeth 4 (slots formed between the teeth 4), and the motor rotor 32 arranged radially inward of the motor stator 1 is provided with 10 permanent magnets 35 (see FIG. 8). Therefore, the motor stator 1 of this embodiment is a motor stator for a three-phase brushless motor with 10 poles and 12 slots.
  • the insulating member 10 includes a first covering portion 11 that covers the inner peripheral surface of the cylindrical portion 3 of the stator core 2, a second covering portion 12 that covers the teeth 4 of the stator core 2 (more specifically, portions of the teeth 4 on which the coils 20 are wound), and a short cylindrical holding portion 13 that is provided at one end in the axial direction of the stator core 2 and holds the bus bars 5 to 8 in a non-contact state with each other.
  • the bus bars 5 to 8 are members that supply (distribute) the motor driving current output from an external power source (not shown) to the coil C. Therefore, the busbars 5 to 8 are all made of a highly conductive metal material such as copper or aluminum alloy.
  • the U-phase bus bar 5 of the present embodiment is formed in a substantially circular arc shape as a whole, and is provided with a connection terminal 5a to which the coil wire CL is connected at one end in the longitudinal direction (circumferential direction), and an external connection terminal 5b connected to an external power supply at the other end in the longitudinal direction (circumferential direction).
  • the V-phase bus bar 6 and the W-phase bus bar 7 are each formed in a generally arcuate shape as a whole, and are provided with connection terminals 6a and 7a to which the coil wire CL is connected at one end in the circumferential direction, and external connection terminals 6b and 7b to be connected to an external power supply at the other end in the circumferential direction.
  • the U-phase bus bar 5, the V-phase bus bar 6, and the W-phase bus bar 7 are held by the holding portion 13 in a state in which the terminals 5a, 6a, and 7a are exposed to the outside (projecting outward in the axial direction of the holding portion 13) and the terminals 5b, 6b, and 7b project radially outward of the holding portion 13, as shown in FIG.
  • the neutral point bus bar 8 is an arc-shaped conductive member in which connection terminals 8a, 8b, and 8c that form neutral points respectively with a U-phase coil portion 21, a V-phase coil portion 22, and a W-phase coil portion 23, which will be described later, are provided at intervals (see FIG. 2). Similarly to the U-phase bus bar 5, the neutral point bus bar 8 is also held by the holding portion 13 with the terminals 8a, 8b, 8c exposed to the outside (protruding axially outward of the holding portion 13) (see FIG. 1).
  • connection terminals 5a of the U-phase bus bar 5 are substantially V-shaped with openings on both sides in the axial direction and circumferential direction.
  • the connection terminals 6a, 7a, 8a-8c of the other busbars 6-8 are also substantially V-shaped like the connection terminal 5a.
  • the coil C is wound around each of a total of 12 teeth 4 (by so-called concentrated winding) via (the second covering portion 12 of) the insulating member 10 attached to the stator core 2.
  • the coil C includes a total of four U-phase coils CU1 to CU4, a total of four V-phase coils CV1 to CV4, and a total of four W-phase coils CW1 to CW4, and these are star-connected using the bus bars 5 to 8 to form a motor drive circuit (power supply circuit) 20 as shown in FIGS.
  • a total of 12 coils C are formed by sequentially winding a single continuous coil wire (a conductive wire made of a metal material such as copper coated with an insulating film) CL around each of a total of 12 teeth 4 covered with (the second covering portion 12 of) an insulating member 10 by concentrated winding.
  • the U-phase coil CU1 is first formed (wound), and thereafter, the coil C is wound in the order of CU2, CU3, CU4, CV3, CV4, CV1, CV2, CW1, CW2, CW3, and CW4.
  • Specific examples of the coil winding process for winding the coil C around each tooth 4 and the wire connection process performed after the coil winding process are completed will be described below.
  • connection wire portions CL 1 to CL 12 of the coil wire CL that are interposed between two coils adjacent to each other in the longitudinal direction to connect the two coils are arranged on one axial end side of the stator core 2 where the busbars 5 to 8 are provided, and predetermined connection wire portions are connected to the connection terminals of the corresponding busbars 5 to 8.
  • the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer circumference of the second tooth 4B.
  • the U-phase coil CU2 is wound around the outer periphery of the second tooth 4B by concentrated winding.
  • the coil wire CL After winding the U-phase coil CU2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the seventh tooth 4G. As a result, the U-phase coil CU3 is wound around the outer periphery of the seventh tooth 4G by concentrated winding. Before winding the coil wire CL around the outer circumference of the seventh tooth 4G, the connecting wire portion CL2 of the coil wire CL that connects the U-phase coils CU2 and CU3 is wound around the connection terminal 5a of the U-phase bus bar 5 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer circumference of the eighth tooth 4H.
  • the U-phase coil CU4 is wound around the outer periphery of the eighth tooth 4H by concentrated winding.
  • the busbars 5 to 8 may be held by the holding portion 13 so as not to be relatively movable with respect to the insulating member 10, or may be held by the holding portion 13 so as to be relatively movable with respect to the insulating member 10.
  • the former configuration can be obtained, for example, by injection-molding the insulating member 10 (holding portion 13) with resin using the busbars 5 to 8 as insert parts.
  • the latter configuration can be obtained, for example, by injection-molding the insulating member 10 (holding portion 13) shown in FIG. 2 having grooves 13a to 13d for fitting busbars with resin, and then outserting (fitting) the busbars 5 to 8 into the grooves 13a to 13d.
  • the coil wire CL is wound from one end of the stator core 2 in the axial direction around the outer circumference of the ninth tooth 4I in the counterclockwise direction for a predetermined number of times.
  • the V-phase coil CV3 is wound around the outer periphery of the ninth tooth 4I by concentrated winding.
  • the connecting wire portion CL 4 of the coil wire CL which connects the U-phase coil CU4 and the V-phase coil CV3, is wound around the connection terminal 8a of the neutral point bus bar 8 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise around the outer circumference of the tenth tooth 4J from one end in the axial direction of the stator core 2 .
  • the V-phase coil CV4 is wound around the outer circumference of the tenth tooth 4J by concentrated winding.
  • the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the third tooth 4C.
  • the V-phase coil CV1 is wound around the outer periphery of the third tooth 4C by concentrated winding.
  • the connecting wire portion CL 6 connecting the V-phase coils CV4 and CV1 of the coil wire CL is wound around the connection terminal 6a of the V-phase bus bar 6 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 around the outer circumference of the fourth tooth 4D.
  • the V-phase coil CV2 is wound around the outer periphery of the fourth tooth 4D by concentrated winding.
  • the coil wire CL After winding the V-phase coil CV2 (four V-phase coils CV1 to CV4 in total), the coil wire CL is wound from one axial end of the stator core 2 around the outer periphery of the fifth tooth 4E in the counterclockwise direction for a predetermined number of times. As a result, the W-phase coil CW1 is wound around the outer periphery of the fifth tooth 4E by concentrated winding. Before winding the coil wire CL around the outer periphery of the fifth tooth 4E, the connecting wire portion CL 8 of the coil wire CL, which connects the V-phase coil CV2 and the W-phase coil CW1, is wound around the connection terminal 8b of the neutral point bus bar 8 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 to the outer periphery of the sixth tooth 4F.
  • the W-phase coil CW2 is wound around the outer periphery of the sixth tooth 4F by concentrated winding.
  • the coil wire CL After winding the W-phase coil CW2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one end of the stator core 2 in the axial direction around the outer periphery of the eleventh tooth 4K. As a result, the W-phase coil CW3 is wound around the outer circumference of the eleventh tooth 4K by concentrated winding. Before the coil wire CL is wound around the outer periphery of the eleventh tooth 4K, the connecting wire portion CL10 connecting the W-phase coils CW2 and CW3 of the coil wire CL is wound around the connection terminal 7a of the W-phase bus bar 7 held by the holding portion 13.
  • the coil wire CL is wound a predetermined number of times clockwise around the outer periphery of the twelfth tooth 4L from one end in the axial direction of the stator core 2 .
  • the W-phase coil CW4 is wound around the outer periphery of the twelfth tooth 4L by concentrated winding.
  • a total of four U-phase coils, a total of four V-phase coils, and a total of four W-phase coils are sequentially formed along the longitudinal direction of one continuous coil wire CL.
  • a winding start portion (longitudinal end portion) CL s and a winding end portion (longitudinal end portion) CL f of a single continuous coil wire CL in which a total of 12 coils C are formed are both wrapped around a connection terminal 8 c of a neutral point bus bar 8 .
  • connection step the coil wire CL (the connecting wire portion thereof) that is bound by the connection terminals of the bus bars 5 to 8 is connected to the connection terminal that is bound. in particular, -
  • the connecting wire portion CL2 of the coil wire CL is connected to the connection terminal 5a of the U-phase bus bar 5
  • the connecting wire portion CL6 of the coil wire CL is connected to the connection terminal 6a of the V-phase bus bar 6
  • the connecting wire portion CL 10 of the coil wire CL is connected to the connection terminal 7a of the W-phase bus bar 7
  • the connecting wire portion CL4 of the coil wire CL is connected to the connection terminal 8a of the neutral point bus bar 8
  • the connecting wire portion CL 8 of the coil wire CL is connected to the connection terminal 8b of the neutral point bus bar 8
  • the connecting wire portion CL 12 (the start line CL s and the finish line CL f ) of the coil wire CL is connected to the connection terminal 8 c of the neutral point bus bar 8 .
  • the coil wire CL is connected by so-called fusing (thermal crimping) in which a pair of electrodes is compressed in the radial direction of the coil wire CL that is entwined with a V-shaped connection terminal, and current is passed between the pair of electrodes for a predetermined period of time.
  • fusing thermal crimping
  • the conductor wire can be joined to the connection terminal at substantially the same time as the insulation film of the coil wire CL made of the conductor wire with the insulation film is removed, so that the coil wire CL can be connected efficiently.
  • connection of the coil wire CL (the connecting wire portion thereof) to the six connection terminals may be performed individually or collectively.
  • the insulating coating may be removed from the portion of the coil wire CL that is bound around the connection terminal (the planned connection portion to be connected to the terminal).
  • the coil wire CL can be connected to the connection terminal only by crimping the V-shaped connection terminal, and the coil wire CL can also be connected to the connection terminal by welding such as TIG welding or laser welding.
  • a U-phase coil portion 21 in which a total of four U-phase coils CU1-CU4 are connected in 2 parallel and 2 series
  • a V-phase coil portion 22 in which a total of 4 V-phase coils CV1 to CV4 are connected in 2 parallel and 2 series
  • a total of 4 W-phase coils CW1 to CW4 are connected in 2 parallel and 2 series.
  • a motor drive circuit 20 is obtained in which the W-phase coil portion 23 is connected to each other (star connection) using the bus bars 5-8.
  • a first row formed by connecting the U-phase coils CU1 and CU2 in series and a second row formed by connecting the U-phase coils CU3 and CU4 in series are connected in parallel by a connecting wire portion CL 2 of the coil wire CL that connects the U-phase coils CU2 and CU3.
  • a first row formed by connecting the V-phase coils CV3 and CV4 in series and a second row formed by connecting the V-phase coils CV1 and CV2 in series are connected in parallel by a connecting wire portion CL 6 of the coil wire CL that connects the V-phase coils CV4 and CV1.
  • a first row formed by connecting the W-phase coils CW1 and CW2 in series and a second row formed by connecting the W-phase coils CW3 and CW4 in series are connected in parallel by a connecting wire portion CL 10 of the coil wire CL that connects the W-phase coils CW2 and CW3.
  • the motor stator 1 of the present embodiment is characterized in that it is possible to reduce the tensile force (in the axial direction) continuously acting on the connection terminals 5a, 6a, 7a, and 8a-8c of the bus bars 5-8 as the coil wires CL (the crossover portions thereof) are entwined during the coil winding process. That is, as illustrated in FIG. 4, which is an enlarged view of the main part of FIG. 1, a relief portion 14 for relieving the tensile force described above is integrally provided in a short cylindrical holding portion 13 provided in the insulating member 10 on substantially the same phase as the connection terminal 5a of the U-phase bus bar 5.
  • a relief portion 14 is also provided on substantially the same phase as the phase where the connection terminal 6a of the V-phase bus bar 6, the connection terminal 7a of the W-phase bus bar 7, and the connection terminals 8a to 8c of the neutral point bus bar 8 are arranged.
  • the relief portion 14 of the present embodiment shown in FIG. 4 has a support portion 15 extending axially outward from the end surface of the holding portion 13, and a first projection 16 and a second projection 17 which are provided separately from each other (spaced apart from each other in the axial direction and the circumferential direction in the illustrated example) and protrude radially outward from the outer diameter surface of the support portion 15.
  • Each of the first projection 16 and the second projection 17 is provided such that at least a portion thereof is arranged within the range of a projection plane P obtained by projecting the corresponding wiring terminal (here, the wiring terminal 5a of the U-phase bus bar 5) in the axial direction.
  • the coil wire CL (the crossover portion CL 2 of the coil wire CL that connects the U-phase coils CU2 and CU3) is wrapped around the corresponding connection terminal (connection terminal 5a of the U-phase bus bar 5), the coil wire CL is also wrapped around the first projection 16 and the second projection 17 that form the relief portion 14.
  • the coil wire CL is entwined around the first projection 16 by changing the advancing direction of the coil wire CL (indicated by the solid arrow in FIG. 5A) arranged in the gap (passage) defined between the end surfaces of the holding portion 13 and the first projection 16 facing each other in the axial direction from the circumferential direction to the axially outward direction.
  • the traveling direction of the coil wire CL arranged in the inner passage of the connection terminal 5a is changed from the circumferential direction to the axially inward direction, and the traveling direction of the coil wire CL is changed from the axially inward direction to the circumferential direction so that the coil wire CL is arranged in the passage defined between the first projection 16 and the second projection 17, thereby entangling the coil wire CL around the connection terminal 5a and the second projection 17.
  • the coil wire CL (the crossover portion) corresponding to the connection terminal 6a of the V-phase bus bar 6, the connection terminal 7a of the W-phase bus bar 7, and the connection terminals 8a to 8c of the neutral point bus bar 8 is entwined
  • the coil wire CL is also entwined with the first projection 16 and the second projection 17 of the relaxation portion 14 provided corresponding to each of the above-mentioned connection terminals.
  • the coil wire CL (the connecting wire portion thereof) drawn out from the coil C is connected to the connection terminals in a state of being entwined with the connection terminals of the bus bars 5 to 8 held by the holding portion 13 of the insulating member 10.
  • Such a configuration can be obtained by entangling the planned connection points of the coil wire CL with respect to the connection terminals when winding the coil C, and then connecting the planned connection points of the coil wire CL to the corresponding connection terminals.
  • the connection operation of the coil wire CL can be performed in a state in which the planned connection locations of the coil wire CL are positioned with respect to the connection terminals. Therefore, it is possible to smoothly perform the connection operation of the coil wire CL with respect to the connection terminals while preventing deterioration in the shape accuracy of the coil C as much as possible.
  • the motor stator 1 of the present embodiment since the holding portion 13 of the insulating member 10 is provided with the relief portion 14 that relieves the tensile force, it is possible to prevent such a problem from occurring as much as possible.
  • the portions of the coil wire CL located upstream and downstream of the portion connected (entwined) to the connection terminal can be easily entwined with the first projection 16 and the second projection 17, respectively, so that the tensile force acting on the connection terminal can be effectively alleviated.
  • at least a part of the first projection 16 and the second projection 17 are arranged in the projection plane P obtained by projecting the corresponding wiring terminal in the axial direction, so the tensile force relaxation ability can be enhanced from this point as well.
  • the first projection 16 and the second projection 17 that constitute the relief portion 14 can be injection molded with resin.
  • both protrusions 16 and 17 are spaced apart from each other in the circumferential direction, there is also the advantage that the mold splitting can be simplified and the molding cost can be reduced.
  • a total of four bus bars 5 to 8 are held by the holding portion 13 of the insulating member 10 arranged on one axial end side of the stator core 2 in a non-contact state.
  • the insulating member 10 for insulating between the teeth 4 and the coil C wound thereon integrally has a portion corresponding to the busbar holder of the conventional busbar unit. In this case, there is no need to provide a busbar unit separately from the motor stator 1, so the number of parts can be reduced.
  • the motor stator 1 with excellent shape accuracy of each coil C and capable of stably exhibiting a predetermined output at a low cost.
  • the motor stator 1 can be appropriately modified as long as the gist of the present invention is not changed.
  • a total of 12 coils C are formed on a single coil wire CL by sequentially winding a single continuous coil wire CL around a total of 12 teeth 4 by concentrated winding, but the number of coils C formed on a single coil wire CL can be arbitrarily selected.
  • the supporting portion 15 provided with the two projections 16 and 17 spaced apart from each other in the axial direction was adopted, but the supporting portion 15 may have one or three or more projections.
  • the present invention is applied to the stator 1 for a three-phase brushless motor (fractional groove motor) with 10 poles and 12 slots has been described.
  • a motor drive circuit is formed by star-connecting U-phase to W-phase coils connected in two parallel and three series.
  • the present invention can also be applied to a motor stator in which U-phase coils, V-phase coils, and W-phase coils are delta-connected using bus bars.

