WO2023139725A1 - Heat exchange ventilation system - Google Patents

Heat exchange ventilation system Download PDF

Info

Publication number
WO2023139725A1
WO2023139725A1 PCT/JP2022/002009 JP2022002009W WO2023139725A1 WO 2023139725 A1 WO2023139725 A1 WO 2023139725A1 JP 2022002009 W JP2022002009 W JP 2022002009W WO 2023139725 A1 WO2023139725 A1 WO 2023139725A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
air
air supply
blower
duct
Prior art date
Application number
PCT/JP2022/002009
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/002009 priority Critical patent/WO2023139725A1/en
Publication of WO2023139725A1 publication Critical patent/WO2023139725A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present disclosure relates to a heat exchange ventilation system that performs ventilation while exchanging heat between supply airflow and exhaust airflow.
  • the air handling unit Due to its large size, the air handling unit has limited installation locations and requires special installation space such as a large machine room, rooftop or basement. If the air handling unit is to be installed on the roof or in the basement, a space is also required for pipework such as a duct that penetrates between floors. Therefore, the air handling unit takes up a large amount of space in the building.
  • the air handling unit uses a large blower, there is a risk that ventilation of the entire building will stop if a failure occurs.
  • the blower operates in a fixed manner regardless of the occupancy status inside the building, which is wasteful from the perspective of energy consumption.
  • Patent Document 1 discloses a ceiling-embedded heat exchange ventilation system in which a blower section including an exhaust blower and an air supply blower and a heat exchange section including a heat exchanger are separately arranged.
  • the heat exchanging ventilator disclosed in Patent Literature 1 makes it easy to secure an installation space by separating the blower section and the heat exchanging section.
  • a ceiling-embedded heat exchange ventilator such as that disclosed in Patent Document 1 cannot individually supply and exhaust air to a plurality of rooms because the fan section and the heat exchange section are paired.
  • the heat exchange ventilation fan installed in the ceiling needs to be thick enough to fit in the ceiling because it is limited by the space in the ceiling. Therefore, it is difficult to increase the size of the heat exchanger in order to increase the heat exchange efficiency.
  • the structure for facilitating disassembly is complicated in order to ensure maintainability. The complexity of the structure can also cause air leakage between supply air and exhaust air.
  • the ceiling-mounted heat exchange ventilation system cannot supply and exhaust air to multiple rooms individually, and it is difficult to increase the heat exchange efficiency and increase the air volume. Therefore, attempts are being made to use multiple heat exchange ventilation systems to ventilate the building.
  • each heat exchange ventilation device must be accessed individually during filter maintenance, which increases the time and cost required for filter maintenance.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a heat exchange ventilation system in which filter maintenance is easy and which can individually supply and exhaust air to a plurality of rooms.
  • the heat exchange ventilation system includes a plurality of blower sections that include a supply air blower with an supply air fan that generates an air supply flow and an exhaust air blower with an exhaust fan that generates an exhaust air flow, a heat exchanger section that includes a supply air flow path through which the supply air flow passes, an exhaust air flow path through which the exhaust flow passes, and a heat exchanger that exchanges heat between the supply air flow and the exhaust flow.
  • the heat exchange ventilation system comprises: a first supply air duct connecting an outside air port leading to the outdoors and a supply air passage; a first exhaust duct connecting the exhaust port leading to the outdoors and the exhaust air passage; a second air supply duct connecting the air supply blower of each of the plurality of blower units and the supply air passage; a second exhaust duct connecting each of the plurality of blower units and the exhaust air passage; , a third air supply duct that connects an air supply port installed in the air-conditioned space, and a third exhaust duct that connects each of the plurality of blower units and a return air port installed in the air-conditioned space.
  • the heat exchange ventilation system according to the present disclosure has the effect of facilitating maintenance of the filter and of being able to individually supply and exhaust air to a plurality of rooms.
  • FIG. 1 is a diagram showing the configuration of a heat exchange ventilation system according to Embodiment 1.
  • FIG. 2 is a diagram showing the configuration of the blower section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 4 shows a modification of the blower section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 1 Schematic diagram showing movement of bypass damper of heat exchange ventilation system according to Embodiment 1
  • FIG. 2 shows a connection state of the heat exchange ventilation system according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing a hardware configuration example of a control unit of the heat exchange ventilation system according to Embodiment 1;
  • FIG. 1 is a diagram showing the configuration of a heat exchange ventilation system according to Embodiment 1.
  • FIG. A heat exchange ventilation system 100 includes a plurality of blower sections 10 and heat exchanger sections 20 .
  • each of the plurality of blower units 10 is described as blower units 10a, 10b, 10c, and 10d for distinction.
  • Each of the plurality of blower units 10a, 10b, 10c, and 10d includes an air supply blower 11 and an exhaust blower 12. As shown in FIG.
  • the air supply fan 11 and the exhaust fan 12 may be separable or integrated.
  • blower unit 10a, 10b, 10c, and 10d is set as a master unit, and the rest are set as slave units.
  • the blower unit 10a is set as the master unit, and the blower units 10b, 10c, and 10d are set as slave units.
  • a remote controller 30a is connected to the blower unit 10a, which is a master unit.
  • a remote controller 30b is connected to the blower unit 10b, which is a slave unit. Further, a remote controller 30c is connected to the blower units 10c and 10d, which are slave units. Note that remote controllers may not be connected to the blower units 10b, 10c, and 10d, which are slave units.
  • the heat exchanger section 20 is connected to the first air supply duct 41 through an outside air port 51 leading to the outdoors. Also, the heat exchanger section 20 is connected to the first exhaust duct 42 through an exhaust port 52 leading to the outdoors.
  • the air supply blower 11 of each of the blower sections 10 a , 10 b , 10 c , 10 d is connected to the heat exchanger section 20 by a second air supply duct 43 .
  • Each exhaust fan 12 of the fan sections 10 a , 10 b , 10 c , 10 d is connected to the heat exchanger section 20 by a second exhaust duct 44 .
  • the air supply blower 11 of each of the blower units 10a, 10b, 10c, and 10d is connected by a third air supply duct 45 to an air supply port 53 installed in a room to be air-conditioned.
  • Each exhaust fan 12 of the fan units 10a, 10b, 10c, and 10d is connected by a third exhaust duct 46 to a return air port 54 installed in a room, which is a space to be air-conditioned.
  • the blower section 10a which is the master unit, is connected to the heat exchanger section 20 via a communication line 60.
  • the blower units 10a, 10b, 10c, and 10d are connected to each other by a communication line 70.
  • FIG. 1 is the figure in which the master unit is connected.
  • FIG. 2 is a diagram showing the configuration of the blower section of the heat exchange ventilation system according to the first embodiment.
  • the air supply blower 11 is equipped with an electric air supply damper 111 .
  • the exhaust blower 12 is equipped with an electric exhaust damper 121 .
  • the air supply damper 111 is closed while the air supply fan 11 is stopped, and opens when the air supply fan 11 starts operating.
  • the exhaust damper 121 closes while the exhaust fan 12 is stopped and opens when the exhaust fan 12 starts operating.
  • the air supply damper 111 is opened and closed by a damper motor 112 .
  • the exhaust damper 121 is opened and closed by a damper motor 122 .
  • the air supply damper 111 and the exhaust damper 121 are not limited to being electric.
  • air pressure dampers may be used for the air supply damper 111 and the exhaust damper 121, and the air supply damper 111 may be prevented from opening when the pressure in the room in which the air supply port 53 and the return air port 54 are arranged becomes positive, and the exhaust damper 121 may be prevented from opening when the pressure in the room in which the air supply port 53 and the return air port 54 are arranged becomes negative.
  • the air supply damper 111 is installed so as to cover the inlet of the air supply fan 11 .
  • the exhaust damper 121 is installed so as to cover the inlet of the exhaust fan 12 .
  • the air supply damper 111 does not have to be attached to the air supply fan 11 .
  • the exhaust damper 121 does not have to be attached to the exhaust fan 12 .
  • the air supply damper 111 and the air exhaust damper 121 may be installed at arbitrary positions on the flow path between the heat exchanger section 20 and the air supply port 53 or return air port 54 of each room.
  • the air supply damper 111 and the air exhaust damper 121 may be provided in the heat exchanger section 20, or may be installed in the air supply port 53 and the return air port 54 of each room.
  • the air supply damper 111 and the exhaust damper 121 are installed at the air supply port 53 or the return air port 54 on the space side to be air-conditioned.
  • the air supply damper 111 and the exhaust damper 121 are strong against the reverse pressure, and the structure can prevent circulation inside the heat exchanger unit 20.
  • the air supply blower 11 has a pressure sensor 114 downstream of the air supply fan 113 .
  • the exhaust fan 12 has a pressure sensor 124 downstream of the exhaust fan 123 .
  • a substrate box 15 containing a control unit 14 is installed on the side of the exhaust fan 12 side. Inside the board box 15 , power supply lines to the air supply fan 11 and the exhaust fan 12 are connected to the controller 14 . From the control unit 14, power is supplied and wiring is performed to the fan motors 115 and 125 of the air supply fan 11 and the exhaust fan 12, the detection tubes of the pressure sensors 114 and 124, and the damper motors 112 and 122 for driving the air supply damper 111 and the exhaust damper 121, respectively.
  • the static pressure created by the air supply blower 11 makes the pressure downstream of the air supply blower 11 positive and the pressure upstream of the air supply blower 11 negative.
  • the negative pressure generated by the air supply fan 11 requesting operation with a large air volume may cause the air flow to flow back to the air supply fan 11 requesting operation with a small air volume due to the difference in negative pressure near the air supply suction port of the heat exchanger unit 20.
  • pressure sensors 114 and 124 are installed in the air supply fan 11 and the exhaust fan 12 . While the air supply fan 11 is in operation, the fan motor 115 is controlled so that the pressure detected by the pressure sensor 114 is kept positive. By controlling the fan motor 115 based on the detection result of the pressure sensor 114, it is possible to prevent the occurrence of backflow of air in the duct due to the difference in the air volume of the air supply blower 11. FIG.
  • a pressure sensor 124 is installed downstream of the exhaust fan 123 on the exhaust side, and the fan motor 125 is controlled so that the pressure detected by the pressure sensor 124 remains positive while the exhaust blower 12 is in operation.
  • the fan motor 125 By controlling the fan motor 125 based on the detection result of the pressure sensor 124, it is possible to prevent the occurrence of backflow of air in the duct due to the difference in the air volume of the exhaust blower 12 and the decrease in the air volume. Further, by controlling the fan motor 125 so that the pressure detected by the pressure sensor 124 becomes a constant positive pressure, it is possible to keep the air volume of the exhaust blower 12 constant.
  • control unit 14 stores the relational expression between the air volume passing through the air supply fan 11 and the exhaust air fan 12 and the pressure detected by the pressure sensors 114 and 124, and controls the fan motors 115 and 125 so that the pressure detected by the pressure sensors 114 and 124 matches the required air volume level according to the required air volume level.
  • the air supply fan 11 and the exhaust fan 12 equipped with the pressure sensors 114 and 124 are effective.
  • the system cost can be reduced by lining up the air supply fan 11 and the exhaust fan 12 without the pressure sensors 114 and 124.
