WO2023138489A1 - 静电卡盘装置和温度控制方法 - Google Patents

静电卡盘装置和温度控制方法 Download PDF

Info

Publication number
WO2023138489A1
WO2023138489A1 PCT/CN2023/072018 CN2023072018W WO2023138489A1 WO 2023138489 A1 WO2023138489 A1 WO 2023138489A1 CN 2023072018 W CN2023072018 W CN 2023072018W WO 2023138489 A1 WO2023138489 A1 WO 2023138489A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
heaters
wafer
electrostatic chuck
heater
Prior art date
Application number
PCT/CN2023/072018
Other languages
English (en)
French (fr)
Inventor
刘建
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023138489A1 publication Critical patent/WO2023138489A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Definitions

  • the application belongs to the technical field of semiconductor processing, and in particular relates to an electrostatic chuck device and a temperature control method.
  • heaters such as electrostatic chucks are usually used to heat wafers and other processed workpieces, and the overall temperature of the processed workpiece is increased.
  • the present application discloses an electrostatic chuck device and a temperature control method, which can solve the problem of poor process uniformity of the workpiece due to possible temperature deviations at different positions on the workpiece.
  • an embodiment of the present application provides an electrostatic chuck device for use in semiconductor equipment.
  • the electrostatic chuck device includes a device base, a heating layer, and an insulating adsorption layer for carrying a wafer arranged in sequence from bottom to top.
  • the insulating adsorption layer is provided with an adsorption electrode, and the adsorption electrode is used to adsorb the wafer;
  • the heating layer is provided with at least two main heaters, and the main heater is used to heat the wafer carried by the insulating adsorption layer.
  • the insulating adsorption layer is provided with an adsorption electrode, and the adsorption electrode is used to adsorb the wafer;
  • a plurality of compensation heaters are also arranged in the insulating adsorption layer, and the plurality of compensation heaters are all connected with the adsorption electrodes.
  • the poles are insulated, and the multiple compensation heaters are electrically connected to the controller, and the controller is used to control the opening or closing of each compensation heater, and control the power of each compensation heater.
  • the embodiment of the present application discloses a temperature control method, the temperature control method is applied to the above-mentioned electrostatic chuck device, and the electrostatic chuck device is used to carry and heat a wafer, and the temperature control method includes:
  • the target compensation heaters are the remaining compensation heaters among the plurality of compensation heaters except for the compensation heaters corresponding to the extremum positions of a plurality of original process results when performing each of the process steps, and the original process results are process results at positions corresponding to the plurality of compensation heaters on the wafer where each process step is performed while the at least two main heaters in the heating layer are kept turned on and each of the compensation heaters is kept turned off.
  • the extreme value is the maximum value
  • the extreme value is the minimum value
  • the embodiment of the present application discloses an electrostatic chuck device, which can be applied in semiconductor equipment.
  • the insulating adsorption layer is stacked on the heating layer, and the heating layer is stacked on the device substrate.
  • At least two main heaters in the heating layer can heat the wafer carried on the insulating adsorption layer, and the adsorption electrodes in the insulating adsorption layer can absorb the electrodes, thereby ensuring that the wafer can be stably supported on the insulating adsorption layer.
  • the electrostatic chuck device is provided with a controller, and multiple compensation heaters are provided in the insulating adsorption layer, and the multiple compensation heaters are electrically connected to the controller, and the controller can control the opening or closing of each compensation heater, and control the power of each compensation heater.
  • the temperature of the corresponding position on the wafer can be obtained indirectly through multiple process results, so that if only relying on
  • the controller to control at least one corresponding compensation heater in the electrostatic chuck device to turn on, and control the power of the compensation heater in the turned-on state, so that the turned-on compensation heater can heat the corresponding position on the wafer, so that the temperature at this position rises to the same as the highest temperature value on the wafer (i.e.
  • the maximum or minimum value of the process result on the wafer ensuring that the wafer The process uniformity is relatively high.
  • the power of the compensation heater is relatively small compared with the power of the main heater, the heat of the compensation heater can be transferred to the area corresponding to the wafer and the compensation heater faster and more accurately by positioning the compensation heater on the insulating adsorption layer with a smaller distance from the wafer, thereby providing heat compensation for the corresponding position of the wafer, and the response speed is faster.
  • Fig. 1 is a schematic structural diagram of an electrostatic chuck device disclosed in an embodiment of the present application
  • Fig. 2 is a schematic structural view of the insulating adsorption part in the electrostatic chuck device disclosed in the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the distribution of multiple compensation heating parts in the electrostatic chuck device disclosed in the embodiment of the present application;
  • Fig. 4 is a schematic structural view of the adsorption electrode in the electrostatic chuck device disclosed in the embodiment of the present application;
  • Fig. 5 is a schematic diagram of the electrical principle of the electrostatic chuck device disclosed in the embodiment of the present application.
  • Fig. 6 is a schematic diagram of the electrical principle of a part of the structure of the electrostatic chuck device disclosed in the embodiment of the present application;
  • Fig. 7 is a flow chart of the temperature control method disclosed in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the position distribution of multiple measured temperature points on the wafer in the temperature control method disclosed in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relative positions between multiple measured temperature points on the wafer and a compensation heater in the temperature control method disclosed in the embodiment of the present application;
  • FIG. 10 is a schematic diagram of the temperature comparison of multiple measured temperature points on the wafer when the compensation heater is turned on and off in the temperature control method disclosed in the embodiment of the present application.
  • the embodiment of the present application discloses an electrostatic chuck device, which can be applied in semiconductor equipment, to use the electrostatic chuck device to carry workpieces such as wafers, and change the temperature of workpieces such as wafers to improve process efficiency and the excellence of process results.
  • the electrostatic chuck device includes a device base 400 , a heating layer 300 and an insulating adsorption layer 500 , and the device base 400 , the heating layer 300 and the insulating adsorption layer 500 are sequentially arranged from bottom to top.
  • the aforesaid up-down direction is the orientation of the vertical direction of the electrostatic chuck device during normal working process, and more intuitively, it may be the direction A in FIG. 1 .
  • the insulating adsorption layer 500 is used to carry the wafer; the heating layer 300 is provided with at least two main heaters, and the main heater can heat the wafer carried by the insulating adsorption layer 500 to increase the temperature of the wafer and improve the process efficiency and effect of the wafer.
  • the main heater may include heating devices such as resistance wires, so as to ensure that the main heater has heating capability.
  • the number of main heaters can be two, three or more, and the number of main heaters can be determined according to parameters such as the size and shape of each main heater, which is not limited here.
  • the shape of multiple main heaters may be fan-shaped, and together form a complete heating area of the heating layer 300 .
  • one of the main heaters is a circular structure, and the rest are It is a ring-shaped structural member, and multiple main heaters are sleeved and assembled to form the heating area of the heating layer 300.
  • the distribution of the main heaters can control the size of the heating area according to the diameter and other dimensions of the wafer and other workpieces, and the control accuracy is relatively high.
  • the heating layer 300 may also include a structure for fixing the main heater, which may specifically be a molding material such as quartz or ceramics. Multiple main heaters may be embedded in molding materials such as quartz or ceramics to form a structurally stable heating layer 300 .
  • the insulating adsorption layer 500 is provided with an adsorption electrode, which can adsorb the wafer, so that the wafer can be stably carried and fixed on the electrostatic chuck device.
  • the adsorption electrode can be formed by printing, and its specific shape and structure can be determined according to the actual situation. As shown in Figure 4, the adsorption electrode is divided into two regions, DC+ and DC-.
  • the insulating layer can also be formed by forming the adsorption electrode in molding materials such as quartz or ceramics.
  • the purpose of fixing the adsorption electrode can be achieved, and on the other hand, the insulating adsorption layer 500 can be provided with insulation capabilities, which will not adversely affect the normal operation of the compensation heater 100 set in the adsorption insulation layer mentioned below.
  • the electrostatic chuck device disclosed in the embodiment of the present application also includes a controller, and the insulating adsorption layer 500 is also provided with a plurality of compensation heaters 100, and each compensation heater 100 can also heat the insulating adsorption layer 500 when it is working, so that the temperature of the area where each compensation heater 100 is located is compensated, and the temperature of the area where each compensation heater 100 is located is raised.
  • the plurality of compensation heaters 100 are all insulated from the adsorption electrodes.
  • each compensation heater 100 may include a heating device such as a resistance wire, of course, its specific shape and size and other parameters may be determined according to actual needs, and are not limited here.
  • the number of compensation heaters 100 can be determined according to actual parameters such as the size and shape of the compensation heaters 100 and the size and shape of the insulating adsorption layer 500 , which is not limited here. More specifically, the heating power of each compensation heater 100 can be substantially the same, so as to reduce the difficulty of controlling multiple compensation heaters 100 and improve the temperature control accuracy of the electrostatic chuck device.
  • the compensation heater 100 can also be formed in molding materials such as quartz or ceramics in the insulating adsorption layer 500, and by making the compensation heater 100 and the adsorption electrode in the insulating adsorption layer 500 The attachment layers 500 are spaced apart from each other in the thickness direction to ensure that each compensation heater 100 can be insulated from the adsorption electrodes.
  • a specific embodiment is that along the thickness direction of the insulating adsorption layer 500, the positions of the plurality of compensation heaters 100 in the insulating adsorption layer 500 can be the same, and the plurality of compensation heaters 100 can be evenly distributed, so that each compensation heater 100 can correspond to different regions in the insulating adsorption layer 500, and the regions corresponding to the plurality of compensation heaters 100 can jointly form the entire surface of the insulating adsorption layer 500.
  • the compensation heaters 100 can be distributed in an annular structure as a whole, and the compensation heaters 100 in any annular structure are distributed along the circumferential direction.
  • the structure and size of the compensation heaters 100 included in each annular structure can be determined according to actual conditions, and are not limited here.
  • the size of the compensation heaters 100 can be made relatively small, and the distribution of the compensation heaters 100 can be made as uniform as possible during the process of laying out the compensation heaters 100, which can improve the ability of the compensation heaters 100 to perform temperature compensation on the electrostatic chuck device to be relatively strong and comprehensive.
  • the electrostatic chuck device disclosed in the embodiment of the present application includes a controller. Based on this, a plurality of compensation heaters 100 can be electrically connected to the controller, so that the controller can be used to control the opening or closing of each compensation heater 100, and control the power of each compensation heater 100.
  • corresponding control rules can be set for the controller in advance, and the controller can control the compensation heater 100 corresponding to the upcoming process step based on the pre-input control rule according to the specific situation of the process step to be performed.
