WO2022181522A1 - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
WO2022181522A1
WO2022181522A1 PCT/JP2022/006868 JP2022006868W WO2022181522A1 WO 2022181522 A1 WO2022181522 A1 WO 2022181522A1 JP 2022006868 W JP2022006868 W JP 2022006868W WO 2022181522 A1 WO2022181522 A1 WO 2022181522A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
air
temperature
air supply
controller
Prior art date
Application number
PCT/JP2022/006868
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 溝端
昂之 砂山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280016345.9A priority Critical patent/CN116917673B/en
Publication of WO2022181522A1 publication Critical patent/WO2022181522A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to ventilation systems.
  • Patent Document 1 Conventionally, there is known a ventilation system using a ventilation device that includes an air supply fan, an exhaust fan, a heat exchanger, and a controller (see Patent Document 1, for example).
  • the ventilation system ventilates the target space. It is known that when the ventilation system is used under conditions where the humidity outside the target space is high and the humidity inside the target space is low, condensation may occur in the air supply passage in the ventilation device. ing. For this reason, in the ventilation system described in Patent Document 1, an air supply state detector is provided in the air supply passage for detecting the state of the outside air taken into the target space from outside the target space, and the controller detects the air supply state detector. Based on the results, the air supply fan is stopped or operated intermittently when the outside air is not good.
  • the purpose of the present disclosure is to suppress water leakage from ventilation equipment.
  • the ventilation system of the present disclosure is A ventilation device that ventilates a target space, a first detection unit that detects a first temperature that is an air temperature outside the target space, a second detection unit that detects a second temperature that is an air temperature inside the target space, and a controller that controls the operation of the ventilation device,
  • the ventilator includes a heat exchanger, an air supply passage and an exhaust passage that communicate the inside and the outside of the target space via the heat exchanger, and air outside the target space through the air supply passage.
  • the controller operates a first mode in which the air supply fan and the exhaust fan are operated, and the air supply in a state where the air supply fan is stopped, operated intermittently, or an average air supply air volume is reduced below that in the first mode.
  • a second mode of operating the fan, or a third mode of operating the exhaust fan with the exhaust fan stopped, operated intermittently, or with an average exhaust air volume lower than that in the first mode can be executed.
  • the controller switches from the first mode to the second mode or the third mode.
  • the first mode When the first mode is executed with high humidity outside the target space and inside the target space, humid air flows from both inside and outside the target space to the heat exchanger, and the moisture content of the heat exchanger is allowed. The capacity is exceeded and the possibility of water leakage from the ventilation system increases.
  • the temperature inside and outside the target space is determined based on the temperatures inside and outside the target space. It can be assumed that the humidity is high.
  • the controller switches from the first mode to the second mode or the third mode when the first temperature is equal to or higher than the first predetermined value during execution of the first mode. According to this configuration, when the humidity of the air outside the target space is not high, unnecessary switching of the ventilation device from the first mode to the second mode or the third mode can be suppressed.
  • the controller to switch from the first mode to the second mode.
  • the controller when the first temperature is lowered and the difference between the first temperature and the second temperature is equal to or less than the second predetermined value, it can be inferred that the humidity outside the target space is high. .
  • the operation mode of the ventilation device by switching the operation mode of the ventilation device to the second mode, it is possible to suppress the flow of highly humid air outside the target space into the heat exchanger.
  • the controller during execution of the first mode, when the difference between the second temperature and the first temperature becomes equal to or greater than the second predetermined value due to an increase in the second temperature, the controller , to switch from the first mode to the third mode.
  • the controller when the second temperature rises and the difference between the first temperature and the second temperature is equal to or less than the second predetermined value, it can be estimated that the humidity in the target space is high. can.
  • the operation mode of the ventilator to the third mode, it is possible to suppress the high-humidity air in the target space from flowing into the heat exchanger.
  • the ventilation system of the present disclosure is A ventilation device that ventilates a target space, a first detection unit that detects a first temperature that is an air temperature outside the target space, a second detection unit that detects a second temperature that is an air temperature inside the target space, and a controller that controls the operation of the ventilation device,
  • the ventilator includes a heat exchanger, an air supply passage and an exhaust passage that communicate the inside and the outside of the target space via the heat exchanger, and air outside the target space through the air supply passage.
  • the controller operates a first mode in which the air supply fan and the exhaust fan are operated, and the air supply fan is stopped, operated intermittently, or the air supply is performed in a state where the average air supply air volume is lower than that in the first mode.
  • a second mode in which the air fan and the exhaust fan are operated, and the exhaust fan is stopped, operated intermittently, or the air supply fan and the exhaust fan are operated while the average exhaust air volume is lower than in the first mode.
  • a third mode of operation When the difference between the second temperature and the first temperature is equal to or less than the second predetermined value during execution of the first mode, The controller switches from the first mode to the second mode and the third mode.
  • the first mode is switched to the second mode and the third mode to supply air.
  • the controller switches from the first mode to the second mode and the third mode. According to this configuration, when the humidity of the air outside the target space is not high, unnecessary switching of the ventilation device from the first mode to the second mode and the third mode can be suppressed.
  • the controller controls the second mode or from the third mode to the first mode.
  • the difference between the first temperature and the second temperature exceeds the third predetermined value, it can be estimated that the humidity inside and outside the target space is no longer high.
  • the ventilation volume in the target space can be quickly returned to the normal volume.
  • the controller switches from the second mode or the third mode to the first mode when the execution of the second mode or the third mode continues for a predetermined time or longer.
  • the operating mode of the ventilator can be switched to the first mode when the states of the second mode and the third mode continue for a predetermined time or longer. As a result, it is possible to prevent the state in which the ventilation rate in the target space is decreasing from continuing for a predetermined period of time or longer.
  • FIG. 1 is a schematic block diagram of a ventilation system of the present disclosure
  • FIG. It is a schematic cross-sectional explanatory drawing which looked at the ventilator from the top.
  • FIG. 3 is a schematic cross-sectional explanatory view taken along line AA of FIG. 2;
  • FIG. 3 is a schematic cross-sectional explanatory view taken along line BB of FIG. 2;
  • It is a perspective view of a heat exchanger.
  • FIG. 5 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (when stopped in the second mode);
  • FIG. 4 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (in the case of intermittent operation in the second mode);
  • FIG. 5 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (when stopped in the second mode);
  • FIG. 4 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (in the case
  • FIG. 5 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (in the case of weak operation in the second mode);
  • FIG. 4 is an explanatory diagram showing operating states of the exhaust fan in the first mode and the third mode (when stopped in the third mode);
  • FIG. 10 is an explanatory diagram showing operating states of the exhaust fan in the first mode and the third mode (in the case of intermittent operation in the third mode);
  • FIG. 5 is an explanatory diagram showing operating states of the exhaust fan in the first mode and the third mode (in the case of weak operation in the third mode);
  • FIG. 4 is an explanatory diagram showing a procedure for switching operation modes in the ventilation system of the present disclosure;
  • FIG. 10 is an explanatory diagram showing another example of the operation mode switching procedure in the ventilation system of the present disclosure;
  • FIG. 1 is a schematic configuration diagram of a ventilation system according to the present disclosure.
  • the ventilation system 10 shown in FIG. 1 is an embodiment of the ventilation system of the present disclosure and includes a ventilation device 11 , a controller 36 , a first temperature sensor 38 and a second temperature sensor 39 .
  • the ventilation device 11 ventilates the indoor space S1.
  • the indoor space S1 is an example of a target space to be ventilated by the ventilation system 10, and is a space inside the room R.
  • the space outside the room R is called an outdoor space S2.
  • the outdoor space S2 is outdoors.
  • the outdoor space S2 may be any space that is outside the indoor space S1 and allows direct air flow to and from the outdoors, and may be, for example, a space inside a building.
  • the ventilator 11 is installed in the space S3 behind the ceiling of the room R, and is connected to the indoor space S1 and the outdoor space S2 via ducts 45a to 45d.
  • FIG. 2 is a schematic cross-sectional explanatory view of the ventilator viewed from above.
  • FIG. 3 is a schematic cross-sectional explanatory view taken along line AA of FIG.
  • FIG. 4 is a schematic cross-sectional explanatory view taken along line BB of FIG.
  • the ventilator 11 has a casing 31 having a substantially rectangular parallelepiped box shape.
  • a heat exchanger 32 , an exhaust fan 33 , and an air supply fan 34 are housed inside the casing 31 .
  • the casing 31 is provided with a return air intake 41 , an exhaust air outlet 42 , an outside air intake 43 , and a supply air outlet 44 .
  • a controller 36 is provided outside the casing 31 .
  • the controller 36 is housed within a control box 37 provided outside the casing 31 .
  • the controller 36 (hereinafter also referred to as “ventilation controller”) is a device that controls the operation of the ventilation device 11 , and controls the operation of the fan provided in the ventilation device 11 .
  • the ventilation controller 36 is configured by, for example, a microcomputer having a processor such as a CPU, and memories such as RAM and ROM.
  • the ventilation controller 36 may be realized as hardware using LSI, ASIC, FPGA, or the like.
  • the ventilation controller 36 performs a predetermined function when the processor executes a program installed in memory. Note that the ventilation controller 36 may be provided integrally with the ventilation device 11 as a part of the ventilation device 11, or may be provided separately as a separate device from the ventilation device 11. FIG.
  • the ventilator 11 further comprises a remote controller 25.
  • the remote controller 25 is used to operate the ventilation device 11 to start/stop operation, and to set the indoor humidity, the intensity of air blowing, and the like.
  • the remote controller 25 is communicably connected to the ventilation controller 36 by wire or wirelessly. A user can remotely operate the ventilator 11 by using the remote controller 25 .
  • the return air intake 41 is used to take air (return air) RA from the indoor space S1 into the casing 31.
  • the exhaust outlet 42 is used to discharge the return air RA taken into the casing 31 to the outdoor space S2 as the exhaust EA.
  • the outside air intake port 43 is used to take in the air (outside air) OA from the outdoor space S2 into the casing 31 .
  • the supply air outlet 44 is used to supply the outside air OA taken into the casing 31 to the indoor space S1 as supply air SA.
  • the return air intake 41 is connected to the indoor space S1 via a duct 45c.
  • the exhaust air outlet 42 is connected to the outdoor space S2 via a duct 45b.
  • an air passage that connects the indoor space S1 and the outdoor space S2 via the casing 31 with these ducts 45b and 45c is also referred to as an exhaust passage (exhaust passage 46 described later).
  • the outside air intake 43 is connected to the outdoor space S2 via a duct 45a.
  • the supply air outlet 44 is connected to the indoor space S1 via a duct 45d.
  • an air passage that connects the indoor space S1 and the outdoor space S2 via the casing 31 by these ducts 45a and 45d is also referred to as an air supply passage (an air supply passage 47 described later).
  • the return air RA taken in from the return air intake port 41 passes through the heat exchanger 32 and is discharged from the exhaust outlet 42 to the outdoor space S2 as the exhaust EA.
  • this air flow is also referred to as "first air flow F1”.
  • Outside air OA taken in from the outside air intake port 43 passes through the heat exchanger 32 and is supplied as supply air SA from the supply air outlet 44 to the indoor space S1.
  • this air flow is also referred to as "second air flow F2".
  • FIG. 5 is a perspective view of a heat exchanger.
  • the heat exchanger 32 in this embodiment is an orthogonal total heat exchanger configured such that the first air flow F1 and the second air flow F2 are substantially perpendicular to each other.
  • the heat exchanger 32 has a partition plate 32a and a partition plate 32b.
  • the partition plates 32a and the partition plates 32b are alternately laminated with an appropriate adhesive.
  • the heat exchanger 32 is generally formed in a substantially quadrangular prism shape.
  • the partition plate 32a has heat conductivity and moisture permeability and is formed in a flat plate shape.
  • the partition plate 32b is formed in a corrugated plate shape in which substantially triangular cross sections are continuously formed.
  • the partition plate 32b forms an air passage between two adjacent partition plates 32a.
  • the partition plates 32b are stacked with an angle changed by 90 degrees for each plate in the direction in which the partition plates 32a and the partition plates 32b are stacked (vertical direction in FIG. 5).
  • an exhaust side passage 32c for passing the first air flow F1 and an air supply side passage 32d for passing the second air flow F2 are orthogonal to each other. formed by The air flowing through the exhaust side passage 32c and the air flowing through the air supply side passage 32d exchange sensible heat and latent heat (total heat exchange) via the partition plate 32a having heat conductivity and moisture permeability. ing.
  • the inside of the casing 31 is divided by the heat exchanger 32 into two areas, an indoor space S1 side and an outdoor space S2 side.
  • an upstream exhaust passage 46 a is formed in the casing 31 upstream of the heat exchanger 32 for the first air flow F 1
  • the first A downstream exhaust passage 46b is formed downstream of the air flow F1.
  • the upstream exhaust passage 46a and the downstream exhaust passage 46b constitute an exhaust passage 46 that communicates the indoor space S1 (see FIG. 1) and the outdoor space S2 (see FIG. 1) via the heat exchanger 32. .
  • an upstream air supply passage 47a is formed upstream of the heat exchanger 32 for the second air flow F2 in the casing 31, and the second air supply passage 47a is formed upstream of the heat exchanger 32.
  • a downstream air supply passage 47b is formed downstream of the air flow F2.
  • the upstream air supply passage 47 a and the downstream air supply passage 47 b constitute an air supply passage 47 that communicates the indoor space S ⁇ b>1 and the outdoor space S ⁇ b>2 via the heat exchanger 32 .
  • a partition wall 51 is provided between the upstream side exhaust passage 46a and the downstream side air supply passage 47b.
  • a partition wall 52 is provided between the downstream side exhaust passage 46b and the upstream side air supply passage 47a.
  • an exhaust fan 33 is arranged near the exhaust outlet 42 in the downstream exhaust passage 46b.
  • the first airflow F1 is generated, and the return air RA from the indoor space S1 passes through the exhaust passage 46 and is discharged to the outdoor space S2 as the exhaust EA.
  • an air supply fan 34 is arranged in the vicinity of the air supply outlet 44 in the downstream air supply passage 47b.
  • a second airflow F2 is generated by operating the air supply fan 34, and the outside air OA of the outdoor space S2 passes through the air supply passage 47 and is supplied to the indoor space S1 as supply air SA.
  • a first temperature sensor 38 is arranged near the outside air intake 43 in the upstream air supply passage 47a.
  • the first temperature sensor 38 detects the temperature of the outside air OA passing through the upstream air supply passage 47a.
  • the first temperature sensor 38 detects the temperature of the air in the outdoor space S2.
  • the first temperature sensor 38 is provided in the upstream air supply passage 47a inside the casing 31, but the installation position of the first temperature sensor 38 is not limited to this.
  • the first temperature sensor 38 can be installed at a position where the temperature of the air in the outdoor space S2 can be detected, for example, it may be installed inside the outdoor space S2 or the duct 45a.
  • the detection signal is input to the ventilation controller 36.
  • the ventilation controller 36 controls the operation of the exhaust fan 33 and the air supply fan 34 based on the detected temperature value of the first temperature sensor 38 (hereinafter referred to as the first detected value K1).
  • a second temperature sensor 39 is arranged near the return air intake 41 in the upstream exhaust passage 46a.
  • This second temperature sensor 39 detects the temperature of the return air RA passing through the upstream side exhaust passage 46a.
  • the second temperature sensor 39 detects the temperature of the air in the indoor space S1.
  • the second temperature sensor 39 is provided in the upstream exhaust passage 46a inside the casing 31, but the installation position of the second temperature sensor 39 is not limited to this.
  • the second temperature sensor 39 can be installed at a position where the temperature of the air in the indoor space S1 can be detected, for example, it may be installed inside the indoor space S1 or the duct 45c.
  • the detection signal is input to the ventilation controller 36.
  • the ventilation controller 36 controls the operation of the exhaust fan 33 and the air supply fan 34 based on the detected temperature value of the second temperature sensor 39 (hereinafter referred to as the second detected value K2).
  • the ventilation system 10 has "first mode”, “second mode”, and “third mode” as operation modes of the ventilation device 11 .
  • a “first mode” is a normal operating mode.
  • the “second mode” is an operation mode suitable when the humidity of the outdoor space S2 is high.
  • the “third mode” is an operation mode suitable when the humidity in the indoor space S1 is high.
  • the ventilation device 11 is normally operated in the first mode.
  • the operation mode is switched from the first mode to the second mode.
  • the operation mode is switched from the first mode to the third mode.
  • the ventilation controller 36 controls the operation of the exhaust fan 33 and the supply air fan 34 to switch between the first mode, the second mode, and the third mode.
  • 6A to 6C schematically show operating states of the air supply fan 34 in the first mode and the second mode.
  • 7A to 7C schematically show operating states of the exhaust fan 33 in the first mode and the third mode.