  • a thermistor 126 that detects the room temperature is installed in a portion of the exhaust fan 12 upstream of the exhaust fan 123 in the flow of the exhaust flow.
  • the thermistor 126 detects the temperature of the indoor air and transmits temperature information to the controller 14 .
  • FIG. 3 is a diagram showing a modification of the blower section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. Pressure sensors 116 and 127 are also installed in a portion of the air supply fan 11 upstream of the air supply fan 113 and a portion of the exhaust fan 12 upstream of the exhaust fan 123, respectively.
  • the control unit 14 controls the air supply blower 11 and the exhaust blower 12 so that the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the air supply fan 113 and the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the exhaust fan 123 are each equal to or less than a preset threshold. By doing so, the controller 14 can keep the air supply volume and the exhaust air volume constant.
  • FIG. 4 is a side view of the air-conditioned space side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 5 is a side view of the outdoor side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 6 is a side view of the filter attachment/detachment port side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 7 is a top view of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 7 illustration of the top surface of the housing 21 of the heat exchanger unit 20 is omitted, and the inside is visualized.
  • FIG. 7 illustration of the top surface of the housing 21 of the heat exchanger unit 20 is omitted, and the inside is visualized.
  • FIG. 8 is a schematic diagram showing the movement of the bypass damper of the heat exchange ventilation system according to Embodiment 1.
  • the heat exchanger unit 20 includes a parallelepiped housing 21 and a heat exchanger 22 housed inside the housing 21 .
  • a partition plate 25 that separates the supply air passage 23 and the exhaust air passage 24 is installed inside the housing 21 .
  • a bypass air passage 26 for bypassing the heat exchanger 22 is provided in the supply air passage 23 .
  • the heat exchanger section 20 includes an electric bypass damper 27 that opens and closes the bypass air passage 26 . By opening the bypass damper 27, the bypass air passage 26 is opened, but the air passage leading to the heat exchanger 22 is not closed. Therefore, operation with low pressure loss is possible, and reduction in power consumption can be realized.
  • the bypass damper 27 has a structure that opens toward the outside air side, and is difficult to open due to the negative pressure when the air supply blower 11 pulls.
  • duct connection ports 211a and 212a for connection with the blower sections 10a, 10b, 10c, and 10d are formed on the side surface 21a of the housing 21 of the heat exchanger section 20 on the air-conditioned space side.
  • a first air supply duct 41 is connected to the air supply duct connection port 211a. Therefore, the supply air passage 23 is connected to the blower sections 10a, 10b, 10c and 10d via the first supply duct 41.
  • a first exhaust duct 42 is connected to the exhaust duct connection port 212a. Therefore, the exhaust air passage 24 is connected to the blower sections 10a, 10b, 10c, and 10d via the first exhaust duct 42.
  • the heat exchanger section 20 may be provided with a connection port attachment for connection with a square duct so as to be compatible with a pipe branching from the middle with a round duct in a chamber system. That is, there is one second air supply duct 43 at the connection portion with the air supply duct connection port 211a of the heat exchanger section 20, and it may branch between the heat exchanger section 20 and each of the plurality of blower sections 10a, 10b, 10c, and 10d.
  • duct connection ports 211b and 212b larger than the duct connection ports 211a and 212a are formed on the outdoor side surface 21b of the housing 21 of the heat exchanger unit 20, so that a collective duct can be connected to the outside air.
  • a first air supply duct 41 is connected to the air supply duct connection port 211b. Therefore, the supply air passage 23 is connected to the outside air port 51 via the first supply air duct 41 .
  • a first exhaust duct 42 is connected to the exhaust duct connection port 212b. Therefore, the exhaust air passage 24 is connected to the exhaust port 52 via the first exhaust duct 42 .
  • the heat exchanger section 20 includes an air supply filter 28 and an exhaust filter 29 .
  • a filter attachment/detachment opening is provided on the side surface 21 c of the housing 21 so that the air supply filter 28 and the exhaust filter 29 can be pulled out from the side surface 21 c of the housing 21 . Illustration of the filter attachment/detachment opening is omitted.
  • the heat exchanger section 20 can also be placed vertically.
  • the side surface 21c faces upward so that the air supply filter 28 and the exhaust filter 29 can be drawn upward.
  • the bypass damper 27 has a structure in which it is rotated obliquely upward and pulled up or slid obliquely upward so that it does not open by its own weight whether the heat exchanger section 20 is placed horizontally or vertically.
  • the heat exchanger section 20 is provided with a hanging fitting 90 that can be fixed to an anchor in either a horizontal state in which the first air supply duct 41, the first exhaust duct 42, the second air supply duct 43, and the second exhaust duct 44 are connected horizontally, or a vertical state in which the first air supply duct 41, the first exhaust duct 42, the second air supply duct 43, and the second exhaust duct 44 are connected vertically.
  • the hanging metal fitting 90 has a structure in which a notch 91 for inserting an anchor is opened in the air flow direction so that the number of support points is not reduced when the heat exchanger section 20 is placed vertically.
  • the air supply filter 28 and the exhaust filter 29 are not laid on the surface of the heat exchanger 22 in order to reduce surface wind speed, but are separated from the heat exchanger 22 and have a large surface area inside the housing 21. Consolidating the filters in the heat exchanger section 20 eliminates the need for maintenance of the blower sections 10a, 10b, 10c, and 10d, making it possible to reduce the cost and time required for maintenance.
  • a thermistor 31 for detecting outside air temperature is installed in a portion upstream of the heat exchanger 22 in the supply air passage 23 .
  • a thermistor 32 for detecting indoor air temperature is installed in a portion of the exhaust air passage 24 upstream of the heat exchanger 22 .
  • FIG. 9 is a diagram showing the connection state of the heat exchange ventilation system according to the first embodiment.
  • the control unit 14 of the blower unit 10a set as the master unit is connected to the thermistor 31 for outside air temperature, the thermistor 32 for detecting the room temperature, and the damper motor 27a installed in the heat exchanger unit 20 via a communication line 60.
  • the control unit 14 of the blower unit 10a which is the master unit that received the temperature information, determines whether to perform bypass ventilation or heat exchange ventilation based on the outside air temperature and the room temperature, and drives the damper motor 27a to open and close the bypass air passage 26.
  • the criterion for determining whether to use bypass ventilation or heat exchange ventilation is variable, and the criterion can be set from the remote controller 30a connected to the blower section 10a, which is the master unit. Note that the determination criteria can be set only by the remote controller 30a connected to the blower unit 10a, which is the master unit.
  • the control unit 14 performs control such as stopping the air supply blower 11 for protective operation or performing intermittent operation when the outside air temperature is too low.
  • the controllers 14 of the blower units 10b, 10c, and 10d that are child units are connected to the controller 14 of the blower unit 10a that is the master unit via a communication line 70, and upon receiving a protective operation instruction from the master unit through the communication line 70, perform protective operation.
  • the controllers 14 of the slave units 10b, 10c, and 10d that receive the temperature information from the controller 14 of the master blower unit 10a may determine whether or not to perform the protection operation.
  • the remote controllers 30a, 30b, 30c By operating the remote controllers 30a, 30b, 30c, it is possible to stop the operation of the blower units 10a, 10b, 10c, 10d and switch between heat exchange ventilation and bypass ventilation. After stopping the operation of the blower units 10a, 10b, 10c, and 10d and setting switching between heat exchange ventilation and bypass ventilation, if a new setting operation is performed on another remote controller 30a, 30b, or 30c, the latest setting operation is given priority.
  • blower units 10b, 10c, and 10d which are slave units, can be operated in conjunction with the blower unit 10a which is the master unit.
  • each of the blower units 10a, 10b, 10c, and 10d has an independent control unit 14, and the blower unit 10a, which is one of the blower units 10a, 10b, 10c, and 10d, serves as a master unit and also controls the bypass damper 27 of the heat exchanger unit 20.
  • the configuration for cooperative control has been described, it is not limited to this.
  • a single control circuit that controls the heat exchange ventilation system 100 may be provided, and the control circuit that controls the fan units 10a, 10b, 10c, and 10d may be directly controlled.
  • the blower units 10a, 10b, 10c, and 10d may be provided with the control unit 14, and the control unit 14 of each of the fan units 10a, 10b, 10c, and 10d may perform control based on a control signal received from the overall control circuit.
  • the controlling circuit may be provided in the heat exchanger section 20, or may be provided separately from the blower sections 10a, 10b, 10c, 10d and the heat exchanger section 20.
  • the blower units 10a, 10b, 10c, and 10d and the heat exchanger unit 20 are separated, so that the blower units 10a, 10b, 10c, and 10d can be installed in the ceiling space, and the heat exchanger unit 20 can be suspended in a machine room or the like, so that it can be installed in a small space.
  • the blower portions 10a, 10b, 10c, 10d and the heat exchanger portion 20 are separated, the weight of each of the blower portions 10a, 10b, 10c, 10d and the heat exchanger portion 20 is reduced compared to a heat exchange ventilator in which the blower portion and the heat exchanger portion are integrated.
  • the thickness can be reduced as compared with a heat exchange ventilator in which the blower section and the heat exchanger section are integrated. Therefore, the installation positions of the blower units 10a, 10b, 10c, and 10d and the installation position of the heat exchanger unit 20 can be arbitrarily selected according to the structure of the building in which the heat exchange ventilation system 100 is installed. Further, since the operation of the plurality of blower units 10a, 10b, 10c, and 10d can be individually stopped, each room can be individually supplied and exhausted. Also, when the amount of air supplied and exhausted by the heat exchange ventilation system 100 as a whole is small, by driving only some of the blower units 10a, 10b, 10c, and 10d, operation with high heat exchange efficiency and low pressure loss is possible. Further, by increasing or decreasing the number of blower units 10a, 10b, 10c, and 10d, the air volume of the heat exchange ventilation system 100 as a whole can be adjusted, and a wide range of air volumes can be accommodated.
  • the heat exchange ventilation system 100 according to Embodiment 1 includes a plurality of blower units 10a, 10b, 10c, and 10d, the noise generated by each of the blower units 10a, 10b, 10c, and 10d can be suppressed as compared to an air handling unit using a blower with a large air volume.
  • FIG. 10 is a diagram illustrating a hardware configuration example of a control unit of the heat exchange ventilation system according to Embodiment 1.
  • FIG. 10 shows a hardware configuration in which the functions of the control unit 14 are realized by using hardware that executes programs.
  • the control unit 14 has a processor 81 that executes various processes, a memory 82 that is an internal memory, and a storage device 83 that stores information.
  • the processor 81 reads a program stored in the storage device 83 to the memory 82 and executes it.
  • the processor 81 reads the program stored in the storage device 83 into the memory 82 and executes it, thereby realizing the function of the control unit 14 that controls the air supply fan 11 and the exhaust fan 12 .
  • the configuration shown in the above embodiment shows an example of the contents, and it is possible to combine it with another known technology, and it is also possible to omit or change a part of the configuration without departing from the gist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

