JP2008202838A - Building frame heat storage air conditioning method - Google Patents

Building frame heat storage air conditioning method Download PDF

Info

Publication number
JP2008202838A
JP2008202838A JP2007038268A JP2007038268A JP2008202838A JP 2008202838 A JP2008202838 A JP 2008202838A JP 2007038268 A JP2007038268 A JP 2007038268A JP 2007038268 A JP2007038268 A JP 2007038268A JP 2008202838 A JP2008202838 A JP 2008202838A
Authority
JP
Japan
Prior art keywords
air
heat storage
conditioned room
housing
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007038268A
Other languages
Japanese (ja)
Inventor
Takuro Iwama
拓郎 岩間
Osamu Sasabe
修 佐々部
Koji Ishikawa
浩嗣 石川
Teruo Mikami
照夫 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Aisin AW Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Hitachi Plant Technologies Ltd filed Critical Aisin AW Co Ltd
Priority to JP2007038268A priority Critical patent/JP2008202838A/en
Publication of JP2008202838A publication Critical patent/JP2008202838A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building frame heat storage air conditioning method capable of storing a large amount of heat without generating dew condensation. <P>SOLUTION: In storing heat in a building frame 12 by supplying cooling air to the frame 12 constituting a ceiling of an air-conditioned room 20, dehumidification air-conditioning is performed in an air-conditioned room 40 where the frame 12 is applied as a floor surface. Here, a surface temperature of the frame 12 is measured in the air-conditioned room 40, and the temperature and humidity in the air-conditioned room 40 are measured to perform dehumidification air-conditioning on the basis of the measured values. Further the air conditioning is performed so that the internal pressure of the air-conditioned room 40 is higher than the outside atmospheric pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は躯体蓄熱空調方法に係り、特にオフィスビル等の躯体蓄熱空調方法に関する。   The present invention relates to a housing heat storage air conditioning method, and more particularly to a housing heat storage air conditioning method for an office building or the like.

近年、省エネルギー対策などの観点から、ビル空調に躯体蓄熱空調システムが用いられる。躯体蓄熱空調システムは、電力料金が安い夜間に建築躯体を冷却して蓄熱することによって、昼間の空調負荷を減らすシステムであり、たとえば天井裏空間に設けられた空調機によって天井のスラブを夜間に冷却する。これにより、昼間に天井のスラブから冷熱が放熱されるので、昼間の冷却負荷が減少し、空調のランニングコストを削減することができる。
特開2000−157964号公報 特開2005−161226号公報
In recent years, building heat storage air conditioning systems are used for building air conditioning from the viewpoint of energy saving measures. The thermal storage air conditioning system is a system that reduces the air conditioning load during the daytime by cooling and storing the building housing at night when the electricity rate is low. For example, the air conditioner installed in the ceiling space can be used to reduce the ceiling slab at night. Cooling. Thereby, since cold heat is radiated from the ceiling slab in the daytime, the daytime cooling load is reduced, and the running cost of the air conditioning can be reduced.
JP 2000-157964 A JP 2005-161226 A

しかしながら、従来の躯体蓄熱空調システムは、蓄熱を行ったスラブの上層階の床面で結露が発生し、電気機器等が故障するおそれがあった。このため、従来の躯体蓄熱空調システムでは、躯体をあまり冷却することができず、大きな蓄熱量を蓄えることができないという問題があった。   However, in the conventional frame heat storage air conditioning system, there is a possibility that condensation occurs on the floor surface of the upper floor of the slab where the heat storage is performed, and the electric equipment or the like may break down. For this reason, in the conventional housing heat storage air conditioning system, there was a problem that the housing could not be cooled so much and a large amount of heat storage could not be stored.

本発明はこのような事情に鑑みて成されたもので、結露を発生することなく、大きな蓄熱量を蓄えることのできる躯体蓄熱空調方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a housing heat storage air-conditioning method capable of storing a large amount of heat storage without causing condensation.

請求項1に記載の発明は前記目的を達成するために、第1の被空調室の天井を成す躯体に冷却エアを吹きつけて該躯体に蓄熱する躯体蓄熱空調方法において、前記躯体の蓄熱運転時に、該躯体を床面とする第2の被空調室で除湿空調を行うことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a housing heat storage air-conditioning method in which cooling air is blown onto the housing forming the ceiling of the first air-conditioned room to store heat in the housing, and the heat storage operation of the housing is performed. In some cases, dehumidifying air conditioning is performed in a second air-conditioned room having the casing as a floor surface.

請求項1に記載の発明によれば、躯体の蓄熱運転を行うとともに躯体の上の第2の被空調室で除湿空調を行うので、第2の被空調室で結露が発生することを防止できる。したがって、躯体を従来よりも冷却することができ、躯体の蓄熱量を大きくすることができる。   According to the first aspect of the present invention, since the heat storage operation of the housing is performed and the dehumidifying air conditioning is performed in the second air-conditioned room above the housing, it is possible to prevent dew condensation from occurring in the second air-conditioned room. . Therefore, the housing can be cooled more than before, and the heat storage amount of the housing can be increased.

請求項2に記載の発明は請求項1の発明において、前記冷却エアの吹きつけ位置における前記第2の被空調室側での前記躯体の表面温度を測定するとともに、前記第2の被空調室の内部の露点温度を求め、該露点温度と前記表面温度に基づいて前記除湿空調を制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the surface temperature of the housing on the second air-conditioned room side at the cooling air blowing position is measured, and the second air-conditioned room is measured. The dew point temperature inside is obtained, and the dehumidifying air conditioning is controlled based on the dew point temperature and the surface temperature.

