WO2023138635A1 - 一种依喜替康衍生物-抗体偶联物及其医药用途 - Google Patents

一种依喜替康衍生物-抗体偶联物及其医药用途 Download PDF

Info

Publication number
WO2023138635A1
WO2023138635A1 PCT/CN2023/073014 CN2023073014W WO2023138635A1 WO 2023138635 A1 WO2023138635 A1 WO 2023138635A1 CN 2023073014 W CN2023073014 W CN 2023073014W WO 2023138635 A1 WO2023138635 A1 WO 2023138635A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
antibody
halogen
occurrence
compound
Prior art date
Application number
PCT/CN2023/073014
Other languages
English (en)
French (fr)
Inventor
秦文芳
尹磊
焦娇
谷梦君
陈毅昆
乔晶
Original Assignee
甘李药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甘李药业股份有限公司 filed Critical 甘李药业股份有限公司
Priority to US18/730,116 priority Critical patent/US20250161473A1/en
Priority to EP23742950.1A priority patent/EP4494657A1/en
Priority to CN202380017818.1A priority patent/CN118829450A/zh
Publication of WO2023138635A1 publication Critical patent/WO2023138635A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68037Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a camptothecin [CPT] or derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell

Definitions

  • the present invention relates to a class of antibody-drug conjugates of exitecan analogues with a new structure. Specifically, the present disclosure relates to an antibody-drug conjugate containing an exitecan analogue of structural unit Y, a pharmaceutical composition comprising the conjugate, and uses of the conjugate or the pharmaceutical composition.
  • antibody-drug conjugate generally consists of three parts: antibody or antibody-like ligand, small-molecule drug, and a linker that couples the ligand and drug.
  • Antibody-drug conjugates use the specific recognition of antibodies to antigens to transport drug molecules to the vicinity of target cells and effectively release drug molecules to achieve therapeutic purposes.
  • ADC drug Mylotarg from Pfizer was launched for the first time, and ADC, a field full of potential and challenges, has since entered the public eye.
  • the pharmaceutical market has ushered in a new round of upsurge in ADC research and development. At present, a total of 13 ADC drugs have been launched in the world.
  • Exitecan is known as a camptothecin derivative that inhibits DNA topoisomerase I and exhibits anti-tumor effects. It was developed by Daiichi Sankyo Company. It was used as a single chemotherapy drug in the early stage and advanced to Phase III clinical trials. The main indications are bone cancer, prostate cancer, breast cancer, pancreatic cancer, etc. Unlike irinotecan, which is currently in clinical use, exitecan does not require activation by the use of enzymes.
  • exitecan has stronger inhibitory activity on topoisomerase I, and has stronger cell injury activity against various cancer cells in vitro. Exitecan has not been successfully marketed as a single chemotherapy drug, and it is speculated that it is related to its high cell activity, resulting in a narrow therapeutic window.
  • the antibody conjugate drug DS-8201a (trade name: Enhertu), jointly developed and commercialized by Daiichi Sankyo/AstraZeneca, was launched in December 2019.
  • the drug forms amide derivatives of Exixotecan and glycolic acid and connects them to form an ADC.
  • Enhertu has shown the potential to become a blockbuster.
  • the present invention provides a ligand-drug conjugate or a pharmaceutically acceptable salt thereof, wherein the ligand-drug conjugate comprises a structure represented by formula (-D 0 ):
  • Each occurrence of R c is independently NH, O, or S; each occurrence of R d and Re is independently C(R m ) 2 , NR m , O or S; each occurrence of R f is independently CR m or N; preferably, when the ring formed by R d , Re and R f is a heterocyclyl, the heterocyclyl contains 1, 2, 3 or 4 heteroatoms, and the heteroatoms are each independently selected from N, O, and S;
  • Each occurrence of R m is independently H, halogen, haloalkyl, -OH, -CN, -NO 2 , alkyl, alkoxy, -NH 2 , -NH-alkyl, or -N(alkyl) 2 , deuterium atom, deuterated alkyl, aminoalkylene, hydroxyalkylene, nitroalkylene or cyanoalkylene, preferably, each occurrence of R m is independently H, halogen, haloalkyl, -OH, -CN, -NO 2 , alkyl, alkoxy, - NH 2 , -NH-alkyl, or -N(alkyl) 2 ;
  • p1 is an integer of 0-17, p2 is an integer of 1-18, and p1+p2 ⁇ 18; preferably, p1 is an integer of 0, 1, 2, 3, 4, 5, 6, or 7, and p2 is an integer of 1, 2, 3, 4, 5, 6, 7 or 8, And p1+p2 ⁇ 8;
  • Cy is independently selected from cycloalkylene, heterocyclylene, arylene or heteroarylene, preferably each appearance of Cy is independently selected from 3-10 membered cycloalkylene, 3-10 membered heterocyclylene, 6-10 membered arylene, or 5-10 membered heteroarylene; preferably, said heterocyclylene and heteroarylene contain 1, 2, 3 or 4 heteroatoms, and said heteroatoms are independently selected from N, O and S; said cycloalkylene, Heterocyclylene, arylene, and heteroarylene are unsubstituted or optionally selected from halogen, -OH, -CN, haloalkyl, -NO 2 , Alkyl, Alkoxy, -NH 2 , -NH-alkyl, and -N(alkyl) 2 Substituents are preferably unsubstituted or optionally selected from halogen, -OH, -CN, -CF 3 , -NO 2 ⁇ C
  • the Ar 1 Each occurrence is independently selected from arylene or heteroarylene, preferably, the Ar 1 Each occurrence is independently selected from 6-10 membered arylene or 5-10 membered heteroarylene; preferably said heteroarylene contains 1, 2, 3, or 4 heteroatoms independently selected from N, O and S; said arylene and heteroarylene are unsubstituted or optionally selected from halogen, -OH, -CN, haloalkyl, -NO 2 , Alkyl, Alkoxy, -NH 2 , -NH-alkyl, and -N(alkyl) 2 Substituents are preferably, unsubstituted or optionally selected from halogen, -OH, -CN, -CF 3 , -NO 2 ⁇ C 1-6 Alkyl, -OC 1-6 Alkyl, -NH 2 , -NH(C 1-6 Alkyl), and -N(C 1-6 alkyl) 2 Substituent substitution;
  • R a and R b The same or different, and each occurrence is independently selected from hydrogen atom, halogen, haloalkyl, -OH, -CN, -NO 2 , Alkyl, Alkoxy, -NH 2 , -NH-alkyl, or -N(alkyl) 2 , deuterium atom, deuterated alkyl, aminoalkylene, hydroxyalkylene, nitroalkylene and cyanoalkylene, preferably, each occurrence is independently selected from hydrogen atom, deuterium atom, halogen, alkyl, haloalkyl, deuterated alkyl, alkoxy, -OH, -NH 2 , -CN, nitro, and hydroxyalkylene, preferably, each independently selected from hydrogen atom, deuterium atom, halogen, C 1-6 Alkyl, halogenated C 1-6 Alkyl, deuterated C 1-6 Alkyl, -OC 1-6 Alkyl, -OH, -
  • each occurrence of X is independently a single bond, -NH-, O or S;
  • the wavy line in formula (-D 0 ) represents covalent attachment to a linker unit or to an antibody or polypeptide that binds an antigen expressed by a target cell;
  • m is independently an integer of 0, 1, 2, 3 or 4.
  • the present invention provides a ligand-drug conjugate or a pharmaceutically acceptable salt thereof, wherein the ligand-drug conjugate comprises a structure represented by formula (-D):
  • R c Each occurrence is independently NH, O, or S;
  • R d and R e Each occurrence is independently C(R m ) 2 ⁇ NR m , O or S;
  • R f Each occurrence is independently CR m or N; preferably, when R d , R e and R f When the ring formed is a heterocyclic group, the heterocyclic group contains 1, 2, 3 or 4 heteroatoms, each of which is independently selected from N, O, and S; each occurrence is independently H, halogen, haloalkyl, -OH, -CN, -NO 2 , Alkyl, Alkoxy, -NH 2 , -NH-alkyl, or -N(alkyl) 2 , deuterium atom, deuterated alkyl, aminoalkylene, hydroxyalkylene, nitroalkylene or cyanoalkylene, preferably, R m Each occurrence is independently H, halogen, haloalkylene, -OH
  • a ligand-drug conjugate represented by the general formula (Pc-LD 0 ) or the general formula (Pc-LD) or a pharmaceutically acceptable salt thereof is provided:
  • Y is as mentioned above, and n is an integer or decimal of 1 to 15; preferably, n is 1 to 13 preferably, n is an integer or a mouse of 1 to 10; more preferably, n is an integer or a decimal of 3 to 8;
  • Pc is a ligand; L is a linker unit.
  • R c Each occurrence is independently NH, or O;
  • R d and R e Each occurrence is independently C(R m ) 2 or NR m ; f CR for each occurrence m ; when R d , R e and R f When the formed ring is a heterocyclic group, the heterocyclic group contains 1, 2, or 3 heteroatoms, each of which is independently selected from N and O; in some embodiments, R m Each occurrence is independently H, halogen, -OH, -CN, -NO 2 ⁇ -CF 3 ⁇ C 1-6 Alkyl, -OC 1-6 Alkyl, -NH 2 , -NH(C 1-6 Alkyl), or -N(C 1-6 alkyl) 2 , preferably H, halogen, -OH, -CN, C 1-6 Alkyl, or -OC 1-6 Alkyl, preferably H, halogen, -OH, -CN, C 1-3 Alkyl,
  • Y is selected from: Wherein, p1 is an integer of 0, 1, 2, or 3, p2 is an integer of 1, 2, 3, or 4, and 2 ⁇ p1+p2 ⁇ 4; X is independently selected from a single bond, -NH- or O, and m is an integer of 0, 1, 2, or 3;
  • X is independently selected from a single bond, -NH- or O, m is an integer of 0, 1, 2 or 3, each occurrence of R is independently selected from halogen, -OH, -CN, -CF 3 , - NO 2 , C 1-6 alkane -OC 1-6 alkyl, -NH 2 , -NH(C 1-6 alkyl), and -N(C 1-6 alkyl) substituents, q is an integer of 0, 1, 2, 3 or 4; preferably, X is independently selected from a single bond or -NH-, m is an integer of 0 or 1, each occurrence of R is independently selected from halogen, -OH, -CN
  • L is a peptide residue consisting of 2 to 7 amino acids, preferably L is a peptide residue consisting of 2, 3, 4, 5 or 6 amino acids, wherein the amino acid is unsubstituted or optionally further substituted by one or more substituents selected from halogen, hydroxyl, -CN, amino, alkyl, haloalkyl, deuterated alkyl, alkoxy and cycloalkyl, preferably, optionally further selected from halogen, hydroxyl, -CN, amino, Ci -6 alkyl, halogenated Ci -6 alkyl, deuterated Ci One or more substituents of -6 alkyl, C 1-6 alkoxy and C 5-8 cycloalkyl;
  • R 4 and R 5 are the same or different, and each occurrence is independently selected from hydrogen atom, halogen, C 1-6 alkyl , halogenated C 1-6 alkyl, deuterated C 1-6 alkyl and -C 1-6 alkylene-OH;
  • R 6 and R 7 are the same or different, and each occurrence is independently selected from hydrogen atom, halogen, C 1-6 alkyl, halogenated C 1-6 alkyl, deuterated C 1-6 alkyl and -C 1-6 alkylene-OH;
  • the L 1 end is connected to the ligand, and the L 4 end is connected to the Y.
  • L is a peptide residue consisting of 2 to 7 amino acids selected from alanine, phenylalanine, glycine, valine, lysine, citrulline, serine, glutamic acid, aspartic acid; preferably a dipeptide residue, tripeptide residue or tetrapeptide residue composed of amino acids selected from alanine, phenylalanine, glycine, valine, lysine, citrulline, serine, glutamic acid, aspartic acid; more preferably a dipeptide residue of valine-alanine, alanine-alanine amino acid-alanine tripeptide residues or glycine-glycine-phenylalanine-glycine tetrapeptide residues.
  • Ar is selected from 6-8 membered arylene groups, preferably phenylene, said arylene or phenylene is unsubstituted or optionally substituted by a substituent selected from H, halogen, -OH, -CN, C 1-6 alkyl; R is each independently selected from hydrogen atom, C 1-3 alkyl, halogenated C 1-6 alkyl and deuterated C 1-3 alkyl; R and R are the same or different , and each occurrence is independently selected from hydrogen atom, halogen, C 1-3 alkyl Alkyl, halogenated C 1-3 alkyl and deuterated C 1-3 alkyl.
  • the linker unit -L- is:
  • a ligand-drug conjugate or a pharmaceutically acceptable salt thereof is provided, which is selected from the following structural formulas:
  • n is an integer or a decimal of 1 to 15; preferably, n is an integer or a decimal of 1 to 13; preferably, n is an integer or a decimal of 1 to 10; more preferably, n is an integer or a decimal of 3 to 8; Pc is a ligand.
  • Pc is an antibody or its antigen-binding fragment or polypeptide, wherein the antibody is selected from chimeric antibodies, humanized antibodies and fully human antibodies; preferably, the antibody or its antigen-binding fragments are selected from anti-TROP-2 antibodies, anti-HER2 (ErbB2) antibodies, anti-EGFR antibodies, anti-B7-H3 antibodies, anti-c-Met antibodies, anti-HER3 (ErbB3) antibodies, anti-HER4 (ErbB4) antibodies, anti-LIV-1 antibodies, anti-ROR1 Antibody, Anti-CD20 Antibody, Anti-CD22 Antibody, Anti-CD30 Antibody, Anti-CD33 Antibody, Anti-CD44 Antibody, Anti-CD56 Antibody, Anti-CD70 Antibody, Anti-CD73 Antibody, Anti-CD105 Antibody, Anti-CEA Antibody, Anti-A33 Antibody, Anti-Cripto Antibody, Anti-EphA2 Antibody, Anti-G250 Antibody, Anti-MUCl Antibody, Anti-Lew
  • the anti-HER3 antibody or antigen-binding fragment thereof comprises H'CDR1 consisting of the amino acid sequence of SEQ ID No: 11, H'CDR2 consisting of the amino acid sequence of SEQ ID No: 12, and H'CDR3 consisting of the amino acid sequence of SEQ ID No: 13 in the heavy chain, and/or, in the light chain, comprising L'CDR1 consisting of the amino acid sequence of SEQ ID No: 14, consisting of the amino acid sequence of SEQ ID No: 15 L'CDR2 composed of the amino acid sequence of SEQ ID No:16 and L'CDR3 composed of the amino acid sequence of SEQ ID No: 16; more preferably, the anti-HER3 antibody or its antigen-binding fragment comprises the heavy chain variable region shown in SEQ ID No: 17 in the heavy chain, and/or the light chain variable region shown in SEQ ID No: 18 in the light chain; more preferably, the anti-HER3 antibody or antigen-binding fragment thereof comprises the heavy chain with the amino acid sequence of SEQ ID NO:
  • Another aspect of the present invention provides a compound represented by general formula (E 0 ) or formula (E) or a pharmaceutically acceptable salt thereof: in,
  • each occurrence of R c is independently NH, or O; R d and R e ⁇ C(R m ) 2 ⁇ NR m ;R f ⁇ CR m ; ⁇ R d ⁇ R e ⁇ R f ⁇ , ⁇ 1 ⁇ 2 ⁇ 3 ⁇ , ⁇ N ⁇ O; ⁇ ,R m ⁇ H ⁇ -OH ⁇ -CN ⁇ -NO 2 ⁇ -CF 3 ⁇ C 1-6 ⁇ -OC 1-6 ⁇ -NH 2 ⁇ -NH(C 1-6 ⁇ ) ⁇ -N(C 1-6 ⁇ ) 2 , ⁇ H ⁇ -OH ⁇ -CN ⁇ C 1-6 ⁇ -OC 1-6 ⁇ , ⁇ H ⁇ -OH ⁇ -CN ⁇ C 1-3 ⁇ -OC 1-3 ⁇ , ⁇ -Cl ⁇ -Br ⁇ -F ⁇ -OH ⁇ -CN ⁇ -CF 3 ⁇ -NO 2 ⁇ -CH 3 ⁇ -OCH 3 ; ⁇ ,p1 ⁇ 0 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ ,p2 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4
  • the compound of formula (E 0 ) or formula (E) is not
  • Y is selected from: Among them, p1 is an integer of 0, 1, 2, or 3, and p2 is an integer of 1, 2, or 4, and 2 ⁇ p1+p2 ⁇ 4; X is independently selected from a single bond, -NH- or O, and m is an integer of 0, 1, 2, or 3; or
  • Compounds represented by the general formula (E) of the present invention include but are not limited to:
  • Another aspect of the present invention provides a compound having a structure shown in the following formula (I):
  • Ar 2 is L 3 ⁇ - ⁇ - ⁇ - ⁇ - ⁇ - ⁇ - ⁇ - ⁇ - ⁇ ;L 4 ⁇ -NR 5 (CR 6 R 7 ) t -Z-(CR 6 R 7 ) t -COOH ⁇ -NR 5 -Ar 3 -(CR 6 R 7 ) t -OH, ⁇ t ⁇ 1 ⁇ 3 ⁇ ;Z ⁇ O ⁇ S ⁇ -NH-;A
  • the compound of formula (I) is selected from:
  • compositions preparations and kits
  • Another aspect of the present invention further relates to a pharmaceutical composition, which contains a therapeutically effective amount of the ligand-drug conjugate or compound as described in the present invention, or a pharmaceutically acceptable salt or solvate thereof, and one or more pharmaceutically acceptable carriers.
  • Another aspect of the present invention also relates to a pharmaceutical preparation comprising the compound of formula I or a pharmaceutically acceptable salt thereof as an active ingredient, or the pharmaceutical composition of the present invention.
  • the formulation is in the form of a solid formulation, a semi-solid formulation, a liquid formulation, or a gaseous formulation.
  • compositions of the present invention can be administered by a variety of routes depending on whether local or systemic treatment is desired and the area to be treated.
  • Topically e.g., transdermal, dermal, ocular, and mucous membranes including intranasal, Vaginal and rectal delivery
  • pulmonary e.g, by inhalation or insufflation of powder or aerosol, including by nebulizer; intratracheal, intranasal
  • parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, eg, intrathecal or intracerebroventricular, administration.
  • kits for example in the form of a kit.
  • articles of manufacture are intended to include, but are not limited to, kits and packages.
  • the kit may also include instructions for use.
  • Another aspect of the present invention further relates to the ligand-drug conjugate or compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutical composition thereof, which is used as a medicine.
  • Another aspect of the present invention further relates to the use of the ligand-drug conjugate or compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutical composition thereof in the preparation of a drug for treating or preventing tumors; preferably, the tumor is a cancer associated with TROP-2 expression, or the tumor is a cancer associated with HER3 expression; preferably, the cancer associated with HER3 expression is selected from non-small cell lung cancer, melanoma, breast cancer, and colorectal adenocarcinoma; preferably, the cancer associated with TROP-2 expression selected from breast cancer, triple negative breast cancer, gastric cancer and pancreatic cancer.
  • Another aspect of the present invention further relates to a method for treating and/or preventing tumors, the method comprising administering a therapeutically effective dose of the ligand-drug conjugate or compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutical composition comprising the same to a patient in need thereof;
  • the tumor is a cancer associated with TROP-2 expression
  • the tumor is a cancer associated with HER3 expression
  • the cancer associated with HER3 expression is selected from non-small cell lung cancer, melanoma, breast cancer, and colorectal adenocarcinoma Cancer
  • the cancer associated with TROP-2 expression is selected from breast cancer, triple-negative breast cancer, gastric cancer and pancreatic cancer.
  • Another aspect of the present invention further relates to the ligand-drug conjugate or compound of the present invention, or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutical composition comprising the same, which is used for preventing or treating tumors; preferably, wherein the tumors are cancers related to TROP-2 expression.
  • exitecan analogs provided by the present invention have strong tumor suppression efficiency, and the TROP-2 antibody-drug conjugates and HER-3 antibody-drug conjugates provided by the present invention have good tumor suppression effects and are suitable for clinical drug application.
  • compositions of the present invention may exist in free form or, where appropriate, as pharmaceutically acceptable derivatives thereof.
  • pharmaceutically acceptable derivatives include, but are not limited to, pharmaceutically acceptable salts, prodrugs, stereoisomers (including but not limited to diastereoisomers and enantiomers), tautomers, solvates, polymorphs and isotopic compounds, which can directly or indirectly provide the compound of the present invention or its metabolites after they are administered to a patient in need thereof. Therefore, when referring to "the compound of the present invention” herein, it is also intended to cover the above-mentioned various derivative forms of the compound.
  • pharmaceutically acceptable salt refers to a salt that retains the biological effectiveness of the free acids and bases of the specified compound without adverse biological effects.
  • pharmaceutically acceptable salts include, but are not limited to: (1) acid addition salts, salts formed with inorganic acids such as hydrochloric acid, sulfuric acid, hydrobromic acid, nitric acid, phosphoric acid, etc.; or (2) base addition salts, salts formed with alkali metals such as lithium, sodium, potassium, etc.; salts formed with alkaline earth metals such as calcium, magnesium, etc.; Other pharmaceutically acceptable salts are known to those skilled in the art.
  • the prodrugs of the compounds of the present invention are included in the protection scope of the present invention.
  • the prodrugs refer to functional derivatives that are readily converted in vivo to the desired compound. Therefore, the term "administering" in the treatment method provided by the present invention includes administering the compound disclosed in the present invention, or although not explicitly disclosed, it can be converted into the compound disclosed in the present invention after administration to the subject to treat various diseases mentioned above. Routine methods for selecting and preparing suitable prodrug derivatives are described, for example, in such books as Design of Prodrugs, H. Bundgaard, Elsevier, 1985.
  • the compounds of the present invention may contain one or more asymmetric centers and may thereby give rise to diastereoisomers and optical isomers.
  • the present invention includes all possible diastereoisomers and their racemic mixtures, their substantially pure resolved enantiomers, all possible geometric isomers and their pharmaceutically acceptable salts.
  • the compound of the present invention does not exactly define the three-dimensional structure of a certain position of the compound.
  • the present invention includes all stereoisomers of the compounds and pharmaceutically acceptable salts thereof. Furthermore, mixtures of stereoisomers and isolated specific stereoisomers are also included in the present invention. During the synthesis of such compounds, or during the use of racemization or epimerization procedures well known to those of ordinary skill in the art, the products obtained may be mixtures of stereoisomers.
  • the present invention includes any possible tautomers and their pharmaceutically acceptable salts, and their mixtures.
  • the present invention includes any possible solvates and polymorphs.
  • the type of solvent forming a solvate is not particularly limited as long as the solvent is pharmacologically acceptable.
  • water, ethanol, propanol, acetone, and the like can be used.
  • the invention also includes all pharmaceutically acceptable isotopic compounds which are identical to the compounds of the invention except that one or more atoms are replaced by atoms having the same atomic number but an atomic mass or mass number different from that prevailing in nature.
  • isotopes suitable for inclusion in compounds of the invention include, but are not limited to, isotopes of hydrogen (e.g., deuterium ( 2H ), tritium ( 3H )); isotopes of carbon ( e.g., C and C ) ; isotopes of chlorine ( e.g. , Cl); isotopes of iodine (e.g., I ) ; (eg 32 P); and sulfur isotopes (eg 34 S).
  • isotopes of hydrogen e.g., deuterium ( 2H ), tritium ( 3H )
  • isotopes of carbon e.g., C and C
  • isotopes of chlorine e.g. ,
  • ligand is a macromolecular compound that recognizes and binds to an antigen or receptor associated with a target cell thing.
  • the role of the ligand is to present the drug to the target cell population bound to the ligand.
  • the ligand is represented as Pc, and the ligand can form a link with the linking unit through a heteroatom on the ligand, preferably an antibody or its antigen-binding fragment or polypeptide, and the antibody is selected from chimeric antibodies, humanized antibodies, fully human antibodies or murine antibodies; preferably monoclonal antibodies.
  • drug refers to a cytotoxic drug, expressed as E or E 0 , which is a chemical molecule that can strongly destroy the normal growth of tumor cells.
  • linker unit or “linker segment” or “linker unit” refers to a chemical structural segment or bond that is connected to a ligand at one end and a drug at the other end, and can also be connected to other linkers before being connected to a drug.
  • the preferred scheme of the present disclosure is expressed as L and L 1 to L 4 , wherein the end of L 1 is connected to the ligand, and the end of L 4 is connected to the structural unit Y and then connected to the drug (E or E 0 ).
  • ligand-drug conjugate means that a ligand is linked to a biologically active drug through a stable linker unit.
  • the "ligand-drug conjugate” is preferably an antibody-drug conjugate (antibody drug conjugate, ADC), which refers to linking a monoclonal antibody or antibody fragment with a toxic drug with biological activity through a stable linker unit.
  • ADC antibody drug conjugate
  • antibody refers to an immunoglobulin, which is a tetrapeptide chain structure composed of two identical heavy chains and two identical light chains linked by interchain disulfide bonds.
  • the amino acid composition and sequence of the constant region of the immunoglobulin heavy chain are different, so their antigenicity is also different.
  • immunoglobulins can be divided into five classes, or isotypes of immunoglobulins, namely IgM, IgD, IgG, IgA, and IgE, and their corresponding heavy chains are ⁇ chains, delta chains, gamma chains, alpha chains, and epsilon chains, respectively.
  • IgG can be divided into different subclasses according to the amino acid composition of its hinge region and the number and position of heavy chain disulfide bonds.
  • IgG can be divided into IgG1, IgG2, IgG3, and IgG4.
  • Light chains are classified as either kappa chains or lambda chains by difference in the constant region.
  • Each of the five Ig classes can have either a kappa chain or a lambda chain.
  • Antibodies of the present disclosure are preferably specific antibodies against cell surface antigens on target cells, non-limiting examples are the following antibodies: anti-TROP-2 antibody, anti-HER2 (ErbB2) antibody, anti-EGFR antibody, anti-B7-H3 antibody, anti-c-Met antibody, anti-HER3 (ErbB3) antibody, anti-HER4 (ErbB4) antibody, anti-LIV-1 antibody, anti-ROR1 antibody, anti-CD20 antibody, anti-CD22 antibody, anti-CD30 antibody, anti- CD33 antibody, anti-CD44 antibody, anti-CD56 antibody, anti-CD70 antibody, anti-CD73 antibody, anti-CD105 antibody, anti-CEA antibody, anti-A33 antibody, anti-Cripto antibody, anti-EphA2 antibody, anti-G250 antibody, anti-MUCl antibody, anti-Lewis Y antibody, anti-VEGFR antibody, anti-GPNMB antibody, anti-Integrin antibody, anti-PSMA antibody, anti-Tenascin-C antibody, anti-S
  • the antibodies of the present invention include murine antibodies, chimeric antibodies, humanized antibodies and fully human antibodies, preferably humanized antibodies and fully human antibodies.
  • murine antibody in the present invention refers to an antibody prepared by using mice according to the knowledge and skills in the art. During preparation, test subjects are injected with specific antigens, and then isolated and expressed antibodies with desired sequence or functional properties body hybridoma.
  • chimeric antibody is an antibody formed by fusing the variable region of a murine antibody with the constant region of a human antibody, which can reduce the immune response induced by the murine antibody.
  • To establish a chimeric antibody it is necessary to first establish a hybridoma that secretes a mouse-derived specific monoclonal antibody, then clone the variable region gene from the mouse hybridoma cell, and then clone the constant region gene of the human antibody as required, link the mouse variable region gene and the human constant region gene to form a chimeric gene, insert it into an expression vector, and finally express the chimeric antibody molecule in a eukaryotic system or a prokaryotic system.
  • humanized antibody also known as CDR-grafted antibody, refers to antibodies produced by grafting mouse CDR sequences into human antibody variable region frameworks, that is, different types of human germline antibody framework sequences. It can overcome the heterologous reaction induced by chimeric antibodies due to carrying a large amount of mouse protein components.
  • antigen-binding fragment refers to one or more fragments of an antibody that retain the ability to specifically bind an antigen. It has been shown that fragments of full-length antibodies can be utilized to perform the antigen-binding function of the antibody. “ ⁇ ” ⁇ (i)Fab ⁇ , ⁇ VL ⁇ VH ⁇ CL ⁇ CH1 ⁇ ;(ii)F(ab') 2 ⁇ , ⁇ Fab ⁇ ,(iii) ⁇ VH ⁇ CH1 ⁇ Fd ⁇ ;(iv) ⁇ VH ⁇ VL ⁇ Fv ⁇ ;(v) ⁇ dAb ⁇ (Ward ⁇ ,(1989)Nature341:544-546), ⁇ VH ⁇ ; ⁇ (vi) ⁇ (CDR) ⁇ (vii) ⁇ CDR ⁇ Furthermore, although the two domains VL and VH of an Fv fragment are encoded by separate genes, they can be linked by a synthetic linker using recombinant methods, thereby enabling the production of a single protein chain (known as a single chain Fv (scFv) in which the VL and
  • Such single chain antibodies are also intended to be encompassed within the term "antigen-binding fragment" of an antibody.
  • antibody fragments are obtained using conventional techniques known to those skilled in the art, and the fragments are screened for functionality in the same manner as for intact antibodies.
  • Antigen-binding portions can be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact immunoglobulins.
  • Fab is an antibody fragment having a molecular weight of about 50,000 and having antigen-binding activity among fragments obtained by treating an IgG antibody molecule with protease papain (cleavage of the amino acid residue at position 224 of the H chain), in which about half of the N-terminal side of the H chain and the entire L chain are bonded together by a disulfide bond.
  • F(ab')2 is an antibody fragment having a molecular weight of about 100,000 and having antigen-binding activity and comprising two Fab regions connected at the hinge position obtained by digesting the lower part of the two disulfide bonds in the IgG hinge region with the enzyme pepsin.
  • Fab' is an antibody fragment having a molecular weight of about 50,000 and having antigen-binding activity obtained by cleaving the disulfide bond in the hinge region of the above-mentioned F(ab')2.
  • DNA encoding the Fab' fragment of the antibody can be inserted into a prokaryotic expression vector
  • the Fab' is produced by expressing the Fab' into a prokaryote or eukaryote into an expression vector for prokaryote or eukaryote and introducing the vector into a prokaryote or eukaryote.
  • single chain antibody means a molecule comprising an antibody heavy chain variable domain (or region; VH) and an antibody light chain variable domain (or region; VL) connected by a linker.
  • Such scFv molecules may have the general structure: NH2 -VL-linker-VH-COOH or NH2 -VH-linker-VL-COOH.
  • Suitable prior art linkers consist of the repeated GGGGS amino acid sequence or variants thereof, for example using 1-4 repeat variants (Holliger et al. (1993), Proc. Natl. Acad. Sci. USA 90:6444-6448).
  • linkers useful in the present disclosure are described by Alfthan et al. (1995), Protein Eng. 8:725-731, Choi et al. (2001), Eur. J. Immuno 1.31:94-106, Hu et al. (1996), Cancer Res. 56:3055-3061, Kipriyanov et al. (1999), J. Mol. Biol. 293:41-56 and described by Roovers et al. (2001) Cancer Immunol.
  • CDR refers to one of the six hypervariable regions within the variable domain of an antibody that primarily contribute to antigen binding.
  • One of the most commonly used definitions of the six CDRs is provided by Kabat E.A. et al., (1991) Sequences of proteins of immunological interest. NIH Publication 91-3242).
  • the Kabat definition of CDRs applies only to CDR1, CDR2 and CDR3 (CDR L1, CDR L2, CDR L3 or L1, L2, L3) of the light chain variable domain, and CDR2 and CDR3 (CDR H2, CDR H3 or H2, H3) of the heavy chain variable domain.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • the vector is a "plasmid,” which refers to a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • the vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
  • the vectors disclosed herein are capable of autonomous replication in the host cell into which they have been introduced (e.g., bacterial vectors and episomal mammalian vectors having a bacterial origin of replication) or can integrate into the genome of the host cell after introduction into the host cell, thereby replicating along with the host genome (e.g., non-episomal mammalian vectors).
  • alkyl refers to a saturated aliphatic hydrocarbon group, which is a straight or branched chain group containing 1 to 20 carbon atoms, preferably an alkyl group containing 1 to 12 carbon atoms, more preferably an alkyl group containing 1 to 10 carbon atoms, and most preferably an alkyl group containing 1 to 6 carbon atoms.
  • C 1-6 alkyl refers to a saturated linear or branched hydrocarbon group having 1-6 carbon atoms (eg 1, 2, 3, 4, 5 or 6 carbon atoms).
  • C 1-6 alkyl can be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl or n-hexyl, etc.
  • cycloalkyl refers to a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent, the cycloalkyl ring containing 3 to 20 carbon atoms, preferably containing 3 to 12 carbon atoms, more preferably containing 3 to 10 carbon atoms, most preferably containing 3 to 8 carbon atoms.
  • Non-limiting examples of monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cyclohexadienyl, cycloheptyl, cycloheptatrienyl, cyclooctyl, and the like; multicyclic cycloalkyls include spiro, fused, and bridged cycloalkyls.
  • heterocyclyl refers to a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent comprising 3 to 20 ring atoms, of which one or more (eg 1, 2 or 3) ring atoms are selected from nitrogen, oxygen or sulfur and the remaining ring atoms are carbon.
  • the cycloalkyl ring contains 3 to 12 ring atoms, of which 1 to 4 are heteroatoms; more preferably, the cycloalkyl ring contains 3 to 10 ring atoms.
  • Non-limiting examples of monocyclic heterocyclyl groups include pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, homopiperazinyl, and the like.
  • polycyclic heterocyclyl Heterocyclic groups include spiro, fused and bridged rings.
  • aryl refers to a 6 to 14 membered all-carbon monocyclic or fused polycyclic (ie, rings sharing adjacent pairs of carbon atoms) group, preferably 6 to 10 membered, having a conjugated ⁇ -electron system, such as phenyl and naphthyl, preferably phenyl.
  • the aryl ring may be fused to a heteroaryl, heterocyclyl or cycloalkyl ring, where the ring bonded to the parent structure is the aryl ring.
  • heteroaryl refers to a heteroaromatic system comprising 1 to 4 heteroatoms, 5 to 14 ring atoms, wherein the heteroatoms are selected from oxygen, sulfur and nitrogen.
  • the heteroaryl group is preferably 5-10 membered, more preferably 5-membered or 6-membered, such as furyl, thienyl, pyridyl, pyrrolyl, N-alkylpyrrolyl, pyrimidinyl, pyrazinyl, imidazolyl, tetrazolyl and the like.
  • the heteroaryl ring may be fused to an aryl, heterocyclyl or cycloalkyl ring, wherein the ring bonded to the parent structure is a heteroaryl ring.
  • haloalkyl refers to an alkyl group substituted with one or more halogens.
  • deuteroalkyl refers to an alkyl group substituted with one or more deuterium atoms.
  • halogen refers to fluorine, chlorine, bromine or iodine.
  • substituted and “substituted” mean that one or more (e.g., one, two, three, or four) hydrogens on the designated atom are replaced by a selection from the indicated group, provided that the normal valence of the designated atom for the situation at hand is not exceeded and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
  • substituent can be (1) unsubstituted, or (2) substituted. If an atom or group is described as optionally substituted with one or more of a list of substituents, one or more hydrogens on the atom or group may be replaced by independently selected, optional substituents. If substituents are described as being “independently selected from” or “each independently being”, each substituent is selected independently of the other. Accordingly, each substituent may be the same as or different from another (other) substituent.
  • each R is independently selected, that is, it may be the same or different.
  • R groups such as but not limited to R 2 , R 3 , Rh , R i , R x and/or R y
  • each R is independently selected, that is, it may be the same or different. The same goes for the choice of values such as d, g, m, n.
  • the point of attachment of a substituent may be from any suitable position of the substituent.
  • pharmaceutically acceptable carrier refers to a diluent, adjuvant, excipient or vehicle that is administered together with the active ingredient, and which is suitable for contacting human and/or other animal tissues within the scope of reasonable medical judgment without excessive toxicity, irritation, allergic reaction or other problems or complications corresponding to a reasonable benefit/risk ratio.
  • active ingredient refers to a chemical entity that is effective in treating one or more symptoms of the targeted disorder or condition.
  • the term "effective amount” refers to the amount of an active ingredient that, when administered, will achieve to some extent the desired effect, such as alleviating one or more symptoms of the condition being treated or preventing the occurrence of the condition or symptoms thereof.
  • treating means reversing, alleviating, inhibiting the progression of, or preventing the disorder or condition or one or more symptoms of the disorder or condition to which the term applies.
  • Fig. 1 is the internalization level line chart of TROP-2-ADC compound provided by the present invention to MDA-MB-468 cell;
  • Fig. 2 is the line graph that the TROP-2-ADC compound provided by the present invention inhibits the tumor volume growth of MDA-MB-468 cell line;
  • Figure 3 is a line graph of the experimental results of TROP-2-ADC compounds inhibiting tumor volume growth provided by the present invention.
  • Fig. 4 is a graph showing that the TROP-2-ADC compound provided by the present invention inhibits gastric cancer tumor growth
  • Figure 5 is a graph showing the inhibition of the growth of MDA-MB-453 cell line tumors under the action of the HER3-ADC compound provided by the present invention.
  • Figure 6 is a graph showing the inhibition of SW620 cell line tumor growth under the action of the HER3-ADC compound provided by the present invention, which is the in vivo drug efficacy evaluation of repeated administration of multiple doses;
  • Fig. 7 is a diagram of the detection results of the cellular internalization level of the antibody-drug conjugate (ADC) provided by the present invention; wherein, a is a line graph of the internalization level of the HER3-ADC compound provided by the present invention on MAD-MB-453 cells, b is a line graph of the internalization level of the HER3-ADC compound provided by the present invention on HCC1569 cells, and c is a line graph of the internalization level of the HER3-ADC compound provided by the present invention on SW620 cells;
  • ADC antibody-drug conjugate
  • Figure 8 is a line graph of the level of inhibition of melanoma by HER3-ADC compounds provided by the present invention in mice;
  • Figure 9 is a line graph of the level of tumor inhibition of non-small cell lung cancer by HER3-ADC compounds provided by the present invention in mice;
  • Figure 10 is a graph of the stability test results of the HER3-ADC compound provided by the present invention in animal plasma; wherein, A is a graph of the stability test result of the HER3-ADC compound provided by the present invention in human plasma; B is a graph of the stability test result of the HER3-ADC compound provided by the present invention in monkey plasma; C is a graph of the stability test result of the HER3-ADC compound provided by the present invention in rat plasma; D is a graph of the stability test result of the HER3-ADC compound provided by the present invention in mouse plasma;
  • Figure 11 is a line graph of the changes in the HER3 antibody content in rat plasma after administration of the HER3-ADC compound provided by the present invention and the control drug U3-1402;
  • Figure 12 is a line chart of the changes in the HER3 antibody content in rat plasma after administration of the HER3-ADC compound provided by the present invention and the control drug U3-1402;
  • Figure 13 is a schematic diagram of the content of small molecule components produced in rats with the HER3-ADC drug provided by the present invention.
  • Figure 14 is a line graph of the content of small molecules produced by the control drug U3-1402 in rats;
  • Fig. 15 is a graph showing the growth inhibition curve of the SW620 cell line tumor under the action of the HER3-ADC compound provided by the present invention, which is the in vivo drug efficacy evaluation of single-dose repeated administration.
  • cell strains or cell lines used in the examples of the present invention can be purchased from path obtained. in,
  • HEK293f cell line was purchased from Nanjing Kebai Biotechnology Co., Ltd.;
  • SW620 cell line was purchased from Nanjing Kebai Biotechnology Co., Ltd.;
  • Bxpc-3 cell line was purchased from Nanjing Kebai Biotechnology Co., Ltd.;
  • NCI-N87 cell line was purchased from Nanjing Kebai Biotechnology Co., Ltd.;
  • A375 cell line purchased from ATCC (American type culture collection, American type culture collection bank);
  • NCI-H358 cell line purchased from ATCC;
  • 293F cell line was purchased from Zhubai Kairui Biotechnology Co., Ltd.;
  • HCC1569 cell line purchased from ATCC;
  • MDA-MB-453 cell line was purchased from Nanjing Kebai Biotechnology Co., Ltd.;
  • MDA-MB-468 cell line was purchased from Nanjing Kebai Biotechnology Co., Ltd.;
  • Nalm6-GFP cells were purchased from Creative Biogene;
  • the anti-human TROP-2 monoclonal antibody used in the present invention is an hRS7 antibody with an amino acid sequence as follows:
  • HCDR1 Complementarity Determining Region of Anti-human TROP-2 Antibody Heavy Chain Variable Region
  • HCDR2 Complementarity Determining Region of Anti-human TROP-2 Antibody Heavy Chain Variable Region
  • HCDR3 Complementarity Determining Region of Anti-human TROP-2 Antibody Heavy Chain Variable Region
  • the complementarity determining region (LCDR1) of the light chain variable region of the anti-human TROP-2 antibody SEQ ID NO: 4
  • LCDR2 Complementarity Determining Region of Anti-human TROP-2 Antibody Light Chain Variable Region
  • LCDR3 complementarity determining region of the light chain variable region of the anti-human TROP-2 antibody
  • VH amino acid sequence of anti-human TROP-2 antibody (VH-TROP2) (SEQ ID NO: 7):
  • VL amino acid sequence of anti-human TROP2 antibody (VL-TROP2) (SEQ ID NO: 8):
  • Anti-human TROP-2 antibody heavy chain (SEQ ID NO:9)
  • Anti-human TROP-2 antibody light chain (SEQ ID NO: 10)
  • the anti-human TROP-2 monoclonal antibody was prepared according to the following method: construct the heavy chain and light chain genes synthesized by Nanjing GenScript Biotechnology Co., Ltd. into the pCGS3 expression vector, and use the endotoxin-free plasmid extraction kit (Tiangen Biochemical Technology Co., Ltd., article number: DP117) to extract the plasmid, and the specific operation was carried out according to the instructions.
  • HEK293f cells were cultured using KOP293 cell culture medium (Zhuhai Kairui, product number: K03252) at 37°C, 5% CO 2 shaker, rotation speed 100-130rpm, humidity control above 75%.
  • HEK 293f cells in logarithmic growth phase and in good growth state were subcultured to 2 ⁇ 10 6 /mL, shaker (110rpm, 37°C, 5% CO 2 ) cultured overnight, and transfected the next day.
  • preheat TA-293 (293 cell suspension chemical transfection reagent) and KPM (serum-free cell transfection buffer solution) at room temperature, and measure the cell density and viability. The density is 4 ⁇ 10 6 /mL, and the viability rate is greater than 97%.
  • Transfection was performed according to the KOP293 Transient Transfection Protein Expression System User Guide, and the expression supernatant was harvested by centrifugation 5 days after transfection.
  • the expression supernatant was filtered with a 0.45 ⁇ M filter membrane, and an antibody with an Fc domain was obtained from the expression supernatant using an affinity chromatography column.
  • Equilibrium buffer is 9.5mM sodium dihydrogen phosphate plus 40.5mM disodium hydrogen phosphate, pH 7.4; elution buffer is 0.1M glycine, pH 3.0.
  • the interchain disulfide bonds were reduced by adding 1 mM EDTA (invitrogen, product number: AM9260G) and 8-fold molar equivalents of TECP (Thermo, product number: 77720) to the 10 mg/mL Trop-2 monoclonal antibody solution, and the mixture was stirred at 37°C for 2 hours.
  • the mixture was cooled to the target temperature of 4 °C and 10 drug equivalents per mole of compound 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 were added as a 10% (v/v) solution in DMSO (Sigma, Cat.
  • the antibody-drug conjugates were obtained by ultrafiltration of PBS, which were named TROP-2-ADC-1, TROP-2-ADC-2, TROP-2-ADC-3, TROP-2-ADC-4, TROP-2-ADC-5, TROP-2-ADC-6, TROP-2-ADC-7, TROP-2-ADC-8, TROP-2-ADC-9, TROP-2-ADC-10, TROP-2-ADC-11, TROP-2-ADC -12, TROP-2-ADC-13, TROP-2-ADC-14, TROP-2-ADC-15, TROP-2-ADC-16, TROP-2-ADC-17, TROP-2-ADC-18, TROP-2-ADC-19, TROP-2-ADC-20, TROP-2-ADC-21, TROP-2-ADC-22, TROP-2-ADC-23.
  • DAR Drug-to-Antibody Ratio, drug-to-antibody ratio
  • ADC number DAR ADC number DAR TROP-2-ADC-1 7.63 TROP-2-ADC-12 4.57 TROP-2-ADC-2 4.13 TROP-2-ADC-14 8.20 TROP-2-ADC-3 14.74 TROP-2-ADC-15 1.65 TROP-2-ADC-4 8.49 TROP-2-ADC-16 5.48 TROP-2-ADC-5 5.93 TROP-2-ADC-18 10.07 TROP-2-ADC-6 5.02 TROP-2-ADC-19 4.65 TROP-2-ADC-7 2.80 TROP-2-ADC-20 4.81 TROP-2-ADC-8 5.96 TROP-2-ADC-21 4.78 TROP-2-ADC-9 4.55 TROP-2-ADC-22 4.85 TROP-2-ADC-10 2.67 TROP-2-ADC-23 6.42 TROP-2-ADC-11 4.96 -- --
  • the anti-human HER3 monoclonal antibody sequence in the present invention is as follows:
  • Anti-HER3 antibody heavy chain variable region (SEQ ID NO: 17):
  • Anti-HER3 antibody light chain variable region (SEQ ID NO: 18):
  • Anti-HER3 antibody heavy chain SEQ ID NO: 19
  • the anti-human HER3 monoclonal antibody was prepared according to the following method: the heavy chain and light chain genes synthesized by Nanjing GenScript Biotechnology Co., Ltd. were constructed into the pCGS3 expression vector.
  • Use endotoxin-free plasmid extraction kit (Tiangen Biochemical Technology Co., Ltd., article number: DP117) to extract the plasmid, The specific operation is carried out according to the manual.
  • HEK293f cells were cultured using KOP293 cell culture medium (Zhuhai Kairui, product number: K03252) at 37°C, 5% CO 2 shaker, rotation speed 100-130rpm, humidity control above 75%.
  • HEK 293f cells in logarithmic growth phase and in good growth state were subcultured to 2 ⁇ 10 6 /mL, cultured overnight on a shaker (110 rpm, 37°C, 5% CO 2 ), and transfected the next day.
  • preheat TA-293 (293 cell suspension chemical transfection reagent) and KPM (serum-free cell transfection buffer solution) at room temperature, and measure the cell density and viability. The density is 4 ⁇ 10 6 /mL, and the viability rate is greater than 98%.
  • Transfection was performed according to the KOP293 Transient Transfection Protein Expression System User Guide, and the expression supernatant was harvested by centrifugation 6 days after transfection.
  • the expression supernatant was filtered with a 0.45 ⁇ M filter membrane, and an antibody with an Fc domain was obtained from the expression supernatant using an affinity chromatography column.
  • Equilibrium buffer is 9.5mM sodium dihydrogen phosphate plus 40.5mM disodium hydrogen phosphate, pH 7.4; elution buffer is 0.1M glycine, pH 3.0.
  • interchain disulfide bonds were reduced by adding 1 mM EDTA (invitrogen, product number: AM9260G) and 8-fold molar equivalents of TECP (Thermo, product number: 77720) to the 10 mg/mL HER3 monoclonal antibody solution, and the mixture was stirred at 37°C and 250 rpm for 2.5 hours.
  • 1 mM EDTA invitrogen, product number: AM9260G
  • TECP Thermo, product number: 77720
  • the mixture was cooled to the target temperature of 4 °C and 10 drug equivalents per mole of compound 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73 were added as a 10% (v/v) solution in DMSO (Sigma, Cat. No.: D2660) , 74 and 75.
  • DMSO Sigma, Cat. No.: D2660
  • HER3-ADC-1 HER3-ADC-2, HER3-ADC-3, HER3-ADC-4, HER3-ADC-5, HER3-ADC-6, HER3-ADC-7, HER3-ADC-8, HER3-ADC-9, HER3-ADC-10, HER3-ADC-11, HER3-ADC- 12.
  • Table 4 The specific structure of the antibody conjugate is shown in Table 4.
  • HER3-ADC structural formula Note: The mAb in Table 4 in this example refers to the HER3 monoclonal antibody in the above-mentioned examples and test examples. Every time n appears, the value is an integer or decimal of 1-15, indicating the average number of units coupled to each antibody of each selected drug linker compound, and n can also be represented by DAR.
  • the concentration of the ADC coupling product is determined by the absorbance value method at 280nm and 365nm; through HPLC-HIC analysis, it is determined whether the coupling is successful; the purity of the antibody is detected by SEC-HPLC; the DAR value is detected by LC-MS. The results are shown in Table 5.
  • the preparation method of the positive reference drug U3-1402 (PATRITUMAB DERUXTECAN) used in the test example of the present invention is prepared by referring to the preparation method of the antibody-drug conjugate (16a) in the patent CN106163559B.
  • Test Example 1 Exitecan derivatives of the present invention or analogs (Payload) on tumor cell bodies Proliferation Inhibition Test
  • the cell line used in this experiment is the MDA-MB-468 cell line with high expression of TROP-2 (Nanjing Kebai Biotechnology Co., Ltd., catalog number: CBP60387).
  • the cell suspension was prepared with fresh cell culture medium containing 10% FBS, and the density was 3 ⁇ 10 3 cells/mL, and 90 ⁇ L per well was added to an all-white 96-well cell culture plate (Beiyuntian, product number: FCP968-80pcs), and cultured at 37°C with 5% carbon dioxide for 24 hours.
  • Compounds 1-36 were each formulated in DMSO to 1 mM.
  • Compound number IC 50 (nM) Compound number IC50 (nM) 1 135.20 19 7.52 2 3.38 20 8.60 3 43.59 twenty one 3.05 4 4.32 twenty two 2.60 5 19.34 twenty three 2.64 6 9.81 twenty four 1.65 7 9.45 25 8.63 8 2.72 26 3.28 9 4.77 27 43.21 10 50.73 28 35.37 11 96.27 29 6.00 12 56.25 30 6.85 13 76.51 31 135.71 14 47.99 32 28.14 15 20.68 33 32.28 16 3.29 34 56.58 17 2.01 35 101.96
  • exitecan derivatives provided by the present invention have obvious growth inhibitory activity on MDA-MB-468 cells.
  • the cell line used in this test example was purchased from Nanjing Kebai Biotechnology Co., Ltd. MDA-MB-468 cells, article number: CBP60387, TROP-2 high expression cell line.
  • the cell suspension was prepared with FACS (2% FBS+PBS) staining buffer at a density of 2 ⁇ 10 6 cells/mL, and the cell suspension was plated in a 96-well U-bottom cell plate (UWP043096) at 50 ⁇ L/well, and a set of parallel experiments was set up for each sample. Dilute TROP-2 antibody (naked antibody) or TROP-2-ADC compound (TROP2-ADC-3, TROP2-ADC-4, TROP2-ADC-19, TROP2-ADC-21 or TROP2-ADC-23) with FACS staining buffer to a concentration of 20ug/ml.
  • FACS 2% FBS+PBS
  • TROP-2 antibody or TROP-2-ADC compound Take 50 ⁇ l of TROP-2 antibody or TROP-2-ADC compound dilutions and add them to 96-well U-bottom cell plates, mix gently and then ice-bath for 60 minutes. Add 200 ⁇ L of FACS staining buffer to wash the cells, centrifuge at 300 g at 4°C for 5 min, discard the supernatant, and repeat the washing twice. Add 30 ⁇ L of FACS to each well to resuspend the cells, and incubate at 37°C for 15 min, 30 min, 60 min, and 90 min to internalize the antibodies bound to the cell surface. At each time point, another sample incubated for the same time at 4°C was used as a negative control for no internalization.
  • MFI mean fluorescence intensity
  • the affinity of the TROP-2 antibody and the TROP-2-ADC compound obtained according to the above examples to TROP-2 is detected by means of a capture antibody.
  • Affinity capture antibody (TROP-2 antibody or TROP-2-ADC compound) was used on the Sensor Chip Protein A biosensing chip (Cytiva), and then the antigen TROP-2-his was flowed on the surface of the chip, and the reaction signal was detected in real time by Biacore K8 instrument (Cytiva) to obtain the binding and dissociation curves. After each cycle of dissociation, the chip was washed and regenerated with regeneration buffer. After the experiment, GE Biacore K8 Evaluation version 3.0 software was used to fit the data with the (1:1) Langmuir model to obtain the affinity value. The affinity between antibody and protein is shown in Table 7:
  • the K D values of the naked antibody and the TROP-2-ADC compound of the present invention are all in the picomolar range, and there is no significant difference between the two.
  • Test Example 4 In vitro proliferation of tumor cells targeting TROP-2 by the antibody drug conjugate of the present invention reproductive inhibition test
  • the cell line used in this experiment is the MDA-MB-468 cell line with high expression of TROP-2 (Nanjing Kebai Biotechnology Co., Ltd., catalog number: CBP60387).
  • the cell suspension was prepared with fresh cell culture medium containing 10% FBS at a density of 2 ⁇ 10 5 cells/mL, and added to an all-white 96-well cell culture plate (Beiyuntian, Cat. No.: FCP968-80pcs) at a density of 2 ⁇ 10 5 cells/mL per well, and incubated at 37°C for 24 hours with 5% carbon dioxide.
  • ADC samples were made up to 10 ⁇ in PBS. Take this as the first concentration, and use PBS for five-fold serial dilution, and a total of 9 concentrations.
  • the antibody-drug conjugate against TROP-2 target of the present invention has obvious proliferation inhibitory activity on TROP-2 positive cell MDA-MB-468 cells.
  • Human triple-negative breast cancer cells MDA-MB-468 (Nanjing Kebai Biotechnology Co., Ltd., product number: CBP60387) (5 ⁇ 10 6 /200 ⁇ L/mouse, with 50% low growth factor artificial basement membrane) were inoculated subcutaneously in the right flank of BALB/c-Nude nude mice. After the cells were inoculated, the tumor grew for 10 days, and the tumor volume grew to about 130 mm 3 , and the animals were randomly divided into groups (D0), 5 animals in each group, 12 groups in total.
  • Tail vein injection was used, the control group was given PBS, and the experimental group was given the TROP-2-ADC compound TROP2-ADC-3, TROP2-ADC-19, TROP2-ADC-21 or TROP2-ADC-23 provided by the present invention, multi-dose administration of 5 mg/kg, 2 mg/kg, 1 mg/kg, twice a week, for 2 weeks. Tumor volume and body weight were measured twice a week, and the data were recorded. Data statistics use Excel 2016 statistical software: the average value is calculated by average; the SD value is calculated by STDEV; the SEM value is calculated by STDEV/SQRT. Tumor growth curves were made using GraphPad Prism 8.0.2.2.263 software.
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (PBS) and the experimental group at the end of the experiment, respectively.
  • PBS blank control group
  • the results are shown in Figure 2. All the TROP-2-ADC compounds provided by the present invention can effectively inhibit the growth of MDA-MB-468 transplanted tumors in tumor-bearing nude mice in a dose-dependent manner, especially TROP-2-ADC19 and TROP-2-ADC-21 have more significant inhibitory effects.
  • Test Example 6 In vivo drug efficacy evaluation of Bxpc-3 cell CDX mouse model
  • Human orthotopic pancreatic cancer cells Bxpc-3 (Kobai) were inoculated subcutaneously in the right flank of BALB/c-Nude nude mice (4 ⁇ 10 6 /200 ⁇ L/mouse, with 50% low growth factor artificial basement membrane). After the cells were inoculated, the tumor grew for 6 days, and the tumor volume grew to about 130 mm 3 , and the animals were randomly divided into groups (D 0 ), with 5 animals in each group, 4 groups in total.
  • Tail vein injection was used, the control group was given PBS, and the experimental group was given the TROP-2-ADC-21 compound provided by the present invention.
  • the dosages were 3 mg/kg, 6 mg/kg, and 12 mg/kg, twice a week, and administered 5 times. Tumor volume and body weight were measured twice a week, and the data were recorded. Data statistics use Excel 2016 statistical software: the average value is calculated by average; the SD value is calculated by STDEV; the SEM value is calculated by STDEV/SQRT. Tumor growth curves were made using GraphPad Prism 8.0.2.2.263 software.
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (PBS) and the experimental group at the end of the experiment, respectively.
  • PBS blank control group
  • TROP-2-ADC-21 provided by the present invention can effectively inhibit the growth of Bxpc-3 transplanted tumors in tumor-bearing nude mice in a dose-dependent manner.
  • Human gastric cancer cell NCI-N87 (5 ⁇ 10 6 /200 ⁇ L/mouse, with 50% low growth factor artificial basement membrane) was inoculated subcutaneously in the right flank of BALB/c-Nude nude mice. After the cells were inoculated, the tumor grew for 3 days, and the tumor volume grew to about 130 mm 3 and then the animals were randomly divided into groups (D 0 ), with 5 in each group. Only, a total of 4 groups.
  • Tail vein injection was used, the control group was given PBS, and the experimental group was given the TROP-2-ADC-21 compound provided by the present invention.
  • the dosages were 3 mg/kg, 6 mg/kg, and 12 mg/kg, twice a week for 2 weeks. Tumor volume and body weight were measured twice a week, and the data were recorded. Data statistics use Excel 2016 statistical software: the average value is calculated by average; the SD value is calculated by STDEV; the SEM value is calculated by STDEV/SQRT. Tumor growth curves were made using GraphPad Prism 8.0.2.2.263 software.
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (PBS) and the experimental group at the end of the experiment, respectively.
  • PBS blank control group
  • the results are shown in Figure 4, and the results show that TROP-2-ADC-21 provided by the present invention can effectively inhibit the growth of NCI-N87 transplanted tumors in tumor-bearing nude mice in a dose-dependent manner.
  • Test Example 8 The Antibody Drug Conjugate of the Present Invention Proliferates HER3 Target Tumor Cells in Vitro reproductive inhibition test
  • the cell lines used in this experiment were human breast cancer cell line HCC1569 with high expression of HER3, human colorectal adenocarcinoma cell line SW620, human malignant melanoma cell line A375, and human non-small cell lung cancer cell line NCI-H358.
  • the above cell line was inoculated into a 96-well plate at a density of 10 3 cells/100 ⁇ L/well, 200 ⁇ L PBS was added to the outermost circle to reduce the volatilization of the medium, and cultured at 37°C and 5% CO 2 for 48 hours, the 96-well plate was taken out, and 100 ⁇ L of the diluted ADC sample was added to each well. 0. Incubate at 37°C, 5% CO 2 for 120h.
  • the experimental results are shown in Table 9-Table 12.
  • ADC number IC50 (nM) ADC number IC50 (nM) HER3-ADC-3 1635 HER3-ADC-19 687.3 HER3-ADC-4 950.9 HER3-ADC-20 274.3 HER3-ADC-8 2611 HER3-ADC-21 579.9 HER3-ADC-9 2212 HER3-ADC-22 2664 HER3-ADC-16 697.2 HER3-ADC-23 1026 HER3-ADC-18 2377 the the the
  • ADC number IC50 (nM) ADC number IC50 (nM) HER3-ADC-19 4472 HER3-ADC-21 225.9 HER3-ADC-20 4143 the the
  • ADC number IC50 (nM) ADC number IC50 (nM) HER3-ADC-19 613.2 HER3-ADC-21 42.43 HER3-ADC-20 888.6 the the
  • the antibody-drug conjugates against HER3 target of the present invention have obvious proliferation inhibitory activity on HER3 positive cells SW620 cells, HCC1569 cells, A375 cells and NCI-H358 cells.
  • Test Example 9 The antibody-drug conjugate of the present invention has a small CDX effect on tumor cell MDA-MB-453 In vivo drug efficacy evaluation in mouse model
  • V 1/2*L long diameter *L short diameter 2
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (PBS) and the experimental group at the end of the experiment, respectively.
  • the tumor growth curve is shown in Figure 5.
  • the HER3-ADC-24, HER3-ADC-25, HER3-ADC-26, HER3-ADC-27, HER3-ADC-19, HER3-ADC-20 and HER3-ADC-21 provided by the present invention can all significantly inhibit MDA-MB-453 tumors in mice. role.
  • Test Example 10 Antibody-drug conjugates of the present invention on tumor cells SW620 cells CDX mice Model in vivo drug efficacy evaluation
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (PBS or vehicle) and the experimental group at the end of the experiment, respectively.
  • the inhibitory effect of the HER3-ADC compound provided by the present invention on tumors in animals shows a positive correlation with the dose.
  • the tumor growth curve is shown in Figure 6.
  • HER3-ADC-19, HER3-ADC-20 and HER3-ADC-21 provided by the present invention can all have a very significant inhibitory effect on tumors, and HER3-ADC-21 still has an obvious inhibitory effect on tumors when administered at a low dose of 3 mg/kg.
  • Harvest cells MAD-MB-453, HCC1569, and SW620 are adherent cells. Trypsinization is used to detach the cells from the culture dish, and the cell suspension is placed at the bottom of the centrifuge tube. The cell viability was measured by trypan blue staining, and the cells were pelleted by centrifugation at 300 g at 4°C for 5 min, and the cells were washed once with FACS staining buffer. Centrifuge the cells again and resuspend the cells with an appropriate volume of FACS staining buffer so that the cell concentration after resuspension is 2 ⁇ 10 6 cells/ml.
  • Antibody binding to cells the HER3 monoclonal antibody (naked antibody) prepared according to the embodiment of the present invention, or the drug-coupled ADC compound was used as the primary antibody. Dilute the primary antibody to a concentration of 20 ⁇ g/ml in FACS staining buffer. Take 50 ⁇ L of the primary antibody dilution and add it to a 96-well U-bottom cell plate, mix gently and then ice-bath for 60 min.
  • wash unbound antibody Add 200 ⁇ L FACS staining buffer to wash the cells, centrifuge at 300 g at 4°C for 5 min, discard the supernatant, and repeat the washing twice.
  • Incubate at 37°C to internalize the bound antibody add 30 ⁇ L FACS to each well to resuspend the cells, and incubate at 37°C for 15 min, 30 min, 45 min, and 60 min to internalize the antibody bound to the cell surface. At each time point, another sample without added antibody incubated at 4°C for the same time was used as a negative control for no internalization. At each time point, transfer the corresponding 37°C and 4°C incubated samples to ice and add 170 ⁇ L of ice FACS to terminate internalization. Cells were pelleted by centrifugation at 300 g for 5 min at 4°C.
  • wash unbound secondary antibody Add 200 ⁇ L FACS staining buffer to wash cells and remove unbound antibody. Centrifuge at 300 g at 4°C for 5 min to pellet the cells, and discard the supernatant. Repeat the wash 2 times. Resuspend the stained cells in 100 ⁇ L ice-cold PBS.
  • Fluorescence intensity on the cell surface detected by flow cytometry After the cells are washed, analyze by flow cytometry as soon as possible.
  • %MFI at t x time point MFI of samples incubated at 37°C ⁇ 100/MFI of samples incubated at 4°C;
  • Test example 12 Biacore detects the affinity of ADC compounds
  • HER3 monoclonal antibody naked antibody
  • Capture antibody capture antibody at a flow rate of 10 ⁇ l/min for 60 seconds.
  • Regeneration Regenerate for 30 seconds at a flow rate of 30 ⁇ l/min.
  • the binding ability of naked antibody, HER3-ADC-19, HER3-ADC-20, HER3-ADC-21 to human HER3-His antigen was determined at 7 different concentrations (0.625-40nM) using biosensor chip Protein A. As shown in Table 13, the KD values of both naked antibody and HER3-ADC compounds were in the nanomolar range, and there was no significant difference between them.
  • Melanoma cell A375 (derived from ATCC, 5 ⁇ 10 6 /200 ⁇ L/mouse, with 50% low growth factor artificial basement membrane) was inoculated subcutaneously in the right flank of BALB/c-Nude nude mice. After the cells were inoculated, the tumor grew for 8 days, and the tumor volume grew to about 130 mm 3 . After the tumor volume grew to about 130 mm 3 , the animals were randomly divided into groups (denoted as D0, that is, day 0), with 5 animals in each group, 4 groups in total.
  • the drugs were administered by tail vein injection, and the tested drugs were HER3-ADC-21 (5 mg/kg), positive control drug U3-1402 (5 mg/kg), HER3 monoclonal antibody (10 mg/kg) and blank control group (PBS), administered twice a week for 2 weeks. Tumor volume was measured twice a week, and the data were recorded.
  • Excel 2016 statistical software is used for data statistics: average value is calculated by average; SD value is calculated by STDEV; SEM value is calculated by STDEV/SQRT. Tumor growth curves were made using GraphPad Prism 8.0.2.2.263 software.
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V0 and VT are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (Vehicle) and the experimental group at the end of the experiment, respectively. The result is shown in Figure 8.
  • the HER3-ADC-21 provided by the present invention can effectively inhibit the growth of A375 transplanted tumors in tumor-bearing nude mice. Moreover, the HER3-ADC-21 provided by the present invention has a better tumor inhibitory effect than the positive reference drug U3-1402 at a dose of 5 mg/kg.
  • Test Example 14 Antibody-drug conjugates of the present invention on human non-small cell lung cancer cells NCI-H358 In vivo drug efficacy evaluation in mouse model
  • NCI-H358 Human non-small cell lung cancer cells NCI-H358 (derived from ATCC, 3 ⁇ 10 6 cells/200 ⁇ L/mouse, with 50% low growth factor artificial basement membrane) were inoculated subcutaneously in the right flank of BALB/c-Nude nude mice. After the cells were inoculated, the tumor grew for 5 days, and the tumor volume grew to about 130 mm 3 . After the tumor volume grew to about 130 mm 3 , the animals were randomly divided into groups (denoted as D0, that is, day 0), with 5 animals in each group, 4 groups in total.
  • D0 that is, day 0
  • HER3-ADC-21 (10 mg/kg), positive control drug U3-1402 (10 mg/kg), HER3 monoclonal antibody (10 mg/kg) and blank control group (PBS), administered twice a week for 2 weeks.
  • Tumor volume was measured twice a week, and the data were recorded.
  • Excel 2016 statistical software is used for data statistics: average value is calculated by average; SD value is calculated by STDEV; SEM value is calculated by STDEV/SQRT. Tumor growth curves were made using GraphPad Prism 8.0.2.2.263 software.
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (Vehicle) and the experimental group at the end of the experiment, respectively. The result is shown in Figure 9.
  • Antigen package HER3 antigen detects total antibody content, and small molecule antibody (payload partial antibody) detects ADC content.
  • HER3-ADC-21 and the positive reference drug U3-1402 were used as standard curves, with three gradients: the concentration of the mother solution was 100ng/ml, 40ng/ml, and 10ng/ml, and the plasma solution of each antibody was used as the primary antibody. Each sample was diluted 1000, 3000, 9000, and 27000 times. Incubate at 37°C for 1 h, and wash the plate 3 times with PBST.
  • the drug HER3-ADC-21 has higher stability in the four plasmas, and is more stable than the positive reference substance U3-1402.
  • Antigen-coated plate HER3 antigen was used to detect the total antibody content, and the small molecule antibody was used to detect the ADC content.
  • ADC-21 and U3-1402 antibodies were used for standardization, rat plasma solution was used as the primary antibody, and each sample was diluted 1000, 3000, 9000, 27000 times. Incubate at 37°C for 1 hour, and wash the plate 3 times with PBST.
  • HCC1569 cells HER3 positive cell line
  • Nalm6-GFP HER3 negative cell line
  • HCC1569 cells for counting, and the cell viability is guaranteed to be above 91%.
  • HCC1569 cells HER3-positive cell line
  • HCC1569 cells were plated in 6-well plates at 3 ⁇ 10 5 cells/well and incubated for 24 hours.
  • a set of only HCC1569 was used for control experiments.
  • Nalm6-GFP cells HER3-negative cell line
  • the cell viability is guaranteed to be above 96%.
  • Nalm6 cells were plated in 6-well plates at 1.5 ⁇ 10 ⁇ 5 /well.
  • a group of only Nalm6-GFP cells was laid for the control experiment.
  • HER3-ADC-21 compounds were added at concentrations of 5 nM, 10 nM, 40 nM, and 80 nM.
  • Flow excitation light selection APC-cy7, FITC.
  • the sample volume is 70uL, and the sample loading speed is high speed.
  • Killing rate (viability of non-sprayed cells*cell positive rate-sprayed cell viability*cell positive rate)/unspreading cell viability*cell positive rate, where the cell positive rate refers to the ratio of Nalm6 cells to co-cultured cells (HCC1569 cells and Nalm6-GFP cells). The results are shown in Table 17.
  • HER3-ADC-21 when cultured alone, HER3-ADC-21 has no killing effect on Nalm6-GFP (HER3-negative cell line) cells, but has a killing effect on HCC1569 (HER3-positive cell line) cells. After HCC1569 (HER3-positive cell line) cells and Nalm6-GFP (HER3-negative cell line) cells were co-cultured, HER3-ADC-21 had a killing effect on Nalm6-GFP (HER3-negative cell line) cells. In summary, HER3-ADC-21 has a bystander effect.
  • Test Example 18 TROP-2-ADC drug bystander effect
  • MDA-MB-468 human breast cancer cells, Nanjing Kebai, CBP60387, TROP-2 positive cells
  • Nalm6-GFP cells human B lymphoid leukemia cells, purchased from Creative Biogene, CSC-RR0360, TROP-2 negative cells
  • the cells were digested with trypsin, neutralized with fresh medium, and centrifuged at 300g for 5 minutes , discard the supernatant, and resuspend the cells with RPMI1640+10% FBS.
  • MDA-MB-468:Nalm6-GFP 2:1, 200,000 MDA-MB-468 cells/well and 100,000 Nalm6-GFP cells/well were spread in a 6-well plate.
  • two groups of cells containing only MDA-MB-468 and Nalm6-GFP were used for control experiments.
  • ADC compounds were added at drug concentrations of 5nM, 10nM, 20nM, 40nM, 80nM.
  • detection was performed. For detection, cells were collected and washed three times with PBS. 100uL NIR (Corning Incorporated Costor, 3590) staining solution (diluted 1:1000) was stained in the dark for 15 minutes, washed once with PBS, and then flow cytometric detection was performed.
  • Killing rate (cell viability rate without drug application * positive cell rate - cell viability rate * cell positive rate) / not Cell viability of drug spreading*cell positive rate; where the cell positive rate refers to the ratio of Nalm6-GFP cells to co-cultured cells (MDA-MB-468 cells and Nalm6-GFP cells). The results are shown in Table 18 and Table 19.
  • the TROP-2-ADC molecule of the present invention has obvious killing effect on TROP-2 positive cells, but has no obvious inhibitory effect on TROP-2 negative cells.
  • the ADC molecule of the present application can significantly inhibit both TROP-2 positive and TROP-2 negative cells, showing obvious bystander killing effect.
  • TROP-2-ADC drugs also have a bystander effect.
  • Table 19 show that other TROP-2-ADC molecules of the present invention also have obvious bystander killing effects.
  • Table 18 The killing rate of TROP-2-ADC-21 on MDA-MB-468 cells and Nalm6-GFP cells when cultured alone and co-cultured respectively
  • TROP-2-ADC-3 56.71% 52.78% 36.59% 45.66% 31.56% TROP-2-ADC-4 74.08% 59.29% 49.92% 45.44% 47.42% TROP-2-ADC-19 75.06% 64.13% 61.27% 61.19% 49.02% TROP-2-ADC-23 78.74% 76.22% 74.73% 71.85% 63.76%
  • Test Example 19 In vivo drug efficacy evaluation of antibody-drug conjugates of the present invention on tumor cell SW620 cell CDX mouse model
  • Relative tumor volume (RTV): RTV V T /V 0
  • Tumor inhibition rate (%) (CRTV-TRTV)/CRTV(%)
  • V 0 and V T are the tumor volumes at the beginning of the experiment and at the end of the experiment, respectively.
  • CRTV and TRTV are the relative tumor volumes of the blank control group (Vehicle) and the experimental group at the end of the experiment, respectively.
  • the results are shown in Figure 15, the HER3-ADC compound provided by the present invention has a significant inhibitory effect on tumors in animals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种新型依喜替康类似物的抗体-药物偶联物、包含所述偶联物的药物组合物、以及所述偶联物和药物组合物的医药用途。新型依喜替康类似物具有很强的肿瘤抑制效率,并且提供的TROP-2抗体-药物偶联物、HER3抗体-药物偶联物均具有良好的肿瘤抑制效果,具有很好的临床应用前景。