A heat exchange ventilation system (100) comprises: a plurality of blower units (10) each incorporating an air supply blower (11) that generates a supply airflow and an exhaust blower (12) that generates an exhaust airflow; a heat exchanger unit (20) equipped with an air supply path through which the supply airflow passes, an exhaust path through which the exhaust airflow passes, and a heat exchanger that exchanges heat between the supply airflow and the exhaust airflow; a first air supply duct (41) that connects an outside air port (51) to the air supply path; a first exhaust duct (42) that connects an exhaust port (52) to the exhaust path; a second air supply duct (43) that connects the air supply blower (11) of each of the plurality of blower units (10) to the air supply path; a second exhaust duct (44) that connects the exhaust blower (12) of each of the plurality of blower units (10) to the exhaust path; a third air supply duct (45) that connects each of the plurality of blower units (10) to an air supply port (53); and a third exhaust duct (46) that connects each of the plurality of blower units (10) to an air return port (54).

Description

熱交換換気システムheat exchange ventilation system
 本開示は、給気流と排気流との間で熱交換を行いながら換気を行う熱交換換気システムに関する。 The present disclosure relates to a heat exchange ventilation system that performs ventilation while exchanging heat between supply airflow and exhaust airflow.
 従来、大型の建物における熱交換換気扇には、大風量に対応可能なエアハンドリングユニットを用いたり、天井埋込タイプの熱交換換気装置を用いたりすることが主流である。 Conventionally, for heat exchange ventilation fans in large buildings, it has been common to use air handling units that can handle large air volumes or ceiling-embedded heat exchange ventilation devices.
 エアハンドリングユニットは、大型であるがゆえに設置場所が限定されており、大型の機械室、屋上又は地下といった特別な設置スペースを必要とする。エアハンドリングユニットを屋上又は地下に設置する場合には、階間を貫くダクトなどを配管するスペースも必要となる。したがって、エアハンドリングユニットは、建物の中での占有スペースが大きくなってしまう。 Due to its large size, the air handling unit has limited installation locations and requires special installation space such as a large machine room, rooftop or basement. If the air handling unit is to be installed on the roof or in the basement, a space is also required for pipework such as a duct that penetrates between floors. Therefore, the air handling unit takes up a large amount of space in the building.
 また、エアハンドリングユニットは、大型の送風機を用いているため故障が発生すると建物全体の換気が停止するというリスクがあることに加え、建物内部の在室状況にかかわらず送風機が一定の動作をする形態が多く、エネルギー消費の観点からも無駄が多い。 In addition, since the air handling unit uses a large blower, there is a risk that ventilation of the entire building will stop if a failure occurs.In addition, there are many forms in which the blower operates in a fixed manner regardless of the occupancy status inside the building, which is wasteful from the perspective of energy consumption.
 エアハンドリングユニットを屋外に設置する場合は、耐候性を向上させる必要があり、製造コストが増大してしまう。 When installing the air handling unit outdoors, it is necessary to improve weather resistance, which increases manufacturing costs.
 エアハンドリングユニットを屋内に設置できたとしても、大風量を実現するために必要となる大型の送風機は騒音源ともなるため、防音又は遮音の施工が建物側に求められるケースもあり、施工費用及びスペース確保に影響を与えてしまう。 Even if the air handling unit can be installed indoors, the large blower required to achieve a large air volume is also a source of noise, so there are cases where the building side is required to implement soundproofing or sound insulation, which affects construction costs and securing space.
 特許文献1には、排気用送風機及び給気用送風機を備えた送風機部と熱交換器を備えた熱交換部とを分離して配置する天井埋込型の熱交換換気装置が開示されている。特許文献1に開示される熱交換換気装置は、送風機部と熱交換部とを分離することにより、設置スペースの確保を容易にしている。 Patent Document 1 discloses a ceiling-embedded heat exchange ventilation system in which a blower section including an exhaust blower and an air supply blower and a heat exchange section including a heat exchanger are separately arranged. The heat exchanging ventilator disclosed in Patent Literature 1 makes it easy to secure an installation space by separating the blower section and the heat exchanging section.
 特許文献1に開示されるような天井埋込型の熱交換換気装置は、送風機部と熱交換部とが一対であるため、複数の部屋に個別に給排気することができない。天井裏に設置する熱交換換気扇は、天井裏というスペースの制約を受けるため、天井裏に収まる厚さにする必要がある。このため、熱交換効率を高くするために熱交換器を大型化することは困難である。さらに、メンテナンス性の確保のために分解を容易にする構造が複雑化する。構造が複雑であることは、給気と排気との間の空気漏れの原因ともなりうる。また、天井裏に設置する熱交換換気扇は、騒音を抑えるために大風量化が困難である。 A ceiling-embedded heat exchange ventilator such as that disclosed in Patent Document 1 cannot individually supply and exhaust air to a plurality of rooms because the fan section and the heat exchange section are paired. The heat exchange ventilation fan installed in the ceiling needs to be thick enough to fit in the ceiling because it is limited by the space in the ceiling. Therefore, it is difficult to increase the size of the heat exchanger in order to increase the heat exchange efficiency. Furthermore, the structure for facilitating disassembly is complicated in order to ensure maintainability. The complexity of the structure can also cause air leakage between supply air and exhaust air. In addition, it is difficult to increase the air volume of the heat exchange ventilation fan installed in the ceiling in order to suppress noise.
 このように、天井埋込型の熱交換換気装置は、複数の部屋に個別に給排気することができないことに加え、熱交換効率を高めたり大風量化したりすることが困難であるため、熱交換換気装置を複数用いて建物の換気を行うことが試みられている。 In this way, the ceiling-mounted heat exchange ventilation system cannot supply and exhaust air to multiple rooms individually, and it is difficult to increase the heat exchange efficiency and increase the air volume. Therefore, attempts are being made to use multiple heat exchange ventilation systems to ventilate the building.
特開2020-197317号公報JP 2020-197317 A
 しかし、複数の熱交換換気装置を用いて建物の換気を行うと、フィルタのメンテナンスの際に各熱交換換気装置に個別にアクセスしなければならず、フィルタのメンテナンスにかかる時間及び費用が大きい。 However, if multiple heat exchange ventilation devices are used to ventilate the building, each heat exchange ventilation device must be accessed individually during filter maintenance, which increases the time and cost required for filter maintenance.
 本開示は、上記に鑑みてなされたものであって、フィルタのメンテナンスが容易であり、かつ複数の部屋に個別に給排気できる熱交換換気システムを得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain a heat exchange ventilation system in which filter maintenance is easy and which can individually supply and exhaust air to a plurality of rooms.
 上述した課題を解決し、目的を達成するために、本開示に係る熱交換換気システムは、給気流を生成する給気ファンを備えた給気用送風機及び排気流を生成する排気ファンを備えた排気用送風機を内蔵する複数の送風機部と、給気流が通る給気風路と、排気流が通る排気風路と、給気流と排気流との間で熱交換を行う熱交換器とを備える熱交換器部とを備える。熱交換換気システムは、屋外に通じる外気口と給気風路とを接続する第1の給気ダクトと、屋外に通じる排気口と排気風路とを接続する第1の排気ダクトと、複数の送風機部の各々の給気用送風機と給気風路とを接続する第2の給気ダクトと、複数の送風機部の各々の排気用送風機と排気風路とを接続する第2の排気ダクトと、複数の送風機部の各々と、空調対象空間に設置された給気口とを接続する第3の給気ダクトと、複数の送風機部の各々と、空調対象空間に設置された還気口とを接続する第3の排気ダクトとを備える。 In order to solve the above-described problems and achieve the object, the heat exchange ventilation system according to the present disclosure includes a plurality of blower sections that include a supply air blower with an supply air fan that generates an air supply flow and an exhaust air blower with an exhaust fan that generates an exhaust air flow, a heat exchanger section that includes a supply air flow path through which the supply air flow passes, an exhaust air flow path through which the exhaust flow passes, and a heat exchanger that exchanges heat between the supply air flow and the exhaust flow. The heat exchange ventilation system comprises: a first supply air duct connecting an outside air port leading to the outdoors and a supply air passage; a first exhaust duct connecting the exhaust port leading to the outdoors and the exhaust air passage; a second air supply duct connecting the air supply blower of each of the plurality of blower units and the supply air passage; a second exhaust duct connecting each of the plurality of blower units and the exhaust air passage; , a third air supply duct that connects an air supply port installed in the air-conditioned space, and a third exhaust duct that connects each of the plurality of blower units and a return air port installed in the air-conditioned space.
 本開示に係る熱交換換気システムは、フィルタのメンテナンスが容易であり、かつ複数の部屋に個別に給排気できるという効果を奏する。 The heat exchange ventilation system according to the present disclosure has the effect of facilitating maintenance of the filter and of being able to individually supply and exhaust air to a plurality of rooms.
実施の形態1に係る熱交換換気システムの構成を示す図1 is a diagram showing the configuration of a heat exchange ventilation system according to Embodiment 1. FIG. 実施の形態1に係る熱交換換気システムの送風機部の構成を示す図FIG. 2 is a diagram showing the configuration of the blower section of the heat exchange ventilation system according to Embodiment 1. FIG. 実施の形態1に係る熱交換換気システムの送風機部の変形例を示す図FIG. 4 shows a modification of the blower section of the heat exchange ventilation system according to Embodiment 1. FIG. 実施の形態1に係る熱交換換気システムの熱交換器部の空調対象空間側の側面図Side view of the air-conditioned space side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1 実施の形態1に係る熱交換換気システムの熱交換器部の屋外側の側面図Side view of the outdoor side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1 実施の形態1に係る熱交換換気システムの熱交換器部のフィルタの着脱口側の側面図Side view of the filter attachment/detachment port side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1 実施の形態1に係る熱交換換気システムの熱交換器部の上面図1 is a top view of a heat exchanger section of a heat exchange ventilation system according to Embodiment 1. FIG. 実施の形態1に係る熱交換換気システムのバイパスダンパの動きを示す模式図Schematic diagram showing movement of bypass damper of heat exchange ventilation system according to Embodiment 1 実施の形態1に係る熱交換換気システムの結線状態を示す図FIG. 2 shows a connection state of the heat exchange ventilation system according to Embodiment 1. FIG. 実施の形態1に係る熱交換換気システムの制御部のハードウェア構成例を示す図FIG. 2 is a diagram showing a hardware configuration example of a control unit of the heat exchange ventilation system according to Embodiment 1;
 以下に、実施の形態に係る熱交換換気システムを図面に基づいて詳細に説明する。 Below, the heat exchange ventilation system according to the embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る熱交換換気システムの構成を示す図である。熱交換換気システム100は、複数の送風機部10と熱交換器部20とを備える。以下、複数の送風機部10の各々を送風機部10a,10b,10c,10dと表記して区別する。複数の送風機部10a,10b,10c,10dの各々は、給気用送風機11と排気用送風機12とを備える。給気用送風機11及び排気用送風機12は、分離可能とされていてもよいし、一体にされていてもよい。給気用送風機11及び排気用送風機12を一体化する場合は、給気側と排気側とが壁を隔てて仕切られた単純な構造となり、給排気風路が複雑に入り組むことがない。したがって、給気用送風機11及び排気用送風機12を一体化することにより、給気及び排気の漏れが少ない構造とすることができる。送風機部10a,10b,10c,10dのうちの一つは親機に設定され、残りは子機に設定される。実施の形態1では、送風機部10aが親機に設定され、送風機部10b,10c,10dが子機に設定されている。親機である送風機部10aには、リモートコントローラ30aが接続されている。また、子機である送風機部10bには、リモートコントローラ30bが接続されている。また、子機である送風機部10c,10dには、リモートコントローラ30cが接続されている。なお、子機である送風機部10b,10c,10dにリモートコントローラが接続されていなくてもよい。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a heat exchange ventilation system according to Embodiment 1. FIG. A heat exchange ventilation system 100 includes a plurality of blower sections 10 and heat exchanger sections 20 . Hereinafter, each of the plurality of blower units 10 is described as blower units 10a, 10b, 10c, and 10d for distinction. Each of the plurality of blower units 10a, 10b, 10c, and 10d includes an air supply blower 11 and an exhaust blower 12. As shown in FIG. The air supply fan 11 and the exhaust fan 12 may be separable or integrated. When the air supply blower 11 and the exhaust air blower 12 are integrated, a simple structure in which the air supply side and the exhaust side are separated by a wall is obtained, and the air supply and exhaust air paths are not complicated. Therefore, by integrating the air supply blower 11 and the exhaust air blower 12, it is possible to obtain a structure in which leakage of air supply and exhaust air is small. One of the blower units 10a, 10b, 10c, and 10d is set as a master unit, and the rest are set as slave units. In Embodiment 1, the blower unit 10a is set as the master unit, and the blower units 10b, 10c, and 10d are set as slave units. A remote controller 30a is connected to the blower unit 10a, which is a master unit. A remote controller 30b is connected to the blower unit 10b, which is a slave unit. Further, a remote controller 30c is connected to the blower units 10c and 10d, which are slave units. Note that remote controllers may not be connected to the blower units 10b, 10c, and 10d, which are slave units.
