WO2023138442A1 - 气雾生成装置 - Google Patents

气雾生成装置 Download PDF

Info

Publication number
WO2023138442A1
WO2023138442A1 PCT/CN2023/071621 CN2023071621W WO2023138442A1 WO 2023138442 A1 WO2023138442 A1 WO 2023138442A1 CN 2023071621 W CN2023071621 W CN 2023071621W WO 2023138442 A1 WO2023138442 A1 WO 2023138442A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
sheet
aerosol
wire
generating device
Prior art date
Application number
PCT/CN2023/071621
Other languages
English (en)
French (fr)
Inventor
武建
张淑媛
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023138442A1 publication Critical patent/WO2023138442A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the embodiments of the present application relate to the technical field of heat-not-burn smoking appliances, and in particular to an aerosol generating device.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • a heating device which releases a compound by heating rather than burning a material.
  • the material may be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • the CN202010054217.6 patent proposes to use a heater with a spiral heating wire encapsulated in the outer sleeve to heat the tobacco product to generate an aerosol.
  • One embodiment of the present application provides an aerosol generating device configured to heat an aerosol generating product to generate an aerosol; comprising:
  • a heater for heating an aerosol-generating article comprising a resistive heating element having at least two resistive heating layers formed by winding or folding a sheet comprising a resistive metal or alloy.
  • the sheet comprises a foil layer of a resistive metal or alloy.
  • the sheet comprises:
  • a stress compensating layer bonded to said resistive metal or alloy foil layer, for providing stress compensation during winding or folding of said sheet to prevent cracking or shattering of said resistive metal or alloy foil layer.
  • the resistive metal or alloy foil layer has a thickness of 0.5-200 ⁇ m.
  • the resistance heating layer is configured to generate Joule heat to generate heat when a direct current flows through the resistance heating layer.
  • the heater also includes:
  • An insulating layer is formed between two adjacent resistance heating layers to provide insulation between two adjacent resistance heating layers.
  • the sheet is continuous.
  • said at least two resistive heating layers are connected in series.
  • the resistive heating element is formed by wrapping or folding the sheet material on a rigid substrate.
  • the rigid substrate comprises ceramic or surface insulating metal.
  • the heater also includes:
  • the first wire and the second wire are used to power the resistance heating element.
  • the resistance heating element is formed by winding the sheet around the first wire as an axis.
  • the first wire has a larger diameter than the second wire.
  • the first wire has a diameter of 0.5-1.5 mm.
  • said resistive heating element is a cylindrical shape formed by winding said sheet material
  • the first wire is at least partially within the resistive heating element, and the second wire is located outside the resistive heating element.
  • the heater is configured as a sheet extending at least partly in the chamber, and has a first side and a second side opposite along the thickness direction; the first wire is located on the first side, and the second wire is located on the second side.
  • the first wire includes a first thermocouple wire
  • the second wire includes a second thermocouple wire
  • the first thermocouple wire and the second thermocouple wire have different thermocouple materials, so as to form a thermocouple for measuring the temperature of the resistance heating element between the first wire and the second wire.
  • said resistive heating element comprises a plurality of resistive conductor paths formed on said at least two resistive heating layers.
  • said plurality of resistive conductor paths are defined by holes or slits or cutouts formed in said at least two resistive heating layers.
  • the plurality of resistive conductor paths are connected in series or in parallel.
  • the heater also includes:
  • a housing extends at least partially within the chamber and is adapted to be inserted into the aerosol-generating article; the resistive heating element is housed or retained within the housing.
  • the heater includes: a first wire and a second wire for powering the resistance heating element;
  • the shell has a notch extending along the length direction; the first wire is at least partially located in the shell, and the second lead is at least partially held in the notch.
  • the heater is configured as a sheet extending at least partially in the chamber
  • the at least two resistance heating layers are arranged at intervals along the thickness direction of the heater.
  • the resistance heating element also includes:
  • a connection portion extends between two adjacent resistive heating layers along the thickness direction of the heater to provide a conductive connection between two adjacent resistive heating layers.
  • the connecting portion is located on at least one side of the heater in the width direction.
  • the sheet is provided with several holes, hollows or slits, so that the sheet forms a grid pattern.
  • the heater also includes:
  • a temperature sensor for sensing the temperature of the resistive heating element.
  • the heater is configured as a sheet extending at least partially in the chamber; the heater has a slit or a hollow penetrating through the thickness direction, and the temperature sensor is accommodated in the slit or hollow.
  • the heater is configured as a sheet extending at least partially in the chamber
  • the resistance heating element is formed by folding the sheet material back and forth along the width direction of the heater.
  • the resistance value of the resistance heating element is between 0.1-5.0 ⁇ .
  • Yet another embodiment of the present application also proposes a heater for an aerosol generating device, the heater comprising a resistive heating element having at least two resistive heating layers capable of conducting current on a power supply path of the resistive heating element in use; the resistive heating element is formed by winding or folding a sheet comprising a resistive metal or alloy.
  • the resistance heating element of the heater is formed by winding or folding a sheet, which is more convenient than the spiral heating wire prepared by winding a wire.
  • an aerosol generating device configured to heat an aerosol generating product to generate an aerosol; comprising:
  • a magnetic field generator for generating a changing magnetic field
  • a heater for heating an aerosol-generating article includes an induction heating element that is penetrated by a changing magnetic field to generate heat, and the induction heating element has at least two induction heating layers formed by winding or folding a sheet including a sensitive metal or alloy.
  • the heater penetrated by the magnetic field to generate heat is formed by winding or folding a sensitive metal or alloy sheet, which is more convenient for preparation.
  • Fig. 1 is a schematic diagram of an aerosol generating device provided by an embodiment
  • Figure 2 is a schematic diagram of a heater of one embodiment
  • Fig. 3 is a schematic diagram of another viewing angle of the resistance heating element in Fig. 2;
  • Fig. 4 is a schematic diagram of the sheet before the resistance heating element in Fig. 3 is wound;
  • Fig. 5 is the schematic diagram of the sheet material of still another embodiment
  • Fig. 6 is the schematic diagram of the sheet material of another embodiment
  • Fig. 7 is the schematic diagram of the shell of still another embodiment
  • Fig. 8 is a schematic diagram of winding a sheet on a sheet substrate in yet another embodiment
  • Fig. 9 is a schematic diagram of a heater in another embodiment.
  • Figure 10 is a schematic diagram of the sheet before the resistance heating element in Figure 9 is folded;
  • Fig. 11 is a schematic diagram of a sheet before folding in another embodiment
  • Fig. 12 is a schematic diagram of another embodiment of the heater before folding
  • Fig. 13 is a schematic diagram of a sheet before folding in another embodiment
  • Fig. 14 is a schematic diagram of an aerosol generating device in another embodiment
  • Fig. 15 is a sectional view of another viewing angle of the heater in Fig. 14;
  • Fig. 16 is a schematic diagram of an aerosol generating device provided by another embodiment
  • Fig. 17 is a schematic diagram of an aerosol generating device provided by another embodiment
  • Figure 18 is a schematic illustration of the sheet before being rolled or folded in one embodiment.
  • An embodiment of the present application proposes an aerosol generating device, the structure of which can be seen in Figure 1, including:
  • the aerosol-generating article A in use, is removably received in the chamber through the opening 40 of the chamber;
  • a heater 30 extending at least partially within the chamber, inserted into the aerosol-generating article A for heating when the aerosol-generating article A is received in the chamber, thereby causing the aerosol-generating article A to release a plurality of volatile compounds formed only by heat treatment;
  • the electric core 10 is used for power supply;
  • the circuit 20 is used to conduct current between the battery cell 10 and the heater 30 .
  • the heater 30 is generally in the shape of a pin or a needle or a rod or a rod or a column or a sheet or a plate, which is advantageous for being inserted into the aerosol generating product A; meanwhile, the heater 30 can have a length of about 12-20 mm and an outer diameter of about 2-4 mm.
  • the aerosol-generating product A preferably uses a tobacco-containing material that releases volatile compounds from the matrix when heated; or it can also be a non-tobacco material that is suitable for electric heating and smoking after heating.
  • the aerosol-generating product A preferably adopts a solid substrate, which may include one or more of powders, granules, shredded strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; or, the solid substrate may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the substrate is heated.
  • the heater 30 may generally include a resistive heating element, and an auxiliary substrate for assisting the resistive heating element in fixing preparation and the like.
  • the resistive heating element is in the shape or form of a helical coil.
  • the resistive heating element is in the form of a conductive trace bonded to the substrate.
  • the resistive heating element is in the shape of a foil.
  • FIG. 2 shows a schematic diagram of an embodiment of heater 30; in this embodiment heater 30 comprises:
  • the shell 32 extends between the free front end 310 and the end 320; the shape of the shell 32 is a pin or needle shape, and the material is ceramic or stainless steel; and the shell 32 is obtained by molding or machining; there is a hollow 321 extending along the length direction and terminating at the end 320 in the shell 32;
  • the resistance heating element 31 is accommodated and held in the hollow 321 of the shell 32;
  • the first wire 341 and the second wire 342 are connected to the resistance heating element 31 for supplying power to the resistance heating element 31 .
  • the resistance heating element 31 is a cylindrical or tubular shape obtained by winding a sheet 3110 comprising a resistive metal or alloy; the winding resistance heating element 31 has at least two winding resistance heating layers 30 .
  • the resistive metal or alloy includes at least one of nickel, cobalt, zirconium, titanium, nickel alloy, cobalt alloy, zirconium alloy, titanium alloy, nickel-chromium alloy, nickel-iron alloy, iron-chromium alloy, iron-chromium-aluminum alloy, titanium alloy, iron-manganese-aluminum alloy or stainless steel.
  • At least one side surface of the resistive metal or alloy sheet 3110 coiled resistive heating element 31 is provided with an insulating layer or insulating material to provide insulation and prevent contact shorting between adjacent coiled layers in the coil.
  • Insulating layer or insulating material such as high temperature resistant inorganic glue ⁇ glaze, etc.
  • the sheet 3110 that is rolled to form the resistive heating element 31 is a foil of a resistive metal or alloy.
  • the resistive metal or alloy foil has a thickness of about 0.5-200 ⁇ m; more preferably about 10-30 ⁇ m.
  • the sheet material 3110 wound to form the resistance heating element 31 is a composite layer sheet of at least two layers; in a specific implementation, the sheet material 3110 wound to form the resistance heating element 31 includes:
  • the stress compensation layer is hard, such as glaze, glass, ceramics, etc., to enhance the strength or toughness of the sheet, so as to prevent the sheet from cracking or breaking during the winding process.
  • the stress compensating layer is a flexible layer; in particular the stress compensating layer is a flexible polymeric material; eg polyimide, free polypropylene, polyethylene, and the like.
  • the stress compensation layer has the same thickness as the metal or alloy layer; the stress compensation layer is formed on at least one side surface of the metal or alloy layer through coating or deposition.
  • the resistance heating element 31 is formed by at least two windings of the above sheet material 3110, and further includes at least two resistance heating layers 330; in a preferred implementation, the resistance heating element 31 includes about 2-20 windings.
  • the resistance heating element 31 is spirally wound from the inside to the outside by the sheet material 3110; counting from the innermost first wire 341, when it is wound around the first wire 341 every 360 degrees, it is one winding, and forms a resistance heating layer 330.
  • the resistive heating element 31 has five resistive heating layers 330 that are wound.
  • the resistance heating layer 330 of the resistance heating element 31 is configured to generate Joule heat to generate heat when a direct current flows through the resistance heating element 31 .
  • the sheet 3110 of the resistance heating element 31 before winding is in the shape of a rectangle; the first wire 341 is fixedly connected to one side of the resistance heating element 31 along the length direction by welding or crimping, and the second wire 342 is fixedly connected to the other side of the resistance heating element 31 along the length direction by welding or crimping. And the first wire 341 and the second wire 342 both extend along the width direction of the resistance heating element 31b, and the first wire 341 and the second wire 342 are at least partly located outside the resistance heating element 31 to facilitate connection with the circuit 20 .
  • the sheet 3110 is wound with one of the first wire 341 or the second wire 342 in FIG. 4 as the central axis, and after winding, the wound rod-shaped or cylindrical resistance heating element 31 shown in FIG. 3 can be obtained.
  • the first wire 341 and/or the second wire 342 as the winding central axis has a diameter and strength greater than that of a normal wire.
  • the first wire 341 has a diameter greater than that of the second wire 342; in some specific implementations, the second wire 342 can have a diameter of about 0.1-0.3 mm; the first wire 341 has a diameter of 0.5-1.5 mm, making it stronger than conventional copper wires and silver-plated nickel wires; Greater intensity.