請求項2に記載の発明によれば、蓄熱運転時に第2の被空調室内で最も温度が低い表面温度を測定するとともに第2の被空調室の内部の露点温度を求め、この露点温度と表面温度とを比較して除湿運転を制御するので、除湿運転を最小限に抑えながら結露を防止することができる。   According to the second aspect of the present invention, the surface temperature having the lowest temperature in the second air-conditioned room is measured during the heat storage operation, and the dew point temperature in the second air-conditioned room is obtained. Since the dehumidifying operation is controlled by comparing with the temperature, dew condensation can be prevented while minimizing the dehumidifying operation.

請求項3に記載の発明は請求項2の発明において、前記表面温度の変化を予測するとともに前記露点温度の変化を予測し、該予測した表面温度が前記予測した露点温度よりも高くなるように前記除湿空調を制御することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the invention, the change in the surface temperature is predicted and the change in the dew point temperature is predicted, so that the predicted surface temperature is higher than the predicted dew point temperature. The dehumidifying air conditioning is controlled.

請求項3の発明によれば、表面温度と露点温度を予測して除湿空調を制御するので、結露の発生をより確実に防止することができる。   According to the invention of claim 3, since the dehumidifying air conditioning is controlled by predicting the surface temperature and the dew point temperature, it is possible to more reliably prevent the occurrence of condensation.

請求項4に記載の発明は前記目的を達成するために、第1の被空調室の天井を成す躯体に冷却エアを吹きつけて該躯体に蓄熱する躯体蓄熱空調方法において、前記躯体の蓄熱運転時に、該躯体を床面とする第2の被空調室の内圧が大気圧よりも大きくなるように空調することを特徴とする。   According to a fourth aspect of the present invention, there is provided a housing heat storage air conditioning method in which cooling air is blown to a housing forming a ceiling of the first air-conditioned room to store heat in the housing in order to achieve the object. In some cases, air conditioning is performed such that the internal pressure of the second air-conditioned room having the casing as a floor surface is greater than atmospheric pressure.

請求項4に記載の発明によれば、第2の被空調室の内圧を大気圧よりも大きくなるように空調することによって、第2の被空調室に高湿度の外気が入り込むことを防止することができる。したがって、第2の被空調室の内部を低い湿度に保つことができ、第2の被空調室で結露が発生することを防止することができる。これにより、躯体を従来よりも冷却することができ、躯体の蓄熱量を大きくすることができる。   According to the fourth aspect of the present invention, by air-conditioning the internal pressure of the second air-conditioned room to be greater than the atmospheric pressure, high humidity outside air is prevented from entering the second air-conditioned room. be able to. Therefore, the inside of the second air-conditioned room can be kept at a low humidity, and condensation can be prevented from occurring in the second air-conditioned room. Thereby, a housing can be cooled rather than before and the amount of heat storage of a housing can be enlarged.

請求項5に記載の発明は請求項4の発明において、前記第2の被空調室に外気を除湿して供給することによって、該第2の被空調室の内圧を大気圧よりも大きくすることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the invention, by supplying dehumidified air to the second air-conditioned room, the internal pressure of the second air-conditioned room is made larger than the atmospheric pressure. It is characterized by.

本発明によれば、躯体の蓄熱運転時に、第2の被空調室で除湿空調を行ったり、第2の被空調室の内圧を大気圧よりも大きくなるように空調したので、第2の被空調室で結露が発生することを防止でき、躯体を従来よりも冷却して蓄熱量を大きくすることができる。   According to the present invention, since the dehumidifying air conditioning is performed in the second air-conditioned room or the internal pressure of the second air-conditioned room is set to be greater than the atmospheric pressure during the heat storage operation of the housing, Condensation can be prevented from occurring in the air conditioning room, and the housing can be cooled more than before to increase the amount of heat storage.

以下添付図面に従って本発明に係る躯体蓄熱空調方法の好ましい実施形態について説明する。   A preferred embodiment of a housing heat storage air conditioning method according to the present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る躯体蓄熱空調方法を適用した空調システム10の第1の実施形態を模式的に示す断面図である。同図に示す建屋内には、コンクリート製の躯体12によって上下に仕切られた二つの被空調室20、40が設けられている。躯体12は、被空調室20の天井を成すとともに、被空調室40の床面を構成している。   FIG. 1 is a cross-sectional view schematically showing a first embodiment of an air conditioning system 10 to which a housing heat storage air conditioning method according to the present invention is applied. The building shown in the figure is provided with two air-conditioned rooms 20 and 40 that are partitioned vertically by a concrete frame 12. The casing 12 forms the ceiling of the air-conditioned room 20 and constitutes the floor surface of the air-conditioned room 40.