 熱交換器部20は、屋外に通じる外気口51によって第1の給気ダクト41に接続されている。また、熱交換器部20は、屋外に通じる排気口52によって第1の排気ダクト42に接続されている。送風機部10a,10b,10c,10dの各々の給気用送風機11は、第2の給気ダクト43によって熱交換器部20に接続されている。送風機部10a,10b,10c,10dの各々の排気用送風機12は、第2の排気ダクト44によって熱交換器部20に接続されている。送風機部10a,10b,10c,10dの各々の給気用送風機11は、第3の給気ダクト45によって空調対象空間である部屋に設置された給気口53に接続されている。送風機部10a,10b,10c,10dの各々の排気用送風機12は、第3の排気ダクト46によって空調対象空間である部屋に設置された還気口54に接続されている。 The heat exchanger section 20 is connected to the first air supply duct 41 through an outside air port 51 leading to the outdoors. Also, the heat exchanger section 20 is connected to the first exhaust duct 42 through an exhaust port 52 leading to the outdoors. The air supply blower 11 of each of the blower sections 10 a , 10 b , 10 c , 10 d is connected to the heat exchanger section 20 by a second air supply duct 43 . Each exhaust fan 12 of the fan sections 10 a , 10 b , 10 c , 10 d is connected to the heat exchanger section 20 by a second exhaust duct 44 . The air supply blower 11 of each of the blower units 10a, 10b, 10c, and 10d is connected by a third air supply duct 45 to an air supply port 53 installed in a room to be air-conditioned. Each exhaust fan 12 of the fan units 10a, 10b, 10c, and 10d is connected by a third exhaust duct 46 to a return air port 54 installed in a room, which is a space to be air-conditioned.
 親機である送風機部10aは、通信線60によって熱交換器部20と接続されている。送風機部10a,10b,10c,10dは、通信線70によって互いに接続されている。 The blower section 10a, which is the master unit, is connected to the heat exchanger section 20 via a communication line 60. The blower units 10a, 10b, 10c, and 10d are connected to each other by a communication line 70. FIG.
 図2は、実施の形態1に係る熱交換換気システムの送風機部の構成を示す図である。給気用送風機11には、電動の給気用ダンパ111が備え付けられている。排気用送風機12には、電動の排気用ダンパ121が備え付けられている。給気用ダンパ111は、給気用送風機11が停止している間は閉じ、給気用送風機11が運転を開始すると開く。同様に、排気用ダンパ121は、排気用送風機12が停止している間は閉じ、排気用送風機12が運転を開始すると開く。給気用ダンパ111は、ダンパモータ112によって開閉される。排気用ダンパ121は、ダンパモータ122によって開閉される。 FIG. 2 is a diagram showing the configuration of the blower section of the heat exchange ventilation system according to the first embodiment. The air supply blower 11 is equipped with an electric air supply damper 111 . The exhaust blower 12 is equipped with an electric exhaust damper 121 . The air supply damper 111 is closed while the air supply fan 11 is stopped, and opens when the air supply fan 11 starts operating. Similarly, the exhaust damper 121 closes while the exhaust fan 12 is stopped and opens when the exhaust fan 12 starts operating. The air supply damper 111 is opened and closed by a damper motor 112 . The exhaust damper 121 is opened and closed by a damper motor 122 .
 なお、給気用ダンパ111及び排気用ダンパ121は電動に限定されない。例えば、給気用ダンパ111及び排気用ダンパ121に風圧式のダンパを用いるとともに、給気用ダンパ111は、給気口53及び還気口54が配置された部屋の室内が正圧になると開かないようにし、排気用ダンパ121は、給気口53及び還気口54が配置された部屋の室内が負圧になると開かないようにしてもよい。 Note that the air supply damper 111 and the exhaust damper 121 are not limited to being electric. For example, air pressure dampers may be used for the air supply damper 111 and the exhaust damper 121, and the air supply damper 111 may be prevented from opening when the pressure in the room in which the air supply port 53 and the return air port 54 are arranged becomes positive, and the exhaust damper 121 may be prevented from opening when the pressure in the room in which the air supply port 53 and the return air port 54 are arranged becomes negative.
 給気用ダンパ111は、給気用送風機11の入口を覆うように設置される。排気用ダンパ121は、排気用送風機12の入口を覆うように設置される。これにより給気用送風機11及び排気用送風機12が停止中であっても、給気口53及び還気口54が配置された部屋の室内外の圧力差又はダクトを共有している他の送風機部10a,10b,10c,10dが運転中であることによる、本来の空気の流れとは逆に空気が流れることが防止しやすい構造を取ることが可能となる。このように、逆圧に対して漏れが少ない構造とすることで、送風機部10a,10b,10c,10d間での気流の逆流を抑制できる。 The air supply damper 111 is installed so as to cover the inlet of the air supply fan 11 . The exhaust damper 121 is installed so as to cover the inlet of the exhaust fan 12 . As a result, even when the supply air blower 11 and the exhaust air blower 12 are stopped, it is possible to adopt a structure in which it is easy to prevent air from flowing in the opposite direction to the original air flow due to the pressure difference between the interior and exterior of the room in which the air supply port 53 and the return air port 54 are arranged, or the other blower units 10a, 10b, 10c, and 10d sharing the duct are in operation. In this way, by adopting a structure in which there is little leakage against reverse pressure, it is possible to suppress backflow of airflow between the blower portions 10a, 10b, 10c, and 10d.
 なお、給気用ダンパ111は、給気用送風機11に備え付けられていなくてもよい。また、排気用ダンパ121は、排気用送風機12に備え付けられていなくてもよい。給気用ダンパ111及び排気用ダンパ121は、熱交換器部20と各部屋の給気口53又は還気口54との間の流路上の任意の位置に設置してもよい。給気用ダンパ111及び排気用ダンパ121は、熱交換器部20に備え付けられてもよいし、各部屋の給気口53及び還気口54に設置されてもよい。熱交換器部20に給気用ダンパ111及び排気用ダンパ121を備え付ける場合、給気用ダンパ111及び排気用ダンパ121は、空調対象空間側となる給気口53又は還気口54に設置される。排気用ダンパ121を熱交換器部20の内部に設置し、給気用ダンパ111を熱交換器部20の外部に設置することにより、給気用ダンパ111及び排気用ダンパ121が逆圧に対して強くなり、熱交換器部20内部での循環を防ぐ構造とすることができる。 It should be noted that the air supply damper 111 does not have to be attached to the air supply fan 11 . Further, the exhaust damper 121 does not have to be attached to the exhaust fan 12 . The air supply damper 111 and the air exhaust damper 121 may be installed at arbitrary positions on the flow path between the heat exchanger section 20 and the air supply port 53 or return air port 54 of each room. The air supply damper 111 and the air exhaust damper 121 may be provided in the heat exchanger section 20, or may be installed in the air supply port 53 and the return air port 54 of each room. When the heat exchanger unit 20 is provided with the air supply damper 111 and the exhaust damper 121, the air supply damper 111 and the exhaust damper 121 are installed at the air supply port 53 or the return air port 54 on the space side to be air-conditioned. By installing the exhaust damper 121 inside the heat exchanger unit 20 and installing the air supply damper 111 outside the heat exchanger unit 20, the air supply damper 111 and the exhaust damper 121 are strong against the reverse pressure, and the structure can prevent circulation inside the heat exchanger unit 20.
 給気用送風機11は、給気ファン113よりも下流に圧力センサ114を備えている。排気用送風機12は、排気ファン123よりも下流に圧力センサ124を備えている。排気用送風機12側の側面には、制御部14を収容した基板箱15が設置されている。基板箱15の内部では、給気用送風機11及び排気用送風機12への給電線が制御部14に接続されている。制御部14からは、給気用送風機11及び排気用送風機12の各々のファンモータ115,125、圧力センサ114,124の検知管、給気用ダンパ111及び排気用ダンパ121の各々の駆動用のダンパモータ112,122への給電及び配線がなされる。 The air supply blower 11 has a pressure sensor 114 downstream of the air supply fan 113 . The exhaust fan 12 has a pressure sensor 124 downstream of the exhaust fan 123 . A substrate box 15 containing a control unit 14 is installed on the side of the exhaust fan 12 side. Inside the board box 15 , power supply lines to the air supply fan 11 and the exhaust fan 12 are connected to the controller 14 . From the control unit 14, power is supplied and wiring is performed to the fan motors 115 and 125 of the air supply fan 11 and the exhaust fan 12, the detection tubes of the pressure sensors 114 and 124, and the damper motors 112 and 122 for driving the air supply damper 111 and the exhaust damper 121, respectively.
 給気側であれば給気用送風機11が動作して外気を給気口53が配置された部屋へ送っている間は、給気用送風機11が作り出す静圧により給気用送風機11よりも下流が正圧となり、給気用送風機11よりも上流が負圧となる。ただし、ダクトを共有する複数の給気用送風機11が運転している場合には、複数の給気用送風機11の運転要求の風量が異なると、熱交換器部20の給気吸込口付近での負圧の差により、大風量での運転要求の給気用送風機11が発生させる負圧により小風量での運転要求の給気用送風機11に気流が逆流する可能性がある。 On the air supply side, while the air supply blower 11 operates to send the outside air to the room where the air supply port 53 is arranged, the static pressure created by the air supply blower 11 makes the pressure downstream of the air supply blower 11 positive and the pressure upstream of the air supply blower 11 negative. However, when a plurality of air supply fans 11 sharing a duct are in operation, if the operation request air volumes of the plurality of air supply fans 11 differ, the negative pressure generated by the air supply fan 11 requesting operation with a large air volume may cause the air flow to flow back to the air supply fan 11 requesting operation with a small air volume due to the difference in negative pressure near the air supply suction port of the heat exchanger unit 20.
 このため、給気用送風機11及び排気用送風機12には、圧力センサ114,124が設置されている。給気用送風機11の運転中は、圧力センサ114の検出する圧力が正圧を保つようにファンモータ115が制御される。圧力センサ114の検出結果に基づいてファンモータ115を制御することにより、給気用送風機11の風量差によりダクト内で気流の逆流が発生することを防止できる。 For this reason, pressure sensors 114 and 124 are installed in the air supply fan 11 and the exhaust fan 12 . While the air supply fan 11 is in operation, the fan motor 115 is controlled so that the pressure detected by the pressure sensor 114 is kept positive. By controlling the fan motor 115 based on the detection result of the pressure sensor 114, it is possible to prevent the occurrence of backflow of air in the duct due to the difference in the air volume of the air supply blower 11. FIG.
 また、圧力センサ114が検知する圧力が一定の正圧になるようにファンモータ115の出力をコントロールすることで、風量を一定に保つ機能を給気用送風機11に付加することも可能となる。 Also, by controlling the output of the fan motor 115 so that the pressure detected by the pressure sensor 114 is a constant positive pressure, it is possible to add the function of keeping the air volume constant to the air supply blower 11.
 排気側でも排気ファン123よりも下流に圧力センサ124を設置し、排気用送風機12の運転中は、圧力センサ124の検出する圧力が正圧を保つようにファンモータ125が制御される。圧力センサ124の検出結果に基づいてファンモータ125を制御することにより、排気用送風機12の風量差によりダクト内で気流の逆流が発生したり、風量が低下することを防止できる。また、圧力センサ124の検出する圧力が一定の正圧になるようにファンモータ125をコントロールすることにより、排気用送風機12の風量を一定に保つことも可能となる。 A pressure sensor 124 is installed downstream of the exhaust fan 123 on the exhaust side, and the fan motor 125 is controlled so that the pressure detected by the pressure sensor 124 remains positive while the exhaust blower 12 is in operation. By controlling the fan motor 125 based on the detection result of the pressure sensor 124, it is possible to prevent the occurrence of backflow of air in the duct due to the difference in the air volume of the exhaust blower 12 and the decrease in the air volume. Further, by controlling the fan motor 125 so that the pressure detected by the pressure sensor 124 becomes a constant positive pressure, it is possible to keep the air volume of the exhaust blower 12 constant.
 具体的には給気用送風機11及び排気用送風機12の内部を通過する風量と圧力センサ114,124が検出する圧力との関係式を制御部14に記憶させておき、要求風量レベルに応じて、圧力センサ114,124の検出する圧力が要求風量レベルにあった圧力になるようにファンモータ115,125を制御する。 Specifically, the control unit 14 stores the relational expression between the air volume passing through the air supply fan 11 and the exhaust air fan 12 and the pressure detected by the pressure sensors 114 and 124, and controls the fan motors 115 and 125 so that the pressure detected by the pressure sensors 114 and 124 matches the required air volume level according to the required air volume level.