  • the heating condition of the electrostatic chuck device can be tested in advance. During the test, only all the main heaters in the heating layer 300 can be turned on, and the plurality of compensation heaters 100 can be controlled to be in the off state, and then the temperature at a plurality of measured positions on the electrostatic chuck device can be measured, and the plurality of measured positions correspond to the positions of the plurality of compensation heaters 100 one by one, thereby obtaining a plurality of basic data.
  • the parameters such as the etched rate directly related to the temperature are used to characterize the specific conditions of the temperature at the position on the wafer, that is, the above basic data may specifically be the etched rate.
  • parameters such as the etching rate may be directly proportional to the temperature, or may be inversely proportional.
  • the etching rate of the wafer as an example that is directly proportional to the temperature.
  • the multiple measured positions can be specifically the structural centers of the compensation heaters 100, and of course, the measured positions can also be the edges of the compensation heaters 100, as long as the respective measured positions on the multiple compensation heaters 100 correspond to each other.
  • the size of the above-mentioned multiple basic data may be different. Based on this, the compensation heater 100 corresponding to the basic data can be turned on, and the compensation heater 100 can be used to heat the position where the compensation heater 100 is located, so that the temperature of the area where the compensation heater 100 is located can be increased. The difference is zero.
  • the controller can control the opening or closing of each compensation heater 100, that is, the compensation heater 100 corresponding to the highest etching rate on the wafer is in the off state, and the compensation heaters 100 corresponding to other positions on the wafer whose etching rate is lower than the aforementioned highest one are in the on state, and these compensation heaters 100 in the on state are used to perform temperature compensation on their respective positions, so that the temperature on the wafer corresponding to a plurality of compensation heaters 100 in the on state is increased, thereby increasing its etch rate. .
  • the compensation heater 100 corresponding to a position with a relatively low etching rate on the wafer can increase the etching rate at the aforementioned position when it is turned on
  • the compensation heater 100 in the turned-on state may increase the temperature at the position to exceed the temperature at the position with the highest temperature on the wafer, thereby causing the etching rate at this position to become a new position with the highest etching rate, which may cause an increased difference in the etching rate at different positions on the wafer.
  • the controller can also control a plurality of compensation heaters 100 to work with different powers, so that in the open state
  • the compensation heater 100 can compensate the temperature at each corresponding area to a state close to or even the same as the highest temperature on the wafer, so as to ensure that the etching rate consistency at different positions on the wafer is relatively high.
  • the turn-on power of the plurality of compensation heaters 100 can also be obtained through pre-testing. Specifically, according to the specific process to be carried out, the compensation heater 100 corresponding to the region whose etching rate is less than the maximum value on the wafer can be turned on at different powers, and the power value closest to the maximum value in the etching rate can be recorded, so that in the mass production process, as long as the aforementioned process is performed, the controller can be used to control the compensation heater 100 to be turned on at the power value obtained from the aforementioned test, so that the temperature and etching rate of the region corresponding to the compensation heater 100 on the wafer can be compared with the temperature and the etching rate on the wafer.
  • the maximum value of the etching rate corresponds to ensure that the wafer has a high process uniformity.
  • the embodiment of the present application discloses an electrostatic chuck device, which can be applied in semiconductor equipment.
  • the insulating adsorption layer 500 is stacked on the heating layer 300, and the heating layer 300 is stacked on the device base 400.
  • At least two main heaters in the heating layer 300 can heat the wafer carried on the insulating adsorption layer 500, and the adsorption electrodes in the insulating adsorption layer 500 can absorb the electrodes, thereby ensuring that the wafer can be stably supported on the electrostatic chuck device.
  • the electrostatic chuck device is provided with a controller, and the insulating adsorption layer 500 is also provided with a plurality of compensation heaters 100, and the plurality of compensation heaters 100 are electrically connected to the controller, and the controller can control the opening or closing of each compensation heater 100, and control the power of each compensation heater 100. Then, by detecting process results such as etching rates at different positions on the wafer, the temperature conditions at corresponding positions on the wafer can be obtained indirectly through multiple process results.
  • the controller can be used to control at least one corresponding compensation heater 100 in the electrostatic chuck device to turn on, and control the compensation heater 1 that is in the on state. 00 operating power, so that the opened compensation heater 100 can control the corresponding position on the wafer Heating is performed at this position, so that the temperature at this position is raised to be the same as the highest temperature value on the wafer (ie, the maximum or minimum value of the process result on the wafer), so as to ensure that the process uniformity of the wafer is relatively high.
  • the power of the compensation heater 100 is relatively smaller than that of the main heater, by positioning the compensation heater 100 at the insulating adsorption layer 500 with a smaller distance from the wafer, the heat of the compensation heater 100 can be transferred to the area corresponding to the wafer and the compensation heater 100 faster and more accurately, thereby providing heat compensation for the corresponding position of the wafer, and the response speed is faster.
  • the insulating adsorption layer 500 including the compensation heater 100 and the adsorption electrode can be formed by means of integral molding. Specifically, a ceramic material can be provided between the compensation heater 100 and the adsorption electrode or outside the two through integral sintering, and the compensation heater 100 and the adsorption electrode are fixed in the ceramic material through sintering to form the insulating adsorption layer 500.
  • the insulating adsorption layer 500 includes a first insulating sublayer 530 , a second insulating sublayer 520 and a third insulating sublayer 510 , and the three are arranged sequentially from bottom to top.
  • the first insulator layer 530, the second insulator layer 520, and the third insulator layer 510 are all insulating structural members, that is, all three are formed of insulating materials such as ceramics, and all three can be plate-shaped or layered structural members, so as to ensure that the devices on the opposite sides of any one of the three have the ability to insulate each other.
  • the adsorption electrode is arranged between the third insulating sublayer 510 and the second insulating sublayer 520 to form an adsorption sublayer 540
  • a plurality of compensation heaters 100 are arranged between the second insulating sublayer 520 and the first insulating sublayer 530 to form a compensation heating layer 550 .
  • the adsorption electrode and the compensation heater 100 are insulated from each other by the second insulator layer 520, which is a molding structure, so that in the formed insulating adsorption layer 500, the insulation effect between the adsorption electrode and the compensation heater 100 is relatively reliable; at the same time, by prefabricating the first insulation layer 530, the second insulation layer 520 and the third insulation layer 510 to provide a fixed basis for the adsorption electrode and the compensation heater 100, it is also possible to stabilize the relative position between the adsorption electrode and the compensation heater 100 Higher, to prevent the adsorption electrode and/or/relative to the respective The original position of the electrostatic chuck is shifted to ensure that the position of the adsorption electrodes, especially the plurality of compensation heaters 100, remains at the preset position, thereby improving the heating uniformity of the entire electrostatic chuck.
  • the first insulator layer 530, the second insulator layer 520, and the third insulator layer 510 are thin sheet-shaped structural members formed by mixing ceramic particles and adhesives.
  • multiple compensation heaters 100 can be arranged on the first insulator layer 530.
  • Each compensation heater 100 can be an electric heating device that is independent of each other.
  • the specific positions of the multiple compensation heaters 100 can be obtained according to the heating test of the heating layer 300 in advance, so that the multiple compensation heaters 100 are as close as possible to the heating layer 300. at a lower position.
  • a plurality of compensation heaters 100 may also be evenly distributed on the first insulating sublayer 530 , and according to a specific process type, the compensation heaters 100 to be turned on during the process are determined.
  • the adsorption electrode and the compensation heater 100 can be reliably fixed in the first insulating sublayer 530 , the second insulating sublayer 520 and the third insulating sublayer 510 to form a structurally stable insulating adsorption layer 500 .
  • the compensation heater 100 includes a metal resistance heater formed by screen printing, which can reduce the processing difficulty of multiple compensation heaters.
  • the cables of the compensation heater 100 pass through the device base 400 and the heating layer 300, and are led out of the device base 400, so that the device base 400 and the heating layer 300 provide protection for the cables of the compensation heater 100, and the cables of multiple compensation heaters 100 can be bundled, reducing the difficulty of organizing the cables of each compensation heater 100.
  • the number of compensation heaters 100 can be greater than or equal to 10 and less than or equal to 100, so as to ensure that the heating layer 300 can provide stable compensation as finely as possible when the difficulty of assembling and connecting multiple compensation heaters 100 is controllable.
  • a plurality of compensation heaters 100 can be evenly distributed in the insulating adsorption layer 500.
  • a plurality of compensation heaters 100 form a central compensation area and a plurality of annular compensation areas, and a plurality of annular compensation areas
  • the compensation areas are distributed in concentric rings, that is, the central compensation area is a circular structure, and the plurality of annular compensation areas are all annular structures, and one of the plurality of annular compensation areas is arranged outside the central compensation area, and the other annular compensation areas are arranged in turn. That is, the plurality of annular compensation areas are all surrounded by the center of the central compensation area. The accuracy with which the wafer is temperature compensated.
  • any annular compensation area includes a plurality of compensation heaters 100 to further reduce the size of any compensation heater 100 and improve temperature compensation accuracy.
  • the multiple compensation heaters 100 in any circular compensation zone may include two symmetrical and grouped compensation heaters 100, as shown in FIG. Additionally, the central compensation zone includes a compensation heater.
  • the above-mentioned controller may include a control unit 210 and multiple execution units 220, and the control unit 210 may specifically be a PLC (Programmable Logic Controller, programmable logic controller) or an FPGA (Field Programmable Gate Array, Field Programmable Logic Gate Array).
  • Multiple compensation heaters 100 are provided in one-to-one correspondence with multiple execution units 220 , and each compensation heater 100 is connected to each execution unit 220 in a one-to-one correspondence, so that multiple execution units 220 are used to send execution commands to the multiple compensation heaters 100 respectively.
  • the execution unit 220 may specifically include a PWM (Pulse width modulation, pulse width modulation) actuator, which has relatively low cost and good noise resistance performance.
  • PWM Pulse width modulation, pulse width modulation
  • the PWM actuator can be a relay
  • the execution unit 220 can receive the PWM signal sent by the control unit 210 , and control the turn-on power of the corresponding compensation heater 100 by controlling the on-off ratio.
  • the control unit 210 controls the corresponding compensation heater 100 to output the target power through a plurality of execution units 220, thereby reducing the number of control units 210 installed, further reducing the overall cost of the electrostatic chuck device on the one hand, and reducing the difficulty of assembling the controller on the other hand.