被空調室20の上部は天井部材22によって仕切られ、天井裏空間24が形成されている。天井裏空間24には、被空調室20を空調するための室内機26が設けられる。室内機26は屋外の室外機28に接続され、この室外機28との間で熱媒体を循環させることによって、エアを冷却して吹き出すように構成される。室内機26の吹出口にはダクト30が接続され、このダクト30は切替ダンパ32に接続される。切替ダンパ32は、天井部材22に設けられた吹出口34と、天井の躯体12に向けて開口された吹出口36とに接続されるとともに、その吹出口34と吹出口36の一方を選択して室内機26に連通するように切替制御される。したがって、昼間の通常の空調運転時には室内機26を吹出口34に連通して、冷却エアを被空調室20に給気することができ、夜間の蓄熱運転時には室内機26を吹出口36に連通して、冷却エアを躯体12に吹きつけることができる。   The upper part of the air-conditioned room 20 is partitioned by a ceiling member 22, and a ceiling back space 24 is formed. An indoor unit 26 for air-conditioning the air-conditioned room 20 is provided in the ceiling space 24. The indoor unit 26 is connected to an outdoor outdoor unit 28, and is configured to cool and blow out air by circulating a heat medium between the indoor unit 26 and the outdoor unit 28. A duct 30 is connected to the air outlet of the indoor unit 26, and this duct 30 is connected to a switching damper 32. The switching damper 32 is connected to an air outlet 34 provided in the ceiling member 22 and an air outlet 36 opened toward the ceiling housing 12, and selects one of the air outlet 34 and the air outlet 36. Then, switching control is performed so as to communicate with the indoor unit 26. Therefore, the indoor unit 26 can be connected to the air outlet 34 during normal air-conditioning operation during the daytime, and cooling air can be supplied to the air-conditioned room 20, and the indoor unit 26 can be connected to the air outlet 36 during heat storage operation at night. Then, the cooling air can be blown onto the housing 12.

天井部材22には、排気口38、38が形成されており、通常の空調運転時には、被空調室20内のエアが排気口38、38から天井裏空間24に吸引される。そして、室内機26によって冷却された後、吹出口34から吹き出される。   The ceiling member 22 has exhaust ports 38 and 38, and air in the air-conditioned room 20 is sucked into the ceiling back space 24 from the exhaust ports 38 and 38 during normal air conditioning operation. And after cooling by the indoor unit 26, it blows off from the blower outlet 34. FIG.

なお、図1には省略したが、外気を空調して被空調室20に給気する外気処理装置を設けてもよい。   Although omitted in FIG. 1, an outside air processing device that air-conditions outside air and supplies the air-conditioned room 20 may be provided.

一方、被空調室40は、その上部が天井部材42によって仕切られ、天井裏空間44が形成されている。天井裏空間44には、被空調室40を空調するための室内機46が設けられている。室内機46は屋外の室外機48に接続され、この室外機48との間で熱媒体を循環させることによって、エアを冷却して吹き出すように構成される。   On the other hand, the upper part of the air-conditioned room 40 is partitioned by a ceiling member 42 to form a ceiling back space 44. An indoor unit 46 for air-conditioning the air-conditioned room 40 is provided in the ceiling space 44. The indoor unit 46 is connected to an outdoor outdoor unit 48 and is configured to cool and blow out air by circulating a heat medium between the indoor unit 46 and the outdoor unit 48.

被空調室40の天井部材42には、給気口50と排気口52が設けられる。給気口50には給気ダクト54が接続され、排気口52には排気ダクト56が接続される。給気ダクト54と排気ダクト56は、メンテナンス室58の外気処理装置60に接続されており、外気処理装置60は、排気ダクト56からエアを吸引し、温度及び湿度を調節して給気ダクト54に送気するように構成される。これにより、被空調室40内のエアを外気処理装置60に循環させて、被空調室40内の温湿度を調節することができる。   An air supply port 50 and an exhaust port 52 are provided in the ceiling member 42 of the air-conditioned room 40. An air supply duct 54 is connected to the air supply port 50, and an exhaust duct 56 is connected to the exhaust port 52. The air supply duct 54 and the exhaust duct 56 are connected to an outside air processing device 60 in the maintenance chamber 58. The outside air processing device 60 sucks air from the exhaust duct 56 and adjusts temperature and humidity to supply the air duct 54. Configured to insufflate. Thereby, the air in the air-conditioned room 40 can be circulated to the outside air processing device 60 to adjust the temperature and humidity in the air-conditioned room 40.

外気処理装置60は、外気ダクト62を介して外気取入口64に接続される。したがって、外気処理装置60に外気を取り入れることができ、外気の温湿度を調節して被空調室40に給気することができる。上記の排気ダクト56及び外気ダクト62にはそれぞれダンパ66、68が配設されており、排気量及び外気取入量を調節できるようになっている。   The outside air processing device 60 is connected to the outside air inlet 64 via the outside air duct 62. Accordingly, the outside air can be taken into the outside air processing device 60, and the temperature and humidity of the outside air can be adjusted to supply air to the air-conditioned room 40. The exhaust duct 56 and the outside air duct 62 are provided with dampers 66 and 68, respectively, so that the exhaust amount and the outside air intake amount can be adjusted.

被空調室40には、躯体12の表面温度を測定する表面温度センサ70が設けられる。表面温度センサ70は、吹出口36からの冷却エアの吹き付け位置の反対側に設けられている。これにより、吹出口36から冷却エアを吹き出して躯体12を冷却した際に、被空調室40内で最も低い温度を測定することができる。   The air-conditioned room 40 is provided with a surface temperature sensor 70 that measures the surface temperature of the housing 12. The surface temperature sensor 70 is provided on the opposite side of the cooling air blowing position from the blower outlet 36. Thereby, when cooling body is blown out from the blower outlet 36 and the housing 12 is cooled, the lowest temperature in the air-conditioned room 40 can be measured.

また、被空調室40には、温度及び湿度を測定する温湿度センサ72が設けられている。なお、温湿度センサ72は、露点温度を求めることができるものであればよく、たとえば光学式の露点温度センサを用いてもよい。   The air-conditioned room 40 is provided with a temperature / humidity sensor 72 for measuring temperature and humidity. The temperature / humidity sensor 72 may be any sensor that can determine the dew point temperature. For example, an optical dew point temperature sensor may be used.