  • the ventilator 11 is operated in the first mode from time t1 to time t2, switched from the first mode to the second mode at time t2, and operated in the first mode from time t2 to time t3. It shows the case of driving in two modes.
  • 7A to 7C the ventilator 11 is operated in the first mode from time t1 to time t2, switched from the first mode to the third mode at time t2, and operated in the third mode from time t2 to time t3. It shows the case of driving in 3 modes.
  • the supply air fan 34 is operated with a normal supply air volume.
  • the normal supply air volume at this time is called an average supply air volume QS1.
  • the exhaust fan 33 is operated with a normal exhaust air volume.
  • the normal exhaust air volume at this time is called an average exhaust air volume QE1.
  • the terms "normal exhaust air volume” and "normal air supply air volume” mean at least one of the following. 1. Exhaust air volume and air supply air volume that can ensure a normal ventilation volume (ventilation frequency) desired by the user in the indoor space S1. 2. Exhaust air volume and air supply air volume that can ensure the designed ventilation volume (ventilation frequency) set for the indoor space S1. 3. The exhaust air volume and the air supply air volume obtained by operating the exhaust fan 33 and the air supply fan 34 at the target rotation speed set for the first mode.
  • ventilation controller 36 modifies the operation of supply air fan 34 .
  • the air supply fan 34 is operated in one of the modes shown in FIGS. 6A to 6C.
  • the air supply fan 34 is stopped while the ventilation device 11 is operating in the second mode.
  • the air volume (average supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 becomes "0".
  • the air supply fan 34 operates intermittently while the ventilation device 11 is operating in the second mode. In other words, the air supply fan 34 alternately repeats a state of operating at the same average air supply air volume QS1 as in the first mode and a state of being stopped. In this case, the air volume (average air supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 is smaller than the average air supply air volume QS1 in the first mode.
  • the air volume (average air supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 is smaller than the average air supply air volume QS1 in the first mode.
  • the air supply fan 34 is continuously operated at an air volume smaller than the average air supply air volume QS1 in the first mode.
  • the air volume (average air supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 is smaller than the average air supply air volume QS1 in the first mode.
  • the mode in which the fans 33 and 34 are continuously operated with a smaller amount of air than in the first mode is also referred to as "weak operation".
  • the air supply fan 34 is weakly operated.
  • the ventilation controller 36 controls the operation of the air supply fan 34 so that the average air supply air volume QS2 is smaller than the average air supply air volume QS1 in the first mode. ing. Note that the exhaust air volume of the exhaust fan 33 in each second mode may be the same as the exhaust air volume in the first mode unless the operation mode is changed to another operation mode.
  • the outside air OA with a smaller air volume than in the first mode passes through the air supply passage 47 (see FIG. 4) and passes through the heat exchanger. 32 and supplied to the indoor space S1.
  • the amount of outside air OA flowing into the heat exchanger 32 can be reduced compared to the first mode. Thereby, the moisture content of the heat exchanger 32 can be suppressed.
  • ventilation controller 36 modifies the operation of exhaust fan 33 .
  • the exhaust fan 33 is operated in one of the modes shown in FIGS. 7A to 7C.
  • the exhaust fan 33 is stopped while the ventilation device 11 is operating in the third mode.
  • the air volume (average exhaust air volume QE2) of the exhaust EA (return air RA) discharged from the indoor space S1 to the outdoor space S2 becomes "0".
  • the exhaust fan 33 operates intermittently while the ventilation device 11 is operating in the third mode.
  • the exhaust fan 33 alternately repeats a state of operating at the same average exhaust air volume QE1 as in the first mode and a state of being stopped.
  • the air volume (average exhaust air volume QE2) of the exhaust EA (return air RA) discharged from the indoor space S1 to the outdoor space S2 is smaller than the average exhaust air volume QE1 in the first mode.
  • the exhaust fan 33 is weakly operated while the ventilation device 11 is operating in the third mode.
  • the air volume (average exhaust air volume QE2) of the return air RA (exhaust EA) discharged from the indoor space S1 to the outdoor space S2 is smaller than the average exhaust air volume QE1 in the first mode.
  • the ventilation controller 36 controls the operation of the exhaust fan 33 so that the average exhaust air volume QE2 is smaller than the average exhaust air volume QE1 in the first mode.
  • the amount of air supplied by the air supply fan 34 in each third mode may be the same as the amount of air supplied in the first mode unless the operation mode is changed to another operation mode.
  • the return air RA with a smaller air volume than in the first mode passes through the exhaust passage 46 (see FIG. 3) and the heat exchanger 32 and is exhausted to the outdoor space S2.
  • the amount of return air RA flowing into the heat exchanger 32 can be reduced compared to the first mode. Thereby, the moisture content of the heat exchanger 32 can be suppressed.
  • the indoor space S1 and the outdoor space S2 are highly humid. It is estimated whether or not In the ventilation system 10, when the difference between the temperature of the indoor space S1 and the temperature of the outdoor space S2 is equal to or less than a predetermined value, it is estimated that the humidity in either the indoor space S1 or the outdoor space S2 has increased.
  • the ventilation system 10 Focusing on the fact that water leakage from the ventilation device 11 is likely to occur in summer, and that the temperature difference between the indoor space S1 and the outdoor space S2 is small during the period (intermediate period) when cooling is not performed, the ventilation system 10 has an operation mode The temperature of the outdoor space S2 is added to the switching condition of . As a result, in the ventilation system 10, under conditions corresponding to the intermediate period, unnecessary switching of the ventilation device 11 from the first mode to the second mode and the third mode is suppressed.
  • the ventilation system 10 operates by switching between a first mode, a second mode, and a third mode according to the flowchart shown in FIG.
  • the ventilation system 10 when the user turns on the ventilation device 11 using the remote controller 25 , the ventilation device 11 operates in the first mode and the ventilation controller 36 starts controlling the ventilation device 11 .
  • step (ST101) the ventilation controller 36 determines whether or not the first detection value K1 (the temperature of the outdoor space S2) of the first temperature sensor 38 is equal to or higher than the first predetermined value T1.
  • the first predetermined value T1 is set to 17 (°C).
  • the value of the first predetermined value T1 is stored in the ventilation controller 36, and the remote controller 25 can be used to change the value as appropriate.
  • step (ST101) if the first detected value K1 of the first temperature sensor 38 is less than the first predetermined value T1 (NO), the ventilation controller 36 repeats step (ST101). In addition, in the ventilation system 10, step (ST101) may be omitted.
  • step (ST101) if the first detected value K1 of the first temperature sensor 38 is equal to or greater than the first predetermined value T1 (YES), the ventilation controller 36 executes step (ST102).
  • step (ST102) the ventilation controller 36 calculates the absolute value (
  • the second predetermined value T2 is set to 2.0 (°C).
  • the value of the second predetermined value T2 is stored in the ventilation controller 36, and the remote controller 25 can be used to change the value as appropriate.
  • the value of the second predetermined value T2 for example, a value between 0.5 and 2.5.degree.
  • step (ST102) if the calculated value (
  • step (ST102) if the calculated value (
  • step (ST103) the ventilation controller 36 confirms the change in the first detection value K1 when the condition (
  • step (ST103) if the first detection value K1 decreases to satisfy the condition (
  • step (ST103) if the first detection value K1 does not decrease and the condition (
  • step (ST105) the ventilation controller 36 confirms the change in the second detection value K2 when the condition (
  • step (ST105) if the second detection value K2 rises to satisfy the condition (
  • step (ST105) if the second detection value K2 does not increase and the condition (
  • step (ST106) the ventilation controller 36 determines whether the first detected value K1 is greater than the second detected value K2 (K1>K2, in other words, whether the temperature of the outdoor space S2 is higher than the temperature of the indoor space S1). or). In step (ST106), if it is confirmed that the condition (K1>K2) is satisfied (if YES), the ventilation controller 36 determines that the humidity in the indoor space S1 is high, and executes step (ST107). , the operation mode of the ventilator 11 is switched from the first mode to the third mode.
  • step (ST106) When it is confirmed in step (ST106) that the condition (K1>K2) is not satisfied (in the case of NO), the ventilation controller 36 returns the process to step (ST101). Even if the temperature of the outside air OA is lower than the temperature of the return air RA, if the temperature of the return air RA rises sharply and exceeds the temperature of the outside air OA, there is a high possibility that the return air RA is not humid. The step (ST106) is provided to exclude such cases.
  • the ventilation controller 36 determines whether or not the operating time in each of these modes has exceeded a predetermined time X.
  • the ventilation mode is in operation according to the second mode or the third mode.
  • the predetermined time X is set to 5 (minutes).
  • the value of the predetermined time X is stored in the ventilation controller 36 and can be changed as appropriate using the remote controller 25 .
  • this step (ST108) may be omitted.
  • step (ST108) when the operation time in each mode has passed the predetermined time X (if YES), the ventilation controller 36 executes step (ST110), and changes the operation mode of the ventilator 11 from each mode. While switching to the first mode, the process returns to step (ST101).
  • step (ST108) if the operating time in each mode has not passed the predetermined time X (NO), the ventilation controller 36 executes step (ST109).
  • the ventilation controller 36 determines whether or not the calculated value (
  • the third predetermined value T3 is a value greater than the second predetermined value T2.
  • ventilation controller 36 executes step (ST110), The operation mode is switched from each mode to the first mode, and the process is returned to step (ST101).
  • step (ST109) when the calculated value (
  • the ventilation controller 36 repeatedly executes the above steps (ST101) to (ST110) until the user turns the ventilation device 11 "OFF" using the remote controller 25.
  • the ventilation system 10 of the present embodiment can use the first temperature sensor 38 and the second temperature sensor 39 to estimate that the humidity in the outdoor space S2 is high. In other words, the ventilation system 10 can estimate that the humidity in the outdoor space S2 is high without using a humidity sensor.
  • the operation mode of the ventilation device 11 can be switched from the first mode to the second mode. Therefore, the inflow of air with high humidity into the heat exchanger 32 is suppressed, the moisture content of the heat exchanger 32 is suppressed, and water leakage from the ventilator 11 can be suppressed.
  • the ventilation system 10 of this embodiment can use the first temperature sensor 38 and the second temperature sensor 39 to estimate that the humidity in the indoor space S1 is high. In other words, the ventilation system 10 can estimate that the humidity in the indoor space S1 is high without using a humidity sensor.
  • the operation mode of the ventilation device 11 can be switched from the first mode to the third mode. Therefore, the inflow of air with high humidity into the heat exchanger 32 is suppressed, the moisture content of the heat exchanger 32 is suppressed, and water leakage from the ventilator 11 can be suppressed.
  • the ventilation system 10 of this embodiment does not require a humidity sensor, the ventilation system 10 capable of suppressing water leakage from the ventilation device 11 can be constructed at a lower cost.
  • the control program of an existing ventilation system having only a temperature sensor in the same way as the ventilation system 10 of the present embodiment, it is possible to suppress water leakage from the existing ventilation system.
  • the ventilation system 10 can be operated according to the flow diagram shown in FIG.
  • the flowchart shown in FIG. 9 differs from the flowchart shown in FIG. 8 in that a step (ST111) is added instead of steps (ST103) to (ST107). In the following description, only parts related to steps different from the flowchart shown in FIG. 8 will be described.
  • step (ST102) if the calculated value (
  • step (ST102) if the calculated value (
  • the operations of the exhaust fan 33 and the air supply fan 34 can be changed at the same time, and the second mode and the third mode can be executed at the same time.
  • any one of stop, intermittent operation, or weak operation can be selected as the operating mode of the air supply fan 34, and the operating mode of the exhaust fan 33 can be stopped, intermittent operation, or weak operation can be selected.
  • the ventilation system 10 when the second mode and the third mode are executed simultaneously, the amount of both the return air RA and the outside air OA flowing into the heat exchanger 32 can be reduced compared to the first mode. Thereby, the moisture content of the heat exchanger 32 can be further suppressed, and the moisture content of the heat exchanger 32 can be reliably suppressed.
  • the ventilation system 10 when the operations of both the exhaust fan 33 and the air supply fan 34 are changed, the moisture content in the heat exchanger 32 is suppressed and the room pressure in the indoor space S1 becomes positive or negative. can be suppressed.
  • the ventilation system 10 described above includes a ventilation device 11 that ventilates the indoor space S1, a first temperature sensor 38 that detects a first temperature (first detection value K1) that is the temperature of the outdoor space S2, and a A second temperature sensor 39 that detects a second temperature (second detected value K2), which is the air temperature, and a ventilation controller 36 that controls the operation of the ventilation device 11 are provided.
  • the ventilator 11 includes a heat exchanger 32, an air supply passage 47 and an exhaust passage 46 that connect the indoor space S1 and the outdoor space S2 via the heat exchanger 32, and an air supply passage 47 for supplying air in the outdoor space S2. and an exhaust fan 33 for exhausting the air in the indoor space S1 to the outdoor space S2 through the exhaust passage 46.
  • the ventilation controller 36 switches from the first mode to the second or third mode.
  • the first detection value K1 is equal to or greater than the first predetermined value T1
  • the difference between the second detection value K2 and the first detection value K1 is equal to or less than the second predetermined value T2.
  • the ventilation controller 36 switches from the first mode to the second mode or the third mode. According to this configuration, it is possible to prevent unnecessary switching of the ventilation device 11 from the first mode to the second mode or the third mode when the humidity of the air in the outdoor space S2 is not high.
  • the ventilation controller 36 switches from the first mode to the second mode when the difference from K1 is less than or equal to the second predetermined value T2.
  • the temperature (first detected value K1) of the outdoor space S2 is lowered and the difference between the first detected value K1 and the second detected value K2 is equal to or less than the second predetermined value T2.
  • the humidity of the outdoor space S2 is high.
  • by switching the operation mode of the ventilator 11 to the second mode it is possible to suppress the high humidity air in the outdoor space S2 from flowing into the heat exchanger 32 .
  • the ventilation controller 36 switches from the first mode to the third mode.
  • the temperature of the indoor space S1 (the second detected value K2) rises, and the difference between the first detected value K1 and the second detected value K2 becomes equal to or less than the second predetermined value T2.
  • the humidity in the indoor space S1 is high.
  • by switching the operation mode of the ventilator 11 to the third mode it is possible to suppress the high humidity air in the indoor space S1 from flowing into the heat exchanger 32 .
  • the ventilation device 11 that ventilates the indoor space S1, the first temperature sensor 38 that detects the first temperature (first detection value K1) that is the temperature of the outdoor space S2, and the indoor space S1
  • a second temperature sensor 39 that detects a second temperature (second detected value K2), which is the air temperature
  • the ventilator 11 includes a heat exchanger 32, an air supply passage 47 and an exhaust passage 46 that connect the indoor space S1 and the outdoor space S2 via the heat exchanger 32, and an air supply passage 47 for supplying air in the outdoor space S2. and an exhaust fan 33 for exhausting the air in the indoor space S1 to the outdoor space S2 through the exhaust passage 46.
  • the first detection value K1 is equal to or greater than the first predetermined value T1
  • the difference between the second detection value K2 and the first detection value K1 is equal to or less than the second predetermined value T2.
  • the ventilation controller 36 switches from the first mode to the second and third modes.
  • the first detection value K1 is equal to or greater than the first predetermined value T1
  • the difference between the second detection value K2 and the first detection value K1 is the second detection value.
  • the ventilation controller 36 switches from the first mode to the second mode and the third mode. According to this configuration, it is possible to prevent unnecessary switching of the ventilation device 11 from the first mode to the second mode and the third mode when the humidity of the air in the outdoor space S2 is not high.
  • the difference between the second detection value K2 and the first detection value K1 is set to the third predetermined value T3, which is larger than the second predetermined value T2. If exceeded, the ventilation controller 36 switches from the second or third mode to the first mode. According to such a configuration, when the difference between the first detected value K1 and the second detected value K2 exceeds the third predetermined value T3, it can be assumed that the humidity in the indoor space S1 and the outdoor space S2 is no longer high. can be done. In this case, by switching the operation mode of the ventilation device 11 to the first mode, the ventilation amount of the indoor space S1 can be quickly returned to the normal amount.
  • the ventilation controller 36 switches from the second mode or the third mode to the first mode.
  • the operation mode of the ventilator 11 can be switched to the first mode when the states of the second mode and the third mode continue for the predetermined time X or longer.