Abstract

Provided is a motor stator 1 comprising a coil C wound onto radial teeth 4 provided on a cylindrical stator core 2 with an insulating member 10 therebetween, and a busbar 5 having a wire connection terminal 5a, wherein: the insulating member 10 has a holding part 13 which holds the busbar 5 on one axial end side of the stator core 2; a coil wire CL drawn out from the coil C to the one axial end side of the stator core 2 is connected to the wire connection terminal 5a of the busbar 5 while being tied to the wire connection terminal 5a; and the holding part 13 is provided with a mitigating part 14 which mitigates a tensile force that acts on the wire connection terminal 5a due to the coil wire CL being tied to the wire connection terminal 5a.

Description

モータステータ及びこれを備えるモータMotor stator and motor provided with the same
 本発明は、モータステータ及びこれを備えるモータに関し、特に、電動オイルポンプや電動パーキングブレーキなどといった車両(自動車)に搭載される電装機器の駆動源として好適に用い得るブラシレスモータのステータに関する。 The present invention relates to a motor stator and a motor including the same, and more particularly to a brushless motor stator that can be suitably used as a drive source for electrical equipment mounted on a vehicle (automobile) such as an electric oil pump and an electric parking brake.
 下記の特許文献1には、筒状のステータコアに周方向に間隔を空けて設けられた複数のティースのそれぞれに、インシュレータなどとも称される絶縁部材を介してコイル(U相コイル、V相コイル又はW相コイル)を巻装してなるモータステータと、このモータステータの径方向内側に配されたモータロータとを備えたインナロータ型の三相ブラシレスモータが開示されている。上記のモータステータでは、ティースに巻装されたコイルからステータコアの軸方向外側に引き出されたコイル線(「引出線」などとも称される)がバスバーに結線(電気的に接続)されることでモータの駆動回路(給電回路)が形成される。特許文献1のモータステータは、ステータコアと同軸に配置されたバスバーユニットを備えており、バスバーユニットに、それぞれがコイル線の結線用端子を有するU相バスバー、V相バスバー、W相バスバー及び中性点バスバーが互いに非接触の状態で保持されている。 Patent Document 1 below discloses an inner rotor type three-phase brushless motor that includes a motor stator in which a coil (a U-phase coil, a V-phase coil, or a W-phase coil) is wound on each of a plurality of teeth spaced apart in the circumferential direction on a cylindrical stator core via an insulating member also called an insulator, and a motor rotor arranged radially inward of the motor stator. In the above motor stator, a coil wire (also referred to as a “lead wire”) drawn out from the coil wound around the teeth to the axially outer side of the stator core is connected (electrically connected) to the bus bar to form a motor drive circuit (power supply circuit). The motor stator of Patent Document 1 includes a busbar unit arranged coaxially with the stator core, and the busbar unit holds a U-phase busbar, a V-phase busbar, a W-phase busbar, and a neutral point busbar, each having a coil wire connection terminal, in a non-contact state.
国際公開WO2020/013078号公報International publication WO2020/013078
 特許文献1のモータでは、コイル線の結線用端子を有するバスバーが、ステータコアとは別に設けられたバスバーユニットに保持されている関係上、
(1)コイルを巻装した後、コイルから引き出されるコイル線をバスバーの結線用端子に結線する際に両者の位置合わせを行う必要があるために、コイル線の結線作業をスムーズに実施することが難しく、また、
(2)コイルを巻装した後、コイルから引き出されたコイル線を結線するまでの間のコイルの巻き緩み等に起因して、コイルの形状精度が低下するおそれがある、
などといった問題がある。
In the motor disclosed in Patent Literature 1, the busbars having coil wire connection terminals are held by a busbar unit provided separately from the stator core.
(1) After the coil is wound, it is necessary to align the coil wire drawn from the coil with the connection terminal of the bus bar.
(2) After the coil is wound, there is a risk that the shape accuracy of the coil may deteriorate due to looseness in the winding of the coil, etc. during the period from the time the coil is wound until the coil wire pulled out from the coil is connected.
And so on.
 そこで、本発明は、コイルの形状精度に優れ、所定の出力を安定的に発揮することができるモータステータを低コストに提供可能とすることを主たる目的とする。 Therefore, the main object of the present invention is to provide a motor stator that is excellent in coil shape accuracy and capable of stably exerting a predetermined output at low cost.
 上記の目的を達成するために創案された本発明は、
 円筒状のステータコアと、ステータコアに設けられた放射状のティースに絶縁部材を介して巻装されたコイルと、結線用端子及び外部接続端子を有するバスバーと、を備えたモータステータにおいて、
 絶縁部材が、ステータコアの軸方向一端側でバスバーを保持した保持部を有し、
 コイルからステータコアの軸方向一端側に引き出されたコイル線が、上記保持部に保持されたバスバーの結線用端子に絡げられた状態で結線用端子に結線され、
 上記保持部に、結線用端子に上記コイル線が絡げられることで結線用端子に作用する引張力を緩和する緩和部が設けられていることを特徴とする。
The present invention, which has been devised to achieve the above objects,
A motor stator comprising a cylindrical stator core, coils wound around radial teeth provided on the stator core via an insulating member, and bus bars having connection terminals and external connection terminals,
The insulating member has a holding portion that holds the busbar on one axial end side of the stator core,
a coil wire drawn out from the coil to one axial end side of the stator core is connected to the connection terminal in a state of being entwined with the connection terminal of the busbar held by the holding portion;
The holding portion is provided with a relief portion that relieves a tensile force acting on the connection terminal due to the coil wire being entwined around the connection terminal.
 本発明に係るモータステータでは、絶縁部材が、ステータコアの軸方向一端側でバスバーを保持した保持部を有する。これはすなわち、ティースとこれに巻装されたコイルの間を絶縁するための絶縁部材が、特許文献1に開示された従来品で言うバスバーを保持した部分を一体的に有していることを意味する。このため、従来品よりも部品点数を削減できる。 In the motor stator according to the present invention, the insulating member has a holding portion that holds the busbar on one axial end side of the stator core. This means that the insulating member for insulating between the teeth and the coil wound thereon integrally has a portion that holds the bus bar of the conventional product disclosed in Patent Document 1. Therefore, the number of parts can be reduced compared to the conventional product.
 また、本発明では、コイルから引き出されたコイル線が、保持部に保持されたバスバーの結線用端子に絡げられた状態で結線用端子に結線されている。係る構成は、例えば、コイルの巻装時に、コイル線のうち結線用端子に対する結線予定箇所を絡げておき、その後、コイル線の結線予定箇所(絡げられた部分)を結線用端子に結線することで得られる。要するに、本発明に係るモータステータでは、結線用端子に対するコイル線の結線予定箇所の位置決めがなされた状態で結線作業を実施することができるので、コイルの形状精度が低下するのを可及的に防止しつつ、結線用端子に対するコイル線の結線作業をスムーズに(効率良く)実施することができる。但し、コイル線がバスバーの結線用端子に絡げられると、これに伴う引張力が結線用端子に継続的に作用するので、結線用端子が変形・破損等することによって適正な結線状態を維持できなくなる可能性がある。この点、本発明では、絶縁部材の保持部に、上記引張力を緩和する緩和部を設けているので、係る不具合の発生を可及的に防止することができる。 Also, in the present invention, the coil wire pulled out from the coil is connected to the connection terminal in a state of being entwined with the connection terminal of the busbar held by the holding portion. Such a configuration can be obtained, for example, by entwining the intended connection portion of the coil wire with respect to the connection terminal when winding the coil, and then connecting the intended connection portion (entangled portion) of the coil wire to the connection terminal. In short, in the motor stator according to the present invention, the coil wire connection operation can be performed in a state in which the coil wire connection planned locations are positioned with respect to the connection terminals. Therefore, the coil wire connection operation can be smoothly (efficiently) performed with respect to the connection terminals while preventing deterioration in the shape accuracy of the coil as much as possible. However, when the coil wire is entwined with the connection terminals of the busbar, the associated tensile force is continuously applied to the connection terminals, so there is a possibility that the connection terminals will be deformed or damaged, making it impossible to maintain a proper connection state. In this respect, according to the present invention, since the holding portion of the insulating member is provided with the relief portion for relieving the tensile force, it is possible to prevent such a problem from occurring as much as possible.
 緩和部は、例えば、相互に分離して設けられた第1突起及び第2突起を有するものとすることができる。この場合、コイル線のうち結線用端子に結線された部分よりも上流側及び下流側に位置する部分を、それぞれ、第1突起及び第2突起に絡げるようにすれば、結線用端子に作用する引張力を効果的に緩和することができる。 The relief part can have, for example, a first projection and a second projection provided separately from each other. In this case, if the portions of the coil wire located upstream and downstream of the portion connected to the connection terminal are respectively wrapped around the first projection and the second projection, the tensile force acting on the connection terminal can be effectively alleviated.
 緩和部を構成する第1突起及び第2突起は、少なくとも一部が、結線用端子を軸方向に投影した投影面内に配置されるように設けることができる。このようにすれば、引張力の緩和能力を高めることができる。 At least a part of the first projection and the second projection that constitute the relief portion can be provided so as to be arranged within a projection plane in which the connection terminal is projected in the axial direction. In this way, it is possible to enhance the ability to relax the tensile force.
 コイル線は、例えば、熱加締めとも称されるヒュージングにより結線用端子に結線することができる。ヒュージングであれば、絶縁皮膜付の導線からなるコイル線の絶縁皮膜が除去されるのと略同時に、導線を結線用端子に接合することができるので、結線作業を効率良くかつ精度良く行うことができる。 The coil wire can be connected to the connection terminal by fusing, which is also called heat crimping, for example. In the case of fusing, the conductor wire can be joined to the connection terminal at substantially the same time as the insulation film of the coil wire made of the conductor wire with the insulation film is removed, so that the wire connection work can be performed efficiently and accurately.
 本発明は、ティース及びこれに巻装されたコイルが周方向に間隔を空けて複数設けられ、一本の連続したコイル線を複数のティースのそれぞれに順次集中巻きすることにより複数のコイルが形成されたモータステータに好ましく適用することができる。 The present invention can be preferably applied to a motor stator in which a plurality of teeth and coils wound thereon are provided at intervals in the circumferential direction, and a plurality of coils are formed by successively intensive winding of a single continuous coil wire around each of the plurality of teeth.
 本発明は、例えば10極12スロットの三相ブラシレスモータ用のモータステータに好ましく適用することができる。なお、10極12スロットの三相ブラシレスモータとしては、例えば、モータロータに設けられる永久磁石の数が10で、モータステータに設けられるスロットの数が12のSPM型(ロータ外周に永久磁石が取り付けられた表面磁石型)やIPM型(ロータに永久磁石が埋設された埋め込み磁石型)の他、周方向の極数が10のリング形マグネットを有し、かつスロットの数が12のモータ、を挙げることができる。 The present invention can be preferably applied, for example, to a motor stator for a 10-pole, 12-slot three-phase brushless motor. The 10-pole, 12-slot three-phase brushless motor includes, for example, an SPM type (a surface magnet type in which permanent magnets are attached to the outer periphery of the rotor) and an IPM type (an embedded magnet type in which permanent magnets are embedded in the rotor), in which the motor rotor has 10 permanent magnets and the motor stator has 12 slots, and a motor having a ring-shaped magnet with 10 circumferential poles and 12 slots.
 本発明に係るモータステータが上記のような特長を有することから、本発明に係るモータステータと、モータロータとを備えたモータ(三相ブラシレスモータ)は、所定の出力を安定的に発揮できて信頼性に富む、という特長を有する。 Since the motor stator according to the present invention has the above features, the motor (three-phase brushless motor) comprising the motor stator and the motor rotor according to the present invention has the feature that it can stably produce a predetermined output and is highly reliable.