Description

一种依喜替康衍生物-抗体偶联物及其医药用途 技术领域
本发明涉及一类全新结构依喜替康类似物的抗体-药物偶联物。具体地说,本公开涉及一种含有结构单元Y的依喜替康类似物的抗体-药物偶联物,和包含所述偶联物的药物组合物以及所述偶联物或药物组合物的用途。
背景技术
抗体药物偶联物(ADC)作为新型的靶向药物,一般由三部分组成:抗体或抗体类配体,小分子药物以及将配体和药物偶联起来的连接子。抗体药物偶联物利用抗体对抗原的特异性识别,将药物分子运输至靶细胞附近并有效释放药物分子,达到治疗目的。2000年,来自辉瑞的ADC药物Mylotarg首次上市,ADC这个充满潜力与挑战的领域从此进入大众视野。近几年,医药市场迎来了新一轮的ADC研发热潮,目前全球共有13个ADC药物陆续上市。
依喜替康作为抗肿瘤性的小分子化合物,已知作为抑制DNA拓扑异构酶I而呈现抗肿瘤作用的喜树碱衍生物,由第一三共公司开发,前期作为单独化疗药物使用推进至三期临床,主要适应症为骨癌、前列腺癌、乳腺癌、胰腺癌等。与目前临床使用的伊立替康不同,依喜替康不需要通过利用酶进行活化。另外,与作为伊立替康的药效本体的SN-38、以及同在临床中使用的拓扑替康相比,依喜替康对拓扑异构酶I抑制活性更强,在体外针对多种癌细胞具有更强的伤细胞活性。依喜替康作为单独化疗药物尚未成功上市,推测与其较高的细胞活性相关,导致治疗窗口窄。
第一三共/阿斯利康共同合作开发和商业化的抗体偶联药DS-8201a(商品名:Enhertu)在2019年12月份上市,该药物将依喜替康与羟基乙酸形成酰胺衍生物,并连接形成ADC,作为新一代的抗体偶联药,Enhertu已经显出成为重磅炸弹的潜质。
探索发现更优的抗肿瘤活性的依喜替康衍生物,提高对抗肿瘤的小分子化合物在ADC药物应用中的安全性、有效性,从而得到具有优异疗效的抗肿瘤药,是十分必要和迫切的。
发明内容
本发明提供一种配体-药物偶联物或其药学上可接受的盐,其中所述配体-药物偶联物包含式(-D0)所示的结构:

其中,Y为-
Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m-C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(-D0)结构中的-NH-相连;优选,Y为-O-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、或其中Y的C(=O)-端与式(-D0)结构中的-NH-相连;
Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;
Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选地,Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2
p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数, 且p1+p2≤8;
所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选地,所述亚杂环基和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
所述Ar1每次出现时各自独立选自亚芳基或亚杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的亚芳基或5-10元的亚杂芳基;优选所述亚杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚芳基和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基和氰基亚烷基,优选地,每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、和羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、和-OH;
X每次出现时独立地为单键、-NH-、O或S;
式(-D0)中的波浪线表示与接头单元或与结合靶细胞所表达抗原的抗体或多肽共价连接;和
m每次出现时各自独立地为0、1、2、3或4的整数。
本发明提供一种配体-药物偶联物或其药学上可接受的盐,其中所述配体-药物偶联物包含式(-D)所示的结构:

其中,Y为-
Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m-C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(-D)结构中的-NH-相连;优选,Y为-O-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar-(Cy)m-(CRaRb)m-X-C(=O)-、或其中Y的C(=O)-端与式(-D)结构中的-NH-相连;
Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选,Rm每次出现时各自独立地为H、卤素、卤代亚烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2;p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数,且p1+p2≤8;所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选,所述亚杂环基和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;所述Ar1每次出现时各自独立选自亚芳基或亚杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的亚芳基或5-10元的亚杂芳基;优选所述亚杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚芳基和亚杂芳基未被取代或任选地被选 自卤素、-OH、-CN、卤代亚烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、-OH;X每次出现时独立地选自单键、-NH-、O或S;式(-D)中的波浪线表示与接头单元或与结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;优选式(-D0)中的波浪线表示通过接头单元与结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;m每次出现时各自独立地为0、1、2、3或4的整数。
本发明的一些实施方案中,提供了通式(Pc-L-D0)或通式(Pc-L-D)所示的配体-药物偶联物或其药学上可接受的盐:

其中,Y如前所述,n为1至15的整数或者小数;优选地,n为1至13
的整数或者小数;优选地,n为1至10的整数或者小鼠;更优选地,n为3至8的整数或者小数;Pc为配体;L为接头单元。
本发明的一些实施方案中,Rc每次出现时各自独立地为NH、或O;Rd和Re每次出现时各自独立地为C(Rm)2或NRm;Rf每次出现时为CRm;当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、或3个杂原子,所述杂原子各自独立地选自N和O;在一些实施方案中,Rm每次出现时各自独立地为H、卤素、-OH、-CN、-NO2、-CF3、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、或-N(C1-6烷基)2,优选为H、卤素、-OH、-CN、C1-6烷基、或-OC1-6烷基,优选为H、卤素、-OH、-CN、C1-3烷基、或-OC1-3烷基,优选为-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、或-OCH3;在一些实施方案中,p1是0、1、2、或3的整数,p2是1、2、3、或4的整数,且2≤p1+p2≤4;在一些实施方案中,所述所述Cy每次出现时各自独立选自6-10元的亚芳基、或5-10元的亚杂芳基,优选选自亚苯基、或5-6元的亚杂芳基;优选,所述亚杂芳基含有1、2、或3个杂原子,所述杂原子独立地选自N、O和S;所述亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷 基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CH3、和-OCH3的取代基取代;在一些实施方案中,Ar1每次出现时各自独立选自6-10元的亚芳基,优选选自亚苯基;所述亚芳基或亚苯基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基取代;在一些实施方案中,Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、卤素、C1-3烷基、卤代C1-3烷基、氘代C1-3烷基、-OC1-3烷基、-OH、-NH2、-CN、-CF3、-NO2、和C1-3亚烷基-OH;优选地,Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、和卤素;在一些实施方案中,X独立地选自单键、-NH-、或O;m每次出现时各自独立地为0、1、2或3的整数。
本发明的一些实施方案中,Y选自: 其中,p1为0、1、2、或3的整数,p2为1、2、3或4的整数,且2≤p1+p2≤4;X独立地选自单键、-NH-或O,m为0、1、2或3的整数;
或Y选自: 其中,R为-NH-、O或-O-(CH2)m-C(=O)-NH-,且-O-(CH2)m-C(=O)-NH-中的-NH-连接至Y中的亚苯基或亚联苯基;X独立地选自单键、-NH-或O,m为0、1、2或3的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷 基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,q为0、1、2、3或4的整数;优选地,X独立地选自单键或-NH-,m为0或1的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基,优选独立选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基,q为0、1或2的整数;
或Y选自:其中,m为0、1、2或3的整数;优选地,m为1或2;和Y结构中的C(=O)-端与式(-D或式(D0))结构中的-NH-相连。
本发明的一些实施方案中,Y选自:

其中,X独立地选自单键或-NH-,m为0或1的整数;R1选自卤素、-
OH、-CN、-CF3、-NO2、-CH3、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,优选地,R1选自卤素、-OH、-CN、C1-3烷基、-OC1-3烷基的取代基,优选R1选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基;q为0、1、2、3或4的整数;优选地,q为0、1或2的整数;Y结构中的C(=O)-端与式(D)或式(-D0)结构中的-NH-相连。
本发明的一些实施方案中,接头单元-L-为-L1-L2-L3-L4-,其中,L1选自-(琥珀酰亚胺-3-基-N)-W-C(=O)-,其中,W为C1-10亚烷基、C1-10亚烷基-亚环烷基、C1-10亚杂烷基、C1-10亚烷基-亚环杂烷基、或C1-10亚杂烷基-亚环烷基,优选地W为亚烷基、亚烷基-亚环烷基或C1-8亚杂烷基,所述杂烷基包含1至3个独立选自N、O或S的杂原子,其中所述的C1-8烷基、环烷基和C1-8亚杂烷基未被取代或各自独立地任选进一步被选自卤素、羟基、-CN、氨基、C烷基、卤代烷基、氘代烷基、烷氧基和环烷基的一个或多个取代基所取代,优选未被取代或各自独立地任选进一步被选自卤素、羟基、-CN、氨基、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、C1-6烷氧基和C5-8环烷基的一个或多个取代基所取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自Cl、Br、F、-OH、-CN、甲基、和-OCH3的取代基取代;
L2选自-NR4(CH2CH2O)rCH2CH2C(=O)-、-NR4(CH2CH2O)rCH2C(=O)-、-NR4CH2-Ar2-(CH2CH2O)rCH2CH2NR4C(=O)CH2OCH2C(=O)-、-S(CH2)rC(=O)-或单键,其中r为1至20的整数,优选r为1、2、3、4、5、6、7、或8的整数;
Ar2选自
L3为由2至7个氨基酸构成的肽残基,优选L3为由2、3、4、5或6个氨基酸构成的肽残基,其中氨基酸未被取代或任选进一步被选自卤素、羟基、-CN、氨基、烷基、卤代烷基、氘代烷基、烷氧基和环烷基中的一个或多个取代基所取代,优选地,任选进一步被选自卤素、羟基、-CN、氨基、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、C1-6烷氧基和C5-8环烷基的一个或多个取代基所取代;
L4选自-NR5(CR6R7)t-Z-(CR6R7)t-C(=O)-、-NR5-Ar3-(CR6R7)t-Z-C(=O)-或单键,其中t每次出现时各自独立地为0、1、2、3、4、5、或6的整数;Z 每次出现时各自独立地选自单键、O、S或-NH-;Ar3为亚芳基或亚杂芳基,优选选自6-8元的亚芳基或5-8元的亚杂芳基,所述亚杂芳基含有1、2或3个杂原子,所述的杂原子独立选自N、O和S;所述亚芳基或亚杂芳基未被取代或任选地被选自H、卤素、-OH、-CN、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、-N(C1-6烷基)2的取代基取代;
R4和R5相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基和-C1-6亚烷基-OH;R6和R7相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基和-C1-6亚烷基-OH;L1端与配体相连,L4端与Y相连。
本发明的一些实施方案中,L1选自-(琥珀酰亚胺-3-基-N)-(CH2)s-C(=O)-和-(琥珀酰亚胺-3-基-N)-CH2-环己基-C(=O)-,其中s为2、3、4、5、6、7、或8的整数。
本发明的一些实施方案中,L2选自-NR4(CH2CH2O)rCH2CH2C(=O)-和-NR4CH2-Ar2-(CH2CH2O)rCH2CH2NR4C(=O)CH2OCH2C(=O)-,其中r为1至20的整数,优选r为1、2、3、4、5、6、7、或8的整数,Ar2
本发明的一些实施方案中,L3为由2至7个选自丙氨酸、苯丙氨酸、甘氨酸、缬氨酸、赖氨酸、瓜氨酸、丝氨酸、谷氨酸、天冬氨酸的氨基酸构成的肽残基;优选为选自丙氨酸、苯丙氨酸、甘氨酸、缬氨酸、赖氨酸、瓜氨酸、丝氨酸、谷氨酸、天冬氨酸的氨基酸构成的二肽残基、三肽残基或四肽残基;更优选为缬氨酸-丙氨酸的二肽残基、丙氨酸-丙氨酸-丙氨酸的三肽残基或甘氨酸-甘氨酸-苯丙氨酸-甘氨酸的四肽残基。
本发明的一些实施方案中,L4选自-NR5(CR6R7)t-Z-(CR6R7)t-C(=O)-或-NR5-Ar3-(CR6R7)t-Z-C(=O)-,其中t每次出现时各自独立地为1、2或3的整数;Z选自单键、O、S或-NH-;
Ar3选自6-8元的亚芳基,优选亚苯基,所述亚芳基或亚苯基未被取代或任选地被选自H、卤素、-OH、-CN、C1-6烷基的取代基取代;R5每次出现时各自独立地选自氢原子、C1-3烷基、卤代C1-6烷基和氘代C1-3烷基;R6和R7相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基。
本发明的一些实施方案中,接头单元-L-为:

本发明的一些实施方案中,提供配体-药物偶联物或其药学上可接受的盐,其选自以下的结构式:






其中,n为1至15的整数或者小数;优选地,n为1至13的整数或者小数;优选地,n为1至10的整数或者小数;更优选地,n为3至8的整数或者小数;Pc为配体。
本发明的一些实施方案中,Pc为抗体或其抗原结合片段或者多肽,其中所述抗体选自嵌合抗体、人源化抗体和全人源抗体;优选地,所述的抗体或其抗原结合片段选自抗TROP-2抗体、抗HER2(ErbB2)抗体、抗EGFR抗体、抗B7-H3抗体、抗c-Met抗体、抗HER3(ErbB3)抗体、抗HER4(ErbB4)抗体、抗LIV-1抗体、抗ROR1抗体、抗CD20抗体、抗CD22抗体、抗CD30抗体、抗CD33抗体、抗CD44抗体、抗CD56抗体、抗CD70抗体、抗CD73抗体、抗CD105抗体、抗CEA抗体、抗A33抗体、抗Cripto抗体、抗EphA2抗体、抗G250抗体、抗MUCl抗体、抗Lewis Y抗体、抗VEGFR抗体、抗GPNMB抗体、抗Integrin抗体、抗PSMA抗体、抗Tenascin-C抗体、抗SLC44A4抗体、抗Mesothelin抗体或其抗原结合片段;更优选地,所述的抗体或其抗原结合片段为抗TROP-2抗体、抗HER2(ErbB2)抗体、抗HER3(ErbB3)抗体、抗LIV-1抗体、抗ROR1抗体或其抗原结合片段;优选地,所述的抗体或其抗原结合片段为抗TROP-2抗体或抗HER3(ErbB3)抗体或其抗原结合片段;进一步优选地,优选地,所述抗TROP-2抗体或其抗原结合片段在重链中包含:由SEQ ID No:1的氨基酸序列构成的HCDR1、由SEQ ID No:2的氨基酸序列构成的HCDR2和由SEQ ID No:3的氨基酸序列构成的HCDR3,和/或,在轻链中包含:由SEQ ID No:4的氨基酸序列构成的LCDR1、由SEQ ID No:5的氨基酸序列构成的LCDR2和由SEQ ID No:6的氨基酸序列构成的LCDR3;更优选地,所述抗TROP-2抗体或其抗原结合片段在重链中包含SEQ ID No:7所示的重链可变 区,和/或,在轻链中包含SEQ ID No:8所示的轻链可变区;更优选地,所述抗TROP-2抗体或其抗原结合片段包含氨基酸序列为SEQ ID NO:9的重链,和/或,氨基酸序列为SEQ ID NO:10的轻链;
优选地,所述抗HER3抗体或其抗原结合片段在重链中包含由SEQ ID No:11的氨基酸序列构成的H’CDR1、由SEQ ID No:12的氨基酸序列构成的H’CDR2和由SEQ ID No:13的氨基酸序列构成的H’CDR3,和/或,在轻链中包含由SEQ ID No:14的氨基酸序列构成的L’CDR1、由SEQ ID No:15的氨基酸序列构成的L’CDR2和由SEQ ID No:16的氨基酸序列构成的L’CDR3;更优选地,所述抗HER3抗体或其抗原结合片段在重链中包含SEQ ID No:17所示的重链可变区,和/或在轻链中包含SEQ ID No:18所示的轻链可变区;更优选地,所述抗HER3抗体或其抗原结合片段包含氨基酸序列为SEQ ID NO:19的重链,和/或,氨基酸序列为SEQ ID NO:20的轻链;进一步优选地,所述的抗体或其抗原结合片段为Sacituzumab、曲妥珠单抗、patritumab或帕妥珠单抗。。
本发明的另一方面,提供一种通式(E0)或式(E)所示的化合物或其药学上可接受的盐:

其中,
Y选自-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m-C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(D)结构中的-NH-相连;优选,Y选自-O-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar-(Cy)m-(CRaRb)m-X-C(=O)-、或 其中Y的C(=O)-端与式(D)结构中的-NH-相连;Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选地,Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2;p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数,且p1+p2≤8;所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选,所述亚杂环基和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;所述Ar1每次出现时各自独立选自芳基或杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的芳基或5-10元的杂芳基;优选所述杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述芳基和杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基和氰基亚烷基,优选地,每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、和羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、和-OH;X每次出现时独立地为单键、-NH-、O或S;式(E)中的波浪线表示氢原子、与接头单元、结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;m每次出现时各自独立地为0、1、2、3或4的整数。
本发明的一些实施方案中,Rc每次出现时各自独立地为NH、或O;Rd和Re 每次出现时各自独立地为C(Rm)2或NRm;Rf每次出现时为CRm;当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、或3个杂原子,所述杂原子各自独立地选自N和O;在一些实施方案中,Rm每次出现时各自独立地为H、卤素、-OH、-CN、-NO2、-CF3、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、或-N(C1-6烷基)2,优选为H、卤素、-OH、-CN、C1-6烷基、或-OC1-6烷基,优选为H、卤素、-OH、-CN、C1-3烷基、或-OC1-3烷基,优选为-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、或-OCH3;在一些实施方案中,p1是0、1、2、或3的整数,p2是1、2、3、或4的整数,且2≤p1+p2≤4;在一些实施方案中,所述Cy每次出现时各自独立选自6-10元的芳基、或5-10元的杂芳基,优选选自苯基、或5-6元的杂芳基;优选,所述杂芳基含有1、2、或3个杂原子,所述杂原子独立地选自N、O和S;所述杂芳基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CH3、和-OCH3的取代基取代;在一些实施方案中,Ar1每次出现时各自独立选自6-10元的芳基,优选选自苯基;所述芳基或苯基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基取代;在一些实施方案中,Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、卤素、C1-3烷基、卤代C1-3烷基、氘代C1-3烷基、-OC1-3烷基、-OH、-NH2、-CN、-CF3、-NO2、和C1-3亚烷基-OH;优选地,Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、和卤素;在一些实施方案中,X独立地选自单键、-NH-、或O;m每次出现时各自独立地为0、1、2或3的整数。
优选地,所述式(E0)或式(E)的化合物不为
本发明的一些实施方案中,Y选自: 其中,p1为0、1、2、或3的整数,p2 为1、2、或4的整数,且2≤p1+p2≤4;X独立地选自单键、-NH-或O,m为0、1、2或3的整数;或
Y选自: 其中,R为-NH-、O或-O-(CH2)m-C(=O)-NH-,且-O-(CH2)m-C(=O)-NH-中的-NH-连接至Y中的苯基或联苯基;X独立地选自单键、-NH-或O,m为0、1、2或3的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,q为0、1、2、3或4的整数;优选地,X独立地选自单键或-NH-,m为0或1的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基,优选独立选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基,q为0、1或2的整数;
或Y选自:其中,m为0、1、2或3的整数;优选地,m为1或2;和Y结构中的C(=O)-端与式(D)结构中的-NH-相连。
本发明的一些实施方案中,Y选自:


其中,X独立地选自单键或-NH-,m为0或1的整数;R1选自卤素、-OH、-
CN、-CF3、-NO2、-CH3、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,优选地,R1选自卤素、-OH、-CN、C1-3烷基、-OC1-3烷基的取代基,优选R1选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基;q为0、1、2、3或4的整数;优选地,q为0、1或2的整数;Y结构中的C(=O)-端与式(E)或式(E0)结构中的-NH-相连。
本发明通式(E)所示的化合物,包括但不限于:




本发明的另一方面,提供具有下式(I)所示结构的化合物:
L1-L2-L3-L4(I)
其中,L1选自马来酰亚胺-N-(CH2)s-C(=O)-、马来酰亚胺-N-CH2-环己基-C(=O)-,其中s为2至8的整数;L2选自-NR4(CH2CH2O)rCH2CH2C(=O)-和-NR4CH2-Ar2-(CH2CH2O)rCH2CH2NR4C(=O)CH2OCH2C(=O)-,其中r为1至20的整数,Ar2L3为为缬氨酸-丙氨酸的二肽残基、丙氨酸-丙氨酸-丙氨酸的三肽残基或甘氨酸-甘氨酸-苯丙氨酸-甘氨酸的四肽残基;L4选自-NR5(CR6R7)t-Z-(CR6R7)t-COOH或-NR5-Ar3-(CR6R7)t-OH,其中t为1至3的整数;Z选自单键、O、S或-NH-;Ar3选自苯基,所述苯基未被取代或任选地被选自H、卤素、-OH、-CN、C1-6烷基的取代基取代;R4和R5相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基;R6和R7相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基。
本发明的一些实施方案中,式(I)化合物选自:

药物组合物、制剂和试剂盒
本发明的另一方面,进一步涉及一种药物组合物,其含有治疗有效量的如本发明所述的配体-药物偶联物或化合物、或其药学上可接受的盐或溶剂合物,以及一种或多种药学上可接受的载体。
本发明的另一方面还涉及一种药物制剂,其包含式I化合物或其药学上可接受的盐作为活性成分,或者本发明的药物组合物。在一些实施方案中,所述制剂的形式为固体制剂、半固体制剂、液体制剂或气态制剂。
可通过多种途径给予本发明的药物组合物,这取决于是否需要局部或全身治疗和所治疗的区域。可局部(例如,透皮、皮肤、眼和粘膜包括鼻内、 阴道和直肠递药)、肺(例如,通过吸入或吹入粉末或气雾剂,包括通过喷雾器;气管内、鼻内)、口服或肠胃外给药。肠胃外给药包括静脉内、动脉内、皮下、腹膜内或肌内注射或输注;或颅内例如鞘内或脑室内给药。
本发明的另一方面,在于提供一种制品,例如以试剂盒形式提供。本文所用的制品意图包括但不限于药盒和包装。所述试剂盒还可包括使用说明书。
治疗方法和用途
本发明的另一方面,进一步涉及本发明所述的配体-药物偶联物或化合物、或其药学上可接受的盐或溶剂合物,或其药物组合物,其用作药物。
本发明的另一方面,进一步涉及本发明所述的配体-药物偶联物或化合物、或其药学上可接受的盐或溶剂合物,或其药物组合物在制备用于治疗或预防肿瘤的药物中的用途;优选地,其中所述的肿瘤为与TROP-2表达相关的癌症,或所述的肿瘤为与HER3表达相关的癌症;优选地,所述HER3表达相关的癌症选自非小细胞肺癌、黑色素瘤、乳腺癌和结直肠腺癌;优选地,所述TROP-2表达相关的癌症选自乳腺癌、三阴性乳腺癌、胃癌和胰腺癌。
本发明的另一方面,进一步涉及一种用于治疗和/或预防肿瘤的方法,该方法包括向需要其的患者施用治疗有效剂量的本发明所述的配体-药物偶联物或化合物、或其药学上可接受的盐或溶剂合物或包含其的药物组合物;优选地,其中所述的肿瘤为与TROP-2表达相关的癌症,或所述的肿瘤为与HER3表达相关的癌症;优选地,所述HER3表达相关的癌症选自非小细胞肺癌、黑色素瘤、乳腺癌和结直肠腺癌;优选地,所述TROP-2表达相关的癌症选自乳腺癌、三阴性乳腺癌、胃癌和胰腺癌。
本发明的另一方面,进一步涉及本发明所述的配体-药物偶联物或化合物、或其药学上可接受的盐或溶剂合物或包含其的药物组合物,其用于预防或治疗肿瘤;优选地,其中所述的肿瘤为与TROP-2表达相关的癌症。
有益效果
本发明提供的依喜替康类似物具有很强的肿瘤抑制效率,并且本发明提供的TROP-2抗体-药物偶联物和HER-3抗体-药物偶联物具有良好的肿瘤抑制效果,适于临床的药物应用。
一般术语和定义
除非在下文中另有定义,本文中所用的所有技术术语和科学术语的含义意图与本领域技术人员通常所理解的相同。
本发明的某些化合物可以游离形式存在,或适当时,以其药学上可接受的衍生物形式存在。在本发明中,药学上可接受的衍生物包括但不限于,药学上可接受的盐、前药、立体异构体(包括但不限于非对映异构体和对映异构体)、互变异构体、溶剂化物、多晶型物和同位素化合物,在将它们向需要其的患者给药后,能够直接或间接提供本发明化合物或其代谢物。因此,当在本文中提及“本发明的化合物”时,也意在涵盖化合物的上述各种衍生物形式。
术语“药学上可接受的盐”指保留了特定化合物的游离酸和碱的生物学效力而没有生物学不良作用的盐。药学上可接受的盐的例子包括但不限于:(1)酸加成盐,和无机酸例如盐酸、硫酸、氢溴酸、硝酸、磷酸等形成的盐;或和有机酸例如苹果酸、富马酸、马来酸、苯甲酸、苯乙酸、琥珀酸、酒石酸、柠檬酸、甲磺酸、乙磺酸、羟基乙酸、肉桂酸、丙酮酸、甲酸、乙酸、丙酸、草酸、丙二酸、丙烯酸、扁桃酸等形成的盐;或者(2)碱加成盐,和碱金属例如锂、钠、钾等形成的盐;和碱土金属例如钙、镁等形成的盐;和有机碱例如铵、胆碱、二乙醇胺、赖氨酸、乙二胺、叔丁胺、叔辛胺、三(羟甲基)氨基甲烷、N-甲基葡萄糖胺、三乙醇胺、脱氢松香胺等形成的盐。对于本领域的技术人员而言,其他的药学上可接受的盐是已知的。
本发明化合物的药物前体包含在本发明的保护范围内。通常,所述药物前体是指很容易在体内转化成所需要的化合物的功能性衍生物。因此,本发明提供的治疗方法中的术语“给药”包括施用本发明公开的化合物,或虽未明确公开但对受试者给药后能够在体内转化为本发明公开的化合物治疗所述的各种疾病。有关选择和制备合适药物前体衍生物的常规方法,已记载在例如《药物前体设计》(Design of Prodrugs,H.Bundgaard,Elsevier,1985)这类书中。
本发明所述化合物可能含有一个或多个不对称中心,并可能由此产生非对映异构体和光学异构体。本发明包括所有可能的非对映异构体及其外消旋混合物、其基本上纯的拆分对映异构体、所有可能的几何异构体及其药学上可接受的盐。
本发明化合物没有确切定义该化合物某一位置的立体结构。本发明包括化合物的所有立体异构体及其药学上可接受的盐。而且,立体异构体的混合物及分离出的特定的立体异构体也包括在本发明中。制备此类化合物的合成过程中,或使用本领域普通技术人员公知的外消旋化或差向异构化方法的过程中,制得的产品可以是立体异构体的混合物。
当本发明化合物存在互变异构体时,除非特别声明,本发明包括任何可能的互变异构体和其药学上可接受的盐,及它们的混合物。
当本发明化合物及其药学上可接受的盐以溶剂化物或多晶型的形式存在时,本发明包括任何可能的溶剂化物和多晶型形式。形成溶剂化物的溶剂类型没有特别的限定,只要该溶剂是药理学上可以接受的。例如,水、乙醇、丙醇、丙酮等类似的溶剂都可以采用。
本发明还包括所有药学上可接受的同位素化合物,其与本发明的化合物相同,除了一个或多个原子被具有相同原子序数但原子质量或质量数不同于在自然界中占优势的原子质量或质量数的原子替代。适合包含入本发明的化合物中的同位素的实例包括(但不限于)氢的同位素(例如氘(2H)、氚(3H));碳的同位素(例如13C及14C);氯的同位素(例如37Cl);碘的同位素(例如125I);氮的同位素(例如13N及15N);氧的同位素(例如17O及18O);磷的同位素(例如32P);及硫的同位素(例如34S)。
术语“配体”是能识别和结合目标细胞相关的抗原或受体的大分子化合 物。配体的作用是将药物呈递给与配体结合的目标细胞群,在本发明实施方式中,配体表示为Pc,配体可通过配体上的杂原子与连接单元形成连接键,优选为抗体或其抗原结合片段或者多肽,所述抗体选自嵌合抗体、人源化抗体、全人抗体或鼠源抗体;优选为单克隆抗体。
术语“药物”是指细胞毒性药物,药物表示为E或E0,能在肿瘤细胞内具有较强破坏其正常生长的化学分子。
术语“接头单元”或“连接片段”或“连接单元”是指一端与配体连接而另一端与药物相连的化学结构片段或键,也可以连接其他接头后再与药物相连。本公开的优选方案表示为L和L1至L4,其中L1端与配体相连,L4端与结构单元Y相连后与药物(E或E0)相连。
术语“配体-药物偶联物”,指配体通过稳定的连接单元与具有生物活性的药物相连。在本公开中“配体-药物偶联物”优选为抗体-药物偶联物(antibody drug conjugate,ADC),指把单克隆抗体或者抗体片段通过稳定的连接单元与具有生物活性的毒性药物相连。
本公开所用氨基酸三字母代码和单字母代码如J.biol.chem,243,p3558(1968)中所述。
术语“抗体”指免疫球蛋白,是由两条相同的重链和两条相同的轻链通过链间二硫键连接而成的四肽链结构。免疫球蛋白重链恒定区的氨基酸组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,或称为免疫球蛋白的同种型,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链、和ε链。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类,如IgG可分为IgG1、IgG2、IgG3、IgG4。轻链通过恒定区的不同分为κ链或λ链。五类Ig中每类Ig都可以有κ链或λ链。本公开所述的抗体优选为针对靶细胞上细胞表面抗原的特异性抗体,非限制性实施例为以下抗体:抗TROP-2抗体、抗HER2(ErbB2)抗体、抗EGFR抗体、抗B7-H3抗体、抗c-Met抗体、抗HER3(ErbB3)抗体、抗HER4(ErbB4)抗体、抗LIV-1抗体、抗ROR1抗体、抗CD20抗体、抗CD22抗体、抗CD30抗体、抗CD33抗体、抗CD44抗体、抗CD56抗体、抗CD70抗体、抗CD73抗体、抗CD105抗体、抗CEA抗体、抗A33抗体、抗Cripto抗体、抗EphA2抗体、抗G250抗体、抗MUCl抗体、抗Lewis Y抗体、抗VEGFR抗体、抗GPNMB抗体、抗Integrin抗体、抗PSMA抗体、抗Tenascin-C抗体、抗SLC44A4抗体、抗Mesothelin抗体或其抗原结合片段;更优选地,所述的抗体或其抗原结合片段为抗TROP-2抗体、抗HER2(ErbB2)抗体、抗HER3(ErbB3)抗体、抗LIV-1抗体、抗ROR1抗体或其抗原结合片段;最优选的,所述的抗体或其抗原结合片段为Sacituzumab、曲妥珠单抗或帕妥珠单抗。
本发明的抗体包括鼠源抗体、嵌合抗体、人源化抗体和全人源抗体,优选人源化抗体和全人源抗体。
术语“鼠源抗体”在本发明中为根据本领域知识和技能用鼠制备抗体。制备时用特定抗原注射试验对象,然后分离表达具有所需序列或功能特性的抗 体的杂交瘤。
术语“嵌合抗体(chimeric antibody)”,是将鼠源性抗体的可变区与人抗体的恒定区融合而成的抗体,可以减轻鼠源性抗体诱发的免疫应答反应。建立嵌合抗体,要先建立分泌鼠源性特异性单抗的杂交瘤,然后从鼠杂交瘤细胞中克隆可变区基因,再根据需要克隆人抗体的恒定区基因,将鼠可变区基因与人恒定区基因连接成嵌合基因后插入表达载体中,最后在真核系统或原核系统中表达嵌合抗体分子。
术语“人源化抗体(humanized antibody)”,也称为CDR移植抗体(CDR-grafted antibody),是指将鼠的CDR序列移植到人的抗体可变区框架,即不同类型的人种系抗体框架序列中产生的抗体。可以克服嵌合抗体由于携带大量鼠蛋白成分,从而诱导的异源性反应。
术语“全人源抗体”、“全人抗体”或“完全人源抗体”,也称“全人源单克隆抗体”,其抗体的可变区和恒定区都是人源的,去除免疫原性和毒副作用。
术语“抗原结合片段”是指抗体的保持特异性结合抗原的能力的一个或多个片段。已显示可利用全长抗体的片段来进行抗体的抗原结合功能。“抗原结合片段”中包含的结合片段的实例包括(i)Fab片段,由VL、VH、CL和CH1结构域组成的单价片段;(ii)F(ab')2片段,包含通过铰链区上的二硫桥连接的两个Fab片段的二价片段,(iii)由VH和CH1结构域组成的Fd片段;(iv)由抗体的单臂的VH和VL结构域组成的Fv片段;(v)单结构域或dAb片段(Ward等人,(1989)Nature341:544-546),其由VH结构域组成;和(vi)分离的互补决定区(CDR)或(vii)可任选地通过合成的接头连接的两个或更多个分离的CDR的组合。此外,虽然Fv片段的两个结构域VL和VH由分开的基因编码,但可使用重组方法,通过合成的接头连接它们,从而使得其能够产生为其中VL和VH区配对形成单价分子的单个蛋白质链(称为单链Fv(scFv);参见,例如,Bird等人(1988)Science242:423-426;和Huston等人(1988)Proc.Natl.Acad.Sci USA85:5879-5883)。此类单链抗体也意欲包括在术语抗体的“抗原结合片段”中。使用本领域技术人员已知的常规技术获得此类抗体片段,并且以与对于完整抗体的方式相同的方式就功用性筛选片段。可通过重组DNA技术或通过酶促或化学断裂完整免疫球蛋白来产生抗原结合部分。
Fab是通过用蛋白酶木瓜蛋白酶(切割H链的224位的氨基酸残基)处理IgG抗体分子所获得的片段中的具有约50,000的分子量并具有抗原结合活性的抗体片段,其中H链N端侧的约一半和整个L链通过二硫键结合在一起。
F(ab')2是通过用酶胃蛋白酶消化IgG铰链区中两个二硫键的下方部分而获得的分子量为约100,000并具有抗原结合活性并包含在铰链位置相连的两个Fab区的抗体片段。
Fab'是通过切割上述F(ab')2的铰链区的二硫键而获得的分子量为约50,000并具有抗原结合活性的抗体片段。
此外,可以通过将编码抗体的Fab'片段的DNA插入到原核生物表达载 体或真核生物表达载体中并将载体导入到原核生物或真核生物中以表达Fab'来生产所述Fab'。
术语“单链抗体”、“单链Fv”或“scFv”意指包含通过接头连接的抗体重链可变结构域(或区域;VH)和抗体轻链可变结构域(或区域;VL)的分子。此类scFv分子可具有一般结构:NH2-VL-接头-VH-COOH或NH2-VH-接头-VL-COOH。合适的现有技术接头由重复的GGGGS氨基酸序列或其变体组成,例如使用1-4个重复的变体(Holliger等人(1993),Proc.Natl.Acad.Sci.USA90:6444-6448)。可用于本公开的其他接头由Alfthan等人(1995),Protein Eng.8:725-731,Choi等人(2001),Eur.J.Immuno l.31:94-106,Hu等人(1996),Cancer Res.56:3055-3061,Kipriyanov等人(1999),J.Mol.Biol.293:41-56和Roovers等人(2001),Cancer Immunol.描述。
术语“CDR”是指抗体的可变结构域内主要促成抗原结合的6个高变区之一。所述6个CDR的最常用的定义之一由Kabat E.A.等人,(1991)Sequences of proteins of immunological interest.NIH Publication91-3242)提供。如本文中使用的,CDR的Kabat定义只应用于轻链可变结构域的CDR1、CDR2和CDR3(CDR L1、CDR L2、CDR L3或L1、L2、L3),以及重链可变结构域的CDR2和CDR3(CDR H2、CDR H3或H2、H3)。
术语“载体”是指能够运输已与其连接的另一个核酸的核酸分子。在一个实施方案中,载体是“质粒”,其是指可将另外的DNA区段连接至其中的环状双链DNA环。在另一个实施方案中,载体是病毒载体,其中可将另外的DNA区段连接至病毒基因组中。本文中公开的载体能够在已引入它们的宿主细胞中自主复制(例如,具有细菌的复制起点的细菌载体和附加型哺乳动物载体)或可在引入宿主细胞后整合入宿主细胞的基因组,从而随宿主基因组一起复制(例如,非附加型哺乳动物载体)。
术语“烷基”指饱和脂肪族烃基团,其为包含1至20个碳原子的直链或支链基团,优选含有1至12个碳原子的烷基,更优选含有1至10个碳原子的烷基,最优选含有1至6个碳原子的烷基。术语“C1-6烷基”指具有1-6个碳原子(例如1、2、3、4、5或6个碳原子)的饱和直链或支链烃基。例如“C1-6烷基”可以是甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基或正己基等。
术语“环烷基”指饱和或部分不饱和单环或多环环状烃取代基,环烷基环包含3至20个碳原子,优选包含3至12个碳原子,更优选包含3至10个碳原子,最优选包含3至8个碳原子。单环环烷基的非限制性实例包括环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、环己二烯基、环庚基、环庚三烯基、环辛基等;多环环烷基包括螺环、稠环和桥环的环烷基。
术语“杂环基”指饱和或部分不饱和单环或多环环状烃取代基,其包含3至20个环原子,其中一个或多个(例如1、2或3个)环原子为选自氮、氧或硫,其余环原子为碳。优选包含3至12个环原子,其中1~4个是杂原子;更优选环烷基环包含3至10个环原子。单环杂环基的非限制性实例包括吡咯烷基、哌啶基、哌嗪基、吗啉基、硫代吗啉基、高哌嗪基等。多环杂环基 包括螺环、稠环和桥环的杂环基。
术语“芳基”指具有共轭的π电子体系的6至14元全碳单环或稠合多环(也就是共享毗邻碳原子对的环)基团,优选为6至10元,例如苯基和萘基,优选苯基。所述芳基环可以稠合于杂芳基、杂环基或环烷基环上,其中与母体结构连接在一起的环为芳基环。
术语“杂芳基”指包含1至4个杂原子、5至14个环原子的杂芳族体系,其中杂原子选自氧、硫和氮。杂芳基优选为5至10元,更优选为5元或6元,例如呋喃基、噻吩基、吡啶基、吡咯基、N-烷基吡咯基、嘧啶基、吡嗪基、咪唑基、四唑基等。所述杂芳基环可以稠合于芳基、杂环基或环烷基环上,其中与母体结构连接在一起的环为杂芳基环。
术语“卤代烷基”指烷基被一个或多个卤素取代。
术语“氘代烷基”指烷基被一个或多个氘原子取代。
术语“卤素”指氟、氯、溴或碘。
术语“取代”和“取代的”指所指定的原子上的一个或多个(例如一个、两个、三个或四个)氢被从所指出的基团的选择代替,条件是未超过所指定的原子在当前情况下的正常原子价并且所述取代形成稳定的化合物。取代基和/或变量的组合仅仅当这种组合形成稳定的化合物时才是允许的。
如果取代基被描述为“任选地…被取代”,则取代基可(1)未被取代,或(2)被取代。如果某个原子或基团被描述为任选地被取代基列表中的一个或多个取代,则该原子或基团上的一个或多个氢可被独立地选择的、任选的取代基替代。如果取代基被描述为“独立地选自”或“各自独立地为”,则各取代基互相独立地加以选择。因此,各取代基可与另一(其他)取代基相同或不同。例如,某个取代基或取代位置或者不同的取代基或取代位置具有可能相同或不同符号指代的R基团(例如但不限于R2、R3、Rh、Ri、Rx和/或Ry)的选择时,各个R之间独立地加以选择,即可以相同也可以不同。关于数值如d、g、m、n的选择也是如此。
除非指明,否则如本文中所使用,取代基的连接点可来自取代基的任意适宜位置。
当取代基的键显示为穿过环中连接两个原子的键时,则这样的取代基可键连至该可取代的环中的任一成环原子。
术语“包括”、“包含”、“具有”、“含有”或“涉及”及其在本文中的其它变体形式为包含性的或开放式的,且不排除其它未列举的元素或方法步骤。本领域技术人员应当理解,上述术语如“包括”涵盖“由…组成”的含义。
本发明中“药学上可接受的载体”是指与活性成分一同给药的稀释剂、辅剂、赋形剂或媒介物,并且其在合理的医学判断的范围内适于接触人类和/或其它动物的组织而没有过度的毒性、刺激、过敏反应或与合理的益处/风险比相应的其它问题或并发症。术语“活性成分”、“治疗剂”,“活性物质”或“活性剂”是指一种化学实体,它可以有效地治疗目标病症或病况的一种或多种症状。
如本文中所使用的术语“有效量”(例如“治疗有效量”或“预防有效量”)指给药后会在一定程度上实现预期效果的活性成分的量,例如缓解所治疗病症的一种或多种症状或预防病症或其症状的出现。
除非另外说明,否则如本文中所使用,术语“治疗”意指逆转、减轻、抑制该术语所应用的病症或病况或者所述病症或病况的一种或多种症状的进展,或预防所述病症或病况或者所述病症或病况的一种或多种症状。
附图说明
图1为本发明提供的TROP-2-ADC化合物对MDA-MB-468细胞的内化水平折线图;
图2为本发明提供的TROP-2-ADC化合物抑制MDA-MB-468细胞系肿瘤体积增长的折线图;
图3为本发明提供的TROP-2-ADC化合物抑制肿瘤体积增长实验结果折线图;
图4为本发明提供的TROP-2-ADC化合物抑制胃癌肿瘤生长曲线图;
图5为在本发明提供的HER3-ADC化合物作用下,抑制MDA-MB-453细胞系肿瘤的生长曲线图;
图6为在本发明提供的HER3-ADC化合物作用下,抑制SW620细胞系肿瘤的生长曲线图,是多剂量重复给药体内药效评价;
图7为在本发明提供的抗体药物偶联物(ADC)的细胞内化水平检测结果图;其中,a为本发明提供的HER3-ADC化合物对MAD-MB-453细胞的内化水平折线图,b为本发明提供的HER3-ADC化合物对于HCC1569细胞的内化水平折线图,c为本发明提供的HER3-ADC化合物对于SW620细胞的内化水平折线图;
图8为本发明提供的HER3-ADC化合物在小鼠体内对黑色素瘤抑制水平的折线图;
图9为本发明提供的HER3-ADC化合物在小鼠体内对非小细胞肺癌肿瘤抑制水平的折线图;
图10为本发明提供的HER3-ADC化合物在动物血浆中稳定性检测结果图;其中,A为本发明提供的HER3-ADC化合物在人血浆中稳定性检测结果图;B为本发明提供的HER3-ADC化合物在猴血浆中稳定性检测结果图;C为本发明提供的HER3-ADC化合物在大鼠血浆中稳定性检测结果图;D为本发明提供的HER3-ADC化合物在小鼠血浆中稳定性检测结果图;
图11为本发明提供的HER3-ADC化合物和对照药物U3-1402在给药后大鼠血浆中的HER3抗体含量变化折线图;
图12为本发明提供的HER3-ADC化合物和对照药物U3-1402在给药后大鼠血浆中的HER3抗体含量变化折线图;
图13为本发明提供的HER3-ADC药物大鼠体内产生的小分子成分含量示意图;
图14为对照药物U3-1402在大鼠体内产生的小分子成分含量折线图;
图15为在本发明提供的HER3-ADC化合物作用下,抑制SW620细胞系肿瘤的生长曲线图,是单剂量重复给药体内药效评价。
具体实施方式
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的化学原料、试剂等,如无特殊说明,均为市售购买产品。本文中出现的缩略语及其含义如下所示:
表1缩略语及其含义
缩写 含义
EXD 依喜替康甲磺酸盐
DMF N,N-二甲基甲酰胺
HATU 2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
DIEA N,N-二异丙基乙胺
EDCI·HCl 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐
DCC N,N'-二环己基碳二亚胺
HOSu N-羟基丁二酰亚胺
DMAP 4-二甲氨基吡啶
TFA 三氟乙酸
HOBt 1-羟基苯并三唑
EEDQ 2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉
NPC 二(对硝基苯)碳酸酯
EMCA 6-马来酰亚胺基己酸
细胞名称及来源
如无特殊声明,本发明实施例中使用的细胞株或细胞系均可通过商购途 径获得。其中,
HEK293f细胞系,购自南京科佰生物科技有限公司;
SW620细胞系,购自南京科佰生物科技有限公司;
Bxpc-3细胞系,购自南京科佰生物科技有限公司;
NCI-N87细胞系,购自南京科佰生物科技有限公司;
A375细胞系,购自ATCC(American type culture collection,美国模式 培养物集存库);
NCI-H358细胞系,购自ATCC;
293F细胞系,购自珠海恺瑞生物科技有限公司;
HCC1569细胞系,购自ATCC;
MDA-MB-453细胞系,购自南京科佰生物科技有限公司;
MDA-MB-468细胞系,购自南京科佰生物科技有限公司;
Nalm6-GFP细胞,购自Creative Biogene;
实施例1
化合物1b的合成:
将EXD(25mg,47μmol,1.0eq,购于MedChemExpress,货号:HY-13631A)和化合物1a(9.5mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。加水,乙酸乙酯萃取,有机相用饱和食盐水洗涤,干燥浓缩后柱层析纯化(9%MeOH in CH2Cl2)得白色固体(29mg,100%)。MS(ESI):m/z found[M-99]+=519.2。
化合物1的合成:
将化合物1b(28mg,45μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌3小时。浓缩后反相柱层析纯化(32%CH3CN in H2O,0.1%TFA)得黄色固体(28.6mg,100%)。MS(ESI):m/z found[M+1]+=519.2。
1H NMR(400MHz,DMSO-d6):δ8.76(br,2H),8.69(d,J=8.4Hz,1H),7.82(d,J=11.2Hz,1H),7.32(s,1H),6.52(br,1H),5.62(t,J=4.0Hz,1H),5.43(s,2H),5.23(q,J=19.8Hz,2H),4.10–4.02(m,4H),3.18–3.12(m,2H),2.41(s,3H),2.19–2.16(m 2H),0.87(t,J=7.2Hz,3H).
实施例2
化合物2b的合成:
将对氨基苯乙酸2a(617mg,4.08mmol,1.0eq)溶于二氧六环(8mL)和水(4mL)中,加入1N碳酸氢钠(4mL)和(Boc)2O(980mg,4.49mmol,1.1eq),室温搅拌24小时。反应液用2N盐酸中和,加50mL水稀释,乙酸乙酯萃取,饱和食盐水洗涤,干燥浓缩后柱层析纯化(25%EA in PE)得白色固体(700mg,68%),MS(ESI):m/z found[M-1]-=250.0。
化合物2c的合成:
将EXD(25mg,47μmol,1.0eq)和化合物2a(11.8mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。加水,乙酸乙酯萃取,有机相用饱和食盐水洗涤,干燥浓缩后柱层析纯化(4%MeOH in CH2Cl2)得白色固体(27mg,86%),MS(ESI):m/z found[M+1]+=669.2。
化合物2的合成:
将化合物2c(27mg,40μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(31%CH3CN in H2O,0.1%TFA)得黄色固体(19.3mg,70%),MS(ESI):m/z found[M+1]+=569.2。
1H NMR(400MHz,DMSO-d6):δ8.71(d,J=8.4Hz,1H),7.82(d,J=10.8Hz,1H),7.32–7.30(m,3H),7.11(d,J=8.0Hz,2H),6.55(br,1H),5.56–5.50(m,1H),5.44(s,2H),5.21(dd,J=18.4,32.8Hz,2H),3.50–3.18(m,4H),2.42(s,3H),2.14–2.12(m,2H),1.93–1.82(m,2H),0.88(t,J=7.2Hz,3H).
实施例3
化合物3的合成:
将羟基乙酸(2.0mg,26μmol,1.0eq)溶于DMF中(1mL),加入EDCI·HCl(6.1mg,32μmol,1.2eq)和HOSu(3.7mg,32μmol,1.2eq),室温搅拌2小时。加入化合物2(18mg,26μmol,1.0eq)和DIEA(11μL,66μmol,2.5eq)继续搅拌10小时。反应液HPLC纯化得淡黄色固体(10.0mg, 61%),MS(ESI):m/z found[M+1]+=627.2。
1H NMR(400MHz,DMSO-d6):δ9.59(s,1H),8.66(t,J=9.0Hz,1H),7.79(d,J=11.0Hz,1H),7.59(d,J=8.0Hz,,2H),7.29(d,J=1.9Hz,1H),7.20(dd,J=8.4,3.5Hz,2H),6.52(s,1H),5.65(s,1H),5.51(dt,J=9.1,4.9Hz,1H),5.42(d,J=3.3Hz,2H),5.24(dd,J=18.9,2.9Hz,1H),5.12(dd,J=19.0,4.6Hz,1H),3.95(d,J=4.2Hz,2H),3.43(d,J=4.0Hz,2H),3.16(d,J=6.0Hz,2H),2.39(s,3H),2.15–2.06(m,2H),1.90–1.79(m,2H),0.85(td,J=7.4,2.8Hz,3H).
实施例4
化合物4b的合成:
将EXD(25mg,47μmol,1.0eq)和N-Boc-L-脯氨酸4a(10mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时,反应液由混浊变为澄清。加水,乙酸乙酯萃取,饱和食盐水洗涤,干燥浓缩后柱层析纯化(4%MeOH in CH2Cl2)得白色固体(26mg,88%),MS(ESI):m/z found[M+1]+=633.2。
化合物4的合成:
将化合物4b(27mg,43μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(31%CH3CN in H2O,0.1%TFA)得黄色固体(18.5mg,67%),MS(ESI):m/z found[M+1]+=533.2。
1H NMR(400MHz,DMSO-d6):δ9.11(d,J=8.4Hz,1H),7.84(d,J=10.8Hz,1H),7.32(s,1H),6.55(s,1H),5.65–5.61(m,1H),5.43(s,2H),5.30(d,J=18.8Hz,1H),5.09(d,J=18.8Hz,1H),4.17(s,1H),3.38–3.21(m,4H),2.42(s,3H),2.25–2.20(m,3H),1.94–1.83(m,5H),0.88(t,J=7.2Hz,3H).
实施例5