  • the holes or hollows 311 a are provided on the sheet 3110 a wound to form the resistance heating element 31 , so as to increase the resistance value of the resistance heating element 31 .
  • the coiled resistance heating element 31 is cylindrical or tubular with at least two coiled layers to increase the resistance value.
  • the holes or cutouts 311a are arranged in a regular matrix; and the holes or cutouts 311a are formed by etching or the like, having a circular shape.
  • the holes or hollows 311a may be in more shapes such as squares, polygons, etc., so that the sheet 3110a has a mesh pattern.
  • Fig. 6 shows a schematic diagram of the resistive heating element 31 before winding the sheet 3110b in yet another variant implementation. Both ends of the sheet 3110b in the length direction are provided with first wires 341b and second wires 342b; and, the sheet 3110b is sequentially arranged with a first side portion 311b, a central portion 313b and a second side portion 312b along the length direction.
  • the extension length of the central part 313b is greater than that of the first side part 311b and the second side part 312b, and the width dimension d2 of the central part 313b is smaller than the width dimension d1 of the first side part 311b and the second side part 312b; furthermore, through the above shape setting, the resistance of the sheet 3110b is increased and heat is concentrated in the central part 313b as much as possible, and the first side part 311b and the second side part 312b are used for winding and power supply.
  • FIG. 7 shows a schematic diagram of a preferred embodiment of a housing 32a of another preferred embodiment; the housing 32a is in the shape of a pin or a needle, and has an axially extending hollow 321a; the hollow 321a forms an opening towards the end 320a.
  • the wall of the housing 32a is provided with a notch 322a extending along the length direction to the end 320a.
  • the first wire 341/341a/341b at one end of the above sheet 3110/3110a/3110b is inserted into the hollow 321a of the shell 32a from the gap 322a; 41a/341b is the central axis and is wound until the second wire 342a also enters the hollow 321a and the winding is completed, that is, the heater 30 of this embodiment is prepared.
  • the first wire 341/341a/341b is first inserted into the hollow 321b of the shell 32b from the notch 322a, and the sheet material 3110/3110a/3110b is wound until the second wire 342/342a/342b enters the gap 322a and stops winding; and the second wire 342/342a is welded by solder welding, laser welding, etc.
  • /342b is integrally connected with the wall of the shell 32a in the gap 322a, and makes the second wire 342/342a/342b cover or shield the gap 322a of the shell 32a. Therefore, the surface of the heater 30 is sealed or closed to prevent aerosol, aerosol condensate or organic residue from the aerosol generating product A from entering the housing 32a through the gap 322a.
  • a coating can also be dipped or deposited on the surface of the shell 32a to cover or cover the gap between the second wire 342/342a/342b and the gap 322a, so as to prevent aerosol condensate or organic residue from entering the shell 32a.
  • FIG. 8 shows a schematic diagram of forming a sheet-shaped heater 30 by winding a sheet 3110e in yet another variant implementation; in this implementation, by winding the sheet 3110e on a rigid sheet-shaped substrate 35e, the sheet-shaped heater 30 is formed after winding.
  • the first wire 341e and the second wire 342e on both sides of the sheet 3110e supply power to the heater 30 after being wound.
  • the base body 35e may include ceramics, surface insulating metal, or the like.
  • FIG. 9 shows a schematic diagram of a heater 30 in another embodiment; the heater 30 is configured as a sheet, and has a length L1 between 12-20 mm, a width L2 between 3-6 mm, and a thickness L3 between 0.3-1 mm.
  • the heater 30 has a free front end 310c and an end 320c facing away from each other along the length direction; in practice, the free front end 310c is located or exposed in the chamber, so as to be inserted into the aerosol generating product A received in the chamber for heating; the end 320c is used for assembly and fixing in the aerosol generating device.
  • the free front end 310 c of the heater 30 is a tapered tip, which is advantageous for insertion into the aerosol generating article A .
  • the heater 30 includes at least two or more resistive heating layers 31c, and Joule heat is generated to generate heat when a direct current is provided to flow through the resistive heating layers 31c.
  • the resistance heating layer 31c is a thin layer made of a suitable metal or alloy material; for example, the resistance heating layer 31c includes at least one of nickel, cobalt, zirconium, titanium, nickel alloy, cobalt alloy, zirconium alloy, titanium alloy, nickel-chromium alloy, nickel-iron alloy, iron-chromium alloy, iron-chromium-aluminum alloy, titanium alloy, iron-manganese-aluminum-based alloy or stainless steel. And, the resistance heating layer 31c has a thickness of about 0.5 ⁇ 200 ⁇ m; more preferably, a thickness of about 10 ⁇ 30 ⁇ m.
  • the heater 30 further includes: a first wire 341c and a second wire 342c for supplying power to the heater 30 .
  • both the first wire 341c and the second wire 342c are connected to the heater 30 near the end 320c.
  • the heater 30 also includes a layer 32c positioned between adjacent resistive heating layers 31c.
  • the layer 32c is made of an insulating material such as glass glaze, ceramics, polymer, etc., to provide insulation and/or support between adjacent resistance heating layers 31c; for example, the layer 32c is formed between corresponding adjacent resistance heating layers 31c by electroplating, deposition, coating, spraying, etc. In particular, any of these layers 32c may be applied between respective adjacent resistive heating layers 31c by spraying, dipping, rolling, electroplating or cladding.
  • an insulating material such as glass glaze, ceramics, polymer, etc.
  • Layer 32c may have a greater thickness or hardness than resistive heating layer 31c, which helps provide heater 30 with sufficient mechanical strength.
  • the plurality of resistive heating layers 31c in the heater 30 are connected to the circuit 20 independently of each other and operated independently by the circuit 20 .
  • multiple resistive heating layers 31c in the heater 30 are connected in parallel, and are operated simultaneously or independently by the circuit 20 .
  • the multiple resistance heating layers 31c in the heater 30 are sequentially connected in series along the thickness direction.
  • the first wire 341c is connected to the resistance heating layer 31c located at the outermost layer on one side in the thickness direction
  • the second wire 342c is connected to the resistance heating layer 31c located at the other outermost layer in the thickness direction.
  • a plurality of resistive heating layers 31c are arranged between the first wire 341c and the second wire 342c in the thickness direction of the heater 30.
  • the heater 30 includes 2-7 resistive heating layers 31c.
  • the heater 30 also includes an electrode 33c, which is made of a metal or alloy with good electrical conductivity and low resistivity such as gold, silver, copper or their alloy materials. At least one of patch electrodes, plate electrodes, track-type electrodes, printed or printed or sprayed or deposited electrode coatings.
  • the electrode 33c is bonded to the resistance heating layer 31c and conducts with each other.
  • the first wire 341c and the second wire 342c are connected to the electrode 33c by welding or other means to indirectly conduct with the resistance heating layer 31c, thereby supplying power to the resistance heating layer 31c.
  • the electrodes 33c are formed at least on the outermost resistive heating layer 31c located on both sides in the thickness direction; and, the electrodes 33c are arranged close to the end 320c.
  • the multiple resistive heating layers 31c of the heater 30 are formed by folding a continuous sheet.
  • FIG. 10 shows a schematic view of a sheet 3110c of a heater 30 having a plurality of resistive heating layers 31c before being folded in one embodiment.
  • the multiple resistance heating layers 31c of the sheet material 3110c before folding in Fig. 10 are sequentially connected along the length direction, specifically:
  • the resistance heating layer 31c is arranged along the width direction of the sheet 3110c; the resistance heating layer 31c is provided with a slit or hollow 311c extending along the length direction of the resistance heating layer 31c; in practice, the slit or hollow 311c has a width of about 0.2-1.0mm and a length of about 8-12mm; 1c is divided into a first part 312c and a second part 313c located on both sides of the slit or hollow 311c;
  • connection portion 315c between two adjacent resistance heating layers 31c, so that the two adjacent resistance heating layers 31c are connected.
  • the connecting portion 315c is positioned between the second portion 313c of the previous resistance heating layer 31c and the first portion 312c of the next resistance heating layer 31c, so that the plurality of resistance heating layers 31c in the sheet 3110c are sequentially formed in series.
  • connection portion 315c is about 3-5mm, and the width is about 0.5-1.0mm; the connecting portion 315c is close to the end 320c. Then, the connection portion 315c further defines a slit or hollow 314c extending to the front end between adjacent resistance heating layers 31c, so that the adjacent resistance heating layers 31c are only connected at the connection portion 315c, and are not connected at the slit or hollow 314c. And in the heater 30 formed after being folded, the connection portions 315c are alternately formed on both sides of the heater 30 in the width direction.
  • the width of the slot or cutout 314c is greater than the width of the slot or cutout 311c.
  • the U-shaped current path flowing through the resistance heating layer 31c is defined by the slit or the hollow 311c.
  • the first wire 341c is connected to the first portion 312c of the resistance heating layer 31c at one end
  • the second wire 342c is connected to the second portion 313c of the resistance heating layer 31c at the other end, forming the current i flowing through the plurality of resistance heating layers 31c sequentially in FIG. 10 during use.
  • the first part 312c and the second part 313c connected in sequence end to end jointly define a plurality of series resistance conductor paths of the current path.
  • the space defined by the above slit or hollow 311c of the heater 30 is used for installing a temperature sensor (not shown in the figure) for sensing the temperature of the heater 30 .
  • Temperature sensors such as PT1000, J-type thermocouple, etc.
  • the temperature sensor is located in the slit or hollow 311c of the resistance heating layer 31c near the outer surface in the thickness direction; it is more convenient for assembly.
  • the shapes of the plurality of resistive heating layers 31c in the sheet 3110c are substantially identical, and the ends of the resistive heating layers 31c near the free front end 310c are pointed.
  • the plurality of resistive heating layers 31c are folded back and forth in the width direction in the manufacture of the heater 30 .
  • the above sequentially connected multiple resistance heating layers 31c are obtained by etching the positions where slits or hollows 311c and slits or hollows 314c need to be formed by rectangular metal and alloy foils or sheets, and removing excess parts.
  • the above sheet 3110c is formed with a coated electrode 33c at the end of the resistance heating layer 31c near the end 320c by printing, spraying or deposition, etc., to reduce the contact resistance and heat accumulation of the first wire 341c and/or the second wire 342c connected to the resistance heating layer 31c such as welding.
  • the electrode 33c is made of low-resistivity gold, silver, copper or their alloy materials. Of course, the resistivity of the electrode 33c is smaller than that of the resistive heating layer 31c.
  • FIG. 11 shows a schematic diagram of a sheet 3110d in another variation embodiment; in this embodiment, the sheet 3110d also includes a plurality of resistance heating layers 31d connected in sequence, and the heater 30 is formed after being folded; During assembly, the first extension part 341d and the second extension part 342d can be directly connected to the circuit 20 as positive and negative poles respectively, and then the circuit 20 can directly supply power through the first extension part 341d and the second extension part 342d.
  • the first extension portion 341d is formed by extending the first portion 312d of the resistance heating layer 31d located at one end of the sheet 3110d; and the second extension portion 342d is formed by extending the second portion 313d of the resistance heating layer 31d located at the other end of the sheet 3110d.
  • FIG. 12 shows a schematic diagram of yet another embodiment of the heater 30 before folding; the heater 30 in FIG. 12 includes:
  • Sheet-shaped or plate-shaped substrate 35f can be a heat-shrinkable organic polymer, or insulating ceramics, surface oxidized metal, etc.; the shape of the substrate 35f is pointed at the end near the free front end;
  • the first electrode 36f is formed on both sides of the substrate 35f by coating or spraying;
  • FIG. 12 shows the part of the first electrode 36f located on the surface shown, and it can be understood that the first electrode 36f also has a part located on the back of the surface shown;
  • the sheet 3120f has at least two resistive heating layers 31f.
  • the resistance heating layer 31f of the sheet 3110f is sequentially folded back and forth along the width direction and bonded to one surface of the substrate 35f in the thickness direction; and the resistance heating layer 31f of the sheet 3120f is sequentially folded back and forth along the width direction and bonded to the other surface of the substrate 35f in the thickness direction.
  • connection portion 315f is provided between the adjacent resistance heating layers 31f in the sheet 3110f and/or the sheet 3120f, and the conductive layers are sequentially connected through the connection portion 315f.
  • the above layer 32c is formed between the resistance heating layer 31f of the folded sheet 3110f and/or sheet 3120f for providing support and/or insulation.
  • the first part 312f of the outermost resistance heating layer 31f in the sheet 3110f is provided with a first wire 341f indirectly conducted through the electrode 331f; and the second part 313f of the outermost resistance heating layer 31f in the sheet 3120f is provided with a second wire 342f indirectly conducted through the electrode 333f.
  • the electrode 332f on the second part 313f of the innermost resistance heating layer 31f of the sheet 3110f is connected to the first electrode 36f to form a conduction
  • the electrode 334f on the innermost first part 312f of the sheet 3120f is connected to the first electrode 36f to form a conduction; then the sheet 3110f and the sheet 312
  • the plurality of resistive heating layers 31f in Of form a series connection between the first conductive line 341f and the second conductive line 342f.
