WO2023138440A1 - 电极组件、卷绕设备和方法、电池单体、电池及用电装置 - Google Patents

电极组件、卷绕设备和方法、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023138440A1
WO2023138440A1 PCT/CN2023/071588 CN2023071588W WO2023138440A1 WO 2023138440 A1 WO2023138440 A1 WO 2023138440A1 CN 2023071588 W CN2023071588 W CN 2023071588W WO 2023138440 A1 WO2023138440 A1 WO 2023138440A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
positive
electrode assembly
positive pole
positive electrode
Prior art date
Application number
PCT/CN2023/071588
Other languages
English (en)
French (fr)
Inventor
郭锁刚
杨国众
付成华
张辰辰
叶永煌
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023138440A1 publication Critical patent/WO2023138440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of battery manufacturing, in particular, to an electrode assembly, a winding device and method, a battery cell, a battery and an electrical device.
  • the technical level of power batteries is becoming more and more mature, and the safety performance of power batteries has become one of the important indicators to measure its performance.
  • the wound electrode assembly is an important part inside the battery cell, and the safety performance of the electrode assembly plays a decisive role in the safety performance of the battery cell.
  • the existing electrode assembly is prone to lithium precipitation during charging, and its safety performance is poor; on the other hand, even if the structure of the electrode assembly is improved to improve the safety performance of the battery cell, there is currently no corresponding winding equipment, which makes it impossible to realize industrial production even after the structure of the electrode assembly is improved.
  • the present application proposes an electrode assembly, a winding device and method, a battery cell, a battery, and an electrical device.
  • the electrode assembly has better safety performance, the manufacturing method and the winding equipment can wind and shape the electrode assembly, realize the industrial production of the electrode assembly, and improve the manufacturing efficiency of the electrode assembly.
  • the embodiment of the first aspect of the present application proposes an electrode assembly, including a positive pole piece, and the positive pole piece is wound to form a bending area; wherein, the positive pole piece includes a positive current collector and a positive active material layer disposed on the surface of the positive current collector, the positive active material layer includes a deactivation area, and at least a part of the deactivation area is located in the bending area.
  • the effective active area of the positive electrode active material layer in the bending area of the positive electrode sheet can be reduced, thereby increasing the CB value of the bending part of the electrode assembly (that is, the ratio of the capacity of the negative electrode active material on the opposite side to the capacity of the positive electrode active material), so that the lithium ions deintercalated from the positive electrode active material layer during the charging process of the battery cell can be effectively embedded in the corresponding negative electrode active material layer, and the lithium ion in the bending part of the electrode assembly can be alleviated. phenomenon, thereby improving the safety performance of the electrode assembly.
  • the positive electrode current collector includes an inner surface facing the axis of the electrode assembly and an outer surface away from the axis of the electrode assembly
  • the positive electrode active material layer includes a first positive electrode active material layer disposed on the inner surface of the positive electrode current collector and a second positive electrode active material layer disposed on the outer surface of the positive electrode current collector
  • the first positive electrode active material layer includes the inactivation region
  • the deactivation region is located on the innermost positive electrode sheet of the electrode assembly.
  • the radius of curvature of the innermost ring of the positive electrode sheet is the smallest, resulting in the largest ratio of the area of the positive active material layer on the inner surface of the innermost ring of the positive electrode sheet to the negative active material layer of the negative electrode sheet on the corresponding inner ring.
  • the number of the deactivation regions is at least two, and at least two of the deactivation regions are distributed at intervals along the winding direction.
  • each circle of positive pole pieces includes two bending areas around the winding direction, and each bending area is provided with an inactivation area, thereby alleviating the phenomenon of lithium deposition in the bending part of the electrode assembly and improving the safety performance of the electrode assembly.
  • the embodiment of the second aspect of the present application provides a battery cell, including the electrode assembly described in the embodiment of the first aspect of the present application.
  • the bending area of the positive pole piece in the electrode assembly of the embodiment of the first aspect of the present application has an inactivation area, the phenomenon of lithium deposition in the bending part of the electrode assembly can be alleviated, and the safety performance of the electrode assembly can be improved, so that the battery cell including the electrode assembly also has better safety performance.
  • the embodiment of the third aspect of the present application provides a battery, including the battery cell described in the embodiment of the second aspect of the present application.
  • the bending area of the positive pole piece of the electrode assembly used in the battery cell according to the embodiment of the second aspect of the present application has an inactivation area, the phenomenon of lithium deposition in the bending part of the electrode assembly can be alleviated, and it has better safety performance, so that the battery including the battery cell also has better safety performance.
  • the embodiment of the fourth aspect of the present application provides an electric device, including the battery described in the embodiment of the third aspect of the present application, and the battery is used to provide electric energy.
  • the bending area of the positive pole piece of the electrode assembly used in the battery cell has an inactivation area, which can alleviate the phenomenon of lithium deposition in the bending part of the electrode assembly, and has better safety performance, so that the electric device including the battery also has better safety performance.
  • the embodiment of the fifth aspect of the present application proposes a winding device, including: a winding device for winding a positive pole piece; an inactivation device, along the tape-running direction of the positive pole piece, the deactivation device is arranged upstream of the winding device, and the deactivation device is configured to provide a deactivator to the positive pole piece, so as to deactivate the positive active material of a part of the positive active material layer of the positive pole piece.
  • the deactivation device can provide a deactivator to the positive pole piece, so as to deactivate the positive pole active material of a part of the positive pole active material layer of the positive pole piece to form a deactivation area, so that the positive pole piece rolled into the winding equipment when winding and forming the electrode assembly has a deactivation area, so that the electrode assembly in the embodiment of the first aspect of the present application can be formed, the industrial production of this kind of electrode assembly can be realized, and the molding efficiency of this kind of electrode assembly can be improved.
  • the deactivation device is configured to provide a deactivation agent to a side of the positive electrode sheet facing the winding device.
  • the deactivation device provides the deactivator to the side of the positive electrode sheet facing the winding device, which can realize that after the positive electrode sheet enters the winding device, its inner side facing the winding device is located on the side facing the winding axis, and the deactivation zone can be located on the first positive electrode active material layer on the inner side of the positive electrode current collector, thereby increasing the CB value between the outside of the negative electrode sheet and the inside of the positive electrode sheet, and alleviating the lithium precipitation between the inner surface of the positive electrode collector and the negative electrode collector of the negative electrode sheet inside it, thereby Improve the safety performance of the electrode assembly.
  • the deactivation device includes: a clamping mechanism for clamping the positive pole piece and supplying the deactivator to the positive pole piece; a driving mechanism for driving the clamping mechanism to move synchronously with the positive pole piece.
  • the driving mechanism drives the clamping mechanism to move synchronously with the positive pole piece, and can continuously provide the deactivator to the positive pole piece within the time range during which the clamping mechanism moves with the positive pole piece, so as to ensure the deactivation effect on the positive electrode active material layer of the positive pole piece and form an effective deactivation area.
  • the clamping mechanism includes: a bracket; a first clamping portion and a second clamping portion, disposed on the bracket; and a first driving member, disposed on the bracket, for driving the first clamping portion and the second clamping portion to approach or move away from each other to clamp or loosen the positive electrode piece; wherein at least one of the first clamping portion and the second clamping portion is configured to provide the positive electrode piece with the deactivator.
  • the first clamping part and the second clamping part jointly clamp the positive pole piece and provide the deactivator to the positive pole piece, which can improve the positional accuracy of the deactivation area and form an effective deactivation area on the preset position of the positive pole piece.
  • At least one of the first clamping part and the second clamping part is a porous material.
  • the porous material can store the deactivator, and when the first clamping part and the second clamping part jointly clamp the positive pole piece, the porous material can be squeezed to extrude the deactivator from the porous material to the surface of the positive pole piece, and when the positive pole piece is released, the residual deactivator on the surface of the positive pole piece is sucked back, not only keeping the surface of the positive pole piece clean and tidy, but also recyclable the deactivator.
  • the driving mechanism includes: a screw rod disposed along the tape-running direction of the positive pole piece, the screw rod passing through the bracket and threadedly engaged with the bracket; a second driving member configured to drive the screw rod to rotate so as to move the bracket along the axial direction of the screw rod.
  • the rotation of the screw rod can drive the bracket to rotate along the axial direction of the screw rod, and then drive the clamping mechanism to move synchronously with the positive electrode piece, which has a simple structure and is convenient to assemble.
  • the deactivation device includes at least two clamping mechanisms arranged at intervals along the tape-running direction of the positive pole piece, and the driving mechanism is used to drive the at least two clamping mechanisms to move synchronously.
  • each clamping mechanism corresponds to an inactivation zone
  • the driving mechanism drives at least two clamping mechanisms to move synchronously, so that at least two clamping mechanisms can jointly clamp the positive pole piece and move with the positive pole piece, so as to form at least two deactivation zones at the same time, and improve the formation efficiency of the deactivation zone.