  • Ventilation system 11 Ventilator 32: Heat exchanger 33: Exhaust fan 34: Air supply fan 36: Ventilation controller (controller) 38: first temperature sensor (first detection unit) 39: Second temperature sensor (second detection unit) 46: Exhaust passage 47: Air supply passage S1: Indoor space (target space) S2: outdoor space (outside the target space) K1: First detected value (first temperature) K2: Second detected value (second temperature) T1: first predetermined value T2: second predetermined value T3: third predetermined value X: predetermined time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Flow Control (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

A ventilation system 10 comprises a ventilation device 11, a first temperature sensor 38, a second temperature sensor 39, and a ventilation controller 39, the ventilation device 11 comprising a heat exchanger 32, an air supply passage 47 and an exhaust passage 46, an air supply fan 34, and an exhaust fan 33, the ventilation controller 36 being capable of executing a first mode for in which the air supply fan 34 and the exhaust fan 33 are operated, a second mode in which the air supply fan 34 is stopped, operated intermittently, or operated weakly, or a third mode in which the exhaust fan 33 is stopped, operated intermittently, or operated weakly, and the ventilation controller 36 switching from the first mode to the second mode or the third mode when the difference between a second detection value K2 and a first detection value K1 is equal to or less than a second prescribed value T2 during execution of the first mode.

Description

換気システムventilation system
 本開示は、換気システムに関する。 The present disclosure relates to ventilation systems.
 従来、給気ファン、排気ファン、熱交換器、及びコントローラを備えた換気装置を用いた換気システムが知られている(例えば、特許文献1参照)。前記換気システムは、対象空間を換気する。前記換気システムは、対象空間外の湿度が高く、かつ、対象空間内の湿度が低くなる条件下で使用した場合に、換気装置内の給気通路で結露が生じる可能性があることが知られている。このため、特許文献1記載の換気システムでは、対象空間外から対象空間内に取り入れる外気の状態を検出する給気状態検出器を給気通路内に設け、コントローラが、給気状態検出器の検出結果に基づいて、外気が良好なものでないときに、給気ファンを停止もしくは間欠運転させている。 Conventionally, there is known a ventilation system using a ventilation device that includes an air supply fan, an exhaust fan, a heat exchanger, and a controller (see Patent Document 1, for example). The ventilation system ventilates the target space. It is known that when the ventilation system is used under conditions where the humidity outside the target space is high and the humidity inside the target space is low, condensation may occur in the air supply passage in the ventilation device. ing. For this reason, in the ventilation system described in Patent Document 1, an air supply state detector is provided in the air supply passage for detecting the state of the outside air taken into the target space from outside the target space, and the controller detects the air supply state detector. Based on the results, the air supply fan is stopped or operated intermittently when the outside air is not good.
特開2009-293880号公報JP 2009-293880 A
 従来は、外気の湿度が高い場合であっても、それに比べて対象空間内の湿度が低い場合が多かったため、対象空間内の空気を排気することで熱交換器の水分含有量を低く抑制することができていた。しかしながら、近年建物の高気密化が進んだこと等に起因して、対象空間内の湿度が上昇しやすくなっている。このため、対象空間内の湿度が高い条件下で前記換気システムが使用されることが増えており、これに伴って熱交換器の水分含有量が許容量を超える場合が増えており、これにより換気装置から水漏れすることがある。 Conventionally, even when the humidity of the outside air is high, the humidity inside the target space is often low compared to that. I was able to However, in recent years, the humidity in the target space tends to increase due to the progress in airtightness of buildings. For this reason, the ventilation system is increasingly being used under conditions of high humidity in the target space, which leads to an increase in cases where the moisture content of the heat exchanger exceeds the permissible amount, which leads to Water may leak from the ventilation system.
 本開示は、換気装置からの水漏れを抑制することを目的とする。 The purpose of the present disclosure is to suppress water leakage from ventilation equipment.
 (1)本開示の換気システムは、
 対象空間の換気を行う換気装置と、前記対象空間外の気温である第1温度を検出する第1検出部と、前記対象空間内の気温である第2温度を検出する第2検出部と、前記換気装置の運転を制御するコントローラと、を備え、
 前記換気装置が、熱交換器と、前記対象空間の内部と外部とを前記熱交換器を経由して連通させる給気通路及び排気通路と、前記対象空間外の空気を前記給気通路を介して前記対象空間内に給気する給気ファンと、前記対象空間内の空気を前記排気通路を介して前記対象空間外に排気する排気ファンと、を備え、
 前記コントローラが、前記給気ファン及び前記排気ファンを運転させる第1モード、及び前記給気ファンを停止、間欠運転、若しくは平均給気風量を前記第1モードよりも低下させた状態で前記給気ファンを運転させる第2モード、又は、前記排気ファンを停止、間欠運転、若しくは平均排気風量を前記第1モードよりも低下させた状態で前記排気ファンを運転させる第3モード、を実行可能であり、
 前記第1モードの実行中、前記第2温度と前記第1温度との差が第2所定値以下である場合に、
 前記コントローラが、前記第1モードから前記第2モード又は前記第3モードに切り替える。
(1) The ventilation system of the present disclosure is
A ventilation device that ventilates a target space, a first detection unit that detects a first temperature that is an air temperature outside the target space, a second detection unit that detects a second temperature that is an air temperature inside the target space, and a controller that controls the operation of the ventilation device,
The ventilator includes a heat exchanger, an air supply passage and an exhaust passage that communicate the inside and the outside of the target space via the heat exchanger, and air outside the target space through the air supply passage. an air supply fan for supplying air into the target space, and an exhaust fan for exhausting the air in the target space to the outside of the target space through the exhaust passage,
The controller operates a first mode in which the air supply fan and the exhaust fan are operated, and the air supply in a state where the air supply fan is stopped, operated intermittently, or an average air supply air volume is reduced below that in the first mode. A second mode of operating the fan, or a third mode of operating the exhaust fan with the exhaust fan stopped, operated intermittently, or with an average exhaust air volume lower than that in the first mode can be executed. ,
During execution of the first mode, if the difference between the second temperature and the first temperature is equal to or less than a second predetermined value,
The controller switches from the first mode to the second mode or the third mode.
 対象空間外及び対象空間内の湿度が高い状態で第1モードを実行すると、対象空間内及び対象空間外の双方から湿度の高い空気が熱交換器に流れ、熱交換器の水分含有量が許容量を超え、換気装置からの水漏れが発生する可能性が高くなる。本開示では、第1モードの実行中、第2温度と第1温度との差が第2所定値以下である場合に、対象空間の内部及び外部の温度に基づき、対象空間の内部及び外部の湿度が高いと推測することができる。対象空間の内部及び外部の湿度が高いと推測した場合に、第1モードから第2モード又は第3モードに切り替えて給気ファン及び排気ファンを運転させることで、湿度の高い空気が熱交換器を通るのを抑制し、換気装置からの水漏れを抑制することができる。 When the first mode is executed with high humidity outside the target space and inside the target space, humid air flows from both inside and outside the target space to the heat exchanger, and the moisture content of the heat exchanger is allowed. The capacity is exceeded and the possibility of water leakage from the ventilation system increases. In the present disclosure, during execution of the first mode, if the difference between the second temperature and the first temperature is equal to or less than a second predetermined value, the temperature inside and outside the target space is determined based on the temperatures inside and outside the target space. It can be assumed that the humidity is high. When it is estimated that the humidity inside and outside the target space is high, by switching from the first mode to the second mode or the third mode to operate the air supply fan and the exhaust fan, the humid air is transferred to the heat exchanger It is possible to suppress the water from passing through and suppress the water leakage from the ventilation system.
(2)好ましくは、前記第1モードの実行中、前記第1温度が前記第1所定値以上である場合、前記コントローラが、前記第1モードから前記第2モード又は前記第3モードに切り替える。
 この構成によれば、対象空間外の空気の湿度が高くなっていない場合に、換気装置が第1モードから第2モード又は第3モードに不必要に切り替えられるのを抑制することができる。
(2) Preferably, the controller switches from the first mode to the second mode or the third mode when the first temperature is equal to or higher than the first predetermined value during execution of the first mode.
According to this configuration, when the humidity of the air outside the target space is not high, unnecessary switching of the ventilation device from the first mode to the second mode or the third mode can be suppressed.
(3)好ましくは、前記第1モードの実行中、前記第1温度が低下することによって前記第2温度と前記第1温度との差が前記第2所定値以下となった場合、前記コントローラが、前記第1モードから前記第2モードに切り替える。
 この構成によれば、第1温度が低下して第1温度と第2温度との差が第2所定値以下となっていた場合には、対象空間外の湿度が高いと推測することができる。この場合に、換気装置の運転モードを第2モードに切り替えることで、対象空間外の湿度の高い空気が、熱交換器に流れ込むのを抑制することができる。
(3) Preferably, during execution of the first mode, when the difference between the second temperature and the first temperature becomes equal to or less than the second predetermined value due to a decrease in the first temperature, the controller , to switch from the first mode to the second mode.
According to this configuration, when the first temperature is lowered and the difference between the first temperature and the second temperature is equal to or less than the second predetermined value, it can be inferred that the humidity outside the target space is high. . In this case, by switching the operation mode of the ventilation device to the second mode, it is possible to suppress the flow of highly humid air outside the target space into the heat exchanger.
(4)好ましくは、前記第1モードの実行中、前記第2温度が上昇することによって前記第2温度と前記第1温度との差が前記第2所定値以上となった場合、前記コントローラが、前記第1モードから前記第3モードに切り替える。
 この構成によれば、第2温度が上昇して、第1温度と第2温度との差が第2所定値以下となっていた場合には、対象空間内の湿度が高いと推測することができる。この場合に、換気装置の運転モードを第3モードに切り替えることで、対象空間内の湿度の高い空気が、熱交換器に流れ込むのを抑制することができる。
(4) Preferably, during execution of the first mode, when the difference between the second temperature and the first temperature becomes equal to or greater than the second predetermined value due to an increase in the second temperature, the controller , to switch from the first mode to the third mode.
According to this configuration, when the second temperature rises and the difference between the first temperature and the second temperature is equal to or less than the second predetermined value, it can be estimated that the humidity in the target space is high. can. In this case, by switching the operation mode of the ventilator to the third mode, it is possible to suppress the high-humidity air in the target space from flowing into the heat exchanger.
(5)本開示の換気システムは、
 対象空間の換気を行う換気装置と、前記対象空間外の気温である第1温度を検出する第1検出部と、前記対象空間内の気温である第2温度を検出する第2検出部と、前記換気装置の運転を制御するコントローラと、を備え、
 前記換気装置が、熱交換器と、前記対象空間の内部と外部とを前記熱交換器を経由して連通させる給気通路及び排気通路と、前記対象空間外の空気を前記給気通路を介して前記対象空間内に給気する給気ファンと、前記対象空間内の空気を前記排気通路を介して前記対象空間外に排気する排気ファンと、を備え、
 前記コントローラが、前記給気ファン及び前記排気ファンを運転させる第1モード、及び、前記給気ファンを停止、間欠運転、若しくは平均給気風量を前記第1モードよりも低下させた状態で前記給気ファンを及び前記排気ファンを運転させる第2モード、及び、前記排気ファンを停止、間欠運転、若しくは平均排気風量を前記第1モードよりも低下させた状態で前記給気ファン及び前記排気ファンを運転させる第3モード、を実行可能であり、
 前記第1モードの実行中、前記第2温度と前記第1温度との差が前記第2所定値以下である場合において、
 前記コントローラが、前記第1モードから前記第2モード及び前記第3モードに切り替える。
 この構成によれば、第1モードの実行中、第2温度と第1温度との差が第2所定値以下である場合に、第1モードから第2モード及び第3モードに切り替えて給気ファン及び排気ファンを運転させることで、対象空間内及び対象空間外の湿度の高い空気が双方から熱交換器に流入するのを抑制し、換気装置からの水漏れを抑制することができる。
(5) The ventilation system of the present disclosure is
A ventilation device that ventilates a target space, a first detection unit that detects a first temperature that is an air temperature outside the target space, a second detection unit that detects a second temperature that is an air temperature inside the target space, and a controller that controls the operation of the ventilation device,
The ventilator includes a heat exchanger, an air supply passage and an exhaust passage that communicate the inside and the outside of the target space via the heat exchanger, and air outside the target space through the air supply passage. an air supply fan for supplying air into the target space, and an exhaust fan for exhausting the air in the target space to the outside of the target space through the exhaust passage,
The controller operates a first mode in which the air supply fan and the exhaust fan are operated, and the air supply fan is stopped, operated intermittently, or the air supply is performed in a state where the average air supply air volume is lower than that in the first mode. a second mode in which the air fan and the exhaust fan are operated, and the exhaust fan is stopped, operated intermittently, or the air supply fan and the exhaust fan are operated while the average exhaust air volume is lower than in the first mode. a third mode of operation,
When the difference between the second temperature and the first temperature is equal to or less than the second predetermined value during execution of the first mode,
The controller switches from the first mode to the second mode and the third mode.
According to this configuration, when the difference between the second temperature and the first temperature is equal to or less than the second predetermined value during execution of the first mode, the first mode is switched to the second mode and the third mode to supply air. By operating the fan and the exhaust fan, high-humidity air inside and outside the target space can be suppressed from flowing into the heat exchanger from both sides, and water leakage from the ventilation device can be suppressed.
(6)好ましくは、前記第1モードの実行中、前記第1温度が前記第1所定値以上である場合、前記コントローラが、前記第1モードから前記第2モード及び前記第3モードに切り替える。
 この構成によれば、対象空間外の空気の湿度が高くなっていない場合に、換気装置が第1モードから第2モード及び第3モードに不必要に切り替えられるのを抑制することができる。
(6) Preferably, when the first temperature is equal to or greater than the first predetermined value during execution of the first mode, the controller switches from the first mode to the second mode and the third mode.
According to this configuration, when the humidity of the air outside the target space is not high, unnecessary switching of the ventilation device from the first mode to the second mode and the third mode can be suppressed.
(7)好ましくは、前記第2モード又は前記第3モードの実行中、前記差が、前記第2所定値より大きい値である第3所定値を超えた場合に、前記コントローラが、前記第2モード又は前記第3モードから前記第1モードに切り替える。
 この構成によれば、第1温度と第2温度との差が第3所定値を超えた場合に、対象空間内及び対象空間外の湿度が高くなくなったと推測することができる。この場合に、換気装置の運転モードを第1モードに切り替えることで、対象空間内の換気量を通常の量へ速やかに戻すことができる。
(7) Preferably, during execution of the second mode or the third mode, when the difference exceeds a third predetermined value that is larger than the second predetermined value, the controller controls the second mode or from the third mode to the first mode.
According to this configuration, when the difference between the first temperature and the second temperature exceeds the third predetermined value, it can be estimated that the humidity inside and outside the target space is no longer high. In this case, by switching the operation mode of the ventilator to the first mode, the ventilation volume in the target space can be quickly returned to the normal volume.
(8)好ましくは、所定時間以上前記第2モード又は前記第3モードの実行が継続された場合、前記コントローラが、前記第2モード又は前記第3モードから前記第1モードに切り替える。
 この構成によれば、第2モード及び第3モードの状態が所定時間以上継続した場合に、換気装置の運転モードを第1モードに切り替えることができる。これにより、対象空間内の換気量が低下している状態が所定時間以上継続されるのを防止することができる。
(8) Preferably, the controller switches from the second mode or the third mode to the first mode when the execution of the second mode or the third mode continues for a predetermined time or longer.
According to this configuration, the operating mode of the ventilator can be switched to the first mode when the states of the second mode and the third mode continue for a predetermined time or longer. As a result, it is possible to prevent the state in which the ventilation rate in the target space is decreasing from continuing for a predetermined period of time or longer.
本開示の換気システムの概略的な構成図である。1 is a schematic block diagram of a ventilation system of the present disclosure; FIG. 換気装置を上から見た概略的な断面説明図である。It is a schematic cross-sectional explanatory drawing which looked at the ventilator from the top. 図2のA-A線における概略的な断面説明図である。FIG. 3 is a schematic cross-sectional explanatory view taken along line AA of FIG. 2; 図2のB-B線における概略的な断面説明図である。FIG. 3 is a schematic cross-sectional explanatory view taken along line BB of FIG. 2; 熱交換器の斜視図である。It is a perspective view of a heat exchanger. 第1モード及び第2モードにおける給気ファンの運転状態(第2モードで停止する場合)を示す説明図である。FIG. 5 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (when stopped in the second mode); 第1モード及び第2モードにおける給気ファンの運転状態(第2モードで間欠運転する場合)を示す説明図である。FIG. 4 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (in the case of intermittent operation in the second mode); 第1モード及び第2モードにおける給気ファンの運転状態(第2モードで弱運転する場合)を示す説明図である。FIG. 5 is an explanatory diagram showing operating states of the air supply fan in the first mode and the second mode (in the case of weak operation in the second mode); 第1モード及び第3モードにおける排気ファンの運転状態(第3モードで停止する場合)を示す説明図である。FIG. 4 is an explanatory diagram showing operating states of the exhaust fan in the first mode and the third mode (when stopped in the third mode); 第1モード及び第3モードにおける排気ファンの運転状態(第3モードで間欠運転する場合)を示す説明図である。FIG. 10 is an explanatory diagram showing operating states of the exhaust fan in the first mode and the third mode (in the case of intermittent operation in the third mode); 第1モード及び第3モードにおける排気ファンの運転状態(第3モードで弱運転する場合)を示す説明図である。FIG. 5 is an explanatory diagram showing operating states of the exhaust fan in the first mode and the third mode (in the case of weak operation in the third mode); 本開示の換気システムにおける運転モードの切り替え手順を示す説明図である。FIG. 4 is an explanatory diagram showing a procedure for switching operation modes in the ventilation system of the present disclosure; 本開示の換気システムにおける運転モードの切り替え手順の別実施例を示す説明図である。FIG. 10 is an explanatory diagram showing another example of the operation mode switching procedure in the ventilation system of the present disclosure;
 以下、添付図面を参照しつつ、本開示の実施形態を詳細に説明する。
[第1実施形態]
 図1は、本開示に係る換気システムの概略的な構成図である。図1に示す換気システム10は、本開示の換気システムの実施形態であり、換気装置11と、コントローラ36と、第1温度センサ38と、第2温度センサ39とを備えている。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
[First embodiment]
FIG. 1 is a schematic configuration diagram of a ventilation system according to the present disclosure. The ventilation system 10 shown in FIG. 1 is an embodiment of the ventilation system of the present disclosure and includes a ventilation device 11 , a controller 36 , a first temperature sensor 38 and a second temperature sensor 39 .