  • the electrostatic chuck device disclosed in the embodiment of the present application may further include a filter 610, and a filter 610 is connected between each compensation heater 100 and the corresponding execution unit 220, so as to use the filter 610 to filter between the electrostatic chuck device in a radio frequency environment and an external circuit, so as to prevent adverse effects on the external circuit.
  • the external circuit includes a positive power supply and a negative power supply, both of which are connected to the electrical circuit of the electrostatic chuck device to power each compensation heater 100 .
  • the adsorption electrode is also connected to an external circuit, and a power filter box 620 for filtering is provided between the external power supply and the adsorption electrode.
  • the embodiment of the present application also discloses a temperature control method.
  • the temperature control method can be applied to the electrostatic chuck device disclosed in any of the above-mentioned embodiments to control the working state of the electrostatic chuck device, so that the temperatures at different positions on the wafer carried on the electrostatic chuck device are approached to be consistent, and the process uniformity of the wafer is improved.
  • Temperature control methods include:
  • the target compensation heaters are the remaining compensation heaters among the plurality of compensation heaters except the compensation heaters corresponding to the positions where the extreme values of the original process results are located when each process step is performed.
  • the above original process result is the process result at the positions corresponding to the plurality of compensation heaters on the wafer where each process step is performed while the heating layer is kept and the compensation heaters are kept turned off.
  • the above extreme value when the process result is positively correlated with the temperature at the corresponding position on the wafer, the above extreme value is the maximum value, and correspondingly, when the process result is negatively correlated with the temperature at the corresponding position on the wafer, the above extreme value is the minimum value.
  • the process result of the wafer is related to the temperature of the wafer, and the process result and temperature may be positively or negatively correlated. But in any case, the temperature at a certain position on the wafer must be related to the process result at that position, so by detecting the process results at multiple positions on the wafer, the temperature at the corresponding position on the wafer can be obtained.
  • the above process results can be The etch rate of the wafer, etc.
  • the process result may also be the deposition rate, etc., which is not limited here.
  • the heating efficiency of the heating layer at different positions on the wafer is the same. However, affected by various factors, there are still locations with different temperatures on the wafer. Furthermore, there must be at least one position with the highest temperature on the wafer, and the aforementioned at least one position may coincide with at least one of a plurality of compensation heaters on the electrostatic chuck device, that is, a compensation heater is provided just below the position with the highest temperature in the wafer carried on the electrostatic chuck device; or, the position with the highest temperature on the wafer is at the corresponding position on the electrostatic chuck device.
  • the temperatures (or process results) at multiple positions corresponding to the multiple compensation heaters in this case, the temperature (or process result) at any position on the wafer corresponding to any compensation heater can be obtained more intuitively.
  • the compensation heater can only increase the temperature at the corresponding position on the wafer, and then when using the compensation heater to compensate the temperature on the wafer, only the compensation heater at a position with a relatively low temperature can be operated to compensate for the temperature at the position with a relatively low temperature.
  • the heating power of the compensation heater can be relatively small. Further, the heating power of the compensation heater can be determined correspondingly according to information such as the difference of the process results of the wafer in the process steps, so as to try to make the compensation temperature of the compensation heater not exceed the temperature at the position corresponding to the aforementioned maximum value too much, thereby ensuring that the uniformity of the process results of the wafer is relatively high.
  • the above process can be carried out separately for each process step, and the position of the compensation heater corresponding to the process step that needs to be turned on is obtained, which is recorded as the target compensation heater corresponding to the process step, so as to form a corresponding relationship between the process step and the target compensation heater.
  • the temperature control method disclosed in the embodiment of the present application further includes:
  • a set of corresponding data can be obtained in advance, and the connection between any process step and the target compensation heater can be obtained based on the above data, so as long as the process step to be performed is determined, which one or which of the multiple compensation heaters the target compensation heater is can be obtained based on the above correspondence.
  • all the main heaters in the heating layer and the target compensation heaters corresponding to the upcoming process steps can be turned on, so that under the joint action of the heating layer and the target compensation heaters, the temperature at any position on the wafer can be made as close as possible to improve the uniformity of the process results of the wafer.
  • the process result of at least one compensation heater and the corresponding area on the wafer is not the extreme value among multiple original process results during the process of a certain process step, then when the process step is performed subsequently, the at least one of the above-mentioned One of the compensation heaters is turned on, which may cause the temperature of the area of the wafer corresponding to a certain compensation heater to exceed the extreme values in multiple original process results due to at least one of the aforementioned compensation heaters being turned on during the subsequent process step, resulting in that the process uniformity on the wafer cannot be better realized.
  • step S2 may include:
  • the above-mentioned opening ratio can be 0.1, 0.2, 1.1, etc., which can be selected according to actual conditions such as the corresponding relationship between temperature difference and opening power, and is not limited here.
  • the target power is related to the opening ratio, and the target power is also related to the value to be compensated. Specifically, the target power is the product of the opening ratio and the value to be compensated.
  • the value to be compensated is the difference between the extremum of the multiple original process results and the original process result corresponding to the target compensation heater, that is, the target power of the target compensation heater is directly related to the process result of the corresponding region on the wafer.
  • the combined effect of multiple target compensation heaters can make the temperature of the region on the wafer whose original temperature is lower than the temperature at the maximum temperature be closer to the maximum temperature, and even if the temperature of a certain place exceeds the original maximum temperature through the heating of the target compensation heater, since the target power of the target compensation heater is closely related to the original process result of the area corresponding to the target compensation heater, and the original process result is directly related to the temperature, there will be no occurrence of heat compensation by the target compensation heater.
  • the uniformity is higher, so that the uniformity of the process result of the wafer is improved.
  • step S2 comprises:
  • any set of data includes the process result and turn-on power.
  • the number of stages of the influence function is related to the number of groups of the aforementioned data, and at least two tests can be carried out for each target compensation heater, so that the influence function of any target compensation heater is at least a quadratic function, so that the accuracy of the target power obtained based on the influence function is better.
  • the process result at the position corresponding to one or more target compensation heaters may exceed (specifically, be greater than or less than) the extreme value of multiple original process results, resulting in out of range in the compensated process result. A new extreme value is found, which may cause the process uniformity of the wafer to be unsatisfactory.
  • the established corresponding relationship can be verified first, and when the verification result meets the requirements, the corresponding target compensation heater is controlled to be turned on based on the above corresponding relationship according to the process steps to be performed.
  • step S2 includes:
  • each main heater in the heating layer is turned on, and the corresponding target compensation heater is turned on based on the above correspondence;
  • the corresponding target compensation heaters are controlled to be turned on according to the above corresponding relationships, so as to cooperate with the heating layer to provide heating for the wafer carried on the electrostatic chuck device, so that the temperature at any position on the wafer is the same or basically the same.
  • the main heaters in the heating layer are turned on during the process steps, and the corresponding target compensation heaters are turned on based on the corresponding relationship, and the difference between any two of the process results at positions corresponding to the plurality of compensation heaters on the wafer includes a situation greater than or equal to a preset value, it is considered that the above correspondence relationship may have insufficient accuracy.
  • the value to be compensated based on the process result at the position where the extreme value corresponds to the compensation heater in the above embodiment can also be used to proportionally control the turn-on power of the compensation heater.
  • the power of the compensation heater can be correspondingly controlled.
  • the proportional coefficient or each coefficient in the influence function in the above two alternatives can be adjusted to obtain a new proportional coefficient or influence function to improve the accuracy of the above two alternatives.
  • the sampling points i.e. temperature measuring points
  • the sampling equipment used to provide the sampling function may not correspond to the positions of the multiple compensation heaters in the formed electrostatic chuck device one by one, and in order to ensure that the electrostatic chuck device has a relatively strong temperature compensation capability, it is usually necessary to make the distribution of multiple compensation heaters as uniform as possible.
  • the process of obtaining the process results at the position corresponding to any compensation heater on the wafer if a certain sampling point on the sampling device corresponds to this position, the aforementioned sampling point can be used to provide sampling work for this position.
  • the process results at multiple positions around the position corresponding to the compensation heater can be collected, and the process results at the position corresponding to the compensation heater can be obtained by interpolation calculation, so as to reduce the difficulty of sampling.
  • the process result at the position on the wafer corresponding to the at least one compensation heater is an average value of the process results at multiple other positions on the wafer surrounding the aforementioned position.
  • the process result at the position corresponding to the compensation heater on the wafer is the process result to be tested, and the process result to be tested cannot be obtained by direct measurement; the process results at multiple other positions around the aforementioned position are known process results. Known process results can be obtained by direct measurement.
  • each compensation heaters are installed in the electrostatic chuck device.
  • the center of the wafer is used as the zero point of coordinates X and Y.
  • the coordinates of the center positions of the compensation heaters are (X1, Y1), (X2, Y2) ... (X6, Y6).
  • the process results of 10 points have been checked in the process steps.
  • the coordinates of these 10 points are (A1, B1), (A2, B2) ... (A10, B10).
  • the extreme value is the value of the process result corresponding to the position with the highest temperature, not necessarily the real maximum value, because some processes have higher temperature and smaller process result
  • the extreme value is at the position corresponding to the first compensation heater
  • the process results on the wafer are collected again to confirm whether the above-mentioned control method can satisfy the uniformity of the wafer. If yes, the above-mentioned control method can be used to control the electrostatic chuck device during the mass production process. If not, a new influence function can be obtained by taking the value again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本申请公开一种静电卡盘装置和温度控制方法,静电卡盘装置,包括自下而上依次设置的装置基体、加热层以及用于承载晶圆的绝缘吸附层,绝缘吸附层中设置有吸附电极,吸附电极用于吸附晶圆;加热层中设置有至少两个主加热器,主加热器用于加热绝缘吸附层承载的晶圆,绝缘吸附层中设置有吸附电极,吸附电极用于吸附晶圆;静电卡盘装置还包括控制器,绝缘吸附层中还设置有多个补偿加热器,多个补偿加热器均与吸附电极绝缘设置,且多个补偿加热器均与控制器电连接,控制器用于控制各补偿加热器的开启或关断,以及控制各补偿加热器的功率。上述技术方案能够解决因目前晶圆上不同位置的温度可能存在偏差,导致被加工件的工艺均匀性较差的问题。