さらに、被空調室40の内部には圧力センサ74が設けられており、被空調室40の外部に設けられた圧力センサ76とともに、被空調室40の内圧と大気圧との微差圧力を検出できるようになっている。   Further, a pressure sensor 74 is provided inside the air-conditioned room 40 and, together with a pressure sensor 76 provided outside the air-conditioned room 40, detects a slight differential pressure between the internal pressure of the air-conditioned room 40 and the atmospheric pressure. It can be done.

上述した表面温度センサ70、温湿度センサ72、圧力センサ74、76は、コントローラ78に接続されている。コントローラ78は、外気処理装置60に接続されており、各センサ70、72、74、76の測定値に基づいて外気処理装置60の駆動を制御するように構成される。具体的には、まず、表面温度センサ70の測定値と、過去の蓄熱運転時のデータから、表面温度の変化を予測する。一方で、温湿度センサ72の測定値から露点温度を算出するとともに、過去の除湿運転時のデータから、露点温度の変化を予測する。そして、表面温度の予測値が露点温度の予測値よりも常に高くなるように、外気処理装置60の駆動を制御して除湿空調を行う。これにより、被空調室40では、表面温度が露点温度よりも常に高くなるので、結露の発生を防止することができる。   The surface temperature sensor 70, the temperature / humidity sensor 72, and the pressure sensors 74 and 76 described above are connected to the controller 78. The controller 78 is connected to the outside air processing device 60 and is configured to control the driving of the outside air processing device 60 based on the measurement values of the sensors 70, 72, 74, 76. Specifically, first, the change in the surface temperature is predicted from the measured value of the surface temperature sensor 70 and the data during the past heat storage operation. On the other hand, while calculating dew point temperature from the measured value of the temperature / humidity sensor 72, the change of dew point temperature is estimated from the data at the time of the past dehumidification operation. And dehumidification air conditioning is performed by controlling the drive of the outside air processing device 60 so that the predicted value of the surface temperature is always higher than the predicted value of the dew point temperature. Thereby, in the air-conditioned room 40, since the surface temperature is always higher than the dew point temperature, the occurrence of condensation can be prevented.

また、蓄熱運転中に圧力センサ74、76の測定値を比較し、被空調室40の内圧が大気圧よりも低い場合には、外気処理装置60のダンパ68を開いて外気の取入量を増やし、被空調室40の内圧が大気圧よりも大きくなるように外気処理装置60を制御する。これにより、被空調室40では、大気圧よりも常に高くなるので、外部から高い湿度の外気が被空調室40に入り込むことを防止することができ、被空調室40を常に低い湿度に保つことができる。なお、被空調室40の内圧が大気圧よりも高い場合であっても、予め設定した上限値を超えている場合には、ダンパ68の開度を小さくして、外気取入量を減少させる。   Further, the measured values of the pressure sensors 74 and 76 are compared during the heat storage operation, and when the internal pressure of the air-conditioned room 40 is lower than the atmospheric pressure, the damper 68 of the external air processing device 60 is opened to determine the intake amount of the external air. The outside air processing device 60 is controlled so that the internal pressure of the air-conditioned room 40 becomes larger than the atmospheric pressure. Thereby, in the air-conditioned room 40, since it is always higher than the atmospheric pressure, it is possible to prevent outside air having high humidity from entering the air-conditioned room 40 from the outside, and to keep the air-conditioned room 40 at a low humidity at all times. Can do. Even if the internal pressure of the air-conditioned room 40 is higher than the atmospheric pressure, if the preset upper limit value is exceeded, the opening degree of the damper 68 is reduced to reduce the intake amount of outside air. .

次に上記の如く構成された空調システム10の躯体蓄熱空調方法について説明する。図2は、通常の空調運転から蓄熱運転に切り替える際のフローを示している。   Next, the housing heat storage air conditioning method of the air conditioning system 10 configured as described above will be described. FIG. 2 shows a flow when switching from normal air conditioning operation to heat storage operation.

同図に示すように、まず、蓄熱運転を開始する条件(本実施形態では、蓄熱運転の開始予定時刻)になったか否かを判断する(ステップS1)。そして、蓄熱運転を開始する条件になった場合には、図1の切替ダンパ32を切り替えて蓄熱運転を開始する(ステップS2)。すなわち、室内機26からの冷却エアを躯体12に吹きつけ、躯体12へ冷熱を蓄熱する。その際、躯体12に吹き付ける冷却エアは、蓄熱運転の終了予定時刻に所望の蓄熱量になるような一定温度、一定風量に制御される。   As shown in the figure, first, it is determined whether or not the condition for starting the heat storage operation (in this embodiment, the scheduled start time of the heat storage operation) is reached (step S1). And when it becomes the conditions which start a thermal storage driving | operation, the switching damper 32 of FIG. 1 is switched and a thermal storage driving | operation is started (step S2). That is, the cooling air from the indoor unit 26 is blown to the housing 12, and cold energy is stored in the housing 12. At that time, the cooling air blown to the housing 12 is controlled to a constant temperature and a constant air volume so that a desired heat storage amount is obtained at the scheduled end time of the heat storage operation.