  • the deactivation device further includes: a detection mechanism for detecting position information of the positive pole piece; a controller for controlling the action of the clamping mechanism and the driving mechanism according to the position information detected by the detection mechanism.
  • the controller can judge the preset position of the inactivation area of the positive pole piece, and control the clamping mechanism to accurately perform the clamping action and control the drive mechanism to drive the clamping mechanism to follow the positive pole piece to move synchronously, which can improve the positional accuracy of the inactivation area, and form an effective inactivation zone at the preset position of the positive pole piece.
  • the embodiment of the sixth aspect of the present application proposes a method for manufacturing an electrode assembly, including:
  • the positive pole piece is wound.
  • An electrode assembly can be manufactured by using the method for manufacturing an electrode assembly according to the embodiment of the present application, so that at least a part of the deactivation area of the positive electrode sheet of the electrode assembly is located in the bending area, so as to alleviate the phenomenon of lithium deposition in the bending part of the electrode assembly, and has better safety performance.
  • the deactivating a part of the positive active material layer of the positive pole piece includes: providing an acidic solution to the positive pole piece to deactivate a part of the positive active material layer of the positive pole piece.
  • an acidic solution is provided to the positive electrode sheet, and a part of the positive electrode active material layer is deactivated by acid-base neutralization, which not only can simply and efficiently form the deactivation area, but also maintains the original shape of the positive electrode active material layer, makes the surface of the positive electrode active material layer smooth, and further alleviates the lithium desorption phenomenon of the bending part of the electrode assembly while ensuring the working performance of the battery assembly.
  • FIG. 1 shows is a simple schematic diagram of a vehicle in an embodiment of the present application
  • Fig. 2 shows a schematic structural view of the battery of the vehicle in Fig. 1;
  • Fig. 3 shows a schematic structural view of a battery cell in the battery in Fig. 2;
  • Figure 4 shows a structural diagram of a form of electrode assembly in some embodiments of the present application
  • FIG. 5 shows is the partial enlarged view of place A in Fig. 4;
  • Figure 6 shows a structural diagram of another form of electrode assembly in some embodiments of the present application.
  • Fig. 7 shows a schematic view of the winding of the positive pole piece and the negative pole piece in the electrode assembly of some embodiments of the present application
  • Figure 8 shows a schematic view of the winding of the positive pole piece in the electrode assembly of some embodiments of the present application
  • FIG. 9 shows a schematic structural view of another form of the positive pole piece in the electrode assembly of some embodiments of the present application.
  • FIG. 10 shows a schematic structural view of another positive pole piece of the electrode assembly of some embodiments of the present application.
  • Fig. 11 shows a schematic structural view of another positive pole piece of the electrode assembly of some embodiments of the present application.
  • Figure 12 shows a schematic structural view of another positive pole piece of the electrode assembly of some embodiments of the present application.
  • Fig. 13 shows a schematic structural view of another positive pole piece of the electrode assembly of some embodiments of the present application.
  • FIG. 14 shows is the partial enlarged view of place B in Fig. 13;
  • Figure 15 shows an axonometric view of the deactivation device of the winding device of some embodiments of the present application
  • Figure 16 shows a front view of the deactivation device of the winding device of some embodiments of the present application.
  • Figure 17 shows a top view of the deactivation device of the winding device of some embodiments of the present application.
  • Fig. 18 shows an axonometric view of a deactivation device provided with a liquid supply mechanism of a winding device according to some embodiments of the present application
  • Fig. 19 shows a schematic diagram of a method for manufacturing an electrode assembly according to some embodiments of the present application.
  • Figure 20 shows a schematic diagram of a method for deactivating the positive electrode active material layer in a method of manufacturing an electrode assembly according to some embodiments of the present application
  • Marking description 1000-vehicle; 100-battery; 110-battery unit; 111-housing; 1111-casing; 1112-cover; 1113-electrode terminal; 112-electrode assembly; 1121-positive pole piece; Active material layer; 11216-second positive active material layer; 11217-bending area; 11218-straight area; 1122-negative electrode sheet; 11221-negative electrode current collector; 11222-negative active material layer; Area; 1129-tab; 120-box; 121-first box; 122-second box; 200-controller; 300-motor; 2000-winding equipment; 2100-winding device; 2200-inactivation device; Mechanism; 2221-screw; 2222-second driving member; 2230-detection mechanism; 2240-frame; 2250-liquid supply mechanism; 2251-liquid storage container; 2252-pump.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal connection between two components.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal connection between two components.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to the way of packaging: cylindrical battery cells, square battery cells and pouch battery cells.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • a battery generally includes a box for encapsulating one or more battery cells, and the box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the electrode assembly is a wound structure.
  • the CB value refers to the ratio of the negative electrode active material capacity of the opposite negative electrode sheet to the positive electrode active material capacity, and also refers to the ratio of the effective active area of the negative electrode active material layer of the opposite negative electrode sheet to the effective active area of the positive electrode active material capacity.
  • the inventors have found through research that if the gap between the positive pole piece and the negative pole piece of the bent part of the electrode assembly becomes larger, for example, if the negative pole piece collapses inward or the positive pole piece is loosened outward, etc., the CB of the outside of the negative pole piece at the bent portion and the positive pole piece correspondingly arranged on the outside thereof will decrease, so that the lithium ions deintercalated from the positive active material layer during the charging process of the battery cell cannot be completely embedded in the corresponding negative active material layer, resulting in lithium precipitation.
  • Forming an inactivation area on the surface of the positive electrode sheet at the bending part of the electrode assembly can reduce the effective area of the positive active material layer in the bending area of the positive electrode sheet, thereby increasing the CB value of the bending part of the electrode assembly, so that the lithium ions deintercalated from the positive active material layer during the charging process of the battery cell can be effectively embedded in the corresponding negative active material layer, alleviating the lithium precipitation phenomenon at the bending part of the electrode assembly, thereby improving the safety performance of the electrode assembly.
  • the battery cells described in the embodiments of the present application can directly supply power to electric devices, and can also be connected in parallel or in series to form batteries to supply power to various electric devices in the form of batteries.
  • the electric devices that use battery cells or batteries described in the embodiments of the present application can be in various forms, such as mobile phones, portable devices, notebook computers, battery cars, electric cars, ships, spacecraft, electric toys and electric tools, etc.
  • spacecraft include airplanes, rockets, space shuttles, and spaceships
  • Electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric boat toys, and electric airplane toys, etc.
  • Electric tools include metal cutting electric tools, grinding electric tools, and assembly electric tools And electric tools for railways, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, and electric planers.
  • the battery cells and batteries described in the embodiments of the present application are not limited to the electric devices described above, but can also be applied to all electric devices using the battery cells and batteries. However, for the sake of brevity, the following embodiments take electric vehicles as examples for illustration.
  • FIG. 1 shows a simplified schematic diagram of a vehicle in an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a battery of the vehicle in FIG. 1 .
  • a battery 100 , a controller 200 and a motor 300 are disposed inside the vehicle 1000 , for example, the battery 100 may be disposed at the bottom, front or rear of the vehicle 1000 .
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the controller 200 is used to control the power supply of the battery 100 to the motor 300 , for example, for starting, navigating, and working power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells 110 to provide higher voltage and capacity.
  • the battery 100 is formed by connecting multiple battery cells 110 in series or in parallel.
  • the battery 100 includes a plurality of battery cells 110 and a box body 120 .
  • the plurality of battery cells 110 are connected in parallel or in series or combined in parallel to achieve high voltage output.
  • the plurality of battery cells 110 are assembled and placed inside the box body 120 .
  • the box body 120 includes a first box body 121 and a second box body 122.
  • the first box body 121 and the second box body 122 are closed together to form a battery cavity, and a plurality of battery modules are placed in the battery cavity.
  • a plurality of battery cells 110 are combined in parallel, in series or in parallel and placed in the box 120 formed by fastening the first box 121 and the second box 122 .
  • FIG. 3 shows a schematic structural view of a battery cell in the battery in FIG. 2 .
  • each battery cell 110 includes a casing 111 , an electrode assembly 112 and two electrode terminals 1113 .
  • the casing 111 may be hexahedral or other shapes, and an accommodating cavity is formed inside the casing 111 for accommodating the electrode assembly 112 and the electrolyte.
  • the shell 111 includes a shell 1111 and a cover 1112 , and one end of the shell 1111 has an opening, so that the electrode assembly 112 can be placed inside the shell 1111 through the opening.
  • the housing 1111 may be made of a metallic material such as aluminum, aluminum alloy, or nickel-plated steel. Two electrode terminals 1113 are disposed on the cover 1112 .