  • a surface protection coating can also be formed by dipping, spraying, etc. to prevent corrosion or adhesion of the aerosol condensate or organic matter originating from the aerosol generating product A to the surface of the heater 30.
  • Surface protective coatings such as glass, metal oxide coatings, etc.
  • the heater 30 is prepared by stacking a plurality or several resistive heating layers 31c/31d/31f separated from each other. Correspondingly, after stacking, multiple or several separated resistance heating layers 31c/31d/31f are alternately soldered to adjacent resistance heating layers 31c/31d/31f on both sides of the heater 30 along the width direction, so that after stacking, the multiple or several separated resistance heating layers 31c/31d/31f are connected in series.
  • a layer 32 is provided between the laminated multiple or several resistance heating layers 31c/31d/31f that are separated from each other to provide support. And, there is an area not occupied by the layer 32c between a plurality or several resistance heating layers 31c/31d/31f separated from each other, and then the unoccupied area provides connection and conduction between adjacent resistance heating layers 31c/31d/31f.
  • map 13 shows a schematic diagram of the sheet 3110g before folding in yet another variant implementation;
  • the sheet 3110g is basically in the shape of a rectangle, and several slits or hollows 311g, and slits or hollows 312g are formed on the sheet 3110g by etching or cutting to reduce the area of the sheet 3110g during power supply, thereby increasing the resistance of the heater 30.
  • the slits or cutouts 311g and/or the slits or cutouts 312g are in the shape of elongated strips extending across the width of the sheet 3110g.
  • slits or cutouts 311g and slits or cutouts 312g are arranged alternately/spaced along the length of the sheet 3110g. And, the slit or hollow 311g and the slit or hollow 312g are staggered along the length direction of the sheet 3110g; specifically in FIG.
  • a first wire 341g and a second wire 342g are also arranged on the sheet 3110g for power supply. And combined with the staggered arrangement of slits or hollows 311g and slits or hollows 312g, a detour current i flowing through the heater 30 in FIG. 13 is formed.
  • the heater 30 can be obtained by successively folding the sheet 3110g along the fold line m1 defined by the slit or hollow 311g or the fold line m2 defined by the slit or hollow 312g during production.
  • the surface of at least one side of the sheet 3110g is sprayed with insulating and supporting materials such as glaze and ceramics; so as to provide insulation or support between the folded resistance heating layers.
  • the coiled or folded resistance heating elements 31a/31c/31d/31f/31g above define a plurality of resistance conductor paths connected in series or in parallel with each other, thereby forming a reciprocating and circuitous current path, such as the current i shown, thereby increasing the path length of the current flowing through the heater 30 and increasing the resistance value of the resistance heating elements 31a/31c/31d/31f/31g. Further, the resistance value of the resistance heating element 31a/31c/31d/31f/31g is within a predetermined range, specifically, the resistance value of the resistance heating element 31a/31c/31d/31f/31g is controlled within 0.1-5.0 ⁇ .
  • a plurality of resistive conductor paths connected in series or in parallel with each other are defined by holes, slits or cutouts formed in the sheet 31a/3110c/3110d/3110f/3110g.
  • the plurality of series-connected resistive conductor paths collectively defined by the sequentially connected end-to-end first portion 312 c and the second portion 313 c are sequentially connected end-to-end.
  • the heater 30 formed by folding the sheet 3110c/3110d/3110g extends along the length of the slit or hollow 311c/311d/311g and is only partially interrupted by the slit or hollow 311c/311d/311g.
  • the heater 30 is penetrated by a slit or a hollow 311c in the thickness direction.
  • the space formed by the slit or hollow 311c is used to accommodate and install a temperature sensor for sensing the temperature of the heater 30 .
  • the above first wire used to supply power to the heater 30 is made of the first galvanic material, and the second wire is made of the second galvanic material; and the first galvanic material is different from the second galvanic material, then in use, a thermocouple for obtaining the temperature of the heater 30 by detecting the thermoelectric potential can be formed between the first wire and the second wire.
  • the first wire is prepared by using one of the galvanic materials such as nickel, nickel-chromium alloy, nickel-silicon alloy, nickel-chromium-copper, consonant bronze, and iron-chromium alloy
  • the second wire is prepared by using another galvanic material such as nickel, nickel-chromium alloy, nickel-silicon alloy, nickel-chromium-colcopper, constantan, and iron-chromium alloy.
  • the above heater 30 is independently formed from a sheet-wound or folded resistive heating element.
  • the resistive sheet or sheet is wound or folded to form a cylindrical, rod-shaped or sheet-shaped precursor, one end is pressed, polished, and pinned to form a tip for inserting into the aerosol-generating product A, and the heater 30 is obtained.
  • the obtained heater 30 can also form a surface protective coating by spraying, dipping, etc., so that the surface of the coiled or folded heater 30 can be sealed, preventing the resistance heating element from being corroded and preventing aerosols or organic substances from entering the resistance heating element from the surface of the heater 30.
  • Fig. 14 further proposes a schematic diagram of an aerosol generating device in another variation embodiment; according to Fig. 14, the aerosol generating device includes:
  • the aerosol-generating article A in use, is removably received in the chamber through the opening 40 of the chamber;
  • a heater 30h configured to be of tubular shape surrounding and bounding the chamber; and the heater 30h is configured to heat the aerosol-generating article A when the aerosol-generating article A is received in the chamber, thereby causing the aerosol-generating article A to release a plurality of volatile compounds formed solely by heat treatment;
  • the circuit 20 is used to conduct current between the battery cell 10 and the heater 30h.
  • the heater 30h is formed by at least two windings of the above resistive metal or alloy foil or thin sheet, and the heater 30h has at least two resistive heating layers 311h after winding.
  • the metal or alloy foil or sheet before winding may also have the above-described structures such as holes or slits to increase the resistance of the heater 30h.
  • the sheet material used to wind the heater 30h may be a single layer of resistive metal or alloy foil or sheet.
  • the sheet may be a composite ply sheet of at least two layers.
  • the sheet includes: a metal or alloy layer; and, a stress compensation layer, as well as being bonded to the metal or alloy layer; the stress compensation layer provides stress compensation for bending or twisting during winding to prevent the more brittle metal or alloy layer from cracking or breaking during winding.
  • Fig. 16 shows a schematic diagram of an aerosol generating device in another embodiment; in this embodiment, the aerosol generating device includes:
  • heater 30j in this embodiment configured as a pin or needle or rod or rod or the like extending at least partially within the chamber;
  • a magnetic field generator such as an induction coil 50j, is used to generate a changing magnetic field to induce heating of the heater 30j;
  • Bracket 40j defines the cavity, and is at least partially used to provide support for induction coil 50j and/or heater 30j.
  • the heater 30j includes an induction heating element, and the induction heating element is also coiled or folded from a metal or alloy sheet; of course, the heater 30j may also have a shell, a flange, etc., to facilitate the assembly and fixing of the induction heating element.
  • the induction heating element is obtained by winding a sensitive metal or alloy foil or sheet; a sensitive metal or alloy foil or sheet such as nickel foil, nickel-iron alloy foil, iron foil, etc.
  • the induction heating element of the heater 30j is first rolled or folded by a sensitive metal or alloy foil or thin sheet to form a cylinder, rod or sheet; then the heater 30j is obtained by accommodating and assembling the induction heating element through a shell or jacket with a tip. And, the induction heating element formed by winding or folding the foil or sheet of a sensitive metal or alloy has at least two induction heating layers.
  • At least two induction heating layers of the heater 30j are in contact with or against each other.
  • the heater 30j is independently manufactured by an induction heating element.
  • a tube-shaped, rod-shaped, or sheet-shaped induction heating element is formed by winding or folding a sensitive metal or alloy foil or sheet; then, one end is pressed, polished, and pinned to form a tip for inserting into the aerosol-generating product A to obtain the heater 30j.
  • the above heater 30j may also be configured to be wound and formed by a foil or thin sheet of a sensitive metal or alloy.
  • the heater 30j is configured in the shape of a tube or cylinder wound from a foil or sheet of a susceptible metal or alloy.
  • the tubular or cylindrical hollow of the wound heater 30j is then at least partially used to receive or contain the chamber of the aerosol-generating article A.
  • FIG. 17 shows a schematic diagram of an aerosol generating device in another embodiment, in which the aerosol generating device includes:
  • proximal end 110k and distal end 120k opposite lengthwise, and:
  • the heater 30k is configured to extend along the length direction of the aerosol generating device, and is located at or near the proximal end 110k; in shape, the heater 30k is configured as a longitudinally extending rod or rod or pin or sheet or tube, etc.
  • the aerosol generating product A can be inserted into the heater 30k at the proximal end 110k or accommodated in the heater 30k to be heated to generate an aerosol;
  • the circuit board 20k is used to control the electric core 10k to provide power to the heater 30 .
  • the heater 30k is substantially bare; thus in practice it is advantageous for the operation of incorporating the aerosol-generating article A to the heater 30k.
  • the aerosol generating device further includes a shield or a shielding wall for shielding the heater 30k, which is advantageous for preventing the user from touching or touching the heater 30k.
  • the shield or shielding wall is removably or movably coupled to the aerosol-generating device.
  • the heater 30k is selectively hidden or revealed by removal or movement.
  • the heater 30k can be a resistive heating element 31k formed by winding or folding a flexible sheet including metal.
  • FIG. 18 shows a schematic diagram of a sheet before winding or folding in an implementation, and the sheet includes:
  • a substrate 311k which is a foil or sheet of metal or alloy
  • spaced apart heating coatings or traces 312k are formed on a foil or sheet-like substrate 311k by printing, printing or depositing.
  • heating coating or track 312k is formed by the slurry of metal or alloy; And according to shown in Fig. 9, heating coating or track 312k is the elongated belt shape or strip shape or track shape etc. that extend along the width direction of substrate 311k;
  • the electrical connection with heating coating or 312K there is a long strip with a public electrode 3411k and extending the length direction of 311K in the base lining; Stack or connect to turn on; the public electrode 3411k is welded with the first wire 341K through the welding, and then connected to the circuit board 20K through the first wire 341K.
  • the right end of the heating coating or track 312k near the width direction of the substrate 311k is connected to the circuit board 20l by welding the second lead 342k respectively.
  • the common electrode 3411k is a coated electrode or patch electrode, etc.; the material of the common electrode 3411k is gold, silver, copper, etc. with low resistivity.
  • the common electrode 3411k includes silver, and the heating coating or trace 312k includes silver; and, the mass percent of silver in the common electrode 3411k is greater than the mass percent of silver in the heating coating or trace 312k.
  • the heating coatings or traces 312k are independently connected to the circuit board 20k through wires, so that the heating can be independently controlled by the circuit board 20k to heat different parts of the aerosol product.
  • the thermal conductivity of the heating coating or track 312k is greater than the thermal conductivity of the substrate 311k.
  • the thermal conductivity of the substrate 31k decreases layer by layer, which is beneficial to promote the balance of heat storage heating up and heat dissipation cooling.
  • the thermal conductivity of the heating coating or trace 312k is greater than 3 times the thermal conductivity of the substrate 311k.
  • the thermal conductivity of the heating coating or the track 312k is less than 10 times the thermal conductivity of the substrate 311k; more preferably, the thermal conductivity of the heating coating or the track 312k is less than 8 times the thermal conductivity of the substrate 311k; it is beneficial for the substrate 311k to effectively dissipate the heat of the heating coating or the track 312k and then cool the heating coating or the track 312k.
  • the heating coating or track 312k has a thermal conductivity greater than 350 W/mK; for example an alloy of silver with a thermal conductivity greater than 350 W/mK.
  • the thermal conductivity of the substrate 311k is between 40 ⁇ 110 W/mK.
  • the mass fraction of silver in the material of the heating coating or trace 312k is greater than 60%; and the thickness is less than 0.05mm, preferably 0.005-0.02mm, so that the heating coating or trace 312k has suitable resistance. More preferably, the mass fraction of silver in the material of the heating coating or track 312k is greater than 80%.
  • the substrate 311k includes metal or alloy, such as Fe-Cr-Al, Ni-Cr-Al.
  • the substrate 311k has a thickness lower than 0.15 mm, for example, a thickness of 0.05 ⁇ 0.15 mm.
  • the surface of the substrate 311k is provided with an insulating layer to provide insulation between the heating coatings or traces 312k.
  • the insulating layer on the surface of the metal or alloy substrate 311k is formed by thermal oxidation.
  • the iron-chromium-aluminum alloy is heated to 500 degrees or above in the air, and then the surface is oxidized to form a metal oxide film layer.
  • the thickness of the formed metal oxide film layer is within 10 nm, which does not affect heat conduction while providing insulation.
  • the heater 30k when wound from a sheet material into a pin or needle shape, may also include a housing 32k etc. to enclose and contain the resistance heating element 31k.
  • the resistance heating element 31k when wound or folded into a sheet from a sheet, it can be sprayed or treated directly on the surface.
  • the aerosol-generating article A is directly received into the inner hollow of the tubular shape of the resistive heating element 31k for heating.