蓄熱運転中、コントローラ78は、表面温度センサ70の測定値と過去の蓄熱運転データから表面温度の変動を予測する。また、コントローラ78は、温湿度センサ72の測定値から露点温度を算出するとともに、過去の蓄熱運転データから露点温度の変動を予測する。そして、コントローラ78は、露点温度の予測値Tdと表面温度の予測値Tsとを比較し(ステップS3)、Tsが常にTdよりも高くなるように外気処理装置60を制御する。すなわち、TsがTdよりも低くなることが予測される場合には、外気処理装置60を駆動することによって、除湿空調を行う(ステップS4)。これにより、被空調室40には除湿エアが給気されるので、露点温度を下げることができ、表面温度を露点温度よりも常に高く維持することができる。このように露点温度を表面温度よりも常に高くなるように制御することによって、被空調室40内で結露が発生することを防止することができる。   During the heat storage operation, the controller 78 predicts the fluctuation of the surface temperature from the measured value of the surface temperature sensor 70 and the past heat storage operation data. Further, the controller 78 calculates the dew point temperature from the measured value of the temperature / humidity sensor 72 and predicts the fluctuation of the dew point temperature from the past heat storage operation data. Then, the controller 78 compares the predicted dew point temperature value Td with the predicted surface temperature value Ts (step S3), and controls the outside air processing device 60 so that Ts is always higher than Td. That is, when Ts is predicted to be lower than Td, dehumidifying air conditioning is performed by driving the outside air processing device 60 (step S4). Thereby, since the dehumidified air is supplied to the air-conditioned room 40, the dew point temperature can be lowered, and the surface temperature can always be kept higher than the dew point temperature. By controlling the dew point temperature to be always higher than the surface temperature in this way, it is possible to prevent dew condensation from occurring in the air-conditioned room 40.

また、コントローラ78は、蓄熱運転中に被空調室40の内圧と大気圧(外圧)とを比較し(ステップS5)、被空調室40の内圧が大気圧よりも低い場合には、外気処理装置60のダンパ68を開いて外気の取入量を増やす(ステップS6)。これにより、被空調室40の内圧を高めることができ、被空調室40の内圧を大気圧よりも高い状態に維持することができる。したがって、外部から高い湿度の外気が被空調室40に入り込むことを防止することができ、被空調室40を常に低い湿度に保つことができる。   Further, the controller 78 compares the internal pressure of the air-conditioned room 40 with the atmospheric pressure (external pressure) during the heat storage operation (step S5), and if the internal pressure of the air-conditioned room 40 is lower than the atmospheric pressure, the external air processing device. The 60 dampers 68 are opened to increase the intake amount of outside air (step S6). Thereby, the internal pressure of the air-conditioned room 40 can be increased, and the internal pressure of the air-conditioned room 40 can be maintained in a state higher than the atmospheric pressure. Therefore, it is possible to prevent outside air with high humidity from entering the air-conditioned room 40 from the outside, and to keep the air-conditioned room 40 at a low humidity.

このように本実施の形態は、蓄熱運転時に外気処理装置60で被空調室40を除湿運転することによって、被空調室40で結露が発生することを防止することができる。また、本実施の形態は、蓄熱運転時に被空調室40の内圧を大気圧よりも高めることによって、高湿度の外気が被空調室40に入り込むことを防止したので、被空調室40で結露が発生することを防止することができる。したがって、本実施の形態によれば、蓄熱運転時に躯体12の温度を従来よりも大きく下げることができ、蓄熱量を増加させることができるので、ランニングコストを従来よりも下げることができる。   Thus, this Embodiment can prevent that dew condensation occurs in the air-conditioned room 40 by performing the dehumidifying operation of the air-conditioned room 40 with the outside air processing device 60 during the heat storage operation. In addition, since the present embodiment prevents the high-humidity outside air from entering the air-conditioned room 40 by increasing the internal pressure of the air-conditioned room 40 above the atmospheric pressure during the heat storage operation, dew condensation occurs in the air-conditioned room 40. Occurrence can be prevented. Therefore, according to the present embodiment, the temperature of the housing 12 can be greatly reduced during the heat storage operation and the amount of heat storage can be increased, so that the running cost can be reduced as compared with the conventional case.

上記の如く蓄熱運転を行い、蓄熱運転の終了条件(たとえば時刻や蓄熱量等)になった際に蓄熱運転を終了し、通常の空調運転に切り替える(ステップS7)。すなわち、切替ダンパ32を切り替えて、室内機26からの冷却エアが被空調室20に給気されるようにする。その際、被空調室20内のエアが排気口38から天井裏空間24に吸い込まれ、躯体12に蓄えられた冷熱が放熱される。   The heat storage operation is performed as described above, and the heat storage operation is ended when the heat storage operation end condition (for example, time, amount of heat storage, etc.) is reached, and the operation is switched to the normal air conditioning operation (step S7). That is, the switching damper 32 is switched so that the cooling air from the indoor unit 26 is supplied to the air-conditioned room 20. At that time, air in the air-conditioned room 20 is sucked into the ceiling back space 24 from the exhaust port 38 and the cold heat stored in the housing 12 is radiated.

図3は第2の実施形態の空調システムの構成を模式的に示す断面図である。同図に示すように、被空調室40の下部は床面形成部材82で仕切られ、床下空間84が形成されている。外気処理装置60は、ダクト86を介して床下空間84に接続されており、空調エアを床下空間84に給気するようになっている。なお、床下空間84には複数の開口88、88が形成されており、この開口88、88を介して床下空間84のエアが被空調室40に給気される。   FIG. 3 is a cross-sectional view schematically showing the configuration of the air conditioning system of the second embodiment. As shown in the figure, the lower part of the air-conditioned room 40 is partitioned by a floor surface forming member 82 to form an underfloor space 84. The outside air processing device 60 is connected to the underfloor space 84 via the duct 86 so as to supply conditioned air to the underfloor space 84. A plurality of openings 88 and 88 are formed in the underfloor space 84, and air in the underfloor space 84 is supplied to the air-conditioned room 40 through the openings 88 and 88.