 以上のことから、本発明によれば、コイルの形状精度に優れ、所定の出力を安定的に発揮することができるモータステータを低コストに提供することができる。 As described above, according to the present invention, it is possible to provide, at low cost, a motor stator that has excellent coil shape accuracy and is capable of stably exhibiting a predetermined output.
コイル巻装前の状態における本発明の実施形態に係るモータステータの概略斜視図である。1 is a schematic perspective view of a motor stator according to an embodiment of the present invention before coil winding; FIG. 図1のモータステータからバスバーを分離した図である。FIG. 2 is a view of a bus bar separated from the motor stator of FIG. 1; 本発明の実施形態に係るモータステータの概略平面図である。1 is a schematic plan view of a motor stator according to an embodiment of the invention; FIG. 図1に示すモータステータの要部拡大図である。FIG. 2 is an enlarged view of a main part of the motor stator shown in FIG. 1; コイルが巻装されたモータステータの要部拡大図である。FIG. 2 is an enlarged view of a main portion of a motor stator wound with a coil; 図5A中のA-A線矢視断面図である。FIG. 5B is a cross-sectional view taken along the line AA in FIG. 5A; 図3のモータステータにおけるコイルの巻装構造を説明するための図である。4 is a diagram for explaining a winding structure of a coil in the motor stator of FIG. 3; FIG. 図6の巻装構造により得られるスター結線のモータ駆動回路を示す図である。FIG. 7 is a diagram showing a star-connected motor drive circuit obtained by the winding structure of FIG. 6 ; 本発明の実施形態に係るモータステータを備えたモータの一構成例を概念的に示す縦断面図である。1 is a longitudinal sectional view conceptually showing one configuration example of a motor provided with a motor stator according to an embodiment of the present invention; FIG.
 以下、本発明の実施の形態を図面(図1~図8)に基づいて説明する。以下の説明においては、方向性を示すために「軸方向」、「径方向」及び「周方向」との語句を使用するが、これらはそれぞれ、モータステータ1の軸心と平行な方向、軸心を中心とする円の径方向、及び軸心を中心とする円の周方向である。 Embodiments of the present invention will be described below with reference to the drawings (FIGS. 1 to 8). In the following description, the terms "axial direction," "radial direction," and "circumferential direction" are used to indicate directionality, and these are respectively the direction parallel to the axis of the motor stator 1, the radial direction of a circle centered on the axis, and the circumferential direction of a circle centered on the axis.
 まず、図8に基づき、本発明の実施形態に係るモータステータ1を備えたモータ30の一構成例を簡単に説明する。図8に示すモータ30は、モータステータ1と、径方向隙間(図示省略)を介してモータステータ1の径方向内側に配置されたモータロータ32と、これらを収容したケーシング31とを備える。図示例のモータロータ32は、出力軸33と、出力軸33と一体回転可能に設けられたロータコア34と、ロータコア34に周方向等間隔で保持された複数(例えば10極)の永久磁石35とを備え、出力軸33は、軸方向に離間して配された2つの転がり軸受36,37によってケーシング31に対して回転自在に支持されている。 First, based on FIG. 8, a configuration example of the motor 30 including the motor stator 1 according to the embodiment of the present invention will be briefly described. A motor 30 shown in FIG. 8 includes a motor stator 1, a motor rotor 32 arranged radially inside the motor stator 1 with a radial gap (not shown) therebetween, and a casing 31 housing them. The illustrated motor rotor 32 includes an output shaft 33, a rotor core 34 provided to be rotatable integrally with the output shaft 33, and a plurality of (e.g., 10 poles) permanent magnets 35 held by the rotor core 34 at regular intervals in the circumferential direction.
 図8に示すモータ30は、例えば車両に搭載される電動ポンプ、より具体的には、車両のトランスミッションケースに取り付けられ、エンジンの停止中にトランスミッションにオイルを圧送することによってトランスミッション内部で必要とされる油圧を確保するために使用される電動ポンプ(電動オイルポンプ)の駆動源として用いることができる。図示は省略するが、モータ30を電動オイルポンプの駆動源として用いる場合、ケーシング31の外側にある出力軸33の自由端に、出力軸33と一体回転可能なポンプロータが設けられる。 The motor 30 shown in FIG. 8 can be used, for example, as a drive source for an electric pump mounted on a vehicle, more specifically, an electric pump (electric oil pump) that is attached to the transmission case of the vehicle and used to ensure the hydraulic pressure required inside the transmission by pumping oil to the transmission while the engine is stopped. Although not shown, when the motor 30 is used as a drive source for an electric oil pump, a pump rotor that can rotate integrally with the output shaft 33 is provided at the free end of the output shaft 33 outside the casing 31 .
 次に、図1~図3に基づき、本発明の一実施形態に係るモータステータ1を説明する。なお、図1は、コイル巻装前のモータステータ1(モータステータ1の構成部材であるステータコアに絶縁部材及びバスバーを組み付けたアセンブリ)の概略斜視図、図2は、図1のモータステータ1からバスバーを分離した図、図3は、本発明の実施形態に係るモータステータ1(コイルが巻装されたモータステータ1)の概略平面図である。 Next, a motor stator 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic perspective view of a motor stator 1 (an assembly in which an insulating member and a bus bar are assembled to a stator core, which is a constituent member of the motor stator 1) before coil winding, FIG. 2 is a view of the motor stator 1 in FIG. 1 with the bus bar separated, and FIG.
 モータステータ1は、磁気特性に優れた金属材料(例えば電磁鋼板)で形成された円筒状のステータコア2と、U相バスバー5、V相バスバー6、W相バスバー7及び中性点バスバー(N相バスバー)8と、絶縁材料(ここでは樹脂材料)で形成された絶縁部材10と、複数のコイルCとを備える。 The motor stator 1 includes a cylindrical stator core 2 made of a metal material (for example, an electromagnetic steel sheet) with excellent magnetic properties, a U-phase busbar 5, a V-phase busbar 6, a W-phase busbar 7 and a neutral point busbar (N-phase busbar) 8, an insulating member 10 made of an insulating material (here, a resin material), and a plurality of coils C.
 ステータコア2は、筒部3と、筒部3の内周面からステータコア2の中心に向けて突出した放射状のティース4とを有し、本実施形態では計12個のティース4が周方向等間隔で設けられている。なお、以下、計12個のティース4を区別して説明する場合には、周方向に沿って順に配置した計12個のティース12を、それぞれ、第1ティース4A~第12ティース4Lという(図3参照)。図3においては、ステータコア2の12時の位置に第1ティース4Aを配置し、以降、反時計回りに30°ピッチで残り11個のティース4(第2ティース4B~第12ティース4L)を順に配置している。 The stator core 2 has a cylindrical portion 3 and radial teeth 4 protruding from the inner peripheral surface of the cylindrical portion 3 toward the center of the stator core 2. In this embodiment, a total of 12 teeth 4 are provided at equal intervals in the circumferential direction. In the following description, the twelve teeth 4 arranged in order along the circumferential direction will be referred to as the first tooth 4A to the twelfth tooth 4L (see FIG. 3). In FIG. 3, the first tooth 4A is arranged at the 12 o'clock position of the stator core 2, and thereafter, the remaining 11 teeth 4 (the second tooth 4B to the twelfth tooth 4L) are arranged in order at a pitch of 30° counterclockwise.
 上記のように、本実施形態のモータステータ1は計12個のティース4(ティース4間に形成されるスロット)を備え、モータステータ1の径方向内側に配置されるモータロータ32には10個の永久磁石35が設けられる(図8参照)。そのため、本実施形態のモータステータ1は、10極12スロットの三相ブラシレスモータ用のモータステータである。このようなブラシレスモータは、スロットの数をN、モータの相数をm、モータロータに設けられる永久磁石の個数(極数)をPとした場合、q=N/(m×P)の計算式で算出される「毎極毎相のスロット数q」が正の整数とはならずに分数(=2/5)となる、いわゆる分数溝モータである。 As described above, the motor stator 1 of this embodiment has a total of 12 teeth 4 (slots formed between the teeth 4), and the motor rotor 32 arranged radially inward of the motor stator 1 is provided with 10 permanent magnets 35 (see FIG. 8). Therefore, the motor stator 1 of this embodiment is a motor stator for a three-phase brushless motor with 10 poles and 12 slots. Such a brushless motor is a so-called fractional groove motor in which "the number of slots per pole per phase q" calculated by the formula q=N/(m×P) is not a positive integer but a fraction (=2/5), where N is the number of slots, m is the number of phases of the motor, and P is the number of permanent magnets (poles) provided in the motor rotor.
 絶縁部材10は、ステータコア2の筒部3の内周面を被覆する第1被覆部11と、ステータコア2のティース4(詳細には、ティース4のうち、コイル20が巻装される部分)を被覆する第2被覆部12と、ステータコア2の軸方向一端側に設けられ、バスバー5~8を互いに非接触の状態で保持した短円筒状の保持部13と、を備える。 The insulating member 10 includes a first covering portion 11 that covers the inner peripheral surface of the cylindrical portion 3 of the stator core 2, a second covering portion 12 that covers the teeth 4 of the stator core 2 (more specifically, portions of the teeth 4 on which the coils 20 are wound), and a short cylindrical holding portion 13 that is provided at one end in the axial direction of the stator core 2 and holds the bus bars 5 to 8 in a non-contact state with each other.
 バスバー5~8は、図示しない外部電源から出力されたモータの駆動電流をコイルCに供給(分配)する部材である。このため、バスバー5~8は、何れも、銅やアルミニウム合金等の高い導電性を有する金属材料で形成される。 The bus bars 5 to 8 are members that supply (distribute) the motor driving current output from an external power source (not shown) to the coil C. Therefore, the busbars 5 to 8 are all made of a highly conductive metal material such as copper or aluminum alloy.
 図2に示すように、本実施形態のU相バスバー5は、全体として略円弧状に形成され、長手方向(周方向)の一端にコイル線CLが結線される結線用端子5aが設けられ、長手方向(周方向)の他端に外部電源に接続される外部接続端子5bが設けられている。V相バスバー6及びW相バスバー7も、それぞれ、U相バスバー5と同様に全体として略円弧状に形成され、周方向の一端にコイル線CLが結線される結線用端子6a,7aが設けられ、周方向の他端に外部電源に接続される外部接続端子6b,7bが設けられている。これらU相バスバー5、V相バスバー6及びW相バスバー7は、図1等に示すように、端子5a,6a,7aを外部に露出(保持部13の軸方向外側に突出)させると共に、端子5b,6b,7bを保持部13の径方向外側に突出させた状態で保持部13に保持される。 As shown in FIG. 2, the U-phase bus bar 5 of the present embodiment is formed in a substantially circular arc shape as a whole, and is provided with a connection terminal 5a to which the coil wire CL is connected at one end in the longitudinal direction (circumferential direction), and an external connection terminal 5b connected to an external power supply at the other end in the longitudinal direction (circumferential direction). Like the U-phase bus bar 5, the V-phase bus bar 6 and the W-phase bus bar 7 are each formed in a generally arcuate shape as a whole, and are provided with connection terminals 6a and 7a to which the coil wire CL is connected at one end in the circumferential direction, and external connection terminals 6b and 7b to be connected to an external power supply at the other end in the circumferential direction. The U-phase bus bar 5, the V-phase bus bar 6, and the W-phase bus bar 7 are held by the holding portion 13 in a state in which the terminals 5a, 6a, and 7a are exposed to the outside (projecting outward in the axial direction of the holding portion 13) and the terminals 5b, 6b, and 7b project radially outward of the holding portion 13, as shown in FIG.
 中性点バスバー8は、後述するU相コイル部21、V相コイル部22及びW相コイル部23との間にそれぞれ中性点を形成する結線用端子8a、8b,8cが間隔を空けて設けられた円弧状の導電部材である(図2参照)。この中性点バスバー8も、U相バスバー5等と同様に、端子8a,8b,8cを外部に露出(保持部13の軸方向外側に突出)させた状態で保持部13に保持される(図1参照)。 The neutral point bus bar 8 is an arc-shaped conductive member in which connection terminals 8a, 8b, and 8c that form neutral points respectively with a U-phase coil portion 21, a V-phase coil portion 22, and a W-phase coil portion 23, which will be described later, are provided at intervals (see FIG. 2). Similarly to the U-phase bus bar 5, the neutral point bus bar 8 is also held by the holding portion 13 with the terminals 8a, 8b, 8c exposed to the outside (protruding axially outward of the holding portion 13) (see FIG. 1).
 なお、図1~2及び図5Bに示すように、U相バスバー5の結線用端子5aは、軸方向外側及び周方向両側に開口した略V字状をなす。その他のバスバー6~8の結線用端子6a,7a,8a~8cも、結線用端子5aと同様の略V字状をなす。 As shown in FIGS. 1 to 2 and 5B, the connection terminals 5a of the U-phase bus bar 5 are substantially V-shaped with openings on both sides in the axial direction and circumferential direction. The connection terminals 6a, 7a, 8a-8c of the other busbars 6-8 are also substantially V-shaped like the connection terminal 5a.