  • the housing 1111 can be in the shape of a cuboid, or a cylinder or an ellipse.
  • the two electrode terminals 1113 can both be arranged on the cover 1112 , and both can be arranged on the casing 1111 , or one can be arranged on the cover 1112 and the other can be arranged on the casing 1111 .
  • the electrode assembly 112 is disposed inside the housing 111.
  • the electrode assembly 112 includes two tabs 1129 with opposite polarities.
  • the positive electrode terminal 1113 is connected to the positive tab 1129 of the electrode assembly 112, and the negative electrode terminal 1113 is connected to the negative tab 1129 of the electrode assembly 112.
  • Fig. 4 shows a structural view of a form of electrode assembly in some embodiments of the present application
  • Fig. 5 shows a partial enlarged view of A in Fig. 4 .
  • the electrode assembly 112 includes a positive pole piece 1121, a negative pole piece 1122, a first diaphragm 1123 and a second diaphragm 1124.
  • the electrode assembly 112 is formed after winding. Wherein, the winding axis of the electrode assembly 112 is the first axis P.
  • the positive electrode sheet 1121 includes a positive electrode current collector 11211 and a positive electrode active material layer 11212, and the positive electrode active material layer 11212 is coated on the surface of the positive electrode current collector 11211;
  • the material of the positive electrode current collector 11211 may be aluminum, and the positive electrode active material may be lithium cobaltate, lithium iron phosphate, ternary lithium, or lithium manganese oxide.
  • the part of the positive electrode current collector 11211 that is not coated with the positive electrode active material layer 11212 protrudes from the part that has been coated with the positive electrode active material layer 11212, and the part of the positive electrode current collector 11211 that is not coated with the positive electrode active material layer 11212 serves as the tab 1129 of the positive electrode (please refer to FIG.
  • the material of the negative electrode current collector 11221 may be copper, and the negative electrode active material may be carbon or silicon.
  • the part of the negative electrode current collector 11221 that is not coated with the negative electrode active material layer 11222 protrudes from the part that has been coated with the negative electrode active material layer 11222, and the part of the negative electrode current collector 11221 that is not coated with the negative electrode active material layer 11222 serves as the tab 1129 of the negative electrode (please refer to FIG. 3 ).
  • the material of the diaphragm can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly 112 is flat. On a plane perpendicular to its winding axis, the length direction of the electrode assembly 112 is the direction X, and the width direction is the direction Y. Specifically, the electrode assembly 112 includes a straight portion 11251 and bent portions 11252 located on both sides of the straight portion 11251 along the direction X, and the two bent portions 11252 each have an arc-shaped surface.
  • the electrode assembly 112 can be directly wound into a flat shape, or it can be wound into a circular or elliptical shape and then compacted in the middle, so that the middle of the electrode assembly 112 forms a straight portion 11251 .
  • Fig. 6 shows a structural view of another form of electrode assembly in some embodiments of the present application.
  • the electrode assembly 112 may also be cylindrical, and the electrode assembly 112 only includes the bent portion 11252 .
  • the positive pole piece 1121 , the negative pole piece 1122 and the diaphragm respectively have a bending structure corresponding to the bending part of the electrode assembly 112 , and the part of the positive pole piece 1121 wound through the bending part of the electrode assembly 112 is the bending area 11217 .
  • each turn of the positive pole piece 1121 forms two bending regions 11217 , the two bending regions 11217 correspond to the two bending portions 11252 of the electrode assembly 112 , and the part between the two bending regions 11217 is a straight region 11218 corresponding to the straight portion 11251 of the electrode assembly 112 .
  • one circle in this application refers to starting from a certain point of the electrode assembly 112 , going one circle along the winding direction to another point, and the line connecting the other point and the starting point extends along the radial direction of the electrode assembly 112 .
  • the half circle in the present application refers to half of one circle, and those skilled in the art should understand the meaning of other circle numbers, and no further details are given here.
  • Fig. 7 shows a schematic winding diagram of the positive pole piece and the negative pole piece in the electrode assembly of some embodiments of the present application
  • Fig. 8 shows a schematic winding diagram of the positive pole piece in the electrode assembly of some embodiments of the present application.
  • some embodiments of the present application propose an electrode assembly 112 , including a positive pole piece 1121 , and the positive pole piece 1121 is wound to form a bending area 11217 .
  • the positive electrode sheet 1121 includes a positive electrode current collector 11211 and a positive electrode active material layer 11212 disposed on the surface of the positive electrode current collector 11211, the positive electrode active material layer 11212 includes an inactive region 1127, and at least a part of the inactive region 1127 is located in the bending region 11217.
  • the positive electrode active material layer 11212 includes an active region 1128 and an inactive region 1127 .
  • the active region 1128 is a region that deintercalates lithium ions during charging and discharging and has an active material capacity;
  • the inactive region 1127 refers to the loss of activity in a part of the positive electrode active material layer, that is, the positive electrode active material layer 11212 in this region no longer deintercalates lithium ions during charging and discharging.
  • an acid solution such as dilute hydrochloric acid can be sprayed on the position of the positive electrode active material layer 11212 for forming the deactivation region 1127, or an insulating liquid such as liquid glue can be used to infiltrate the position of the positive electrode active material layer 11212 for forming the deactivation region 1127.
  • the deactivation region 1127 may only exist in the bending region 11217 of the positive pole piece 1121, so as to improve the lithium desorption phenomenon of the bending part of the electrode assembly 112; based on the above-mentioned embodiment in which the electrode assembly 112 is flat, a circle of the positive pole piece 1121 is provided with two bending regions 11217, and each bending region 11217 is provided with an inactivation region 1127.
  • the inactivation region 1127 can also exist in the flat region 11218 of the positive electrode sheet 1121 while existing in the bending region 11217 of the positive electrode sheet 1121, and further reduce the area of the positive electrode active material layer 11212 in the flat region 11218, so that the lithium ions deintercalated from the positive electrode active material layer 11212 can all be embedded in the negative electrode active material layer 11222 of the corresponding negative electrode sheet 1122, avoiding the
  • the innermost ring of the positive pole piece 1121 extends from the roll-in end around the winding direction and forms a part of the straight region 11218 and a bending region 11217 in sequence.
  • the part of the straight region 11218 and the bending region 11217 are provided with a continuous inactivation region 1127.
  • the inactivation region 1127 can also exist on the inner side of the positive electrode piece 1121 towards the first axis P and the outer side away from the first axis P, so that the corresponding CB values on both sides of the positive electrode piece 1121 are increased.
  • the deactivation region 1127 can be disposed on the inner side of the positive pole piece 1121 toward the winding axis of the electrode assembly 112 (ie, the first axis P), so as to increase the CB value between the negative pole piece 1122 and the outer positive pole piece 1121 .
  • the deactivation region 1127 can also be disposed on the outer side of the positive pole piece 1121 away from the first axis P, so as to increase the CB value between the negative pole piece 1122 and the inner positive pole piece 1121 .
  • the positive pole piece 1121 has a multi-turn winding structure, one end of the positive pole piece 1121 close to the first axis P is the winding end, and one end on the outer peripheral side of the positive pole piece 1121 is the tailing end.
  • the inactivation region 1127 can be set on the part of the positive pole piece 1121 close to the winding end, or can be set on other parts.
  • the effective active area of the positive electrode active material layer 11212 in the bending region 11217 of the positive electrode sheet 1121 can be reduced, thereby increasing the CB value of the bending part of the electrode assembly 112 (that is, the ratio of the capacity of the negative electrode active material on the opposite side to the capacity of the positive electrode active material) , so that the lithium ions deintercalated from the positive electrode active material layer 11212 during the charging process of the battery cell 110 can be effectively embedded in the corresponding negative electrode active material layer 11222, so as to alleviate the phenomenon of lithium precipitation in the bent part of the electrode assembly 112, thereby improving the safety performance of the electrode assembly 112.
  • FIG. 9 is a schematic structural diagram of another form of the positive electrode sheet in the electrode assembly of some embodiments of the present application.
  • the positive electrode current collector 11211 includes an inner surface facing the axis of the electrode assembly 112 (ie, the first axis P) and an outer surface away from the axis of the electrode assembly 112 (ie, the first axis P), and the positive electrode active material layer 11212 includes a first positive electrode active material layer 11215 disposed on the inner surface of the positive electrode current collector 11211 and a second positive electrode active material layer 11216 disposed on the outer surface of the positive electrode current collector 11211 ,
  • the first positive electrode active material layer 11215 includes an inactive region 1127 .
  • the side of the positive electrode current collector 11211 facing the first axis P is the first inner surface 11213
  • the side away from the first axis P is the first outer surface 11214 .
  • the first inner surface 11213 of the positive current collector 11211 is provided with a first positive active material layer 11215
  • the first outer surface 11214 is provided with a second positive active material layer 11216 .