Abstract

本申请提出一种气雾生成装置;其中,气雾生成装置包括:腔室,用于接收气溶胶生成制品;加热器,用于加热气溶胶生成制品;加热器包括电阻加热元件,该电阻加热元件具有由包括电阻性的金属或合金的片材卷绕或折叠形成的至少两个电阻加热层。以上气雾生成装置,加热器的电阻加热元件是由片材卷绕或折叠形成的,比通过导线缠绕制备的螺旋发热丝更加便利。

Description

气雾生成装置
相关申请的交叉参考
本申请要求于2022年01月24日提交中国专利局,申请号为202210078133.5,名称为“气雾生成装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及加热不燃烧烟具技术领域,尤其涉及一种气雾生成装置。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热装置,其通过加热而不是燃烧材料来释放化合物。例如,该材料可为烟草或其他非烟草产品,这些非烟草产品可包含或可不包含尼古丁。在已知的技术中,CN202010054217.6号专利提出以外套管内封装螺旋发热丝的加热器对烟草产品进行加热生成气溶胶。
申请内容
本申请的一个实施例提供一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶;包括:
腔室,用于接收气溶胶生成制品;和
加热器,用于加热气溶胶生成制品;所述加热器包括电阻加热元件,该电阻加热元件具有由包括电阻性的金属或合金的片材卷绕或折叠形成的至少两个电阻加热层。
在优选的实施中,所述片材包括电阻性的金属或合金的箔层。
在优选的实施中,所述片材包括:
应力补偿层,结合于所述电阻性的金属或合金箔层,用于在所述片材的卷绕或折叠中提供应力补偿以防止所述电阻性的金属或合金箔层 破裂或破碎。
在优选的实施中,所述电阻性的金属或合金的箔层具有0.5~200μm的厚度。
在优选的实施中,所述电阻加热层被配置为在直流电流流经该电阻加热层时产生焦耳热而发热。
在优选的实施中,所述加热器还包括:
绝缘层,形成于两个相邻的所述电阻加热层之间,以在两个相邻的所述电阻加热层之间提供绝缘。
在优选的实施中,所述片材是连续的。
在优选的实施中,所述至少两个电阻加热层是串联的。
在优选的实施中,所述电阻加热元件是由所述片材在刚性的基体上卷绕或折叠形成的。
在优选的实施中,所述刚性的基体包括陶瓷或表面绝缘金属。
在优选的实施中,所述加热器还包括:
第一导线和第二导线,用于对所述电阻加热元件供电。
在优选的实施中,所述电阻加热元件是由所述片材以所述第一导线为轴卷绕形成的。
在优选的实施中,所述第一导线具有大于所述第二导线的直径。
在优选的实施中,所述第一导线具有0.5~1.5mm的直径。
在优选的实施中,所述电阻加热元件是由所述片材卷绕形成的筒状形状;
所述第一导线至少部分于所述电阻加热元件内,所述第二导线位于所述电阻加热元件外。
在优选的实施中,所述加热器被构造成是至少部分于所述腔室内延伸的片状,并具有沿厚度方向相对的第一侧和第二侧;所述第一导线位于所述第一侧,所述第二导线位于所述第二侧。
在优选的实施中,所述第一导线包括第一热电偶丝,所述第二导线包括第二热电偶丝;所述第一热电偶丝和第二热电偶丝具有不同的电偶材料,以在所述第一导线和第二导线之间形成用于测量所述电阻加热元件温度的热电偶。
在优选的实施中,所述电阻加热元件包括形成于所述至少两个电阻加热层上的多个电阻导体路径。
在优选的实施中,所述多个电阻导体路径由形成于所述至少两个电阻加热层上的孔或狭缝或镂空界定。
在优选的实施中,所述多个电阻导体路径是串联或并联的。
在优选的实施中,所述加热器还包括:
外壳,至少部分于所述腔室内延伸,并用于插入至所述气溶胶生成制品内;所述电阻加热元件被容纳或保持于所述外壳内。
在优选的实施中,所述加热器包括:第一导线和第二导线,用于对所述电阻加热元件供电;
所述外壳具有沿长度方向延伸的缺口;所述第一导线至少部分位于所述外壳内,所述第二导线至少部分被保持于所述缺口内。
在优选的实施中,所述加热器被构造成是至少部分于所述腔室内延伸的片状;
所述至少两个电阻加热层沿所述加热器的厚度方向间隔布置。
在优选的实施中,所述电阻加热元件还包括:
连接部分,沿所述加热器的厚度方向在两个相邻的所述电阻加热层之间延伸,以提供两个相邻的所述电阻加热层之间的导电连接。
在优选的实施中,所述连接部分于所述加热器的宽度方向的至少一侧。
在优选的实施中,所述片材上设置有若干孔、镂空或狭缝,以使所述片材形成网格图案。
在优选的实施中,所述加热器还包括:
温度传感器,以用于感测所述电阻加热元件的温度。
在优选的实施中,所述加热器被构造成是至少部分于所述腔室内延伸的片状;所述加热器具有沿厚度方向贯穿的狭缝或镂空,所述温度传感器被容纳于所述狭缝或镂空内。
在优选的实施中,所述加热器被构造成是至少部分于所述腔室内延伸的片状;
所述电阻加热元件是由所述片材沿所述加热器的宽度方向往复折叠形成的。
在优选的实施中,所述电阻加热元件的电阻值介于0.1~5.0Ω。
本申请的又一个实施例还提出一种用于气雾生成装置的加热器,所述加热器包括电阻加热元件,该电阻加热元件具有在使用时能够在所述电阻加热元件的供电路径上引导电流的至少两个电阻加热层;所述电阻加热元件是由包括电阻性的金属或合金的片材卷绕或折叠形成的。
以上气雾生成装置,加热器的电阻加热元件是由片材卷绕或折叠形成的,比通过导线缠绕制备的螺旋发热丝更加便利。
本申请的又一个实施例还提出一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶;包括:
腔室,用于接收气溶胶生成制品;
磁场发生器,用于产生变化的磁场;
加热器,用于加热气溶胶生成制品;所述加热器包括被变化的磁场穿透而发热的感应加热元件,该感应加热元件具有由包括感受性的金属或合金的片材卷绕或折叠形成的至少两个感应发热层。
以上气雾生成装置,被磁场穿透发热的加热器是由感受性的金属或合金的片材卷绕或折叠形成的,对于制备是更加便利的。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限定。
图1是一实施例提供的气雾生成装置的示意图;
图2是一个实施例的加热器的示意图;
图3是图2中电阻加热元件又一个视角的示意图;
图4是图3中电阻加热元件卷绕前的片材的示意图;
图5是又一个实施例的片材的示意图;
图6是又一个实施例的片材的示意图;
图7是又一个实施例的外壳的示意图;
图8是又一个实施例中于片状基体上进行片材卷绕的示意图;
图9是又一个实施例的加热器的示意图;
图10是图9中电阻加热元件折叠前的片材的示意图;
图11是又一个实施例的折叠前的片材的示意图;
图12是又一个实施例的加热器折叠前的示意图;
图13是又一个实施例的折叠前的片材的示意图;
图14是又一个实施例的气雾生成装置的示意图;
图15是图14中加热器又一个视角的剖面图;
图16是又一个实施例提供的气雾生成装置的示意图;
图17是又一个实施例提供的气雾生成装置的示意图;
图18是一个实施例中卷绕或折叠前的片材的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进 行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一实施例提出一种气雾生成装置,其构造可以参见图1所示,包括:
腔室,具有敞口40;在使用中,气溶胶生成制品A能通过腔室的敞口40可移除地接收于腔室内;
至少部分在腔室内延伸的加热器30,当气溶胶生成制品A接收在腔室内时插入至气溶胶生成制品A内进行加热,从而使气溶胶生成制品A释放多种挥发性化合物,且这些挥发性化合物仅通过加热处理来形成;
电芯10,用于供电;
电路20,用于在电芯10和加热器30之间引导电流。
在一个优选的实施例中,加热器30大体呈销钉或者针状或棒状或杆状或柱状或片状或板状的形状,进而对于插入至气溶胶生成制品A内是有利的;同时,加热器30可以具有大约12~20毫米的长度,大约2~4毫米的外径尺寸。
进一步在可选的实施中,气溶胶生成制品A优选采用加热时从基质中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品A优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。
在实施中,加热器30通常可以包括电阻加热元件、以及辅助电阻加热元件固定制备等的辅助基材。例如在一些实施中,电阻加热元件是螺旋线圈的形状或形式。或者在又一些实施中,电阻加热元件是结合于衬底上的导电轨迹的形式。或者在又一些实施中,电阻加热元件是薄片的形状。
进一步图2示出了一个实施的加热器30的示意图;在该实施中加热器30包括:
外壳32,在自由前端310和末端320之间延伸;外壳32的形状呈销钉或针状形状,材质为陶瓷或不锈钢等;以及,外壳32是通过模制或机加工获得的;外壳32内具有沿长度方向延伸并终止于末端320的中空321;
电阻加热元件31,容纳和保持于外壳32的中空321内;
第一导线341和第二导线342,连接于电阻加热元件31上以用于对电阻加热元件31供电。
进一步参见图2至图4所示,电阻加热元件31是由包括电阻性的金属或合金的片材3110卷绕获得的筒状或管状的形状;通过卷绕的电阻加热元件31具有至少两个卷绕的电阻加热层30。其中,电阻性的金属或合金包括镍、钴、锆、钛、镍合金、钴合金、锆合金、钛合金、镍铬合金、镍铁合金、铁铬合金、铁铬铝合金、钛合金、铁锰铝基合金或不锈钢等中的至少一种。
以及在实施中,电阻性的金属或合金的片材3110卷绕的电阻加热元件31的至少一侧表面是具有绝缘层或绝缘材料的,以提供绝缘进而阻止卷绕中相邻的卷绕层之间产生接触短路。绝缘层或绝缘材料例如耐高温无机胶\釉料等。
在一些实施中,卷绕形成电阻加热元件31的片材3110是电阻性的金属或合金的箔。电阻性的金属或合金的箔具有大约0.5~200μm的厚度;更加优选地具有大约10~30μm的厚度。
在又一些更加优选的实施中,卷绕形成电阻加热元件31的片材3110是至少两层的复合层的片材;在一具体的实施中,卷绕形成电阻加热元件31的片材3110包括:
电阻性的金属或合金的箔层;以及,
应力补偿层,以及结合于电阻性的金属或合金的箔层;该应力补偿层提供卷绕过程中的弯曲或扭曲的应力补偿,以防止脆性较大的金属或合金箔层在卷绕过程中破裂或破碎。
在一些可选的实施中,应力补偿层是硬质性的,例如釉、玻璃、陶瓷等,提升片材的强度或韧性,以防止在卷绕过程中片材破裂或破碎。
在一些优选实施中,应力补偿层是柔性的层;具体的应力补偿层是柔性的聚合物材料;例如聚酰亚胺、自由聚丙烯、聚乙烯等。
应力补偿层具有与金属或合金层相同的厚度;应力补偿层通过涂布或沉积等方式形成于金属或合金层的至少一侧表面上。
电阻加热元件31是由以上片材3110进行至少两个以上的卷绕形成的,进而包括有至少两个以上的电阻加热层330;优选的实施中,电阻加热元件31包括大约2~20个卷绕。例如图3中,电阻加热元件31是由片材3110由内向外进行螺旋卷绕的;由最内侧的第一导线341开始计算,当围绕第一导线341每卷绕360度时为1个卷绕,并形成一个电阻加热层330。例如图3所示实施中,电阻加热元件31具有5个卷绕的电阻加热层330。
电阻加热元件31的电阻加热层330被配置为在直流电流流经该电阻加热元件31时产生焦耳热而发热。
进一步参见图3和图4所示的实施例,电阻加热元件31在卷绕前的片材3110是矩形的形状;第一导线341通过焊接或压接等固定连接于电阻加热元件31沿长度方向的一侧,第二导线342焊接或压接等固定连接于电阻加热元件31沿长度方向的另一侧。以及第一导线341和第二导线342均是沿电阻加热元件31b的宽度方向延伸的,并且第一导线341和第二导线342至少部分位于电阻加热元件31外,以便于与电路20连接。
在制备中,片材3110是以图4中第一导线341或第二导线342的其中一个为中心轴进行卷绕的,卷绕后即可获得图3所示的卷绕后的棒状或筒状的电阻加热元件31。
基于进一步提升卷绕后的电阻加热元件31的强度,则在更加优选的实施中作为卷绕的中心轴的第一导线341和/或第二导线342是具有大于通常导线的直径和强度的。例如在图4所示的优选实施中,第一导线341具有大于第二导线342的直径;在一些具体的实施中,第二导线342可以具有大约0.1~0.3mm的直径;第一导线341具有0.5~1.5mm的直径,使其具有大于常规铜丝、镀银镍丝的强度;则在片材3110以第一导线341为轴进行卷绕后的电阻加热元件31是由较粗的第一导线341提供支撑的,具有更大的强度。