上記の如く構成された第2の実施形態によれば、蓄熱運転時に、外気処理装置60で除湿した除湿エアが床下空間84に給気される。したがって、蓄熱運転時に最も温度が低下する床下空間84に除湿エアが直接給気されるので、結露の発生をより確実に防止することができる。   According to the second embodiment configured as described above, the dehumidified air dehumidified by the outside air processing device 60 is supplied to the underfloor space 84 during the heat storage operation. Therefore, since the dehumidified air is directly supplied to the underfloor space 84 where the temperature decreases most during the heat storage operation, it is possible to more reliably prevent the occurrence of condensation.

なお、図3には、建屋内のエアを排気ファン90、90で排気する例が示されている。この排気ファン90、90はトイレ等に設けられ、通常24時間駆動される。このような排気ファン90を有する建屋の場合には、排気ファン90と外気処理装置60とを連動させ、被空調室40の内圧が常に大気圧より高くなるように制御する。   FIG. 3 shows an example in which the air in the building is exhausted by the exhaust fans 90 and 90. The exhaust fans 90, 90 are provided in a toilet or the like and are normally driven for 24 hours. In the case of a building having such an exhaust fan 90, the exhaust fan 90 and the outside air processing device 60 are interlocked so that the internal pressure of the air-conditioned room 40 is always higher than the atmospheric pressure.

また、図3には、蓄熱運転を行う被空調室20のフロアにおいて、排気ファン90を吹き抜けのコミュニケーションシャフト92に連通させた例が示されている。このように蓄熱運転を行うフロアで他の階の余剰空気を排気することによって、蓄熱における熱効率を高めることができる。   Further, FIG. 3 shows an example in which the exhaust fan 90 is communicated with the communication shaft 92 that is blown through on the floor of the air-conditioned room 20 that performs the heat storage operation. In this way, by exhausting excess air from other floors on the floor where the heat storage operation is performed, the thermal efficiency in the heat storage can be increased.

なお、上述した第1、第2の実施形態では、外気処理装置60を駆動して除湿運転を行うようにしたが、室内機46や室外機48を駆動して第2の被空調室40を除湿空調してもよい。   In the first and second embodiments described above, the outside air processing device 60 is driven to perform the dehumidifying operation. However, the indoor unit 46 and the outdoor unit 48 are driven to set the second air-conditioned room 40. You may dehumidify and air-condition.

また、上述した第1、第2の実施形態では、表面温度の予測値や露点温度の予測値に基づいて除湿空調を制御するようにしたが、これに限定するものではなく、常に除湿空調を行ったり、過去の蓄熱運転のデータに基づいて定期的に除湿空調するようにしてもよい。   In the first and second embodiments described above, the dehumidifying air conditioning is controlled based on the predicted surface temperature value and the predicted dew point temperature. However, the present invention is not limited to this, and the dehumidifying air conditioning is always performed. Or may be periodically dehumidified and air-conditioned based on past heat storage operation data.

また、上述した第1、第2の実施形態では、一つの階のみで蓄熱運転する例で説明したが、複数階で蓄熱運転するようにしてもよい。この場合、蓄熱運転する全ての階に対して上の階で除湿空調するとよい。   In the first and second embodiments described above, the heat storage operation is performed on only one floor, but the heat storage operation may be performed on a plurality of floors. In this case, the dehumidifying air conditioning may be performed on the upper floor for all the floors that perform the heat storage operation.

さらに、上述した第1、第2の実施形態は、所定の蓄熱開始時刻で蓄熱を開始するようにしたが、残業などの諸事情により蓄熱開始時刻が遅れる場合には、以下に示す蓄熱量確保運転を行うとよい。   Furthermore, in the first and second embodiments described above, heat storage is started at a predetermined heat storage start time. However, when the heat storage start time is delayed due to various reasons such as overtime, the following heat storage amount is ensured. You should drive.

図4は、蓄熱量確保運転を行った制御の一例を示している。同図において実線は、所定の蓄熱運転開始時刻(0h)から10時間で目標蓄熱量(すなわち蓄熱量100%)となるように蓄熱を行った例を示しており、二つの点線はそれぞれ蓄熱運転時刻が約2時間弱、約3時間弱遅れた場合の例を示している。   FIG. 4 shows an example of the control that performs the heat storage amount securing operation. In the figure, the solid line indicates an example in which heat storage is performed so that the target heat storage amount (that is, the heat storage amount is 100%) in 10 hours from the predetermined heat storage operation start time (0h), and the two dotted lines are the heat storage operation. An example in which the time is delayed by about 2 hours and about 3 hours is shown.

蓄熱開始時刻が遅れた場合は、まず、コントローラ78が当初の蓄熱終了時刻(すなわち10h後)で目標蓄熱量(100%)となるよう、冷却エアの温度及び風量を一定値として算出する。コントローラ78は、その算出した温度及び風量になるように、室内機26及び室外機28を制御する。すなわち、室外機28内の圧縮機を制御して熱媒体の循環量を増加することによって冷却エアの温度を低下させたり、室内機26内のファンの回転数を上昇させることによって冷却エアの風量を増加させたりする。これにより、蓄熱量の経時曲線(点線)は当初の予定(実線)よりも傾きが大きくなり、当初の蓄熱量終了時刻(10h後)に目標蓄熱量(100%)となるように制御される。   When the heat storage start time is delayed, first, the controller 78 calculates the temperature and air volume of the cooling air as constant values so that the target heat storage amount (100%) is reached at the initial heat storage end time (that is, after 10 hours). The controller 78 controls the indoor unit 26 and the outdoor unit 28 so as to achieve the calculated temperature and air volume. That is, by controlling the compressor in the outdoor unit 28 to increase the circulation amount of the heat medium, the temperature of the cooling air is lowered, or by increasing the rotational speed of the fan in the indoor unit 26, the air volume of the cooling air Or increase. Thereby, the time course curve (dotted line) of the heat storage amount becomes larger than the initial schedule (solid line), and is controlled so as to reach the target heat storage amount (100%) at the initial heat storage amount end time (after 10 hours). .