  • the inner surface of the negative electrode current collector 11221 facing the first axis P is provided with a first negative electrode active material layer (not shown in the figure), and the negative electrode current collector 11221 is provided with a second negative electrode active material layer (not shown in the figure) on the outer surface of the side away from the first axis P.
  • the first positive electrode active material layer 11215 is arranged corresponding to the second negative electrode active material layer, and the deactivation region 1127 is arranged on the first positive electrode active material layer 11215, which can increase the CB value between the first positive electrode active material layer 11215 and the second negative electrode active material layer, thereby avoiding the phenomenon of lithium precipitation.
  • the inactivation region 1127 is arranged on the first positive electrode active material layer 11215, which can reduce the effective active area of the first positive electrode active material layer 11215, and improve the outer side of the negative electrode sheet 1122 in the bent part of the electrode assembly 112
  • the CB value between the inner side of the positive electrode sheet 1121 enables most of the lithium ions deintercalated from the first positive electrode active material layer 11215 during the charging process of the battery cell 110 to be embedded in the corresponding negative electrode active material layer 11222, which alleviates the lithium separation phenomenon between the inner surface of the positive electrode current collector 11211 and the inner negative electrode current collector 11221, thereby improving the safety performance of the electrode assembly 112.
  • FIG. 10 shows a schematic structural diagram of another positive pole piece of an electrode assembly according to some embodiments of the present application
  • FIG. 11 shows a schematic structural diagram of another positive pole piece of an electrode assembly according to some embodiments of the present application.
  • the deactivation region 1127 is located at the innermost positive electrode piece 1121 of the electrode assembly 112 .
  • the innermost positive pole piece 1121 of the electrode assembly 112 refers to a circle extending from the roll-in end of the positive pole piece 1121 around the winding direction to the tail end, that is, the part from V1 to V2 of the positive pole piece 1121 .
  • the inactivation region 1127 can be located on the inner side and the outer side of the innermost positive pole piece 1121 at the same time;
  • the radius of curvature of the innermost circle of the positive pole piece 1121 is the smallest, resulting in the largest ratio of the area of the positive active material layer 11212 on the inner surface of the innermost circle of the positive pole piece 1121 to the negative active material layer 11222 of the negative pole piece 1122 on the inner circle corresponding to it.
  • the CB value between the negative pole piece 1122 inside and the battery cell 110 enables the lithium ions deintercalated from the positive active material layer 11212 to be effectively embedded in the corresponding negative active material layer 11222 during the charging process of the battery cell 110, slowing down the lithium decomposition phenomenon and improving the safety performance of the electrode assembly 112.
  • FIG. 12 shows a schematic structural diagram of another positive pole piece of an electrode assembly according to some embodiments of the present application
  • FIG. 13 shows a schematic structural diagram of another positive pole piece of an electrode assembly according to some embodiments of the present application.
  • the number of deactivation regions 1127 is at least two, and the at least two deactivation regions 1127 are distributed at intervals along the winding direction.
  • At least two inactivation regions 1127 can be respectively disposed in different bending regions 11217 .
  • two bending regions 11217 of a circle of positive pole pieces 1121 are respectively provided with an inactivation region 1127 .
  • the number of deactivation regions 1127 is two, and the two innermost bending regions 11217 of the positive pole piece 1121 are respectively provided with one deactivation zone 1127, which can significantly improve the lithium precipitation phenomenon of the innermost circle of the positive pole piece 1121.
  • a part of the deactivation regions 1127 may be arranged in the bent region, and the other part may be arranged in the straight region.
  • the straight region and the bent region of the innermost positive electrode piece 1121 are provided with continuous inactivation regions 1127 .
  • At least two deactivation regions 1127 can also be arranged in the same bending region, and the at least two deactivation regions 1127 are distributed at intervals along the winding direction.
  • the electrode assembly 112 is in the shape of a cylinder
  • the circumferential area around the first axis P of the electrode assembly 112 is all a bent portion
  • a plurality of inactivation regions 1127 are arranged at intervals along the length direction of the positive pole piece 1121 .
  • each circle of positive pole piece 1121 includes two bending areas around the winding direction, and each bending area is provided with an inactivation area 1127, thereby alleviating the lithium precipitation phenomenon of the bending part of the electrode assembly 112 and improving the safety performance of the electrode assembly 112.
  • the number of inactivation regions 1127 can be one, and one inactivation region 1127 is set in the bending region 11217 of the positive pole piece 1121 or exists continuously in adjacent bending regions 11217 and straight regions 11218 .
  • Some embodiments of the present application provide a battery cell 110 including an electrode assembly 112 .
  • the bending area of the positive pole piece 1121 in the electrode assembly 112 has an inactivation area 1127, the lithium precipitation phenomenon of the bending portion of the electrode assembly 112 can be alleviated, and the safety performance of the electrode assembly 112 can be improved, so that the battery cell 110 including the electrode assembly 112 also has better safety performance.
  • Some embodiments of the present application propose a battery 100 including a battery cell 110 .
  • the bending area of the positive pole piece 1121 of the electrode assembly 112 used in the battery cell 110 has an inactivation area 1127, the phenomenon of lithium deposition in the bending part of the electrode assembly 112 can be alleviated, and has better safety performance, so that the battery 100 including the battery cell 110 also has better safety performance.
  • Some embodiments of the present application propose an electrical device, including a battery 100 for providing electrical energy.
  • the bending area of the positive pole piece 1121 of the electrode assembly 112 used in the battery cell 110 of the battery 100 has an inactivation area 1127, the phenomenon of lithium deposition at the bending portion of the electrode assembly 112 can be alleviated, and has better safety performance, so that the electric device including the battery 100 also has better safety performance.
  • FIG. 13 shows a schematic structural view of a winding device according to some embodiments of the present application
  • FIG. 14 shows a partially enlarged view at B in FIG. 13 .
  • Some embodiments of the present application propose a winding device 2000, including a winding device 2100 and an inactivation device 2200.
  • the winding device 2100 is used to wind the positive pole piece 1121; along the direction of tape travel of the positive pole piece 1121, the deactivation device 2200 is arranged upstream of the winding device 2100.
  • the deactivation device 2200 is configured to provide a deactivator to the positive pole piece 1121, so that a part of the positive pole piece 1121 is positively
  • the positive electrode active material of the active material layer 11212 is deactivated.
  • the process of winding and forming the electrode assembly 112 in some embodiments of the present application includes but is not limited to relying on the winding device 2000 in the embodiment of the present application; the winding device 2000 in the embodiment of the present application includes but is not limited to being used for winding and forming the electrode assembly 112 in some embodiments of the present application.
  • the winding device 2000 also includes a feeding device corresponding to the positive pole piece 1121, the negative pole piece 1122, the first diaphragm 1123 and the second diaphragm 1124, arranged upstream of the winding device 2100, for respectively providing the positive pole piece 1121, the negative pole piece 1122, the first diaphragm 1123 and the second diaphragm 1124, the positive pole piece 1121, the negative pole piece 1122, the first diaphragm 11 23 and the second separator 1124 enter the winding device 2100 from the upstream of the winding device 2100 to form the electrode assembly 112 by winding.
  • the upstream of the winding device 2100 refers to the incoming side of the winding device 2100 , that is, the side of the winding device 2100 facing the feeding device.
  • the tape running direction of the positive electrode piece 1121 refers to the direction in which the positive electrode piece 1121 enters the winding device 2100 from the corresponding feeding device when the winding device 2100 rotates in the second direction M to wind and form the electrode assembly 112 , that is, the first direction Q.
  • the deactivation device 2200 extends along the first direction Q to provide a deactivator to the surface of the positive electrode sheet 1121 traveling along the first direction Q, and forms an inactivation region 1127 on the positive electrode active material layer 11212 of the positive electrode sheet 1121 .
  • the deactivation device 2200 can provide a deactivator to both surfaces of the positive pole piece 1121 ; the deactivation device 2200 can also provide a deactivator to one side surface of the positive pole piece 1121 .
  • the deactivation device 2200 can provide the deactivator in a static manner, and the positive pole piece 1121 passes through the deactivation device 2200 and forms the deactivation area 1127 when it travels along the first direction Q;
  • the deactivation device 2200 can provide the deactivator to the positive pole piece 1121 by one-side spraying, pressing, etc.;
  • the deactivator can be an acidic solution, such as dilute hydrochloric acid, etc.; the deactivator can also be an insulating solution, such as liquid glue.
  • the deactivation device 2200 can provide a deactivating agent to the positive pole piece 1121, so as to deactivate the positive electrode active material of a part of the positive electrode active material layer 11212 of the positive pole piece 1121 to form the deactivation area 1127, so that the positive pole piece 1121 that is rolled in when the winding equipment 2000 rolls and forms the electrode assembly 112 has the deactivation area 1127, so that it can be formed in some embodiments of the present application.