 (換気装置11の構成)
 換気装置11は、室内空間S1の換気を行う。室内空間S1は、換気システム10により換気を行う対象空間の一例であり、部屋Rの内部の空間である。部屋Rの外部の空間を室外空間S2という。本実施形態では、室外空間S2を屋外としている。室外空間S2は、室内空間S1の外部であって屋外との間で直接空気の行き来が可能な空間であればよく、例えば建屋内の空間であってもよい。換気装置11は、部屋Rの天井裏のスペースS3に設置されており、ダクト45a~45dを介して室内空間S1及び室外空間S2と接続されている。
(Configuration of ventilation device 11)
The ventilation device 11 ventilates the indoor space S1. The indoor space S1 is an example of a target space to be ventilated by the ventilation system 10, and is a space inside the room R. The space outside the room R is called an outdoor space S2. In this embodiment, the outdoor space S2 is outdoors. The outdoor space S2 may be any space that is outside the indoor space S1 and allows direct air flow to and from the outdoors, and may be, for example, a space inside a building. The ventilator 11 is installed in the space S3 behind the ceiling of the room R, and is connected to the indoor space S1 and the outdoor space S2 via ducts 45a to 45d.
 図2は、換気装置を上から見た概略的な断面説明図である。図3は、図2のA-A線における概略的な断面説明図である。図4は、図2のB-B線における概略的な断面説明図である。 Fig. 2 is a schematic cross-sectional explanatory view of the ventilator viewed from above. FIG. 3 is a schematic cross-sectional explanatory view taken along line AA of FIG. FIG. 4 is a schematic cross-sectional explanatory view taken along line BB of FIG.
 図2~図4に示すように、換気装置11は、略直方体の箱形状を有するケーシング31を有する。ケーシング31内には、熱交換器32と、排気ファン33と、給気ファン34と、が収容されている。ケーシング31には、還気取入口41、排気吹出口42、外気取入口43、及び、給気吹出口44が設けられている。ケーシング31の外部には、コントローラ36が設けられている。コントローラ36は、ケーシング31の外部に設けられた制御ボックス37内に収容されている。 As shown in FIGS. 2 to 4, the ventilator 11 has a casing 31 having a substantially rectangular parallelepiped box shape. A heat exchanger 32 , an exhaust fan 33 , and an air supply fan 34 are housed inside the casing 31 . The casing 31 is provided with a return air intake 41 , an exhaust air outlet 42 , an outside air intake 43 , and a supply air outlet 44 . A controller 36 is provided outside the casing 31 . The controller 36 is housed within a control box 37 provided outside the casing 31 .
 (コントローラ36の構成)
 コントローラ36(以下、「換気コントローラ」ともいう)は、換気装置11の動作を制御する装置であり、換気装置11に備えられたファンの動作を制御する。換気コントローラ36は、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。換気コントローラ36は、LSI、ASIC、FPGA等を用いてハードウェアとして実現されるものであってもよい。換気コントローラ36は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。なお、換気コントローラ36は、換気装置11の一部として当該換気装置11と一体で設けてもよいし、換気装置11とは別の装置として別体で設けてもよい。
(Configuration of controller 36)
The controller 36 (hereinafter also referred to as “ventilation controller”) is a device that controls the operation of the ventilation device 11 , and controls the operation of the fan provided in the ventilation device 11 . The ventilation controller 36 is configured by, for example, a microcomputer having a processor such as a CPU, and memories such as RAM and ROM. The ventilation controller 36 may be realized as hardware using LSI, ASIC, FPGA, or the like. The ventilation controller 36 performs a predetermined function when the processor executes a program installed in memory. Note that the ventilation controller 36 may be provided integrally with the ventilation device 11 as a part of the ventilation device 11, or may be provided separately as a separate device from the ventilation device 11. FIG.
 (リモートコントローラ25の構成)
 図1に示すように、換気装置11は、さらにリモートコントローラ25を備えている。リモートコントローラ25は、換気装置11の運転開始/運転停止の操作や、室内の湿度、送風の強弱等の動作設定を行うために用いられる。リモートコントローラ25は、換気コントローラ36に有線又は無線で通信可能に接続されている。ユーザは、リモートコントローラ25を使用することによって、遠隔で換気装置11を操作することができる。
(Configuration of remote controller 25)
As shown in FIG. 1, the ventilator 11 further comprises a remote controller 25. As shown in FIG. The remote controller 25 is used to operate the ventilation device 11 to start/stop operation, and to set the indoor humidity, the intensity of air blowing, and the like. The remote controller 25 is communicably connected to the ventilation controller 36 by wire or wirelessly. A user can remotely operate the ventilator 11 by using the remote controller 25 .
 (給気通路及び排気通路の構成)
 図1~図4に示すように、還気取入口41は、室内空間S1からの空気(還気)RAをケーシング31内に取り入れるために用いられる。排気吹出口42は、ケーシング31内に取り入れられた還気RAを、排気EAとして室外空間S2に排出するために用いられる。外気取入口43は、室外空間S2からの空気(外気)OAをケーシング31内に取り入れるために用いられる。給気吹出口44は、ケーシング31内に取り入れられた外気OAを、給気SAとして室内空間S1に供給するために用いられる。
(Configuration of air supply passage and exhaust passage)
As shown in FIGS. 1 to 4, the return air intake 41 is used to take air (return air) RA from the indoor space S1 into the casing 31. As shown in FIGS. The exhaust outlet 42 is used to discharge the return air RA taken into the casing 31 to the outdoor space S2 as the exhaust EA. The outside air intake port 43 is used to take in the air (outside air) OA from the outdoor space S2 into the casing 31 . The supply air outlet 44 is used to supply the outside air OA taken into the casing 31 to the indoor space S1 as supply air SA.
 図1に示すように、還気取入口41は、ダクト45cを介して室内空間S1に繋がっている。排気吹出口42は、ダクト45bを介して室外空間S2に繋がっている。以下の説明では、これらのダクト45b、45cによって、ケーシング31を介して、室内空間S1と室外空間S2とを繋ぐ風路を排気通路(後述する排気通路46)ともいう。 As shown in FIG. 1, the return air intake 41 is connected to the indoor space S1 via a duct 45c. The exhaust air outlet 42 is connected to the outdoor space S2 via a duct 45b. In the following description, an air passage that connects the indoor space S1 and the outdoor space S2 via the casing 31 with these ducts 45b and 45c is also referred to as an exhaust passage (exhaust passage 46 described later).
 外気取入口43は、ダクト45aを介して室外空間S2に繋がっている。給気吹出口44は、ダクト45dを介して室内空間S1に繋がっている。以下の説明では、これらのダクト45a、45dによって、ケーシング31を介して、室内空間S1と室外空間S2とを繋ぐ風路を給気通路(後述する給気通路47)ともいう。 The outside air intake 43 is connected to the outdoor space S2 via a duct 45a. The supply air outlet 44 is connected to the indoor space S1 via a duct 45d. In the following description, an air passage that connects the indoor space S1 and the outdoor space S2 via the casing 31 by these ducts 45a and 45d is also referred to as an air supply passage (an air supply passage 47 described later).
 図2に示すように、ケーシング31の内部において、還気取入口41から取り入れられた還気RAは熱交換器32を通過し、排気EAとして排気吹出口42から室外空間S2へ排気される。以下、この空気の流れを「第1の空気流F1」ともいう。外気取入口43から取り入れられた外気OAは熱交換器32を通過し、給気SAとして給気吹出口44から室内空間S1へ供給される。以下、この空気の流れを「第2の空気流F2」ともいう。 As shown in FIG. 2, inside the casing 31, the return air RA taken in from the return air intake port 41 passes through the heat exchanger 32 and is discharged from the exhaust outlet 42 to the outdoor space S2 as the exhaust EA. Hereinafter, this air flow is also referred to as "first air flow F1". Outside air OA taken in from the outside air intake port 43 passes through the heat exchanger 32 and is supplied as supply air SA from the supply air outlet 44 to the indoor space S1. Hereinafter, this air flow is also referred to as "second air flow F2".
 (熱交換器32の構成)
 図5は、熱交換器の斜視図である。本実施形態における熱交換器32は、第1の空気流F1と、第2の空気流F2とがほぼ直交するように構成された直交型の全熱交換器である。この熱交換器32は、仕切板32aと、隔壁板32bとを有している。仕切板32aと隔壁板32bとは適宜の接着剤により交互に積層されている。熱交換器32は、全体としてほぼ四角柱形状に形成されている。
(Configuration of heat exchanger 32)
FIG. 5 is a perspective view of a heat exchanger. The heat exchanger 32 in this embodiment is an orthogonal total heat exchanger configured such that the first air flow F1 and the second air flow F2 are substantially perpendicular to each other. The heat exchanger 32 has a partition plate 32a and a partition plate 32b. The partition plates 32a and the partition plates 32b are alternately laminated with an appropriate adhesive. The heat exchanger 32 is generally formed in a substantially quadrangular prism shape.
 仕切板32aは、伝熱性及び透湿性を有し、平板状に形成されている。隔壁板32bは、ほぼ三角形状の断面が連続して形成された波板状に形成されている。隔壁板32bは、隣り合う2枚の仕切板32aの間に空気の通路を形成する。隔壁板32bは、仕切板32aと隔壁板32bとの積層方向(図5における上下方向)で1枚ごとに90度角度を変えて積層されている。これにより、1枚の仕切板32aを挟んでその両側に、第1の空気流F1を通すための排気側通路32cと第2の空気流F2を通すための給気側通路32dとが互いに直交して形成される。排気側通路32cを流れる空気と、給気側通路32dを流れる空気とは、伝熱性及び透湿性を有する仕切板32aを介して顕熱及び潜熱の交換(全熱交換)が行われるようになっている。 The partition plate 32a has heat conductivity and moisture permeability and is formed in a flat plate shape. The partition plate 32b is formed in a corrugated plate shape in which substantially triangular cross sections are continuously formed. The partition plate 32b forms an air passage between two adjacent partition plates 32a. The partition plates 32b are stacked with an angle changed by 90 degrees for each plate in the direction in which the partition plates 32a and the partition plates 32b are stacked (vertical direction in FIG. 5). As a result, on both sides of one partition plate 32a, an exhaust side passage 32c for passing the first air flow F1 and an air supply side passage 32d for passing the second air flow F2 are orthogonal to each other. formed by The air flowing through the exhaust side passage 32c and the air flowing through the air supply side passage 32d exchange sensible heat and latent heat (total heat exchange) via the partition plate 32a having heat conductivity and moisture permeability. ing.
 図2~図4に示すように、ケーシング31の内部は、熱交換器32によって室内空間S1側と室外空間S2側との2つの領域に区画されている。図2及び図3に示すように、ケーシング31内には、熱交換器32よりも第1の空気流F1の上流側に上流側排気通路46aが形成され、熱交換器32よりも第1の空気流F1の下流側に下流側排気通路46bが形成されている。上流側排気通路46aと下流側排気通路46bとによって、室内空間S1(図1参照)と室外空間S2(図1参照)とを熱交換器32を経由して連通させる排気通路46が構成される。 As shown in FIGS. 2 to 4, the inside of the casing 31 is divided by the heat exchanger 32 into two areas, an indoor space S1 side and an outdoor space S2 side. As shown in FIGS. 2 and 3 , an upstream exhaust passage 46 a is formed in the casing 31 upstream of the heat exchanger 32 for the first air flow F 1 , and the first A downstream exhaust passage 46b is formed downstream of the air flow F1. The upstream exhaust passage 46a and the downstream exhaust passage 46b constitute an exhaust passage 46 that communicates the indoor space S1 (see FIG. 1) and the outdoor space S2 (see FIG. 1) via the heat exchanger 32. .
 図2及び図4に示すように、ケーシング31内には、熱交換器32よりも第2の空気流F2の上流側に上流側給気通路47aが形成され、熱交換器32よりも第2の空気流F2の下流側に下流側給気通路47bが形成されている。上流側給気通路47aと下流側給気通路47bとによって、室内空間S1と室外空間S2とを熱交換器32を経由して連通させる給気通路47が構成されている。 As shown in FIGS. 2 and 4 , an upstream air supply passage 47a is formed upstream of the heat exchanger 32 for the second air flow F2 in the casing 31, and the second air supply passage 47a is formed upstream of the heat exchanger 32. A downstream air supply passage 47b is formed downstream of the air flow F2. The upstream air supply passage 47 a and the downstream air supply passage 47 b constitute an air supply passage 47 that communicates the indoor space S<b>1 and the outdoor space S<b>2 via the heat exchanger 32 .
 図3及び図4に示すように、上流側排気通路46aと下流側給気通路47bとの間には、区画壁51が設けられている。下流側排気通路46bと上流側給気通路47aとの間には、区画壁52が設けられている。 As shown in FIGS. 3 and 4, a partition wall 51 is provided between the upstream side exhaust passage 46a and the downstream side air supply passage 47b. A partition wall 52 is provided between the downstream side exhaust passage 46b and the upstream side air supply passage 47a.
 図2及び図3に示すように、下流側排気通路46bにおいて、排気吹出口42の近傍には排気ファン33が配置されている。この排気ファン33が運転されることによって第1の空気流F1が生成され、室内空間S1からの還気RAが排気通路46を通り排気EAとして室外空間S2に排出される。 As shown in FIGS. 2 and 3, an exhaust fan 33 is arranged near the exhaust outlet 42 in the downstream exhaust passage 46b. By operating the exhaust fan 33, the first airflow F1 is generated, and the return air RA from the indoor space S1 passes through the exhaust passage 46 and is discharged to the outdoor space S2 as the exhaust EA.
 図2及び図4に示すように、下流側給気通路47bにおいて、給気吹出口44の近傍には給気ファン34が配置されている。この給気ファン34が運転されることによって第2の空気流F2が生成され、室外空間S2の外気OAが給気通路47を通り、給気SAとして室内空間S1に供給される。 As shown in FIGS. 2 and 4, an air supply fan 34 is arranged in the vicinity of the air supply outlet 44 in the downstream air supply passage 47b. A second airflow F2 is generated by operating the air supply fan 34, and the outside air OA of the outdoor space S2 passes through the air supply passage 47 and is supplied to the indoor space S1 as supply air SA.
 (第1温度センサ38について)
 図2及び図4に示すように、上流側給気通路47aにおいて、外気取入口43の近傍には第1温度センサ38が配置されている。この第1温度センサ38は、上流側給気通路47aを通る外気OAの温度を検出する。言い換えると、第1温度センサ38は、室外空間S2の空気の温度を検出する。なお、本実施形態では、第1温度センサ38を、ケーシング31内の上流側給気通路47aに設けているが、第1温度センサ38の設置位置はこれに限定されない。第1温度センサ38は、室外空間S2の空気の温度を検出可能な位置に設置することができ、例えば、室外空間S2やダクト45aの内部に設置してもよい。
(Regarding the first temperature sensor 38)
As shown in FIGS. 2 and 4, a first temperature sensor 38 is arranged near the outside air intake 43 in the upstream air supply passage 47a. The first temperature sensor 38 detects the temperature of the outside air OA passing through the upstream air supply passage 47a. In other words, the first temperature sensor 38 detects the temperature of the air in the outdoor space S2. In this embodiment, the first temperature sensor 38 is provided in the upstream air supply passage 47a inside the casing 31, but the installation position of the first temperature sensor 38 is not limited to this. The first temperature sensor 38 can be installed at a position where the temperature of the air in the outdoor space S2 can be detected, for example, it may be installed inside the outdoor space S2 or the duct 45a.