 図3に示すように、コイルCは、ステータコア2に取り付けられた絶縁部材10(の第2被覆部12)を介して、計12個のティース4のそれぞれに(いわゆる集中巻きで)巻装されている。コイルCには、計4個のU相コイルCU1~CU4と、計4個のV相コイルCV1~CV4と、計4個のW相コイルCW1~CW4とがあり、これらが上記のバスバー5~8を用いてスター結線されることにより、図6及び図7に示すようなモータの駆動回路(給電回路)20が形成される。 As shown in FIG. 3, the coil C is wound around each of a total of 12 teeth 4 (by so-called concentrated winding) via (the second covering portion 12 of) the insulating member 10 attached to the stator core 2. The coil C includes a total of four U-phase coils CU1 to CU4, a total of four V-phase coils CV1 to CV4, and a total of four W-phase coils CW1 to CW4, and these are star-connected using the bus bars 5 to 8 to form a motor drive circuit (power supply circuit) 20 as shown in FIGS.
 計12個設けられるコイルCは、一本の連続したコイル線(銅等の金属材料からなる導線を絶縁皮膜で被覆したもの)CLを絶縁部材10(の第2被覆部12)で被覆された計12個のティース4のそれぞれに集中巻きで順次巻装することにより形成される。本実施形態では、図6及び図7に示すように、最初にU相コイルCU1が形成(巻装)され、以降、CU2→CU3→CU4→CV3→CV4→CV1→CV2→CW1→CW2→CW3→CW4の順にコイルCが巻装される。以下、各ティース4にコイルCを巻装するコイル巻装工程、及びコイル巻装工程の完了後に実施される結線工程の具体例を説明する。 A total of 12 coils C are formed by sequentially winding a single continuous coil wire (a conductive wire made of a metal material such as copper coated with an insulating film) CL around each of a total of 12 teeth 4 covered with (the second covering portion 12 of) an insulating member 10 by concentrated winding. In the present embodiment, as shown in FIGS. 6 and 7, the U-phase coil CU1 is first formed (wound), and thereafter, the coil C is wound in the order of CU2, CU3, CU4, CV3, CV4, CV1, CV2, CW1, CW2, CW3, and CW4. Specific examples of the coil winding process for winding the coil C around each tooth 4 and the wire connection process performed after the coil winding process are completed will be described below.
[コイル巻装工程]
 図6に示すように、この工程では、まず、第1ティース4Aの外周にコイル線CLが反時計回り方向に所定回数巻き回される。これにより、U相コイルCU1が第1ティース4Aの外周に集中巻きで巻装される。なお、第1ティース4Aの外周へのコイル線CLの巻き回しは、ステータコア2の軸方向一端側(保持部13が設けられた側であり、図6では紙面上側。以下の説明においても同様。)から開始し、ステータコア2の軸方向一端側で終了させる。つまり、U相コイルCU1を第1ティース4Aに巻装する際、コイル線CLの巻き始め部及び巻き終わり部は、何れも、ステータコア2の軸方向一端側に引き出す。残りのU相コイルCU2~CU4、V相コイルCV1~CV4、及びW相コイルCW1~CW4を対応するティースに巻装する際も同様である。これは、コイル線CLのうち、その長手方向で隣り合う2つのコイル間に介在して両コイルを接続する部分(渡り線部CL1~CL12)をバスバー5~8が設けられたステータコア2の軸方向一端側に配置し、所定の渡り線部を対応するバスバー5~8の結線用端子に結線するためである。
[Coil winding process]
As shown in FIG. 6, in this step, first, the coil wire CL is wound a predetermined number of times around the outer periphery of the first tooth 4A in the counterclockwise direction. As a result, the U-phase coil CU1 is wound around the outer periphery of the first tooth 4A by concentrated winding. The winding of the coil wire CL around the outer periphery of the first tooth 4A is started from one axial end side of the stator core 2 (the side where the holding portion 13 is provided, which is the upper side of the paper surface in FIG. 6; the same applies to the following description), and ends at the one axial end side of the stator core 2. That is, when the U-phase coil CU1 is wound around the first teeth 4A, both the winding start portion and the winding end portion of the coil wire CL are pulled out to one end side of the stator core 2 in the axial direction. The same applies when the remaining U-phase coils CU2-CU4, V-phase coils CV1-CV4, and W-phase coils CW1-CW4 are wound around the corresponding teeth. This is because the portions (connection wire portions CL 1 to CL 12 ) of the coil wire CL that are interposed between two coils adjacent to each other in the longitudinal direction to connect the two coils are arranged on one axial end side of the stator core 2 where the busbars 5 to 8 are provided, and predetermined connection wire portions are connected to the connection terminals of the corresponding busbars 5 to 8.
 U相コイルCU1を巻装した後、コイル線CLをステータコア2の軸方向一端側から第2ティース4Bの外周に時計回り方向に所定回数巻き回す。これにより、U相コイルCU2が第2ティース4Bの外周に集中巻きで巻装される。 After winding the U-phase coil CU1, the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer circumference of the second tooth 4B. As a result, the U-phase coil CU2 is wound around the outer periphery of the second tooth 4B by concentrated winding.
 U相コイルCU2を巻装した後、コイル線CLをステータコア2の軸方向一端側から第7ティース4Gの外周に反時計回り方向に所定回数巻き回す。これにより、U相コイルCU3が第7ティース4Gの外周に集中巻きで巻装される。なお、コイル線CLを第7ティース4Gの外周に巻き回す前には、コイル線CLのうち、U相コイルCU2,CU3を接続する渡り線部CL2を、保持部13に保持されたU相バスバー5の結線用端子5aに絡げる。U相コイルCU3を巻装した後、コイル線CLをステータコア2の軸方向一端側から第8ティース4Hの外周に時計回り方向に所定回数巻き回す。これにより、U相コイルCU4が第8ティース4Hの外周に集中巻きで巻装される。 After winding the U-phase coil CU2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the seventh tooth 4G. As a result, the U-phase coil CU3 is wound around the outer periphery of the seventh tooth 4G by concentrated winding. Before winding the coil wire CL around the outer circumference of the seventh tooth 4G, the connecting wire portion CL2 of the coil wire CL that connects the U-phase coils CU2 and CU3 is wound around the connection terminal 5a of the U-phase bus bar 5 held by the holding portion 13. After winding the U-phase coil CU3, the coil wire CL is wound a predetermined number of times in the clockwise direction from one axial end side of the stator core 2 around the outer circumference of the eighth tooth 4H. As a result, the U-phase coil CU4 is wound around the outer periphery of the eighth tooth 4H by concentrated winding.
 ここで、当該コイル巻装工程の実施段階において、バスバー5~8は、絶縁部材10に対して相対移動不可能に保持部13に保持させておいても良いし、絶縁部材10に対して相対移動可能に保持部13に保持させておいても良い。前者の構成は、例えば、バスバー5~8をインサート部品として絶縁部材10(保持部13)を樹脂で射出成形することにより得ることができる。また、後者の構成は、例えば、バスバー嵌合用の溝部13a~13dを有する図2に示す絶縁部材10(保持部13)を樹脂で射出成形した後、上記溝部13a~13dにバスバー5~8をアウトサート(嵌合)することにより得ることができる。後者の構成であれば、前者の構成に比べ、当該コイル巻装工程で実施されるバスバーの結線用端子へのコイル線の絡げ作業を容易化することができる。なお、後者の構成を採用した場合、各バスバーの結線用端子にコイル線を結線することにより、絶縁部材10に対するバスバー5~8の相対移動を規制(保持部13に対してバスバー5~8を固定)することができる。 Here, in the implementation stage of the coil winding process, the busbars 5 to 8 may be held by the holding portion 13 so as not to be relatively movable with respect to the insulating member 10, or may be held by the holding portion 13 so as to be relatively movable with respect to the insulating member 10. The former configuration can be obtained, for example, by injection-molding the insulating member 10 (holding portion 13) with resin using the busbars 5 to 8 as insert parts. The latter configuration can be obtained, for example, by injection-molding the insulating member 10 (holding portion 13) shown in FIG. 2 having grooves 13a to 13d for fitting busbars with resin, and then outserting (fitting) the busbars 5 to 8 into the grooves 13a to 13d. With the latter configuration, the work of winding the coil wire around the connection terminals of the busbars performed in the coil winding process can be facilitated compared to the former configuration. When the latter configuration is adopted, relative movement of the busbars 5 to 8 with respect to the insulating member 10 can be restricted (busbars 5 to 8 fixed to the holding portion 13) by connecting coil wires to the connection terminals of each busbar.
 U相コイルCU4(計4つのU相コイルCU1~CU4)を巻装した後、コイル線CLをステータコア2の軸方向一端側から第9ティース4Iの外周に反時計回り方向に所定回数巻き回す。これにより、V相コイルCV3が第9ティース4Iの外周に集中巻きで巻装される。なお、コイル線CLを第9ティース4Iの外周に巻き回す前には、コイル線CLのうち、U相コイルCU4とV相コイルCV3を接続する渡り線部CL4を、保持部13に保持された中性点バスバー8の結線用端子8aに絡げる。V相コイルCV3を巻装した後、コイル線CLをステータコア2の軸方向一端側から第10ティース4Jの外周に時計回り方向に所定回数巻き回す。これにより、V相コイルCV4が第10ティース4Jの外周に集中巻きで巻装される。 After winding the U-phase coil CU4 (a total of four U-phase coils CU1 to CU4), the coil wire CL is wound from one end of the stator core 2 in the axial direction around the outer circumference of the ninth tooth 4I in the counterclockwise direction for a predetermined number of times. As a result, the V-phase coil CV3 is wound around the outer periphery of the ninth tooth 4I by concentrated winding. Before winding the coil wire CL around the outer circumference of the ninth tooth 4I, the connecting wire portion CL 4 of the coil wire CL, which connects the U-phase coil CU4 and the V-phase coil CV3, is wound around the connection terminal 8a of the neutral point bus bar 8 held by the holding portion 13. After winding the V-phase coil CV3, the coil wire CL is wound a predetermined number of times clockwise around the outer circumference of the tenth tooth 4J from one end in the axial direction of the stator core 2 . As a result, the V-phase coil CV4 is wound around the outer circumference of the tenth tooth 4J by concentrated winding.
 V相コイルCV4を巻装した後、コイル線CLをステータコア2の軸方向一端側から第3ティース4Cの外周に反時計回り方向に所定回数巻き回す。これにより、V相コイルCV1が第3ティース4Cの外周に集中巻きで巻装される。なお、コイル線CLを第3ティース4Cの外周に巻き回す前には、コイル線CLのうち、V相コイルCV4,CV1を接続する渡り線部CL6を、保持部13に保持されたV相バスバー6の結線用端子6aに絡げる。V相コイルCV1を巻装した後、コイル線CLをステータコア2の軸方向一端側から第4ティース4Dの外周に時計回り方向に所定回数巻き回す。これにより、V相コイルCV2が第4ティース4Dの外周に集中巻きで巻装される。 After winding the V-phase coil CV4, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one axial end of the stator core 2 to the outer periphery of the third tooth 4C. As a result, the V-phase coil CV1 is wound around the outer periphery of the third tooth 4C by concentrated winding. Before winding the coil wire CL around the outer circumference of the third tooth 4C, the connecting wire portion CL 6 connecting the V-phase coils CV4 and CV1 of the coil wire CL is wound around the connection terminal 6a of the V-phase bus bar 6 held by the holding portion 13. After winding the V-phase coil CV1, the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 around the outer circumference of the fourth tooth 4D. As a result, the V-phase coil CV2 is wound around the outer periphery of the fourth tooth 4D by concentrated winding.
 V相コイルCV2(計4つのV相コイルCV1~CV4)を巻装した後、コイル線CLをステータコア2の軸方向一端側から第5ティース4Eの外周に反時計回り方向に所定回数巻き回す。これにより、W相コイルCW1が第5ティース4Eの外周に集中巻きで巻装される。なお、コイル線CLを第5ティース4Eの外周に巻き回す前には、コイル線CLのうち、V相コイルCV2とW相コイルCW1を接続する渡り線部CL8を、保持部13に保持された中性点バスバー8の結線用端子8bに絡げる。W相コイルCW1を巻装した後、コイル線CLをステータコア2の軸方向一端側から第6ティース4Fの外周に時計回り方向に所定回数巻き回す。これにより、W相コイルCW2が第6ティース4Fの外周に集中巻きで巻装される。 After winding the V-phase coil CV2 (four V-phase coils CV1 to CV4 in total), the coil wire CL is wound from one axial end of the stator core 2 around the outer periphery of the fifth tooth 4E in the counterclockwise direction for a predetermined number of times. As a result, the W-phase coil CW1 is wound around the outer periphery of the fifth tooth 4E by concentrated winding. Before winding the coil wire CL around the outer periphery of the fifth tooth 4E, the connecting wire portion CL 8 of the coil wire CL, which connects the V-phase coil CV2 and the W-phase coil CW1, is wound around the connection terminal 8b of the neutral point bus bar 8 held by the holding portion 13. After winding the W-phase coil CW1, the coil wire CL is wound a predetermined number of times clockwise from one axial end of the stator core 2 to the outer periphery of the sixth tooth 4F. As a result, the W-phase coil CW2 is wound around the outer periphery of the sixth tooth 4F by concentrated winding.