  • the electrode assembly 112 can realize the industrial production of this kind of electrode assembly 112 and improve the forming efficiency of this kind of electrode assembly 112 .
  • the deactivation device 2200 is configured to provide a deactivation agent to the side of the positive pole piece 1121 facing the winding device 2100 .
  • the positive electrode sheet 1121 enters the winding device 2100 from the side of the second separator 1124 facing the winding device 2100 .
  • the side of the positive electrode sheet 1121 facing the winding device 2100 refers to the side of the positive electrode sheet 1121 away from the second separator 1124.
  • the deactivation device 2200 provides the deactivator to the side of the positive pole piece 1121 facing the winding device 2100, so that after the positive pole piece 1121 enters the winding device 2100, its inner side facing the winding device 2100 is located on the side facing the winding axis, and the deactivation region 1127 can be positioned on the first positive electrode active material layer 11215 (please refer to FIG. 8 ) on the inner side of the positive current collector 11211, improving the negative pole piece.
  • the CB value between the outer side of 1122 and the inner side of the positive pole piece 1121 alleviates the lithium precipitation phenomenon between the inner side of the positive current collector 11211 and the negative current collector 11221 of the negative pole piece 1122 inside it, thereby improving the safety performance of the electrode assembly 112.
  • Fig. 15 shows an axonometric view of the deactivation device of the winding device of some embodiments of the present application
  • Fig. 16 shows a front view of the deactivation device of the winding device of some embodiments of the present application
  • Fig. 17 shows a top view of the deactivation device of the winding device of some embodiments of the present application.
  • the deactivation device 2200 includes a clamping mechanism 2210 and a driving mechanism 2220 , the clamping mechanism 2210 is used to clamp the positive pole piece 1121 and provides an inactivator to the positive pole piece 1121 , and the driving mechanism 2220 is used to drive the clamping mechanism 2210 to move synchronously with the positive pole piece 1121 .
  • the driving mechanism 2220 can be various forms of linear driving parts, such as linear cylinders, electric push rods, motor screw nut mechanisms, etc., to drive the clamping mechanism 2210 to move along the first direction Q.
  • the clamping mechanism 2210 clamps the positive pole piece 1121 from both sides in the thickness direction of the positive pole piece 1121 while the end portion with the deactivator is pressed against the positive active material layer 11212 of the positive pole piece 1121 to provide the deactivator to the surface of the positive pole piece 1121.
  • the number of clamping mechanisms 2210 can be one, and the driving mechanism 2220 drives one clamping mechanism 2210 to move along the first direction Q; the number of clamping mechanisms 2210 can also be multiple, and the multiple clamping mechanisms 2210 are arranged at intervals along the first direction Q, and the driving mechanism 2220 drives the multiple clamping mechanisms 2210 to move synchronously.
  • the driving mechanism 2220 drives the clamping mechanism 2210 to move synchronously with the positive pole piece 1121, and can continuously provide the positive pole piece 1121 with the deactivator within the time range during which the clamping mechanism 2210 moves with the positive pole piece 1121, so as to ensure the deactivation effect on the positive electrode active material layer 11212 of the positive pole piece 1121 and form an effective deactivation region 1127 (please refer to FIG. 8 ).
  • the clamping mechanism 2210 includes a bracket 2211, a first clamping part 2212, a second clamping part 2213 and a first driver 2214, the first clamping part 2212, the second clamping part 2213 and the first driver 2214 are all arranged on the bracket 2211, and the first driver 2214 is used to drive the first clamping part 2212 and the second clamping part 2213 to approach or move away from each other , to clamp or loosen the positive pole piece 1121 ; wherein, at least one of the first clamping portion 2212 and the second clamping portion 2213 is configured to provide the positive pole piece 1121 with a deactivator.
  • the deactivation device 2200 further includes a frame 2240, the driving mechanism 2220 and the bracket 2211 are mounted on the bracket 2211, and there is a gap between the first clamping part 2212 and the second clamping part 2213 for the positive pole piece 1121 to pass through.
  • the thickness direction of the positive pole piece 1121 is the third direction N, and there are two first driving members 2214, and each first driving member 2214 drives the corresponding clamping part to move along the third direction N, so as to realize the first clamping part 2212 and the second clamping part 2213 approaching or moving away; among the first clamping part 2212 and the second clamping part 2213, the second clamping part 2213 can also be fixedly installed on the bracket 2211, and the first clamping part 2212 is installed on the first driving part At the execution end of 2214 , the first driving member 2214 drives the first clamping part 2212 to approach or move away from the second clamping part 2213 along the third direction N.
  • One of the first clamping portion 2212 and the second clamping portion 2213 can provide the deactivator, and the other is used to support the positive electrode sheet 1121 .
  • the second clamping part 2213 is fixedly mounted on the bracket 2211
  • the first driver 2214 is mounted on the bracket 2211
  • the first driving part 2214 drives the first clamping part 2212 close to the second clamping part 2213 to clamp the positive pole piece 1121, so that the positive pole piece 1121 is compressed.
  • the first clamping portion 2212 provides the deactivator to the surface of the positive pole piece 1121 to form the deactivation region 1127 on one side surface of the positive pole piece 1121 .
  • the first clamping part 2212 and the second clamping part 2213 can both be able to provide the deactivator.
  • the deactivation device 2200 provides the deactivator to the both sides of the positive pole piece 1121
  • the surface of the positive pole piece 1121 is provided with the deactivator to form an inactivation zone 1 on both sides of the positive pole piece 1121.
  • the first driving member 2214 may be a common linear driving mechanism 2220 such as a linear cylinder or an electric push rod.
  • the second clamping portion 2213 can be slidably matched with the bracket 2211 , and can also be set independently from the bracket 2211 .
  • the first clamping part 2212 and the second clamping part 2213 clamp the positive pole piece 1121 together and provide the deactivator to the positive pole piece 1121, which can improve the position accuracy of the deactivation area 1127, and form an effective deactivation area 1127 on the preset position of the positive pole piece 1121.
  • At least one of the first clamping part 2212 and the second clamping part 2213 is a porous material.
  • the porous material is able to store the inactivating agent and release the inactivating agent in a squeezed state.
  • the porous material can be sponge or other elastic porous materials.
  • One of the first clamping portion 2212 and the second clamping portion 2213 for providing the deactivator to the surface of the positive electrode sheet 1121 is a porous material.
  • the first clamping part 2212 provides the deactivator to the surface of the positive pole piece 1121
  • the first clamping part 2212 is a suction part
  • the suction part is a porous material
  • the second clamping part 2213 is a backing plate
  • the first clamping part 2212 and the second clamping part 2213 respectively provide the deactivator to the both sides of the positive pole piece 1121
  • the first clamping part 2212 and the second clamping part 2213 are all porous materials .
  • Fig. 18 shows an isometric view of a deactivation device provided with a liquid supply mechanism of a winding device according to some embodiments of the present application.
  • the deactivation device 2200 may further include a liquid supply mechanism 2250, the liquid supply mechanism 2250 includes a liquid storage container 2251 and a pump 2252, the liquid storage container 2251 is communicated with the deactivation device 2200 through the pump 2252, and the deactivation agent is supplemented to the porous material of the deactivation device 2200 by means of the pump 2252.
  • the liquid supply mechanism 2250 includes a liquid storage container 2251 and a pump 2252
  • the liquid storage container 2251 is communicated with the deactivation device 2200 through the pump 2252
  • the deactivation agent is supplemented to the porous material of the deactivation device 2200 by means of the pump 2252.
  • the porous material can store the deactivator.
  • the porous material can be squeezed to extrude the deactivator from the porous material to the surface of the positive pole piece 1121, and when the positive pole piece 1121 is loosened, the residual deactivator on the surface of the positive pole piece 1121 can be sucked back, which not only keeps the surface of the positive pole piece 1121 clean and tidy, but also enables the recovery of the deactivator use.
  • the surface of one of the first clamping part 2212 or the second clamping part 2213 may also have a liquid outlet, and the liquid outlet is communicated with the liquid supply mechanism 2250 , and the inactivator flows out of the liquid outlet through the pump 2252 .
  • the driving mechanism 2220 includes a screw rod 2221 and a second driving member 2222, the screw rod 2221 is arranged along the tape-running direction of the positive pole piece 1121 (that is, the first direction Q), the screw rod 2221 passes through the bracket 2211 and is threadedly engaged with the bracket 2211, and the second driving member 2222 is used to drive the screw rod 2221 to rotate, so that the bracket 2211 moves along the screw rod 2221
  • the axial direction that is, the first direction Q moves.