このように、躯体12に吹き付ける冷却エアの温度及び風量の最適値を算出し、その最適値に制御することによって、蓄熱量を当初の予定で確実に終了しつつ、省エネ運転を行うことができる。   Thus, by calculating the optimum values of the temperature and the air volume of the cooling air blown to the housing 12 and controlling them to the optimum values, it is possible to perform the energy saving operation while reliably ending the heat storage amount in the initial schedule. .

図5は、図4と異なる蓄熱量確保運転の例を示している。同図において実線は当初の蓄熱開始時刻(0h)で蓄熱を開始した例であり、点線はそれぞれ約2時間弱、約3時間弱遅れて蓄熱を開始した例を示している。   FIG. 5 shows an example of the heat storage amount securing operation different from FIG. In the figure, the solid line is an example in which heat storage is started at the initial heat storage start time (0h), and the dotted lines are examples in which heat storage is started with a delay of about 2 hours and about 3 hours, respectively.

蓄熱開始時刻が遅れた場合は、まず、蓄熱能力を最大にした状態で蓄熱運転を開始する。すなわち、室外機28内の圧縮機を制御して熱媒体の循環量を最大にして冷却エアの温度を低下させたり、室内機26内のファンの回転数を上昇させることによって冷却エアの風量を増加させたりする。これにより、蓄熱量の経時曲線(点線)は当初の予定(実線)よりも傾きが大きくなり、当初の予定(実線)に近づく。   When the heat storage start time is delayed, first, the heat storage operation is started with the heat storage capacity maximized. That is, by controlling the compressor in the outdoor unit 28 to maximize the circulation amount of the heat medium to reduce the temperature of the cooling air, or to increase the rotational speed of the fan in the indoor unit 26, the air volume of the cooling air is reduced. Or increase it. Thereby, the time course curve (dotted line) of the heat storage amount becomes larger than the initial schedule (solid line) and approaches the original schedule (solid line).

次いで、当初の予定(実線)に近づくにつれて、蓄熱能力(冷却エアの温度と送風量)を、当初(実線)の制御値に徐々に戻していく。すなわち、冷却エアの温度を上昇させたり、冷却エアの風量を低下させたりすることによって、当初の制御値に戻していく。これにより、蓄熱量の経時曲線(点線)は、当初の予定(実線)に重なり、当初の予定どおりに蓄熱を完了する。   Next, as the original schedule (solid line) is approached, the heat storage capacity (cooling air temperature and air flow rate) is gradually returned to the original (solid line) control value. That is, the initial control value is restored by increasing the temperature of the cooling air or decreasing the air volume of the cooling air. Thereby, the time course curve (dotted line) of the heat storage amount overlaps the original schedule (solid line), and the heat storage is completed as originally planned.

上記の如く蓄熱量確保運転を行うことによって、蓄熱開始時刻が遅れた場合にも、当初の終了予定時刻に所望の蓄熱量を確保することができ、且つ、当初の制御に重なるので安定した運転を行うことができる。   By performing the heat storage amount securing operation as described above, even when the heat storage start time is delayed, the desired heat storage amount can be secured at the initial scheduled end time, and the operation is stable because it overlaps the initial control. It can be performed.

本発明を適用した空調システムの第1の実施形態を模式的に示す断面図Sectional drawing which shows typically 1st Embodiment of the air-conditioning system to which this invention is applied. 躯体蓄熱空調方法を示すフロー図Flow diagram showing the thermal storage air conditioning method 本発明を適用した空調システムの第2の実施形態を模式的に示す断面図Sectional drawing which shows typically 2nd Embodiment of the air-conditioning system to which this invention is applied. 蓄熱量確保運転の例を示す蓄熱量経時変化図Thermal storage amount change over time showing an example of heat storage amount securing operation 蓄熱量確保運転の例を示す蓄熱量経時変化図Thermal storage amount change over time showing an example of heat storage amount securing operation

符号の説明Explanation of symbols

10…空調システム、12…躯体、20…被空調室、22…天井部材、24…天井裏空間、26…室内機、28…室外機、32…切替ダンパ、34、36…吹出口、40…被空調室、42…天井部材、44…天井裏空間、46…室内機、48…室外機、50…給気口、52…排気口、60…外気処理装置、66、68…ダンパ、70…表面温度センサ、72…温湿度センサ、74、76…圧力センサ、78…コントローラ、82…床面形成部材、84…床下空間、90…排気ファン   DESCRIPTION OF SYMBOLS 10 ... Air conditioning system, 12 ... Housing, 20 ... Air-conditioned room, 22 ... Ceiling member, 24 ... Ceiling space, 26 ... Indoor unit, 28 ... Outdoor unit, 32 ... Switching damper, 34, 36 ... Air outlet, 40 ... Air-conditioned room, 42 ... ceiling member, 44 ... ceiling space, 46 ... indoor unit, 48 ... outdoor unit, 50 ... air supply port, 52 ... exhaust port, 60 ... outside air treatment device, 66, 68 ... damper, 70 ... Surface temperature sensor 72 ... Temperature / humidity sensor 74, 76 ... Pressure sensor 78 ... Controller 82 ... Floor surface forming member 84 ... Underfloor space 90 ... Exhaust fan