 これにより、各給気用送風機11及び各排気用送風機12の運転停止状況によりダクト内部の圧力バランスが変わっても、適正な風量を確保することが可能となり、なおかつダクト内部での気流の逆流を防止できる。 As a result, even if the pressure balance inside the duct changes due to the operation stoppage of each air supply fan 11 and each exhaust fan 12, it is possible to secure an appropriate air volume and prevent backflow of airflow inside the duct.
 個別分散換気が要求されるケースにおいては、上記の圧力センサ114,124を備えた給気用送風機11及び排気用送風機12は有効であるが、大空間で各給気用送風機11又は各排気用送風機12を一括して同時に運転するケースにおいては、圧力センサ114,124を備えない給気用送風機11及び排気用送風機12をラインナップすることで、システムコストの低減が可能となる。 In the case where individual distributed ventilation is required, the air supply fan 11 and the exhaust fan 12 equipped with the pressure sensors 114 and 124 are effective. However, in the case where the air supply fan 11 and the exhaust fan 12 are collectively operated in a large space at the same time, the system cost can be reduced by lining up the air supply fan 11 and the exhaust fan 12 without the pressure sensors 114 and 124.
 排気用送風機12のうち排気流の流れにおいて排気ファン123よりも上流となる部分には、室内温度を検知するサーミスタ126が設置されている。サーミスタ126は、室内空気の温度を検知して制御部14へ温度の情報を伝達する。 A thermistor 126 that detects the room temperature is installed in a portion of the exhaust fan 12 upstream of the exhaust fan 123 in the flow of the exhaust flow. The thermistor 126 detects the temperature of the indoor air and transmits temperature information to the controller 14 .
 図3は、実施の形態1に係る熱交換換気システムの送風機部の変形例を示す図である。給気用送風機11のうち給気ファン113よりも上流となる部分及び排気用送風機12のうち排気ファン123よりも上流となる部分のそれぞれにも圧力センサ116,127が設置されている。送風機部10a,10b,10c,10dの運転中、制御部14は、給気ファン113よりも上流側の圧力と下流側の圧力との圧力差及び排気ファン123よりも上流側の圧力と下流側の圧力との圧力差が、それぞれ予め設定された閾値以下となるように給気用送風機11及び排気用送風機12を制御する。このようにすることで、制御部14は、給気風量及び排気風量を一定に保つことができる。 FIG. 3 is a diagram showing a modification of the blower section of the heat exchange ventilation system according to Embodiment 1. FIG. Pressure sensors 116 and 127 are also installed in a portion of the air supply fan 11 upstream of the air supply fan 113 and a portion of the exhaust fan 12 upstream of the exhaust fan 123, respectively. During operation of the blower units 10a, 10b, 10c, and 10d, the control unit 14 controls the air supply blower 11 and the exhaust blower 12 so that the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the air supply fan 113 and the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the exhaust fan 123 are each equal to or less than a preset threshold. By doing so, the controller 14 can keep the air supply volume and the exhaust air volume constant.
 図4は、実施の形態1に係る熱交換換気システムの熱交換器部の空調対象空間側の側面図である。図5は、実施の形態1に係る熱交換換気システムの熱交換器部の屋外側の側面図である。図6は、実施の形態1に係る熱交換換気システムの熱交換器部のフィルタの着脱口側の側面図である。図7は、実施の形態1に係る熱交換換気システムの熱交換器部の上面図である。図7においては、熱交換器部20の筐体21の天面の図示を省略し、内部を可視化している。図8は、実施の形態1に係る熱交換換気システムのバイパスダンパの動きを示す模式図である。熱交換器部20は、方体状の筐体21と、筐体21の内部に収容された熱交換器22とを備えている。筐体21の内部には、給気風路23と排気風路24とを隔てる仕切り板25が設置されている。 FIG. 4 is a side view of the air-conditioned space side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1. FIG. 5 is a side view of the outdoor side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1. FIG. FIG. 6 is a side view of the filter attachment/detachment port side of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1. FIG. 7 is a top view of the heat exchanger section of the heat exchange ventilation system according to Embodiment 1. FIG. In FIG. 7, illustration of the top surface of the housing 21 of the heat exchanger unit 20 is omitted, and the inside is visualized. FIG. 8 is a schematic diagram showing the movement of the bypass damper of the heat exchange ventilation system according to Embodiment 1. FIG. The heat exchanger unit 20 includes a parallelepiped housing 21 and a heat exchanger 22 housed inside the housing 21 . A partition plate 25 that separates the supply air passage 23 and the exhaust air passage 24 is installed inside the housing 21 .
 給気風路23には、熱交換器22をバイパスするためのバイパス風路26が設けられている。熱交換換気システム100は、フリークーリングと称されるバイパス換気を行う際にも熱交換器22の内部を通過する風が生じる。このため、熱交換換気システム100は、熱交換は行うが、給気に熱交換器22をバイパスさせることで熱交換しない気流を給気風路23に通し、熱交換量を低下させる。熱交換器部20は、バイパス風路26を開閉する電動のバイパスダンパ27を備えている。バイパスダンパ27が開くことで、バイパス風路26は開放されるが、熱交換器22へ通じる風路は閉じない。したがって、低圧損での運転が可能であり、消費電力の低減を実現できる。 A bypass air passage 26 for bypassing the heat exchanger 22 is provided in the supply air passage 23 . In the heat exchange ventilation system 100, air passing through the inside of the heat exchanger 22 is generated even when performing bypass ventilation called free cooling. For this reason, the heat exchange ventilation system 100 performs heat exchange, but by bypassing the heat exchanger 22 of the supply air, the airflow that does not exchange heat passes through the supply air passage 23, thereby reducing the amount of heat exchange. The heat exchanger section 20 includes an electric bypass damper 27 that opens and closes the bypass air passage 26 . By opening the bypass damper 27, the bypass air passage 26 is opened, but the air passage leading to the heat exchanger 22 is not closed. Therefore, operation with low pressure loss is possible, and reduction in power consumption can be realized.
 バイパスダンパ27は、外気側に向かって開く構造となっており、給気用送風機11が引っ張る際の負圧によって開きにくくなっている。 The bypass damper 27 has a structure that opens toward the outside air side, and is difficult to open due to the negative pressure when the air supply blower 11 pulls.
 図4に示すように熱交換器部20の筐体21の空調対象空間側の側面21aには、各送風機部10a,10b,10c,10dとの接続用のダクト接続口211a,212aが形成されている。給気用のダクト接続口211aと排気用のダクト接続口212aとで位置をずらすことで、施工時のダクトとのテーピング及びシーリング加工がしやすい構造となっている。給気用のダクト接続口211aには、第1の給気ダクト41が接続される。したがって、給気風路23は、第1の給気ダクト41を介して送風機部10a,10b,10c,10dと接続される。排気用のダクト接続口212aには、第1の排気ダクト42が接続される。したがって、排気風路24は、第1の排気ダクト42を介して送風機部10a,10b,10c,10dに接続される。 As shown in FIG. 4, duct connection ports 211a and 212a for connection with the blower sections 10a, 10b, 10c, and 10d are formed on the side surface 21a of the housing 21 of the heat exchanger section 20 on the air-conditioned space side. By shifting the positions of the duct connection port 211a for air supply and the duct connection port 212a for exhaust, the structure is such that taping and sealing with the duct during construction can be easily performed. A first air supply duct 41 is connected to the air supply duct connection port 211a. Therefore, the supply air passage 23 is connected to the blower sections 10a, 10b, 10c and 10d via the first supply duct 41. As shown in FIG. A first exhaust duct 42 is connected to the exhaust duct connection port 212a. Therefore, the exhaust air passage 24 is connected to the blower sections 10a, 10b, 10c, and 10d via the first exhaust duct 42. As shown in FIG.
 なお、熱交換器部20は、チャンバー方式で途中から丸ダクトで分岐するような配管にも対応可能なように、四角ダクトとの接続用の接続口アタッチメントを備えていてもよい。すなわち、第2の給気ダクト43は、熱交換器部20の給気用のダクト接続口211aとの接続部分では1本であり、熱交換器部20と複数の送風機部10a,10b,10c,10dの各々との間で分岐していてもよい。 It should be noted that the heat exchanger section 20 may be provided with a connection port attachment for connection with a square duct so as to be compatible with a pipe branching from the middle with a round duct in a chamber system. That is, there is one second air supply duct 43 at the connection portion with the air supply duct connection port 211a of the heat exchanger section 20, and it may branch between the heat exchanger section 20 and each of the plurality of blower sections 10a, 10b, 10c, and 10d.
 また、図5に示すように、熱交換器部20の筐体21の屋外側の側面21bには、ダクト接続口211a,212aよりも大きなダクト接続口211b,212bが形成されており、一括したダクトで外気に接続することが可能となっている。給気用のダクト接続口211bと排気用のダクト接続口212bとで位置をずらすことにより、施工性を向上させている。給気用のダクト接続口211bには、第1の給気ダクト41が接続される。したがって、給気風路23は、第1の給気ダクト41を介して外気口51に接続される。排気用のダクト接続口212bには、第1の排気ダクト42が接続される。したがって、排気風路24は、第1の排気ダクト42を介して排気口52に接続される。 In addition, as shown in FIG. 5, duct connection ports 211b and 212b larger than the duct connection ports 211a and 212a are formed on the outdoor side surface 21b of the housing 21 of the heat exchanger unit 20, so that a collective duct can be connected to the outside air. By shifting the positions of the duct connection port 211b for air supply and the duct connection port 212b for exhaust, workability is improved. A first air supply duct 41 is connected to the air supply duct connection port 211b. Therefore, the supply air passage 23 is connected to the outside air port 51 via the first supply air duct 41 . A first exhaust duct 42 is connected to the exhaust duct connection port 212b. Therefore, the exhaust air passage 24 is connected to the exhaust port 52 via the first exhaust duct 42 .
 熱交換器部20は、給気フィルタ28及び排気フィルタ29を備えている。筐体21の側面21cにはフィルタ着脱口が設けられており、給気フィルタ28及び排気フィルタ29を筐体21の側面21cから引き出せる構造となっている。なお、フィルタ着脱口の図示は省略している。 The heat exchanger section 20 includes an air supply filter 28 and an exhaust filter 29 . A filter attachment/detachment opening is provided on the side surface 21 c of the housing 21 so that the air supply filter 28 and the exhaust filter 29 can be pulled out from the side surface 21 c of the housing 21 . Illustration of the filter attachment/detachment opening is omitted.
 熱交換器部20は縦置きすることも可能である。熱交換器部20を縦置きする場合は、給気フィルタ28及び排気フィルタ29を上方向に引き出せるように、側面21cが上を向く姿勢で設置される。バイパスダンパ27は、熱交換器部20を横置きしても縦置きしても自重では開かないように、斜め上方向に回転させて引き上げる構造、又は斜め上方向にスライドさせて引き上げる構造とされている。 The heat exchanger section 20 can also be placed vertically. When the heat exchanger unit 20 is placed vertically, the side surface 21c faces upward so that the air supply filter 28 and the exhaust filter 29 can be drawn upward. The bypass damper 27 has a structure in which it is rotated obliquely upward and pulled up or slid obliquely upward so that it does not open by its own weight whether the heat exchanger section 20 is placed horizontally or vertically.
 熱交換器部20は、第1の給気ダクト41、第1の排気ダクト42、第2の給気ダクト43及び第2の排気ダクト44が水平方向から接続される横置きの状態、及び第1の給気ダクト41、第1の排気ダクト42、第2の給気ダクト43及び第2の排気ダクト44が鉛直方向から接続される縦置きの状態のいずれの状態でもアンカーに固定可能な吊り金具90を備える。吊り金具90は、熱交換器部20を縦置きした際に支え箇所が減らないように、気流の流れる方向にアンカーを差し込む切り欠き91が開いた構造となっている。 The heat exchanger section 20 is provided with a hanging fitting 90 that can be fixed to an anchor in either a horizontal state in which the first air supply duct 41, the first exhaust duct 42, the second air supply duct 43, and the second exhaust duct 44 are connected horizontally, or a vertical state in which the first air supply duct 41, the first exhaust duct 42, the second air supply duct 43, and the second exhaust duct 44 are connected vertically. The hanging metal fitting 90 has a structure in which a notch 91 for inserting an anchor is opened in the air flow direction so that the number of support points is not reduced when the heat exchanger section 20 is placed vertically.
 給気フィルタ28及び排気フィルタ29は面風速を低減させるために熱交換器22の表面に這わせるのではなく、熱交換器22から離して筐体21内部で表面積を大きくとる構造としている。熱交換器部20にフィルタを集約することで、各送風機部10a,10b,10c,10dのメンテナンスが不要となり、メンテナンスに要する費用及び時間を削減することが可能となる。 The air supply filter 28 and the exhaust filter 29 are not laid on the surface of the heat exchanger 22 in order to reduce surface wind speed, but are separated from the heat exchanger 22 and have a large surface area inside the housing 21. Consolidating the filters in the heat exchanger section 20 eliminates the need for maintenance of the blower sections 10a, 10b, 10c, and 10d, making it possible to reduce the cost and time required for maintenance.
 給気風路23のうち熱交換器22よりも上流の部分には、外気温度検出用のサーミスタ31が設置されている。排気風路24のうち熱交換器22よりも上流の部分には、室内空気温度検出用のサーミスタ32が設置されている。 A thermistor 31 for detecting outside air temperature is installed in a portion upstream of the heat exchanger 22 in the supply air passage 23 . A thermistor 32 for detecting indoor air temperature is installed in a portion of the exhaust air passage 24 upstream of the heat exchanger 22 .