 W相コイルCW2を巻装した後、コイル線CLをステータコア2の軸方向一端側から第11ティース4Kの外周に反時計回り方向に所定回数巻き回す。これにより、W相コイルCW3が第11ティース4Kの外周に集中巻きで巻装される。なお、コイル線CLを第11ティース4Kの外周に巻き回す前には、コイル線CLのうち、W相コイルCW2,CW3を接続する渡り線部CL10を、保持部13に保持されたW相バスバー7の結線用端子7aに絡げる。W相コイルCW3を巻装した後、コイル線CLをステータコア2の軸方向一端側から第12ティース4Lの外周に時計回り方向に所定回数巻き回す。これにより、W相コイルCW4が第12ティース4Lの外周に集中巻きで巻装される。 After winding the W-phase coil CW2, the coil wire CL is wound a predetermined number of times in the counterclockwise direction from one end of the stator core 2 in the axial direction around the outer periphery of the eleventh tooth 4K. As a result, the W-phase coil CW3 is wound around the outer circumference of the eleventh tooth 4K by concentrated winding. Before the coil wire CL is wound around the outer periphery of the eleventh tooth 4K, the connecting wire portion CL10 connecting the W-phase coils CW2 and CW3 of the coil wire CL is wound around the connection terminal 7a of the W-phase bus bar 7 held by the holding portion 13. After the W-phase coil CW3 is wound, the coil wire CL is wound a predetermined number of times clockwise around the outer periphery of the twelfth tooth 4L from one end in the axial direction of the stator core 2 . As a result, the W-phase coil CW4 is wound around the outer periphery of the twelfth tooth 4L by concentrated winding.
 以上により、一本の連続したコイル線CLの長手方向に沿って計4個のU相コイル、計4個のV相コイル、及び計4個のW相コイルが順に形成される。計12個のコイルCが形成された一本の連続したコイル線CLの巻き始め部(長手方向一端部)CLs及び巻き終わり部(長手方向他端部)CLfは、何れも、中性点バスバー8の結線用端子8cに絡げられる。これにより、計12個のティース4のそれぞれにコイルCを集中巻きで巻装するコイル巻装工程が完了する。 As described above, a total of four U-phase coils, a total of four V-phase coils, and a total of four W-phase coils are sequentially formed along the longitudinal direction of one continuous coil wire CL. A winding start portion (longitudinal end portion) CL s and a winding end portion (longitudinal end portion) CL f of a single continuous coil wire CL in which a total of 12 coils C are formed are both wrapped around a connection terminal 8 c of a neutral point bus bar 8 . As a result, the coil winding process of winding the coil C on each of the total 12 teeth 4 by concentrated winding is completed.
[結線工程]
 この結線工程では、バスバー5~8の結線用端子に絡げられたコイル線CL(の渡り線部)が、絡げ先の結線用端子に結線される。具体的には、
・コイル線CLの渡り線部CL2がU相バスバー5の結線用端子5aに結線され、
・コイル線CLの渡り線部CL6がV相バスバー6の結線用端子6aに結線され、
・コイル線CLの渡り線部CL10がW相バスバー7の結線用端子7aに結線され、
・コイル線CLの渡り線部CL4が中性点バスバー8の結線用端子8aに結線され、
・コイル線CLの渡り線部CL8が中性点バスバー8の結線用端子8bに結線され、
・コイル線CLの渡り線部CL12(スタート線CLs及びフィニッシュ線CLf)が中性点バスバー8の結線用端子8cに結線される。
[Connection process]
In this connection step, the coil wire CL (the connecting wire portion thereof) that is bound by the connection terminals of the bus bars 5 to 8 is connected to the connection terminal that is bound. in particular,
- The connecting wire portion CL2 of the coil wire CL is connected to the connection terminal 5a of the U-phase bus bar 5,
The connecting wire portion CL6 of the coil wire CL is connected to the connection terminal 6a of the V-phase bus bar 6,
The connecting wire portion CL 10 of the coil wire CL is connected to the connection terminal 7a of the W-phase bus bar 7,
- The connecting wire portion CL4 of the coil wire CL is connected to the connection terminal 8a of the neutral point bus bar 8,
The connecting wire portion CL 8 of the coil wire CL is connected to the connection terminal 8b of the neutral point bus bar 8,
The connecting wire portion CL 12 (the start line CL s and the finish line CL f ) of the coil wire CL is connected to the connection terminal 8 c of the neutral point bus bar 8 .
 図示は省略するが、コイル線CLの結線は、一対の電極でV字状をなした結線用端子をこれに絡げられたコイル線CLの線径方向に圧縮しながら一対の電極間に所定時間通電する、いわゆるヒュージング(熱加締め)により行われる。ヒュージングであれば、絶縁皮膜付の導線からなるコイル線CLの絶縁皮膜が除去されるのと略同時に、結線用端子に対して導線を接合することができるので、コイル線CLの結線作業を効率良く行い得る。 Although not shown, the coil wire CL is connected by so-called fusing (thermal crimping) in which a pair of electrodes is compressed in the radial direction of the coil wire CL that is entwined with a V-shaped connection terminal, and current is passed between the pair of electrodes for a predetermined period of time. In the case of fusing, the conductor wire can be joined to the connection terminal at substantially the same time as the insulation film of the coil wire CL made of the conductor wire with the insulation film is removed, so that the coil wire CL can be connected efficiently.
 なお、上記6つの結線用端子に対するコイル線CL(の渡り線部)の結線は、個別に施すようにしても良いし、まとめて施すようにしても良い。また、前述したコイル巻装工程を実施するのに先立って、コイル線CLのうち、結線用端子に絡げられる部分(端子に対して結線される結線予定箇所)の絶縁皮膜を除去しておいても良い。この場合、結線工程では、例えば、V字状をなした結線用端子を加締めるだけでもコイル線CLを結線用端子に対して結線することができる他、TIG溶接やレーザ溶接等の溶接によってコイル線CLを結線用端子に対して結線することもできる。 The connection of the coil wire CL (the connecting wire portion thereof) to the six connection terminals may be performed individually or collectively. In addition, prior to performing the coil winding process described above, the insulating coating may be removed from the portion of the coil wire CL that is bound around the connection terminal (the planned connection portion to be connected to the terminal). In this case, in the connection step, for example, the coil wire CL can be connected to the connection terminal only by crimping the V-shaped connection terminal, and the coil wire CL can also be connected to the connection terminal by welding such as TIG welding or laser welding.
 上記態様でバスバー5~8の結線用端子にコイル線CL(の渡り線部)が結線されると、図7に示すように、計4個のU相コイルCU1~CU4が2並列2直列で接続されたU相コイル部21と、計4個のV相コイルCV1~CV4が2並列2直列で接続されたV相コイル部22と、計4個のW相コイルCW1~CW4が2並列2直列で接続されたW相コイル部23とがバスバー5~8を用いて互いに結線(スター結線)されたモータ駆動回路20が得られる。 When the coil wire CL (the connecting wire portion) is connected to the connection terminals of the bus bars 5-8 in the above manner, as shown in FIG. 7, a U-phase coil portion 21 in which a total of four U-phase coils CU1-CU4 are connected in 2 parallel and 2 series, a V-phase coil portion 22 in which a total of 4 V-phase coils CV1 to CV4 are connected in 2 parallel and 2 series, and a total of 4 W-phase coils CW1 to CW4 are connected in 2 parallel and 2 series. A motor drive circuit 20 is obtained in which the W-phase coil portion 23 is connected to each other (star connection) using the bus bars 5-8.
 なお、本実施形態のU相コイル部21は、U相コイルCU1,CU2を直列に接続してなる第1列と、U相コイルCU3,CU4を直列に接続してなる第2列とが、コイル線CLのうちU相コイルCU2,CU3を接続する渡り線部CL2によって並列接続されたものである。また、V相コイル部22は、V相コイルCV3,CV4を直列に接続してなる第1列と、V相コイルCV1,CV2を直列に接続してなる第2列とが、コイル線CLのうちV相コイルCV4,CV1を接続する渡り線部CL6によって並列接続されたものである。また、W相コイル部23は、W相コイルCW1,CW2を直列接続してなる第1列と、W相コイルCW3,CW4を直列接続してなる第2列とが、コイル線CLのうちW相コイルCW2,CW3を接続する渡り線部CL10によって並列接続されたものである。 In the U-phase coil section 21 of the present embodiment, a first row formed by connecting the U-phase coils CU1 and CU2 in series and a second row formed by connecting the U-phase coils CU3 and CU4 in series are connected in parallel by a connecting wire portion CL 2 of the coil wire CL that connects the U-phase coils CU2 and CU3. In the V-phase coil section 22, a first row formed by connecting the V-phase coils CV3 and CV4 in series and a second row formed by connecting the V-phase coils CV1 and CV2 in series are connected in parallel by a connecting wire portion CL 6 of the coil wire CL that connects the V-phase coils CV4 and CV1. In the W-phase coil section 23, a first row formed by connecting the W-phase coils CW1 and CW2 in series and a second row formed by connecting the W-phase coils CW3 and CW4 in series are connected in parallel by a connecting wire portion CL 10 of the coil wire CL that connects the W-phase coils CW2 and CW3.
 本実施形態のモータステータ1は、上述したコイル巻装工程の実施時に、バスバー5~8の結線用端子5a,6a,7a及び8a~8cにコイル線CL(の渡り線部)を絡げるのに伴って上記の各結線用端子に継続的に作用する(軸方向の)引張力を緩和することを可能にした点に特徴がある。すなわち、図1の要部拡大図である図4に例示するように、絶縁部材10に設けられた短円筒状の保持部13のうち、U相バスバー5の結線用端子5aが配置された位相と略同一位相上には、上記の引張力を緩和するための緩和部14が一体的に設けられている。詳細な図示は省略するが、保持部13のうち、V相バスバー6の結線用端子6a、W相バスバー7の結線用端子7a、中性点バスバー8の結線用端子8a~8cが配置された位相と略同一位相上にも緩和部14が設けられている。 The motor stator 1 of the present embodiment is characterized in that it is possible to reduce the tensile force (in the axial direction) continuously acting on the connection terminals 5a, 6a, 7a, and 8a-8c of the bus bars 5-8 as the coil wires CL (the crossover portions thereof) are entwined during the coil winding process. That is, as illustrated in FIG. 4, which is an enlarged view of the main part of FIG. 1, a relief portion 14 for relieving the tensile force described above is integrally provided in a short cylindrical holding portion 13 provided in the insulating member 10 on substantially the same phase as the connection terminal 5a of the U-phase bus bar 5. Although not shown in detail, among the holding portions 13, a relief portion 14 is also provided on substantially the same phase as the phase where the connection terminal 6a of the V-phase bus bar 6, the connection terminal 7a of the W-phase bus bar 7, and the connection terminals 8a to 8c of the neutral point bus bar 8 are arranged.
 図4に示す本実施形態の緩和部14は、保持部13の端面から軸方向外側に延びた支持部15と、相互に分離(図示例では軸方向及び周方向に相互に離間)して設けられ、支持部15の外径面から径方向外側に突出した第1突起16及び第2突起17を有する。第1突起16及び第2突起17は、何れも、少なくとも一部が、対応する結線用端子(ここではU相バスバー5の結線用端子5a)を軸方向に投影した投影面Pの範囲内に配置されるように設けられる。 The relief portion 14 of the present embodiment shown in FIG. 4 has a support portion 15 extending axially outward from the end surface of the holding portion 13, and a first projection 16 and a second projection 17 which are provided separately from each other (spaced apart from each other in the axial direction and the circumferential direction in the illustrated example) and protrude radially outward from the outer diameter surface of the support portion 15. Each of the first projection 16 and the second projection 17 is provided such that at least a portion thereof is arranged within the range of a projection plane P obtained by projecting the corresponding wiring terminal (here, the wiring terminal 5a of the U-phase bus bar 5) in the axial direction.
 上記構成の緩和部14が設けられた本実施形態では、コイル線CL(コイル線CLのうちU相コイルCU2,CU3を接続する渡り線部CL2)が対応する結線用端子(U相バスバー5の結線用端子5a)に絡げられる際、コイル線CLは緩和部14を構成する第1突起16及び第2突起17にも絡げられる。 In the present embodiment in which the relief portion 14 having the above configuration is provided, when the coil wire CL (the crossover portion CL 2 of the coil wire CL that connects the U-phase coils CU2 and CU3) is wrapped around the corresponding connection terminal (connection terminal 5a of the U-phase bus bar 5), the coil wire CL is also wrapped around the first projection 16 and the second projection 17 that form the relief portion 14.