 図1に示すように、第1温度センサ38が室外空間S2の温度を検出すると、その検出信号は換気コントローラ36に入力される。換気コントローラ36は、この第1温度センサ38の温度の検出値(以下、第1検出値K1という)に基づいて、排気ファン33及び給気ファン34の動作を制御する。 As shown in FIG. 1, when the first temperature sensor 38 detects the temperature of the outdoor space S2, the detection signal is input to the ventilation controller 36. The ventilation controller 36 controls the operation of the exhaust fan 33 and the air supply fan 34 based on the detected temperature value of the first temperature sensor 38 (hereinafter referred to as the first detected value K1).
 (第2温度センサ39について)
 図2及び図3に示すように、上流側排気通路46aにおいて、還気取入口41の近傍には第2温度センサ39が配置されている。この第2温度センサ39は、上流側排気通路46aを通る還気RAの温度を検出する。言い換えると、第2温度センサ39は、室内空間S1の空気の温度を検出する。なお、本実施形態では、第2温度センサ39を、ケーシング31内の上流側排気通路46aに設けているが、第2温度センサ39の設置位置はこれに限定されない。第2温度センサ39は、室内空間S1の空気の温度を検出可能な位置に設置することができ、例えば、室内空間S1やダクト45cの内部に設置してもよい。
(Regarding the second temperature sensor 39)
As shown in FIGS. 2 and 3, a second temperature sensor 39 is arranged near the return air intake 41 in the upstream exhaust passage 46a. This second temperature sensor 39 detects the temperature of the return air RA passing through the upstream side exhaust passage 46a. In other words, the second temperature sensor 39 detects the temperature of the air in the indoor space S1. In this embodiment, the second temperature sensor 39 is provided in the upstream exhaust passage 46a inside the casing 31, but the installation position of the second temperature sensor 39 is not limited to this. The second temperature sensor 39 can be installed at a position where the temperature of the air in the indoor space S1 can be detected, for example, it may be installed inside the indoor space S1 or the duct 45c.
 図1に示すように、第2温度センサ39が室内空間S1の空気の温度を検出すると、その検出信号は換気コントローラ36に入力される。換気コントローラ36は、この第2温度センサ39の温度の検出値(以下、第2検出値K2という)に基づいて、排気ファン33及び給気ファン34の動作を制御する。 As shown in FIG. 1, when the second temperature sensor 39 detects the temperature of the air in the indoor space S1, the detection signal is input to the ventilation controller 36. The ventilation controller 36 controls the operation of the exhaust fan 33 and the air supply fan 34 based on the detected temperature value of the second temperature sensor 39 (hereinafter referred to as the second detected value K2).
 (換気装置11の運転モードについて)
 換気システム10は、換気装置11の運転モードとして「第1モード」と「第2モード」と「第3モード」とを備えている。「第1モード」は、通常時の運転モードである。「第2モード」は、室外空間S2の湿度が高い場合に適した運転モードである。「第3モード」は、室内空間S1の湿度が高い場合に適した運転モードである。
(Regarding the operation mode of the ventilator 11)
The ventilation system 10 has "first mode", "second mode", and "third mode" as operation modes of the ventilation device 11 . A "first mode" is a normal operating mode. The "second mode" is an operation mode suitable when the humidity of the outdoor space S2 is high. The "third mode" is an operation mode suitable when the humidity in the indoor space S1 is high.
 換気システム10では、通常時は換気装置11を第1モードで運転する。換気システム10では、室外空間S2の湿度が高い場合に、運転モードを第1モードから第2モードに切り替えて運転する。換気システム10では、室内空間S1の湿度が高い場合に、運転モードを第1モードから第3モードに切り替えて運転する。換気システム10では、換気コントローラ36が、排気ファン33及び給気ファン34の動作を制御することによって、第1モード、第2モード、及び第3モードを切り替えて実行する。 In the ventilation system 10, the ventilation device 11 is normally operated in the first mode. In the ventilation system 10, when the humidity of the outdoor space S2 is high, the operation mode is switched from the first mode to the second mode. In the ventilation system 10, when the humidity in the indoor space S1 is high, the operation mode is switched from the first mode to the third mode. In the ventilation system 10, the ventilation controller 36 controls the operation of the exhaust fan 33 and the supply air fan 34 to switch between the first mode, the second mode, and the third mode.
 (第1モードについて)
 図6A~図6Cには、第1モード及び第2モードにおける給気ファン34の運転状態を模式的に示している。図7A~図7Cには、第1モード及び第3モードにおける排気ファン33の運転状態を模式的に示している。図6A~図6Cでは、換気装置11を、時刻t1から時刻t2の間は第1モードで運転し、時刻t2に第1モードから第2モードに切り替えて、時刻t2から時刻t3の間は第2モードで運転した場合を示している。図7A~図7Cでは、換気装置11を、時刻t1から時刻t2の間は第1モードで運転し、時刻t2に第1モードから第3モードに切り替えて、時刻t2から時刻t3の間は第3モードで運転した場合を示している。
(Regarding the first mode)
6A to 6C schematically show operating states of the air supply fan 34 in the first mode and the second mode. 7A to 7C schematically show operating states of the exhaust fan 33 in the first mode and the third mode. 6A to 6C, the ventilator 11 is operated in the first mode from time t1 to time t2, switched from the first mode to the second mode at time t2, and operated in the first mode from time t2 to time t3. It shows the case of driving in two modes. 7A to 7C, the ventilator 11 is operated in the first mode from time t1 to time t2, switched from the first mode to the third mode at time t2, and operated in the third mode from time t2 to time t3. It shows the case of driving in 3 modes.
 図6A~図6Cに示すように、第1モードでは、通常の給気風量で給気ファン34を運転する。このときの通常の給気風量を平均給気風量QS1という。図7A~図7Cに示すように、第1モードでは、通常の排気風量で排気ファン33を運転する。このときの通常の排気風量を平均排気風量QE1という。なお、ここでいう「通常の排気風量」及び「通常の給気風量」とは、次の少なくとも一つを意味する。
 1.室内空間S1においてユーザが所望する通常の換気量(換気回数)を確保することができる排気風量及び給気風量。
 2.室内空間S1に対して設定された設計上の換気量(換気回数)を確保することができる排気風量及び給気風量。
 3.第1モードについて設定された目標回転数で排気ファン33及び給気ファン34を運転して得られる排気風量及び給気風量。
As shown in FIGS. 6A to 6C, in the first mode, the supply air fan 34 is operated with a normal supply air volume. The normal supply air volume at this time is called an average supply air volume QS1. As shown in FIGS. 7A to 7C, in the first mode, the exhaust fan 33 is operated with a normal exhaust air volume. The normal exhaust air volume at this time is called an average exhaust air volume QE1. The terms "normal exhaust air volume" and "normal air supply air volume" here mean at least one of the following.
1. Exhaust air volume and air supply air volume that can ensure a normal ventilation volume (ventilation frequency) desired by the user in the indoor space S1.
2. Exhaust air volume and air supply air volume that can ensure the designed ventilation volume (ventilation frequency) set for the indoor space S1.
3. The exhaust air volume and the air supply air volume obtained by operating the exhaust fan 33 and the air supply fan 34 at the target rotation speed set for the first mode.
 換気装置11を第1モードで運転した場合、室内空間S1から平均排気風量QE1の還気RAが室外空間S2に排出されるととともに、室外空間S2から平均給気風量QS1の外気OAが室内空間S1に供給され、室内空間S1の換気が行われる。さらに室内空間S1からの還気RAと室外空間S2からの外気OAとの間で顕熱及び潜熱の交換が行われ、室内空間S1における温度及び湿度の変化を抑制することができる。 When the ventilator 11 is operated in the first mode, return air RA with an average exhaust air volume QE1 is discharged from the indoor space S1 to the outdoor space S2, and outside air OA with an average supply air volume QS1 is discharged from the outdoor space S2 into the indoor space. S1 is supplied to ventilate the indoor space S1. Furthermore, sensible heat and latent heat are exchanged between the return air RA from the indoor space S1 and the outside air OA from the outdoor space S2, and changes in temperature and humidity in the indoor space S1 can be suppressed.
 (第2モードについて)
 図6A~図6Cに示すように、第2モードでは、換気コントローラ36によって、給気ファン34の動作を変更する。言い換えると、第2モードにおいて給気ファン34の動作を変更する場合、図6A~図6Cに示す何れかの態様で給気ファン34を運転する。
(Regarding the second mode)
As shown in FIGS. 6A-6C, in a second mode, ventilation controller 36 modifies the operation of supply air fan 34 . In other words, when changing the operation of the air supply fan 34 in the second mode, the air supply fan 34 is operated in one of the modes shown in FIGS. 6A to 6C.
 図6Aに示す態様では、第2モードによる換気装置11の運転中、給気ファン34は停止している。この場合、室外空間S2から室内空間S1に供給される給気SA(外気OA)の風量(平均給気風量QS2)が「0」となる。 In the mode shown in FIG. 6A, the air supply fan 34 is stopped while the ventilation device 11 is operating in the second mode. In this case, the air volume (average supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 becomes "0".
 図6Bに示す態様では、第2モードによる換気装置11の運転中、給気ファン34は間欠運転している。言い換えると、給気ファン34は、第1モードと同じ平均給気風量QS1で運転する状態と停止する状態とを交互に繰り返している。この場合、室外空間S2から室内空間S1に供給される給気SA(外気OA)の風量(平均給気風量QS2)が、第1モードにおける平均給気風量QS1に比べて少なくなる。 In the mode shown in FIG. 6B, the air supply fan 34 operates intermittently while the ventilation device 11 is operating in the second mode. In other words, the air supply fan 34 alternately repeats a state of operating at the same average air supply air volume QS1 as in the first mode and a state of being stopped. In this case, the air volume (average air supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 is smaller than the average air supply air volume QS1 in the first mode.
 図6Cに示す態様では、第2モードによる換気装置11の運転中、給気ファン34は、第1モードにおける平均給気風量QS1に比べて少ない風量で連続運転している。この場合、室外空間S2から室内空間S1に供給される給気SA(外気OA)の風量(平均給気風量QS2)が、第1モードにおける平均給気風量QS1に比べて少なくなる。以下では、第1モードに比べて少ない風量で各ファン33、34を連続運転する態様を「弱運転」ともいう。言い換えれば、図6Cに示す第2モードでは、給気ファン34は弱運転している。 In the mode shown in FIG. 6C, during operation of the ventilation device 11 in the second mode, the air supply fan 34 is continuously operated at an air volume smaller than the average air supply air volume QS1 in the first mode. In this case, the air volume (average air supply air volume QS2) of the supply air SA (outside air OA) supplied from the outdoor space S2 to the indoor space S1 is smaller than the average air supply air volume QS1 in the first mode. Hereinafter, the mode in which the fans 33 and 34 are continuously operated with a smaller amount of air than in the first mode is also referred to as "weak operation". In other words, in the second mode shown in FIG. 6C, the air supply fan 34 is weakly operated.
 図6A~図6Cに示す各第2モードでは、第1モード時の平均給気風量QS1に比べて平均給気風量QS2が少なくなるように、換気コントローラ36が給気ファン34の動作を制御している。なお、各第2モードにおける排気ファン33の排気風量は、特に他の運転モードに変更されない限り、第1モードにおける排気風量と同じであってもよい。 In each of the second modes shown in FIGS. 6A to 6C, the ventilation controller 36 controls the operation of the air supply fan 34 so that the average air supply air volume QS2 is smaller than the average air supply air volume QS1 in the first mode. ing. Note that the exhaust air volume of the exhaust fan 33 in each second mode may be the same as the exhaust air volume in the first mode unless the operation mode is changed to another operation mode.
 このため、換気システム10では、給気ファン34の動作を第2モードに変更した場合、第1モード時に比べて少ない風量の外気OAが給気通路47(図4参照)を通って熱交換器32に流入し、室内空間S1に給気される。言い換えると、第2モード時は、熱交換器32に流入する外気OAの風量を、第1モード時に比べて低減することができる。これにより、熱交換器32の水分含有量を抑制することができる。 Therefore, in the ventilation system 10, when the operation of the air supply fan 34 is changed to the second mode, the outside air OA with a smaller air volume than in the first mode passes through the air supply passage 47 (see FIG. 4) and passes through the heat exchanger. 32 and supplied to the indoor space S1. In other words, in the second mode, the amount of outside air OA flowing into the heat exchanger 32 can be reduced compared to the first mode. Thereby, the moisture content of the heat exchanger 32 can be suppressed.
 (第3モードについて)
 図7A~図7Cに示すように、第3モードでは、換気コントローラ36によって、排気ファン33の動作を変更する。言い換えると、第3モードにおいて排気ファン33の動作を変更する場合、図7A~図7Cに示す何れかの態様で排気ファン33を運転する。
(Regarding the third mode)
As shown in FIGS. 7A-7C, in the third mode, ventilation controller 36 modifies the operation of exhaust fan 33 . In other words, when changing the operation of the exhaust fan 33 in the third mode, the exhaust fan 33 is operated in one of the modes shown in FIGS. 7A to 7C.
 図7Aに示す態様では、第3モードによる換気装置11の運転中、排気ファン33は停止している。この場合、室内空間S1から室外空間S2に排気される排気EA(還気RA)の風量(平均排気風量QE2)が「0」となる。 In the mode shown in FIG. 7A, the exhaust fan 33 is stopped while the ventilation device 11 is operating in the third mode. In this case, the air volume (average exhaust air volume QE2) of the exhaust EA (return air RA) discharged from the indoor space S1 to the outdoor space S2 becomes "0".
 図7Bに示す態様では、第3モードによる換気装置11の運転中、排気ファン33は間欠運転している。言い換えると、排気ファン33は、第1モードと同じ平均排気風量QE1で運転する状態と停止する状態とを交互に繰り返している。この場合、室内空間S1から室外空間S2に排気される排気EA(還気RA)の風量(平均排気風量QE2)が、第1モードにおける平均排気風量QE1に比べて少なくなる。 In the mode shown in FIG. 7B, the exhaust fan 33 operates intermittently while the ventilation device 11 is operating in the third mode. In other words, the exhaust fan 33 alternately repeats a state of operating at the same average exhaust air volume QE1 as in the first mode and a state of being stopped. In this case, the air volume (average exhaust air volume QE2) of the exhaust EA (return air RA) discharged from the indoor space S1 to the outdoor space S2 is smaller than the average exhaust air volume QE1 in the first mode.
 図7Cに示す態様では、第3モードによる換気装置11の運転中、排気ファン33は弱運転している。この場合、室内空間S1から室外空間S2に放出される還気RA(排気EA)の風量(平均排気風量QE2)が、第1モードにおける平均排気風量QE1に比べて少なくなる。 In the mode shown in FIG. 7C, the exhaust fan 33 is weakly operated while the ventilation device 11 is operating in the third mode. In this case, the air volume (average exhaust air volume QE2) of the return air RA (exhaust EA) discharged from the indoor space S1 to the outdoor space S2 is smaller than the average exhaust air volume QE1 in the first mode.
 図7A~図7Cに示す各第3モードでは、第1モード時の平均排気風量QE1に比べて平均排気風量QE2が少なくなるように、換気コントローラ36が排気ファン33の動作を制御している。なお、各第3モードにおける給気ファン34の給気風量は、特に他の運転モードに変更されない限り、第1モードにおける給気風量と同じであってもよい。 In each of the third modes shown in FIGS. 7A to 7C, the ventilation controller 36 controls the operation of the exhaust fan 33 so that the average exhaust air volume QE2 is smaller than the average exhaust air volume QE1 in the first mode. The amount of air supplied by the air supply fan 34 in each third mode may be the same as the amount of air supplied in the first mode unless the operation mode is changed to another operation mode.
 このため、換気システム10では、排気ファン33の動作を第3モードに変更した場合、第1モード時に比べて少ない風量の還気RAが排気通路46(図3参照)を通って熱交換器32に流入し、室外空間S2に排気される。言い換えると、第3モードでは、熱交換器32に流入する還気RAの風量を、第1モード時に比べて低減することができる。これにより、熱交換器32の水分含有量を抑制することができる。 Therefore, in the ventilation system 10, when the operation of the exhaust fan 33 is changed to the third mode, the return air RA with a smaller air volume than in the first mode passes through the exhaust passage 46 (see FIG. 3) and the heat exchanger 32 and is exhausted to the outdoor space S2. In other words, in the third mode, the amount of return air RA flowing into the heat exchanger 32 can be reduced compared to the first mode. Thereby, the moisture content of the heat exchanger 32 can be suppressed.