Description

静电卡盘装置和温度控制方法 技术领域
本申请属于半导体加工技术领域,具体涉及一种静电卡盘装置和温度控制方法。
背景技术
在晶圆等半导体被加工件(例如晶圆)的加工过程中,为了提升工艺效率和/或工艺效果等原因,通常会借助静电卡盘等加热器对晶圆等被加工件进行加热,且使被加工件的整体温度升高。但是,在实际加工过程中,因为各种原因,支撑于同一加热器的被加工件上不同位置处的温度可能存在偏差,这会导致被加工件的工艺均匀性较差。
发明内容
本申请公开一种静电卡盘装置和温度控制方法,能够解决因目前被加工件上不同位置的温度可能存在偏差,导致被加工件的工艺均匀性较差的问题。
为了解决上述问题,本申请实施例是这样实现地:
第一方面,本申请实施例提供了一种静电卡盘装置,用于半导体设备,所述静电卡盘装置包括自下而上依次设置的装置基体、加热层以及用于承载晶圆的绝缘吸附层,所述绝缘吸附层中设置有吸附电极,所述吸附电极用于吸附所述晶圆;所述加热层中设置有至少两个主加热器,所述主加热器用于加热所述绝缘吸附层承载的所述晶圆,所述绝缘吸附层中设置有吸附电极,所述吸附电极用于吸附所述晶圆;所述静电卡盘装置还包括控制器,所述绝缘吸附层中还设置有多个补偿加热器,多个所述补偿加热器均与所述吸附电 极绝缘设置,且多个所述补偿加热器均与所述控制器电连接,所述控制器用于控制各所述补偿加热器的开启或关断,以及控制各所述补偿加热器的功率。
第二方面,本申请实施例公开一种温度控制方法,所述温度控制方法应用于上述静电卡盘装置,所述静电卡盘装置用于承载并加热晶圆,所述温度控制方法包括:
S1、建立工艺步骤与目标补偿加热器之间的对应关系,其中,所述目标补偿加热器为进行各所述工艺步骤时,多个所述补偿加热器中除多个原始工艺结果的极值所在位置对应的所述补偿加热器之外的其余所述补偿加热器,所述原始工艺结果为在保持所述加热层中的所述至少两个主加热器开启,且保持各所述补偿加热器均关闭的状态下,进行各所述工艺步骤的所述晶圆上与多个所述补偿加热器对应的位置处的工艺结果,在所述工艺结果与所述晶圆上对应位置处的温度呈正相关的情况下,所述极值为最大值,在所述工艺结果与所述晶圆上对应位置处的温度呈负相关的情况下,所述极值为最小值;
S2、获取即将进行的工艺步骤,控制所述加热层中的各所述主加热器开启,且根据所述对应关系,控制与即将进行的所述工艺步骤对应的各所述目标补偿加热器开启。
本申请实施例公开一种静电卡盘装置,其可以应用在半导体设备中。该静电卡盘装置中,绝缘吸附层层叠设置在加热层上,加热层层叠设置在装置基体上,加热层中的至少两个主加热器能够对承载于绝缘吸附层上的晶圆进行加热,绝缘吸附层中的吸附电极能够吸附电极,从而保证晶圆可以稳定地支撑在绝缘吸附层上。同时,静电卡盘装置设有控制器,且绝缘吸附层中还设有多个补偿加热器,多个补偿加热器均与控制器电连接,控制器能够控制各补偿加热器的开启或关断,以及控制各补偿加热器的功率。继而,通过对晶圆上不同位置处的刻蚀速率等工艺结果进行检测,可以通过多个工艺结果间接地获取晶圆上对应位置的温度情况,从而如果在进行某些工艺时仅依靠 加热层中的主加热器对晶圆加热存在晶圆上不同位置处的温度不一致的情况时,在进行前述工艺时,可以在利用主加热器加热晶圆的基础上,利用控制器控制静电卡盘装置中对应地至少一个补偿加热器开启,且控制处于开启状态的补偿加热器的功率,使开启的补偿加热器能够对晶圆上对应的位置处进行加热,使该位置处的温度升高至与晶圆上最高的温度值(即晶圆上工艺结果的最大值或最小值)相同,保证晶圆的工艺均匀性相对较高。并且,由于补偿加热器的功率相较于主加热器的功率相对较小,从而通过使补偿加热器位于与晶圆距离较小的绝缘吸附层,可以使补偿加热器的热量能够更快且更精准地传递至晶圆与该补偿加热器所对应的区域处,进而为晶圆的对应位置提供热量补偿,响应速度较快。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例公开的静电卡盘装置的结构示意图;
图2是本申请实施例公开的静电卡盘装置中绝缘吸附部的结构示意图;
图3是本申请实施例公开的静电卡盘装置中多个补偿加热部的分布示意图;
图4是本申请实施例公开的静电卡盘装置中吸附电极的结构示意图;
图5是本申请实施例公开的静电卡盘装置的电气原理示意图;
图6是本申请实施例公开的静电卡盘装置中部分结构的电气原理示意图;
图7是本申请实施例公开的温度控制方法的流程图;
图8是本申请实施例公开的温度控制方法中晶圆上多个被测温点的位置分布示意图;
图9是本申请实施例公开的温度控制方法中晶圆上多个被测温点与一补偿加热器之间相对位置的示意图;
图10为本申请实施例公开的温度控制方法中补偿加热器处于开启和关闭状态下晶圆上多个被测温点的温度对比示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各个实施例公开的技术方案。
如图1-图5所示,本申请实施例公开一种静电卡盘装置,其可以应用在半导体设备中,以利用静电卡盘装置承载晶圆等被加工件,且改变晶圆等被加工件的温度,提升工艺效率和工艺结果的优异性。静电卡盘装置包括装置基体400、加热层300和绝缘吸附层500,且装置基体400、加热层300和绝缘吸附层500自下而上依次设置。需要说明的是,前述上下方向为静电卡盘装置在进行正常工作过程时竖直方向所在的方位,更直观地,可以为图1中的方向A。
其中,绝缘吸附层500用于承载晶圆;加热层300中设置有至少两个主加热器,主加热器能够加热绝缘吸附层500承载的晶圆,使晶圆的温度上升,提升晶圆的工艺效率和效果。主加热器具体可以包括电阻丝等加热器件,保证主加热器具备加热能力。主加热器的数量可以为两个、三个或更多个,主加热器的数量可以根据各主加热器的尺寸和形状等参数确定,此处不作限定。多个主加热器的形状可以为扇形,且一并组成加热层300完整的加热区域。在本申请的另一实施例中,各主加热器中的一者为圆形结构件,其余几者均 为圆环形结构件,多个主加热器套设组装,形成加热层300的加热区域,这种主加热器的分布方式可以根据晶圆等被加工件的直径等尺寸控制加热区域的大小,控制精度相对较高。当然,加热层300中除了主加热器之外,还可以包括固定主加热器的结构,具体可以为石英或陶瓷等成型材料,多个主加热器可以埋设在石英或陶瓷等成型材料中,形成结构稳定的加热层300。
绝缘吸附层500中设置有吸附电极,吸附电极能够吸附晶圆,从而使晶圆可以稳定地承载且固定于静电卡盘装置之上。吸附电极具体可以采用印刷的方式形成,其具体形状和结构可以根据实际情况确定,如图4所示,吸附电极分为DC+和DC-两个区域,吸附电极整体上可以为环状结构件,且可以利用金属丝呈多圈绕设的方式形成吸附电极。并且,亦可以通过使吸附电极形成于石英或陶瓷等成型材料内的方式,形成绝缘层,一方面实现吸附电极的固定目的,另一方面可以使绝缘吸附层500具备绝缘能力,不会对下文提及的设置于吸附绝缘层中的补偿加热器100的正常工作产生不利影响。
并且,本申请实施例公开的静电卡盘装置中还包括控制器,且绝缘吸附层500中还设有多个补偿加热器100,各补偿加热器100亦能够在工作的情况下加热绝缘吸附层500,从而使各补偿加热器100所在的区域的温度得到补偿,升高各补偿加热器100所在区域的温度,同时,多个补偿加热器100均与吸附电极绝缘设置。
具体地,各补偿加热器100均可以包括电阻丝等加热器件,当然,其具体形状和尺寸等参数可以根据实际需求确定,此处不作限定。补偿加热器100的数量可以根据补偿加热器100的尺寸和形状,以及绝缘吸附层500的尺寸和形状等实际参数确定,此处不作限定。更具体地,可以使各补偿加热器100的加热功率基本相同,以降低多个补偿加热器100的控制难度,提升静电卡盘装置的控温精度。另外,补偿加热器100亦可以形成于绝缘吸附层500中的石英或陶瓷等成型材料中,且通过使补偿加热器100与吸附电极在绝缘吸 附层500的厚度方向上相互间隔,保证各补偿加热器100均能够与吸附电极相互绝缘。
一种具体地实施例是,沿绝缘吸附层500的厚度方向,可以使多个补偿加热器100在绝缘吸附层500中的位置相同,且多个补偿加热器100均匀分布,使各补偿加热器100可以分别对应绝缘吸附层500中的不同区域,且使多个补偿加热器100对应的区域共同组成绝缘吸附层500的整面。如图3所示,补偿加热器100整体上可以呈环形结构分布,且任一环形结构中的各补偿加热器100沿周向分布,各环形结构中所包括的补偿加热器100的结构和尺寸可以根据实际情况确定,此处不作限定。
需要说明的是,可以使各补偿加热器100的尺寸相对较小,且在布设补偿加热器100的过程中,可以使补偿加热器100的分布情况尽可能得均匀,这可以提升补偿加热器100对静电卡盘装置进行温度补偿的能力相对较强,且较为全面。
如上,本申请实施例公开的静电卡盘装置包括控制器,基于此,可以使多个补偿加热器100均与控制器电连接,以利用控制器控制各补偿加热器100的开启或关断,以及控制各补偿加热器100的功率。在静电卡盘装置的工作过程中,可以预先为控制器设置相应的控制规则,且使控制器能够根据所要进行的工艺步骤的具体情况,基于预先输入的控制规则,控制与即将进行的工艺步骤对应的补偿加热器100。
更详细地,在静电卡盘装置被应用至量产工艺过程之前,可以预先对静电卡盘装置的加热情况进行测试。在测试的过程中,可以仅开启加热层300中的全部主加热器,且控制多个补偿加热器100均处于关闭状态,进而测量静电卡盘装置上多个被测位置处的温度,多个被测位置与多个补偿加热器100所在的位置一一对应,从而得到多个基础数据。
当然,在测量过程中,由于温度数据的测量难度相对较大,进而可以通 过测量晶圆等被加工件上不同位置处的被刻蚀速率等参数,从而利用与温度直接关联的被刻蚀速率等参数表征晶圆上该位置处的温度的具体情况,也即,上述基础数据具体可以为被刻蚀速率。另外,刻蚀速率等参数可能与温度的高低呈正比,亦有可能呈反比,为了便于下文描述,下文均以晶圆的被刻蚀速率与温度呈正比为例。需要说明的是,多个被测位置具体可以为各补偿加热器100的结构中心,当然,被测位置亦可以为各补偿加热器100的边缘,只需保证多个补偿加热器100上各自的被测位置相互对应即可。