或者在又一些变化的实施中,例如图5所示,卷绕形成电阻加热元件31的片材3110a上设置有若干孔或镂空311a,以增加电阻加热元件31的电阻值。以及,卷绕的电阻加热元件31是具有至少两个的卷绕层的筒状或管状,以提升电阻值。在图5中,孔或镂空311a是规则的矩阵布置的;以及孔或镂空311a使通过蚀刻等形成的,具有圆形的形状。或者在一些其他的变化实施中,孔或镂空311a可以是方形、多边形等更多的形状,进而使片材3110a呈网状图案。
图6示出了又一个变化实施中电阻加热元件31卷绕前片材3110b 的示意图。片材3110b的长度方向的两侧端设置有第一导线341b和第二导线342b;以及,片材3110b沿长度方向依次布置有第一侧部分311b、中心部分313b和第二侧部分312b。在形状构造上,中心部分313b的延伸长度大于第一侧部分311b和第二侧部分312b,以及中心部分313b的宽度尺寸d2小于第一侧部分311b和第二侧部分312b的宽度尺寸d1;进而通过以上形状设置,使片材3110b的电阻增大并尽可能的集中在中心部分313b发热,第一侧部分311b和第二侧部分312b用于卷绕和供电。
进一步图7示出了又一个优选实施例的外壳32a的一个优选实施例的示意图;外壳32a成销钉或针状的形状,并具有轴向延伸的中空321a;中空321a在朝向末端320a的端部处形成开口。该外壳32a的壁上设置有沿长度方向延伸至末端320a的缺口322a。
在一个可选实施的加热器30制备中,将以上片材3110/3110a/3110b的一端的第一导线341/341a/341b从缺口322a伸入至外壳32a的中空321a内;而后再操作第一导线341/341a/341b转动,使展开的片材3110/3110a/3110b以第一导线341/341a/341b为中心轴进行卷绕,直至第二导线342a也进入中空321a内并卷绕完成,即制备获得该实施例的加热器30。
或者在更加优选的实施中,先通过第一导线341/341a/341b从缺口322a伸入至外壳32b的中空321b内,并进行片材3110/3110a/3110b卷绕操作,直至当第二导线342/342a/342b进入缺口322a内时停止卷绕;并通过焊料焊接、激光焊接等将第二导线342/342a/342b在缺口322a内与外壳32a的壁连接成一体,并且使第二导线342/342a/342b覆盖或遮挡外壳32a的缺口322a。从而,使加热器30的表面是密封或闭合的,以阻止气溶胶、气溶胶冷凝液或源自于气溶胶生成制品A的有机残渣等由缺口322a进入外壳32a内。
在更加优选的实施中,在卷绕完成后还可以通过在外壳32a的表面浸涂或沉积涂层,以遮盖或包覆第二导线342/342a/342b与缺口322a之间的缝隙,以阻止气溶胶冷凝液或有机残渣进入至外壳32a内。
进一步图8示出了又一个变化实施中通过片材3110e卷绕形成片状加热器30的示意图;在该实施中,通过在一刚性的片状基体35e上进行片材3110e的卷绕,在卷绕后形成片状的加热器30。同样地,片材3110e两侧的第一导线341e和第二导线342e在卷绕后对加热器30供电。基体35e可以包括陶瓷、表面绝缘金属等。
进一步图9示出了又一个实施例的加热器30的示意图;该加热器 30被构造成片状,并具有的长度尺寸L1介于12~20mm、以及宽度尺寸L2介于3~6mm、以及厚度尺寸L3介于0.3~1mm。
根据图9所示,加热器30具有沿长度方向相背的自由前端310c和末端320c;在实施中,自由前端310c是位于或者是裸露于腔室内的,以用于插入至接收于腔室的气溶胶生成制品A内进行加热;末端320c用于在气雾生成装置内装配固定。根据图9所示的优选实施中,加热器30的自由前端310c是锥形尖端,对于插入至气溶胶生成制品A内是有利的。
进一步根据图9所示,加热器30包括至少两个或多个电阻加热层31c,在提供直流电流流经该电阻加热层31c时产生焦耳热而发热。
在该优选的实施中,电阻加热层31c是适当的金属或合金材料制备的薄层;例如电阻加热层31c包括镍、钴、锆、钛、镍合金、钴合金、锆合金、钛合金、镍铬合金、镍铁合金、铁铬合金、铁铬铝合金、钛合金、铁锰铝基合金或不锈钢等中的至少一种。以及,电阻加热层31c具有大约0.5~200μm的厚度;更加优选地具有大约10~30μm的厚度。
以及,加热器30还包括有:第一导线341c和第二导线342c,用于对加热器30供电。在实施中,第一导线341c和第二导线342c均是在靠近末端320c的位置与加热器30连接。
加热器30还包括:定位于相邻的电阻加热层31c之间的层32c。
在一些实施中,层32c是采用绝缘材料制备的例如玻璃釉、陶瓷、聚合物等,用于在相邻的电阻加热层31c之间提供绝缘和/或支撑;例如层32c是通过电镀、沉积、涂布、喷涂等形成到相应的相邻的电阻加热层31c之间。具体地说,这些层32c中的任一层可通过喷涂、浸涂、滚涂、电镀或包覆而施加到相应邻近电阻加热层31c之间。
层32c可以具有大于电阻加热层31c的厚度或硬度,有助于提供加热器30足够的机械强度。
在一些可选的方式中,加热器30中的多个电阻加热层31c是彼此独立地连接于电路20,并由电路20独立地操作的。或者在又一些变化的实施中,加热器30中的多个电阻加热层31c是并联的,由电路20同时或独立操作的。
进一步在图9所示优选的实施中,加热器30中的多个电阻加热层31c是沿厚度方向依次串联的。
则进一步根据图9所示,第一导线341c与位于厚度方向一侧最外层的电阻加热层31c连接,第二导线342c与位于厚度方向另一层最外层的电阻加热层31c连接。多个电阻加热层31c沿加热器30的厚度方 向布置于第一导线341c和第二导线342c之间。以及在一些实施中,加热器30包括有2~7个电阻加热层31c。
以及,为了便于第一导线341c和第二导线342c的连接,加热器30还包括有电极33c,材质是导电性能良好低电阻率的金属或合金例如金、银、铜或它们的合金材质制备的贴片电极、板电极、轨道型电极、印刷或打印或喷涂或沉积的电极涂层中的至少一种。电极33c结合于电阻加热层31c上且相互导通,第一导线341c和第二导线342c通过焊接等方式连接于电极33c上间接与电阻加热层31c导通,进而对电阻加热层31c供电。
在图9所示的实施中,电极33c至少形成于位于厚度方向两侧最外层的电阻加热层31c上;以及,电极33c是靠近末端320c布置的。
进一步在又一些优选的实施中,加热器30的多个电阻加热层31c是由连续的片材折叠形成的。例如,图10示出了一个实施例中加热器30的具有多个电阻加热层31c的片材3110c折叠前的示意图。图10中折叠前的片材3110c的多个电阻加热层31c是沿长度方向依次连接的,具体:
电阻加热层31c是沿片材3110c的宽度方向延伸布置;电阻加热层31c上设置有沿电阻加热层31c的长度方向延伸的狭缝或镂空311c;在实施中狭缝或镂空311c具有大约0.2~1.0mm的宽度、以及大约8~12mm的长度;以及狭缝或镂空311c终止于电阻加热层31c靠近末端320c的端部,进而将电阻加热层31c分隔成位于狭缝或镂空311c两侧的第一部分312c和第二部分313c;
片材3110c中,相邻的两个电阻加热层31c之间具有连接部分315c,进而使相邻的两个电阻加热层31c形成连接。具体地,片材3110c的相邻的两个电阻加热层31c中,连接部分315c定位于上一个电阻加热层31c的第二部分313c与下一个电阻加热层31c的第一部分312c之间,进而使片材3110c中的多个电阻加热层31c依次形成串联。
以及,连接部分315c的延伸长度大约为3~5mm,以及大约0.5~1.0mm的宽度;连接部分315c是靠近末端320c的。则进而连接部分315c使相邻的电阻加热层31c之间还界定形成有延伸至前端的狭缝或镂空314c,进而使相邻的电阻加热层31c之间仅在连接部分315c处形成连接,而在狭缝或镂空314c处是非连接的。以及在折叠后形成的加热器30中,连接部分315c是交替地形成于加热器30沿宽度方向两侧的。
狭缝或镂空314c的宽度大于狭缝或镂空311c的宽度。
在供电时,通过狭缝或镂空311c界定流过电阻加热层31c的U形 的电流路径。则在多个依次连接的电阻加热层31c中,第一导线341c连接于其中一侧端的电阻加热层31c的第一部分312c上,第二导线342c连接于另一侧端的电阻加热层31c的第二部分313c上,使用中形成图10中依次流过多个电阻加热层31c的电流i。以及,由多个依次连接的电阻加热层31c中,由依次首尾连接的第一部分312c和第二部分313c共同界定电流路径的多个串联的电阻导体路径。
进一步参见图9和图10所示,加热器30的以上狭缝或镂空311c所界定的空间,用于安装温度传感器(图中未示出),以用于感测加热器30的温度。温度传感器例如PT1000、J型热电偶等。在优选的实施中,温度传感器是位于靠近厚度方向的外侧表面的电阻加热层31c的狭缝或镂空311c内的;对于在装配是更加便利的。
进一步地在图10中的优选实施中,片材3110c中的多个电阻加热层31c的形状基本是完全相同的,以及电阻加热层31c靠近自由前端310c的端部是尖端形状。
以及在优选的实施中,加热器30的制备中多个电阻加热层31c是在宽度方向上往复折叠的。
以及在优选的实施中,以上依次相连的多个电阻加热层31c是由矩形的金属和合金的箔片或薄片在需要形成狭缝或镂空311c、以及狭缝或镂空314c的位置处进行蚀刻,去掉多余部分后获得的。
以上片材3110c在电阻加热层31c靠近末端320c的端部,通过印刷或喷涂或沉积等方式形成有涂层形式的电极33c,以用于减少第一导线341c和/或第二导线342c焊接等连接于电阻加热层31c的接触电阻和积热。电极33c采用低电阻率的金、银、铜或它们的合金材料。当然,电极33c的电阻率小于电阻加热层31c的电阻率。
或者图11示出了又一个变化实施例的片材3110d的示意图;在该实施例中,片材3110d中同样包括多个依次连接的电阻加热层31d,折叠后形成加热器30;以及,该实施例中,由电阻加热层31d上延伸出的第一延伸部分341d和第二延伸部分342d,作为用于向加热器30供电的电连接部分。在装配中,可以通过将第一延伸部分341d和第二延伸部分342d直接分别作为正负极与电路20连接后,由电路20直接通过第一延伸部分341d和第二延伸部分342d供电。
或者在又一些变化的实施中,通过在第一延伸部分341d上焊接第一导线,以及在第二延伸部分342d上焊接第二导线后,通过第一导线和第二导线对加热器30供电。
以及根据图中所示,第一延伸部分341d是由片材3110d中位于其 中一侧端的电阻加热层31d的第一部分312d延伸形成;以及第二延伸部分342d由片材3110d中位于另一侧端的电阻加热层31d的第二部分313d延伸形成。
或者图12示出了又一个实施例的加热器30折叠前的示意图;图12中加热器30包括:
片状或板状的基体35f;该基体35f可以是热缩性的有机聚合物,或者绝缘的陶瓷、表面氧化金属等;基体35f的形状是在靠近自由前端的端部呈尖端的形状;
第一电极36f,通过包覆或喷涂等形成于基体35f的两侧面上;图12中示出了第一电极36f位于所示表面的部分,可以理解地第一电极36f还具有位于所示表面背面的部分;
片材3110f,具有至少两个电阻加热层31f;
片材3120f,具有至少两个电阻加热层31f。
在制备中,将片材3110f的电阻加热层31f沿宽度方向依次往复折叠并结合于基体35f厚度方向的一侧表面上;以及将片材3120f的电阻加热层31f沿宽度方向依次往复折叠并结合于基体35f厚度方向的另一侧表面。
同样地,片材3110f和/或片材3120f中的相邻电阻加热层31f之间设置有连接部分315f,并通过连接部分315f依次连接导通的。
以及折叠后的片材3110f和/或片材3120f的电阻加热层31f之间是形成有以上层32c,以用于提供支撑和/或绝缘的。
以及,片材3110f中最外一侧的电阻加热层31f的第一部分312f上设置有通过电极331f间接导通的第一导线341f;以及,片材3120f中最外一侧的电阻加热层31f的第二部分313f上设置有通过电极333f间接导通的第二导线342f。
当片材3110f和片材3120f分别折叠结合于基体35f的两侧后,片材3110f的最内侧的电阻加热层31f的第二部分313f上的电极332f与第一电极36f连接形成导通,以及片材3120f的最内侧的第一部分312f上的电极334f与第一电极36f连接形成导通;则使片材3110f和片材3120f中的多个电阻加热层31f在第一导线341f和第二导线342f之间形成串联。