 (第1検出値K1及び第2検出値K2による湿度の推定について)
 室外空間S2が高湿になる場合には、例えば、夜間等に室外空間S2の気温が下がって空気の相対湿度が上昇したような場合が該当する。室内空間S1が高湿になる場合には、例えば、室内空間S1の空調が停止され室内空間S1の空気が除湿されなくなった場合、室外空間S2から室内空間S1に外気OAが流入した場合、及び夜間等に外気温が下がることに伴って室内空間S1の温度が下がり室内空間S1の空気の相対湿度が上昇した場合、等が該当する。これらの場合は、何れも室内空間S1の温度と室外空間S2の温度が近づく場合であると想定される。
(Regarding Humidity Estimation Based on First Detected Value K1 and Second Detected Value K2)
When the outdoor space S2 becomes highly humid, for example, the case where the temperature of the outdoor space S2 drops at night and the relative humidity of the air rises corresponds to this case. When the indoor space S1 becomes highly humid, for example, when the air conditioning of the indoor space S1 is stopped and the air in the indoor space S1 is not dehumidified, when the outside air OA flows into the indoor space S1 from the outdoor space S2, and For example, when the temperature of the indoor space S1 drops and the relative humidity of the air in the indoor space S1 rises as the outside air temperature drops at night or the like. In these cases, it is assumed that the temperature of the indoor space S1 approaches the temperature of the outdoor space S2.
 換気システム10では、室内空間S1の温度(第2検出値K2)と室外空間S2の温度(第1検出値K1)との差に着目することで、室内空間S1及び室外空間S2が高湿になっているか否かを推定している。換気システム10では、室内空間S1の温度と室外空間S2の温度との差が所定値以下となった場合、室内空間S1と室外空間S2の何れかの湿度が高くなったと推定する。 In the ventilation system 10, by focusing on the difference between the temperature of the indoor space S1 (second detected value K2) and the temperature of the outdoor space S2 (first detected value K1), the indoor space S1 and the outdoor space S2 are highly humid. It is estimated whether or not In the ventilation system 10, when the difference between the temperature of the indoor space S1 and the temperature of the outdoor space S2 is equal to or less than a predetermined value, it is estimated that the humidity in either the indoor space S1 or the outdoor space S2 has increased.
 換気装置11からの水漏れは夏季に起こりやすいこと、及び冷房を行わない時期(中間期)には室内空間S1と室外空間S2の温度差が少ないことに着目し、換気システム10では、運転モードの切り替え条件に、室外空間S2の温度を加えている。これにより、換気システム10では、中間期に相当する条件下において、換気装置11が第1モードから第2モード及び第3モードに不必要に切り替えられることを抑制している。 Focusing on the fact that water leakage from the ventilation device 11 is likely to occur in summer, and that the temperature difference between the indoor space S1 and the outdoor space S2 is small during the period (intermediate period) when cooling is not performed, the ventilation system 10 has an operation mode The temperature of the outdoor space S2 is added to the switching condition of . As a result, in the ventilation system 10, under conditions corresponding to the intermediate period, unnecessary switching of the ventilation device 11 from the first mode to the second mode and the third mode is suppressed.
 (換気システム10の動作について)
 換気システム10は、図8に示すフロー図に従って、第1モードと第2モードと第3モードとを切り替えて運転する。換気システム10では、リモートコントローラ25によって、ユーザが換気装置11を「ON」にすると、換気装置11が第1モードで運転すると共に、換気コントローラ36による換気装置11の制御が開始する。
(Regarding the operation of the ventilation system 10)
The ventilation system 10 operates by switching between a first mode, a second mode, and a third mode according to the flowchart shown in FIG. In the ventilation system 10 , when the user turns on the ventilation device 11 using the remote controller 25 , the ventilation device 11 operates in the first mode and the ventilation controller 36 starts controlling the ventilation device 11 .
 図8に示すように、換気装置11の制御が開始すると、換気コントローラ36は、ステップ(ST101)を実行する。ステップ(ST101)において、換気コントローラ36は、第1温度センサ38の第1検出値K1(室外空間S2の温度)が第1所定値T1以上であるか否かを判定する。本実施形態では、第1所定値T1を17(℃)としている。第1所定値T1の値は換気コントローラ36に記憶されており、リモートコントローラ25を用いて、その値を適宜変更することができる。 As shown in FIG. 8, when the ventilation device 11 starts to be controlled, the ventilation controller 36 executes step (ST101). In step (ST101), the ventilation controller 36 determines whether or not the first detection value K1 (the temperature of the outdoor space S2) of the first temperature sensor 38 is equal to or higher than the first predetermined value T1. In this embodiment, the first predetermined value T1 is set to 17 (°C). The value of the first predetermined value T1 is stored in the ventilation controller 36, and the remote controller 25 can be used to change the value as appropriate.
 ステップ(ST101)において、第1温度センサ38の第1検出値K1が第1所定値T1未満である場合(NOの場合)、換気コントローラ36はステップ(ST101)を繰り返して実行する。なお、換気システム10において、ステップ(ST101)は省略してもよい。 In step (ST101), if the first detected value K1 of the first temperature sensor 38 is less than the first predetermined value T1 (NO), the ventilation controller 36 repeats step (ST101). In addition, in the ventilation system 10, step (ST101) may be omitted.
 ステップ(ST101)において、第1温度センサ38の第1検出値K1が第1所定値T1以上である場合(YESの場合)、換気コントローラ36はステップ(ST102)を実行する。 In step (ST101), if the first detected value K1 of the first temperature sensor 38 is equal to or greater than the first predetermined value T1 (YES), the ventilation controller 36 executes step (ST102).
 ステップ(ST102)において、換気コントローラ36は、第1検出値K1と第2温度センサ39の第2検出値K2との差分の絶対値(|K1-K2|)を算出し、この算出した値(|K1-K2|)が第2所定値T2以下であるか否かを判定する。本実施形態では、第2所定値T2を2.0(℃)としている。第2所定値T2の値は換気コントローラ36に記憶されており、リモートコントローラ25を用いて、その値を適宜変更することができる。第2所定値T2の値としては、例えば、0.5~2.5℃の間の値を採用することができる。 In step (ST102), the ventilation controller 36 calculates the absolute value (|K1-K2|) of the difference between the first detection value K1 and the second detection value K2 of the second temperature sensor 39, and this calculated value ( |K1-K2|) is equal to or less than the second predetermined value T2. In this embodiment, the second predetermined value T2 is set to 2.0 (°C). The value of the second predetermined value T2 is stored in the ventilation controller 36, and the remote controller 25 can be used to change the value as appropriate. As the value of the second predetermined value T2, for example, a value between 0.5 and 2.5.degree.
 ステップ(ST102)において、前記算出した値(|K1-K2|)が第2所定値T2より大きい(|K1-K2|>T2)場合(NOの場合)、換気コントローラ36は、処理をステップ(ST101)に戻す。 In step (ST102), if the calculated value (|K1-K2|) is greater than the second predetermined value T2 (|K1-K2|>T2) (in the case of NO), ventilation controller 36 proceeds to step ( ST101).
 ステップ(ST102)において、前記算出した値(|K1-K2|)が第2所定値T2以下(|K1-K2|≦T2)の場合(YESの場合)、換気コントローラ36はステップ(ST103)を実行する。 In step (ST102), if the calculated value (|K1-K2|) is equal to or less than the second predetermined value T2 (|K1-K2|≤T2) (if YES), ventilation controller 36 executes step (ST103). Run.
 ステップ(ST103)において、換気コントローラ36は、前記条件(|K1-K2|≦T2)を満たしたときの第1検出値K1の変化を確認する。ステップ(ST103)において、第1検出値K1が低下して前記条件(|K1-K2|≦T2)を満たすこととなっていた場合(YESの場合)、換気コントローラ36は、室外空間S2の湿度が高いと判断してステップ(ST104)を実行し、換気装置11の運転モードを第1モードから第2モードに切り替える。 In step (ST103), the ventilation controller 36 confirms the change in the first detection value K1 when the condition (|K1-K2|≤T2) is satisfied. In step (ST103), if the first detection value K1 decreases to satisfy the condition (|K1−K2|≦T2) (if YES), the ventilation controller 36 changes the humidity of the outdoor space S2 is high, step (ST104) is executed, and the operation mode of the ventilator 11 is switched from the first mode to the second mode.
 ステップ(ST103)において、第1検出値K1が低下せずに前記条件(|K1-K2|≦T2)を満たすこととなっていた場合(NOの場合)、換気コントローラ36はステップ(ST105)を実行する。 In step (ST103), if the first detection value K1 does not decrease and the condition (|K1−K2|≦T2) is satisfied (NO), the ventilation controller 36 executes step (ST105). Run.
 ステップ(ST105)において、換気コントローラ36は、前記条件(|K1-K2|≦T2)を満たしたときの第2検出値K2の変化を確認する。ステップ(ST105)において、第2検出値K2が上昇して前記条件(|K1-K2|≦T2)を満たすこととなっていた場合(YESの場合)、換気コントローラ36はステップ(ST106)を実行する。 In step (ST105), the ventilation controller 36 confirms the change in the second detection value K2 when the condition (|K1-K2|≤T2) is satisfied. In step (ST105), if the second detection value K2 rises to satisfy the condition (|K1-K2|≤T2) (if YES), the ventilation controller 36 executes step (ST106). do.
 ステップ(ST105)において、第2検出値K2が上昇せずに前記条件(|K1-K2|≦T2)満たすこととなっていた場合(NOの場合)、換気コントローラ36は、処理をステップ(ST101)に戻す。 In step (ST105), if the second detection value K2 does not increase and the condition (|K1-K2|≤T2) is satisfied (NO), ventilation controller 36 proceeds to step (ST101 ).
 ステップ(ST106)において、換気コントローラ36は、第1検出値K1が第2検出値K2より大きいか否か(K1>K2、言い換えると、室外空間S2の気温が室内空間S1の気温より高いか否か)を判定する。ステップ(ST106)において、前記条件(K1>K2)を満たすことが確認された場合(YESの場合)、換気コントローラ36は、室内空間S1の湿度が高いと判断してステップ(ST107)を実行し、換気装置11の運転モードを第1モードから第3モードに切り替える。 In step (ST106), the ventilation controller 36 determines whether the first detected value K1 is greater than the second detected value K2 (K1>K2, in other words, whether the temperature of the outdoor space S2 is higher than the temperature of the indoor space S1). or). In step (ST106), if it is confirmed that the condition (K1>K2) is satisfied (if YES), the ventilation controller 36 determines that the humidity in the indoor space S1 is high, and executes step (ST107). , the operation mode of the ventilator 11 is switched from the first mode to the third mode.
 ステップ(ST106)において、前記条件(K1>K2)を満たさないことが確認された場合(NOの場合)、換気コントローラ36は、処理をステップ(ST101)に戻す。外気OAの温度が還気RAの温度より低い場合でも、還気RAの温度が急激に上昇して外気OAを越えたような場合には、還気RAが高湿ではない可能性が高い。ステップ(ST106)は、このような場合を除外するために設けている。 When it is confirmed in step (ST106) that the condition (K1>K2) is not satisfied (in the case of NO), the ventilation controller 36 returns the process to step (ST101). Even if the temperature of the outside air OA is lower than the temperature of the return air RA, if the temperature of the return air RA rises sharply and exceeds the temperature of the outside air OA, there is a high possibility that the return air RA is not humid. The step (ST106) is provided to exclude such cases.
 ステップ(ST108)において、換気コントローラ36は、これらの各モードによる運転時間が所定時間Xを経過しているか否かを判定する。ステップ(ST108)において、換気モードは第2モード又は第3モードによって運転中である。本実施形態では、所定時間Xを5(分)としている。所定時間Xの値は換気コントローラ36に記憶されており、リモートコントローラ25を用いて、その値を適宜変更することができる。なお、換気システム10では、このステップ(ST108)を省略してもよい。 At step (ST108), the ventilation controller 36 determines whether or not the operating time in each of these modes has exceeded a predetermined time X. In step (ST108), the ventilation mode is in operation according to the second mode or the third mode. In this embodiment, the predetermined time X is set to 5 (minutes). The value of the predetermined time X is stored in the ventilation controller 36 and can be changed as appropriate using the remote controller 25 . In addition, in the ventilation system 10, this step (ST108) may be omitted.
 ステップ(ST108)において、各モードによる運転時間が所定時間Xを経過している場合(YESの場合)、換気コントローラ36は、ステップ(ST110)を実行し、換気装置11の運転モードを各モードから第1モードに切り替えると共に、処理をステップ(ST101)に戻す。 In step (ST108), when the operation time in each mode has passed the predetermined time X (if YES), the ventilation controller 36 executes step (ST110), and changes the operation mode of the ventilator 11 from each mode. While switching to the first mode, the process returns to step (ST101).
 ステップ(ST108)において、各モードによる運転時間が所定時間Xを経過していない場合(NOの場合)、換気コントローラ36はステップ(ST109)を実行する。 In step (ST108), if the operating time in each mode has not passed the predetermined time X (NO), the ventilation controller 36 executes step (ST109).
 ステップ(ST109)において、換気コントローラ36は、前記算出した値(|K1-K2|)が第3所定値T3より大きいか否かを判定する。第3所定値T3は、第2所定値T2より大きい値である。ステップ(ST109)において、前記算出した値(|K1-K2|)が第3所定値T3を超えている場合(YESの場合)、換気コントローラ36は、ステップ(ST110)を実行し、換気装置11の運転モードを各モードから第1モードに切り替えると共に、処理をステップ(ST101)に戻す。 At step (ST109), the ventilation controller 36 determines whether or not the calculated value (|K1-K2|) is greater than the third predetermined value T3. The third predetermined value T3 is a value greater than the second predetermined value T2. In step (ST109), if the calculated value (|K1-K2|) exceeds the third predetermined value T3 (if YES), ventilation controller 36 executes step (ST110), The operation mode is switched from each mode to the first mode, and the process is returned to step (ST101).
 ステップ(ST109)において、前記算出した値(|K1-K2|)が第3所定値T3を超えていない場合(NOの場合)、換気コントローラ36は、第2モード又は第3モードによる換気装置11の運転を継続して、ステップ(ST108)及びステップ(ST109)を繰り返して実行する。 In step (ST109), when the calculated value (|K1-K2|) does not exceed the third predetermined value T3 (in the case of NO), the ventilation controller 36 controls the ventilation device 11 in the second mode or the third mode. , and repeats steps (ST108) and (ST109).
 換気システム10では、リモートコントローラ25によって、ユーザが換気装置11を「OFF」とするまで、換気コントローラ36が上記各ステップ(ST101)~(ST110)を繰り返して実行する。 In the ventilation system 10, the ventilation controller 36 repeatedly executes the above steps (ST101) to (ST110) until the user turns the ventilation device 11 "OFF" using the remote controller 25.
 本実施形態の換気システム10は、第1温度センサ38及び第2温度センサ39を用いて、室外空間S2の湿度が高くなっていることを推定することができる。言い換えれば、換気システム10は、湿度センサを用いずに、室外空間S2の湿度が高くなっていることを推定することができる。換気システム10では、室外空間S2の湿度が高くなっていると推定された場合に、換気装置11の運転モードを第1モードから第2モードに切り替えることができる。したがって、湿度の高い空気が熱交換器32に流入することが抑制され、熱交換器32の水分含有量を抑制すると共に、換気装置11からの水漏れを抑制することができる。 The ventilation system 10 of the present embodiment can use the first temperature sensor 38 and the second temperature sensor 39 to estimate that the humidity in the outdoor space S2 is high. In other words, the ventilation system 10 can estimate that the humidity in the outdoor space S2 is high without using a humidity sensor. In the ventilation system 10, when it is estimated that the humidity in the outdoor space S2 is high, the operation mode of the ventilation device 11 can be switched from the first mode to the second mode. Therefore, the inflow of air with high humidity into the heat exchanger 32 is suppressed, the moisture content of the heat exchanger 32 is suppressed, and water leakage from the ventilator 11 can be suppressed.
 本実施形態の換気システム10は、第1温度センサ38及び第2温度センサ39を用いて、室内空間S1の湿度が高くなっていることを推定することができる。言い換えれば、換気システム10は、湿度センサを用いずに、室内空間S1の湿度が高くなっていることを推定することができる。換気システム10では、室内空間S1の湿度が高くなっていると推定された場合に、換気装置11の運転モードを第1モードから第3モードに切り替えることができる。したがって、湿度の高い空気が熱交換器32に流入することが抑制され、熱交換器32の水分含有量を抑制すると共に、換気装置11からの水漏れを抑制することができる。 The ventilation system 10 of this embodiment can use the first temperature sensor 38 and the second temperature sensor 39 to estimate that the humidity in the indoor space S1 is high. In other words, the ventilation system 10 can estimate that the humidity in the indoor space S1 is high without using a humidity sensor. In the ventilation system 10, when it is estimated that the humidity in the indoor space S1 is high, the operation mode of the ventilation device 11 can be switched from the first mode to the third mode. Therefore, the inflow of air with high humidity into the heat exchanger 32 is suppressed, the moisture content of the heat exchanger 32 is suppressed, and water leakage from the ventilator 11 can be suppressed.