并且,受静电卡盘装置上不同位置处的导热情况不同等多种因素影响,上述多个基础数据的大小可能会存在差异,基于此,可以通过开启与基础数据对应的补偿加热器100,利用补偿加热器100对其所在的位置进行加热,使该补偿加热器100所在的区域的温度升高,实现减小甚至消除多个基础数据中的数值最大的一者与该基础数据之间的差值的目的,使多个基础数据之间的差值均相对较小,甚至使多个基础数据各自之间的差值均为零。
在上述测试过程中,可以通过控制器控制各补偿加热器100的开启或关断,也即,使晶圆上对应于刻蚀速率最高的补偿加热器100处于关断状态,且使晶圆上刻蚀速率小于前述最高的一者的其他位置对应的补偿加热器100处于开启状态,利用这些处于开启状态的补偿加热器100对各自所在的位置进行温度补偿,使晶圆上对应于多个处于开启状态的补偿加热器100的区域的温度升高,进而增大其刻蚀速率。
虽然晶圆上刻蚀速率相对较低的位置处所对应的补偿加热器100处于开启状态的情况下能够增大前述位置处的刻蚀速率,但是,处于开启状态的补偿加热器100可能会将其所在处的温度升高至超过晶圆上温度最高的位置处的温度,从而导致该位置处的刻蚀速率成为新的刻蚀速率最大的位置,进而可能会造成晶圆上不同位置处的刻蚀速率仍存在加大的差异。基于此,控制器还可以控制多个补偿加热器100以不同的功率工作,从而使处于开启状态 的补偿加热器100可以将各自所对应的区域处的温度补偿至与晶圆上的最高温度接近甚至相同的状态,保证晶圆上不同位置处的刻蚀速率的一致性相对较高。
其中,对于多个补偿加热器100的开启功率,亦可以通过预先测试的方式得到。具体地,可以根据所要进行的具体工艺,通过使晶圆上刻蚀速率小于最大值的区域对应的补偿加热器100,且使该补偿加热器100分别以不同的功率开启,记录其与刻蚀速率中最大值最为贴近的功率值,从而在量产过程中,只要进行前述工艺过程,即可利用控制器控制该补偿加热器100以前述测试得到的功率值开启,使晶圆上与该补偿加热器100对应的区域的温度和刻蚀速率均能够与晶圆上温度和刻蚀速率的最大值对应,保证晶圆具有较高的工艺均匀性。
本申请实施例公开一种静电卡盘装置,其可以应用在半导体设备中。该静电卡盘装置中,绝缘吸附层500层叠设置在加热层300上,加热层300层叠设置在装置基体400上,加热层300中的至少两个主加热器能够对承载于绝缘吸附层500上的晶圆进行加热,绝缘吸附层500中的吸附电极能够吸附电极,从而保证晶圆可以稳定地支撑在静电卡盘装置上。同时,静电卡盘装置设有控制器,且绝缘吸附层500中还设有多个补偿加热器100,多个补偿加热器100均与控制器电连接,控制器能够控制各补偿加热器100的开启或关断,以及控制各补偿加热器100的功率。继而,通过对晶圆上不同位置处的刻蚀速率等工艺结果进行检测,可以通过多个工艺结果间接地获取晶圆上对应位置的温度情况,从而如果在进行某些工艺时仅依靠加热层300中的主加热器对晶圆加热存在晶圆上不同位置处的温度不一致的情况时,在进行前述工艺时,可以在利用主加热器加热晶圆的基础上,利用控制器控制静电卡盘装置中对应地至少一个补偿加热器100开启,且控制处于开启状态的补偿加热器100的工作功率,使开启的补偿加热器100能够对晶圆上对应的位置 处进行加热,使该位置处的温度升高至与晶圆上最高的温度值(即晶圆上工艺结果的最大值或最小值)相同,保证晶圆的工艺均匀性相对较高。并且,由于补偿加热器100的功率相较于主加热器的功率相对较小,从而通过使补偿加热器100位于与晶圆距离较小的绝缘吸附层500,可以使补偿加热器100的热量能够更快且更精准地传递至晶圆与该补偿加热器100所对应的区域处,进而为晶圆的对应位置提供热量补偿,响应速度较快。
如上所述,可以通过一体成型等方式形成包括补偿加热器100和吸附电极的绝缘吸附层500,具体地,可以通过一体烧结的方式,在补偿加热器100和吸附电极之间,以及二者之外设置陶瓷材料,且通过烧结的方式,使补偿加热器100和吸附电极被固定在陶瓷材料内,形成绝缘吸附层500。
在本申请的另一实施例中,可选地,如图2所示,绝缘吸附层500包括第一绝缘子层530、第二绝缘子层520和第三绝缘子层510,且三者自下而上依次设置。第一绝缘子层530、第二绝缘子层520和第三绝缘子层510均为绝缘结构件,也即,三者均采用陶瓷等绝缘材料形成,三者均可以为板状或层状结构件,以保证位于三者中任一者相背两侧的器件之间均具备相互绝缘的能力。
并且,吸附电极设置在第三绝缘子层510和第二绝缘子层520之间,形成吸附子层540,多个补偿加热器100均设置在第二绝缘子层520和第一绝缘子层530之间,形成补偿加热层550。也即,在本实施例中,吸附电极和补偿加热器100之间通过第二绝缘子层520这种成型结构件相互绝缘,进而使所形成的绝缘吸附层500中,吸附电极和补偿加热器100之间的绝缘效果相对较为可靠;同时,通过预制第一绝缘子层530、第二绝缘子层520和第三绝缘子层510的方式为吸附电极和补偿加热器100提供固定基础,还可以使吸附电极和补偿加热器100之间相对位置的稳定性更高,防止在吸附电极、补偿加热器100和绝缘材料一体成型过程中出现吸附电极和/或/相对于各自 的原始位置发生偏移,保证吸附电极,尤其是多个补偿加热器100的位置保持在预设位置处,从而提升整个静电卡盘的加热均匀能力。
具体地,第一绝缘子层530、第二绝缘子层520和第三绝缘子层510均为陶瓷颗粒与粘接剂混合形成的薄片状结构件,之后,可以在第一绝缘子层530上设置多个补偿加热器100,各补偿加热器100具体可以为相互独立的电热器件,多个补偿加热器100的具体位置可以根据预先对加热层300的加热测试得到,使多个补偿加热器100尽量靠近加热层300对晶圆上加热温度相对较低的位置处。当然,多个补偿加热器100亦可以均匀地分布在第一绝缘子层530上,且根据具体的工艺类型,确定该工艺过程中需要开启的补偿加热器100。之后,再将第二绝缘子层520按压覆盖在补偿加热层550背离第一绝缘子层530的一侧,之后,再在第二绝缘子层520上通过印刷等方式形成吸附电极,之后,再在吸附层的上方压覆第三绝缘子层510,形成绝缘吸附层500的整体结构。最后,通过整体烧结的方式,可以使吸附电极和补偿加热器100被可靠地固定在第一绝缘子层530、第二绝缘子层520和第三绝缘子层510中,形成结构稳定的绝缘吸附层500。
可选地,补偿加热器100包括丝网印刷形成的金属电阻加热器,这可以降低多个补偿加热的加工难度。并且,补偿加热器100的线缆穿过装置基体400和加热层300,且引出至装置基体400之外,以利用装置基体400和加热层300为补偿加热器100的线缆提供保护作用,且可以对多个补偿加热器100各自的线缆进行收束,降低各补偿加热器100的线缆的整理难度。另外,可选的,可以使补偿加热器100的数量大于等于10且小于等于100,从而保证在多个补偿加热器100的组装和连接难度可控的情况下,尽可能精细地为加热层300提供稳定补偿作用。
如上所述,可以使多个补偿加热器100均匀地分布在绝缘吸附层500中,可选地,多个补偿加热器100组成中心补偿区和多个环形补偿区,多个环形 补偿区呈同心环分布,也即,中心补偿区为圆形结构,多个环形补偿区均为圆环形结构,且多个环形补偿区中的一者环绕设置在中心补偿区之外,其他的环形补偿区则依次依环绕设置,即,多个环形补偿区均以中心补偿区的中心为圆心环绕于该中心补偿区周围,使多个补偿加热器100形成与晶圆仿形的结构,以在为晶圆提供热量补偿的过程中,防止出现热量浪费的情况,且可以在一定程度上提升对晶圆进行温度补偿的精度。
并且,任一环形补偿区均包括多个补偿加热器100,以进一步减小任一补偿加热器100的尺寸大小,提升温度补偿精度。另外,在布设任一环形补偿区中的多个补偿加热器100的过程中,可以使任一环形补偿区中多个补偿加热器100包括对称且成组设置的两个补偿加热器100,如图3所示,其可以为中心对称,以便于多个补偿加热器100的补偿计算过程的进行。另外,中心补偿区包括一个补偿加热器。
可选地,上述控制器可以包括控制部210和多个执行部220,控制部210具体可以为PLC(Programmable Logic Controller,可编程逻辑控制器)或FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)等。多个补偿加热器100与多个执行部220一一对应设置,且使各补偿加热器100与各执行部220一一对应地连接,从而利用多个执行部220分别为多个补偿加热器100发送执行命令。可选的,执行部220具体可以包括PWM(Pulse width modulation,脉冲宽度调制)执行器,这种执行器的成本相对较低,且抗噪性能好。更具体地,PWM执行器可以为继电器,执行部220能够接收控制部210所发送的PWM信号,且通过控制开闭比例的方式控制对应的补偿加热器100的开启功率。并且,控制部210通过多个执行部220控制对应的补偿加热器100输出目标功率,从而可以减少控制部210的设置数量,一方面进一步降低静电卡盘装置的整体成本,另一方面还可以降低控制器的组装难度。
可选地,如图5所示,本申请实施例公开的静电卡盘装置还可以包括滤波器610,各补偿加热器100与对应的执行部220之间均连接有滤波器610,以利用滤波器610对处于射频环境的静电卡盘装置与外部电路之间进行滤波,防止对外部电路产生不利影响。外部电路包括电源正极和电源负极,二者均连接至静电卡盘装置的电路中,以为各补偿加热器100供电。当然,吸附电极亦与外部电路连接,外界电源与吸附电极之间亦设置有提供滤波作用的电源滤波盒620。
基于上述任一实施例公开的静电卡盘装置,如图7所示,本申请实施例还公开一种温度控制方法,该温度控制方法可以应用在上述任一实施例公开的静电卡盘装置中,以对静电卡盘装置的工作状态进行控制,使承载于静电卡盘装置上的晶圆上的不同位置处的温度趋近一致,提升晶圆的工艺均匀性。
温度控制方法包括:
S1、建立工艺步骤与目标补偿加热器的对应关系,其中,目标补偿加热器为进行各工艺步骤时,多个补偿加热器中除多个原始工艺结果的极值所在位置对应的补偿加热器之外的其余补偿加热器。上述原始工艺结果为在保持加热层,且保持各补偿加热器均关闭的状态下,进行各工艺步骤的晶圆上与多个补偿加热器对应的位置处的工艺结果。另外,针对上述极值,在工艺结果与晶圆上对应位置处的温度呈正相关的情况下,上述极值为最大值,对应地,在工艺结果与晶圆上对应位置处的温度呈负相关的情况下,上述极值为最小值。
展开地说,在晶圆的加工过程中,需要对晶圆进行至少一个工艺步骤,任一工艺步骤中,晶圆的工艺结果均与晶圆的温度相关,且工艺结果与温度可能呈正相关,亦有可能呈负相关。但无论如何,晶圆上某一位置的温度必然与该位置处的工艺结果相关,从而通过对晶圆上多个位置的工艺结果进行检测,即可获得晶圆上对应位置处的温度情况。其中,上述工艺结果可以为 晶圆的刻蚀速率等,当然,工艺结果还可以为沉积速率等,此处不作限定。
如上所述,在仅利用加热层对晶圆进行加热时,理论上,加热层对晶圆上不同位置处的加热效率相同。但是,受各种因素影响,晶圆上仍存在温度不同的位置。进而,晶圆上必然存在至少一处温度最高的位置,而且,前述至少一个位置可能正好与静电卡盘装置上多个补偿加热器中的至少一者对应重合,也即,承载于静电卡盘装置上的晶圆中温度最高的位置处的正下方正好设置有补偿加热器;或者,晶圆上温度最高的位置处在静电卡盘装置上所对应的位置处亦有可能未设置补偿加热器,因而,在获取晶圆的温度(也即工艺结果)的过程中,可以测量晶圆中与多个补偿加热器对应的多个位置的温度(或工艺结果),在这种情况下,可以更为直观地获取任一补偿加热器对应于晶圆上的位置处的温度(或工艺结果)。
当然,在测量晶圆中与多个补偿加热器对应的多个位置的温度(或工艺结果)的过程中,需要使加热层保持开启状态,且使各补偿加热器保持关闭状态,从而得到晶圆进行该工艺步骤时的工艺结果的原始值,也即,得到与多个补偿加热器所在位置一一对应的多个原始工艺结果。
在晶圆的加工过程中,为了保证晶圆的工艺结果的均匀性较高,需要使晶圆上不同位置处的温度趋近一致,由于补偿加热器只能使晶圆上对应位置处的温度升高,进而在利用补偿加热器补偿晶圆上的温度时,只能使温度相对较低的位置处的补偿加热器工作,以补偿该温度较低的位置处的温度。
如上所述,上述多个原始工艺结果中,必然有至少一个极值,以工艺结果与温度呈正相关为例,上述多个原始工艺结果中存在至少一个最大值,以原始工艺结果为六个,最大值为一个为例,显然,在进行该工艺步骤时,可以通过开启除了与前述最大值对应的补偿加热器之外的其他补偿加热器,从而晶圆上温度较低的五个位置处能够在补偿加热器的作用下在一定范围内升高其温度,使前述五个位置处的温度与前述最大值对应的位置处的温度之间 的差值得到减小,从而使晶圆的工艺均匀性得到提升。
需要说明的是,为了防止因补偿加热器的温度补偿作用较强而造成前述五个位置处的温度超出前述最大值对应的位置处的温度,甚至超出较多,可以使补偿加热器的加热功率相对较小。进一步地,可以根据晶圆在工艺步骤中的工艺结果的差值等信息,对应地确定补偿加热器的加热功率,以尽量使补偿加热器的补偿温度不会超过前述最大值对应的位置处的温度过多,进而保证晶圆的工艺结果的均匀性相对较高。
当然,在工艺步骤的数量为多个的情况下,可以针对每一工艺步骤分别单独进行上述过程,且得到与该工艺步骤对应的需要开启的补偿加热器所在的位置,记为与该工艺步骤对应的目标补偿加热器,从而形成工艺步骤与目标补偿加热器之间的对应关系。
基于上述步骤S1,本申请实施例公开的温度控制方法还包括:
S2、获取即将进行的工艺步骤,控制开启加热层中的各主加热器开启,且根据上述步骤得到的对应关系,控制与即将进行的工艺步骤对应的各目标补偿加热器开启。
如上所述,可以预先得到一组对应关系的数据,基于上述数据可以得到任一工艺步骤与目标补偿加热器之间的联系,从而只要确定所要进行的工艺步骤,即可基于上述对应关系得到目标补偿加热器为多个补偿加热器中的哪一者或哪几者。基于此,在进行工艺步骤时,为了保证晶圆上任意位置处的工艺效果均相对较好,可以开启加热层中的所有主加热器和即将进行的工艺步骤对应的目标补偿加热器,从而在加热层和目标补偿加热器的共同作用下,尽量使晶圆上任意位置处的温度趋近一致,提升晶圆的工艺结果的均匀性。
在上述实施例公开的温度控制方法中,只要在进行某一工艺步骤的过程中,存在至少一个补偿加热器与晶圆上对应的区域的工艺结果不是多个原始工艺结果中的极值的情况,则在后续进行该工艺步骤时,即控制上述至少一 个补偿加热器开启,这可能会导致在后续进行该工艺步骤时,因前述至少一个补偿加热器开启,造成某一补偿加热器所对应的晶圆的区域的温度超过多个原始工艺结果中的极值,造成晶圆上工艺均匀性仍无法较好地实现。
基于此,上述步骤S2可以包括:
获取即将进行的工艺步骤,控制加热层中的各主加热器开启,且根据上述对应关系和开启比例,控制与即将进行的工艺步骤对应的各目标补偿加热器以目标功率开启。也就是说,在本实施例中,当进行某工艺步骤时,不仅基于上述对应关系控制与所要进行的工艺步骤对应的目标补偿加热器,还可以根据开启比例使所要开启的目标补偿加热器以目标功率开启,从而进一步提升各目标补偿加热器的控制精度。
上述开启比例可以为0.1、0.2、1.1等值,其可以根据温差与开启功率的对应关系等实际情况选定,此处不作限定。目标功率与开启比例相关,且目标功率还与待补偿值相关,详细地说,目标功率为开启比例与待补偿值的乘积。其中,待补偿值为多个原始工艺结果中的极值与目标补偿加热器对应的原始工艺结果之间的差值,也即,目标补偿加热器的目标功率与其所对应的晶圆上的区域的工艺结果直接相关。在这种情况下,借助多个目标补偿加热器的共同作用可以使晶圆上原本温度小于温度最大处的温度的区域的温度,能够更接近最大温度,且即便某一处的温度经目标补偿加热器的加热而超过原本的最大温度,由于目标补偿加热器的目标功率与该目标补偿加热器对应的区域的原始工艺结果密切相关,且原始工艺结果与温度直接相关,从而也不会出现经目标补偿加热器进行热量补偿之后,导致该处的温度超过原本的温度最大值过多,进而可以保证晶圆上各处的温度的均匀性更高,从而使晶圆的工艺结果的均匀性得到提升。
考虑到晶圆的温度受多方面因素的影响,为了进一步提升补偿加热器对晶圆上对应位置的温度的补偿精度,在本申请的另一实施例中,可选地,上 述步骤S2包括:
获取即将进行的工艺步骤,控制加热层中的各主加热器开启,且根据上述对应关系,待补偿值和影响函数,控制与即将进行的工艺步骤对应的各目标补偿加热器以目标功率开启。也即,在本申请中,基于影响函数和待补偿值,进一步对需要开启的各目标补偿加热器的目标功率进行更为精准的控制,使目标补偿加热器在目标功率下工作,能够将其所对应的位置处的工艺结果补偿至与多个原始工艺结果中的极值相当甚至相等,进一步提升晶圆的工艺均匀性。
当然,为实现上述目的,需要使影响函数的可靠性相对较高,进而,可以通过使目标补偿加热器分别以多个不同的开启功率工作,且记录目标补偿加热器以对应的开启功率工作时晶圆上对应位置处的工艺结果,任一组数据均包括工艺结果和开启功率,在多组数据的支持下,即可得到一函数关系,其即为上述影响函数。并且,影响函数的级数与前述数据的组数有关,进而可以针对每一目标补偿加热器均进行至少两次测试,使任一目标补偿加热器的影响函数均至少为二次函数,使基于影响函数得到的目标功率的准确性更好。具体地,可以针对任一目标补偿加热器设置10%、50%和90%功率,且得到与该目标补偿加热器对应的位置的工艺结果分别为Tn1、Tn2和Tn3,通过二次函数拟合可获得该目标补偿加热器的输出功率与工艺结果之间的影响函数:Pn=k1×T2+k2×T+k3。继而,在进行对应的工艺步骤时,可以根据该目标补偿加热器对应的位置处的工艺结果的待补偿值,得到该目标补偿加热器所要开启的目标功率。
如上所述,在采用上述温度控制方法的进行工艺步骤的过程中,基于上述步骤S1中所建立的对应关系控制对应的目标补偿加热器开启之后,可能会造成某一或某多个目标补偿加热器对应的位置处的工艺结果超过(具体为大于或小于)多个原始工艺结果中的极值,从而导致补偿后的工艺结果中出 现新的极值,这会造成晶圆的工艺均匀性可能无法被满足,基于此,在采用步骤S1建立的对应关系控制目标补偿加热器工作之前,可以先对所建立的对应关系进行验证,且在验证的结果满足要求的情况下,才根据所要进行的工艺步骤,基于上述对应关系,控制对应的目标补偿加热器开启。
详细地,上述步骤S2包括:
在进行即将进行的工艺步骤之前,开启加热层中各主加热器,且基于上述对应关系开启对应的目标补偿加热器;
在晶圆上与多个补偿加热器对应的位置处的工艺结果中任意两者的差值均小于预设值的情况下,获取即将进行的工艺步骤,控制加热层中各主加热器开启,且根据上述对应关系,控制与即将进行的工艺步骤对应的目标补偿加热器开启。
在采用上述技术方案的情况下,通过预先对进行工艺步骤时,根据对应关系开启对应的目标补偿加热器,所得到的晶圆上与多个补偿加热器对应的位置的工艺结果进行验证,只有在多个工艺结果的均匀性满足需求的情况下,后续进行对应的工艺步骤时,才会根据上述对应关系,控制对应的目标补偿加热器开启,以与加热层共同作用,为承载于静电卡盘装置上的晶圆提供加热作用,使晶圆上任意位置处的温度相同或基本相同。
相应地,如果在进行工艺步骤,开启加热层中的各主加热器,且基于对应关系开启对应的目标补偿加热器,晶圆上与多个补偿加热器对应的位置处的工艺结果中任意两者之间的差值中包括大于或等于预设值的情况,则认为上述对应关系可能存在准确性不足的情况。
为解决上述情况,可以控制补偿后的工艺结果中与多个原始工艺结果的极值的差值等于或大于上述预设值的目标补偿加热器在进行对应的工艺步骤时处于关闭状态,这使得该位置处的工艺结果小于多个原始工艺结果中的极值,但亦可以在一定程度上提升晶圆的工艺均匀性。