化合物5的合成:
将羟基乙酸(3.5mg,46μmol,1.0eq)溶于DMF中(1mL),加入EDCI·HCl(10.7mg,56μmol,1.2eq)和HOSu(6.4mg,56μmol,1.2eq),室温搅拌3小时。加入化合物4(30mg,46μmol,1.0eq)和DIEA(15μL,93μmol,2.0eq)继续搅拌4小时。反应液HPLC纯化得白色固体(7.2mg,26%)。MS(ESI):m/z found[M+1]+=591.4。
1H NMR(400MHz,DMSO-d6):δ8.69–8.44(m,1H),7.79(d,J=10.9Hz,1H),7.30(s,1H),6.52(s,1H),5.52(dt,J=9.1,4.7Hz,1H),5.41(d,J=4.2Hz,2H),5.20(d,J=2.5Hz,2H),4.40(t,J=5.8Hz,1H),4.25(dd,J=8.1,4.0Hz,1H),4.07(dd,J=20.7,5.3Hz,1H),4.01(d,J=5.1Hz,1H),3.50–3.44(m,2H),3.15(d,J=4.0Hz,2H),2.38(s,3H),2.16–1.96(m,4H),1.93–1.76(m,4H),0.84(t,J=7.4Hz,3H)ppm.
实施例6
化合物6的合成:
将EXD(25mg,47μmol,1.0eq)和化合物6a(8.1mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(20mg,52μmol,1.1eq)和DIEA(16μL,0.1mmol,2.1eq),室温搅拌2小时。反应液反相柱层析纯化(55%CH3CN in H2O,0.05%HCOOH)得白色固体(10.4mg,38%),MS(ESI):m/z found[M+1]+=590.0。
1H NMR(400MHz,DMSO-d6):δ8.86(d,J=8.4Hz,1H),7.95(d,J=2.2Hz,1H),7.88–7.74(m,2H),7.30(s,1H),7.01(d,J=8.5Hz,1H),6.52(s,1H),5.76(q,J=6.4Hz,1H),5.38(s,2H),5.25–5.05(m,2H),3.26–3.12(m,2H),2.42(s,3H),2.31–2.14(m,H),1.85(hept,J=7.1Hz,2H),0.86(t,J=7.3Hz,3H).
实施例7
化合物7的合成:
将EXD(25mg,47μmol,1.0eq)和化合物7a(8.1mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(16μL,118μmol,2.1eq),室温搅拌2小时。反应液反相柱层析纯化(55%CH3CN in H2O,0.05%HCOOH)得白色固体(5.2mg,19%),MS(ESI):m/z found[M+1]+=590.0。
1H NMR(400MHz,DMSO-d6):δ10.59(s,1H),9.01(d,J=8.4Hz,1H),7.81(d,J=11.0Hz,1H),7.54(d,J=2.0Hz,1H),7.41(d,J=8.3Hz,1H),7.34(dd,J=8.3,1.9Hz,1H),7.30(s,1H),6.54(s,1H),5.75(q,J=6.9,6.2Hz,1H),5.38(s,2H),5.22(d,J=18.8Hz,1H),5.08(d,J=18.9Hz,1H),3.26–3.12(m,2H),2.41(s,3H),2.31–2.20(m,2H),1.90–1.78(m,J=7.2Hz,2H),0.86(t,J=7.3Hz,3H).
实施例8
化合物8的合成:
将对硝基苯基氯甲酸酯8b(141mg,0.7mmol,1.0eq)溶于二氯甲烷中(2.0mL),于冰浴下加入吡啶(56μL,0.7mmol,1.0eq)和三氟乙胺(50μL,0.7mmol,1.0eq),室温搅拌2小时得反应中间体,MS(ESI):m/z found [M+1]+=265.0。
将EXD(30mg,56μmol,1eq)溶于DMF中(2.0mL),加入DIEA(19μL,0.11mmol,2.0eq)。反应液澄清后加入0.2mL的反应液中间体,室温搅拌1小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(8%MeOH in EA)得白色固体(20.5mg,65%),MS(ESI):m/z found[M+1]+=561.2。
1H NMR(400MHz,DMSO-d6):δ8.67(d,J=10.8Hz,1H),7.30(s,1H),7.12(d,J=8.8Hz,1H),6.68(t,J=6.0Hz,1H),6.52(br,1H),5.42(s,2H),5.40–5.35(m,1H),5.27(s,2H),3.94–3.85(m,2H),3.17(t,J=6.0Hz,2H),2.40(s,3H),2.18(t,J=6.0Hz,2H),1.92–1.83(m,2H),0.87(t,J=4.0Hz,3H)。
实施例9
化合物9b的合成:
将化合物9a(100mg,0.45mmol,1.0eq)溶于二氯甲烷中(2mL),于冰浴下加入吡啶(40μL,0.49mmol,1.1eq)和化合物8b(100mg,0.49 mmol,1.1eq),室温搅拌2小时。加水,二氯甲烷萃取,干燥浓缩后柱层析纯化(25%EA in PE)得黄色固体(120mg,69%)。MS(ESI):m/z found[M+1]+=388.1
化合物9c的合成:
将EXD(30mg,56μmol,1.0eq)溶于DMF中(1.0mL),加入DMAP(13.8mg,0.11mmol,2.0eq)。反应液澄清后加入化合物9b(22mg,56μmol,1.0eq),80℃搅拌5小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(5%MeOH in CH2Cl2)得白色固体(26mg,67%),MS(ESI):m/z found[M-55]+=628.3。
化合物9的合成:
将化合物9b(25mg,37μmol)溶于二氯甲烷(2mL)中,加入三氟乙酸(0.5mL),室温搅拌2.5小时。浓缩后反相柱层析纯化(33%CH3CN in H2O,0.1%TFA)得黄色固体(15mg,59%),MS(ESI):m/z found[M+1]+=584.2。
1H NMR(400MHz,DMSO-d6):δ7.67(d,J=10.9Hz,1H),7.20(s,1H),7.06(d,J=7.9Hz,2H),6.76(d,J=7.9Hz,2H),6.64(d,J=8.9Hz,1H),6.42(s,1H),6.25(t,J=5.9Hz,1H),5.34(s,2H),5.30–5.23(m,2H),5.15(d,J=19.2Hz,1H),4.14–4.02(m,2H),3.05(q,J=6.2Hz,3H),2.28(s,3H),2.04(tt,J=12.0,6.5Hz,2H),1.84–1.69(m,2H),0.77(t,J=7.3Hz,3H).
实施例10
化合物10b的合成:
将化合物10a(100mg,0.50mmol,1.0eq)溶于二氯甲烷中(2mL),于 冰浴下加入吡啶(44μL,0.55mmol,1.1eq)和化合物8b(111mg,0.55mmol,1.1eq),室温搅拌2小时。加水,二氯甲烷萃取,干燥浓缩后柱层析纯化(33%EA in PE)得黄色固体(108mg,59%)。MS(ESI):m/z found[M-99]+=266.2
化合物10c的合成:
将EXD(20mg,38μmol,1eq)溶于DMF中(0.8mL),加入DMAP(9.2mg,75μmol,2.0eq),反应液澄清后加入化合物10a(14mg,38μmol,1.0eq),60℃搅拌3小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(6%MeOH in CH2Cl2)得白色固体(16mg,67%),MS(ESI):m/z found[M-55]+=606.3。
化合物10的合成:
将化合物10c(15mg,23μmol)溶于二氯甲烷(2mL)中,加入三氟乙酸(0.5mL),室温搅拌3小时。浓缩后反相柱层析纯化(33%CH3CN in H2O,0.1%TFA)得黄色固体(9.1mg,59%),MS(ESI):m/z found[M+1]+=562.2。
1H NMR(400MHz,DMSO-d6):δ8.43(s,1H),8.23(s,1H),7.73(d,J=10.9Hz,1H),7.26(s,1H),6.54(d,J=8.9Hz,1H),6.49(s,1H),6.26(d,J=7.6Hz,1H),5.37(s,2H),5.30(d,J=19.0Hz,1H),5.12(d,J=19.2Hz,1H),3.76-3.68(m,1H),3.26–3.09(m,4H),3.02–2.91(m,2H),2.33(s,3H),2.18–2.15(m,1H),2.07(dd,J=9.1,4.4Hz,1H),2.01–1.90(m,2H),1.81(dq,J=14.1,7.0Hz,2H),1.59–1.46(m,2H),0.83(t,J=7.3Hz,3H).
实施例11
化合物11b的合成:
将化合物10s(100mg,0.5mmol,1.0eq)溶于二氯甲烷中(2mL),于冰浴下加入吡啶(44μL,0.55mmol,1.1eq)和化合物8b(111mg,0.55mmol,1.1eq),室温搅拌2小时。加水,二氯甲烷萃取,干燥浓缩后柱层析纯化(33%EA in PE)得黄色固体(110mg,60%)。MS(ESI):m/z found[M-99]+=266.2
化合物11c的合成:
将EXD(20mg,38μmol,1eq)溶于DMF中(0.8mL),加入DMAP(9.2mg,75μmol,2.0eq),反应液澄清后加入化合物11b(14mg,38μmol,1.0eq),60℃搅拌3小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(6%MeOH in CH2Cl2)得白色固体(20mg,80%),MS(ESI):m/z found[M-55]+=606.3。
化合物11的合成:
将化合物11c(20mg,30μmol)溶于二氯甲烷(2mL)中,加入三氟乙酸(0.5mL),室温搅拌5小时。浓缩后反相柱层析纯化(33%CH3CN in H2O,0.1%TFA)得黄色固体(12mg,59%),MS(ESI):m/z found[M+1]+=562.2。
1H NMR(400MHz,DMSO-d6):δ8.55(s,1H),8.46(d,J=9.8Hz,1H),7.69(d,J=10.9Hz,1H),7.23(s,1H),6.68(d,J=8.9Hz,1H),6.46(s,1H),6.16(d,J=7.5Hz,1H),5.33(s,2H),5.31–5.21(m,2H),5.09(d,J=19.0Hz,1H),3.84–3.75(m,1H),3.16–3.01(m,4H),2.77–2.61(m,2H),2.30(s,3H),2.16–2.09(m,1H),2.06–1.97(m,1H),1.85–1.70(m,4H),1.62–1.51(m,1H),1.42–1.31(m,1H),0.78(t,J=7.3Hz,3H).
实施例12

化合物12b的合成:
将化合物12a(100mg,0.5mmol,1.0eq)溶于二氯甲烷中(2mL),于冰浴下加入吡啶(44μL,0.55mmol,1.1eq)和化合物8b(111mg,0.55mmol,1.1eq),室温搅拌2小时。加水,二氯甲烷萃取,干燥浓缩后柱层析纯化(33%EA in PE)得黄色固体(115mg,63%)。MS(ESI):m/z found[M-99]+=266.2
化合物12c的合成:
将EXD(20mg,38μmol,1eq)溶于DMF中(0.8mL),加入DMAP(9.2mg,75μmol,2.0eq),反应液澄清后加入化合物12b(14mg,38μmol,1.0eq),60℃搅拌3小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(6%MeOH in CH2Cl2)得白色固体(15mg,64%),MS(ESI):m/z found[M-55]+=606.3。
化合物12的合成:
将化合物12c(15mg,23μmol)溶于四氢呋喃(0.5mL)中,加入溶于二氯甲烷(2mL)中,加入三氟乙酸(0.5mL),室温搅拌5小时。浓缩后反相柱层析纯化(33%CH3CN in H2O,0.1%TFA)得黄色固体(10mg,65%),MS(ESI):m/z found[M+1]+=562.2。
1H NMR(400MHz,DMSO-d6):δ8.58(s,1H),8.49(s,1H),7.77(d,J=10.9Hz,1H),7.28(s,1H),6.72(d,J=8.8Hz,1H),6.51(s,1H),6.09(d,J=7.4Hz,1H),5.39(s,2H),5.36–5.20(m,2H),5.20(d,J=19.2Hz,1H),3.89–3.74(m,1H),3.25–3.10(m,4H),2.80–2.62(m,2H),2.37(s,3H),2.20–2.06(m,2H),1.90–1.78(m,4H),1.67–1.56(m,1H),1.44–1.36(m,1H),0.84(t,J=7.3Hz,3H).
实施例13
化合物13b的合成:
将化合物13a(100mg,0.54mmol,1.0eq)溶于二氯甲烷中(2mL),于冰浴下加入吡啶(48μL,0.59mmol,1.1eq)和化合物8b(119mg,0.59mmol,1.1eq),室温搅拌2小时。加水,二氯甲烷萃取,干燥浓缩后柱层析纯化(30%EA in PE)得黄色固体(120mg,64%)。MS(ESI):m/z found[M-55]+=296.2
化合物13c的合成:
将EXD(30mg,56μmol,1.0eq)溶于DMF中(1.0mL),加入DMAP(14mg,0.11mmol,2.0eq)。反应液澄清后加入化合物13b(20mg,56μmol,1.0eq),65℃搅拌6小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(10%MeOH in CH2Cl2)得黄色固体(25.6mg,70%),MS(ESI):m/z found[M-55]+=592.3。
化合物13的合成:
将化合物13c(25mg,39μmol)溶于二氯甲烷(2mL)中,加入三氟乙酸(0.5mL),室温搅拌5小时。浓缩后反相柱层析纯化(30%CH3CN in H2O,0.1%TFA)得黄色固体(15mg,60%),MS(ESI):m/z found[M+1]+=548.2。
1H NMR(400MHz,DMSO-d6):δ8.90(s,1H),8.81(s,1H),7.69(d,J=10.9Hz,1H),7.23(s,1H),6.91(d,J=8.9Hz,1H),6.55(d,J=6.4Hz,1H),6.46(s,1H),5.34(s,2H),5.31–5.23(m,2H),5.10(d,J=19.1Hz,1H),4.21(m,1H),3.25–3.20(m,1H),3.18–3.03(m,4H),3.18–3.03(m,4H),3.03–2.93(m,1H),2.30(s,3H), 2.14–2.01(m,3H),1.83–1.72(m,3H),0.79(t,J=7.3Hz,3H).
实施例14
化合物14b的合成:
将化合物14a(100mg,0.54mmol,1.0eq)溶于二氯甲烷中(2mL),于冰浴下加入吡啶(48μL,0.59mmol,1.1eq)和化合物8b(119mg,0.59mmol,1.1eq),室温搅拌2小时。加水,二氯甲烷萃取,干燥浓缩后柱层析纯化(30%EA in PE)得黄色固体(107mg,57%)。MS(ESI):m/z found[M-55]+=296.2
化合物14c的合成:
将EXD(30mg,56μmol,1.0eq)溶于DMF中(1.0mL),加入DMAP(14mg,0.11mmol,2.0eq)。反应液澄清后加入化合物14b(20mg,56μmol,1.0eq),65℃搅拌6小时。反应液加水淬灭,乙酸乙酯萃取,干燥浓缩后柱层析纯化(6%MeOH in CH2Cl2)得黄色固体(25mg,69%),MS(ESI):m/z found[M-55]+=592.3。
化合物14的合成:
将化合物14c(25mg,39μmol)溶于二氯甲烷(2mL)中,加入三氟乙酸(0.5mL),室温搅拌3小时。浓缩后反相柱层析纯化(30%CH3CN in H2O,0.1%TFA)得黄色固体(14mg,56%),MS(ESI):m/z found[M+1]+=548.2。
1H NMR(400MHz,DMSO-d6):δ8.76(s,1H),8.69(s,1H),7.72(d,J=10.9Hz,1H),7.27(s,1H),6.82(d,J=9.0Hz,1H),6.50(s,1H),6.44(d,J=6.2 Hz,1H),5.37(s,2H),5.35–5.24(m,2H),5.11(d,J=19.0Hz,1H),4.24(h,J=6.2Hz,1H),3.28–3.22(m,2H),3.14(ddt,J=19.7,14.8,7.2Hz,4H),2.33(s,3H),2.20–2.09(m,2H),2.06(td,J=8.1,3.8Hz,1H),1.89–1.73(m,3H),0.82(t,J=7.3Hz,3H).
实施例15
化合物15b的合成:
将化合物15a(50mg,0.23mmol,1.0eq)溶于甲醇(1mL)中,加入(Boc)2O(0.5mL),室温搅拌6小时。反应液浓缩后柱层析纯化(40%EA in PE)得白色固体(65mg,88%)。MS(ESI):m/z found[M-1]-=312.1
化合物15c的合成:
将EXD(25mg,47μmol,1eq)和化合物15b(15mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(60%CH3CN in H2O,0.05%HCOOH)得白色固体(29mg,85%)。MS(ESI):m/z found[M-55]+=675.3
化合物15的合成:
将化合物15c(29mg,40μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(34%CH3CN in H2O,0.1%TFA)得黄色固体(18mg,70%)。MS(ESI):m/z found[M+1]+=631.2.
1H NMR(400MHz,DMSO-d6):δ9.01(d,J=8.4Hz,1H),7.96(d,J=8.5Hz,2H),7.82(d,J=11.0Hz,1H),7.66(d,J=8.5Hz,2H),7.50(d,J=8.5Hz,2H),7.31(s,1H),7.25–6.96(m,2H),6.77(d,J=8.2Hz,2H),6.55(s,1H),5.81(dd,J=13.2,6.4Hz,1H),5.37(s,2H),5.24(d,J=18.8Hz,1H),5.13(d,J=18.9Hz,1H),2.42(s,3H),2.34–2.23(m,2H),1.83(td,J=14.4,7.0Hz,2H),1.52(d,J=7.0Hz,1H),0.86(t,J=7.3Hz,3H).
实施例16
化合物16b的合成:
将化合物16a(50mg,0.27mmol,1.0eq)溶于甲醇(1mL)中,加入(Boc)2O(0.5mL),室温搅拌6小时。反应液浓缩后柱层析纯化(50%EA in PE)得白色固体(70mg,91%)。MS(ESI):m/z found[M-1]-=284.1
化合物16c的合成:
将EXD(25mg,47μmol,1eq)和化合物16b(13.5mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(65%CH3CN in H2O,0.05%HCOOH)得白色固体(28mg,85%)。MS(ESI):m/z found[M-55]+=647.2
化合物16的合成:
将化合物16c(28mg,40μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(35%CH3CN in H2O,0.1%TFA)得黄色固体(18.6mg,65%)。MS(ESI):m/z found[M+1]+=603.2.
1H NMR(400MHz,DMSO-d6):δ8.61(d,J=8.6Hz,1H),7.81(d,J=11.0Hz,1H),7.32(s,1H),7.09(d,J=8.2Hz,1H),6.70(d,J=2.0Hz,1H),6.57(dd,J=8.2,2.0Hz,1H),5.59–5.52(m,1H),5.44(s,2H),5.28(d,J=18.9Hz,1H),5.20(d,J=19.0Hz,1H),3.49(s,2H),3.22–3.15(m,2H),2.41(s,3H),2.22–2.08(m,2H),1.94–1.82(m,2H),0.88(t,J=7.3Hz,3H).
实施例17

化合物17b的合成:
将化合物17a(50mg,0.27mmol,1.0eq)溶于甲醇(1mL)中,加入(Boc)2O(0.5mL),室温搅拌6小时。反应液浓缩后柱层析纯化(40%EA in PE)得白色固体(68mg,88%)。MS(ESI):m/z found[M-1]-=284.1.
化合物17c的合成:
将EXD(25mg,47μmol,1eq)和化合物17b(13.5mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(65%CH3CN in H2O,0.05%HCOOH)得白色固体(23mg,70%)。MS(ESI):m/z found[M-55]+=647.2
化合物17的合成:
将化合物17c(23mg,33μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(35%CH3CN in H2O,0.1%TFA)得黄色固体(15.5mg,66%)。MS(ESI):m/z found[M+1]+=603.2.
1H NMR(400MHz,DMSO-d6):δ8.58(d,J=8.6Hz,1H),7.81(d,J=11.0Hz,1H),7.31(s,1H),7.05(d,J=1.8Hz,1H),6.93(dd,J=8.2,1.9Hz,1H),6.71(d,J=8.2Hz,1H),6.53(s,1H),5.55–5.49(m,1H),5.44(s,2H),5.25(d,J=18.9Hz,1H),5.05(d,J=19.0Hz,1H),3.31(s,2H),3.17(s,2H),2.41(s,3H),2.13(ddd,J=16.6,9.5,5.7Hz,2H),1.93–1.81(m,2H),0.88(t,J=7.3Hz,3H).
实施例18
化合物18b的合成:
将化合物18a(50mg,0.28mmol,1.0eq)溶于甲醇(1mL)中,加入(Boc)2O(0.5mL),室温搅拌6小时。反应液浓缩后柱层析纯化(25%EA in  PE)得白色固体(65mg,84%)。MS(ESI):m/z found[M-1]-=280.1
化合物18c的合成:
将EXD(25mg,47μmol,1eq)和化合物18b(13.2mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(64%CH3CN in H2O,0.05%HCOOH)得白色固体(21mg,65%)。MS(ESI):m/z found[M-55]+=643.4
化合物18的合成:
将化合物18c(21mg,30μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(37%CH3CN in H2O,0.1%TFA)得黄色固体(13.2mg,62%)。MS(ESI):m/z found[M+1]+=598.3。
实施例19
化合物19b的合成:
将化合物19a(50mg,0.28mmol,1.0eq)溶于甲醇(1mL)中,加入(Boc)2O(0.5mL),室温搅拌6小时。反应液浓缩后柱层析纯化(25%EA in PE)得白色固体(70mg,90%)。MS(ESI):m/z found[M-1]-=280.1
化合物19c的合成:
将EXD(25mg,47μmol,1eq)和化合物19b(13.2mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(64%CH3CN in H2O,0.05%HCOOH)得白色固体(20mg,61%)。MS(ESI):m/z found[M-55]+=643.4
化合物19的合成:
将化合物19c(20mg,29μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(37%CH3CN in H2O,0.1%TFA)得黄色固体(10.8mg,53%)。MS(ESI):m/z found[M+1]+=598.3。
1H NMR(400MHz,DMSO-d6):δ8.50(d,J=8.6Hz,1H),7.81(d,J=11.0Hz,1H),7.32(s,1H),7.06(d,J=8.0Hz,1H),6.53(s,1H),6.48(d,J=7.8Hz,1H),5.59–5.49(m,1H),5.44(s,2H),5.22(dd,J=34.2,19.0Hz,2H),3.65(s,3H),3.38(s,2H),3.22–3.15(m,2H),2.41(s,3H),2.22–2.08(m,2H),1.88(ddq,J=28.9,14.3,7.2Hz,2H),0.88(t,J=7.3Hz,3H).
实施例20
化合物20b的合成:
将化合物20a(50mg,0.3mmol,1.0eq)溶于甲醇(1mL)和四氢呋喃(1mL)中,加入(Boc)2O(82μL,0.35mmol,1.2eq)和DIEA(60μL,0.35mmol,1.2eq),室温搅拌12小时。反应液加水稀释,乙酸乙酯萃取,干燥浓缩后柱层析纯化(20%EA in PE)得白色固体(70mg,88%)。MS(ESI):m/z found[M-1]-=268.1
化合物20c的合成:
将EXD(25mg,47μmol,1eq)和化合物20b(12.7mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(60%CH3CN in H2O,0.05%HCOOH)得白色固体(20mg,67%)。MS(ESI):m/z found[M-55]+=631.3
化合物20的合成:
将化合物20c(20mg,29μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(37%CH3CN in H2O,0.1%TFA)得黄色固体(14.5mg,71%)。MS(ESI):m/z found[M+1]+=587.3。
实施例21

化合物21b的合成:
将化合物21a(50mg,0.3mmol,1.0eq)溶于甲醇(1mL)和四氢呋喃(1mL)中,加入(Boc)2O(82μL,0.35mmol,1.2eq)和DIEA(60μL,0.35mmol,1.2eq),室温搅拌12小时。反应液加水稀释,乙酸乙酯萃取,干燥浓缩后柱层析纯化(20%EA in PE)得白色固体(75mg,94%)。MS(ESI):m/z found[M-1]-=268.1
化合物21c的合成:
将EXD(25mg,47μmol,1eq)和化合物21b(12.7mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(60%CH3CN in H2O,0.05%HCOOH)得白色固体(22mg,74%)。MS(ESI):m/z found[M-55]+=631.3
化合物21的合成:
将化合物21c(22mg,29μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(37%CH3CN in H2O,0.1%TFA)得黄色固体(15.5mg,69%)。MS(ESI):m/z found[M+1]+=587.3。
1H NMR(400MHz,DMSO-d6):δ8.62(d,J=8.5Hz,1H),7.81(d,J=11.0Hz,1H),7.31(s,1H),7.23–6.98(m,1H),7.03(t,J=8.6Hz,1H),6.42(t,J=9.2Hz,2H),5.59–5.50(m,1H),5.44(s,2H),5.27(d,J=18.9Hz,1H),5.15(d,J=19.0Hz,1H),3.37(d,J=5.0Hz,2H),3.23–3.14(m,2H),2.41(s,3H),2.22–2.05(m,2H),1.87(tt,J=14.0,7.0Hz,2H),0.88(t,J=7.3Hz,3H).
实施例22
化合物22的合成:
将EXD(25mg,47μmol,1.0eq)和化合物22a(7.2mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(34%CH3CN in H2O,0.05%HCOOH)得白色固体(20mg,75%)。MS(ESI):m/z found[M+1]+=570.0
1H NMR(400MHz,DMSO-d6)δ9.22(s,1H),8.59(d,J=8.6Hz,1H),7.81(d,J=11.0Hz,1H),7.31(s,1H),7.07(d,J=8.5Hz,2H),6.72–6.64(m,2H),6.53(s,1H),5.52(dt,J=9.0,4.8Hz,1H),5.44(s,2H),5.25(d,J=18.9Hz,1H),5.11(d,J=18.9Hz,1H),3.17(t,J=6.3Hz,2H),2.41(d,J=1.8Hz,2H),2.16–2.09(m,2H),1.95–1.80(m,3H),0.88(t,J=7.3Hz,3H).
实施例23
化合物23b的合成:
将化合物23a(50mg,0.33mmol,1.0eq)溶于甲醇(1mL)中,加入(Boc)2O(0.5mL),室温搅拌6小时。反应液后柱层析纯化(25%EA in PE)得白色固体(75mg,90%)。MS(ESI):m/z found[M-1]-=250.2
化合物23c的合成:
将EXD(25mg,47μmol,1eq)和化合物23b(11.8mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(63%CH3CN in H2O,0.05%HCOOH)得白色固体(20mg,64%)。MS(ESI):m/z found[M-55]+=613.2
化合物23的合成:
将化合物23c(20mg,30μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(35%CH3CN in H2O,0.1%TFA)得黄色固体(14.3mg,70%)。MS(ESI):m/z found[M+1]+=569.2。
1H NMR(400MHz,DMSO-d6):δ8.72(d,J=8.5Hz,1H),7.82(d,J=10.9Hz,1H),7.33(d,J=1.9Hz,1H),7.18(t,J=7.7Hz,1H),6.93(s,1H),6.85(dd,J=20.0,6.9Hz,2H),6.56(s,1H),5.58–5.50(m,1H),5.45(d,J=4.1Hz,2H),5.21 (dd,J=16.4,6.1Hz,2H),3.46(s,2H),3.18(s,2H),2.41(s,3H),2.14(dd,J=16.0,11.2Hz,2H),1.93–1.81(m,2H),0.88(t,J=7.3Hz,3H).
实施例24
化合物24b的合成:
将EXD(25mg,47μmol,1eq)和化合物24a(11.8mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(63%CH3CN in H2O,0.05%HCOOH)得白色固体(22mg,70%)。MS(ESI):m/z found[M-55]+=613.2
化合物24的合成:
将化合物24b(22mg,33μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(35%CH3CN in H2O,0.1%TFA)得黄色固体(14.4mg,64%)。MS(ESI):m/z found[M+1]+=569.2。
1H NMR(400MHz,DMSO-d6):δ8.78(d,J=8.5Hz,1H),7.83(d,J=11.0Hz,1H),7.32(s,1H),7.10(t,J=7.7Hz,2H),6.90(d,J=7.3Hz,1H),6.81(s,1H),6.55(s,1H),5.54(dt,J=8.5,4.2Hz,1H),5.43(s,2H),5.30(d,J=18.9Hz,1H),5.15(d,J=18.9Hz,1H),3.48(s,2H),3.18(s,2H),2.41(s,3H),2.22–2.02(m,2H),1.87(tt,J=14.0,7.2Hz,2H),0.88(t,J=7.3Hz,3H).
实施例25

化合物25b的合成:
将化合物25a(50mg,0.3mmol,1.0eq)溶于四氢呋喃(1mL)中,加入(Boc)2O(83μL,0.36mmol,1.2eq),室温搅拌16小时。反应液浓缩后柱层析纯化(20%EA in PE)得白色固体(60mg,75%)。MS(ESI):m/z found[M-1]-=264.1
化合物25c的合成:
将EXD(25mg,47μmol,1eq)和化合物25b(12.5mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(57%CH3CN in H2O,0.05%HCOOH)得白色固体(20mg,63%)。MS(ESI):m/z found[M-55]+=627.3
化合物25的合成:
将化合物25c(20mg,29μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(25%CH3CN in H2O,0.1%TFA)得黄色固体(12mg,59%)。MS(ESI):m/z found[M+1]+=583.3。
1H NMR(400MHz,DMSO-d6):δ8.45(d,J=8.7Hz,1H),7.80(d,J=10.9Hz,1H),7.31(s,1H),7.17(d,J=8.0Hz,2H),6.96(d,J=7.8Hz,2H),6.54(s,1H),5.54(dt,J=9.1,4.8Hz,1H),5.44(s,2H),5.23(d,J=18.9Hz,1H),5.10(d,J=19.0Hz,1H),3.16–3.07(m,2H),2.97–2.89(m,2H),2.89–2.82(m,2H),2.40(d,J=1.9Hz,3H),2.07(dt,J=13.8,8.1Hz,2H),1.92–1.81(m,2H),1.16(t,J=7.3Hz,2H),0.88(t,J=7.3Hz,3H).
实施例26