 本実施形態の換気システム10では、湿度センサを設けなくてよいため、換気装置11からの水漏れを抑制することが可能な換気システム10をより低コストで構築することができる。温度センサのみを備えた既存の換気システムについて、その制御プログラムを本実施形態の換気システム10と同じように書き換えることで、既存の換気装置からの水漏れを抑制することが可能になる。 Since the ventilation system 10 of this embodiment does not require a humidity sensor, the ventilation system 10 capable of suppressing water leakage from the ventilation device 11 can be constructed at a lower cost. By rewriting the control program of an existing ventilation system having only a temperature sensor in the same way as the ventilation system 10 of the present embodiment, it is possible to suppress water leakage from the existing ventilation system.
 (換気システム10の動作の別実施例について)
 換気システム10は、図9に示すフロー図に従って運転することができる。図9に示すフロー図は、図8に示すフロー図に比べて、ステップ(ST103)~(ST107)に代えて、ステップ(ST111)を加えている点が異なっている。以下の説明では、図8に示すフロー図と異なるステップに関連する部分のみを説明する。
(Alternative Example of Operation of Ventilation System 10)
The ventilation system 10 can be operated according to the flow diagram shown in FIG. The flowchart shown in FIG. 9 differs from the flowchart shown in FIG. 8 in that a step (ST111) is added instead of steps (ST103) to (ST107). In the following description, only parts related to steps different from the flowchart shown in FIG. 8 will be described.
 ステップ(ST102)において、前記算出した値(|K1-K2|)が第2所定値T2より大きい(|K1-K2|>T2)場合(NOの場合)、換気コントローラ36は、処理をステップ(ST101)に戻す。 In step (ST102), if the calculated value (|K1-K2|) is greater than the second predetermined value T2 (|K1-K2|>T2) (in the case of NO), ventilation controller 36 proceeds to step ( ST101).
 ステップ(ST102)において、前記算出した値(|K1-K2|)が第2所定値T2以下(|K1-K2|≦T2)の場合(YESの場合)、換気コントローラ36はステップ(ST111)を実行する。ステップ(ST111)において、換気コントローラ36は、換気装置11の運転モードを第1モードから第2モード及び第3モードに切り替える。 In step (ST102), if the calculated value (|K1-K2|) is equal to or less than the second predetermined value T2 (|K1-K2|≤T2) (if YES), ventilation controller 36 proceeds to step (ST111). Run. In step (ST111), the ventilation controller 36 switches the operation mode of the ventilator 11 from the first mode to the second mode and the third mode.
 換気システム10では、排気ファン33及び給気ファン34の動作を同時に変更することができ、第2モード及び第3モードを同時に実行することができる。この場合、換気システム10では、給気ファン34の動作態様として、停止、間欠運転、又は弱運転の何れかを選択することができ、かつ、排気ファン33の動作態様として、停止、間欠運転、又は弱運転の何れかを選択することができる。 In the ventilation system 10, the operations of the exhaust fan 33 and the air supply fan 34 can be changed at the same time, and the second mode and the third mode can be executed at the same time. In this case, in the ventilation system 10, any one of stop, intermittent operation, or weak operation can be selected as the operating mode of the air supply fan 34, and the operating mode of the exhaust fan 33 can be stopped, intermittent operation, or weak operation can be selected.
 換気システム10では、第2モード及び第3モードを同時に実行した場合、熱交換器32に流入する還気RA及び外気OAの両方の量を、第1モード時に比べて低減することができる。これにより、熱交換器32の水分含有量をより抑制することができ、熱交換器32の水分含有量を確実に抑制することができる。換気システム10では、排気ファン33及び給気ファン34の両方の動作を変更した場合、熱交換器32の水分含有量を抑制すると共に、室内空間S1の室圧が正圧あるいは負圧になるのを抑制することができる。 In the ventilation system 10, when the second mode and the third mode are executed simultaneously, the amount of both the return air RA and the outside air OA flowing into the heat exchanger 32 can be reduced compared to the first mode. Thereby, the moisture content of the heat exchanger 32 can be further suppressed, and the moisture content of the heat exchanger 32 can be reliably suppressed. In the ventilation system 10, when the operations of both the exhaust fan 33 and the air supply fan 34 are changed, the moisture content in the heat exchanger 32 is suppressed and the room pressure in the indoor space S1 becomes positive or negative. can be suppressed.
[実施形態の作用効果]
 上述した換気システム10は、室内空間S1の換気を行う換気装置11と、室外空間S2の気温である第1温度(第1検出値K1)を検出する第1温度センサ38と、室内空間S1の気温である第2温度(第2検出値K2)を検出する第2温度センサ39と、換気装置11の運転を制御する換気コントローラ36と、を備えている。換気装置11が、熱交換器32と、室内空間S1と室外空間S2とを熱交換器32を経由して連通させる給気通路47及び排気通路46と、室外空間S2の空気を給気通路47を介して室内空間S1に給気する給気ファン34と、室内空間S1の空気を排気通路46を介して室外空間S2に排気する排気ファン33と、を備えている。換気コントローラ36が、給気ファン34及び排気ファン33を運転させる第1モード、及び給気ファン34を停止、間欠運転、若しくは平均給気風量を第1モードよりも低下させた状態で給気ファン34を運転させる第2モード、又は、排気ファン33を停止、間欠運転、若しくは平均排気風量を第1モードよりも低下させた状態で排気ファン33を運転させる第3モード、を実行可能である。第1モードの実行中、第1検出値K1が第1所定値T1以上であって、かつ、第2検出値K2と第1検出値K1との差が第2所定値T2以下である場合に、換気コントローラ36が、第1モードから第2モード又は第3モードに切り替える。
[Action and effect of the embodiment]
The ventilation system 10 described above includes a ventilation device 11 that ventilates the indoor space S1, a first temperature sensor 38 that detects a first temperature (first detection value K1) that is the temperature of the outdoor space S2, and a A second temperature sensor 39 that detects a second temperature (second detected value K2), which is the air temperature, and a ventilation controller 36 that controls the operation of the ventilation device 11 are provided. The ventilator 11 includes a heat exchanger 32, an air supply passage 47 and an exhaust passage 46 that connect the indoor space S1 and the outdoor space S2 via the heat exchanger 32, and an air supply passage 47 for supplying air in the outdoor space S2. and an exhaust fan 33 for exhausting the air in the indoor space S1 to the outdoor space S2 through the exhaust passage 46. A first mode in which the ventilation controller 36 operates the air supply fan 34 and the exhaust fan 33, and the air supply fan 34 is stopped, intermittently operated, or the air supply fan is operated in a state where the average air supply air volume is lower than that in the first mode. 34, or a third mode in which the exhaust fan 33 is stopped, operated intermittently, or the exhaust fan 33 is operated while the average exhaust air volume is lower than in the first mode. During execution of the first mode, when the first detection value K1 is equal to or greater than the first predetermined value T1 and the difference between the second detection value K2 and the first detection value K1 is equal to or less than the second predetermined value T2 , the ventilation controller 36 switches from the first mode to the second or third mode.
 以上のような構成では、室内空間S1と室外空間S2の温度に基づき、室内空間S1と室外空間S2の湿度を推測することができる。室内空間S1及び室外空間S2の湿度が高い状態で第1モードを実行すると、室内空間S1及び室外空間S2の双方から湿度の高い空気が熱交換器32に流れ、熱交換器32の水分含有量が許容量を超え、換気装置11からの水漏れが発生する可能性が高くなる。本開示では、第1モードの実行中、第1検出値K1が第1所定値T1以上であって、かつ、第2検出値K2と第1検出値K1との差が第2所定値T2以下である場合に、第1モードから第2モード又は第3モードに切り替えて給気ファン34及び排気ファン33を運転させることで、湿度の高い空気が熱交換器32を通るのを抑制し、換気装置11からの水漏れを抑制することができる。 With the above configuration, it is possible to estimate the humidity of the indoor space S1 and the outdoor space S2 based on the temperatures of the indoor space S1 and the outdoor space S2. When the first mode is executed while the humidity in the indoor space S1 and the outdoor space S2 is high, air with high humidity flows from both the indoor space S1 and the outdoor space S2 to the heat exchanger 32, and the moisture content of the heat exchanger 32 exceeds the permissible amount, and the possibility of water leakage from the ventilator 11 increases. In the present disclosure, during execution of the first mode, the first detection value K1 is equal to or greater than the first predetermined value T1, and the difference between the second detection value K2 and the first detection value K1 is equal to or less than the second predetermined value T2. , by switching from the first mode to the second mode or the third mode and operating the air supply fan 34 and the exhaust fan 33, the air with high humidity is suppressed from passing through the heat exchanger 32, and ventilation Water leakage from the device 11 can be suppressed.
 上述した換気システム10では、第1モードの実行中、第1検出値K1が第1所定値T1以上である場合、換気コントローラ36が、第1モードから第2モード又は第3モードに切り替える。
 この構成によれば、室外空間S2の空気の湿度が高くなっていない場合に、換気装置11が第1モードから第2モード又は第3モードに不必要に切り替えられるのを抑制することができる。
In the ventilation system 10 described above, if the first detected value K1 is greater than or equal to the first predetermined value T1 during execution of the first mode, the ventilation controller 36 switches from the first mode to the second mode or the third mode.
According to this configuration, it is possible to prevent unnecessary switching of the ventilation device 11 from the first mode to the second mode or the third mode when the humidity of the air in the outdoor space S2 is not high.
 上述した換気システム10では、第1モードの実行中、第1検出値K1が第1所定値T1以上で、かつ、第1検出値K1が低下することによって第2検出値K2と第1検出値K1との差が第2所定値T2以下となった場合、換気コントローラ36が、第1モードから第2モードに切り替える。
 このような構成によれば、室外空間S2の温度(第1検出値K1)が低下して第1検出値K1と第2検出値K2との差が第2所定値T2以下となっていた場合には、室外空間S2の湿度が高いと推測することができる。この場合に、換気装置11の運転モードを第2モードに切り替えることで、室外空間S2の湿度の高い空気が、熱交換器32に流れ込むのを抑制することができる。
In the ventilation system 10 described above, during the execution of the first mode, the first detection value K1 is equal to or greater than the first predetermined value T1, and the first detection value K1 decreases, so that the second detection value K2 and the first detection value The ventilation controller 36 switches from the first mode to the second mode when the difference from K1 is less than or equal to the second predetermined value T2.
According to such a configuration, when the temperature (first detected value K1) of the outdoor space S2 is lowered and the difference between the first detected value K1 and the second detected value K2 is equal to or less than the second predetermined value T2. , it can be inferred that the humidity of the outdoor space S2 is high. In this case, by switching the operation mode of the ventilator 11 to the second mode, it is possible to suppress the high humidity air in the outdoor space S2 from flowing into the heat exchanger 32 .
 上述した換気システム10では、第1モードの実行中、第1検出値K1が第1所定値T1以上で、かつ、第2検出値K2が上昇することによって第2検出値K2と第1検出値K1との差が第2所定値T2以下となった場合、換気コントローラ36が、第1モードから第3モードに切り替える。
 このような構成によれば、室内空間S1の温度(第2検出値K2)が上昇して、第1検出値K1と第2検出値K2との差が第2所定値T2以下となっていた場合には、室内空間S1の湿度が高いと推測することができる。この場合に、換気装置11の運転モードを第3モードに切り替えることで、室内空間S1の湿度の高い空気が、熱交換器32に流れ込むのを抑制することができる。
In the ventilation system 10 described above, during execution of the first mode, the first detection value K1 is equal to or greater than the first predetermined value T1, and the second detection value K2 increases, so that the second detection value K2 and the first detection value When the difference from K1 becomes equal to or less than the second predetermined value T2, the ventilation controller 36 switches from the first mode to the third mode.
According to such a configuration, the temperature of the indoor space S1 (the second detected value K2) rises, and the difference between the first detected value K1 and the second detected value K2 becomes equal to or less than the second predetermined value T2. In this case, it can be inferred that the humidity in the indoor space S1 is high. In this case, by switching the operation mode of the ventilator 11 to the third mode, it is possible to suppress the high humidity air in the indoor space S1 from flowing into the heat exchanger 32 .
 上述した換気システム10では、室内空間S1の換気を行う換気装置11と、室外空間S2の気温である第1温度(第1検出値K1)を検出する第1温度センサ38と、室内空間S1の気温である第2温度(第2検出値K2)を検出する第2温度センサ39と、換気装置11の運転を制御する換気コントローラ36と、を備えている。換気装置11が、熱交換器32と、室内空間S1と室外空間S2とを熱交換器32を経由して連通させる給気通路47及び排気通路46と、室外空間S2の空気を給気通路47を介して室内空間S1に給気する給気ファン34と、室内空間S1の空気を排気通路46を介して室外空間S2に排気する排気ファン33と、を備えている。換気コントローラ36が、給気ファン34及び排気ファン33を運転させる第1モード、及び給気ファン34を停止、間欠運転、若しくは平均給気風量を第1モードよりも低下させた状態で給気ファン34を運転させる第2モード、及び、排気ファン33を停止、間欠運転、若しくは平均排気風量を第1モードよりも低下させた状態で排気ファン33を運転させる第3モード、を実行可能である。換気システム10では、第1モードの実行中、第1検出値K1が第1所定値T1以上で、かつ、第2検出値K2と第1検出値K1との差が第2所定値T2以下である場合に、換気コントローラ36が、第1モードから第2モード及び第3モードに切り替える。
 このような構成によれば、第1モードの実行中、第1検出値K1が第1所定値T1以上であって、かつ、第2検出値K2と第1検出値K1との差が第2所定値T2以下である場合に、第1モードから第2モード及び第3モードに切り替えて給気ファン34及び排気ファン33を運転させることで、室内空間S1及び室外空間S2の湿度の高い空気が双方から熱交換器32に流入するのを抑制し、換気装置11からの水漏れを抑制することができる。
In the ventilation system 10 described above, the ventilation device 11 that ventilates the indoor space S1, the first temperature sensor 38 that detects the first temperature (first detection value K1) that is the temperature of the outdoor space S2, and the indoor space S1 A second temperature sensor 39 that detects a second temperature (second detected value K2), which is the air temperature, and a ventilation controller 36 that controls the operation of the ventilation device 11 are provided. The ventilator 11 includes a heat exchanger 32, an air supply passage 47 and an exhaust passage 46 that connect the indoor space S1 and the outdoor space S2 via the heat exchanger 32, and an air supply passage 47 for supplying air in the outdoor space S2. and an exhaust fan 33 for exhausting the air in the indoor space S1 to the outdoor space S2 through the exhaust passage 46. A first mode in which the ventilation controller 36 operates the air supply fan 34 and the exhaust fan 33, and the air supply fan 34 is stopped, intermittently operated, or the air supply fan is operated in a state where the average air supply air volume is lower than that in the first mode. 34, and a third mode in which the exhaust fan 33 is stopped, intermittently operated, or operated while the average exhaust air volume is lower than in the first mode. In the ventilation system 10, during execution of the first mode, the first detection value K1 is equal to or greater than the first predetermined value T1, and the difference between the second detection value K2 and the first detection value K1 is equal to or less than the second predetermined value T2. In some cases, the ventilation controller 36 switches from the first mode to the second and third modes.
According to such a configuration, during execution of the first mode, the first detection value K1 is equal to or greater than the first predetermined value T1, and the difference between the second detection value K2 and the first detection value K1 is the second detection value. When it is equal to or less than the predetermined value T2, by switching from the first mode to the second mode and the third mode and operating the air supply fan 34 and the exhaust fan 33, the humid air in the indoor space S1 and the outdoor space S2 is removed. It is possible to suppress water from flowing into the heat exchanger 32 from both sides and to suppress water leakage from the ventilator 11 .
 上述した換気システム10では、第1モードの実行中、第1検出値K1が第1所定値T1以上である場合、換気コントローラ36が、第1モードから第2モード及び第3モードに切り替える。
 この構成によれば、室外空間S2の空気の湿度が高くなっていない場合に、換気装置11が第1モードから第2モード及び第3モードに不必要に切り替えられるのを抑制することができる。
In the ventilation system 10 described above, when the first detected value K1 is equal to or greater than the first predetermined value T1 during execution of the first mode, the ventilation controller 36 switches from the first mode to the second mode and the third mode.
According to this configuration, it is possible to prevent unnecessary switching of the ventilation device 11 from the first mode to the second mode and the third mode when the humidity of the air in the outdoor space S2 is not high.