  • the length direction of the screw rod 2221 extends along the first direction Q
  • both ends of the screw rod 2221 are rotatably mounted on the frame
  • the second driving member 2222 is fixed on the frame and used to drive the screw rod 2221 to rotate around its own axis.
  • the bracket 2211 of the clamping mechanism 2210 is provided with a threaded hole, and the screw rod 2221 is screwed into the threaded hole. When the screw rod 2221 rotates, it can drive the clamping mechanism 2210 to move along the first direction Q.
  • the second driving member 2222 can be a motor, and the motor is in transmission cooperation with the end of the screw rod 2221 .
  • the rotation of the screw rod 2221 can drive the bracket 2211 to rotate along the axial direction of the screw rod 2221 , and then drive the clamping mechanism 2210 to move synchronously with the positive pole piece 1121 , which has a simple structure and is easy to assemble.
  • the deactivation device 2200 includes at least two clamping mechanisms 2210 arranged at intervals along the tape running direction of the positive pole piece 1121 (ie, the first direction Q), and the driving mechanism 2220 is used to drive the at least two clamping mechanisms 2210 to move synchronously.
  • the brackets 2211 of the plurality of clamping mechanisms 2210 can all be threadedly engaged with the screw rod 2221, and when the screw rod 2221 rotates, the multiple clamping mechanisms 2210 are driven to move synchronously and in the same direction, and one clamping mechanism 2210 corresponds to form an inactivation zone 1127.
  • the electrode assembly 112 is provided with two inactivation regions 1127.
  • the two inactivation regions 1127 are respectively located at the two bending regions of the innermost positive pole piece 1121 of the electrode assembly 112, two clamping mechanisms 2210 are provided, and one clamping mechanism 2210 corresponds to one inactivation zone 1127.
  • the extension length of the element along the first direction Q is the extension length of one inactivation region 1127 , that is, the extension length of one bending region.
  • each clamping mechanism 2210 corresponds to one inactivation zone 1127
  • the driving mechanism 2220 drives at least two clamping mechanisms 2210 to move synchronously, so that at least two clamping mechanisms 2210 can jointly clamp the positive pole piece 1121 and move with the positive pole piece 1121, so as to form at least two deactivation zones 1127 at the same time, and improve the formation efficiency of the deactivation zone 1127.
  • the deactivation device 2200 also includes a detection mechanism 2230 and a controller (not shown in the figure), the detection mechanism 2230 is used to detect the position information of the positive pole piece 1121, and the controller is used to control the action of the clamping mechanism 2210 and the drive mechanism 2220 according to the position information detected by the detection mechanism 2230.
  • the detection mechanism 2230 is located upstream of the deactivation device 2200, that is, on the side close to the feeding device.
  • the positive pole piece 1121 first passes through the detection mechanism 2230 and then enters the deactivation device 2200 during the travel process.
  • the position information of the sheet 1121 combined with the tape running speed of the positive electrode sheet 1121 and other parameters can calculate the time for the clamping mechanism 2210 to clamp the positive electrode sheet 1121, the time for the clamping mechanism 2210 to start moving with the positive electrode sheet 1121, the speed for the clamping mechanism 2210 to move synchronously with the positive electrode sheet 1121, and the time for the clamping mechanism 2210 to release the positive electrode sheet 1121, so as to realize the automatic formation of the inactivation zone 1127.
  • the controller can judge the preset position of the inactivation area 1127 of the positive pole piece 1121, and control the clamping mechanism 2210 to accurately perform the clamping action and control the drive mechanism 2220 to drive the clamping mechanism 2210 to follow the positive pole piece 1121 to move synchronously, which can improve the position accuracy of the inactivation zone 1127, and form an effective position at the preset position of the positive pole piece 1121.
  • Fig. 19 shows a schematic diagram of a method for manufacturing an electrode assembly according to some embodiments of the present application.
  • some embodiments of the present application propose a method for manufacturing an electrode assembly, including:
  • the manufacturing method of the electrode assembly 112 in the embodiment of the present application includes but is not limited to using the winding device 2000 in the embodiment of the present application, and the manufacturing method of the electrode assembly 112 in the embodiment of the present application includes but is not limited to winding and forming the electrode assembly 112 in the embodiment of the present application.
  • this embodiment further illustrates the manufacturing method of the electrode assembly 112 in conjunction with the winding device 2000 .
  • the manufacturing method of the electrode assembly 112 includes:
  • S500 Use the winding device 2100 to wind the first diaphragm 1123 and the second diaphragm 1124;
  • the negative electrode sheet 1122 enters between the first separator 1123 and the second separator 1124, and the stacked first separator 1123, negative electrode sheet 1122, and second separator 1124 are wound, and the second separator 1124 is located on the side of the negative electrode sheet 1122 facing the winding device 2100.
  • the first separator 1123, the negative electrode sheet 1122 and the second separator 1124 Before winding the positive electrode sheet 1121 at S300, the first separator 1123, the negative electrode sheet 1122 and the second separator 1124 have been stacked and wound on the winding device 2100, and the positive electrode sheet 1121 formed with the inactivation region 1127 finally enters the winding device 2100 to continue winding to form the electrode assembly 112.
  • deactivating a part of the positive active material layer 11212 of the positive pole piece 1121 in S200 may also form an inactivation region 1127 in other parts of the positive pole active material layer 11212 of the positive pole piece 1121 to form a corresponding electrode assembly 112, which will not be further described herein.
  • S300 winding positive pole piece 1121 includes:
  • the positive pole piece 1121 After the negative pole piece 1122 is wound at least one turn, the positive pole piece 1121 enters the winding device 2100.
  • the innermost circle of the positive pole piece 1121 has a negative pole piece 1122, and an inactivation region 1127 is formed inside the positive pole piece 1121, which can effectively alleviate the lithium precipitation phenomenon inside the innermost circle of the positive pole piece 1121 and improve the safety performance of the electrode assembly 112.
  • an electrode assembly 112 can be manufactured, so that at least a part of the inactivation area 1127 of the positive electrode sheet 1121 of the electrode assembly 112 is located in the bending area, so as to alleviate the phenomenon of lithium precipitation in the bending part of the electrode assembly 112, and has better safety performance.
  • FIG. 20 is a schematic diagram of a method for deactivating a positive electrode active material layer in a manufacturing method of an electrode assembly according to some embodiments of the present application.
  • S200 deactivate a part of the positive electrode active material layer 11212 of the positive electrode sheet 1121, including:
  • an acidic solution is provided to the positive electrode sheet 1121, and a part of the positive electrode active material layer 11212 is deactivated by acid-base neutralization, which not only can form the deactivation region 1127 simply and efficiently, but also maintains the original shape of the positive electrode active material layer 11212, making the surface of the positive electrode active material layer 11212 smooth, and further relieving the lithium desorption phenomenon of the bent part of the electrode assembly 112 while ensuring the working performance of the battery 100 assembly.
  • S200 deactivates a part of the positive electrode active material layer 11212 of the positive electrode sheet 1121, including:
  • S220 Form an inactivation region 1127 in the bending region of the positive pole piece 1121 .
  • Forming the deactivation region 1127 in the bending region of the positive pole piece 1121 can improve the lithium precipitation phenomenon in the bending region, thereby improving the safety performance of the electrode assembly 112 .
  • the deactivating agent may also be an insulating solution, and the insulating solution is used to infiltrate the part of the active material layer where the deactivating region 1127 needs to be formed, so as to deactivate it.
  • S220 forms an inactivation region 1127 in the bending region of the positive pole piece 1121, including:
  • S221 Deactivate the two bending regions on the inner surface of the innermost positive electrode piece 1121 .
  • the CB value of the innermost positive electrode piece 1121 and the inner negative electrode piece 1122 can be increased, and the lithium precipitation phenomenon between the innermost positive electrode piece 1121 and the inner negative electrode piece 1122 can be alleviated.
  • some embodiments of the present application propose an electrode assembly 112 , which is flat.
  • the electrode assembly 112 includes a straight portion 11251 and bent portions 11252 on both sides of the straight portion 11251 .
  • the electrode assembly 112 includes a first separator 1123 , a negative electrode sheet 1122 , a second separator 1124 and a positive electrode sheet 1121 stacked and wound, wherein the part of the positive electrode sheet 1121 corresponding to the bent portion 11252 is a bent region 11217 .
  • the inner surface of the positive pole piece 1121 has a first positive active material layer 11215, and the first positive active material layer 11215 is neutralized by acid and alkali to form an inactivation area 1127, at least a part of the inactive area 1127 is located in the bending area 11217.