进一步在更加优选的实施中,在电阻加热层31c/31d/31f层叠或折叠制备的加热器30外,还可以通过浸涂、喷涂等方式形成表面保护涂层,以阻止源自于气溶胶生成制品A的气溶胶冷凝液或有机物对加热器30表面的腐蚀或粘附。表面保护涂层例如玻璃、金属氧化物涂层等。
进一步在更多的变化实施中,加热器30是由多个或若干彼此分离的电阻加热层31c/31d/31f层叠制备的。则相应地,层叠后多个或若干彼此分离的电阻加热层31c/31d/31f通过在加热器30沿宽度方向的两侧交替地对相邻的电阻加热层31c/31d/31f通过焊料焊接等,使层叠后多个或若干彼此分离的电阻加热层31c/31d/31f形成串联导通。
或者进一步在更多的变化实施中,层叠后的多个或若干彼此分离的电阻加热层31c/31d/31f之间,通过设置有层32提供支撑。以及,多个或若干彼此分离的电阻加热层31c/31d/31f之间具有未被层32c占据的区域,进而由该未被占据的区域提供相邻电阻加热层31c/31d/31f之间的连接和导通。
进一步地图13示出了又一个变化实施中折叠前的片材3110g的示意图;该片材3110g基本是矩形的形状,并且在片材3110g上通过蚀刻或切削等方式形成有若干狭缝或镂空311g、以及狭缝或镂空312g,以在供电中减少片材3110g的面积从而提升加热器30的电阻。在图13中,狭缝或镂空311g和/或狭缝或镂空312g是沿片材3110g的宽度方向延伸的细长的条形形状。以及,若干狭缝或镂空311g和狭缝或镂空312g是沿片材3110g的长度方向交替/间隔布置的。以及,狭缝或镂空311g和狭缝或镂空312g沿片材3110g的长度方向是错开的;具体在图13中,狭缝或镂空311g是位于片材3110g的宽度方向的中央位置的,狭缝或镂空312g是位于片材3110g是位于片材3110g的宽度方向的边缘位置的。
以及,片材3110g上还设置有第一导线341g和第二导线342g,以用于供电。并结合错开布置的狭缝或镂空311g和狭缝或镂空312g形成图13中流过加热器30的迂回电流i。
则在制备中通过将片材3110g逐次以狭缝或镂空311g所界定的对折线m1、或以狭缝或镂空312g所界定的对折线m2进行折叠,即可获得加热器30。
当然在一些实施中,片材3110g的至少一侧的表面是喷涂有釉、陶瓷等绝缘和支撑材料的;以在折叠后的电阻加热层之间提供绝缘或支撑。
以上由卷绕或折叠的电阻加热元件31a/31c/31d/31f/31g,界定有多个串联的电阻导体路径或彼此并联的多个电阻导体路径,进而形成往复迂回的电流路径,例如所示的电流i,从而增加了流经加热器30的电流的路径长度,提升了电阻加热元件31a/31c/31d/31f/31g的电阻值。进而使电阻加热元件31a/31c/31d/31f/31g的电阻值满足在预定的范围, 具体地,电阻加热元件31a/31c/31d/31f/31g的电阻值控制于0.1~5.0Ω。
以及,多个串联的电阻导体路径或彼此并联的多个电阻导体路径是由形成于片材31a/3110c/3110d/3110f/3110g上的孔、狭缝或镂空界定的。
以及根据图10和图11,由依次首尾连接的第一部分312c和第二部分313c共同界定的多个串联的电阻导体路径是依次首尾连接的。
进一步根据以上图9至图13所示,由片材3110c/3110d/3110g折叠形成的加热器30,加热器30是沿着狭缝或镂空311c/311d/311g的长度延伸并且仅被狭缝或镂空311c/311d/311g部分地中断。
以及在图9的实施例中,加热器30沿厚度方向被狭缝或镂空311c贯穿。狭缝或镂空311c所形成的空间,用于容纳和安装用于感测加热器30温度的温度传感器。
或者在又一个变化的实施中,以上用于向加热器30供电的第一导线采用第一电偶材料制备,第二导线采用第二电偶材料制备;并且第一电偶材料不同于第二电偶材料,则使用中在第一导线和第二导线之间能形成用于通过检测热电势进而获取加热器30温度的热电偶。在一些实施中,第一导线采用镍、镍铬合金、镍硅合金、镍铬-考铜、康青铜、铁铬合金等电偶类材料中一种制备,第二导线采用镍、镍铬合金、镍硅合金、镍铬-考铜、康青铜、铁铬合金等电偶类材料中的另一种制备。
在又一些实施中,以上加热器30是由片材卷绕或折叠的电阻加热元件独立形成的。例如在一些实施中,将电阻性的片材或薄片卷绕或折叠形成筒状或杆状或片状的前体后,再对其中一端压紧、打磨、切销形成用于插入气溶胶生成制品A的尖端,即获得加热器30。以及在更加优选的实施中,获得的加热器30还可以通过喷涂、浸涂等方式形成表面保护涂层,使卷绕或折叠的加热器30表面形成密封,阻止电阻加热元件被腐蚀以及阻止气溶胶或有机物等从加热器30的表面进入电阻加热元件内。
或者图14进一步提出了又一个变化实施例的气雾生成装置的示意图;根据图14所示,气雾生成装置包括:
腔室,具有敞口40;在使用中,气溶胶生成制品A能通过腔室的敞口40可移除地接收于腔室内;
加热器30h,被构造成是围绕并界定腔室的管状形状;并且加热器30h用于当气溶胶生成制品A接收在腔室内时加热气溶胶生成制品A, 从而使气溶胶生成制品A释放多种挥发性化合物,且这些挥发性化合物仅通过加热处理来形成;
直流电芯10,用于供电;
电路20,用于在电芯10和加热器30h之间引导电流。
进一步参见图15所示,加热器30h是由包括以上电阻性金属或合金的箔或薄片的片材经至少两个卷绕形成的,进而在卷绕后加热器30h具有至少两个电阻加热层311h。相近地,卷绕前的金属或合金的箔或薄片上还可以具有以上所描述的孔或狭缝等结构,以提升加热器30h的电阻。
以及,用于卷绕形成加热器30h的片材可以是单层的电阻性的金属或合金的箔或薄片。在又一些更加优选的实施中,片材可以是至少两层的复合层的片材。例如片材包括:金属或合金层;以及,应力补偿层,以及结合于金属或合金层;该应力补偿层提供卷绕过程中的弯曲或扭曲的应力补偿,以防止脆性较大的金属或合金层在卷绕过程中破裂或破碎。
进一步在图16示出了又一个实施例的气雾生成装置的示意图;该实施例中,气雾生成装置包括:
腔室,用于接收气溶胶生成制品A;
加热器30j,在该实施中被构造成至少部分于腔室内延伸的销钉或针状或棒状或杆状等;
磁场发生器,例如感应线圈50j用于产生变化的磁场,以诱导加热器30j发热;
支架40j,界定腔室,且至少部分用于对感应线圈50j和/或加热器30j提供支撑。
在该实施中,加热器30j包括感应加热元件,感应加热元件同样是采用包括金属或合金的片材卷绕或者折叠的;当然,加热器30j还可以具有外壳、法兰等,便于感应加热元件的装配和固定。具体地在一些实施中,感应加热元件是采用感受性的金属或合金的箔片或薄片卷绕获得的;感受性的金属或合金的箔片或薄片例如镍箔、镍铁合金箔、铁箔等。
在一些制备过程中,加热器30j的感应加热元件先通过感受性的金属或合金的箔片或薄片卷绕合或折叠形成筒状或杆状或片状;而后通过具有尖端的外壳或外套容纳和装配感应加热元件即获得加热器30j。以及,通过感受性的金属或合金的箔片或薄片卷绕合或折叠形成的感应加热元件具有至少两个感应发热层。
以及在以该感应方式加热的实施例中,加热器30j的至少两个感应 发热层之间是彼此接触或抵靠的。
或者在又一些制备过程中,加热器30j是由感应加热元件独立制备的。例如,先通过感受性的金属或合金的箔片或薄片卷绕或折叠形成筒状或杆状或片状的感应加热元件;而后通过将其中一端压紧、打磨、切销形成用于插入气溶胶生成制品A的尖端,即获得加热器30j。
或者在又一些变化的实施中,以上加热器30j还可以被构造成是由感受性的金属或合金的箔片或薄片卷绕形成。
在更多的变化实施中,加热器30j被构造成是由感受性的金属或合金的箔片或薄片卷绕形成的管状或筒状的形状。则卷绕形成的加热器30j的管状或筒状的中空,至少部分被用于接收或容纳气溶胶生成制品A的腔室。
或者进一步图17示出了又一个实施例的气雾生成装置的示意图,该实施例中气雾生成装置包括:
包括沿长度方向相对的近端110k和远端120k,以及:
加热器30k,被构造成是沿气雾生成装置的长度方向延伸,并位于或靠近近端110k布置;形状上加热器30k被构造成是纵长延伸的杆状或棒状或销钉或片状或管状等,气溶胶生成制品A能近端110k插入加热器30k上或被容纳至加热器30k内加热生成气溶胶;
电芯10k,靠近远端120k;
电路板20k,用于控制电芯10k向加热器30提供功率。
在实施例中,例如图17所示的气雾生成装置中,加热器30k基本是裸露的;进而在实施中对于将气溶胶生成制品A结合至加热器30k的操作是有利的。
或者在又一些实施例中,气雾生成装置还包括用于遮挡加热器30k的遮挡件或遮挡壁,对于阻止用户接触或触碰加热器30k是有利的。
以及在一些实施中,遮挡件或遮挡壁是可移除或可移动地结合于气雾生成装置上的。通过移除或移动进而选择性地遮挡或显露加热器30k。
以及进一步在一些具体的实施中,加热器30k可以由柔性的包括金属的片材卷绕或折叠形成的电阻加热元件31k。例如图18示出了一个实施中卷绕或折叠前片材的示意图,片材包括:
衬底311k,是金属或合金的箔或薄片;
在箔片或薄片状的衬底311k上通过印刷、打印或沉积等形成若干间隔布置的加热涂层或轨迹312k。
优选的实施中,加热涂层或轨迹312k是由金属或合金的浆料形成 的;以及根据图9中所示,加热涂层或轨迹312k是沿衬底311k的宽度方向延伸的细长带状或条状或轨迹形状等;以及若干的加热涂层或轨迹312k是沿衬底311k的长度方向间隔布置的。
以及进一步根据图18所示的优选实施中,加热涂层或轨迹312k的电连接上,设置有公共电极3411k,沿衬底311k的长度方向延伸的长条形;加热涂层或轨迹312k的靠近衬底311k宽度方向的左侧端部均与公共电极3411k部分重叠或连接进而导通;公共电极3411k上通过焊接第一导线341k,进而通过第一导线341k与电路板20k连接。加热涂层或轨迹312k靠近衬底311k宽度方向的右侧端部各自通过焊接第二引线342k,进而通过第二引线342k与电路板20l连接。
在一些优选的实施中,公共电极3411k是涂层电极或贴片电极等;公共电极3411k的材质为低电阻率的金、银、铜等。在一个优选的实施中,公共电极3411k包括银,以及加热涂层或轨迹312k包括银;以及,公共电极3411k中银的质量百分数大于加热涂层或轨迹312k中银的质量百分数。
或者在又一些变化的实施中,加热涂层或轨迹312k是各自独立地通过导线连接至电路板20k的,进而可由电路板20k各自独立地控制加热的,以分别加热气溶胶制品的不同部分。
进一步在优选的实施中,加热涂层或轨迹312k的导热系数大于衬底311k的导热系数。在加热过程中衬底31k逐层降低的导热系数,对于促进蓄热升温和散热降温的平衡是有利的。
进一步地,加热涂层或轨迹312k的导热系数大于衬底311k的导热系数的3倍。以及,加热涂层或轨迹312k的导热系数小于衬底311k的导热系数的10倍;更加优选地,加热涂层或轨迹312k的导热系数小于衬底311k的导热系数的8倍;对于使衬底311k能够将加热涂层或轨迹312k的热量有效地散热进而冷却加热涂层或轨迹312k是有利的。在一些优选的实施中,加热涂层或轨迹312k的导热系数大于350W/mK;例如导热系数大于350W/mK的银的合金。衬底311k的导热系数介于40~110W/mK。
以及在一些具体的实施中,加热涂层或轨迹312k的材料中银的质量分数大于60%;并具有低于0.05mm的厚度,优选地为0.005~0.02mm,使加热涂层或轨迹312k具有适合的电阻。更加优选地,加热涂层或轨迹312k的材料中银的质量分数大于80%。
以及在一些具体的实施中,衬底311k包括金属或合金,例如铁铬铝合金、镍铬铝合金。在实施中,衬底311k具有低于0.15mm的厚度, 例如厚度为0.05~0.15mm的厚度。对应地,衬底311k的表面是具有绝缘层的以在于加热涂层或轨迹312k之间提供绝缘。在具体的实施中,金属或合金材质的衬底311k表面的绝缘层,是通过热氧化形成的。例如,将铁铬铝合金于空气中加热至500度或以上,进而使表面被氧化形成金属氧化物的膜层。以及优选的实施中,所形成的金属氧化物的膜层厚度为10nm以内,在提供绝缘的同时不影响导热。
以及进一步参见图17所示,当由片材卷绕成销钉或针状时,加热器30k还可以包括外壳32k等以封装和容纳电阻加热元件31k。
以及或者当电阻加热元件31k由片材被卷绕或折叠成片状时,则直接通过表面喷涂或处理后即可。
或者,当电阻加热元件31k由片材被卷绕成管状时,气溶胶生成制品A直接被容纳至电阻加热元件31k的管状的内中空加热。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (31)