或者,还可以采用上述实施例中基于上述极值与补偿加热器对应的位置处的工艺结果的待补偿值,比例性地控制补偿加热器的开启功率。再或者,还可以采用上述实施例中,基于影响函数和上述极值与补偿加热器对应的位置处的工艺结果的待补偿值,对应地控制补偿加热器的开启功率。当然,在采用此两种替代方案的过程中,亦有可能存在目标补偿加热器以对应的目标功率开启时,出现某一或某多个目标补偿加热器对应的位置处的工艺结果与多个原始工艺结果的极值之间的差值等于或大于上述预设值,基于此,可以对上述两种替代方案中的比例系数或影响函数中的各项系数进行调整,得到新的比例系数或影响函数,提升上述两种替代方案的精确度。
在上述任一实施例中,均涉及到对晶圆上与多个补偿加热器对应的位置处的工艺结果的采样工作。如图8和图3所示,在实际应用过程中,用以提供采样功能的采样设备上的采样点位(即测温点)可能并非与已经成型的静电卡盘装置中多个补偿加热器的位置一一相互对应,且为了保证静电卡盘装置的温度补偿能力相对较强,通常需要使多个补偿加热器的分布尽可能得均匀。
基于此,在获取晶圆上与任一补偿加热器对应的位置处的工艺结果的过程中,如果采样设备上的某一采样点位正好与该位置对应,则可以利用前述采样点位为该位置提供采样工作。而如果采样设备中任一采样点位均无法与某一补偿加热器所对应的位置相互对应,则可以通过采集该补偿加热器对应的位置周围的多个位置的工艺结果,且经插值法计算得到该补偿加热器对应的位置处的工艺结果,降低采样难度。
详细地说,晶圆上与至少一个补偿加热器对应的位置处的工艺结果为晶圆上围绕前述位置的多个其他位置处的工艺结果的均值。其中,晶圆上与补偿加热器对应的位置处的工艺结果为待测工艺结果,且待测工艺结果无法通过直接测量的方式得到;围绕前述位置的多个其他位置的工艺结果为已知工 艺结果,已知工艺结果能够通过直接测量的方式得到。
更具体地,如图6所示,静电卡盘装置中设置有6个补偿加热器,以晶圆中心为坐标X和Y的零点,补偿加热器中心位置的坐标分别为(X1,Y1)、(X2,Y2)……(X6,Y6),工艺步骤中检查了10个点的工艺结果,这个10个点的坐标分别为(A1,B1)、(A2,B2)……(A10,B10),则按照上述温度控制方法,需要首先测试当补偿加热器全部关闭时,这10个工艺点的原始工艺结果(C1,C2,……,C10),之后,可以通过线性插值的方式利用上述10个点的工艺结果,计算得到晶圆上与6个补偿加热器的中心位置相对对应的位置的工艺结果。更具体地,以图9中空心圆圈所示的点(X1,Y1)的计算为例说明具体计算步骤如下:10个工艺点的横坐标分别为A1-A10,则X1位于其中两个数之间,例如位于A2和A3之间,10个工艺点的纵坐标分别为B1-B10,则Y1位于其中两个数之间,例如B3和B4之间,则X1,Y1所处的结果如图9所示,图9中C1-C5为已知测到的工艺结果数据,(X1,Y1)对应的周边除(A3,B3)外其余3个点的坐标分别为(A2,B3)、(A2,B4)、(A3,B4),假设这3个点的工艺数据分别为P1,P2,P3,则进行如下计算:P1=(C2+C3)/2,P2=(P1+P3)/2,P3=(C3+C4)/2,则(X1,Y1)处的工艺数据P=(P1+P2+P3+C3)/4=(3×C2+22×C3+3×C4)/16。
之后,再从上述6个工艺结果中找出工艺结果的极值(该极值是温度最高的位置处对应的工艺结果的值,不一定是真实的数值最大值,因为有些工艺是温度越高,工艺结果越小的),假设极值为第一个补偿加热器所对应的位置处,分别计算其余5个补偿加热器对应的位置处的工艺结果与前述极值的差值,分别假设为PE1,PE2,…,PE5。由于补偿加热器只能进行升温补偿,后续补偿中保持第一个补偿加热器处于关闭状态,通过打开其他5个补偿加热器对各自对应的位置进行温度补偿。在温度控制过程中,将PE1-PE5分别代入上述5个补偿加热器各自的影响函数关系Pn=k1×T2+k2×T+k3中, 得到其余5个补偿加热器各自的输出功率T1-T5,将功率数据发给控制部,控制PWM执行器按照该输出功率控制对应的补偿加热器工作。
之后,对晶圆上的工艺结果进行再次收集,以确认上述控制方式是否可以使晶圆的均匀性得到满足,如果可以,则在量产工艺过程中,即可利用上述控制方法对静电卡盘装置进行控制,如果不可以,则通过再次取值的方式,得到新的影响函数。
如图10所示,通过对晶圆上的多个位置(即,测温点位置)的温度进行测量,可以发现,在采用上述控制方法对静电卡盘装置的加热过程进行控制之后,晶圆上不同位置处的温度(即,测温点温度)之间的差值明显减小,晶圆上的温度均匀性得到显著提升,进而可以保证晶圆的工艺均匀性得到较大提升。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种静电卡盘装置,用于半导体设备,其特征在于,所述静电卡盘装置包括自下而上依次设置的装置基体、加热层以及用于承载晶圆的绝缘吸附层,所述绝缘吸附层中设置有吸附电极,所述吸附电极用于吸附所述晶圆;所述加热层中设置有至少两个主加热器,所述主加热器用于加热所述绝缘吸附层承载的所述晶圆;所述静电卡盘装置还包括控制器,所述绝缘吸附层中还设置有多个补偿加热器,多个所述补偿加热器均与所述吸附电极绝缘设置,且多个所述补偿加热器均与所述控制器电连接,所述控制器用于控制各所述补偿加热器的开启或关断,以及控制各所述补偿加热器的功率。
  2. 根据权利要求1所述的静电卡盘装置,其特征在于,所述绝缘吸附层包括自下而上依次设置的第一绝缘子层、第二绝缘子层和第三绝缘子层,所述吸附电极设置于所述第三绝缘子层和所述第二绝缘子层之间,形成吸附子层,多个所述补偿加热器均设置于所述第二绝缘子层和所述第一绝缘子层之间,形成补偿加热层。
  3. 根据权利要求2所述的静电卡盘装置,其特征在于,所述补偿加热器包括丝网印刷形成的金属电阻加热器,所述补偿加热器的线缆穿过所述装置基体和所述加热层,且引出至所述装置基体之外。
  4. 根据权利要求1-3中任意一项所述的静电卡盘装置,其特征在于,所述补偿加热器的数量大于等于10且小于等于100。
  5. 根据权利要求3所述的静电卡盘装置,其特征在于,多个所述补偿加热器组成中心补偿区和多个环形补偿区,多个环形补偿区呈同心环分布,且均以所述中心补偿区的中心为圆心环绕于所述中心补偿区周围;任一环形 补偿区均包括多个所述补偿加热器;所述中心补偿区包括一个所述补偿加热器。
  6. 根据权利要求1所述的静电卡盘装置,其特征在于,所述控制器包括相互连接的控制部和多个执行部,各所述补偿加热器与各所述执行部一一对应地连接,所述控制部通过所述执行部控制对应的所述补偿加热器输出目标功率。
  7. 根据权利要求6所述的静电卡盘装置,其特征在于,所述执行部包括脉冲宽度调制执行器。
  8. 根据权利要求6所述的静电卡盘装置,其特征在于,所述静电卡盘装置还包括滤波器,各所述补偿加热器与对应的所述执行部之间均连接有所述滤波器。
  9. 一种温度控制方法,其特征在于,所述温度控制方法应用于权利要求1-8任一所述的静电卡盘装置,所述静电卡盘装置用于承载并加热晶圆,所述温度控制方法包括:
    S1、建立工艺步骤与目标补偿加热器之间的对应关系,其中,所述目标补偿加热器为进行各所述工艺步骤时,多个所述补偿加热器中除多个原始工艺结果的极值所在位置对应的所述补偿加热器之外的其余所述补偿加热器,所述原始工艺结果为在保持所述加热层中的所述至少两个主加热器开启,且保持各所述补偿加热器均关闭的状态下,进行各所述工艺步骤的所述晶圆上与多个所述补偿加热器对应的位置处的工艺结果,在所述工艺结果与所述晶圆上对应位置处的温度呈正相关的情况下,所述极值为最大值,在所述工艺结果与所述晶圆上对应位置处的温度呈负相关的情况下,所述极值为最小值;
    S2、获取即将进行的工艺步骤,控制所述加热层中的各所述主加热器开启,且根据所述对应关系,控制与即将进行的所述工艺步骤对应的各所述目标补偿加热器开启。
  10. 根据权利要求9所述的温度控制方法,其特征在于,所述S2包括:
    获取即将进行的工艺步骤,控制所述加热层中的各所述主加热器开启,且根据所述对应关系和开启比例,控制与即将进行的所述工艺步骤对应的各所述目标补偿加热器以目标功率开启;其中,多个所述原始工艺结果中的所述极值与各所述目标补偿加热器对应的原始工艺结果之间的差值均为待补偿值,所述目标功率为所述开启比例与所述待补偿值的乘积。
  11. 根据权利要求9所述的温度控制方法,其特征在于,所述S2包括:
    获取即将进行的工艺步骤,控制所述加热层中的各所述主加热器开启,且根据所述对应关系、待补偿值和影响函数,控制与即将进行的所述工艺步骤对应的各所述目标补偿加热器以目标功率开启;其中,所述待补偿值为多个所述原始工艺结果中的所述极值与各所述目标补偿加热器对应的原始工艺结果之间的差值,所述影响函数为各所述目标补偿加热器分别工作于多个不同的开启功率的情况下,所述开启功率与所述晶圆上与所述目标补偿加热器对应的位置处的工艺结果形成的函数关系。
  12. 根据权利要求9所述的温度控制方法,其特征在于,所述S2包括:
    在进行即将进行的工艺步骤之前,开启所述加热层中的各所述主加热器,且基于所述对应关系开启对应的目标补偿加热器;
    在晶圆上与多个所述补偿加热器对应的位置处的工艺结果中任意两者之间的差值均小于预设值的情况下,获取即将进行的工艺步骤,控制所述加热层中的各所述主加热器开启,且根据所述对应关系,控制与即将进行的所述工艺步骤对应的各所述目标补偿加热器开启。
  13. 根据权利要求9所述的温度控制方法,其特征在于,所述晶圆上与至少一个所述补偿加热器对应的位置处的工艺结果为所述晶圆上围绕所述位置的多个其他位置处的工艺结果的均值。
PCT/CN2023/072018 2022-01-21 2023-01-13 静电卡盘装置和温度控制方法 WO2023138489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210074039.2 2022-01-21
CN202210074039.2A CN114496889A (zh) 2022-01-21 2022-01-21 静电卡盘装置和温度控制方法