  • the inner surface of the innermost circle of the positive pole piece 1121 (i.e., the V1-V2 part) faces the outer surface of the negative pole piece 1122, and the inner surfaces of the two bending regions 11217 of the innermost circle of the positive pole piece 1121 are respectively formed with inactivation regions 1127, which can reduce the CB value between the two innermost bending zones 11217 of the positive pole piece 1121 and the negative pole piece 1122 inside, and ease
  • the lithium precipitation phenomenon here improves the safety performance of the electrode assembly 112 .
  • a dwarf device 2000 including the wound device 2100 and the loss device 2200
  • the wound device 2100 is used to wrap the positive polar film 1121, along the direction of the positive pole 1121 (that is, the first direction Q)
  • the loss device 2200 is set to the upstream of the wound device 2100, and corresponds to the positive polar chip 11222 1
  • the deactivation device 2200 includes a clamping mechanism 2210 , a driving mechanism 2220 , a detection mechanism 2230 , a frame 2240 and a liquid supply mechanism 2250 .
  • the driving mechanism 2220 is a motor screw nut mechanism.
  • the driving mechanism 2220 simultaneously drives the two clamping mechanisms 2210 to travel along the first direction Q so as to move synchronously with the positive electrode piece 1121 .
  • the clamping mechanism 2210 includes a bracket 2211, a first clamping part 2212, a second clamping part 2213 and a first driving part 2214.
  • the bracket 2211 is installed on the frame 2240, the second clamping part 2213 is fixedly installed on the bracket 2211, and the execution end of the first driving part 2214 is equipped with a first clamping part 2212.
  • the first clamping part 2212 is a porous material such as sponge, and the first clamping part 2212 is soaked with an inactivator .
  • the detection mechanism 2230 detects the position information of the positive electrode piece 1121, and the controller calculates the position of the inactivation treatment required.
  • the positive electrode active material layer 11212 of 1121 is fully contacted to form an effective deactivation area, and then the first clamping part 2212 is released, the positive electrode piece 1121 continues to move, and the clamping mechanism 2210 is reset.
  • the distance between the two clamping mechanisms 2210 corresponds to the strip length between the two innermost bending regions of the positive pole piece 1121 of the electrode assembly 112 , and the positive pole piece 1121 passes through the deactivation device 2200 to form two deactivation zones 1127 at the same time.
  • Both the second clamping part 2213 and the entire deactivation device 2200 have corrosion resistance, so as to have a high service life.
  • the usage method of the winding device 2000 of the embodiment of the present application is as follows:
  • the winding device rotates along the second direction M, the first diaphragm 1123 and the second diaphragm 1124 are stacked and enter the winding device 2100;
  • the negative pole piece 1122 is inserted between the first separator 1123 and the second separator 1124 to enter the winding device 2100;
  • the positive pole piece 1121 travels along the first direction Q and passes through the deactivation device 2200.
  • the clamping mechanism 2210 accurately clamps the positive pole piece 1121 when passing the clamping mechanism 2210 at the position of the preset deactivation area.
  • the mechanism 2210 moves synchronously with the positive pole piece 1121 for a period of time to form two inactivation regions 1127 inside the positive pole piece 1121;
  • the clamping mechanism 2210 releases the positive pole piece 1121 , the positive pole piece 1121 continues to travel along the first direction Q and is inserted into the side of the second separator 1124 facing the winding device 2100 , and the winding device 2100 continues to wind and form the electrode assembly 112 .
  • the inner side of the two innermost bending regions 11217 of the positive electrode sheet 1121 has an inactivation region 1127 respectively, which can reduce the CB value between the two innermost bending regions 11217 of the positive electrode sheet 1121 and the inner negative electrode sheet 1122, alleviate the lithium deposition phenomenon there, and improve the safety performance of the electrode assembly 112.
  • the winding equipment 2000 and the manufacturing method can realize the industrialized production of the electrode assembly 112 and improve the manufacturing efficiency of the electrode assembly 112 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种电极组件、卷绕设备和方法、电池单体、电池及用电装置,属于电池制造技术领域。本申请提出一种电极组件,包括正极极片,正极极片经过卷绕后形成弯折区;其中,正极极片包括正极集流体和设置于正极集流体表面的正极活性物质层,正极活性物质层包括失活区,至少一部分失活区位于弯折区。本申请还提出一种电极组件的卷绕设备和制造方法,能够成型该电极组件。该电极组件具有较好的安全性能,该制造方法和卷绕设备能够卷绕成型该电极组件,能够实现该电极组件的工业化生产,提高了该电极组件的制造效率。本申请还提出一种电池单体、电池以及用电装置,包括该电极组件。

Description

电极组件、卷绕设备和方法、电池单体、电池及用电装置
相关申请的交叉引用
本申请要求享有2022年01月21日提交的名称为“电极组件、卷绕设备和方法、电池单体、电池及用电装置”的中国专利申请(202210073353.9)的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池制造技术领域,具体而言,涉及一种电极组件、卷绕设备和方法、电池单体、电池及用电装置。
背景技术
随着新能源汽车行业的快速发展,动力电池的技术水平也越来越成熟,动力电池的安全性能也成为衡量其性能优劣的重要指标之一。卷绕成型的电极组件是电池单体内部的重要部件,电极组件的安全性能对电池单体的安全性能起到决定性的作用。但是,一方面,现有的电极组件在充电过程中容易产生析锂,安全性能较差;另一方面,即使对电极组件的构造作出改进以提高电池单体的安全性能,但目前尚不存在对应的卷绕设备,导致即使电极组件的结构作出改进后也无法实现工业化生产。