Claims (5)

第1の被空調室の天井を成す躯体に冷却エアを吹きつけて該躯体に蓄熱する躯体蓄熱空調方法において、
前記躯体の蓄熱運転時に、該躯体を床面とする第2の被空調室で除湿空調を行うことを特徴とする躯体蓄熱空調方法。
In a housing heat storage air-conditioning method for storing heat in the housing by blowing cooling air to the housing forming the ceiling of the first air-conditioned room,
A housing heat storage air-conditioning method, wherein dehumidifying air conditioning is performed in a second air-conditioned room having the housing as a floor during the heat storage operation of the housing.
前記冷却エアの吹きつけ位置における前記第2の被空調室側での前記躯体の表面温度を測定するとともに、前記第2の被空調室の内部の露点温度を求め、該露点温度と前記表面温度に基づいて前記除湿空調を制御することを特徴とする請求項1に記載の躯体蓄熱空調方法。   The surface temperature of the enclosure on the second air-conditioned room side at the cooling air blowing position is measured, the dew point temperature inside the second air-conditioned room is determined, and the dew point temperature and the surface temperature The housing heat storage air-conditioning method according to claim 1, wherein the dehumidifying air-conditioning is controlled on the basis of the temperature. 前記表面温度の変化を予測するとともに前記露点温度の変化を予測し、該予測した表面温度が前記予測した露点温度よりも高くなるように前記除湿空調を制御することを特徴とする請求項2に記載の躯体蓄熱空調方法。   The dehumidification air-conditioning is controlled so that the change in the dew point temperature is predicted while the change in the surface temperature is predicted, and the predicted surface temperature is higher than the predicted dew point temperature. The enclosure thermal storage air conditioning method described. 第1の被空調室の天井を成す躯体に冷却エアを吹きつけて該躯体に蓄熱する躯体蓄熱空調方法において、
前記躯体の蓄熱運転時に、該躯体を床面とする第2の被空調室の内圧が大気圧よりも大きくなるように空調することを特徴とする躯体蓄熱空調方法。
In a housing heat storage air-conditioning method for storing heat in the housing by blowing cooling air to the housing forming the ceiling of the first air-conditioned room,
A housing heat storage air-conditioning method, characterized in that, during the heat storage operation of the housing, air conditioning is performed so that the internal pressure of the second air-conditioned room having the housing as a floor surface becomes larger than the atmospheric pressure.
前記第2の被空調室に外気を除湿して供給することによって、該第2の被空調室の内圧を大気圧よりも大きくすることを特徴とする請求項4に記載の躯体蓄熱空調方法。   The enclosure heat storage air conditioning method according to claim 4, wherein the internal pressure of the second air-conditioned room is made larger than the atmospheric pressure by dehumidifying and supplying outside air to the second air-conditioned room.
JP2007038268A 2007-02-19 2007-02-19 Building frame heat storage air conditioning method Pending JP2008202838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038268A JP2008202838A (en) 2007-02-19 2007-02-19 Building frame heat storage air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038268A JP2008202838A (en) 2007-02-19 2007-02-19 Building frame heat storage air conditioning method

Publications (1)

Publication Number Publication Date
JP2008202838A true JP2008202838A (en) 2008-09-04

Family

ID=39780539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038268A Pending JP2008202838A (en) 2007-02-19 2007-02-19 Building frame heat storage air conditioning method

Country Status (1)

Country Link
JP (1) JP2008202838A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009365A (en) * 1998-04-20 2000-01-14 Yuuki:Kk Air-conditioning system
JP2001304628A (en) * 2000-04-25 2001-10-31 Matsushita Seiko Co Ltd Air-conditioning/heat storage system utilizing body heat storage
JP2003161498A (en) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp Air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009365A (en) * 1998-04-20 2000-01-14 Yuuki:Kk Air-conditioning system
JP2001304628A (en) * 2000-04-25 2001-10-31 Matsushita Seiko Co Ltd Air-conditioning/heat storage system utilizing body heat storage
JP2003161498A (en) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp Air conditioning system

Similar Documents

Publication Publication Date Title
US11353233B2 (en) Air-conditioning system and air-conditioning system controller
JP5855895B2 (en) Air conditioning systems for communication / information processing equipment rooms, etc.
JP6253459B2 (en) Ventilator for air conditioning
JP5508940B2 (en) Operation control method of air conditioning control system
JP4527583B2 (en) Air conditioner
JP5612978B2 (en) Air conditioning system
JP2008051466A (en) Variable air volume device and air conditioning system
JP6006593B2 (en) Air conditioning control system and air conditioning control method
JP2010190524A (en) Ventilator and method of controlling ventilator
JP5745337B2 (en) Air conditioning system
EP1980796B1 (en) Air-conditioning system
JP5183291B2 (en) Rack air conditioning system and operation method thereof, rack type air conditioner
JP2015169399A (en) Ventilator
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
JP4439419B2 (en) Control method of air conditioner
JP6546870B2 (en) Air conditioning system and control method thereof
JP6618388B2 (en) Air conditioning system
JP6466108B2 (en) Control system and air conditioning system for controlling an air conditioning system
JP6660727B2 (en) Outdoor air cooling system
JP2007333355A (en) Air conditioning system
JP2008202838A (en) Building frame heat storage air conditioning method
WO2019035194A1 (en) Heat exchanging ventilation device
JP5849237B2 (en) Embedded ceiling air conditioner
JP6024527B2 (en) Blower, blower system and building
WO2022181522A1 (en) Ventilation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120223