Publications (1)

Publication Number Publication Date
WO2023138489A1 true WO2023138489A1 (zh) 2023-07-27

Family

ID=81473191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072018 WO2023138489A1 (zh) 2022-01-21 2023-01-13 静电卡盘装置和温度控制方法

Country Status (3)

Country Link
CN (1) CN114496889A (zh)
TW (1) TW202331928A (zh)
WO (1) WO2023138489A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496889A (zh) * 2022-01-21 2022-05-13 北京北方华创微电子装备有限公司 静电卡盘装置和温度控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201523786A (zh) * 2013-10-25 2015-06-16 Tokyo Electron Ltd 溫度控制機構、溫度控制方法及基板處理裝置
CN106935468A (zh) * 2015-12-31 2017-07-07 中微半导体设备(上海)有限公司 一种半导体处理器及用于半导体处理器的多区控温加热器
CN107004626A (zh) * 2014-11-20 2017-08-01 住友大阪水泥股份有限公司 静电卡盘装置
CN111446198A (zh) * 2020-03-23 2020-07-24 北京北方华创微电子装备有限公司 静电卡盘及其控制方法
CN111490000A (zh) * 2020-04-17 2020-08-04 北京北方华创微电子装备有限公司 静电卡盘及半导体加工设备
CN114496889A (zh) * 2022-01-21 2022-05-13 北京北方华创微电子装备有限公司 静电卡盘装置和温度控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201523786A (zh) * 2013-10-25 2015-06-16 Tokyo Electron Ltd 溫度控制機構、溫度控制方法及基板處理裝置
CN107004626A (zh) * 2014-11-20 2017-08-01 住友大阪水泥股份有限公司 静电卡盘装置
CN106935468A (zh) * 2015-12-31 2017-07-07 中微半导体设备(上海)有限公司 一种半导体处理器及用于半导体处理器的多区控温加热器
CN111446198A (zh) * 2020-03-23 2020-07-24 北京北方华创微电子装备有限公司 静电卡盘及其控制方法
CN111490000A (zh) * 2020-04-17 2020-08-04 北京北方华创微电子装备有限公司 静电卡盘及半导体加工设备
CN114496889A (zh) * 2022-01-21 2022-05-13 北京北方华创微电子装备有限公司 静电卡盘装置和温度控制方法

Also Published As

Publication number Publication date
CN114496889A (zh) 2022-05-13
TW202331928A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
KR101691044B1 (ko) 기판의 표면에 걸친 온도 프로파일을 방사상으로 튜닝하는 정전 척 시스템 및 방법
WO2023138489A1 (zh) 静电卡盘装置和温度控制方法
KR102084808B1 (ko) 반도체 프로세싱을 위한 ac 또는 dc 구동을 사용하는 멀티플렉싱된 가열기 어레이
JP5836959B2 (ja) 基板支持アセンブリにおけるヒータに電力を供給する方法、および、半導体基板支持体
CN102106191B (zh) 具有可控制分配rf功率至制程套组环的等离子体反应器的工件支撑件
JP2019208024A (ja) 端部均一性制御のための可調整チューニングリングを有するプロセスキット
JP5324251B2 (ja) 基板保持装置
KR20160104104A (ko) 반도체 처리를 위한 다이오드 평탄한 히터존들을 갖는 가열 플레이트
KR102641440B1 (ko) 온도 튜닝가능 다중-구역 정전 척
JPH09148420A (ja) 静電吸着電極およびその製作方法
TWI751340B (zh) 電漿處理方法
US20220319898A1 (en) Electrostatic chuck
TWI738309B (zh) 電漿處理裝置
JPH09260472A (ja) 静電チャック
JPH09293775A (ja) 静電チャック
WO2021214854A1 (ja) プラズマ処理装置およびプラズマ処理方法
KR20190005441A (ko) 액상 접합법을 이용한 세라믹 정전척의 제조방법
KR20160032734A (ko) 플라즈마 에칭장치용 일렉트로드의 결합구조 및 결합방법
TW202147383A (zh) 基材處理設備
TW202403875A (zh) 電漿處理裝置
TW202133301A (zh) 多區靜電吸盤
JPH07183181A (ja) 陽極接合装置および陽極接合方法
JPH03188645A (ja) 静電チャック電極
JP2023550342A (ja) 静磁場を使用するプラズマ一様性制御
JP2011096949A (ja) 加熱装置および積層電子デバイス装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742804

Country of ref document: EP

Kind code of ref document: A1