 図9は、実施の形態1に係る熱交換換気システムの結線状態を示す図である。親機に設定された送風機部10aの制御部14は、熱交換器部20内に設置された外気温度用のサーミスタ31、室内温度検出用のサーミスタ32及びダンパモータ27aと通信線60で接続されている。温度情報を受信した親機である送風機部10aの制御部14は、外気温度及び室内温度とに基づいてバイパス換気をするか熱交換換気をするかを判断し、ダンパモータ27aを駆動してバイパス風路26を開閉する。 FIG. 9 is a diagram showing the connection state of the heat exchange ventilation system according to the first embodiment. The control unit 14 of the blower unit 10a set as the master unit is connected to the thermistor 31 for outside air temperature, the thermistor 32 for detecting the room temperature, and the damper motor 27a installed in the heat exchanger unit 20 via a communication line 60. The control unit 14 of the blower unit 10a, which is the master unit that received the temperature information, determines whether to perform bypass ventilation or heat exchange ventilation based on the outside air temperature and the room temperature, and drives the damper motor 27a to open and close the bypass air passage 26.
 バイパス換気をするか熱交換換気をするかの判断基準は可変となっており、親機である送風機部10aに接続されたリモートコントローラ30aから判断基準を設定可能となっている。なお、判断基準の設定は、親機である送風機部10aに接続されたリモートコントローラ30aでのみ行うことができる。 The criterion for determining whether to use bypass ventilation or heat exchange ventilation is variable, and the criterion can be set from the remote controller 30a connected to the blower section 10a, which is the master unit. Note that the determination criteria can be set only by the remote controller 30a connected to the blower unit 10a, which is the master unit.
 制御部14は、外気温度が低すぎる際などには保護運転のために給気用送風機11を停止したり、間欠運転を行ったりする制御を行う。 The control unit 14 performs control such as stopping the air supply blower 11 for protective operation or performing intermittent operation when the outside air temperature is too low.
 子機である送風機部10b,10c,10dの制御部14は、親機である送風機部10aの制御部14に通信線70で接続されており、通信線70を通して親機からの保護運転指示を受けると保護運転を行う。なお、親機である送風機部10aの制御部14から温度情報を受信した子機である送風機部10b,10c,10dの制御部14が保護運転を行うか否かを判断してもよい。 The controllers 14 of the blower units 10b, 10c, and 10d that are child units are connected to the controller 14 of the blower unit 10a that is the master unit via a communication line 70, and upon receiving a protective operation instruction from the master unit through the communication line 70, perform protective operation. Note that the controllers 14 of the slave units 10b, 10c, and 10d that receive the temperature information from the controller 14 of the master blower unit 10a may determine whether or not to perform the protection operation.
 リモートコントローラ30a,30b,30cを操作することにより、送風機部10a,10b,10c,10dの運転停止及び熱交換換気かバイパス換気かの切替を行うことができる。送風機部10a,10b,10c,10dの運転停止及び熱交換換気かバイパス換気かの切替が設定された後、別のリモートコントローラ30a,30b,30cに対して新たな設定操作が行われた場合には、最新の設定操作が優先される。 By operating the remote controllers 30a, 30b, 30c, it is possible to stop the operation of the blower units 10a, 10b, 10c, 10d and switch between heat exchange ventilation and bypass ventilation. After stopping the operation of the blower units 10a, 10b, 10c, and 10d and setting switching between heat exchange ventilation and bypass ventilation, if a new setting operation is performed on another remote controller 30a, 30b, or 30c, the latest setting operation is given priority.
 親機である送風機部10aにのみリモートコントローラ30aが接続されている場合でも、子機である送風機部10b,10c,10dを親機である送風機部10aと連動して運転させることができる。 Even when the remote controller 30a is connected only to the blower unit 10a, which is the master unit, the blower units 10b, 10c, and 10d, which are slave units, can be operated in conjunction with the blower unit 10a which is the master unit.
 なお、上記の説明は、各送風機部10a,10b,10c,10dが独立した制御部14を有し、送風機部10a,10b,10c,10dの中の一つである送風機部10aが親機となって熱交換器部20のバイパスダンパ27も制御し、子機である送風機部10b,10c,10dの制御部14とは有線又は無線を介して連携制御する構成を記載したが、これに限定されない。熱交換換気システム100を統括する制御回路を一つ設け、統括する制御回路が各送風機部10a,10b,10c,10dの運転を直接制御してもよい。統括する制御回路を備えた構成では、送風機部10a,10b,10c,10dには制御部14がなくてもよいし、送風機部10a,10b,10c,10dに制御部14を備え、統括する制御回路から受信した制御信号に基づいて各送風機部10a,10b,10c,10dの制御部14が制御を行ってもよい。また、統括する制御回路は、熱交換器部20に設けてもよいし、送風機部10a,10b,10c,10d及び熱交換器部20とは別体で設けてもよい。 In the above description, each of the blower units 10a, 10b, 10c, and 10d has an independent control unit 14, and the blower unit 10a, which is one of the blower units 10a, 10b, 10c, and 10d, serves as a master unit and also controls the bypass damper 27 of the heat exchanger unit 20. Although the configuration for cooperative control has been described, it is not limited to this. A single control circuit that controls the heat exchange ventilation system 100 may be provided, and the control circuit that controls the fan units 10a, 10b, 10c, and 10d may be directly controlled. In a configuration including an overall control circuit, the blower units 10a, 10b, 10c, and 10d may be provided with the control unit 14, and the control unit 14 of each of the fan units 10a, 10b, 10c, and 10d may perform control based on a control signal received from the overall control circuit. Also, the controlling circuit may be provided in the heat exchanger section 20, or may be provided separately from the blower sections 10a, 10b, 10c, 10d and the heat exchanger section 20. FIG.
 実施の形態1に係る熱交換換気システム100は、送風機部10a,10b,10c,10dと熱交換器部20とが分かれているため、送風機部10a,10b,10c,10dは天井裏に設置し、熱交換器部20は機械室などに天吊りすることにより、小さいスペースに設置することが可能である。また、送風機部10a,10b,10c,10dと熱交換器部20とが分かれているため、送風機部と熱交換機部とが一体の熱交換換気装置と比較すると、送風機部10a,10b,10c,10d及び熱交換器部20の各々の重量が小さくなる。また、送風機部と熱交換機部とが一体の熱交換換気装置と比較すると、厚さを抑えることができる。このため、熱交換換気システム100を設置する建物の構造に合わせて、送風機部10a,10b,10c,10dの設置位置及び熱交換器部20の設置位置を任意に選択できる。また、複数の送風機部10a,10b,10c,10dを個別に運転停止できるため、各部屋を個別に給排気することができる。また、熱交換換気システム100全体での給排気風量が小さい時には、送風機部10a,10b,10c,10dの一部のみを駆動することで、高熱交換効率かつ低圧損の運転が可能である。また、送風機部10a,10b,10c,10dの台数を増減させることにより、熱交換換気システム100全体の風量を調整し、幅広い風量に対応させることができる。 In the heat exchange ventilation system 100 according to Embodiment 1, the blower units 10a, 10b, 10c, and 10d and the heat exchanger unit 20 are separated, so that the blower units 10a, 10b, 10c, and 10d can be installed in the ceiling space, and the heat exchanger unit 20 can be suspended in a machine room or the like, so that it can be installed in a small space. In addition, since the blower portions 10a, 10b, 10c, 10d and the heat exchanger portion 20 are separated, the weight of each of the blower portions 10a, 10b, 10c, 10d and the heat exchanger portion 20 is reduced compared to a heat exchange ventilator in which the blower portion and the heat exchanger portion are integrated. In addition, the thickness can be reduced as compared with a heat exchange ventilator in which the blower section and the heat exchanger section are integrated. Therefore, the installation positions of the blower units 10a, 10b, 10c, and 10d and the installation position of the heat exchanger unit 20 can be arbitrarily selected according to the structure of the building in which the heat exchange ventilation system 100 is installed. Further, since the operation of the plurality of blower units 10a, 10b, 10c, and 10d can be individually stopped, each room can be individually supplied and exhausted. Also, when the amount of air supplied and exhausted by the heat exchange ventilation system 100 as a whole is small, by driving only some of the blower units 10a, 10b, 10c, and 10d, operation with high heat exchange efficiency and low pressure loss is possible. Further, by increasing or decreasing the number of blower units 10a, 10b, 10c, and 10d, the air volume of the heat exchange ventilation system 100 as a whole can be adjusted, and a wide range of air volumes can be accommodated.
 また、実施の形態1に係る熱交換換気システム100は、複数の送風機部10a,10b,10c,10dを備えるため、大風量の送風装置を用いるエアハンドリングユニットと比較すると、送風機部10a,10b,10c,10dの個々で発生する騒音を小さく抑えることができる。 In addition, since the heat exchange ventilation system 100 according to Embodiment 1 includes a plurality of blower units 10a, 10b, 10c, and 10d, the noise generated by each of the blower units 10a, 10b, 10c, and 10d can be suppressed as compared to an air handling unit using a blower with a large air volume.
 また、給気フィルタ28及び排気フィルタ29が熱交換器部20に集約されているため、熱交換器部20での作業のみでフィルタのメンテナンスを完結することができ、メンテナンス作業が容易である。 In addition, since the air supply filter 28 and the exhaust filter 29 are integrated in the heat exchanger section 20, filter maintenance can be completed only by working on the heat exchanger section 20, which facilitates maintenance work.
 また、送風機部10a,10b,10c,10dにおいて給気側と排気側とで風路が入り組まないため、給気と排気との間で空気漏れが発生することを抑制できる。 In addition, since the air passages on the air supply side and the exhaust side are not complicated in the blower portions 10a, 10b, 10c, and 10d, the occurrence of air leakage between the supply air and the exhaust air can be suppressed.
 次に、上記の実施の形態1に係る熱交換換気システム100の制御部14のハードウェア構成について説明する。図10は、実施の形態1に係る熱交換換気システムの制御部のハードウェア構成例を示す図である。図10には、プログラムを実行するハードウェアを用いることによって制御部14の機能が実現される場合におけるハードウェア構成を示している。 Next, the hardware configuration of the control unit 14 of the heat exchange ventilation system 100 according to Embodiment 1 will be described. 10 is a diagram illustrating a hardware configuration example of a control unit of the heat exchange ventilation system according to Embodiment 1. FIG. FIG. 10 shows a hardware configuration in which the functions of the control unit 14 are realized by using hardware that executes programs.
 制御部14は、各種処理を実行するプロセッサ81と、内蔵メモリであるメモリ82と、情報を記憶する記憶装置83とを有する。プロセッサ81は、記憶装置83に格納されているプログラムをメモリ82に読み出して実行する。プロセッサ81が記憶装置83に格納されているプログラムをメモリ82に読み出して実行することにより、給気用送風機11及び排気用送風機12を制御する制御部14の機能が実現される。 The control unit 14 has a processor 81 that executes various processes, a memory 82 that is an internal memory, and a storage device 83 that stores information. The processor 81 reads a program stored in the storage device 83 to the memory 82 and executes it. The processor 81 reads the program stored in the storage device 83 into the memory 82 and executes it, thereby realizing the function of the control unit 14 that controls the air supply fan 11 and the exhaust fan 12 .
 以上の実施の形態に示した構成は、内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents, and it is possible to combine it with another known technology, and it is also possible to omit or change a part of the configuration without departing from the gist.
 10,10a,10b,10c,10d 送風機部、11 給気用送風機、12 排気用送風機、14 制御部、15 基板箱、20 熱交換器部、21 筐体、21a,21b,21c 側面、22 熱交換器、23 給気風路、24 排気風路、25 仕切り板、26 バイパス風路、27 バイパスダンパ、27a,112,122 ダンパモータ、28 給気フィルタ、29 排気フィルタ、30a,30b,30c リモートコントローラ、31,32,126 サーミスタ、41 第1の給気ダクト、42 第1の排気ダクト、43 第2の給気ダクト、44 第2の排気ダクト、45 第3の給気ダクト、46 第3の排気ダクト、51 外気口、52 排気口、53 給気口、54 還気口、60,70 通信線、81 プロセッサ、82 メモリ、83 記憶装置、90 吊り金具、91 切り欠き、100 熱交換換気システム、111 給気用ダンパ、113 給気ファン、114,116,124,127 圧力センサ、115,125 ファンモータ、121 排気用ダンパ、123 排気ファン、211a,211b,212a,212b ダクト接続口。 10, 10a, 10b, 10c, 10d blower section, 11 supply air blower, 12 exhaust air blower, 14 control section, 15 substrate box, 20 heat exchanger section, 21 housing, 21a, 21b, 21c sides, 22 heat exchanger, 23 supply air passage, 24 exhaust air passage, 25 partition plate, 26 bypass air passage, 27 Bypass damper, 27a, 112, 122 damper motor, 28 air supply filter, 29 exhaust filter, 30a, 30b, 30c remote controller, 31, 32, 126 thermistor, 41 first air supply duct, 42 first exhaust duct, 43 second air supply duct, 44 second exhaust duct, 45 third air supply duct, 46 third exhaust duct, 51 outside Air port, 52 Exhaust port, 53 Air supply port, 54 Return air port, 60, 70 Communication line, 81 Processor, 82 Memory, 83 Storage device, 90 Hanging bracket, 91 Notch, 100 Heat exchange ventilation system, 111 Air supply damper, 113 Air supply fan, 114, 116, 124, 127 Pressure sensor, 115, 125 Fan motor, 121 Exhaust 123 exhaust fan, 211a, 211b, 212a, 212b duct connection port.