 具体的には、図5A及び図5Bに示すように、軸方向で互いに対向する保持部13と第1突起16の端面間に画成された間隙(通路)に配置したコイル線CLの進行方向(図5A中に塗り潰し矢印で示す)を周方向から軸方向外向きに変換することにより、コイル線CLを第1突起16に絡げる。次いで、結線用端子5aの内側通路に配置したコイル線CLの進行方向を周方向から軸方向内向きに変換すると共に、コイル線CLを第1突起16と第2突起17間に画成された通路に配置するようにコイル線CLの進行方向を軸方向内向きから周方向に変換することにより、コイル線CLを結線用端子5a及び第2突起17に絡げる。 Specifically, as shown in FIGS. 5A and 5B, the coil wire CL is entwined around the first projection 16 by changing the advancing direction of the coil wire CL (indicated by the solid arrow in FIG. 5A) arranged in the gap (passage) defined between the end surfaces of the holding portion 13 and the first projection 16 facing each other in the axial direction from the circumferential direction to the axially outward direction. Next, the traveling direction of the coil wire CL arranged in the inner passage of the connection terminal 5a is changed from the circumferential direction to the axially inward direction, and the traveling direction of the coil wire CL is changed from the axially inward direction to the circumferential direction so that the coil wire CL is arranged in the passage defined between the first projection 16 and the second projection 17, thereby entangling the coil wire CL around the connection terminal 5a and the second projection 17.
 図示しての詳細説明は省略するが、V相バスバー6の結線用端子6a、W相バスバー7の結線用端子7a、及び中性点バスバー8の結線用端子8a~8cに対応するコイル線CL(の渡り線部)を絡げる際にも、コイル線CLは、上記の各結線用端子に対応するようにして設けられた緩和部14の第1突起16及び第2突起17にも絡げられる。 Although the detailed explanation is omitted, when the coil wire CL (the crossover portion) corresponding to the connection terminal 6a of the V-phase bus bar 6, the connection terminal 7a of the W-phase bus bar 7, and the connection terminals 8a to 8c of the neutral point bus bar 8 is entwined, the coil wire CL is also entwined with the first projection 16 and the second projection 17 of the relaxation portion 14 provided corresponding to each of the above-mentioned connection terminals.
 以上で説明したように、本実施形態のモータステータ1においては、コイルCから引き出されたコイル線CL(の渡り線部)が、絶縁部材10の保持部13に保持されたバスバー5~8の結線用端子に絡げられた状態で結線用端子に結線されている。このような構成は、コイルCの巻装時に、コイル線CLのうちで結線用端子に対する結線予定箇所を絡げておき、その後、コイル線CLの結線予定箇所を対応する結線用端子に結線することで得られる。要するに、本実施形態のモータステータ1では、結線用端子に対するコイル線CLの結線予定箇所の位置決めがなされた状態で結線作業を実施することができるので、コイルCの形状精度が低下するのを可及的に防止しつつ、結線用端子に対するコイル線CLの結線作業をスムーズに実施することができる。 As described above, in the motor stator 1 of the present embodiment, the coil wire CL (the connecting wire portion thereof) drawn out from the coil C is connected to the connection terminals in a state of being entwined with the connection terminals of the bus bars 5 to 8 held by the holding portion 13 of the insulating member 10. Such a configuration can be obtained by entangling the planned connection points of the coil wire CL with respect to the connection terminals when winding the coil C, and then connecting the planned connection points of the coil wire CL to the corresponding connection terminals. In short, in the motor stator 1 of the present embodiment, the connection operation of the coil wire CL can be performed in a state in which the planned connection locations of the coil wire CL are positioned with respect to the connection terminals. Therefore, it is possible to smoothly perform the connection operation of the coil wire CL with respect to the connection terminals while preventing deterioration in the shape accuracy of the coil C as much as possible.
 但し、コイル線CLがバスバーの結線用端子に絡げられると、これに伴う引張力が結線用端子に継続的に作用するので、結線用端子が変形・破損等することによって適正な結線状態を維持できなくなる可能性がある。この点、本実施形態のモータステータ1では、絶縁部材10の保持部13に、上記引張力を緩和する緩和部14を設けているので、係る不具合の発生を可及的に防止することができる。 However, when the coil wire CL is entwined with the connection terminals of the busbar, the resulting tensile force will continue to act on the connection terminals, so there is a possibility that the connection terminals will be deformed or damaged, making it impossible to maintain an appropriate connection state. In this respect, in the motor stator 1 of the present embodiment, since the holding portion 13 of the insulating member 10 is provided with the relief portion 14 that relieves the tensile force, it is possible to prevent such a problem from occurring as much as possible.
 特に、本実施形態のように、相互に分離して設けられた第1突起16及び第2突起17を有する緩和部14を採用した場合には、コイル線CLのうち結線用端子に結線された(絡げられた)部分よりも上流側及び下流側に位置する部分を、それぞれ、第1突起16及び第2突起17に容易に絡げることができるので、結線用端子に作用する引張力を効果的に緩和することができる。また、本実施形態では、第1突起16及び第2突起17の少なくとも一部が、対応する結線用端子を軸方向に投影した投影面P内に配置されるので、この点からも引張力の緩和能力を高めることができる。また、樹脂製の保持部13に緩和部14が一体的に設けられる本実施形態においては、緩和部14を構成する第1突起16及び第2突起17を樹脂で射出成形することができる。このとき、両突起16,17が周方向に相互に離間していれば、成形金型の型割りを簡素化でき、成形コストを低減できるという利点もある。 In particular, when the relief portion 14 having the first projection 16 and the second projection 17 provided separately from each other is adopted as in the present embodiment, the portions of the coil wire CL located upstream and downstream of the portion connected (entwined) to the connection terminal can be easily entwined with the first projection 16 and the second projection 17, respectively, so that the tensile force acting on the connection terminal can be effectively alleviated. In addition, in the present embodiment, at least a part of the first projection 16 and the second projection 17 are arranged in the projection plane P obtained by projecting the corresponding wiring terminal in the axial direction, so the tensile force relaxation ability can be enhanced from this point as well. Further, in the present embodiment in which the relief portion 14 is provided integrally with the holding portion 13 made of resin, the first projection 16 and the second projection 17 that constitute the relief portion 14 can be injection molded with resin. At this time, if both protrusions 16 and 17 are spaced apart from each other in the circumferential direction, there is also the advantage that the mold splitting can be simplified and the molding cost can be reduced.
 また、本実施形態のモータステータ1では、計4個のバスバー5~8を、ステータコア2の軸方向一端側に配置した絶縁部材10の保持部13に互いに非接触の状態で保持させている。これはすなわち、ティース4とこれに巻装されたコイルCの間を絶縁するための絶縁部材10が、従来品で言うバスバーユニットのバスバーホルダに相当する部分を一体的に有していることを意味する。この場合、モータステータ1とは別にバスバーユニットを設ける必要がなくなるので部品点数を削減できる。 In addition, in the motor stator 1 of the present embodiment, a total of four bus bars 5 to 8 are held by the holding portion 13 of the insulating member 10 arranged on one axial end side of the stator core 2 in a non-contact state. This means that the insulating member 10 for insulating between the teeth 4 and the coil C wound thereon integrally has a portion corresponding to the busbar holder of the conventional busbar unit. In this case, there is no need to provide a busbar unit separately from the motor stator 1, so the number of parts can be reduced.
 ところで、以上で説明した10極12スロットの三相ブラシレスモータ用の駆動回路(スター結線)を形成する際、計4個のバスバー(U相バスバー、V相バスバー、W相バスバー及び中性点バスバー)に対する結線箇所は最大で12箇所にも及ぶ。これに対し、上記態様で計12個のコイルCがスター結線されたモータ駆動回路20を形成すれば、計4個のバスバー5~8に対する結線箇所を6箇所にまで減じることができる。これにより、結線作業の簡素化を通じてモータステータ1の更なるコスト低減を図ることもできる。 By the way, when forming the drive circuit (star connection) for the 10-pole, 12-slot three-phase brushless motor described above, there are a maximum of 12 connection points for a total of four busbars (U-phase busbar, V-phase busbar, W-phase busbar, and neutral point busbar). On the other hand, if the motor drive circuit 20 is formed in which a total of 12 coils C are star-connected in the manner described above, the number of connection points for the total of four bus bars 5 to 8 can be reduced to six. As a result, the cost of the motor stator 1 can be further reduced through the simplification of the wire connection work.
 以上で説明したような作用効果が相俟って、本発明によれば、各コイルCの形状精度に優れ、所定の出力を安定的に発揮することができるモータステータ1を低コストに提供することができる。 Combined with the effects described above, according to the present invention, it is possible to provide the motor stator 1 with excellent shape accuracy of each coil C and capable of stably exhibiting a predetermined output at a low cost.
 以上、本発明の実施形態に係るモータステータ1について説明を行ったが、モータステータ1には、本発明の要旨を変更しない限りにおいて適宜の変形を施すことができる。例えば、以上で説明した実施形態では、一本の連続したコイル線CLを計12個のティース4のそれぞれに集中巻きで順次巻装することによって計12個のコイルCを一本のコイル線CL上に形成したが、一本のコイル線CL上に形成するコイルCの数は任意に選択することができる。但し、モータステータ1のコスト低減を図る上では、バスバー5~8に対するコイル線CLの結線箇所を極力減じるのが好ましいことから、モータステータ1の低コスト化を重要視する場合には、一本の連続したコイル線CLを複数のティースのそれぞれに順次集中巻きすることによって複数のコイルCを形成するのが好ましい。 Although the motor stator 1 according to the embodiment of the present invention has been described above, the motor stator 1 can be appropriately modified as long as the gist of the present invention is not changed. For example, in the embodiment described above, a total of 12 coils C are formed on a single coil wire CL by sequentially winding a single continuous coil wire CL around a total of 12 teeth 4 by concentrated winding, but the number of coils C formed on a single coil wire CL can be arbitrarily selected. However, in order to reduce the cost of the motor stator 1, it is preferable to reduce the number of connecting points of the coil wire CL to the busbars 5 to 8 as much as possible. Therefore, when it is important to reduce the cost of the motor stator 1, it is preferable to form a plurality of coils C by sequentially intensive winding one continuous coil wire CL around each of a plurality of teeth.
 以上では、緩和部14として、支持部15に2つの突起16,17が軸方向に相互に離間して設けられたものを採用したが、支持部15に設ける突起は、一つもしくは三つ以上とすることもできる。 In the above description, as the relief portion 14, the supporting portion 15 provided with the two projections 16 and 17 spaced apart from each other in the axial direction was adopted, but the supporting portion 15 may have one or three or more projections.
 また以上では、10極12スロットの三相ブラシレスモータ(分数溝モータ)用のステータ1に本発明を適用する場合について説明したが、本発明は、その他の分数溝モータ用のステータ、例えば14極12スロットの三相ブラシレスモータ用のステータや、14極18スロットの三相ブラシレスモータ用のステータに適用することもできる。後者の場合、例えば2並列3直列で接続されたU相~W相コイルをスター結線することでモータ駆動回路が形成される。また、本発明は、U相コイル、V相コイル及びW相コイルがバスバーを用いてデルタ結線されるモータステータにも適用することができる。 In the above description, the case where the present invention is applied to the stator 1 for a three-phase brushless motor (fractional groove motor) with 10 poles and 12 slots has been described. In the latter case, for example, a motor drive circuit is formed by star-connecting U-phase to W-phase coils connected in two parallel and three series. The present invention can also be applied to a motor stator in which U-phase coils, V-phase coils, and W-phase coils are delta-connected using bus bars.
 本発明は以上で説明した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは言うまでもない。本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is by no means limited to the embodiments described above, and it goes without saying that it can be embodied in various forms without departing from the gist of the present invention. The scope of the present invention is indicated by the claims, and includes equivalent meanings and all changes within the scope of the claims.
 1    モータステータ
 2    ステータコア
 4    ティース
 5    U相バスバー
 5a   結線用端子
 6    V相バスバー
 6a   結線用端子
 7    W相バスバー
 7a   結線用端子
 8    中性点バスバー
 8a,8b,8c 結線用端子
 10   絶縁部材
 13   保持部
 14   緩和部
 16   第1突起
 17   第2突起
 20   モータ駆動回路
 30   モータ
 32   モータロータ
 33   出力軸
 35   永久磁石
 C    コイル
 CL   コイル線
1 Motor Stator 2 Stator Core 4 Teeth 5 U-phase Busbar 5a Connection Terminal 6 V-phase Busbar 6a Connection Terminal 7 W-phase Busbar 7a Connection Terminal 8 Neutral Point Busbar 8a, 8b, 8c Connection Terminal 10 Insulating Member 13 Holding Part 14 Relieving Part 16 First Projection 17 Second Projection 20 Motor Drive Circuit 3 0 motor 32 motor rotor 33 output shaft 35 permanent magnet C coil CL coil wire