 上述した換気システム10では、第2モード又は第3モードの実行中、第2検出値K2と第1検出値K1との差が、第2所定値T2より大きい値である第3所定値T3を超えた場合、換気コントローラ36が、第2モード又は第3モードから第1モードに切り替える。
 このような構成によれば、第1検出値K1と第2検出値K2との差が第3所定値T3を超えた場合に、室内空間S1及び室外空間S2の湿度が高くなくなったと推測することができる。この場合に、換気装置11の運転モードを第1モードに切り替えることで、室内空間S1の換気量を通常の量へ速やかに戻すことができる。
In the ventilation system 10 described above, during execution of the second mode or the third mode, the difference between the second detection value K2 and the first detection value K1 is set to the third predetermined value T3, which is larger than the second predetermined value T2. If exceeded, the ventilation controller 36 switches from the second or third mode to the first mode.
According to such a configuration, when the difference between the first detected value K1 and the second detected value K2 exceeds the third predetermined value T3, it can be assumed that the humidity in the indoor space S1 and the outdoor space S2 is no longer high. can be done. In this case, by switching the operation mode of the ventilation device 11 to the first mode, the ventilation amount of the indoor space S1 can be quickly returned to the normal amount.
 上述した換気システム10は、所定時間X以上第2モード又は第3モードの実行が継続された場合、換気コントローラ36が、第2モード又は第3モードから第1モードに切り替える。
 このような構成によれば、第2モード及び第3モードの状態が所定時間X以上継続した場合に、換気装置11の運転モードを第1モードに切り替えることができる。これにより、室内空間S1の換気量が低下している状態が所定時間X以上継続されるのを防止することができる。
In the ventilation system 10 described above, when the execution of the second mode or the third mode continues for a predetermined time X or longer, the ventilation controller 36 switches from the second mode or the third mode to the first mode.
According to such a configuration, the operation mode of the ventilator 11 can be switched to the first mode when the states of the second mode and the third mode continue for the predetermined time X or longer. As a result, it is possible to prevent the state in which the amount of ventilation in the indoor space S1 is decreasing from continuing for the predetermined time X or longer.
 なお、本開示は、以上の例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be noted that the present disclosure is not limited to the above examples, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
10  :換気システム
11  :換気装置
32  :熱交換器
33  :排気ファン
34  :給気ファン
36  :換気コントローラ(コントローラ)
38  :第1温度センサ(第1検出部)
39  :第2温度センサ(第2検出部)
46  :排気通路
47  :給気通路
S1  :室内空間(対象空間)
S2  :室外空間(対象空間の外部)
K1  :第1検出値(第1温度)
K2  :第2検出値(第2温度)
T1  :第1所定値
T2  :第2所定値
T3  :第3所定値
X   :所定時間
10: Ventilation system 11: Ventilator 32: Heat exchanger 33: Exhaust fan 34: Air supply fan 36: Ventilation controller (controller)
38: first temperature sensor (first detection unit)
39: Second temperature sensor (second detection unit)
46: Exhaust passage 47: Air supply passage S1: Indoor space (target space)
S2: outdoor space (outside the target space)
K1: First detected value (first temperature)
K2: Second detected value (second temperature)
T1: first predetermined value T2: second predetermined value T3: third predetermined value X: predetermined time

Claims (8)

  1.  対象空間(S1)の換気を行う換気装置(11)と、前記対象空間外(S2)の気温である第1温度(K1)を検出する第1検出部(38)と、前記対象空間内(S1)の気温である第2温度(K2)を検出する第2検出部(39)と、前記換気装置(11)の運転を制御するコントローラ(36)と、を備え、
     前記換気装置(11)が、熱交換器(32)と、前記対象空間の内部(S1)と外部(S2)とを前記熱交換器(32)を経由して連通させる給気通路(47)及び排気通路(46)と、前記対象空間外(S2)の空気を前記給気通路(47)を介して前記対象空間内(S1)に給気する給気ファン(34)と、前記対象空間内(S1)の空気を前記排気通路(46)を介して前記対象空間外(S2)に排気する排気ファン(33)と、を備え、
     前記コントローラ(36)が、前記給気ファン(34)及び前記排気ファン(33)を運転させる第1モード、及び前記給気ファン(34)を停止、間欠運転、若しくは平均給気風量(QS2)を前記第1モードよりも低下させた状態で前記給気ファン(34)を運転させる第2モード、又は、前記排気ファン(33)を停止、間欠運転、若しくは平均排気風量(QE2)を前記第1モードよりも低下させた状態で前記排気ファン(33)を運転させる第3モード、を実行可能であり、
     前記第1モードの実行中、前記第2温度(K2)と前記第1温度(K1)との差が第2所定値(T2)以下である場合に、
     前記コントローラ(36)が、前記第1モードから前記第2モード又は前記第3モードに切り替える、換気システム(10)。
    A ventilation device (11) for ventilating the target space (S1), a first detection unit (38) for detecting a first temperature (K1) that is the air temperature outside the target space (S2), and inside the target space ( A second detection unit (39) that detects a second temperature (K2) that is the temperature of S1), and a controller (36) that controls the operation of the ventilation device (11),
    The ventilator (11) includes a heat exchanger (32) and an air supply passage (47) that communicates the inside (S1) and the outside (S2) of the target space via the heat exchanger (32). and an exhaust passage (46), an air supply fan (34) for supplying air from outside the target space (S2) into the target space (S1) through the air supply passage (47), and the target space an exhaust fan (33) that exhausts the air inside (S1) to the outside of the target space (S2) through the exhaust passage (46);
    A first mode in which the controller (36) operates the air supply fan (34) and the exhaust fan (33), and the air supply fan (34) is stopped, intermittently operated, or has an average air supply air volume (QS2). is lower than in the first mode, or the exhaust fan (33) is stopped or operated intermittently, or the average exhaust air volume (QE2) is reduced to the second mode a third mode in which the exhaust fan (33) is operated in a state lower than the first mode, and
    During execution of the first mode, if the difference between the second temperature (K2) and the first temperature (K1) is equal to or less than a second predetermined value (T2),
    A ventilation system (10) wherein said controller (36) switches from said first mode to said second mode or said third mode.
  2.  前記第1モードの実行中、前記第1温度(K1)が前記第1所定値(T1)以上である場合、
     前記コントローラ(36)が、前記第1モードから前記第2モード又は前記第3モードに切り替える、請求項1に記載の換気システム(10)。
    When the first temperature (K1) is equal to or higher than the first predetermined value (T1) during execution of the first mode,
    The ventilation system (10) of claim 1, wherein the controller (36) switches from the first mode to the second mode or the third mode.
  3.  前記第1モードの実行中、前記第1温度(K1)が低下することによって前記第2温度(K2)と前記第1温度(K1)との差が前記第2所定値(T2)以下となった場合、
     前記コントローラ(36)が、前記第1モードから前記第2モードに切り替える、請求項1又は請求項2に記載の換気システム(10)。
    During execution of the first mode, the difference between the second temperature (K2) and the first temperature (K1) becomes equal to or less than the second predetermined value (T2) due to the decrease in the first temperature (K1). If
    3. The ventilation system (10) of claim 1 or claim 2, wherein the controller (36) switches from the first mode to the second mode.
  4.  前記第1モードの実行中、前記第2温度(K2)が上昇することによって前記第2温度(K2)と前記第1温度(K1)との差が前記第2所定値(T2)以上となった場合、
     前記コントローラ(36)が、前記第1モードから前記第3モードに切り替える、請求項1から請求項3の何れか一項に記載の換気システム(10)。
    During execution of the first mode, the difference between the second temperature (K2) and the first temperature (K1) becomes equal to or greater than the second predetermined value (T2) due to the rise of the second temperature (K2). If
    4. The ventilation system (10) of any one of the preceding claims, wherein the controller (36) switches from the first mode to the third mode.
  5.  対象空間(S1)の換気を行う換気装置(11)と、前記対象空間外(S2)の気温である第1温度(K1)を検出する第1検出部(38)と、前記対象空間内(S1)の気温である第2温度(K2)を検出する第2検出部(39)と、前記換気装置(11)の運転を制御するコントローラ(36)と、を備え、
     前記換気装置(11)が、熱交換器(32)と、前記対象空間の内部(S1)と外部(S2)とを前記熱交換器(32)を経由して連通させる給気通路(47)及び排気通路(46)と、前記対象空間外(S2)の空気を前記給気通路(47)を介して前記対象空間内(S1)に給気する給気ファン(34)と、前記対象空間内(S1)の空気を前記排気通路(46)を介して前記対象空間外(S2)に排気する排気ファン(33)と、を備え、
     前記コントローラ(36)が、前記給気ファン(34)及び前記排気ファン(33)を運転させる第1モード、及び、前記給気ファン(34)を停止、間欠運転、若しくは平均給気風量(QS2)を前記第1モードよりも低下させた状態で前記給気ファン(34)を及び前記排気ファン(33)を運転させる第2モード、及び、前記排気ファン(33)を停止、間欠運転、若しくは平均排気風量(QE2)を前記第1モードよりも低下させた状態で前記給気ファン(34)及び前記排気ファン(33)を運転させる第3モード、を実行可能であり、
     前記第1モードの実行中、前記第2温度(K2)と前記第1温度(K1)との差が前記第2所定値(T2)以下である場合において、
     前記コントローラ(36)が、前記第1モードから前記第2モード及び前記第3モードに切り替える、換気システム(10)。
    A ventilation device (11) for ventilating the target space (S1), a first detection unit (38) for detecting a first temperature (K1) that is the air temperature outside the target space (S2), and inside the target space ( A second detection unit (39) that detects a second temperature (K2) that is the temperature of S1), and a controller (36) that controls the operation of the ventilation device (11),
    The ventilator (11) includes a heat exchanger (32) and an air supply passage (47) that communicates the inside (S1) and the outside (S2) of the target space via the heat exchanger (32). and an exhaust passage (46), an air supply fan (34) for supplying air from outside the target space (S2) into the target space (S1) through the air supply passage (47), and the target space an exhaust fan (33) that exhausts the air inside (S1) to the outside of the target space (S2) through the exhaust passage (46);
    The controller (36) controls the first mode for operating the air supply fan (34) and the exhaust fan (33), and the air supply fan (34) is stopped, intermittently operated, or average air supply air volume (QS2 ) is lower than in the first mode, the air supply fan (34) and the exhaust fan (33) are operated, and the exhaust fan (33) is stopped, intermittently operated, or A third mode in which the air supply fan (34) and the exhaust fan (33) are operated in a state where the average exhaust air volume (QE2) is lower than that in the first mode, and
    When the difference between the second temperature (K2) and the first temperature (K1) is equal to or less than the second predetermined value (T2) during execution of the first mode,
    A ventilation system (10) wherein said controller (36) switches from said first mode to said second mode and said third mode.
  6.  前記第1モードの実行中、前記第1温度(K1)が前記第1所定値(T1)以上である場合、
     前記コントローラ(36)が、前記第1モードから前記第2モード及び前記第3モードに切り替える、請求項5に記載の換気システム(10)。
    When the first temperature (K1) is equal to or higher than the first predetermined value (T1) during execution of the first mode,
    6. The ventilation system (10) of claim 5, wherein the controller (36) switches from the first mode to the second mode and the third mode.
  7.  前記第2モード又は前記第3モードの実行中、前記差が、前記第2所定値(T2)より大きい値である第3所定値(T3)を超えた場合、
     前記コントローラ(36)が、前記第2モード又は前記第3モードから前記第1モードに切り替える、請求項1から請求項6のいずれか1項に記載の換気システム(10)。
    during execution of the second mode or the third mode, if the difference exceeds a third predetermined value (T3) that is greater than the second predetermined value (T2);
    7. The ventilation system (10) of any one of the preceding claims, wherein the controller (36) switches from the second mode or the third mode to the first mode.
  8.  所定時間(X)以上前記第2モード又は前記第3モードの実行が継続された場合、
     前記コントローラ(36)が、前記第2モード又は前記第3モードから前記第1モードに切り替える、請求項1から請求項7のいずれか1項に記載の換気システム(10)。
     
    When execution of the second mode or the third mode continues for a predetermined time (X) or more,
    8. The ventilation system (10) of any one of the preceding claims, wherein the controller (36) switches from the second mode or the third mode to the first mode.
PCT/JP2022/006868 2021-02-26 2022-02-21 Ventilation system WO2022181522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280016345.9A CN116917673B (en) 2021-02-26 2022-02-21 Ventilation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030451A JP7197811B2 (en) 2021-02-26 2021-02-26 ventilation system
JP2021-030451 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181522A1 true WO2022181522A1 (en) 2022-09-01

Family

ID=83048027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006868 WO2022181522A1 (en) 2021-02-26 2022-02-21 Ventilation system

Country Status (4)

Country Link
JP (1) JP7197811B2 (en)
CN (1) CN116917673B (en)
TW (1) TWI806451B (en)
WO (1) WO2022181522A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226434A (en) * 1985-07-25 1987-02-04 Mitsubishi Electric Corp Device for automatically driving ventilation fan
JP2007510885A (en) * 2003-11-06 2007-04-26 バエク、チャン−イン AIR CONDITIONING APPARATUS HAVING HEAT / HUMID EXCHANGE UNIT AND METHOD FOR CONTROLLING INDOOR TEMPERATURE AND HUMIDITY ADJUSTMENT SYSTEM USING MULTIPLE AIR CONDITIONING APPARATUS
JP2007298252A (en) * 2006-05-02 2007-11-15 Hideharu Aizawa Residential ventilator
JP2018159476A (en) * 2017-03-22 2018-10-11 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device
JP2020008251A (en) * 2018-07-11 2020-01-16 ダイキン工業株式会社 Ventilation device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035826A1 (en) * 2004-09-30 2006-04-06 Max Co., Ltd Ventilator, air conditioner system, ventilation system, and building
US20110111689A1 (en) * 2008-06-18 2011-05-12 Nobumasa Takeuchi Ventilator
US20130048267A1 (en) * 2010-06-11 2013-02-28 Mitsubishi Electric Corporation Ventilation and air-conditioning apparatus and method for controlling the same
JP5850487B2 (en) * 2011-08-29 2016-02-03 株式会社長府製作所 Desiccant ventilation fan
JP2013185714A (en) * 2012-03-06 2013-09-19 Panasonic Corp Heat exchange ventilator
JP6274869B2 (en) * 2014-01-16 2018-02-07 三菱電機株式会社 Ventilation equipment
JP5858061B2 (en) * 2014-01-31 2016-02-10 ダイキン工業株式会社 Ventilation equipment
JP6234575B2 (en) * 2014-07-04 2017-11-22 三菱電機株式会社 Ventilation equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226434A (en) * 1985-07-25 1987-02-04 Mitsubishi Electric Corp Device for automatically driving ventilation fan
JP2007510885A (en) * 2003-11-06 2007-04-26 バエク、チャン−イン AIR CONDITIONING APPARATUS HAVING HEAT / HUMID EXCHANGE UNIT AND METHOD FOR CONTROLLING INDOOR TEMPERATURE AND HUMIDITY ADJUSTMENT SYSTEM USING MULTIPLE AIR CONDITIONING APPARATUS
JP2007298252A (en) * 2006-05-02 2007-11-15 Hideharu Aizawa Residential ventilator
JP2018159476A (en) * 2017-03-22 2018-10-11 パナソニックIpマネジメント株式会社 Heat exchange type ventilation device
JP2020008251A (en) * 2018-07-11 2020-01-16 ダイキン工業株式会社 Ventilation device

Also Published As

Publication number Publication date
TWI806451B (en) 2023-06-21
CN116917673A (en) 2023-10-20
JP7197811B2 (en) 2022-12-28
JP2022131485A (en) 2022-09-07
TW202242323A (en) 2022-11-01
CN116917673B (en) 2024-06-21

Similar Documents

Publication Publication Date Title
JP6300921B2 (en) Air conditioning ventilator
JP5858061B2 (en) Ventilation equipment
WO2003042602A1 (en) Heat exchanger unit
JP6253459B2 (en) Ventilator for air conditioning
US10337758B2 (en) Heat exchanger ventilator
JP2021042918A (en) Air conditioning system
JP6822446B2 (en) Ventilator
WO2022181522A1 (en) Ventilation system
JP6861824B2 (en) Heat exchange ventilator
US11384953B2 (en) Air conditioning system
JP7336630B2 (en) ventilation system
JP7386388B2 (en) ventilation system
US20220178576A1 (en) Air conditioning system
JP7284407B2 (en) ventilation system
JP5543002B2 (en) Air conditioning apparatus and air conditioning system
JPS6335321Y2 (en)
US11698203B2 (en) Air-conditioning system
WO2017104073A1 (en) Humidification device
JP2005282949A (en) Air conditioning device
JPH0694285A (en) Air conditioner
JP2020143875A (en) Heat exchange ventilation system
JP2021188761A (en) Ventilator
JP2008202838A (en) Building frame heat storage air conditioning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016345.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/11/2023)