化合物26b的合成:
将化合物26a(50mg,0.28mmol,1.0eq)溶于四氢呋喃(1mL)中,加入(Boc)2O(77μL,0.33mmol,1.2eq),室温搅拌18小时。反应液浓缩后柱层析纯化(25%EA in PE)得白色固体(65mg,83%)。MS(ESI):m/z found[M-1]-=278.1
化合物26c的合成:
将EXD(25mg,47μmol,1eq)和化合物26b(13.1mg,47μmol,1eq)溶于DMF中(1mL),加入HATU(26.8mg,70μmol,1.5eq)和DIEA(19μL,118μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(57%CH3CN in H2O,0.05%HCOOH)得白色固体(18mg,55%)。MS(ESI):m/z found[M-55]+=641.3
化合物26的合成:
将化合物26c(18mg,26μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(25%CH3CN in H2O,0.1%TFA)得黄色固体(12mg,65%)。MS(ESI):m/z found[M+1]+=597.3。
1H NMR(400MHz,DMSO-d6):δ8.48(t,J=7.6Hz,1H),7.81(d,J=11.0Hz,1H),7.31(d,J=2.3Hz,1H),7.28(dd,J=8.3,3.9Hz,2H),7.16(d,J=8.3Hz,2H),5.58(dt,J=9.5,5.1Hz,1H),5.42(s,2H),5.25(d,J=19.0Hz,1H),5.16(d,J=18.9Hz,1H),3.17(s,2H),2.60(t,J=7.7Hz,2H),2.40(d,J=1.8Hz,3H),2.19(t,J=7.5Hz,2H),2.13(dd,J=11.9,5.9Hz,2H),1.95–1.78(m,4H),1.54–1.38(m,1H),1.28–1.23(m,1H),1.07(dt,J=17.7,5.7Hz,1H),0.87(t,J=7.3Hz,3H).
实施例27
化合物27b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物27a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(65%CH3CN in H2O,0.05%HCOOH)得黄色固体(24mg,79%)。MS(ESI):m/z found[M+1]+=647.2。
化合物27的合成:
将化合物27b(24mg,37μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(35%CH3CN in H2O,0.1%TFA)得黄色固体(16mg,65%)。MS(ESI):m/z found[M+1]+=547.2。
1H NMR(400MHz,DMSO-d6):δ8.71(d,J=8.6Hz,1H),8.57(s,2H),7.82(d,J=10.9Hz,1H),7.32(s,1H),6.56(s,1H),5.56(dt,J=9.0,4.7Hz,1H),5.43(s,2H),5.26,5.16(ABq,2H,J=18.8Hz),3.35–3.28(m,1H),3.22–3.07(m,4H),2.94(s,1H),2.65(dq,J=10.0,5.9,5.0Hz,1H),2.41(s,3H),2.14(tt,J=8.4,5.8,5.4Hz,2H),1.98–1.78(m,4H),1.64(td,J=17.9,15.7,8.4Hz,2H),0.87(t,J=7.3Hz,3H).
实施例28
化合物28b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物28a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(62%CH3CN in H2O,0.05%HCOOH)得黄色固体(26mg,86%)。MS(ESI):m/z found[M-55]+=591.2。
化合物28的合成:
将化合物28b(26mg,40μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(33%CH3CN in H2O,0.1%TFA)得黄色固体(18mg,73%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ8.75(d,J=8.7Hz,1H),8.63–8.46(m,2H),7.81(d,J=11.0Hz,1H),7.31(s,1H),6.54(s,1H),5.57(dt,J=9.2,4.9Hz,1H),5.42(s,2H),5.23(d,J=18.8Hz,1H),5.06(d,J=18.8Hz,1H),3.29(d,J=12.3 Hz,1H),3.20–3.04(m,4H),2.92(q,J=10.7Hz,1H),2.65(tt,J=10.1,4.1Hz,1H),2.40(d,J=1.9Hz,3H),2.15(t,J=6.0Hz,2H),1.97–1.74(m,4H),1.69–1.50(m,2H),0.88(t,J=7.3Hz,3H).
实施例29
化合物29b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物29a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(62%CH3CN in H2O,0.05%HCOOH)得黄色固体(26mg,86%)。MS(ESI):m/z found[M-55]+=591.2。
化合物29的合成:
将化合物29b(26mg,40μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(31%CH3CN in H2O,0.1%TFA)得黄色固体(22mg,83%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ9.06(d,J=8.7Hz,1H),9.00(d,J=10.9Hz,1H),8.88(q,J=10.7Hz,1H),7.84(d,J=11.0Hz,1H),7.32(s,1H),6.56(s,1H),5.65(dt,J=8.8,4.4Hz,1H),5.43(s,2H),5.29(s,1H),5.05(s,1H),3.78–3.71(m,1H),3.30–3.20(m,2H),3.19–3.09(m,1H),2.99–2.86(m,1H),2.42(s,3H),2.17(tq,J=13.8,8.8,6.6Hz,2H),2.04(d,J=13.0Hz,1H),1.96–1.77(m,2H),1.76–1.65(m,2H),1.57(qd,J=13.1,3.6Hz,2H),1.38(d,J=12.3Hz,1H),0.88(t,J=7.3Hz,3H).
实施例30

化合物30b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(62%CH3CN in H2O,0.05%HCOOH)得黄色固体(28mg,92%)。MS(ESI):m/z found[M+1]+=647.2。
化合物30的合成:
将化合物30a(28mg,43μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(31%CH3CN in H2O,0.1%TFA)得黄色固体(24mg,85%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ8.98–8.93(m,2H),8.77(q,J=10.9Hz,1H),7.85(d,J=10.9Hz,1H),7.33(s,1H),6.57(s,1H),5.65(dt,J=8.0,3.5Hz,1H),5.44(s,2H),5.41(d,J=19.0Hz,1H),5.23(d,J=19.0Hz,1H),3.68–3.61(m,1H),3.31–3.18(m,2H),3.16–3.04(m,1H),2.84(q,J=11.5Hz,1H),2.42(s,3H),2.26–2.18(m,1H),2.11(td,J=13.2,6.5Hz,2H),1.92–1.76(m,3H),1.73–1.52(m,3H),1.43–1.36(m,1H),0.86(t,J=7.4Hz,3H).
实施例31
化合物31b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(58%CH3CN in H2O,0.05%HCOOH)得黄色固体(25mg,82%)。MS(ESI):m/z found[M-99]+=547.2。
化合物31的合成:
将化合物31b(25mg,39μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(30%CH3CN in H2O,0.1%TFA)得黄色固体(20mg,66%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ8.62–8.55(m,2H),8.31(d,J=10.5Hz,1H),7.81(d,J=11.0Hz,1H),7.31(s,1H),6.55(s,1H),5.57(dt,J=9.3,5.1Hz,1H),5.42(s,2H),5.22,5.09(ABq,J=18.8Hz,2H),3.38–3.28(m,2H),3.17(t,J=6.3Hz,2H),2.94–2.79(m,2H),2.49–2.44(m,1H),2.40(s,3H),2.14(q,J=6.0Hz,2H),1.98–1.76(m,6H),0.87(t,J=7.3Hz,3H).
实施例32
化合物32b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(58%CH3CN in H2O,0.05%HCOOH)得黄色固体(26mg,86%)。MS(ESI):m/z found[M-99]+=547.2。
化合物32的合成:
将化合物32b(26mg,40μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(30%CH3CN in H2O,0.1%TFA)得黄色固体(19mg,71%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ9.09–8.98(m,1H),8.72(d,J=8.6Hz,1H),8.55–8.47(m,1H),7.83(d,J=10.9Hz,1H),7.33(s,1H),6.56(s,1H),5.60(dt,J=8.6,4.3Hz,1H),5.44(s,2H),5.33(d,J=18.9Hz,1H),5.23(d,J=18.9Hz,1H),3.79–3.71(m,1H),3.21–3.13(m,4H),2.62(qd,J=16.1,6.9Hz,2H),2.42(s,3H),2.25–2.06(m,3H),1.96–1.77(m,4H),1.54(dq,J=13.0,8.6Hz,1H),0.87(t,J=7.3Hz,3H).
实施例33
化合物33b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(56%CH3CN in H2O,0.05%HCOOH)得黄色固体(24mg,79%)。MS(ESI):m/z found[M-99]+=547.2。
化合物33的合成:
将化合物33b(24mg,37μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(28%CH3CN in H2O,0.1%TFA)得黄色固体(19mg,78%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ9.05(s,1H),8.73(d,J=8.7Hz,1H),8.55(s,1H),7.82(d,J=11.0Hz,1H),7.32(s,1H),6.56(s,1H),5.61(dt,J=8.9,4.6Hz,1H),5.43(s,2H),5.35–5.18(m,2H),3.82–3.74(m,1H),3.21–3.14(m,4H),2.64(d,J=6.9Hz,2H),2.41(s,3H),2.21–2.05(m,3H),1.95–1.77(m,4H),1.61–1.49(m,1H),0.87(t,J=7.3Hz,3H).
实施例34
化合物34b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(57%CH3CN in H2O,0.05%HCOOH)得黄色固体(26mg,86%)。MS(ESI):m/z found[M-99]+=547.2。
化合物34的合成:
将化合物34b(24mg,40μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(28%CH3CN in H2O,0.1%TFA)得黄色固体(20mg,82%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ8.72(s,2H),8.57(d,J=8.7Hz,1H),7.81(d,J=11.0Hz,1H),7.32(s,1H),6.56(s,1H),5.58(dt,J=9.3,5.1Hz,1H),5.43(s,2H),5.27–5.12(m,2H),3.43–3.36(m,1H),3.27–3.09(m,4H),2.87–2.78(m,1H),2.64–2.55(m,1H),2.43–2.29(m,5H),2.16–2.08(m,3H),1.87(p,J=7.0Hz,2H),1.61–1.51(m,1H),0.87(t,J=7.3Hz,3H).
实施例35
化合物35b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(11mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。反应液直接反相柱层析纯化(57%CH3CN in H2O,0.05%HCOOH)得黄色固体(22mg,72%)。MS(ESI):m/z found[M+1]+=647.2。
化合物35的合成:
将化合物35b(22mg,34μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(28%CH3CN in H2O,0.1%TFA)得黄色固体(17mg,76%)。MS(ESI):m/z found[M+1]+=547.4。
1H NMR(400MHz,DMSO-d6):δ8.75(s,1H),8.67(s,1H),8.58(d,J=8.7Hz,1H),7.81(d,J=10.9Hz,1H),7.31(s,1H),6.55(s,1H),5.58(dt,J=9.3,5.1 Hz,1H),5.43(s,2H),5.29–5.10(m,2H),3.40(dtd,J=11.0,6.8,3.3Hz,1H),3.27–3.07(m,4H),2.85(ddd,J=15.7,12.0,6.6Hz,1H),2.60(p,J=7.8Hz,1H),2.40(s,3H),2.36(d,J=7.2Hz,2H),2.18–2.04(m,3H),1.86(hept,J=7.2Hz,2H),1.56(dq,J=13.0,8.8Hz,1H),0.87(d,J=7.3Hz,3H).
实施例36
化合物36b的合成:
将EXD(25mg,47μmol,1.0eq)和化合物30a(10mg,47μmol,1.0eq)溶于DMF中(1mL),加入HATU(21mg,56μmol,1.2eq)和DIEA(17μL,103μmol,2.2eq),40℃搅拌1.5小时。加水,乙酸乙酯萃取,饱和食盐水洗涤,干燥浓缩后柱层析纯化(4%MeOH in CH2Cl2)得白色固体(29mg,98%)。MS(ESI):m/z found[M+1]+=633.4。
化合物36的合成:
将化合物36b(29mg,46μmol)溶于三氟乙酸(0.2mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(31%CH3CN in H2O,0.1%TFA)得黄色固体(22mg,74%)。MS(ESI):m/z found[M+1]+=533.4。
1H NMR(400MHz,DMSO-d6):δ9.18(d,J=8.0Hz,1H),9.00(d,J=8.4Hz,1H),8.72(d,J=5.2Hz,1H),7.85(d,J=11.0Hz,1H),7.33(s,1H),6.57(s,1H),5.62(dt,J=8.1,3.7Hz,1H),5.44(s,2H),5.39(d,J=19.0Hz,1H),5.27(d,J=19.0Hz,1H),4.14–4.07(m,1H),3.33–3.19(m,3H),3.17–3.06(m,1H),2.43(s,3H),2.29–2.20(m,2H),2.11(ddt,J=12.4,8.1,4.3Hz,1H),1.96–1.79(m,5H),0.86(t,J=7.3Hz,3H).
实施例37

化合物37c的合成
向化合物37a(30g,96.5mmol)和化合物37b(17.5g,96.5mmol,1.0eq)的DMF(400mL)的溶液中加入HATU(36.7g,96.5mmol,1.0eq)和DIEA(32mL,193mmol,2.0eq)。室温搅拌反应12小时后,将反应液倒入水(1500mL)中,乙酸乙酯(500mL×3)萃取,饱和食盐水洗涤(500mL),无水硫酸钠干燥,浓缩后柱层析(25%EA in PE)纯化得到白色固体(30g,70.9%)。MS(ESI):m/z found[M-55]+=383.2。
化合物37d的合成
将化合物37c(30g,68.4mmol)的TFA(150mL)和H2O(10mL)的溶液室温搅拌反应4h,然后将反应液浓缩用石油醚(500mL)和乙酸乙酯(50mL)打浆得白色固体(34g,100%)。MS(ESI):m/z found[M+1]+= 383.2。
化合物37f的合成
冰浴下,向化合物37e(30g,135mmol)和HOSu(16.2g,141mmol,1.05eq)的乙腈(300mL)溶液中分批加入DCC(29g,141mmol,1.05eq),撤去冰浴,室温搅拌反应2h。反应结束后,滤除不溶物,不用浓缩直接用于下一步。
化合物37h的合成
向化合物37f(上述溶液)和化合物37g(17.6g,141mmol,1.05eq)的乙腈(400mL)溶液中加入DIEA(44mL,282mmol,2.1eq)。室温搅拌反应2h后,将反应液浓缩,重新溶解于CH2Cl2(500mL)中,碳酸氢钠溶液(100mL)和饱和食盐水(100mL)洗涤后,无水硫酸钠干燥,浓缩后经正相快速柱层析纯化(50%EA in PE)得白色固体(27g,59.5%)。MS(ESI):m/z found[M-55]+=281.0。
化合物37i的合成
向化合物37h(18g,53.6mmol)的MeOH(300mL)和H2O(10mL)的溶液中加入10%Pd/C(1.0g,55%H2O),抽真空后,在H2氛围下反应4h。滤除不溶物,浓缩得到无色油状化合物(10.8g,100%)。MS(ESI):m/z found[2M+1]+=405。
化合物37j的合成
向化合物37d(37.5g,98mmol)和化合物37i(19.8g,98mmol,1.0eq)的DMF(200mL)的溶液中加入HATU(37.3g,98mmol,1.0eq)和DIEA(16mL,98mmol,1.0eq)。室温搅拌反应4h后,将反应液倒入水(1L)中有白色固体析出,过滤后用水洗涤,甲基叔丁基醚打浆得白色固体(40.0g,72%)。MS(ESI):m/z found[M-55]+=511.2。
化合物37k的合成
将化合物37i(40.0g,71mmol)的TFA(100mL)和二氯甲烷(300mL)的溶液室温搅拌反应3h,浓缩得到黄色油状物,乙酸乙酯(500mL)重结晶得白色固体(34.9g,97%)。MS(ESI):m/z found[M-1]-=509.2。
化合物37l的合成
氮气保护下,向化合物37i(32.1g,63mmol)和化合物Cu(OAc)2(4.33g,24mmol,0.38eq)的DMF(300mL)的溶液中加入Pb(OAc)4(31.3g,72mmol,1.15eq)。将反应液升温至60℃,在此温度下搅拌反应1h后,将反应液倒入水(1.5L)中,析出白色固体,过滤烘干后得到白色固体(33.2g,94%)。MS(ESI):m/z found[M+1]+=525.2。
化合物37n的合成
向化合物37l(32g,61mmol)和化合物37m(17.3mL,122mmol,2.0eq)的CH2Cl2(500mL)的溶液中加入TFA(120mL)。室温搅拌反应1h后,将反应浓缩后用DMF溶解,经反相快速柱层析(52%ACN in H2O,0.05%HCOOH)纯化得到白色固体化合物37n(16.0g,40%)。MS(ESI):m/z found[M+23]+=653.2。
化合物37o的合成
向化合物37l(15.2g,24mmol)的DMF(80mL)的溶液中加入DBU(3.6mL,24mmol,1.0eq)。室温搅拌反应1.5h后,反应液经反相快速柱层析(26%ACN in H2O,0.05%HCOOH)纯化得到白色固体(7.8g,76%)。MS(ESI):m/z found[M+1]+=409.2。
化合物37p的合成
向化合物37o(4.0g,9.8mmol)的MeOH(60mL)的溶液中加入10%Pd/C(0.5g),抽真空后,在氢气氛围下反应4h。滤除不溶物,浓缩得到白色(2.8g,90%)。MS(ESI):m/z found[M+1]+=319.0。
化合物37r的合成
冰浴下,向化合物37q(650mg,1.33mmol)的ACN(10mL)溶液中加入HOSu(161mg,1.40mmol,1.05eq)和DCC(288mg,1.40mmol,1.05eq),撤去冰浴,室温搅拌反应4h。反应结束后,滤除不溶物,浓缩得到黄色油状化合物(770mg,100%)。MS(ESI):m/z found[M+1]+=585.0。
化合物37s的合成
向化合物37r(777mg,1.33mmol)和化合物37p(423mg,1.33mmol,1.0eq)的DMF(8mL)溶液中加入DIEA(219μL,1.33mmol,1.0eq)。室温搅拌反应2h后,经反相快速柱层析纯化(40%ACN in H2O,0.05%HCOOH)得白色固体化合物(702mg,67.0%)。MS(ESI):m/z found[M+1]+=788.2。
化合物37的合成
向化合物37s(702mg,0.99mmol)的DMF(6mL)的溶液中加入DBU(149μL,0.99mmol,1.0eq)。室温搅拌反应2h后,加入化合物37t(315mg,0.99mmol,1.0eq)。室温搅拌反应1h后,反应液经反相快速柱层析(23%ACN in H2O,0.05%HCOOH)纯化得到无色油状化合物MC-PEG4-AAA-OCH2COOH(600mg,79.8%)。MS(ESI):m/z found[M+1]+=759.2。
实施例38
化合物38b的合成
冰浴下,向化合物38a(500mg,0.87mmol)的ACN(10mL)溶液中加入HOSu(110mg,0.96mmol,1.1eq)和DCC(198mg,0.96mmol,1.1eq),撤去冰浴,室温搅拌反应4h。反应结束后,滤除不溶物,浓缩得到黄色油状化合物(假定收率100%)。MS(ESI):m/z found[M+1]+=673.0。
化合物38c的合成
向化合物38b(585mg,0.87mmol)和化合物37p(277mg,0.87mmol,1.0eq)的DMF(8mL)溶液中加入DIEA(144μL,0.87mmol,1.0eq)。室温搅拌反应2h后,经反相快速柱层析纯化(38%ACN in H2O,0.05%HCOOH)得到无色油状化合物(580mg,72%)。MS(ESI):m/z found[M-1]-=874.2。
化合物38的合成
向化合物38c(550mg,0.63mmol)的DMF(6mL)的溶液中加入DBU(95μL,0.63mmol,1.0eq)。室温搅拌反应2h后,加入37t(194mg,0.63mmol,1.0eq)。室温搅拌反应1h后,反应液经反相快速柱层析(24%ACN in H2O,0.05%HCOOH)纯化得到无色油状化合物MC-PEG6-AAA-OCH2COOH(200mg,37%)。MS(ESI):m/z found[M-1]-=845.4。
实施例39
化合物39b的合成
冰浴下,向化合物39a(650mg,0.98mmol)的ACN(10mL)溶液中加入(124mg,1.1mmol,1.1eq)和DCC(222mg,1.1mmol,1.1eq),撤去冰浴,室温搅拌反应4h。反应结束后,滤除不溶物,浓缩得到无色油状化合物39b(746mg,100%)。MS(ESI):m/z found[M+1]+=761.3。
化合物39c的合成
向化合物39b(945mg,0.98mmol)和化合物37p(312mg,0.98mmol,1.0eq)的DMF(8mL)溶液中加入DIEA(162μL,0.98mmol,1.0eq)。室温搅拌反应2h后,经反相快速柱层析纯化(40%ACN in H2O,0.05%HCOOH)得无色油状化合物(815mg,86%)。MS(ESI):m/z found[M-1]-=962.5。
化合物39的合成
向化合物39c(815mg,0.85mmol)的DMF(6mL)的溶液中加入DBU(129μL,0.85mmol,1.0eq)。室温搅拌反应2h后,加入化合物6(262mg,0.85mmol,1.0eq)。室温搅拌反应1h后,反应液经反相快速柱层析(23%ACN in H2O,0.05%HCOOH)纯化得到无色油状化合物化合物9(MC-PEG8-AAA-OCH2COOH)(330mg,41%)。MS(ESI):m/z found[M-1]-=933.5。
实施例40
化合物40b的合成
向化合物37l(7.7g,14.7mmol)和化合物40a(5.1mL,73mmol,5.0eq)的CH2Cl2(90mL)的溶液中加入TFA(16mL)。室温搅拌反应1h后,将反应浓缩后用DMF溶解,经反相快速柱层析(40%ACN in H2O,0.05%HCOOH)纯化得到白色固体化合物(5.5g,67%)。MS(ESI):m/z found[M+23]+=653.2。
化合物40d的合成
向化合物40c(1.2g,2.46mmol)的ACN(10mL)的溶液中加入DBU(367μL,2.46mmol,1.0eq)。室温搅拌反应2h后,加入化合物37t(909mg,2.95mmol,1.2eq)。室温搅拌反应1h后,反应液浓缩后经反相快速柱层析(28%ACN in H2O,HCOOH)纯化得无色油状化合物(460mg,41%)。MS(ESI):m/z found[M-1]-=457.2。
化合物40e的合成
冰浴下,向化合物40d(460mg,1.0mmol)的ACN(6mL)溶液中加入(138mg,1.2mmol,1.2eq)和DCC(248mg,1.40mmol,1.2eq),撤去冰浴,室温搅拌反应12h。反应结束后,滤除不溶物,浓缩得到无色油状化合 物5(550mg,99%)。MS(ESI):m/z found[M+1]+=556.2。
化合物40的合成
向化合物40e(1.2g,2.46mmol)的DMF(4mL)的溶液中加入DBU(71μL,0.47mmol,1.0eq)。室温搅拌反应1h后,加入化合物40b(260mg,0.47mmol,1.0eq)。室温搅拌反应1h后,反应液经反相快速柱层析(24%ACN in H2O,0.05%HCOOH)纯化得到无色油状化合物40(MC-PEG4-AAA-SCH2COOH)(100mg,27.5%)。MS(ESI):m/z found[M-1]-=773.2。
实施例41
化合物41b的合成
将化合物41a(10g,37.6mmol)溶于乙腈(100mL)中,加入HOSu(4.76g,41.3mmol,1.1eq)和EDCI·HCl(8.28g,43.2mmol,1.15eq),室温搅拌5小时,LCMS监测剩余约10%原料。过滤,滤液在0℃搅拌5小时,析出大量白色固体。过滤,固体干燥后得白色固体(9.06g,87%)。MS(ESI):m/z found[M+1]+=364.2。
化合物41d的合成
将化合物41b(9.06g,25mmol)和L-苯丙氨酸(4.54g,27.4mmol,1.1eq)溶于乙腈(50mL)和水(50mL)中,加入三乙胺(3.8mL,27.4mmol,1.1eq),室温搅拌2小时,反应液有混浊变为澄清。盐酸调pH至2-3,然后在室温下继续搅拌6小时,析出白色固体。过滤,水洗,固体干燥后得白色固体(10.69g,100%)。MS(ESI):m/z found[M+1]+=414.2。
化合物41g的合成
向化合物41f(5.8g,12.2mmol)的ACN(150mL)溶液中加入DBU (951μL,6.1mmol,0.5eq)。室温搅拌反应2h后,加入HOBt(2.1g,15.1mmol,1.2eq)、化合物41d(5.8g,12.8mmol,1.05eq),将反应液冷却至0℃,然后分批加入EDCI·HCl((2.9g,15.1mmol,1.2eq),室温搅拌过夜。减压除去乙腈,残留液经EA(100mL×3)萃取,饱和食盐水洗涤(100mL),无水硫酸钠干燥,浓缩后经正相快速柱层析纯化(5%MeOH in CH2Cl2)得白色固体化合物(6.6g,84.9%)。MS(ESI):m/z found[M+1]+=648.3。
化合物41h的合成
向化合物41g(3.3g,5.1mmol)的THF(30mL)和H2O(20mL)的溶液中加入10%Pd/C(1.0g),抽真空后,在氢气氛围下反应20h。滤除不溶物,浓缩得到白色固体化合物10(3.0g,68.6%)。MS(ESI):m/z found[M+1]+=424.2。
化合物41的合成
向化合物41h(0.21g,0.5mmol,1.05eq)的H2O(2.5mL)溶液中,加入化合物41i(0.41g,1.3mmol,1.1eq)的ACN(2.5mL)的溶液,然后加入三乙胺(65μL,0.47mmol,1.0eq),室温搅拌反应2h后,经反向快速柱层析(28%ACN in H2O,0.5%HCOOH)纯化得到白色固体化合物41(MAL-PEG2-GGFG-OCH2COOH)(0.3g,87.0%)。MS(ESI):m/z found[M-1]-=732.3。
实施例42
化合物42a的合成
将化合物41d(10.5g,25.4mmol,1.0eq)溶于四氢呋喃(100mL)中,加入HOSu(3.22g,27.9mmol,1.1eq)和DCC(5.76g,27.9mmol,1.1eq), 室温搅拌2小时。过滤,滤液浓缩后得半固体产物,不经纯化直接用于下一步。MS(ESI):m/z found[M+1]+=511.2。
化合物42b的合成
将化合物42a(12.9g,25.4mmol)和甘氨酸(2.04g,27.9mmol,1.1eq)溶于乙腈(55mL)和水(55mL)中,加入三乙胺(4.0mL,27.9mmol,1.1eq),室温搅拌2小时。盐酸调pH至2-3,乙酸乙酯萃取,饱和食盐水洗涤,干燥浓缩后得白色泡沫状固体(11.9g,100%)。MS(ESI):m/z found[M+1]+=471.2。
化合物42d的合成
将化合物42b(11.5g,24.5mmol)对氨基苯甲醇(4.51g,36.7mmol,1.5eq)和EEDQ(9.07g,36.7mmol,1.5eq)溶于二氯甲烷(160mL)和甲醇(80mL)中,室温搅拌过夜。溶剂抽干,加乙酸乙酯溶解,饱和食盐水洗涤,干燥浓缩后得黄色固体(5.93g,42%)。MS(ESI):m/z found[M-17]+=558.2。
化合物42e的合成
将化合物42d(5.93g,10.3mmol)溶于甲醇(100mL)中,加入钯碳(3.0g),氢气氛围下搅拌2.5小时。TLC(EA)监测原料消失。硅藻土过滤,浓缩后得白色半固体(3.67g,81%)。MS(ESI):m/z found[M+1]+=442.2。
1H NMR(400MHz,CDCl3):δ9.77(s,1H),8.47(t,J=6.0Hz,1H),8.30(d,J=8.0Hz,1H),8.07(s,1H),7.57(d,J=8.4Hz,2H),7.27–7.18(m,7H),5.76(br,1H),4.53–4.49(m,1H),4.43(s,2H),3.94–3.77(m,3H),3.66(d,J=16.4Hz,1H),3.10–3.06(m,3H),2.82(dd,J=10.0Hz,13.8Hz,1H),2.06(br,2H).
化合物42f的合成
将化合物42e(1.64g,3.7mmol,1.0eq)和化合物38a(2.35g,4.1mmol,1.1eq)溶于DMF(16mL)中,加入HATU(2.35g,4.1mmol,1.1eq)和DIEA(0.72mL,4.5mmol,1.2eq),室温搅拌过夜。反相柱层析纯化(45%ACN in H2O)得白色固体(3.0g,81%)。MS(ESI):m/z found[M-17]+=984.1。
化合物42g的合成
将化合物42f(1.0g)溶于二乙胺(20mL)和四氢呋喃(40mL)中,室温搅拌4小时,反应液变为胶状液体。溶剂抽干后得粘性固体,直接用于下一步。MS(ESI):m/z found[M+1]+=777.4。
化合物42的合成
将化合物42f和EMCA(233mg,1.1eq)溶于DMF(5mL)中,加入HATU(419mg,1.1eq)和DIEA(179μL,1.1eq),室温搅拌过夜。反相柱层析纯化(36%ACN in H2O)得粉红色固体(607mg,58%)。MS(ESI):m/z found[M-1]+=968.3。
实施例43
化合物43c的合成
将化合物43a(1.00g,2.99mmol,1.0eq)溶于和四氢呋喃(20mL)中,加入化合物43b(0.20g,3.64mmol,1.2eq)和DIEA(0.74mL,1.5eq),室温搅拌3小时。反应液反相柱层析纯化得化合物43c。MS(ESI):m/z found[M+1]+=275.1。
化合物43f的合成
将Fmoc-L-缬氨酸(30.0g,88.5mmol,1.0eq),L-丙氨酸叔丁酯盐酸盐(17.68g,97.3mmol,1.1eq),HATU(40.35g,106.2mmol,1.2eq)溶于DMF(300mL)中,加入DIEA(32mL,0.19mol,2.2eq),室温搅拌5h。将反应液倒入水中,析出白色固体,过滤,烘干得化合物43f(39.0g,99%).MS(ESI):m/z found[M-55]+=411.2。
化合物43g的合成
将化合物43f(39.0g,83.7mmol)溶于CH2Cl2D(300mL)中,然后加入TFA(100mL),反应3h后,LC-MS监测显示反应完成。将反应液倒入水中,打浆2次,过滤,滤渣为产品。将产品放入烘箱中,烘干得化合物43g(30.9g,90%).MS(ESI):m/z found[M+1]+=411.2。
化合物43h的合成
将化合物43g(5.0g,12.2mmol,1.0eq),化合物42c(2.3g,18.7mmol,1.5eq),HATU(5.1g,13.4mmol,1.1eq)和DIEA(4.73g,36.6mmol,3.0eq)溶于DMF(30mL)中,反应3h后,LC-MS监测显示反应完成。将反应液倒入水中,打浆2次,过滤,滤渣为产品。将产品放入烘箱中,烘干得化合物43h(5.3g,84%).MS(ESI):m/z found[M+1]+=516.2。
化合物43i的合成
将Et2NH(36mL)加入化合物43h(2.6g,5mmol)的THF(140mL)溶液中,反应3h后,LC-MS监测显示反应完成。反应液经柱层析纯化得化合物7(1.1g,73%).MS(ESI):m/z found[M+1]+=294.2。
1H NMR(400MHz,DMSO):δ10.03(s,1H),8.28(s,1H),7.53(d,J=4Hz,2H),7.25(d,J=8.4Hz,2H),5.12(s,1H),4.48–4.43(m,1H),4.42(s,2H),3.12(d,J=5.2Hz,1H),1.97–1.92(m,1H),1.31(d,J=6.8Hz,3H),0.89(dd,J=33.6,6.8Hz,2H)ppm.
化合物43k的合成
将化合物43i(1.00g,3.41mmol,1.0eq)溶于和四氢呋喃(10mL)中,加入二甘醇酐(0.44g,3.79mmol,1.1eq),室温搅拌2小时,反应液浓缩后得化合物43k,直接用于下一步。MS(ESI):m/z found[M-1]-=409.2。
化合物43l的合成
将化合物43k(1.4g,3.42mmol,1.0eq)溶于四氢呋喃(20mL)中,加入HOSu(0.47g,4.09mmol,1.2eq)和DCC((0.85g,4.13mmol,1.2eq),室温搅拌12小时。过滤,滤液浓缩后柱层析纯化(5%MeOH in CH2Cl2)得化合物43l。MS(ESI):m/z found[M+1]+=507.2。
1H NMR(400MHz,CDCl3):δ9.02(s,1H),8.90(s,1H),7.79(s,1H),7.69(t,J=6.8Hz,3H),7.58(d,J=8.4Hz,2H),7.28(s,1H),6.69(s,2H),5.29(s,1H),4.69–4.63(m,1H),4.61(s,2H),4.51–4.41(m,4H),4.37–4.31(m,1H),4.15(d,J=14.0Hz,2H),4.05–3.93(m,2H),3.82(t,J=4.9Hz,2H),3.67–3.49(m,30H),3.49–3.42(m,2H),3.34(d,J=6.8Hz,2H),3.10(dd,J=14.7,7.1Hz,1H),2.68(s,1H),2.29–2.20(m,1H),1.85(d,J=11.7Hz,2H),1.70(d,J=12.1Hz,2H),1.56–1.39(m,8H),0.98(t,J=7.4Hz,6H).
化合物43n的合成
将化合物43l(1.00g,1.98mmol,1.2eq)和化合物43m(0.72g,1.64mmol,1.0eq)溶于四氢呋喃(20mL)中,加入DIEA(0.3mL,1.98mmol,1.0eq),室温搅拌3小时。反应液浓缩后硅胶柱层析纯化(5%MeOH in CH2Cl2)得化合物43n(11.9g,100%)。MS(ESI):m/z found[M-1]-=828.4。
化合物43的合成
将化合物43c(223mg,0.81mmol,1.2eq)和化合物43n(562mg,0.68 mmol,1.0eq)溶于四氢呋喃(15mL)中,加入碘化亚铜(155mg,0.82mmol,1.2eq)和DIEA(0.35mL,3.0eq),65℃搅拌3小时。反应液过滤浓缩后硅胶柱层析纯化(7%MeOH in CH2Cl2)得化合物43(500mg,66%).MS(ESI):m/z found[(M-18)/2+1]+=543
1H NMR(400MHz,CDCl3):δ9.02(s,1H),8.90(s,1H),7.79(s,1H),7.69(t,J=6.8Hz,3H),7.58(d,J=8.4Hz,2H),7.28(s,1H),6.69(s,2H),5.29(s,1H),4.69–4.63(m,1H),4.61(s,2H),4.51–4.41(m,4H),4.37–4.31(m,1H),4.15(d,J=14.0Hz,2H),4.05–3.93(m,2H),3.82(t,J=4.9Hz,2H),3.67–3.49(m,30H),3.49–3.42(m,2H),3.34(d,J=6.8Hz,2H),3.10(dd,J=14.7,7.1Hz,1H),2.68(s,1H),2.29–2.20(m,1H),1.85(d,J=11.7Hz,2H),1.70(d,J=12.1Hz,2H),1.56–1.39(m,8H),0.98(t,J=7.4Hz,6H).
实施例44
化合物44a的合成
将化合物37t(1.33g,4.32mmol,1.0eq)溶于和四氢呋喃(20mL)中,加入化合物43b(0.28g,5.09mmol,1.2eq)和DIEA(1.4mL,3.0eq),室温搅拌3小时。反应液浓缩后柱层析纯化(5%MeOH in CH2Cl2)得化合物44a。MS(ESI):m/z found[M+1]+=249.1。
化合物44的合成
将化合物44a(120mg,0.48mmol,1.2eq)和化合物43m(335mg,0.4mmol,1.0eq)溶于四氢呋喃(10mL)中,加入碘化亚铜(92mg,0.48mmol,1.2eq)和DIEA(0.2mL,3.0eq),65℃搅拌3小时。反应液过滤浓缩后硅胶柱层析纯化(7%MeOH in CH2Cl2)得化合物44(500mg,66%).MS(ESI):m/z found[(M-18)/2+1]+=530。
实施例45
化合物45b的合成
冰浴下,向化合物45a(1.0g,5.92mmol,1.0eq)的ACN(5mL)溶液中加入HOSu(0.82g,7.13mmol,1.2eq)和DCC(1.46g,7.09mmol,1.2eq),撤去冰浴,室温搅拌反应12h。反应结束后,滤除不溶物,浓缩得黄色油状化合物(1.5g,96%)。MS(ESI):m/z found[M+1]+=267.1。
化合物45c的合成
将化合物45b(1.0g,3.76mmol,1.0eq)溶于和四氢呋喃(20mL)中,加入化合物43b(0.25g,4.55mmol,1.2eq)和DIEA(1.2mL,2.0eq),室温搅拌3小时。反应液浓缩后柱层析纯化(4%MeOH in CH2Cl2)得化合物45c。MS(ESI):m/z found[M+1]+=207.1。
化合物45的合成
将化合物45c(152mg,0.74mmol,1.2eq)和化合物43m(510mg,0.62mmol,1.0eq)溶于四氢呋喃(10mL)中,加入碘化亚铜(140mg,0.74mmol,1.2eq)和DIEA(0.30mL,3.0eq),65℃搅拌3小时。反应液过滤浓缩后硅胶柱层析纯化(7%MeOH in CH2Cl2)得化合物45(325mg,51%).MS(ESI):m/z found[(M-18)/2+1]+=509。
实施例46

化合物46a的合成
将化合物43i(500mg,1.7mmol,1.0eq),咪唑(174mg,2.6mmol,1.5eq)和TBSCl(334mg,2.2mmol,1.3eq)溶于ACN(20mL)中,反应16h后,LC-MS监测显示反应完成。反应液经柱层析纯化得化合物8(625mg,90%).MS(ESI):m/z found[M+1]+=408.3。
化合物46b的合成
将化合物46a(757mg,1.9mmol,1.0eq),化合物37q(996mg,2.0mmol,1.1eq),HATU(1.06g,2.8mmol,1.5eq)和DIEA(920μL,5.6mmol,3.0eq)溶于DMF(20mL)中,反应5h后,LC-MS监测显示反应完成。反应液用EA和饱和食盐水萃取,取有机相干燥,浓缩得粗产品。粗产品经柱层析纯化得化合物46b(615mg,50%).MS(ESI):m/z found[M-TBS-17]+=745
化合物46c的合成
将Et2NH(4mL)加入化合物46b(600mg,0.7mmol)的THF(20mL)溶液中,反应3h后,LC-MS监测显示反应完成。反应液抽干后经反相柱层析纯化得化合物46c(403mg,90%).MS(ESI):m/z found[M+H]+=655
化合物46d的合成
将化合物37t(392mg,1.9mmol,1.5eq),化合物46c(811mg,1.2mmol,1.0eq),HATU(942mg,2.5mmol,2.0eq)和DIEA(480mg,3.7mmol,3.0eq)溶于DMF(20mL)中,反应3h后,LC-MS监测显示反应完成。反应液用EA和饱和食盐水萃取,有机相干燥,浓缩得粗产品。粗产品经柱层析纯化得化合物46d(260mg,25%).MS(ESI):m/z found[M-TBS-17]+=716
化合物46的合成
将TFA(0.3mL)和H2O(0.2mL)加入化合物46d(260mg,0.3mmol)的 ACN(6mL)溶液中,反应10min后,LC-MS监测显示反应完成。反应液旋干后用DMF溶解,经C18柱纯化得化合物46(82mg,36%).MS(ESI):m/z found[M+H]+=734。
实施例47
化合物47a的合成
将化合物43a(120mg,0.4mmol,1.5eq),化合物46c(157mg,0.2mmol,1.0eq)和DIEA(40μL,0.2mmol,1.0eq)溶于ACN(2mL)中,反应1h后,LC-MS监测显示反应完成。反应液经柱层析纯化得化合物47a(188mg,90%).MS(ESI):m/z found[M-TBS-17]+=742
化合物47的合成
将TFA(0.1mL)和H2O(0.1mL)加入化合物47a(188mg,0.2mmol)的ACN(2mL)溶液中,反应10min后,LC-MS监测显示反应完成。反应液旋干后用DMF溶解,经C18柱纯化得化合物47(130mg,80%).MS(ESI):m/z found[M+H]+=760.
实施例48