Claims (7)

  1.  円筒状のステータコアと、該ステータコアに設けられた放射状のティースに絶縁部材を介して巻装されたコイルと、結線用端子及び外部接続端子を有するバスバーと、を備えたモータステータにおいて、
     前記絶縁部材が、前記ステータコアの軸方向一端側で前記バスバーを保持した保持部を有し、
     前記コイルから前記ステータコアの軸方向一端側に引き出されたコイル線が、前記バスバーの結線用端子に絡げられた状態で前記結線用端子に結線され、
     前記保持部に、前記結線用端子に前記コイル線が絡げられることで前記結線用端子に作用する引張力を緩和する緩和部が設けられていることを特徴とするモータステータ。
    A motor stator comprising a cylindrical stator core, coils wound around radial teeth provided on the stator core via an insulating member, and bus bars having connection terminals and external connection terminals,
    The insulating member has a holding portion that holds the busbar on one axial end side of the stator core,
    a coil wire drawn out from the coil to one axial end side of the stator core is connected to the connection terminal in a state of being entwined with the connection terminal of the bus bar;
    A motor stator according to claim 1, wherein the holding portion is provided with a relief portion that relieves a tensile force acting on the connection terminal due to the winding of the coil wire around the connection terminal.
  2.  前記緩和部は、相互に分離して設けられた第1突起及び第2突起を有し、
     前記コイル線のうち前記結線用端子に結線された部分よりも上流側及び下流側に位置する部分が、それぞれ、前記第1突起及び前記第2突起に絡げられている請求項1に記載のモータステータ。
    The relief portion has a first projection and a second projection provided separately from each other,
    2. The motor stator according to claim 1, wherein portions of the coil wire located upstream and downstream of the portion connected to the connection terminal are respectively wound around the first projection and the second projection.
  3.  前記第1突起及び第2突起は、少なくとも一部が、前記結線用端子を軸方向に投影した投影面内に配置されている請求項2に記載のモータステータ。 3. The motor stator according to claim 2, wherein at least a part of the first projection and the second projection is arranged within a plane of projection of the terminal for connection in the axial direction.
  4.  ヒュージングにより、前記コイル線が前記結線用端子に結線されている請求項1~3の何れか一項に記載のモータステータ。 The motor stator according to any one of claims 1 to 3, wherein the coil wire is connected to the connection terminal by fusing.
  5.  前記ティース及びこれに巻装された前記コイルが周方向に間隔を空けて複数設けられ、
     一本の連続したコイル線を複数の前記ティースのそれぞれに順次集中巻きすることにより複数の前記コイルが形成されている請求項1~4の何れか一項に記載のモータステータ。
    A plurality of the teeth and the coil wound thereon are provided at intervals in the circumferential direction,
    5. The motor stator according to any one of claims 1 to 4, wherein a plurality of said coils are formed by sequentially intensively winding one continuous coil wire around each of said plurality of teeth.
  6.  10極12スロットの三相ブラシレスモータ用である請求項1~5の何れか一項に記載のモータステータ。 The motor stator according to any one of claims 1 to 5, which is for a three-phase brushless motor with 10 poles and 12 slots.
  7.  請求項1~6の何れか一項に記載のモータステータと、モータロータとを備えたモータ。 A motor comprising the motor stator according to any one of claims 1 to 6 and a motor rotor.
PCT/JP2022/048254 2022-01-20 2022-12-27 Motor stator and motor equipped with same WO2023140074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007136 2022-01-20
JP2022007136A JP2023106033A (en) 2022-01-20 2022-01-20 Motor stator and motor provided with the same