Claims (10)

  1.  給気流を生成する給気ファンを備えた給気用送風機及び排気流を生成する排気ファンを備えた排気用送風機を内蔵する複数の送風機部と、
     前記給気流が通る給気風路と、前記排気流が通る排気風路と、前記給気流と前記排気流との間で熱交換を行う熱交換器とを備える熱交換器部と、
     屋外に通じる外気口と前記給気風路とを接続する第1の給気ダクトと、
     屋外に通じる排気口と前記排気風路とを接続する第1の排気ダクトと、
     複数の前記送風機部の各々の前記給気用送風機と前記給気風路とを接続する第2の給気ダクトと、
     複数の前記送風機部の各々の前記排気用送風機と前記排気風路とを接続する第2の排気ダクトと、
     複数の前記送風機部の各々と、空調対象空間に設置された給気口とを接続する第3の給気ダクトと、
     複数の前記送風機部の各々と、前記空調対象空間に設置された還気口とを接続する第3の排気ダクトとを備えることを特徴とする熱交換換気システム。
    a plurality of blower sections incorporating an intake blower with an intake fan for generating an intake air flow and an exhaust blower with an exhaust fan for generating an exhaust flow;
    a heat exchanger unit comprising a supply airflow passage through which the supply airflow passes, an exhaust airflow passage through which the exhaust flow passes, and a heat exchanger that exchanges heat between the supply airflow and the exhaust flow;
    a first air supply duct connecting an outside air opening leading to the outdoors and the supply air passage;
    a first exhaust duct connecting an exhaust port leading to the outdoors and the exhaust air passage;
    a second air supply duct that connects the air supply blower of each of the plurality of blower units and the air supply air passage;
    a second exhaust duct connecting the exhaust air blower of each of the plurality of blower units and the exhaust air passage;
    a third air supply duct connecting each of the plurality of blower units and an air supply port installed in the air-conditioned space;
    A heat exchange ventilation system, comprising: a third exhaust duct connecting each of the plurality of blower units and a return air port installed in the air-conditioned space.
  2.  前記熱交換器部と前記給気口との間の給気の流路上に設けられた給気用ダンパと、
     前記熱交換器部と前記還気口との間の排気の流路上に設けられた排気用ダンパとを備えることを特徴とする請求項1に記載の熱交換換気システム。
    an air supply damper provided on an air supply flow path between the heat exchanger unit and the air supply port;
    2. The heat exchange ventilation system according to claim 1, further comprising an exhaust damper provided on an exhaust flow path between the heat exchanger section and the return air port.
  3.  前記給気用ダンパ及び前記排気用ダンパは、前記熱交換器部又は前記送風機部に備えられていることを特徴とする請求項2に記載の熱交換換気システム。 The heat exchange ventilation system according to claim 2, wherein the air supply damper and the air exhaust damper are provided in the heat exchanger section or the blower section.
  4.  複数の前記送風機部のうち、動作している前記送風機部に対応する前記給気用ダンパ及び前記排気用ダンパは開き、停止している前記送風機部に対応する前記給気用ダンパ及び前記排気用ダンパは閉じることを特徴とする請求項2又は3に記載の熱交換換気システム。  The heat exchange ventilation system according to claim 2 or 3, wherein the air supply damper and the exhaust damper corresponding to the operating blower part among the plurality of blower parts are opened, and the air supply damper and the exhaust damper corresponding to the stopped blower part are closed.
  5.  前記給気用送風機のうち前記給気ファンよりも下流の部分と、前記排気用送風機のうち前記排気ファンよりも下流の部分とにそれぞれ設置された圧力センサを備え、
     動作している前記送風機部の前記圧力センサが検知する圧力が正圧となるように、動作中の前記送風機部の前記給気用送風機及び前記排気用送風機を制御することを特徴とする請求項1から4のいずれか1項に記載の熱交換換気システム。
    A pressure sensor installed in a portion of the air supply blower downstream of the air supply fan and a portion of the exhaust blower downstream of the exhaust fan,
    The heat exchange ventilation system according to any one of claims 1 to 4, wherein the air supply fan and the exhaust fan of the operating fan unit are controlled so that the pressure detected by the pressure sensor of the operating fan unit becomes positive pressure.
  6.  前記給気用送風機のうち前記給気ファンよりも上流の部分と、前記排気用送風機のうち前記排気ファンよりも上流の部分とにそれぞれ設置された圧力センサを備え、
     動作している前記送風機部の前記給気ファンよりも上流側の圧力と下流側の圧力との圧力差、及び前記排気ファンよりも上流側の圧力と下流側の圧力との圧力差とが、それぞれ予め設定された閾値以下となるように前記給気用送風機及び前記排気用送風機を制御することを特徴とする請求項5に記載の熱交換換気システム。
    a pressure sensor installed in a portion of the air supply blower upstream of the air supply fan and a portion of the exhaust blower upstream of the exhaust fan,
    The heat exchange ventilation system according to claim 5, wherein the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the air supply fan in the operating air blower unit and the pressure difference between the pressure on the upstream side and the pressure on the downstream side of the exhaust fan are each controlled to be equal to or less than a preset threshold value.
  7.  前記熱交換器部は、前記第1の給気ダクトが接続される外気取り入れ用のダクト接続口と、前記第1の排気ダクトが接続される排気用のダクト接続口と、前記第2の給気ダクトが接続される給気用のダクト接続口と、前記第2の排気ダクトが接続される還気用のダクト接続口とが設けられており、
     前記熱交換器をバイパスして前記給気用のダクト接続口と前記外気取り入れ用のダクト接続口とを接続するバイパス風路を備えることを特徴とする請求項1から6のいずれか1項に記載の熱交換換気システム。
    The heat exchanger unit is provided with an external air intake duct connection port to which the first supply air duct is connected, an exhaust duct connection port to which the first exhaust duct is connected, a supply air duct connection port to which the second supply air duct is connected, and a return air duct connection port to which the second exhaust duct is connected.
    The heat exchange ventilation system according to any one of claims 1 to 6, further comprising a bypass air passage that bypasses the heat exchanger and connects the air supply duct connection port and the outside air intake duct connection port.
  8.  前記第2の給気ダクトは、前記熱交換器部の給気用の前記ダクト接続口との接続部分では1本であり、前記熱交換器部と複数の前記送風機部の各々との間で分岐していることを特徴とする請求項7に記載の熱交換換気システム。 The heat exchange ventilation system according to claim 7, characterized in that there is one second air supply duct at a connection portion with the air supply duct connection port of the heat exchanger section, and is branched between the heat exchanger section and each of the plurality of blower sections.
  9.  前記熱交換器部は、前記バイパス風路を開閉するバイパスダンパを備えることを特徴とする請求項7又は8に記載の熱交換換気システム。 The heat exchange ventilation system according to claim 7 or 8, wherein the heat exchanger section includes a bypass damper that opens and closes the bypass air passage.
  10.  前記熱交換器部は、前記第1の給気ダクト、前記第1の排気ダクト、前記第2の給気ダクト及び前記第2の排気ダクトが水平方向から接続される横置きの状態、及び前記第1の給気ダクト、前記第1の排気ダクト、前記第2の給気ダクト及び前記第2の排気ダクトが鉛直方向から接続される縦置きの状態のいずれの状態でもアンカーに固定可能な吊り金具を備えることを特徴とする請求項1から9のいずれか1項に記載の熱交換換気システム。 The heat exchange unit according to any one of claims 1 to 9, wherein the heat exchanger section is provided with a hanging fitting that can be fixed to the anchor in either a horizontal state in which the first air supply duct, the first exhaust duct, the second air supply duct, and the second exhaust duct are connected in a horizontal direction, or a vertical state in which the first air supply duct, the first exhaust duct, the second air supply duct, and the second exhaust duct are connected in the vertical direction. ventilation system.
PCT/JP2022/002009 2022-01-20 2022-01-20 Heat exchange ventilation system WO2023139725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002009 WO2023139725A1 (en) 2022-01-20 2022-01-20 Heat exchange ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002009 WO2023139725A1 (en) 2022-01-20 2022-01-20 Heat exchange ventilation system