化合物48的合成:
将化合物2(30mg,44μmol,1.0eq)和化合物37(33mg,47μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(25mg,66μmol,1.5eq)和DIEA(18μL,110μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(38%CH3CN in H2O,0.05%HCOOH)得白色固体(35mg,61%)。MS(ESI):m/z found[M/2+1]+=655.2。
1H NMR(400MHz,CDCl3):δ8.79(s,1H),8.55(t,J=6.4Hz,1H),7.65(d,J=6.4Hz,1H),7.62–7.58(m,4H),7.44(d,J=8.0Hz,1H),7.36(d,J=8.4Hz,2H),7.32–7.30(m,2H),6.98(d,J=8.2Hz,1H),6.70(d,J=5.2Hz,1H),6.69(s,1H),6.61(t,J=5.3Hz,1H),5.73(d,J=16.2Hz,1H),5.55–5.53(m,1H),5.38(d,J=16.2Hz,1H),5.29(d,J=19.1Hz,1H),5.17(d,J=19.0Hz,1H),4.80(q,J=10.0Hz,1H),4.69(q,J=10.0Hz,1H),4.27(t,J=6.7Hz,1H),4.13–3.92(m,6H),3.81–3.69(m,2H),3.68–3.59(m,12H),3.55(t,J=5.2Hz,2H),3.49(t,J=7.2Hz,2H),3.43(q,J=5.2Hz,2H),3.21–3.15(m,1H),3.10–3.05(m,1H),2.53(q,J=6.0Hz,2H),2.39(s,3H),2.35–2.30(m,2H),2.18(t,J=7.6Hz,2H),1.95–1.87(m,2H),1.67–1.54(m,2H),1.38(d,J=7.1Hz,3H),1.33–1.26(m,4H),1.20(d,J=7.1Hz,6H),1.05(t,J=7.4Hz,3H).
实施例49

化合物49的合成:
将化合物4(19mg,29μmol,1.0eq)和化合物37(22mg,29μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(17mg,44μmol,1.5eq)和DIEA(12μL,73μmol,2.5eq),室温搅拌3小时。反应液直接反相柱层析纯化(33%CH3CN in H2O,0.05%HCOOH)得淡黄色固体(18mg,48%)。MS(ESI):m/z found Fragment 1,Positive=591.2,Fragment 2,Positive=683.2
1H NMR(400MHz,CDCl3):δ8.15(d,J=8.4Hz,1H),7.74(t,J=6.2Hz,1H),7.6(s,1H),7.56–7.52(m,2H),7.46(d,J=5.6Hz,1H),7.36(d,J=6.6Hz,1H),6.68(s,2H),6.50(t,J=5.7Hz,1H),5.71–5.56(m,3H),5.26(d,J=16.4Hz,1H),5.08(d,J=19.2Hz,1H),4.67(dd,J=8.6,2.8Hz,1H),4.35(t,J=9.8Hz,1H),4.24(t,J=7.0Hz,1H),4.19–4.12(m,5H),3.93(d,J=15.7Hz,1H),3.73–3.66(m,3H),3.63–3.57(m,12H),3.53(t,J=5.2Hz,2H),3.48(t,J=7.2Hz,2H),3.41(t,J=5.4Hz,2H),3.37–3.32(m,1H),3.23–3.15(m,1H),3.12–3.04(m,1H),2.47–2.25(m,8H),2.15(t,J=7.5Hz,2H),2.03–1.96(m,3H),1.66–1.54(m,4H),1.34(d,J=3.2Hz,3H),1.33(d,J=3.1Hz,3H),1.31–1.24(m,3H),1.18(dd,J=25.2,7.3Hz,1H),1.05–0.99(m,6H).
实施例50

化合物50的合成:
将化合物2(30mg,44μmol,1.0eq)和化合物38(37mg,44μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(25mg,66μmol,1.5eq)和DIEA(18μL,110μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(37%CH3CN in H2O,0.05%HCOOH)得淡黄色固体(27mg,43%)。MS(ESI):m/z found Fragment 1,Positive=627.2,Fragment 2,Positive=771.2
1H NMR(400MHz,CDCl3):δ8.79(s,1H),8.53(t,J=6.3Hz,1H),7.67(d,J=5.8Hz,1H),7.60(s,1H),7.58(s,1H),7.56(s,1H),7.55(s,1H),7.52(t,J=5.9Hz,1H),7.41(d,J=7.7Hz,1H),7.34(s,1H),7.32(s,1H),7.28(s,1H),6.90(d,J=5.5Hz,1H),6.67(s,2H),6.57(t,J=5.3Hz,1H),5.71(d,J=16.3Hz,1H),5.53(q,J=7.6Hz,1H),5.36(d,J=20.2Hz,1H),5.26(d,J=19.2Hz,1H),5.15(d,J=20.1Hz,1H),4.77(dd,J=6.7,10.2Hz,1H),4.63(dd,J=6.2,10.2Hz,1H),4.25–4.18(m,1H),4.09(d,J=16.2Hz,1H),4.05–3.99(m,2H),3.90(d,J=16.0Hz,1H),3.80–3.73(m,2H),3.70–3.57(m,22H),3.53(t,J=5.1Hz,2H),3.47(t,J=7.0Hz,2H),3.41(q,J=5.2Hz,2H),3.15(dt,J=5.3,17.0Hz,1H),3.05(t,J=7.9Hz,1H),2.56–2.41(m,2H),2.37(s,3H),2.33(s,1H),2.30–2.24(m,1H),2.15(t,J=7.4Hz,2H),1.65–1.52(m,4H),1.37(d,J=7.1Hz,3H),1.33–1.23(m,4H),1.19(d,J=7.0Hz,3H),1.16(d,J=7.2Hz,3H),1.02(t,J=7.4Hz,3H).
实施例51

化合物51的合成:
将化合物4(30mg,46μmol,1.0eq)和化合物38(39mg,46μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(26mg,70μmol,1.5eq)和DIEA(19μL,116μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(34%CH3CN in H2O,0.05%HCOOH)得淡黄色固体(28mg,44%)。MS(ESI):m/z found Fragment 1,Positive=591.2,Fragment 2,Positive=771.2
1H NMR(400MHz,CDCl3):δ8.17(d,J=8.4Hz,1H),7.68(t,J=7.8Hz,1H),7.61–7.50(m,4H),7.36(d,J=6.6Hz,1H),6.68(s,2H),6.52(t,J=5.7Hz,1H),5.68(t,J=16.2Hz,2H),5.58(q,J=6.4Hz,1H),5.27(d,J=16.4Hz,1H),5.10(d,J=19.4Hz,1H),4.68(dd,J=8.4,3.0Hz,1H),4.31(t,J=10.0Hz,1H),4.22(t,J=7.1Hz,1H),4.17–4.04(m,5H),3.89(d,J=15.6Hz,1H),3.75–3.67(m,3H),3.66–3.56(m,20H),3.53(t,J=5.2Hz,2H),3.49(t,J=7.2Hz,2H),3.41(t,J=5.3Hz,2H),3.33(q,J=8.8Hz,1H),3.24–3.16(m,1H),3.12–3.04(m,1H),2.49–2.23(m,8H),2.16(t,J=7.5Hz,2H),1.92–1.86(m,3H),1.66–1.54(m,4H),1.35(t,J=7.7Hz,6H),1.31–1.25(m,3H),1.18(dd,J=25.2,7.3Hz,1H),1.03(t,J=7.2Hz,3H),1.01(t,J=5.1Hz,3H).
实施例52

化合物52的合成:
将化合物2(28mg,41μmol,1.0eq)和化合物39(38mg,41μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(23mg,62μmol,1.5eq)和DIEA(17μL,103μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(37%CH3CN in H2O,0.05%HCOOH)得黄色固体(32mg,52%)。MS(ESI):m/z found Fragment 1,Positive=627.2,Fragment 2,Positive=859.4
1H NMR(400MHz,CDCl3):δ8.79(s,1H),8.53(t,J=6.3Hz,1H),7.68(d,J=5.7Hz,1H),7.60(s,1H),7.58(s,2H),7.55–7.51(m,2H),7.43(d,J=8.0Hz,1H),7.34(s,1H),7.31(s,2H),6.87(d,J=8.6Hz,1H),6.67s,2H),6.47(t,J=5.5Hz,1H),5.72(d,J=16.3Hz,1H),5.52(q,J=7.2Hz,1H),5.34(d,J=16.2Hz,1H),5.26(d,J=19.2Hz,1H),5.11(d,J=18.9Hz,1H),4.77(dd,J=6.5,11.8Hz,1H),4.62(dd,J=6.2,9.9Hz,1H),4.20(t,J=6.6Hz,1H),4.08(d,J=16.1Hz,1H),4.04–3.96(m,2H),3.89(d,J=16.0Hz,1H),3.78–3.71(m,2H),3.68–3.56(m,30H),3.52(t,J=5.0Hz,2H),3.47(t,J=7.3Hz,2H),3.41(q,J=5.1Hz,2H),3.17–3.10(m,1H),3.06–2.98(m,1H),2.56–2.49(m,1H),2.46–2.40(m,1H),2.36(s,3H),2.28–2.25(m,2H),2.15(t,J=7.6Hz,2H),1.66–1.53(m,4H),1.36(d,J=7.1Hz,3H),1.33–1.24(m,4H),1.20(d,J=7.1Hz,3H),1.15(d,J=7.2Hz,3H),1.01(t,J=7.3Hz,3H).
实施例53

化合物53的合成:
将化合物4(25mg,39μmol,1.0eq)和化合物39(36mg,39μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(22mg,58μmol,1.5eq)和DIEA(16μL,97μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(34%CH3CN in H2O,0.05%HCOOH)得黄色固体(17mg,30%)。MS(ESI):m/z found Fragment 1,Positive=591.2,Fragment 2,Positive=859.4
1H NMR(400MHz,CDCl3):δ8.17(d,J=8.6Hz,1H),7.67–7.62(m,2H),7.62–7.50(m,4H),7.36(d,J=6.6Hz,1H),6.68(s,2H),6.52(t,J=5.8Hz,1H),5.71(dd,J=15.1,7.7Hz,2H),5.58(q,J=7.4Hz,1H),5.27(d,J=16.2Hz,1H),5.12(d,J=19.4Hz,1H),4.68(dd,J=8.3,2.9Hz,1H),4.28(t,J=9.6Hz,1H),4.23–4.15(m,2H),4.13–4.04(m,4H),3.88(d,J=15.7Hz,1H),3.74–3.57(m,30H),3.53(t,J=4.7Hz,2H),3.49(t,J=7.2Hz,2H),3.42(t,J=5.2Hz,2H),3.33(q,J=8.9Hz,1H),3.25–3.17(m,1H),3.12–3.05(m,1H),2.47–2.31(m,8H),2.16(t,J=7.5Hz,2H),1.91–1.86(m,3H),1.67–1.54(m,4H),1.35(t,J=8.0Hz,6H),1.32–1.25(m,3H),1.19(dd,J=7.0,18.8Hz,1H),1.05–0.99(m,6H).
实施例54
化合物54的合成
将化合物44(27mg,25μmol,1.0eq)溶于DMF中(0.5mL),加入 NPC(9.1mg,30μmol,1.2eq)和DIEA(8μL,50μmol,2.0eq),室温搅拌5小时。向反应液中加入化合物4(16.0mg,25μmol,1.0eq),继续室温搅拌2小时。反应液直接反相柱层析纯化(43%CH3CN in H2O,0.05%HCOOH)得白色固体(15mg,37%)。MS(ESI):m/z found[M/2+1]+=819.0
实施例55
化合物55的合成
将化合物45(33mg,32μmol,1.0eq)溶于DMF中(0.5mL),加入NPC(11.6mg,38μmol,1.2eq)和DIEA(10.5μL,64μmol,2.0eq),室温搅拌5小时。向反应液中加入化合物4(20.6mg,32μmol,1.0eq),继续室温搅拌2小时。反应液直接反相柱层析纯化(38%CH3CN in H2O,0.05%HCOOH)得白色固体(14mg,28%)。MS(ESI):m/z found[M/2+1]+=798.0
实施例56

化合物56的合成
将化合物2(38mg,56μmol,1.0eq)和化合物40(43mg,56μmol,1.0eq)溶于DMF中(1mL),加入HATU(32mg,83μmol,1.5eq)和DIEA(23μL,139μmol,2.5eq),室温搅拌3小时。HPLC纯化得白色固体(14mg,19%)。MS(ESI):m/z found[M/2+1]+=663.6.
1H NMR(400MHz,CDCl3):δ9.44(s,1H),8.15(t,J=5.2Hz,1H),7.64(d,J=7.7Hz,1H),7.60(s,2H),7.56–7.54(m,2H),7.53(s,1H),7.48(d,J=5.2Hz,1H),7.35(s,1H),7.33(s,1H),7.19(d,J=7.7Hz,1H),6.79(s,1H),6.67(s,2H),6.44(t,J=6.0Hz,1H),5.72(d,J=16.2Hz,1H),5.67–5.61(m,1H),5.33(d,J=16.2Hz,1H),5.31(d,J=19.0Hz,1H),5.12(d,J=19.0Hz,1H),4.42(dd,J=6.6,13.5Hz,1H),4.26(dd,J=6.0,13.6Hz,1H),4.15(t,J=6.3Hz,2H),4.05(t,J=6.3Hz,2H),3.81–3.73(m,2H),3.71–3.57(m,15H),3.52(t,J=5.1Hz,2H),3.46(t,J=7.2Hz,2H),3.39(q,J=7.2Hz,2H),3.23–3.18(m,1H),3.10–3.05(m,1H),3.44(q,J=5.4Hz,2H),3.36(s,3H),2.29–2.22(m,1H),2.13(t,J=7.5Hz,2H),1.91–1.86(m,3H),1.62–1.53(m,4H),1.33(s,3H),1.31(s,3H),1.29–1.25(m,2H),1.11(d,J=7.2Hz,3H),1.01(t,J=7.4Hz,3H)
实施例57

化合物57的合成
将化合物46(31mg,42μmol,1.0eq)溶于DMF中(0.5mL),加入NPC(15.2mg,50μmol,1.2eq)和DIEA(14μL,84μmol,2.0eq),室温搅拌5小时。向反应液中加入化合物4(27mg,42μmol,1.0eq),继续室温搅拌2小时。反应液直接反相柱层析纯化(41%CH3CN in H2O,0.05%HCOOH)得黄色固体(27mg,50%)。MS(ESI):m/z found[M/2+1]+=646.8
1H NMR(400MHz,DMSO-d6):δ9.86(d,J=11.3Hz,1H),8.60(t,J=9.2Hz,1H),8.41(d,J=7.5Hz,1H),7.99(d,J=8.0Hz,1H),7.79(m,2H),7.64(dd,J=17.7,8.3Hz,2H),7.28m,4H),6.51(s,1H),5.47–5.37(m,2H),5.19(d,J=4.6Hz,1H),5.07–4.91(m,3H),4.48–4.36(m,1H),4.20(q,J=7.3,5.4Hz,1H),4.12(t,J=7.7Hz,1H),4.04(dd,J=8.9,5.1Hz,1H),3.62–3.53(m,4H),3.45(m,14H),3.15(q,J=6.0Hz,4H),2.92(d,J=9.8Hz,1H),2.80–2.71(m,1H),2.45(d,J=5.9Hz,2H),2.41–2.30(m,4H),2.18–2.09(m,1H),2.01(t,J=7.4Hz,2H),1.96–1.89(m,3H),1.82(dt,J=14.1,7.5Hz,4H),1.48–1.39(m,4H),1.30(t,J=7.0Hz,3H),1.20–1.11(m,2H),0.96(t,J=7.1Hz,3H),0.85(t,J=7.0Hz,6H).
实施例58

化合物58的合成
将化合物2(30mg,44μmol,1.0eq)和化合物41(32mg,44μmol,1.0eq)溶于DMF中(1mL),加入HATU(20.6mg,53μmol,1.2eq)和DIEA(16μL,97μmol,2.2eq),室温搅拌2小时。HPLC纯化得白色固体(28mg,48%)。MS(ESI):m/z found[M/2+1]+=642.8.
1H NMR(400MHz,DMSO-d6):δ9.71(s,1H),8.74(t,J=6.8Hz,1H),8.66(d,J=8.6Hz,1H),8.38(t,J=5.7Hz,1H),8.16(t,J=9.1Hz,2H),8.02(q,J=6.7Hz,2H),7.80(d,J=10.9Hz,1H),7.59(d,J=8.3Hz,2H),7.30(s,1H),7.25–7.22(m,5H),7.20(s,1H),7.18–7.13(m,1H),6.99(s,2H),6.53(s,1H),5.53(dt,J=9.1,4.8Hz,1H),5.43(s,2H),5.25(d,J=18.8Hz,1H),5.16(d,J=18.9Hz,1H),4.66(d,J=6.5Hz,2H),4.52–4.47(m,1H),4.03(s,2H),3.80–3.66(m,6H),3.59(m,5H),3.55(s,1H),3.45(s,7H),3.19–3.15(m,2H),3.12(q,J=5.7Hz,2H),3.06(dd,J=13.6,4.3Hz,1H),2.81(dd,J=13.8,9.6Hz,1H),2.40(s,3H),2.38(t,J=6.5Hz,2H),2.31(t,J=7.2Hz,2H),2.13–2.09(m,1H),1.86(tq,J=14.1,7.1Hz,2H),0.87(t,J=7.3Hz,3H).
实施例59

化合物59的合成
将化合物41(23mg,31μmol,1.0eq)溶于DMF中(1mL),加入EDCI·HCl(7mg,37μmol,1.2eq)和HOSu(4.3mg,37μmol,1.2eq),室温搅拌4小时。向反应液中加入三乙胺9μL,68μmol,2.2eq)和化合物4(20mg,31μmol,1.0eq),室温搅拌1.5小时。反相柱层析纯化(37%CH3CN in H2O,0.05%HCOOH)得白色固体(23mg,58%)。MS(ESI):m/z found[M/2+1]+=643.0.
1H NMR(400MHz,DMSO-d6):δ8.48(m,2H),8.29(t,J=5.8Hz,1H),8.21–8.11(m,2H),8.06–7.98(m,2H),7.78(d,J=11.0Hz,1H),7.30(s,1H),7.26–7.17(m,5H),7.00(s,2H),6.53(s,1H),5.53(dt,J=9.3,5.1Hz,1H),5.43(s,2H),5.28–5.17(m,2H),4.48(td,J=8.9,4.5Hz,1H),4.30(d,J=6.5Hz,2H),4.01(s,2H),3.77–3.66(m,4H),3.59(m,7H),3.46(s,6H),3.15(m,5H),3.04(dd,J=13.8,4.4Hz,1H),2.78(dd,J=13.9,9.7Hz,1H),2.43–2.37(m,6H),2.32(t,J=7.3Hz,2H),2.19–2.05(m,3H),1.88(td,J=14.2,5.8Hz,5H),0.88(t,J=7.3Hz,3H).
实施例60

化合物60的合成
将化合物47(30mg,39μmol,1.0eq)溶于DMF中(0.5mL),加入NPC(14.4mg,47μmol,1.2eq)和DIEA(13μL,79μmol,2.0eq),室温搅拌5小时。向反应液中加入化合物4(25.5mg,39μmol,1.0eq),继续室温搅拌2小时。反应液直接反相柱层析纯化(45%CH3CN in H2O,0.05%HCOOH)得白色固体(20mg,38%)。MS(ESI):m/z found[M/2+1]+=660.0。
实施例61
化合物61的合成
将化合物42(50mg,52μmol,1.0eq)溶于DMF中(0.5mL),加入NPC(19mg,62μmol,1.2eq)和DIEA(17μL,103μmol,2.0eq),室温搅拌4小时。向反应液中加入化合物4(33mg,52μmol,1.0eq),继续室温搅拌2小时。反应液直接反相柱层析纯化(41%CH3CN in H2O,0.05%HCOOH)得白色固体(25mg,32%)。MS(ESI):m/z found[M/2+1]+=765.0.
1H NMR(400MHz,DMSO-d6):δ9.92(m,1H),8.62–8.57(m,1H),8.42–8.38 (m,1H),8.19–8.13(m,2H),8.05–8.00(m,1H),7.81–7.75(m,2H),7.67–7.61(m,2H),7.31–7.16(m,8H),7.00(s,1H),6.52(s,1H),4.52–4.48(m,1H),4.21–4.16(m,1H),3.95–3.85(m,2H),3.80–3.72(m,3H),3.70–3.65(m,4H),3.63–3.23(m,31H),3.20–3.10(m,4H),3.10–3.04(m,2H),2.98–2.92(m,1H),2.87–2.78(m,1H),2.41–2.36(m,5H),2.18–2.09(m,2H),2.03(t,J=7.6Hz,2H),2.00–1.82(m,7H),1.84(t,J=6.4Hz,3H),1.48–1.44(m,2H),0.84(t,J=7.2Hz,3H).
实施例62
化合物62的合成
将化合物43(20mg,18μmol,1.0eq)溶于DMF中(0.5mL),加入NPC(7mg,22μmol,1.2eq)和DIEA(6μL,36μmol,2.0eq),室温搅拌5小时。向反应液中加入化合物4(12mg,18μmol,1.0eq),继续室温搅拌2小时。反应液直接反相柱层析纯化(41%CH3CN in H2O,0.05%HCOOH)得白色固体(9mg,30%)。MS(ESI):m/z found[M/2+1]+=832.0.
实施例63

化合物63的合成:
将化合物24(9mg,13μmol,1.0eq)和化合物41(9.6mg,13μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(6.0mg,16μmol,1.2eq)和DIEA(5μL,33μmol,2.5eq),室温搅拌3小时。反应液直接反相柱层析纯化(41%CH3CN in H2O,0.05%HCOOH)得黄色固体(14mg,83%)。MS(ESI):m/z found Fragment 1,Positive=627.2,Fragment 2,Positive=658.2
1H NMR(400MHz,DMSO-d6):δ10.14(s,1H),8.86(d,J=8.7Hz,1H),8.67(t,J=6.7Hz,1H),8.35(t,J=5.9Hz,1H),8.21–8.09(m,2H),8.00(t,J=5.7Hz,2H),7.80(d,J=10.9Hz,1H),7.65(d,J=8.0Hz,1H),7.30(s,1H),7.27–7.18(m,6H),7.15(dt,J=6.0,2.8Hz,1H),7.10(t,J=7.4Hz,1H),6.97(s,2H),6.52(s,1H),5.53(dt,J=9.0,4.6Hz,1H),5.42(s,2H),5.26(d,J=18.9Hz,1H),5.12(d,J=19.0Hz,1H),4.72(d,J=6.7Hz,2H),4.48(td,J=8.6,4.3Hz,1H),4.07(s,2H),3.75(t,J=5.6Hz,2H),3.67(d,J=5.6Hz,2H),3.60–3.53(m,6H),3.43(s,4H),3.31(s,2H),3.18–3.09(m,4H),3.03(dd,J=13.8,4.4Hz,1H),2.77(dd,J=13.8,9.7Hz,1H),2.40(s,3H),2.36(t,J=6.5Hz,2H),2.30(t,J=7.3Hz,2H),2.19–2.03(m,2H),1.90–1.79(m,2H),0.85(t,J=7.3Hz,3H).
实施例64

化合物64的合成:
将化合物21(12mg,17μmol,1.0eq)和化合物41(19mg,26μmol,1.5eq)溶于DMF中(0.5mL),加入HATU(9.8mg,26μmol,1.5eq)和DIEA(7μL,43μmol,2.5eq),50℃搅拌3小时。反应液直接反相柱层析纯化(40%CH3CN in H2O,0.05%HCOOH)得黄色固体(14mg,83%)。MS(ESI):m/z found[M/2+1]=615.8
实施例65
化合物65的合成:
将化合物19(11.5mg,16μmol,1.0eq)和化合物41(18mg,24μmol,1.5 eq)溶于DMF中(0.5mL),加入HATU(9.2mg,24μmol,1.5eq)和DIEA(7μL,43μmol,2.5eq),室温搅拌3小时。反应液直接反相柱层析纯化(40%CH3CN in H2O,0.05%HCOOH)得黄色固体(12mg,57%)。MS(ESI):m/z found[M/2+1]=657.2
1H NMR(400MHz,DMSO-d6):δ9.73(s,1H),8.80(t,J=6.6Hz,1H),8.56(d,J=8.7Hz,1H),8.48(s,1H),8.44(t,J=5.8Hz,1H),8.27–8.18(m,2H),8.08(t,J=5.7Hz,1H),8.04(t,J=5.7Hz,1H),7.81(d,J=11.0Hz,1H),7.39(d,J=2.0Hz,1H),7.33(s,1H),7.27–7.21(m,5H),7.18(dq,J=5.8,2.9Hz,1H),7.11(d,J=8.3Hz,1H),7.00(s,1H),6.56(s,1H),5.55(dt,J=9.0,4.8Hz,1H),5.44(s,2H),5.23(q,J=19.0Hz,2H),4.68(d,J=6.7Hz,2H),4.50(dt,J=8.7,4.3Hz,1H),4.05(s,2H),3.80–3.73(m,2H),3.70(d,J=5.5Hz,2H),3.65(s,2H),3.61–3.56(m,6H),3.50–3.45(m,5H),3.19(t,J=6.5Hz,2H),3.14(t,J=5.7Hz,2H),3.11–3.04(m,2H),2.44–2.36(m,5H),2.32(t,J=7.3Hz,2H),2.15(tt,J=12.9,7.5Hz,2H),2.04–1.97(m,1H),1.87(dp,J=21.4,7.1Hz,3H),1.24(d,J=3.2Hz,2H),0.88(t,J=7.3Hz,3H).
实施例66
化合物66的合成:
将化合物29(18mg,27μmol,1.0eq)和化合物38(23mg,27μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(12mg,33μmol,1.2eq)和DIEA(11μL,68μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(40%CH3CN in H2O,0.05%HCOOH)得黄色固体(18mg,48%)。MS(ESI):m/z found Fragment 1,Positive=605.2Fragment 2,Positive=711.4
1H NMR(400MHz,DMSO-d6):δ8.60(t,J=6.6Hz,1H),8.45(s,1H),8.15(dd,J=15.4,6.9Hz,2H),8.03(d,J=7.3Hz,1H),7.83(t,J=5.7Hz,1H),7.79(d,J=10.6Hz,1H),7.31(d,J=6.7Hz,1H),7.01(s,2H),6.54(s,1H),5.61(q,J=6.5Hz,1H),5.43(s,2H),5.18–5.09(m,2H),4.61–4.47(m,2H),4.22–4.16(m, 4H),4.08(td,J=14.4,7.0Hz,2H),3.61–3.54(m,4H),3.49(dd,J=8.5,4.8Hz,23H),3.23–3.11(m,6H),2.40–2.36(m,5H),2.33(q,J=8.1,7.2Hz,1H),2.21(d,J=13.4Hz,1H),2.16(q,J=6.9Hz,2H),2.03(t,J=7.4Hz,2H),1.87(dp,J=21.3,7.1Hz,2H),1.63(d,J=12.2Hz,2H),1.20–1.14(m,6H),1.17(m,11H),0.88(t,J=7.3Hz,3H).
实施例67
化合物67的合成:
将化合物30(22mg,33μmol,1.0eq)和化合物38(28mg,33μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(15mg,40μmol,1.2eq)和DIEA(14μL,83μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(40%CH3CN in H2O,0.05%HCOOH)得黄色固体(19mg,42%)。MS(ESI):m/z found Fragment 1,Positive=605.2Fragment 2,Positive=711.4
实施例68

化合物68的合成:
将化合物36(19mg,29μmol,1.0eq)和化合物38(25mg,29μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(13mg,35μmol,1.2eq)和DIEA(12μL,73μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(38%CH3CN in H2O,0.05%HCOOH)得黄色固体(18mg,47%)。MS(ESI):m/z found Fragment 1,Positive=519.2Fragment 2,Positive=711.4
1H NMR(400MHz,DMSO-d6):δ8.62(t,J=6.8Hz,1H),8.48(d,J=8.9Hz,1H),8.13(dd,J=7.0,4.8Hz,2H),8.00(d,J=7.3Hz,1H),7.86–7.78(m,2H),7.32(s,1H),7.01(s,2H),6.54(s,1H),5.58(dt,J=9.0,4.6Hz,1H),5.43(s,2H),5.22(q,J=18.8Hz,2H),4.56–4.47(m,2H),4.24(dd,J=8.4,4.4Hz,1H),4.19(pd,J=7.2,2.8Hz,2H),4.06(qd,J=14.7,7.9Hz,3H),3.60–3.54(m,2H),3.52–3.44(m,22H),3.39–3.36(m,6H),3.17(q,J=5.9Hz,3H),2.40–2.36(m,5H),2.36–2.30(m,1H),2.13–2.06(m,2H),2.03(t,J=7.4Hz,2H),1.93(td,J=11.0,5.2Hz,1H),1.87(dq,J=10.3,6.8Hz,3H),1.47(q,J=7.5Hz,4H),1.17(q,J=6.8Hz,9H),1.12(d,J=7.3Hz,3H),0.91–0.86(m,3H).
实施例69

化合物69的合成:
将化合物19(27mg,38μmol,1.0eq)和化合物38(32mg,38μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(24mg,46μmol,1.2eq)和DIEA(16μL,95μmol,2.5eq),室温搅拌3小时。反应液直接反相柱层析纯化(37%CH3CN in H2O,0.05%HCOOH)得黄色固体(18mg,33%)。MS(ESI):m/z found[M/2+1]=714.2
1H NMR(400MHz,DMSO-d6):δ9.65(s,1H),8.76(t,J=6.6Hz,1H),8.52(d,J=8.6Hz,1H),8.16–8.07(m,3H),7.82–7.77(m,2H),7.35(d,J=1.9Hz,1H),7.30(s,1H),7.19(dd,J=8.1,1.9Hz,1H),7.10(d,J=8.2Hz,1H),6.98(s,2H),6.53(s,1H),5.54(dt,J=9.3,4.8Hz,1H),5.42(s,2H),5.26(d,J=18.8Hz,1H),5.17(d,J=18.8Hz,1H),4.69–4.61(m,2H),4.20(ddd,J=9.0,4.9,2.1Hz,3H),4.01(s,2H),3.64(s,3H),3.60–3.53(m,2H),3.50–3.43(m,20H),3.40(s,2H),3.36–3.31(m,4H),3.15(dt,J=11.7,6.9Hz,4H),2.40(d,J=1.8Hz,3H),2.38–2.29(m,2H),2.19–2.08(m,2H),2.01(t,J=7.4Hz,2H),1.86(ddd,J=32.5,14.1,7.2Hz,2H),1.44(p,J=7.4Hz,4H),1.23(d,J=7.2Hz,3H),1.20–1.12(m,8H),0.86(t,J=7.3Hz,3H).
实施例70