Publications (1)

Publication Number Publication Date
WO2023140074A1 true WO2023140074A1 (en) 2023-07-27

Family

ID=87348684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048254 WO2023140074A1 (en) 2022-01-20 2022-12-27 Motor stator and motor equipped with same

Country Status (2)

Country Link
JP (1) JP2023106033A (en)
WO (1) WO2023140074A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139067A1 (en) * 2008-05-16 2009-11-19 三菱電機株式会社 Electric motor
WO2016051481A1 (en) * 2014-09-30 2016-04-07 三菱電機株式会社 Rotating electrical machine and method for producing rotating electrical machine
EP3091641A1 (en) * 2015-05-04 2016-11-09 Tyco Electronics Belgium EC BVBA Strain-relief arrangement for an electric conductor and method for establishing a strain-relief for an electric conductor
JP2017060368A (en) * 2015-09-18 2017-03-23 日本電産テクノモータ株式会社 Stator and motor
JP2018515063A (en) * 2015-05-04 2018-06-07 ビューラー モーター ゲゼルシャフト ミット ベシュレンクテル ハフツング Electronically commutated DC motor
JP2021111999A (en) * 2020-01-07 2021-08-02 ミネベアミツミ株式会社 motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139067A1 (en) * 2008-05-16 2009-11-19 三菱電機株式会社 Electric motor
WO2016051481A1 (en) * 2014-09-30 2016-04-07 三菱電機株式会社 Rotating electrical machine and method for producing rotating electrical machine
EP3091641A1 (en) * 2015-05-04 2016-11-09 Tyco Electronics Belgium EC BVBA Strain-relief arrangement for an electric conductor and method for establishing a strain-relief for an electric conductor
JP2018515063A (en) * 2015-05-04 2018-06-07 ビューラー モーター ゲゼルシャフト ミット ベシュレンクテル ハフツング Electronically commutated DC motor
JP2017060368A (en) * 2015-09-18 2017-03-23 日本電産テクノモータ株式会社 Stator and motor
JP2021111999A (en) * 2020-01-07 2021-08-02 ミネベアミツミ株式会社 motor

Also Published As

Publication number Publication date
JP2023106033A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5070248B2 (en) Rotating electric machine and manufacturing method thereof
US8497618B2 (en) Stator for rotatry electrical machine including an insulating bobbin
JP6053001B2 (en) Bus bar unit
JP3982446B2 (en) Manufacturing method of rotating electrical machine
EP2621059B1 (en) Manufacturing method for rotary electrical machine
US20090267441A1 (en) Rotating Electrical Machine
US20100207467A1 (en) Stator and rotating electric machine
JP2020025463A (en) Brushless motor
WO2020174817A1 (en) Dynamo-electric machine stator, dynamo-electric machine, method for manufacturing dynamo-electric machine stator, and method for manufacturing dynamo-electric machine
US20120001516A1 (en) Stator for electric rotating machine and method of manufacturing the same
JP5965207B2 (en) Motor stator
JP4137864B2 (en) Rotating electric machine stator
WO2023140074A1 (en) Motor stator and motor equipped with same
JP5963928B1 (en) Rotating machine wiring unit
WO2023140071A1 (en) Motor stator and motor provided with same
JP4103300B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP2022190332A (en) stator and motor
JP2011200091A (en) Stator of motor
JP2010081670A (en) Alternating current generator
JP2014192997A (en) Electric motor
JP5909789B2 (en) Rotating electric machine, rotating electric stator and vehicle
US11594930B2 (en) Rotating electric machine
WO2023149252A1 (en) Rotating electric machine stator, rotating electric machine, rotating electric machine stator manufacturing method, and rotating electric machine manufacturing method
WO2022064983A1 (en) Stator coil assembly and electric motor provided with same
KR20210152732A (en) Terminal device for driving motor of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922224

Country of ref document: EP

Kind code of ref document: A1