  1. 一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶;其特征在于,包括:
    腔室,用于接收气溶胶生成制品;和
    加热器,用于加热气溶胶生成制品;所述加热器包括电阻加热元件,该电阻加热元件具有由包括电阻性的金属或合金的片材卷绕或折叠形成的至少两个电阻加热层。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述片材包括电阻性的金属或合金的箔层。
  3. 如权利要求2所述的气雾生成装置,其特征在于,所述片材还包括:
    应力补偿层,用于在所述片材的卷绕或折叠中提供应力补偿以防止所述电阻性的金属或合金的箔层破裂或破碎。
  4. 如权利要求2所述的气雾生成装置,其特征在于,所述电阻性的金属或合金的箔层具有0.5~200μm的厚度。
  5. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述电阻加热层被配置为在直流电流流经该电阻加热层时产生焦耳热而发热。
  6. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述加热器还包括:
    绝缘层,形成于两个相邻的所述电阻加热层之间,以在两个相邻的所述电阻加热层之间提供绝缘。
  7. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述片材是连续的。
  8. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述至少两个电阻加热层是串联的。
  9. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述电阻加热元件是由所述片材在刚性的基体上卷绕或折叠形成的。
  10. 如权利要求9所述的气雾生成装置,其特征在于,所述刚性的基体包括陶瓷或表面绝缘金属。
  11. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述加热器还包括:
    第一导线和第二导线,用于对所述电阻加热元件供电。
  12. 如权利要求11所述的气雾生成装置,其特征在于,所述电阻加热元件是由所述片材以所述第一导线为轴卷绕形成的;所述第一导线具有大于所述第二导线的直径。
  13. 如权利要求11所述的气雾生成装置,其特征在于,所述电阻加热元件是由所述片材以所述第一导线为轴卷绕形成的;所述第一导线具有0.5~1.5mm的直径。
  14. 如权利要求11所述的气雾生成装置,其特征在于,所述电阻加热元件是由所述片材卷绕形成的筒状形状;
    所述第一导线至少部分于所述电阻加热元件内,所述第二导线位于所述电阻加热元件外。
  15. 如权利要求11所述的气雾生成装置,其特征在于,所述加热器被构造成是至少部分于所述腔室内延伸的片状,并具有沿厚度方向相对的第一侧和第二侧;所述第一导线位于所述第一侧,所述第二导线位于所述第二侧。
  16. 如权利要求11所述的气雾生成装置,其特征在于,所述第一导线包括第一热电偶丝,所述第二导线包括第二热电偶丝;所述第一热电偶丝和第二热电偶丝具有不同的热电偶材料,以在所述第一导线和第二导线之间形成用于测量所述电阻加热元件温度的热电偶。
  17. 如权利要求1至4任一项所述的气雾生成装置,其特征在于, 所述电阻加热元件包括形成于所述至少两个电阻加热层上的多个电阻导体路径。
  18. 如权利要求17所述的气雾生成装置,其特征在于,所述多个电阻导体路径由形成于所述至少两个电阻加热层上的孔、狭缝或镂空的至少之一界定。
  19. 如权利要求17所述的气雾生成装置,其特征在于,所述多个电阻导体路径是串联或并联的。
  20. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述加热器还包括:
    外壳,至少部分于所述腔室内延伸,并用于插入至所述气溶胶生成制品内;所述电阻加热元件被容纳或保持于所述外壳内。
  21. 如权利要求20所述的气雾生成装置,其特征在于,所述加热器包括:第一导线和第二导线,用于对所述电阻加热元件供电;
    所述外壳具有沿长度方向延伸的缺口;所述第一导线至少部分位于所述外壳内,所述第二导线至少部分被保持于所述缺口内。
  22. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述加热器被构造成是至少部分于所述腔室内延伸的片状;
    所述至少两个电阻加热层沿所述加热器的厚度方向间隔布置。
  23. 如权利要求22所述的气雾生成装置,其特征在于,所述电阻加热元件还包括:
    连接部分,沿所述加热器的厚度方向在两个相邻的所述电阻加热层之间延伸,以提供两个相邻的所述电阻加热层之间的导电连接。
  24. 如权利要求22所述的气雾生成装置,其特征在于,所述连接部分于所述加热器的宽度方向的至少一侧。
  25. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述片材上设置有若干孔、镂空或狭缝,以使所述片材形成网格图案。
  26. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述加热器还包括:
    温度传感器,以用于感测所述电阻加热元件的温度。
  27. 如权利要求26所述的气雾生成装置,其特征在于,所述加热器被构造成是至少部分于所述腔室内延伸的片状;所述加热器具有沿厚度方向贯穿的狭缝或镂空,所述温度传感器被容纳于所述狭缝或镂空内。
  28. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述加热器被构造成是至少部分于所述腔室内延伸的片状;
    所述电阻加热元件是由所述片材沿所述加热器的宽度方向往复折叠形成的。
  29. 如权利要求1至4任一项所述的气雾生成装置,其特征在于,所述电阻加热元件的电阻值介于0.1~5.0Ω。
  30. 一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶其特征在于,包括:加热器,用于加热气溶胶生成制品;
    所述加热器包括电阻加热元件,该电阻加热元件具有由包括电阻性的金属或合金的片材卷绕或折叠形成的至少两个电阻加热层;所述至少两个电阻加热层界定沿所述电阻加热元件的长度方向或宽度方向往复迂回的多个电阻导体路径。
  31. 一种气雾生成装置,被配置为加热气溶胶生成制品生成气溶胶;其特征在于,包括:
    腔室,用于接收气溶胶生成制品;
    磁场发生器,用于产生变化的磁场;
    加热器,用于加热气溶胶生成制品;所述加热器包括被变化的磁场穿透而发热的感应加热元件,该感应加热元件具有由包括感受性的金属或合金的片材卷绕或折叠形成的至少两个感应发热层。
PCT/CN2023/071621 2022-01-24 2023-01-10 气雾生成装置 WO2023138442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210078133.5 2022-01-24
CN202210078133.5A CN116509062A (zh) 2022-01-24 2022-01-24 气雾生成装置