化合物70的合成:
将化合物21(23mg,33μmol,1.0eq)和化合物38(28mg,33μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(15mg,39μmol,1.2eq)和DIEA(14μL,83μmol,2.5eq),室温搅拌3小时。反应液直接反相柱层析纯化(37%CH3CN in H2O,0.05%HCOOH)得白色固体(24mg,52%)。MS(ESI):m/z found Fragment 1,Positive=645.0Fragment 2,Positive=771.2
1H NMR(400MHz,DMSO-d6):δ9.91(s,1H),8.80(t,J=6.6Hz,1H),8.72(d,J=8.5Hz,1H),8.21–8.10(m,3H),7.85–7.81(m,2H),7.61(dd,J=12.3,2.0Hz,1H),7.39(dd,J=8.4,2.0Hz,1H),7.32(s,1H),7.29(d,J=8.5Hz,1H),7.01(s,2H),6.55(s,1H),5.56(dt,J=8.8,4.6Hz,1H),5.44(s,2H),5.29(d,J=19.0Hz,1H),5.17(d,J=19.0Hz,1H),4.72–4.62(m,2H),4.22(td,J=7.1,2.8Hz,3H),4.05(s,2H),3.60–3.54(m,3H),3.52–3.44(m,21H),3.37(dd,J=6.8,2.5Hz,4H),3.21–3.14(m,4H),2.42(d,J=1.9Hz,4H),2.42(s,3H),2.39–2.31(m,2H),2.23–2.08(m,2H),2.03(d,J=7.4Hz,2H),1.86(dq,J=14.1,7.0Hz,2H),1.46(p,J=7.4Hz,4H),1.29–1.12(m,11H),0.88(t,J=7.3Hz,3H).
实验例71:
化合物71c的合成
将R-依喜替康71b(28.6mg,54μmol,1eq)和N-Boc-L-脯氨酸71a(12mg,56μmol,1.05eq)溶于DMF中(1mL),加入HATU(25mg,65μmol, 1.2eq)和DIEA(22uL,134μmol,2.5eq),室温搅拌1.5小时,反应液由混浊变为澄清。反相柱层析纯化(50%ACN in H2O,HCOOH)得白色固体(34.5mg,100%)。MS(ESI):m/z found[M+1]+=633.0。
化合物71的合成
将化合物71c(34.5mg,54μmol)溶于三氟乙酸(0.4mL)和二氯甲烷(2mL)中,室温搅拌2.5小时。浓缩后反相柱层析纯化(34%CH3CN in H2O,0.1%TFA)得黄色固体(18.2mg,52%)。MS(ESI):m/z found[M+1]+=533.0。
1H NMR(600MHz,DMSO-d6):δ9.11(br,1H),9.00(d,J=8.4Hz,1H),8.73(br,1H),7.86(d,J=10.9Hz,1H),7.34(s,1H),6.56(s,1H),5.63(dt,J=8.0,3.7Hz,1H),5.48–5.41(m,2H),5.40(d,J=15.6Hz,1H),5.27(d,J=18.9Hz,1H),4.14–4.10(m,1H),3.30–3.26(m,1H),3.25–3.19(m,2H),3.12(dt,J=17.3,8.5Hz,1H),2.43(s,4H),2.29–2.21(m,2H),2.12(tt,J=13.1,4.6Hz,1H),1.90(m,5H),0.88(t,J=7.3Hz,3H).
实验例72:
化合物72的合成:
将化合物71(16mg,25μmol,1.0eq)和化合物38(24mg,28μmol,1.0eq)溶于DMF中(0.5mL),加入HATU(14.5mg,38μmol,1.5eq)和DIEA(10μL,64μmol,2.5eq),室温搅拌2小时。反应液直接反相柱层析纯化(42%CH3CN in H2O,0.05%HCOOH)得白色固体(18mg,52%)。MS(ESI):m/z found Fragment 1,Positive=591.0,Fragment 2,Positive=771.2。
1H NMR(400MHz,DMSO-d6)δ:8.60(t,J=6.8Hz,1H),8.51(d,J=8.8Hz,1H),8.15(d,J=7.3Hz,1H),8.12(d,J=6.5Hz,1H),8.01(d,J=7.1Hz,1H),7.85–7.78(m,2H),7.32(s,1H),7.01(s,2H),6.53(s,1H),5.58(dt,J=9.3,4.7Hz,1H),5.46–5.40(m,2H),5.26–5.16(m,2H),4.58–4.53(m,2H),4.24(dd,J=5.5,2.9Hz,1H),4.20(tt,J=7.0,3.1Hz,2H),4.09(q,J=7.1Hz,1H),4.05(s,2H),3.60–3.54(m,3H),3.53–3.44(m,21H),3.39–3.35(m,6H),3.17 (q,J=5.9Hz,3H),2.42–2.36(m,4H),2.33(dt,J=14.6,6.2Hz,1H),2.13–2.06(m,3H),2.02(t,J=4.9,2H),1.97–1.79(m,4H),1.46(p,J=7.4Hz,4H),1.23–1.13(m,9H),1.11(d,J=7.2Hz,2H),0.87(t,J=7.3Hz,3H).
实施例73:
化合物73的合成:
将化合物2(20mg,29μmol,1.0eq)和化合物McGGFG(20mg,32μmol,1.1eq)溶于DMF中(0.5mL),加入HATU(11mg,35μmol,1.2eq)和DIEA(12μL,11μmol,2.2eq),室温搅拌3小时。反应液直接反相柱层析纯化(42%CH3CN in H2O,0.05%HCOOH)得白色固体(9.8mg,29%)。MS(ESI):m/z found Fragment 1,Positive=541.0Fragment 2,Positive=627.0。
1H NMR(400MHz,DMSO-d6):δ9.71(d,J=4.0Hz,1H),8.74(t,J=6.7Hz,1H),8.70–8.65(m,1H),8.37(t,J=5.8Hz,1H),8.17(d,J=8.2Hz,1H),8.08(t,J=5.8Hz,1H),8.03(t,J=5.9Hz,1H),7.82(d,J=10.9Hz,1H),7.60(d,J=8.7Hz,2H),7.32(d,J=2.9Hz,1H),7.28–7.21(m,6H),7.18(ddt,J=7.3,5.5,2.4Hz,1H),6.99(s,2H),6.54(d,J=2.3Hz,1H),5.54(dd,J=9.1,4.5Hz,1H),5.44(d,J=5.5Hz,2H),5.26(dd,J=18.7,4.9Hz,1H),5.16(dd,J=18.6,5.0Hz,1H),4.67(d,J=6.7Hz,2H),4.51(td,J=8.8,4.4Hz,1H),4.05(s,2H),3.81–3.72(m,3H),3.67(d,J=5.5Hz,2H),3.60(dd,J=16.6,5.4Hz,1H),3.46(t,J=4.4Hz,2H),3.37(t,J=7.1Hz,2H),3.17(d,J=6.4Hz,2H),3.07(dd,J=13.9,4.6Hz,1H),2.82(dd,J=13.9,9.6Hz,1H),2.41(s,3H),2.17–2.07(m, 4H),1.87(ddp,J=21.4,14.4,7.3Hz,2H),1.46(ddd,J=19.0,11.2,6.3Hz,4H),1.19(tt,J=9.8,6.5Hz,2H),0.88(td,J=7.4,3.2Hz,3H).
实施例74:
化合物74的合成:
将化合物4(25mg,39μmol,1.0eq)和化合物McGGFG(26mg,43μmol,1.1eq)溶于DMF中(0.5mL),加入HATU(18mg,46μmol,1.2eq)和DIEA(14μL,85μmol,2.2eq),室温搅拌3小时。反应液直接反相柱层析纯化(38%CH3CN in H2O,0.05%HCOOH)得白色固体(10.3mg,23%)。MS(ESI):m/z found Fragment 1,Positive=541.0Fragment 2,Positive=591.0。
1H NMR(600MHz,DMSO-d6)δ8.50–8.44(m,2H),8.27(t,J=5.9Hz,1H),8.14(d,J=8.1Hz,1H),8.08(t,J=5.8Hz,1H),8.01(t,J=5.8Hz,1H),7.78(d,J=10.9Hz,1H),7.31(s,1H),7.24(dt,J=13.4,7.4Hz,4H),7.19(q,J=7.5,6.7Hz,1H),7.00(s,2H),6.53(d,J=6.9Hz,1H),5.53(dt,J=9.4,5.1Hz,1H),5.43(d,J=5.3Hz,2H),5.29–5.17(m,2H).4.48(td,J=8.9,4.5Hz,1H),4.31(td,J=7.6,6.0,3.3Hz,2H),4.01(s,2H),3.73(dd,J=16.6,5.9Hz,1H),3.66(d,J=5.7Hz,2H),3.59(dd,J=16.4,5.6Hz,2H),3.53(dd,J=16.5,5.7Hz,1H),3.44(dt,J=12.7,5.7Hz,1H),3.36(t,J=7.2Hz,3H),3.17(t,J=7.4Hz,2H),3.04(dd,J=13.9,4.6Hz,1H),2.79(dd,J=13.8,9.6Hz,1H),2.40(d,J=6.7Hz,3H),2.19–2.06(m,5H),1.97–1.81(m,5H),1.47(m,4H),1.22–1.16(m,2H),0.88(t,J=7.3Hz,3H).
实施例75:
化合物75的合成:
将化合物36(17mg,26μmol,1.0eq)和化合物McGGFG(18mg,29μmol,1.1eq)溶于DMF中(0.5mL),加入HATU(11mg,29μmol,1.1eq)和DIEA(10μL,58μmol,2.2eq),室温搅拌3小时。反应液直接反相柱层析纯化(40%CH3CN in H2O,0.05%HCOOH)得白色固体(6mg,20%)。MS(ESI):m/z found Fragment 1,Positive=541.0Fragment 2,Positive=591.0。
1H NMR(600MHz,DMSO-d6)δ8.60–8.53(m,2H),8.28(t,J=5.5Hz,1H),8.14(d,J=7.9Hz,1H),8.06(t,J=6.8Hz,1H),8.00(t,J=5.7Hz,1H),7.82(d,J=10.9Hz,1H),7.33(s,1H),7.24(hept,J=5.6,4.9Hz,4H),7.18(q,J=7.6Hz,1H),7.00(s,2H),6.53(s,1H),5.58(dt,J=9.0,4.5Hz,1H),5.46–5.39(m,2H),5.26–5.18(m,2H),4.58(dd,J=10.3,6.8Hz,1H),4.51(dt,J=23.5,8.2Hz,2H),4.22(dd,J=8.2,4.5Hz,1H),4.08(s,2H),3.75(q,J=4.3,3.7Hz,1H),3.71(d,J=5.0Hz,1H),3.69(d,J=5.6Hz,1H),3.65(d,J=5.7Hz,2H),3.58(dd,J=16.7,5.4Hz,1H),3.50(d,J=7.6Hz,1H),3.41(q,J=7.6Hz,1H),3.37(d,J=7.1Hz,2H),3.17(q,J=14.3,11.5Hz,2H),3.07–3.01(m,1H),2.79(dd,J=13.9,9.7Hz,1H),2.41(s,3H),2.14–1.99(m,6H),1.88(ddt,J=17.5,14.3,6.6Hz,4H),1.46(h,J=7.3Hz,4H),1.18(p,J=7.9Hz,2H),0.88(q,J=7.0Hz,3H).
实施例76:抗人Trop-2单克隆抗体的制备
本发明中使用的抗人TROP-2单克隆抗体为hRS7抗体,具有氨基酸序列如下所示:
抗人TROP-2抗体重链可变区的互补决定区(HCDR1)(SEQ ID NO:1):
抗人TROP-2抗体重链可变区的互补决定区(HCDR2)(SEQ ID NO:2):
抗人TROP-2抗体重链可变区的互补决定区(HCDR3)(SEQ ID NO:3):
抗人TROP-2抗体轻链可变区的互补决定区(LCDR1)(SEQ ID NO:4):
抗人TROP-2抗体轻链可变区的互补决定区(LCDR2)(SEQ ID NO:5):
抗人TROP-2抗体轻链可变区的互补决定区(LCDR3)(SEQ ID NO:6):
抗人TROP-2抗体的VH氨基酸序列(VH-TROP2)(SEQ ID NO:7):
抗人TROP2抗体的VL氨基酸序列(VL-TROP2)(SEQ ID NO:8):
抗人TROP-2抗体重链:(SEQ ID NO:9)
抗人TROP-2抗体轻链:(SEQ ID NO:10)
所述抗人TROP-2单克隆抗体按照如下方法制备:将由南京金斯瑞生物科技股份有限公司合成的重链和轻链基因,构建入pCGS3表达载体,利用无内毒素质粒大提试剂盒(天根生化科技有限公司,货号:DP117)提取质粒,具体操作按照说明书进行。HEK293f细胞使用KOP293细胞培养基(珠海恺瑞,货号:K03252),置于37℃,5%CO2摇床,转速为100~130rpm,湿度控制在75%以上进行培养。转染前一天,将处于对数生长期,生长状态良好的HEK 293f细胞,传代到2×106/mL,摇床(110rpm,37℃,5% CO2)培养过夜,待第二天进行转染。转染前将TA-293(293细胞悬浮化学转染试剂),KPM(无血清细胞转染缓冲溶液)放常温预热,测定细胞密度和活率,密度在4×106/mL,活率大于97%方可使用。根据KOP293瞬时转染蛋白表达系统使用指南的方法进行转染,转染5天后离心收获表达上清。
表达上清用0.45μM滤膜过滤,利用亲和层析柱从表达上清中获得带有Fc结构域的抗体。平衡缓冲液为9.5mM磷酸二氢钠加40.5mM磷酸氢二钠,pH为7.4;洗脱缓冲液为0.1M甘氨酸,pH为3.0。洗脱出来的抗体用pH=7.2的PBS缓冲液进行置换。
实施例77:TROP-2ADC偶联
通过添加1mM EDTA(invitrogen,货号:AM9260G)和8倍摩尔当量的TECP(Thermo,货号:77720)于10mg/mL Trop-2单抗溶液中还原链间二硫键,将该混合物37℃下搅拌2小时。将该混合物冷却至4℃的目标温度并以10%(v/v)DMSO溶液(Sigma,货号:D2660)形式每摩尔添加10药物当量的化合物48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69或70。2小时后,使用PBS超滤置换得到抗体药物偶联物,依次命名为TROP-2-ADC-1、TROP-2-ADC-2、TROP-2-ADC-3、TROP-2-ADC-4、TROP-2-ADC-5、TROP-2-ADC-6、TROP-2-ADC-7、TROP-2-ADC-8、TROP-2-ADC-9、TROP-2-ADC-10、TROP-2-ADC-11、TROP-2-ADC-12、TROP-2-ADC-13、TROP-2-ADC-14、TROP-2-ADC-15、TROP-2-ADC-16、TROP-2-ADC-17、TROP-2-ADC-18、TROP-2-ADC-19、TROP-2-ADC-20、TROP-2-ADC-21、TROP-2-ADC-22、TROP-2-ADC-23。超滤完成后,利用280nm与365nm的吸光度值法和HIC-HPLC两种方法检测DAR(Drug-to-Antibody Ratio,药物抗体比值),结果如表3所示。
表3 Trop-2抗体的ADC药物偶联结果
ADC编号 DAR ADC编号 DAR
TROP-2-ADC-1 7.63 TROP-2-ADC-12 4.57
TROP-2-ADC-2 4.13 TROP-2-ADC-14 8.20
TROP-2-ADC-3 14.74 TROP-2-ADC-15 1.65
TROP-2-ADC-4 8.49 TROP-2-ADC-16 5.48
TROP-2-ADC-5 5.93 TROP-2-ADC-18 10.07
TROP-2-ADC-6 5.02 TROP-2-ADC-19 4.65
TROP-2-ADC-7 2.80 TROP-2-ADC-20 4.81
TROP-2-ADC-8 5.96 TROP-2-ADC-21 4.78
TROP-2-ADC-9 4.55 TROP-2-ADC-22 4.85
TROP-2-ADC-10 2.67 TROP-2-ADC-23 6.42
TROP-2-ADC-11 4.96 -- --
实施例78:抗人HER3单克隆抗体的制备
本发明中的抗人HER3单克隆抗体序列如下:
抗人HER3抗体重链可变区的互补决定区H’CDR1(SEQ ID NO:11):
抗人HER3抗体重链可变区的互补决定区H’CDR2(SEQ ID NO:12):
抗人HER3抗体重链可变区的互补决定区H’CDR3(SEQ ID NO:13):
抗人HER3抗体轻链可变区的互补决定区L’CDR1(SEQ ID NO:14):
抗人HER3抗体轻链可变区的互补决定区L’CDR2(SEQ ID NO:15):
抗人HER3抗体轻链可变区的互补决定区L’CDR3(SEQ ID NO:16):
抗HER3抗体重链可变区(SEQ ID NO:17):
抗HER3抗体轻链可变区(SEQ ID NO:18):
抗HER3抗体重链:SEQ ID NO:19
抗HER3抗体轻链SEQ ID NO:20
所述抗人HER3单克隆抗体按照如下方法制备:将由南京金斯瑞生物科技股份有限公司合成重链和轻链基因,构建入pCGS3表达载体。利用无内毒素质粒大提试剂盒(天根生化科技有限公司,货号:DP117)提取质粒, 具体操作按照说明书进行。HEK293f细胞使用KOP293细胞培养基(珠海恺瑞,货号:K03252),置于37℃,5%CO2摇床,转速为100~130rpm,湿度控制在75%以上进行培养。转染前一天,将处于对数生长期,生长状态良好的HEK 293f细胞,传代到2×106/mL,摇床(110rpm,37℃,5%CO2)培养过夜,待第二天进行转染。转染前将TA-293(293细胞悬浮化学转染试剂),KPM(无血清细胞转染缓冲溶液)放常温预热,测定细胞密度和活率,密度在4×106/mL,活率大于98%方可使用。根据KOP293瞬时转染蛋白表达系统使用指南的方法进行转染,转染6天后离心收获表达上清。
表达上清用0.45μM滤膜过滤,利用亲和层析柱从表达上清中获得带有Fc结构域的抗体。平衡缓冲液为9.5mM磷酸二氢钠加40.5mM磷酸氢二钠,pH为7.4;洗脱缓冲液为0.1M甘氨酸,pH为3.0。洗脱出来的抗体用pH=7.2的PBS缓冲液进行置换。
实施例79:HER3 ADC偶联
通过添加1mM EDTA(invitrogen,货号:AM9260G)和8倍摩尔当量的TECP(Thermo,货号:77720)于10mg/mL HER3单抗溶液中还原链间二硫键,将该混合物37℃,250rpm搅拌2.5小时。将该混合物冷却至4℃的目标温度并以10%(v/v)DMSO溶液(Sigma,货号:D2660)形式每摩尔添加10药物当量的化合物48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、72、73、74和75。3小时后,使用PBS超滤置换抗体药物偶联物,依次命名为HER3-ADC-1、HER3-ADC-2、HER3-ADC-3、HER3-ADC-4、HER3-ADC-5、HER3-ADC-6、HER3-ADC-7、HER3-ADC-8、HER3-ADC-9、HER3-ADC-10、HER3-ADC-11、HER3-ADC-12、HER3-ADC-13、HER3-ADC-14、HER3-ADC-15、HER3-ADC-16、HER3-ADC-17、HER3-ADC-18、HER3-ADC-19、HER3-ADC-20、HER3-ADC-21、HER3-ADC-22、HER3-ADC-23、HER3-ADC-24、HER3-ADC-25、HER3-ADC-26、HER3-ADC-27。抗体偶联物具体结构如表4所示。
表4 HER3-ADC结构式





注:表4中mAb在本实施例中是指上述实施例和试验例中的HER3单抗,n每次出
现时取值为1-15的整数或小数,表示所选的每1种药物接头化合物在每1抗体上偶联的平均单元数,n也可以用DAR表示。
超滤完成后,利用280nm与365nm的吸光度值法测定ADC偶联产物浓度;通过HPLC-HIC分析,确定是否偶联成功;通过SEC-HPLC法检测抗体纯度;通过LC-MS检测DAR值。结果如表5所示。
表5 HER3抗体的ADC药物偶联结果

对比例1:
本发明试验例中使用的阳性参照药U3-1402(PATRITUMAB DERUXTECAN)的制备方法参考专利CN106163559B中抗体-药物偶联物(16a)制备方法制备得到。
试验例1:本发明依喜替康衍生物或类似物(Payload)对肿瘤细胞体 外增殖抑制测试
该实验中使用的细胞系为TROP-2高表达的MDA-MB-468细胞系(南京科佰生物科技有限公司,货号:CBP60387)。用含10%FBS的新鲜细胞培养基制取细胞悬液,密度为3×103cells/mL,以每孔90μL加入到全白96孔细胞培养板(碧云天,货号:FCP968-80pcs)中,5%二氧化碳37℃培养24h。化合物1-36分别用DMSO配制成1mM。在96孔U型底配药板第一列中分别加入20μL不同待测样品,样品浓度为1000uM;第2列至第10列每孔中加入20μL DMSO。取第一列样品5μL至第二列20μL DMSO中,混匀,取5μL至第三列中,以此类推至第9列。将配药板中的药每孔取5μL至95μL DMEM培养基中,混匀。向培养板中加入10μL配置的不同浓度的待测样品,每个样品两复孔。5%二氧化碳37℃培养3天。每孔加入50μL CTG(Luminescent Cell Viability Assay,Promega,货号:G7573),室温下在摇板机上混匀30min,静置孵育10分钟,酶标仪(TECAN,Spark)上读取化学发光,利用Graphpad Prism 8软件进行数据分析。实验结果如表6所示。
表6本发明依喜替康衍生物对MDA-MB-468细胞体外增殖抑制的IC50
化合物编号 IC50(nM) 化合物编号 IC50(nM)
1 135.20 19 7.52
2 3.38 20 8.60
3 43.59 21 3.05
4 4.32 22 2.60
5 19.34 23 2.64
6 9.81 24 1.65
7 9.45 25 8.63
8 2.72 26 3.28
9 4.77 27 43.21
10 50.73 28 35.37
11 96.27 29 6.00
12 56.25 30 6.85
13 76.51 31 135.71
14 47.99 32 28.14
15 20.68 33 32.28
16 3.29 34 56.58
17 2.01 35 101.96
18 10.22 36 6.34
结论:本发明提供的依喜替康衍生物对MDA-MB-468细胞具有明显的增殖抑制活性。
试验例2:抗体及ADC内吞实验
本试验例中使用的细胞系购于南京科佰生物科技有限公司的MDA-MB-468细胞,货号:CBP60387,TROP-2高表达细胞系。
用FACS(2%FBS+PBS)染色缓冲液制取细胞悬液,密度为2×106cells/mL,将细胞悬液以50μL/孔铺于96孔U形底细胞板(UWP043096)中,每个样品设置一组平行实验。使用FACS染色缓冲液稀释TROP-2抗体(裸抗)或TROP-2-ADC化合物(TROP2-ADC-3、TROP2-ADC-4、TROP2-ADC-19、TROP2-ADC-21或TROP2-ADC-23)至浓度为20ug/ml。取50Μl TROP-2抗体或TROP-2-ADC化合物稀释液分别加入到96孔U形底细胞板中,轻柔混匀后冰浴60min。加入200μLFACS染色缓冲液洗涤细胞,4℃、300g离心5min,弃上清,重复洗涤2次。每孔中加入30μLFACS重悬细胞,37℃孵育15min、30min、60min、90min,使结合于细胞表面的抗体内化。每个时间点,使用另一个在4℃孵育相同时间的样品作为无内化的阴性对照。在各时间节点,将对应的37℃和4℃孵育的样品移至冰上,并加入170μL冰FACS,终止内化。4℃、300g离心5min沉淀细胞。按0.5:100的比例加入二抗,100μL/孔。4℃避光孵育30min。加入200μLFACS染色缓冲液洗涤细胞,移除未结合的抗体。4℃、300g离心5min沉淀细胞,弃上清。重复洗涤2次。将染色后细胞重悬于100μL冰PBS中。细胞洗涤完成后,使用流式细胞仪分析。
通过37℃孵育样品相对于4℃孵育样品的平均荧光强度(MFI)降低水平得出,公式如下:
(a)tx时间点的%MFI=37℃孵育样品的MFI×100/4℃孵育样品的MFI;
(b)tx时间点的内化百分比=100-tx时间点的%MFI
根据计算内化百分比绘制内化百分比折线图如图1所示。
试验例3 TROP-2抗体及TROP-2-ADC亲和力检测
本试验例对根据上述实施例得到的TROP-2抗体及TROP-2-ADC化合物对TROP-2亲和力进行检测,利用捕获抗体的方式进行。
用Sensor Chip Protein A生物传感芯片(Cytiva)亲和捕获抗体(TROP-2抗体或TROP-2-ADC化合物),然后于芯片表面流经抗原TROP-2-his,用Biacore K8仪器(Cytiva)实时检测反应信号获得结合和解离曲线。在每个实验循环解离完成后,用再生缓冲液将芯片洗净再生。实验结束后用GE Biacore K8 Evaluation version 3.0软件以(1:1)Langmuir模型拟合数据,得出亲和力数值。抗体与蛋白的亲和力如表7所示:
表7 TROP-2抗体及TROP-2-ADC化合物与蛋白的亲和力测试结果
ADC名称 KD(M)
裸抗(TROP-2单克隆抗体) 3.18E-10
TROP-2-ADC-3 2.76E-10
TROP-2-ADC-4 2.93E-10
TROP-2-ADC-19 3.19E-10
TROP-2-ADC-21 2.75E-10
TROP-2-ADC-23 2.62E-10
如表7所示,裸抗和本发明的TROP-2-ADC化合物的KD值均在皮摩尔范围内,两者之间没有显著差异。
试验例4:本发明抗体药物偶联物对TROP-2靶标的肿瘤细胞的体外增 殖抑制测试
该实验中使用的细胞系为TROP-2高表达的MDA-MB-468细胞系(南京科佰生物科技有限公司,货号:CBP60387)。用含10%FBS的新鲜细胞培养基制取细胞悬液,密度为2×105cells/mL,以每孔100μL加入到全白96孔细胞培养板(碧云天,货号:FCP968-80pcs)中,5%二氧化碳37℃培养24h。ADC样品用PBS配制成10μΜ。以此为首浓度,用PBS五倍梯度稀释,共9个浓度。每孔吸出50μL培养液,再补加50μL的上述ADC溶液,故首孔ADC浓度为5μΜ,终体积为每孔100μL。5%二氧化碳37℃培养3天。每孔加入100μL CTG(Luminescent Cell Viability Assay,Promega,货号:G7573),室温下在脱色摇床上混匀30min,静置孵育10分钟,酶标仪(TECAN,Spark)上读取化学发光,利用Graphpad Prism 5软件进行数据分析。实验结果如表8所示。
表8本发明ADC对TROP-2靶标的肿瘤细胞的体外增殖抑制的IC50
ADC编号 IC50(nM) ADC编号 IC50(nM)
TROP-2-ADC-1 21.39 TROP-2-ADC-14 33.98
TROP-2-ADC-3 31.83 TROP-2-ADC-16 17.99
TROP-2-ADC-4 17.75 TROP-2-ADC-18 6.598
TROP-2-ADC-5 20.86 TROP-2-ADC-19 37.52
TROP-2-ADC-6 15.12 TROP-2-ADC-20 421.5
TROP-2-ADC-8 34.59 TROP-2-ADC-21 57.22
TROP-2-ADC-9 51.1 TROP-2-ADC-22 519
TROP-2-ADC-11 290.4 TROP-2-ADC-23 20.39
TROP-2-ADC-12 312.50 -- --
结论:本发明针对TROP-2靶标的抗体药物偶联物对TROP-2阳性细胞MDA-MB-468细胞具有明显的增殖抑制活性。
试验例5 MDA-MB-468细胞CDX小鼠模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人三阴乳腺癌细胞MDA-MB-468(南京科佰生物科技有限公司,货号:CBP60387)(5×106/200μL/只,具有50%的低生长因子人工基底膜)。接种细胞后,肿瘤生长10天,瘤体积长至130mm3左右后将动物随机分组(D0),每组5只,共12组。
采用尾静脉注射给药,对照组施加PBS,实验组施加本发明提供的TROP-2-ADC化合物TROP2-ADC-3、TROP2-ADC-19、TROP2-ADC-21或TROP2-ADC-23,多剂量给药5mg/kg、2mg/kg、1mg/kg,一周2次,给药2周。每周测量2次肿瘤体积和体重,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2L长径L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(PBS)及实验组的相对肿瘤体积。结果如图2所示,本发明提供的TROP-2-ADC化合物均能够有效抑制荷瘤裸鼠中MDA-MB-468移植瘤的生长,并且呈剂量依赖性,尤其TROP-2-ADC19、TROP-2-ADC-21具有更显著的抑制效果。
试验例6:Bxpc-3细胞CDX小鼠模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人原位胰腺癌细胞Bxpc-3(科佰)(4×106/200μL/只,具有50%的低生长因子人工基底膜)。接种细胞后,肿瘤生长6天,瘤体积长至130mm3左右后将动物随机分组(D0),每组5只,共4组。
采用尾静脉注射给药,对照组施加PBS,实验组施加本发明提供的TROP-2-ADC-21化合物,给药剂量均为3mg/kg、6mg/kg、12mg/kg,一周2次,给药5次。每周测量2次肿瘤体积和体重,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2L长径L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(PBS)及实验组的相对肿瘤体积。结果如图3所示,本发明提供的TROP-2-ADC-21能够有效抑制荷瘤裸鼠中Bxpc-3移植瘤的生长,并且呈剂量依赖性。
试验例7 NCI-N87细胞CDX小鼠模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人胃癌细胞NCI-N87(科佰)(5×106/200μL/只,具有50%的低生长因子人工基底膜)。接种细胞后,肿瘤生长3天,瘤体积长至130mm3左右后将动物随机分组(D0),每组5 只,共4组。
采用尾静脉注射给药,对照组施加PBS,实验组施加本发明提供的TROP-2-ADC-21化合物,给药剂量均为3mg/kg、6mg/kg、12mg/kg,一周2次,给药2周。每周测量2次肿瘤体积和体重,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2L长径L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(PBS)及实验组的相对肿瘤体积。结果如图4所示,结果显示,本发明提供的TROP-2-ADC-21能够有效抑制荷瘤裸鼠中NCI-N87移植瘤的生长,并且呈剂量依赖性。
试验例8:本发明的抗体药物偶联物对HER3靶标的肿瘤细胞的体外增 殖抑制测试
该实验中使用的细胞系分别为HER3高表达的人乳腺癌细胞系HCC1569、人结直肠腺癌细胞系SW620、人恶性黑色素瘤细胞系A375、人非小细胞肺癌系NCI-H358。将上述细胞系以103cells/100μL/well的密度接种至96孔板,最外圈加入200μLPBS以减少培养基的挥发,并置于37℃,5%CO2培养48h后,将96孔板取出,每孔加入100μL稀释好的ADC样品,其中的ADC样品用PBS配制成10μΜ,以此为首浓度,用PBS五倍梯度稀释,共9个梯度,最后一个点浓度为0。于37℃,5%CO2培养120h。取出96孔板,移去培养液,每孔加入100μL的检测液(CCK8:培养液=1:9);37℃,5%CO2培养箱中放置4h;并利用酶标仪(TECAN,货号:CEY0017)读取450nm下的数值,用Excel记录,并利用Graphpad Prism 5软件进行数据分析。实验结果如表9-表12所示。
表9本发明HER3-ADC对SW620细胞的体外增殖抑制的IC50
ADC编号 IC50(nM) ADC编号 IC50(nM)
HER3-ADC-3 1635 HER3-ADC-19 687.3
HER3-ADC-4 950.9 HER3-ADC-20 274.3
HER3-ADC-8 2611 HER3-ADC-21 579.9
HER3-ADC-9 2212 HER3-ADC-22 2664
HER3-ADC-16 697.2 HER3-ADC-23 1026
HER3-ADC-18 2377    
表10本发明HER3-ADC对HCC1569细胞的体外增殖抑制的IC50

表11本发明HER3-ADC对A375细胞的体外增殖抑制的IC50
ADC编号 IC50(nM) ADC编号 IC50(nM)
HER3-ADC-19 4472 HER3-ADC-21 225.9
HER3-ADC-20 4143    
表12本发明ADC对NCI-H358细胞的体外增殖抑制的IC50
ADC编号 IC50(nM) ADC编号 IC50(nM)
HER3-ADC-19 613.2 HER3-ADC-21 42.43
HER3-ADC-20 888.6    
结论:本发明针对HER3靶标的抗体药物偶联物对HER3阳性细胞SW620细胞、HCC1569细胞、A375细胞和NCI-H358细胞均具有明显的增殖抑制活性。
试验例9:本发明抗体药物偶联物对肿瘤细胞MDA-MB-453的CDX小 鼠模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人乳腺癌细胞MDA-MB-453(科佰)(5×106/200μL/只,具有50%的低生长因子人工基底膜)。接种细胞后,肿瘤生长10天,瘤体积长至130mm3左右后将动物随机分组(记为第0天,即D0),每组5只,共10组。采用尾静脉注射给药,多剂量给药5mg/kg、10mg/kg,一周2次,给药2周。每周测量2次肿瘤体积和体重,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GraphPad Prism 8.0.2.2.263软件。
肿瘤体积(V):
V=1/2*L长径*L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(PBS)及实验组的相对肿瘤体积。肿瘤生长曲线如图5所示,整体上本发明提供的HER3-ADC化合物对动物体内的肿瘤的抑制作用与给药剂量显示出正相关,本发明提供的HER3-ADC-24、HER3-ADC-25、HER3-ADC-26、HER3-ADC-27、HER3-ADC-19、HER3-ADC-20和HER3-ADC-21均可对小鼠体内的MDA-MB-453肿瘤产生非常显著的抑制作用。
试验例10:本发明抗体药物偶联物对肿瘤细胞SW620细胞CDX小鼠 模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人结直肠腺癌细胞SW620(5×106/200μL/只)。肿瘤生长8天,瘤体积长至130mm3左右后将动物随机分组(记为D0,即第0天),每组5只,共14组。采用尾静脉注射给药,多剂量给药3mg/kg、6mg/kg和12mg/kg,一周2次,给药2周。每周测量2次肿瘤体积和体重,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2*L长径*L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(PBS或vehicle)及实验组的相对肿瘤体积。本发明提供的HER3-ADC化合物对动物体内的肿瘤的抑制作用显示出与给药剂量的正相关,肿瘤生长曲线如图6所示,本发明提供的HER3-ADC-19、HER3-ADC-20和HER3-ADC-21均可对肿瘤产生非常显著抑制作用,而HER3-ADC-21在3mg/kg低剂量给药量时仍对肿瘤产生了明显的抑制效果。
试验例11流式细胞术检测抗体及ADC内吞
1、仪器和试剂
2、实验步骤
a.收获细胞:MAD-MB-453、HCC1569、SW620为贴壁细胞,使用胰酶消化使细胞从培养皿上脱落下来,将细胞悬液置于离心管底部。使用台盼蓝染色测定细胞存活率,并于4℃、300g离心5min沉淀细胞,加入FACS染色缓冲液洗涤细胞一次。再次离心细胞并使用合适体积的FACS染色缓冲液重悬细胞,使重悬后细胞浓度为2×106个细胞/ml。
b.制备用于染色的细胞:将细胞悬液以50μL/孔(1×105细胞/孔)铺于96孔U形底细胞板中,每个样品设置一组平行实验。
c.抗体结合细胞:将根据本发明实施例制备的HER3单克隆抗体(祼抗),或偶联有药物的ADC化合物作为一抗。使用FACS染色缓冲液稀释一抗至浓度为20μg/ml。取50μL一抗稀释液分别加入到96孔U形底细胞板中,轻柔混匀后冰浴60min。
d.洗涤未结合的抗体:加入200μL FACS染色缓冲液洗涤细胞,4℃、300g离心5min,弃上清,重复洗涤2次。
e.37℃孵育使结合抗体内化:每孔中加入30μL FACS重悬细胞,37℃孵育15min、30min、45min、60min,使结合于细胞表面的抗体内化。每个时间点,使用另一个在4℃孵育相同时间的未添加抗体的样品作为无内化的阴性对照。在各时间节点,将对应的37℃和4℃孵育的样品移至冰上,并加入170μL冰FACS,终止内化。4℃、300g离心5min沉淀细胞。
f.使用荧光标记的二抗(即Goat anti-Human IgG Fc Secondary Antibody)标记结合于细胞表面抗体:按0.5:100的比例加入二抗,100μL/孔。4℃避光孵育30min。
g.洗涤未结合的二抗:加入200μL FACS染色缓冲液洗涤细胞,移除未结合的抗体。4℃、300g离心5min沉淀细胞,弃上清。重复洗涤2次。将染色后细胞重悬于100μL冰PBS中。
h.流式细胞仪检测细胞表面的荧光强度:细胞洗涤完成后,尽快使用流式细胞仪分析。
i.细胞表面结合抗体的内化水平计算:通过37℃孵育样品相对于4℃孵育样品的平均荧光强度(MFI)降低水平得出,公式如下:
tx时间点的%MFI=37℃孵育样品的MFI×100/4℃孵育样品的MFI;
tx时间点的内化百分比=100-tx时间点的%MFI
根据计算内化百分比绘制内化百分比折线图。本发明提供的HER3-ADC化合物的内吞作用是ADC发挥药效的关键,本实验使用流式细胞仪检测裸抗与HER3-ADC化合物在细胞HCC1569、SW620、MDA-MB-453的内化水平。结果如图7所示,随着时间的延长,内化率逐渐升高;在60min时裸抗、本发明的HER3-ADC化合物在三种细胞的内化率都达到50%以上,并且偶联不影响抗体内吞。
试验例12 Biacore检测ADC化合物的亲和力
1、仪器和试剂
2、实验步骤
以本发明提供的HER3单克隆抗体(祼抗)以及偶联药物后的ADC化 合物为检测目标
a.捕获抗体:以10μl/min的流速捕获抗体60s。
b.分析:以30μl/min的流速结合抗原120s,紧接着以30μl/min的流速解离400s。
c.再生:以30μl/min的流速再生30秒。
d.处理结果:等待实验结束,打开分析软件处理结果。
使用生物传感器芯片Protein A,在7个不同浓度(0.625~40nM)下测定裸抗、HER3-ADC-19、HER3-ADC-20、HER3-ADC-21与人HER3-His抗原的结合能力。如表13所示,裸抗和HER3-ADC化合物的KD值均在纳摩尔范围内,并且它们之间没有显著差异。
表13 ADC与抗原的亲和力
试验例13本发明抗体药物偶联物对黑色素瘤细胞A375小鼠模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种黑色素瘤细胞A375(来源于ATCC,5×106/200μL/只,具有50%的低生长因子人工基底膜)。接种细胞后,肿瘤生长8天,瘤体积长至130mm3左右后将动物随机分组(记为D0,即第0天),每组5只,共4组。采用尾静脉注射给药,受试药物分别为HER3-ADC-21(5mg/kg)、阳性对照药U3-1402(5mg/kg)、HER3单克隆抗体(10mg/kg)以及空白对照组(PBS),一周2次,给药2周。每周测量2次肿瘤体积,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2L长径L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(Vehicle)及实验组的相对肿瘤体积。结果如图8所示。
根据图8的结果表明,本发明提供的HER3-ADC-21能够有效抑制荷瘤裸鼠中A375移植瘤的生长。且本发明提供的HER3-ADC-21在5mg/kg的给药剂量时对肿瘤的抑制效果优于阳性参照药U3-1402。
试验例14:本发明抗体药物偶联物对人非小细胞肺癌细胞NCI-H358 小鼠模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人非小细胞肺癌细胞NCI-H358(来源于ATCC,3×106个/200μL/只,具有50%的低生长因子人工基底膜)。接种细胞后,肿瘤生长5天,瘤体积长至130mm3左右后将动物随机分组(记为D0,即第0天),每组5只,共4组。采用尾静脉注射给药,受试药物分别为HER3-ADC-21(10mg/kg)、阳性对照药U3-1402(10mg/kg)、HER3单克隆抗体(10mg/kg)以及空白对照组(PBS),一周2次,给药2周。每周测量2次肿瘤体积,记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2L长径L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(Vehicle)及实验组的相对肿瘤体积。结果如图9所示。
根据图9的结果表明,本发明提供的HER3-ADC-21能够有效抑制荷瘤裸鼠中NCI-H358移植瘤的生长,并且与阳性参照药U3-1402有更好的肿瘤抑制水平。
试验例15血浆稳定性检测
1.仪器和试剂
表14仪器和试剂
2.实验步骤
a.用PBS将HER3-ADC-21、U3-1402(阳性药)稀释至1mg/ml,将以上ADC样品加入到小鼠、大鼠、猴子、人血浆中,获得终浓度为100μg/ml ADC血浆溶液。
b.将ADC药品进行分装,置于37℃培养箱中培养,分别在0h、24h(1day)、48h(2day)、96h(4day)、168h(7day)、336h(14day)取出样品,放在-80℃冻存,最后一支孵育完成,统一检测。
c.抗原包板:HER3抗原检测总抗体含量,小分子抗体(payload部分抗体)检测ADC含量。
d.将HER3-ADC-21和阳性参照药U3-1402做标曲,三个梯度:母液浓度分别为100ng/ml、40ng/ml、10ng/ml、每种抗体的血浆溶液作为一抗,每个样品稀释1000,3000,9000,27000倍。37℃孵育1h,PBST洗板3遍。
e.用Mouse Anti-Human IgG Fc Antibody[HRP]二抗,1:10000倍稀释,每孔100μL孵育1h,PBST洗板4遍。
f.加显色液显色5min,加终止液终止反应,450nm波长下读数。结果如图10所示。
根据图10所示的结果表明,药物HER3-ADC-21在4种血浆中具有较高的稳定性,且比阳性参照物U3-1402稳定。
试验例16大鼠PK实验
1.仪器和试剂
表15仪器和试剂
2.实验步骤
a,筛选动物体重在200g左右的大鼠8只纳入实验,按体重随机分为2组,每组4只。HER3-ADC化合物给药剂量为5mg/kg,给药体积为1ml/kg。给药方式采用单次尾静脉给药。
b,样品采集时间点:给药前(0h)和给药后5min、1h、4h、8h、24h、48h、96h(Day4)、168h(Day7)、336h(Day14)、504h(Day21)、672h(Day28);各给药组经颈静脉采集全血。采血体积:0.3mL/时间点,EDTA抗凝全血。全血采集完成后,置于湿冰上并于1h内完成离心取上清,离心速度4000rpm,离心时间10min。血浆样品采集完成后冻存于-80℃冰箱。
c,抗原包板:HER3抗原检测总抗体含量,小分子抗体检测ADC含量。
d,将ADC-21和U3-1402抗体做标曲,大鼠的血浆溶液作为一抗,每个样品稀释1000,3000,9000,27000倍。37℃孵育1h,PBST洗板3遍。
e,用Mouse Anti-Human IgG Fc Antibody[HRP]二抗,1:10000倍稀释,每孔100μL孵育1h,PBST洗板4遍。
f,加显色液显色5min,加终止液终止反应,450nm波长下读数。
g,大鼠血浆中掉落的payload(依喜替康衍生物)采用LC-MS进行检测。实验结果如图11-14所示。
根据图11-14所示的实验结果:在给药浓度为5mg/ml时,HER3-ADC-21与阳性参照药(U3-1402)的半衰期更长(HER3-ADC-21:U3-1402=91.378h:83.014h)。采用LC-MS检测HER3-ADC-21和U3-1402在血浆中的小分子含量表明,HER3-ADC-21在大鼠血浆中的小分子含量低于测下限(0.5ng/ml);阳性参照药U3-1402的小分子在大鼠体内有一定脱落。
试验例17 HER3-ADC药物旁观者效应
本实验通过将HCC1569细胞(HER3阳性细胞系)和Nalm6-GFP(HER3阴性细胞系)细胞共培养,检测HER3-ADC-21的旁观者杀伤能力。
1.仪器和试剂
表16仪器和试剂
2.实验步骤
1.铺药过程:
a.收集HCC1569细胞计数,细胞活率保证在91%以上。HCC1569细胞(HER3阳性细胞系)3×105个/孔铺于6孔板中孵育24h。另外铺一组只有HCC1569,做对照实验用。
b.培养24h后,收集Nalm6-GFP细胞(HER3阴性细胞系)计数,细胞活率保证在96%以上。Nalm6细胞1.5×10^5个/孔铺于6孔板中。另外铺一组只有Nalm6-GFP细胞,做对照实验用。
c.孵育24小时后,加入HER3-ADC-21化合物浓度5nM、10nM、40nM、80nM。
d.继续孵育5天,进行检测。
2.检测步骤:
a.收集细胞后,用PBS洗三遍。
b.100uL NIR染色液(1:1000稀释)避光染色15min,PBS洗一遍,进行流式检测。
c.流式激发光选择:APC-cy7,FITC。上样量70uL,上样速度为高速。
计算公式:杀伤率=(未铺药细胞活率*细胞阳性率-铺药细胞活率*细胞阳性率)/未铺药细胞活率*细胞阳性率,其中细胞阳性率指得是Nalm6细胞占共培养细胞(HCC1569细胞和Nalm6-GFP细胞)比例。结果如表17所示。
根据表17所示的结果表明,在单独培养时,HER3-ADC-21对Nalm6-GFP(HER3阴性细胞系)细胞无杀伤作用,对HCC1569(HER3阳性细胞系)细胞具有杀伤作用。HCC1569(HER3阳性细胞系)细胞和Nalm6-GFP(HER3阴性细胞系)细胞共培养后,HER3-ADC-21对Nalm6-GFP(HER3阴性细胞系)细胞产生杀伤作用。综上,HER3-ADC-21具有旁观者效应。
表17 HER3-ADC旁观者效应测试结果
试验例18:TROP-2-ADC药物旁观者效应
MDA-MB-468(人乳腺癌细胞,南京科佰,CBP60387,TROP-2阳性细胞)和Nalm6-GFP细胞(人B淋巴白血病细胞,购自Creative Biogene,CSC-RR0360,TROP-2阴性细胞)分别用DMEM/低葡萄糖+10%FBS和培养RPMI1640+10%FBS,细胞用胰酶消化,新鲜培养基中和,300g离心5分钟,弃上清,细胞用RPMI1640+10%FBS重悬。细胞计数后,按照MDA-MB-468:Nalm6-GFP=2:1的比例,MDA-MB-468细胞200000个/孔,Nalm6-GFP细胞100000个/孔铺于6孔板中。另外铺两组只有MDA-MB-468和Nalm6-GFP的细胞,做对照实验用。孵育24小时后,加入ADC化合物,药物浓度为5nM,10nM,20nM,40nM,80nM。继续孵育5天后,进行检测。检测时,收集细胞后,用PBS洗三遍。100uL NIR(Corning Incorporated Costor,3590)染色液(1:1000稀释)避光染色15min,PBS洗一遍,进行流式检测。
根据流式结果,计算杀伤率:
杀伤率=(未铺药细胞活率*细胞阳性率-铺药细胞活率*细胞阳性率)/未 铺药细胞活率*细胞阳性率;其中细胞阳性率指得是Nalm6-GFP细胞占共培养细胞(MDA-MB-468细胞和Nalm6-GFP细胞)比例。结果如表18和表19所示。
根据表18结果表明,本发明的TROP-2-ADC分子对于对TROP-2阳性细胞有明显杀伤作用,但对TROP-2阴性细胞无明显抑制作用。在TROP-2阳性细胞和TROP-2阴性细胞共同培养的细胞中,本申请的ADC分子能同时明显抑制TROP-2阳性和TROP-2阴性细胞,表现出明显的旁观杀伤作用。TROP-2-ADC药物也具有旁观者效应。表19结果表明,本发明的其他TROP-2-ADC分子也具有明显的旁观杀伤作用。
表18 TROP-2-ADC-21对MDA-MB-468细胞和Nalm6-GFP细胞分别单独培养和共培养时对细胞杀伤率
表19 TROP-2-ADC对MDA-MB-468细胞和Nalm6-GFP细胞共培养中对Nalm6-GFP细胞的杀伤率
ADC名称 80nM 40nM 20nM 10nM 5nM
TROP-2-ADC-3 56.71% 52.78% 36.59% 45.66% 31.56%
TROP-2-ADC-4 74.08% 59.29% 49.92% 45.44% 47.42%
TROP-2-ADC-19 75.06% 64.13% 61.27% 61.19% 49.02%
TROP-2-ADC-23 78.74% 76.22% 74.73% 71.85% 63.76%
试验例19:本发明抗体药物偶联物对肿瘤细胞SW620细胞CDX小鼠 模型体内药效评价
在BALB/c-Nude裸小鼠右肋部皮下接种人结直肠腺癌细胞SW620(5×106/200μL/只)。肿瘤生长8天,瘤体积长至130mm3左右后将动物随机分组(记为D0,即第0天),每组5只,共11组。采用尾静脉注射给药,单剂量给药10mg/kg,一周2次,给药2周。每周测量2次肿瘤体积和体重, 记录数据。数据统计使用Excel 2016统计软件:平均值以average计算;SD值以STDEV计算;SEM值以STDEV/SQRT计算。肿瘤生长曲线图制作使用GrapHPad Prism 8.0.2.2.263软件。
肿瘤体积(V):V=1/2*L长径*L短径 2
相对肿瘤体积(RTV):RTV=VT/V0
相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%
抑瘤率(%)=(CRTV-TRTV)/CRTV(%)
其中V0、VT分别为试验开始时及试验结束时的肿瘤体积。CRTV、TRTV分别为试验结束时的空白对照组(Vehicle)及实验组的相对肿瘤体积。结果如图15所示,本发明提供的HER3-ADC化合物对动物体内的肿瘤有显著的抑制作用。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (26)