Publications (1)

Publication Number Publication Date
WO2023139725A1 true WO2023139725A1 (en) 2023-07-27

Family

ID=87348233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002009 WO2023139725A1 (en) 2022-01-20 2022-01-20 Heat exchange ventilation system

Country Status (1)

Country Link
WO (1) WO2023139725A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246488A (en) * 1997-03-07 1998-09-14 Matsushita Seiko Co Ltd Ventilator for duct
JP2005049024A (en) * 2003-07-29 2005-02-24 Sanki Eng Co Ltd Air conditioner
WO2020213658A1 (en) * 2019-04-15 2020-10-22 ダイキン工業株式会社 Air-handling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246488A (en) * 1997-03-07 1998-09-14 Matsushita Seiko Co Ltd Ventilator for duct
JP2005049024A (en) * 2003-07-29 2005-02-24 Sanki Eng Co Ltd Air conditioner
WO2020213658A1 (en) * 2019-04-15 2020-10-22 ダイキン工業株式会社 Air-handling system

Similar Documents

Publication Publication Date Title
JP4979308B2 (en) Air conditioning system
KR100688606B1 (en) Integrated ventilation system for using heat exchanger
JP5780892B2 (en) Air conditioning system
WO2017075658A1 (en) Air-conditioning system
JP5520900B2 (en) Air conditioner
KR20110034090A (en) District-unit air conditioning equipment of air-carrying type using motorized diffuser integrating a damper and a diffuser
WO2023139725A1 (en) Heat exchange ventilation system
RU2010100754A (en) MODULAR VENTILATION SYSTEM
JP7290936B2 (en) air conditioning system
KR100533413B1 (en) The inside chang of air system of building
JP2018123999A (en) Wind passage selector damper, fan coil unit and air conditioning system
KR20050111144A (en) Regulated by pressure for ventilation system
JP7309066B2 (en) heat exchange ventilation system
JP3982240B2 (en) Air conditioner outdoor equipment
JP2019070489A (en) Ventilation system for building
JP6377900B2 (en) Air conditioning system and building
JP2001012763A (en) Air-conditioning and ventilating system
KR100696716B1 (en) Multi system using energy recovery ventilation
JPS6335321Y2 (en)
JP2001027428A (en) Air conditioner
JPH07180898A (en) Method and device for central air-conditioning
WO2022181522A1 (en) Ventilation system
JP4429678B2 (en) Air conditioning system
JPS6122184Y2 (en)
JP3095201B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921883

Country of ref document: EP

Kind code of ref document: A1