Publications (1)

Publication Number Publication Date
WO2023138442A1 true WO2023138442A1 (zh) 2023-07-27

Family

ID=87347797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071621 WO2023138442A1 (zh) 2022-01-24 2023-01-10 气雾生成装置

Country Status (2)

Country Link
CN (1) CN116509062A (zh)
WO (1) WO2023138442A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210017883U (zh) * 2019-04-01 2020-02-07 常州市派腾电子技术服务有限公司 加热组件、雾化器及电子烟
CN212461792U (zh) * 2020-06-02 2021-02-02 佛山市实达科技有限公司 卷绕电芯及电子烟
CN112369719A (zh) * 2020-10-28 2021-02-19 深圳市吉迩科技有限公司 发热组件及其制作方法和气溶胶产生装置
WO2021084746A1 (ja) * 2019-11-01 2021-05-06 日本たばこ産業株式会社 加熱ユニット
CN215347073U (zh) * 2021-05-10 2021-12-31 深圳市合元科技有限公司 气雾生成装置及用于气雾生成装置的加热器
CN216983603U (zh) * 2022-01-24 2022-07-19 深圳市合元科技有限公司 气雾生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210017883U (zh) * 2019-04-01 2020-02-07 常州市派腾电子技术服务有限公司 加热组件、雾化器及电子烟
WO2021084746A1 (ja) * 2019-11-01 2021-05-06 日本たばこ産業株式会社 加熱ユニット
CN212461792U (zh) * 2020-06-02 2021-02-02 佛山市实达科技有限公司 卷绕电芯及电子烟
CN112369719A (zh) * 2020-10-28 2021-02-19 深圳市吉迩科技有限公司 发热组件及其制作方法和气溶胶产生装置
CN215347073U (zh) * 2021-05-10 2021-12-31 深圳市合元科技有限公司 气雾生成装置及用于气雾生成装置的加热器
CN216983603U (zh) * 2022-01-24 2022-07-19 深圳市合元科技有限公司 气雾生成装置

Also Published As

Publication number Publication date
CN116509062A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6210611B2 (ja) 加熱器が改善された電気加熱式喫煙システム
CN216983603U (zh) 气雾生成装置
WO2023138442A1 (zh) 气雾生成装置
CN213908506U (zh) 发热组件及气溶胶形成装置
WO2020244682A1 (zh) 一种加热元件及雾化设备
CN218073524U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN217184847U (zh) 气雾生成装置及用于气雾生成装置的加热器
WO2022062354A1 (zh) 发热组件及气溶胶形成装置
CN217523960U (zh) 用于气雾生成装置的电阻加热器及气雾生成装置
WO2023131185A1 (zh) 气雾生成装置及用于气雾生成装置的电阻加热器
CN217609592U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN220545828U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN109846090A (zh) 一种针式电子烟加热器及电子烟
CN220831945U (zh) 一种针式加热体及气溶胶产生装置
WO2023236828A1 (zh) 气雾生成装置及用于气雾生成装置的加热器
CN218073523U (zh) 气雾生成装置及用于气雾生成装置的加热器
CN218831985U (zh) 加热器和气雾生成装置
CN217184826U (zh) 发热组件以及气溶胶生成装置
CN220274931U (zh) 一种针式加热体及气溶胶产生装置
CN220545834U (zh) 加热组件及气溶胶生成装置
WO2023116576A1 (zh) 气雾生成装置及用于气雾生成装置的加热器
CN117243425A (zh) 气雾生成装置及用于气雾生成装置的加热器
CN116268569A (zh) 气雾生成装置及用于气雾生成装置的加热器
CN116210969A (zh) 气雾生成装置及用于气雾生成装置的加热器
CN115778011A (zh) 发热组件的制作方法及加热装置、加热烟具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742757

Country of ref document: EP

Kind code of ref document: A1