  1. 一种配体-药物偶联物或其药学上可接受的盐,其中所述配体-药物偶联物包含式(-D0)所示的结构:
    其中,Y为-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m-C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(-D0)结构中的-NH-相连;优选,Y为-O-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、或其中Y的C(=O)-端与式(-D0)结构中的-NH-相连;
    Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;
    Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选,Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2
    p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数,且p1+p2≤8;
    所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选地,所述亚杂环基和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    所述Ar1每次出现时各自独立选自亚芳基或亚杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的亚芳基或5-10元的亚杂芳基;优选所述亚杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚芳基和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基和氰基亚烷基,优选,每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、和羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、和-OH;
    X每次出现时独立地为单键、-NH-、O或S;
    式(-D0)中的波浪线表示与接头单元、结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;优选式(-D0)中的波浪线表示通过接头单元与结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;和
    m每次出现时各自独立地为0、1、2、3或4的整数。
  2. 一种配体-药物偶联物或其药学上可接受的盐,其中所述配体-药物偶联物包含式(-D)所示的结构:
    其中,Y为-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m-C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(-D)结构中的-NH-相连;优选,Y为-O-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、或其中Y的C(=O)-端与式(-D)结构中的-NH-相连;
    Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;
    Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选,Rm每次出现时各自独立地为H、卤素、卤代亚烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2
    p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数,且p1+p2≤8;
    所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选,所述亚杂环基 和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代亚烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    所述Ar1每次出现时各自独立选自亚芳基或亚杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的亚芳基或5-10元的亚杂芳基;优选所述亚杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚芳基和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基和氰基亚烷基,优选,每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、和羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、和-OH;
    X每次出现时独立地为单键、-NH-、O或S;
    式(-D)中的波浪线表示与接头单元、结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;优选式(-D0)中的波浪线表示通过接头单元与结合靶细胞所表达抗原的抗体或其抗原结合片段、或多肽共价连接;和
    m每次出现时各自独立地为0、1、2、3或4的整数。
  3. 根据权利要求1或2所述的配体-药物偶联物或其药学上可接受的盐,其为通式(Pc-L-D0)或通式(Pc-L-D)所示的配体-药物偶联物或其药学上可接受的盐:
    其中,n为1至15的整数或者小数;优选地,n为1至13的整数或者小数;优选地,n为1至10的整数或者小数;更优选地,n为3至8的整数或者小数;
    Pc为配体;L为接头单元。
  4. 根据权利要求1-3中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中,Rc每次出现时各自独立地为NH、或O;Rd和Re每次出现时各自独立地为C(Rm)2或NRm;Rf每次出现时为CRm;当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、或3个杂原子,所述杂原子各自独立地选自N和O;和/或
    Rm每次出现时各自独立地为H、卤素、-OH、-CN、-NO2、-CF3、-C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、或-N(C1-6烷基)2,优选为H、卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、或-OC1-6烷基,优选为H、卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、或-OC1-3烷基,优选为-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、或-OCH3;和/或
    p1是0、1、2、或3的整数,p2是1、2、3、或4的整数,且2≤p1+p2≤4;和/或
    所述Cy每次出现时各自独立选自6-10元的亚芳基、或5-10元的亚杂芳基,优选选自亚苯基、或5-6元的亚杂芳基;优选,所述亚杂芳基含有1、2、或3个杂原子,所述杂原子独立地选自N、O和S;所述亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CH3、和-OCH3的取代基取代;
    Ar1每次出现时各自独立选自6-10元的亚芳基,优选选自亚苯基;所述亚芳基或亚苯基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基取代;和/或
    Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、卤素、C1-3烷基、卤代C1-3烷基、氘代C1-3烷基、-OC1-3烷基、-OH、-NH2、-CN、-CF3、-NO2、和C1-3亚烷基-OH;优选地,Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、和卤素;和/或
    X独立地选自单键、-NH-、或O;和/或
    m每次出现时各自独立地为0、1、2或3的整数。
  5. 根据权利要求1-4中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中Y选自: 其中,p1为0、1、2、或3的整数,p2为1、2、3或4的整数,且2≤p1+p2≤4;X独立地选自单键、-NH-或O,m为0、1、2或3的整数;
    或Y选自: 其中,R为-NH-、O或-O-(CH2)m-C(=O)-NH-,且-O-(CH2)m-C(=O)-NH-中的-NH-连接至Y中的亚苯基或亚联苯基;X独立地选自单键、-NH-或O,m为0、1、2或3的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,q为0、1、2、3或4的整数;优选地,X独立地选自单键或-NH-,m为0或1的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基,优选独立选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基,q为0、1或2的整数;
    或Y选自:其中,m为0、1、2或3的整数;优选地,m为1或2;和Y结构中的C(=O)-端与式(-D)或式(-D0)结构中的-NH-相连。
  6. 根据权利要求1-5中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中Y选自:
    其中,X独立地选自单键或-NH-,m为0或1的整数;
    R1选自卤素、-OH、-CN、-CF3、-NO2、-CH3、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,优选地,R1选自卤素、-OH、-CN、C1-3烷基、-OC1-3烷基的取代基,优选R1选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基;
    q为0、1、2、3或4的整数;优选地,q为0、1或2的整数;和
    Y结构中的C(=O)-端与式(-D)或式(-D0)结构中的-NH-相连。
  7. 根据权利要求3-6中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中接头单元-L-为-L1-L2-L3-L4-,
    L1选自-(琥珀酰亚胺-3-基-N)-W-C(=O)-,其中,W为C1-10亚烷基、C1-10亚烷基-亚环烷基、C1-10亚杂烷基、C1-10亚烷基-亚环杂烷基、或C1-10亚杂烷基-亚环烷基,优选W为C1-8亚烷基、C1-8亚烷基-亚环烷基或C1-8亚杂烷 基,所述杂烷基包含1至3个独立选自N、O或S的杂原子,其中所述的亚烷基、亚环烷基和亚杂烷基未被取代或各自独立地任选进一步被选自卤素、羟基、-CN、氨基、C烷基、卤代烷基、氘代烷基、烷氧基和环烷基的一个或多个取代基所取代,优选未被取代或各自独立地任选进一步被选自卤素、羟基、-CN、氨基、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、C1-6烷氧基和C5-8环烷基的一个或多个取代基所取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自Cl、Br、F、-OH、-CN、甲基、和-OCH3的取代基取代;
    L2选自-NR4(CH2CH2O)rCH2CH2C(=O)-、-NR4(CH2CH2O)rCH2C(=O)-、-NR4CH2-Ar2-(CH2CH2O)rCH2CH2NR4C(=O)CH2OCH2C(=O)-、-S(CH2)rC(=O)-或单键,其中r为1至20的整数,优选r为1、2、3、4、5、6、7、或8的整数;
    Ar2选自
    L3为由2至7个氨基酸构成的肽残基,优选L3为由2、3、4、5或6个氨基酸构成的肽残基,其中氨基酸未被取代或任选进一步被选自卤素、羟基、-CN、氨基、烷基、卤代烷基、氘代烷基、烷氧基和环烷基中的一个或多个取代基所取代,优选地,任选进一步被选自卤素、羟基、-CN、氨基、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、C1-6烷氧基和C5-8环烷基的一个或多个取代基所取代;
    L4选自-NR5(CR6R7)t-Z-(CR6R7)t-C(=O)-、-NR5-Ar3-(CR6R7)t-Z-C(=O)-或单键,其中t每次出现时各自独立地为0、1、2、3、4、5、或6的整数;Z每次出现时各自独立地为单键、O、S或-NH-;Ar3为亚芳基或亚杂芳基,优选选自6-8元的亚芳基或5-8元的亚杂芳基,所述亚杂芳基含有1、2或3个杂原子,所述的杂原子独立选自N、O和S;所述亚芳基或亚杂芳基未被取代或任选地被选自H、卤素、-OH、-CN、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    R4和R5相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基和-C1-6亚烷基-OH;
    R6和R7相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基和-C1-6亚烷基-OH;和
    L1端与所述配体相连,L4端与Y相连。
  8. 根据权利要求7所述的配体-药物偶联物或其药学上可接受的盐,其中L1选自-(琥珀酰亚胺-3-基-N)-(CH2)s-C(=O)-和-(琥珀酰亚胺-3-基-N)-CH2-环己基-C(=O)-,其中s为2、3、4、5、6、7、或8的整数。
  9. 根据权利要求7或8所述的配体-药物偶联物或其药学上可接受的盐,其中L2选自-NR4(CH2CH2O)rCH2CH2C(=O)-、和-NR4CH2-Ar2-(CH2CH2O)rCH2CH2NR4C(=O)CH2OCH2C(=O)-,其中r为1至20的整数,优选r为1、2、3、4、5、6、7、或8的整数,Ar2
  10. 根据权利要求7-9中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中L3为由2至7个选自丙氨酸、苯丙氨酸、甘氨酸、缬氨酸、赖氨酸、瓜氨酸、丝氨酸、谷氨酸、和天冬氨酸的氨基酸构成的肽残基;优选为选自丙氨酸、苯丙氨酸、甘氨酸、缬氨酸、赖氨酸、瓜氨酸、丝氨酸、谷氨酸、和天冬氨酸的氨基酸构成的二肽残基、三肽残基或四肽残基;更优选为缬氨酸-丙氨酸的二肽残基、丙氨酸-丙氨酸-丙氨酸的三肽残基或甘氨酸-甘氨酸-苯丙氨酸-甘氨酸的四肽残基。
  11. 根据权利要求7-10中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中L4为-NR5(CR6R7)t-Z-(CR6R7)t-C(=O)-或-NR5-Ar3-(CR6R7)t-Z-C(=O)-,t每次出现时各自独立地为1、2或3的整数;
    Z选自单键、O、S或-NH-;
    Ar3选自6-8元的亚芳基,优选亚苯基,所述亚芳基或亚苯基未被取代或任选地被选自H、卤素、-OH、-CN、和C1-6烷基的取代基取代;
    R5每次出现时各自独立地选自氢原子、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基;
    R6和R7相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基。
  12. 根据权利要求3-12中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中接头单元-L-为:

  13. 根据权利要求1-12中任一项所述的配体-药物偶联物或其药学上可接受的盐,其选自以下的结构式:





    其中,n为1至15的整数或者小数;优选地,n为1至13的整数或者小数;优选地,n为1至10的整数或者小数;更优选地,n为3至8的整数或者小数;Pc为配体。
  14. 根据权利要求3至13中任一项所述的配体-药物偶联物或其药学上可接受的盐,其中所述Pc为抗体或其抗原结合片段或者多肽,其中所述抗体选自嵌合抗体、人源化抗体和全人源抗体;
    优选地,所述的抗体或其抗原结合片段选自抗TROP-2抗体、抗HER2(ErbB2)抗体、抗EGFR抗体、抗B7-H3抗体、抗c-Met抗体、抗HER3(ErbB3)抗体、抗HER4(ErbB4)抗体、抗LIV-1抗体、抗ROR1抗体、抗CD20抗体、抗CD22抗体、抗CD30抗体、抗CD33抗体、抗CD44抗体、抗CD56抗体、抗CD70抗体、抗CD73抗体、抗CD105抗体、抗CEA抗体、抗A33抗体、抗Cripto抗体、抗EphA2抗体、抗G250抗体、抗MUCl抗体、抗Lewis Y抗体、抗VEGFR抗体、抗GPNMB抗体、抗Integrin抗体、抗PSMA抗体、抗Tenascin-C抗体、抗SLC44A4抗体、抗 Mesothelin抗体或其抗原结合片段;
    优选地,所述的抗体或其抗原结合片段为抗TROP-2抗体、抗HER2(ErbB2)抗体、抗HER3(ErbB3)抗体、抗LIV-1抗体、抗ROR1抗体或其抗原结合片段;
    优选地,所述的抗体或其抗原结合片段为抗TROP-2抗体或抗HER3(ErbB3)抗体或其抗原结合片段;
    优选地,所述抗TROP-2抗体或其抗原结合片段在重链中包含:由SEQ ID No:1的氨基酸序列构成的HCDR1、由SEQ ID No:2的氨基酸序列构成的HCDR2和由SEQ ID No:3的氨基酸序列构成的HCDR3,和/或,在轻链中包含:由SEQ ID No:4的氨基酸序列构成的LCDR1、由SEQ ID No:5的氨基酸序列构成的LCDR2和由SEQ ID No:6的氨基酸序列构成的LCDR3;更优选地,所述抗TROP-2抗体或其抗原结合片段在重链中包含SEQ ID No:7所示的重链可变区,和/或,在轻链中包含SEQ ID No:8所示的轻链可变区;更优选地,所述抗TROP-2抗体或其抗原结合片段包含氨基酸序列为SEQ ID NO:9的重链,和/或,氨基酸序列为SEQ ID NO:10的轻链;
    优选地,所述抗HER3抗体或其抗原结合片段在重链中包含由SEQ ID No:11的氨基酸序列构成的H’CDR1、由SEQ ID No:12的氨基酸序列构成的H’CDR2和由SEQ ID No:13的氨基酸序列构成的H’CDR3,和/或,在轻链中包含由SEQ ID No:14的氨基酸序列构成的L’CDR1、由SEQ ID No:15的氨基酸序列构成的L’CDR2和由SEQ ID No:16的氨基酸序列构成的L’CDR3;更优选地,所述抗HER3抗体或其抗原结合片段在重链中包含SEQ ID No:17所示的重链可变区,和/或在轻链中包含SEQ ID No:18所示的轻链可变区;更优选地,所述抗HER3抗体或其抗原结合片段包含氨基酸序列为SEQ ID NO:19的重链,和/或,氨基酸序列为SEQ ID NO:20的轻链;进一步优选地,所述的抗体或其抗原结合片段为Sacituzumab、曲妥珠单抗、patritumab或帕妥珠单抗。
  15. 一种通式(E0)所示的化合物或其药学上可接受的盐:
    其中,Y为-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m- C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(D0)结构中的-NH-相连;优选,Y为-O-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、或其中Y的C(=O)-端与式(E0)结构中的-NH-相连;
    Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;
    Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选地,Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2
    p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数,且p1+p2≤8;
    所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选,所述亚杂环基和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    所述Ar1每次出现时各自独立选自亚芳基或亚杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的亚芳基或5-10元的亚杂芳基;优选所述亚杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚芳基和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代 烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基和氰基亚烷基,优选,每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、-OH;
    X每次出现时独立地为单键、-NH-、O或S;和
    m每次出现时各自独立地为0、1、2、3或4的整数;
    优选地,所述式(E0)的化合物不为
  16. 一种通式(E)所示的化合物或其药学上可接受的盐:
    其中,Y为-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-Rc-(CRaRb)m-C(=O)-Rc-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、 其中Y的C(=O)-端与式(D)结构中的-NH-相连;优选,Y为-O-Ar1-(Cy)m- (CRaRb)m-X-C(=O)-、-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、-N((CRaRb)mCF3)-C(=O)-、-O-(CRaRb)m-C(=O)-NH-Ar1-(Cy)m-(CRaRb)m-X-C(=O)-、或其中Y的C(=O)-端与式(D)结构中的-NH-相连;
    Rc每次出现时各自独立地为NH、O、或S;Rd和Re每次出现时各自独立地为C(Rm)2、NRm、O或S;Rf每次出现时各自独立地为CRm或N;优选,当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、3或4个杂原子,所述杂原子各自独立地选自N、O、和S;
    Rm每次出现时各自独立地为H、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基或氰基亚烷基,优选地,Rm每次出现时各自独立地为H、卤素、卤代亚烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2
    p1是0-17的整数,p2是1-18的整数,且p1+p2≤18;优选,p1是0、1、2、3、4、5、6、或7的整数,p2是1、2、3、4、5、6、7或8的整数,且p1+p2≤8;
    所述Cy每次出现时各自独立选自亚环烷基、亚杂环基、亚芳基或亚杂芳基,优选所述Cy每次出现时各自独立选自3-10元的亚环烷基、3-10元的亚杂环基、6-10元的亚芳基、或5-10元的亚杂芳基;优选,所述亚杂环基和亚杂芳基含有1、2、3或4个杂原子,所述的杂原子独立地选自N、O和S;所述亚环烷基、亚杂环基、亚芳基、和亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    所述Ar1每次出现时各自独立选自芳基或杂芳基,优选,所述Ar1每次出现时各自独立选自6-10元的芳基或5-10元的杂芳基;优选所述杂芳基含有1、2、3、或4个杂原子,所述的杂原子独立地选自N、O和S;所述芳基和杂芳基未被取代或任选地被选自卤素、-OH、-CN、卤代烷基、-NO2、烷基、烷氧基、-NH2、-NH-烷基、和-N(烷基)2的取代基取代,优选,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代;
    Ra和Rb相同或不同,且每次出现时各自独立地选自氢原子、卤素、卤代烷基、-OH、-CN、-NO2、烷基、烷氧基、-NH2、-NH-烷基、或-N(烷基)2、氘原子、氘代烷基、氨基亚烷基、羟基亚烷基、硝基亚烷基和氰基亚烷基,优选地,每次出现时各自独立地选自氢原子、氘原子、卤素、烷基、卤代烷基、氘代烷基、烷氧基、-OH、-NH2、-CN、硝基、和羟基亚烷基,优选,各自独立地选自氢原子、氘原子、卤素、C1-6烷基、卤代C1-6烷基、 氘代C1-6烷基、-OC1-6烷基、-OH、-NH2、-CN、-CF3、硝基、-C1-6亚烷基、和-OH;
    X每次出现时独立地为单键、-NH-、O或S;和
    m每次出现时各自独立地为0、1、2、3或4的整数;
    优选地,所述式(E)的化合物不为
  17. 根据权利要求15或16所述的化合物或其药学上可接受的盐,其中,
    其中,Rc每次出现时各自独立地为NH、或O;Rd和Re每次出现时各自独立地为C(Rm)2或NRm;Rf每次出现时为CRm;当Rd、Re和Rf构成的所述环为杂环基时,所述杂环基含有1、2、或3个杂原子,所述杂原子各自独立地选自N和O;和/或
    Rm每次出现时各自独立地为H、卤素、-OH、-CN、-NO2、-CF3、-C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、或-N(C1-6烷基)2,优选为H、卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、或-OC1-6烷基,优选为H、卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、或-OC1-3烷基,优选为-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、或-OCH3;和/或
    p1是0、1、2、或3的整数,p2是1、2、3、或4的整数,且2≤p1+p2 ≤4;和/或
    所述Cy每次出现时各自独立选自6-10元的亚芳基、或5-10元的亚杂芳基,优选选自亚苯基、或5-6元的亚杂芳基;优选,所述亚杂芳基含有1、2、或3个杂原子,所述杂原子独立地选自N、O和S;所述亚杂芳基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CH3、和-OCH3的取代基取代;
    Ar1每次出现时各自独立选自6-10元的亚芳基,优选选自亚苯基;所述亚芳基或亚苯基未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、和-OC1-6烷基的取代基取代,优选地,未被取代或任选地被选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基取代,优选地,未被取代或任选地被选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、-CH3、和-OCH3的取代基取代;和/或
    Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、卤素、C1-3烷基、卤代C1-3烷基、氘代C1-3烷基、-OC1-3烷基、-OH、-NH2、-CN、-CF3、-NO2、和C1-3亚烷基-OH;优选地,Ra和Rb相同或不同,且各自独立地选自氢原子、氘原子、和卤素;和/或
    X独立地选自单键、-NH-、或O;和/或
    m每次出现时各自独立地为0、1、2或3的整数。
  18. 根据权利要求15-17中任一项所述的化合物或其药学上可接受的盐,其中Y选自: 其中,p1为0、1、2、或3的整数,p2为1、2、或4的整数,且2≤p1+p2≤4;X独立地选自单键、-NH-或O,m为0、1、2或3的整数;
    或Y选自: 其中,R为-NH-、O或-O-(CH2)m-C(=O)-NH-,且-O-(CH2)m-C(=O)-NH-中的-NH-连接至Y中的苯基或联苯基;X独立地选自单键、-NH-或O,m为0、1、2或3的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,q为0、1、2、3或4的整数;优选地,X独立地选自单键或-NH-,m为0或1的整数,R1每次出现时各自独立选自卤素、-OH、-CN、-CF3、-NO2、C1-3烷基、和-OC1-3烷基的取代基,优选独立选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、甲基、和-OCH3的取代基,q为0、1或2的整数;
    或Y选自:其中,m为0、1、2或3的整数;优选地,m为1或2;和Y结构中的C(=O)-端与式(-E)或式(-E0)结构中的-NH-相连。
  19. 根据权利要求15-18中任一项所述的化合物或其药学上可接受的盐,其中Y选自:

    其中,X独立地选自单键或-NH-,m为0或1的整数;
    R1选自卤素、-OH、-CN、-CF3、-NO2、C1-6烷基、-OC1-6烷基、-NH2、-NH(C1-6烷基)、和-N(C1-6烷基)2的取代基,优选地,R1选自卤素、-OH、-CN、C1-3烷基、-OC1-3烷基的取代基,优选R1选自-Cl、-Br、-F、-OH、-CN、-CF3、-NO2、甲基、和-OCH3的取代基;
    q为0、1、2、3或4的整数;优选地,q为0、1或2的整数;和
    Y结构中的C(=O)-端与式(E)或式(E0)结构中的-NH-相连。
  20. 根据权利要求15-19中任一项所述的化合物或其药学上可接受的盐,所述化合物选自:



  21. 具有下式(I)所示结构的化合物:
    L1-L2-L3-L4(I)
    L1选自马来酰亚胺-N-(CH2)s-C(=O)-、马来酰亚胺-N-CH2-环己基-C(=O)-,其中s为2至8的整数;
    L2选自-NR4(CH2CH2O)rCH2CH2C(=O)-和-NR4CH2-Ar2-(CH2CH2O)rCH2CH2NR4C(=O)CH2OCH2C(=O)-,其中r为1至20的整数,Ar2
    L3为缬氨酸-丙氨酸的二肽残基、丙氨酸-丙氨酸-丙氨酸的三肽残基或甘氨酸-甘氨酸-苯丙氨酸-甘氨酸的四肽残基;
    L4选自-NR5(CR6R7)t-Z-(CR6R7)t-COOH或-NR5-Ar3-(CR6R7)t-OH,其中t为1至3的整数;
    Z选自单键、O、S或-NH-;
    Ar3选自苯基,所述苯基未被取代或任选地被选自H、卤素、-OH、-CN、-CF3、-NO2、C1-6烷基的取代基取代;
    R4和R5相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基;和
    R6和R7相同或不同,且每次出现时各自独立地选自氢原子、卤素、C1-3烷基、卤代C1-3烷基和氘代C1-3烷基
  22. 如权利要求21所述的式(I)化合物,所述化合物选自:

  23. 一种药物组合物,其含有治疗有效量的根据权利要求1至14中任意一项所述的配体-药物偶联物或其药学上可接受的盐,或根据权利要求15至20中任意一项所述的化合物或其药学上可接受的盐,以及药学上可接受的载体。
  24. 权利要求1至14中任一项所述的配体-药物偶联物或其药学上可接受的盐,或权利要求15至20中任意一项所述的化合物或其可药用盐,或权利要求23所述的药物组合物在制备用于治疗或预防肿瘤的药物中的用途;
    优选地,其中所述的肿瘤为与TROP-2表达相关的癌症,或所述的肿瘤为与HER3表达相关的癌症;
    优选地,所述HER3表达相关的癌症选自非小细胞肺癌、黑色素瘤、乳腺癌和结直肠腺癌;
    优选地,所述TROP-2表达相关的癌症选自乳腺癌、三阴性乳腺癌、胃癌和胰腺癌。
  25. 一种预防或治疗肿瘤的方法,包括对有需要的受试者给予有效量的权利要求1至14中任一项所述的配体-药物偶联物或其药学上可接受的盐,或权利要求15至20中任意一项所述的化合物或其可药用盐,或权利要求23所述的药物组合物;
    优选地,其中所述的肿瘤为与TROP-2表达相关的癌症,或所述的肿瘤为与HER3表达相关的癌症;
    优选地,所述HER3表达相关的癌症选自非小细胞肺癌、黑色素瘤、乳腺癌和结直肠腺癌;
    优选地,所述TROP-2表达相关的癌症选自乳腺癌、三阴性乳腺癌、胃癌和胰腺癌。
  26. 权利要求1至13中任一项所述的配体-药物偶联物或其药学上可接受的盐,或权利要求15至20中任意一项所述化合物或其可药用盐,或权利要求23所述的药物组合物,其用于预防或治疗肿瘤;
    优选地,其中所述的肿瘤为与TROP-2表达相关的癌症,或所述的肿瘤为与HER3表达相关的癌症。
PCT/CN2023/073014 2022-01-18 2023-01-18 一种依喜替康衍生物-抗体偶联物及其医药用途 WO2023138635A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/730,116 US20250161473A1 (en) 2022-01-18 2023-01-18 Exatecan derivative-antibody conjugate and medical use thereof
EP23742950.1A EP4494657A1 (en) 2022-01-18 2023-01-18 Exatecan derivative-antibody conjugate and medical use thereof
CN202380017818.1A CN118829450A (zh) 2022-01-18 2023-01-18 一种依喜替康衍生物-抗体偶联物及其医药用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210062910 2022-01-18
CN202210062910.7 2022-01-18
CN202211318840 2022-10-26
CN202211318840.3 2022-10-26

Publications (1)

Publication Number Publication Date
WO2023138635A1 true WO2023138635A1 (zh) 2023-07-27

Family

ID=87347901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073014 WO2023138635A1 (zh) 2022-01-18 2023-01-18 一种依喜替康衍生物-抗体偶联物及其医药用途

Country Status (4)

Country Link
US (1) US20250161473A1 (zh)
EP (1) EP4494657A1 (zh)
CN (1) CN118829450A (zh)
WO (1) WO2023138635A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022165A1 (zh) * 2022-07-29 2024-02-01 杭州爱科瑞思生物医药有限公司 依沙替康衍生物及其应用
WO2024098066A1 (en) * 2022-11-04 2024-05-10 ALX Oncology Inc. Exatecan derivatives and antibody-drug conjugates thereof
WO2024125627A1 (zh) * 2022-12-16 2024-06-20 上海齐鲁制药研究中心有限公司 喜树碱类化合物及其制备方法和用途
WO2024199462A1 (zh) * 2023-03-30 2024-10-03 上海齐鲁制药研究中心有限公司 依喜替康衍生物及其抗体药物偶联物
WO2024211235A1 (en) * 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211234A1 (en) * 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211236A3 (en) * 2023-04-05 2024-11-07 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024245382A1 (zh) * 2023-05-31 2024-12-05 甘李药业股份有限公司 依喜替康衍生物、及其配体-药物偶联物、抗体偶联物及用途
WO2025067446A1 (zh) * 2023-09-28 2025-04-03 信达生物制药(苏州)有限公司 靶向trop2的抗体-药物偶联物及其制备方法与应用
WO2025087233A1 (zh) * 2023-10-23 2025-05-01 上海齐鲁制药研究中心有限公司 喜树碱类药物偶联物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910573A1 (en) * 2012-10-19 2015-08-26 Daiichi Sankyo Company, Limited Antibody-drug conjugate produced by binding through linker having hydrophilic structure
CN106163559A (zh) 2014-04-10 2016-11-23 第三共株式会社 抗her3抗体‑药物偶联物
EP3130608A1 (en) * 2014-04-10 2017-02-15 Daiichi Sankyo Co., Ltd. (anti-her2 antibody)-drug conjugate
CN109081871A (zh) * 2012-10-11 2018-12-25 第三共株式会社 抗体-药物偶联物
CN112533958A (zh) * 2018-07-27 2021-03-19 第一三共株式会社 识别抗体-药物缀合物的药物部分的蛋白
WO2022011075A1 (en) * 2020-07-10 2022-01-13 VelosBio Inc. Novel ror1 antibody immunoconjugates
CN113939318A (zh) * 2019-05-29 2022-01-14 第一三共株式会社 抗体-药物缀合物的制剂
WO2022068878A1 (zh) * 2020-09-30 2022-04-07 映恩生物制药(苏州)有限公司 一种抗肿瘤化合物及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081871A (zh) * 2012-10-11 2018-12-25 第三共株式会社 抗体-药物偶联物
EP2910573A1 (en) * 2012-10-19 2015-08-26 Daiichi Sankyo Company, Limited Antibody-drug conjugate produced by binding through linker having hydrophilic structure
CN106163559A (zh) 2014-04-10 2016-11-23 第三共株式会社 抗her3抗体‑药物偶联物
EP3130608A1 (en) * 2014-04-10 2017-02-15 Daiichi Sankyo Co., Ltd. (anti-her2 antibody)-drug conjugate
CN112533958A (zh) * 2018-07-27 2021-03-19 第一三共株式会社 识别抗体-药物缀合物的药物部分的蛋白
CN113939318A (zh) * 2019-05-29 2022-01-14 第一三共株式会社 抗体-药物缀合物的制剂
WO2022011075A1 (en) * 2020-07-10 2022-01-13 VelosBio Inc. Novel ror1 antibody immunoconjugates
WO2022068878A1 (zh) * 2020-09-30 2022-04-07 映恩生物制药(苏州)有限公司 一种抗肿瘤化合物及其制备方法和应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
ALFTHAN ET AL., PROTEIN ENG., vol. 8, 1995, pages 725 - 731
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
CHOI, EUR. J. IMMUNO, vol. 31, 2001, pages 94 - 106
H. BUNDGAARD: "Design of Prodrugs", 1985, ELSEVIER
HOLLIGER ET AL., PROC. NATL. ACAD. SCI, vol. 90, 1993, pages 6444 - 6448
HU ET AL., CANCER RES., vol. 56, 1996, pages 3055 - 3061
HUSTON ET AL., PROC. NATL. ACAD. SCI USA, vol. 85, 1988, pages 5879 - 5883
J. BIOL. CHEM, vol. 243, 1968, pages 3558
KABAT E.A ET AL.: "Sequences of proteins of immunological interest.", 1991, NIH PUBLICATION, pages: 91 - 3242
KIPRIYANOV ET AL., J. MOL. BIOL., vol. 293, 1999, pages 41 - 56
ROOVERS, CANCER IMMUNOL, 2001
WARD, NATURE, vol. 341, 1989, pages 544 - 546

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022165A1 (zh) * 2022-07-29 2024-02-01 杭州爱科瑞思生物医药有限公司 依沙替康衍生物及其应用
WO2024098066A1 (en) * 2022-11-04 2024-05-10 ALX Oncology Inc. Exatecan derivatives and antibody-drug conjugates thereof
WO2024125627A1 (zh) * 2022-12-16 2024-06-20 上海齐鲁制药研究中心有限公司 喜树碱类化合物及其制备方法和用途
WO2024199462A1 (zh) * 2023-03-30 2024-10-03 上海齐鲁制药研究中心有限公司 依喜替康衍生物及其抗体药物偶联物
WO2024211235A1 (en) * 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211234A1 (en) * 2023-04-05 2024-10-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024211236A3 (en) * 2023-04-05 2024-11-07 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2024245382A1 (zh) * 2023-05-31 2024-12-05 甘李药业股份有限公司 依喜替康衍生物、及其配体-药物偶联物、抗体偶联物及用途
WO2025067446A1 (zh) * 2023-09-28 2025-04-03 信达生物制药(苏州)有限公司 靶向trop2的抗体-药物偶联物及其制备方法与应用
WO2025087233A1 (zh) * 2023-10-23 2025-05-01 上海齐鲁制药研究中心有限公司 喜树碱类药物偶联物及其制备方法和应用

Also Published As

Publication number Publication date
EP4494657A1 (en) 2025-01-22
US20250161473A1 (en) 2025-05-22
CN118829450A (zh) 2024-10-22

Similar Documents

Publication Publication Date Title
WO2023138635A1 (zh) 一种依喜替康衍生物-抗体偶联物及其医药用途
CN115925796B (zh) 一种抗肿瘤化合物及其制备方法和应用
EP4349372A1 (en) Antibody drug conjugate, and preparation method therefor and use thereof
CN114456186B (zh) 一种喜树碱类衍生物及其配体-药物偶联物
EP4094779A1 (en) Drug conjugate of eribulin derivative, preparation method therefor and application thereof in medicine
WO2021052402A1 (zh) 一种喜树碱衍生物及其偶联物
TWI654998B (zh) 雙官能性胞毒劑
WO2020063676A1 (zh) 依喜替康类似物的配体-药物偶联物及其制备方法和应用
BR112021004829A2 (pt) conjugado de anticorpo anti-b7h3-análogo de exatecano e uso medicinal do mesmo
JP2023527257A (ja) 抗c-Met抗体薬物複合体
JP2018123122A (ja) カリケアマイシン誘導体およびその抗体薬物コンジュゲート
EP4494659A1 (en) Anti-gpc3 antibody drug conjugate and use thereof
WO2025040047A1 (zh) 抗体偶联药物、其制备方法及应用
CN117430660B (zh) 奥瑞他汀f类似物及其抗体药物偶联物与应用
WO2024230752A1 (zh) 喜树碱衍生物、接头、配体-药物偶联物及其医药用途
TW202508638A (zh) 連結子化合物及配體-藥物接合物、其製備方法及用途
TW202430224A (zh) 抗b7h3和pd-l1的雙特異性抗體藥物偶聯物及其製備方法和用途
WO2024235135A1 (zh) 大环化合物及其制备方法和用途
WO2025045015A1 (zh) 抗体-药物缀合物及其制备方法和用途
WO2024199111A1 (zh) 靶向adam9的人源化抗体、其抗体药物偶联物及其应用
WO2025130990A1 (zh) 肿瘤微环境激活的药物偶联物及抗体药物偶联物
CN119053607A (zh) 喜树碱类化合物及其偶联物、其制备方法和用途
CA3208141A1 (en) Anti-egfr antibody-drug conjugates
TW202408590A (zh) 抗體藥物偶聯物及其製備方法和用途
WO2024235131A1 (zh) 大环类药物偶联物及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380017818.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023742950

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023742950

Country of ref document: EP

Effective date: 20240819

WWP Wipo information: published in national office

Ref document number: 18730116

Country of ref document: US