发明内容
为此,本申请提出一种电极组件、卷绕设备和方法、电池单体、电池及用电装置。该电极组件具有较好的安全性能,该制造方法和卷绕设备能够卷绕成型该电极组件,能够实现该电极组件的工业化生产,提高了该电极组件的制造效率。
本申请第一方面实施例提出一种电极组件,包括正极极片,所述正极极片经过卷绕后形成弯折区;其中,所述正极极片包括正极集流体和设置于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括失活区,至少一部分所述失活区位于所述弯折区。
本申请实施例的电极组件中,由于正极活性物质层的至少一部分失活区位于正极极片的弯折区,可以降低正极极片的弯折区的正极活性物质层的有效活性面积,从而提高电极组件的弯折部分的CB值(即正对面的负极活性物质容量与正极活性物质容量之比),使电池单体充电过程中正极活性物质层脱嵌的锂离子能够有效嵌入对应的负极活性物质层,缓解电极组件的弯折部分的析锂现象,从而提高电极组件的安全性能。
根据本申请的一些实施例,所述正极集流体包括朝向所述电极组件轴线的内侧面和远离所述电极组件轴线的外侧面,所述正极活性物质层包括设置于所述正极集流体的所述内侧面的第一正极活性物质层和设置于所述正极集流体的所述外侧面的第二正极活性物质层,所述第一正极活性物质层包括所述失活区。
在上述方案中,由于设置于正极集流体的内侧面的第一正极活性物质层的面积大于与其对应的负极集流体的负极活性物质层的面积,将失活区设置于第一正极活性物质层,能够降低第一正极活性物质层的有效活性面积,提高电极组件的弯折部分中负极极片的外侧与正极极片的内侧之间的CB值,使电池单体充电过程中第一正极活性物质层脱嵌的绝大部分锂离子能够嵌入对应的负极活性物质层,缓解了正极集流体的内侧面和内侧的负极集流体之间的析锂现象,从而提高电极组件的安全性能。
根据本申请的一些实施例,所述失活区位于所述电极组件的最内圈的所述正极极片。
在上述方案中,正极极片的最内圈的曲率半径最小,导致正极极片的最内圈的内侧面的正极活性物质层和与其对应的内圈的负极极片的负极活性物质层的面积比值最大,在正极极片的最内圈上设置失活区,能够明显提高正极极片的最内圈的内侧与其内侧的负极极片之间的CB值,使电池单体充电过程中正极活性物质层脱嵌的锂离子能够有效嵌入对应的负极活性物质层,缓解析锂现象,提高电极组件的安全性能。
根据本申请的一些实施例,所述失活区的数量为至少两个,至少两个所述失活区沿卷绕方向间隔分布。
在上述方案中,每圈正极极片围绕卷绕方向包括两个弯折区,每个弯折区设有一个失活区,从而缓解电极组件的弯折部分的析锂现象,提高电极组件的安全性能。
本申请第二方面实施例提出一种电池单体,包括本申请第一方面实施例所述的电极组件。
由于本申请第一方面实施例的电极组件中正极极片的弯折区具有失活区,能够缓解电极组件的弯折部分的析锂现象,能够提高电极组件的安全性能,从而使包括该电极组件的电池单体也具有较好的安全性能。
本申请第三方面实施例提出一种电池,包括本申请第二方面实施例所述的电池单体。
由于本申请第二方面实施例的电池单体所使用的电极组件的正极极片的弯折区具有失活区,能够缓解电极组件的弯折部分的析锂现象,具有较好的安全性能,从而使包括该电池单体的电池也具有较好的安全性能。
本申请第四方面实施例提出一种用电装置,包括本申请第三方面实施例所述的电池,所述电池用于提供电能。
由于本申请第三方面实施例的电池中,其电池单体所使用的电极组件的正极极片的弯折区具有失活区,能够缓解电极组件的弯折部分的析锂现象,具有较好的安全性能,从而使包括该电池的用电装置也具有较好的安全性能。
本申请第五方面实施例提出一种卷绕设备,包括:卷绕装置,用于卷绕正极极片;失活装置,沿所述正极极片的走带方向,所述失活装置设置于所述卷绕装置的上游,所述失活装置被配置为向所述正极极片提供失活剂,以使所述正极极片的一部分正极活性物质层的正极活性物质失活。
本申请实施例的卷绕设备中,失活装置能够向正极极片提供失活剂,以使正极极片的一部分正极活性物质层的正极活性物质失活以形成失活区,使得卷绕设备卷绕成型电极组件时所卷入的正极极片具有失活区,从而能够成型本申请第一方面实施例中的电极组件,能够实现该种电极组件的工业化生产,提高该种电极组件的成型效率。
根据本申请的一些实施例,所述失活装置被配置为向所述正极极片面向所述卷绕装置的一侧提供失活剂。
在上述方案中,失活装置向正极极片的面向卷绕装置的一侧提供失活剂,能够实现在正极极片进入卷绕装置后其面向卷绕装置的内侧位于面向卷绕轴线的一侧,能够使失活区位于正极集流体的内侧面的第一正极活性物质层,提高负极极片的外侧与正极极片的内侧之间的CB值,缓解了正极集流体的内侧面和其内侧的负极极片的负极集流体之间的析锂现象,从而提高电极组件的安全性能。
根据本申请的一些实施例,所述失活装置包括:夹持机构,用于夹持所述正极极片并向所述正极极片提供所述失活剂;驱动机构,用于驱动所述夹持机构随所述正极极片同步移动。
在上述方案中,驱动机构驱动夹持机构跟随正极极片同步移动,能够在夹持机构跟随正极极片移动的时间范围内持续向正极极片提供失活剂,以向保证对正极极片的正极活性物质层的失活效果,形成有效的失活区。
根据本申请的一些实施例,所述夹持机构包括:支架;第一夹持部和第二夹持部,设置于所述支架;以及第一驱动件,设置于所述支架,用于驱动所述第一夹持部和所述第二夹持部相互靠近或远离,以夹持或松开所述正极极片;其中,所述第一夹持部和所述第二夹持部中的至少一者被配置为向所述正极极片提供所述失活剂。
在上述方案中,第一夹持部和第二夹持部共同夹持正极极片且向正极极片提供失活剂,能 够提高失活区的位置精度,在正极极片的预设位置上形成有效的失活区。
根据本申请的一些实施例,所述第一夹持部和所述第二夹持部中的至少一者为多孔材料。
在上述方案中,多孔材料能够蓄存失活剂,第一夹持部和第二夹持部共同夹持正极极片时能够挤压多孔材料以将失活剂从多孔材料中挤出至正极极片的表面,以及在松开正极极片时吸回正极极片表面残余的失活剂,不仅维持正极极片表面的干净整洁,且能够对失活剂进行回收利用。
根据本申请的一些实施例,所述驱动机构包括:丝杆,沿着所述正极极片的走带方向设置,所述丝杆穿过所述支架且与所述支架螺纹配合;第二驱动件,用于驱动所述丝杆旋转,以使所述支架沿所述丝杆的轴向移动。
在上述方案中,通过丝杆旋转能够带动支架沿丝杆的轴向转动,进而带动夹持机构跟随正极极片同步移动,构造简单,组装方便。
根据本申请的一些实施例,所述失活装置包括沿所述正极极片的走带方向间隔设置的至少两个所述夹持机构,所述驱动机构用于驱动至少两个所述夹持机构同步移动。
在上述方案中,每个夹持机构对应一个失活区,驱动机构驱动至少两个夹持机构同步移动,能够实现至少两个夹持机构共同夹持正极极片且跟随正极极片移动,以同时形成至少两个失活区,提高失活区的形成效率。
根据本申请的一些实施例,所述失活装置还包括:检测机构,用于检测所述正极极片的位置信息;控制器,用于根据所述检测机构检测的位置信息控制所述夹持机构和所述驱动机构动作。
在上述方案中,通过设置检测机构,能够检测到正极极片的位置信息,控制器能够判断正极极片的失活区的预设位置,并控制夹持机构准确执行夹持动作以及控制驱动机构带动夹持机构跟随正极极片同步运动,能够提高失活区的位置精度,在正极极片的预设位置上形成有效的失活区。
本申请第六方面实施例提出一种电极组件的制造方法,包括:
提供正极极片;
将所述正极极片的一部分正极活性物质层失活;
卷绕所述正极极片。
使用本申请实施例的电极组件的制造方法能够制造出一种电极组件,使电极组件的正极极片的至少一部分失活区位于弯折区,缓解电极组件的弯折部分的析锂现象,具有较好的安全性能。
根据本申请的一些实施例,所述将所述正极极片的一部分正极活性物质层失活,包括:向所述正极极片提供酸性溶液,以使所述正极极片的一部分正极活性物质层失活。
在上述方案中,向正极极片提供酸性溶液,采用酸碱中和的方式将一部分正极活性物质层失活,不仅能够简单、高效地形成失活区,而且维持了正极活性物质层原有的形状,使正极活性物质层的表面平整,进一步在缓解电极组件的弯折部分的析锂现象的同时保证了电池组件的工作性能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出的是本申请一实施例中的一种车辆的简易示意图;
图2示出的是图1中车辆的电池的结构示意图;
图3示出的是图2中的电池中一个电池单体的结构示意图;
图4示出的是本申请的一些实施例中一种形式的电极组件的结构图;
图5示出的是图4中A处的局部放大图;
图6示出的是本申请的一些实施例中另一种形式的电极组件的结构图;
图7示出的是本申请的一些实施例的电极组件中正极极片和负极极片的卷绕示意图;
图8示出的是本申请的一些实施例的电极组件中正极极片的卷绕示意图;
图9示出的是本申请的一些实施例的电极组件中正极极片的又一种形式的结构示意图;
图10示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图;
图11示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图;
图12示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图;
图13示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图;
图14示出的是图13中B处的局部放大图;
图15示出的是本申请的一些实施例的卷绕设备的失活装置的轴侧图;
图16示出的是本申请的一些实施例的卷绕设备的失活装置的正视图;
图17示出的是本申请的一些实施例的卷绕设备的失活装置的俯视图;
图18示出的是本申请的一些实施例的卷绕设备的设有供液机构的失活装置的轴侧图;
图19示出的是本申请的一些实施例的一种电极组件的制造方法的示意图;
图20示出的是本申请的一些实施例的一种电极组件的制造方法的将正极活性物质层失活的方法示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;110-电池单体;111-外壳;1111-壳体;1112-盖体;1113-电极端子;112-电极组件;1121-正极极片;11211-正极集流体;11212-正极活性物质层;11213-第一内侧面;11214-第一外侧面;11215-第一正极活性物质层;11216-第二正极活性物质层;11217-弯折区;11218-平直区;1122-负极极片;11221-负极集流体;11222-负极活性物质层;1123-第一隔膜;1124-第二隔膜;11251-平直部分;11252-弯折部分;1127-失活区;1128-活性区;1129-极耳;120-箱体;121-第一箱体;122-第二箱体;200-控制器;300-马达;2000-卷绕设备;2100-卷绕装置;2200-失活装置;2210-夹持机构;2211-支架;2212-第一夹持部;2213-第二夹持部;2214-第一驱动件;2220-驱动机构;2221-丝杆;2222-第二驱动件;2230-检测机构;2240-机架;2250-供液机构;2251-储液容器;2252-泵。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中需要说明的是除非另有明确的规定和限定术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的 普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:圆柱电池单体、方形电池单体和软包电池单体。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体,箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面。其中,电极组件为卷绕式结构。
CB值指的是,正对面的负极极片的负极活性物质容量与正极活性物质容量的比值,也指正对面的负极极片的负极活性物质层的有效活性面积与正极活性物质容量的有效活性面积的比值。
相关技术中,电极组件卷绕成型后,电极组件的弯折部分的正极极片和负极极片在同样的角度范围内存在面积差,容易产生析锂现象,存在一定的安全隐患。
发明人经过研究发现,如果电极组件的弯折部分的正极极片和负极极片之间的间隙变大,例如,负极极片向内坍塌或者正极极片向外松动等,将导致在弯折部分处负极极片的外侧和在其外侧对应设置的正极极片的CB降低,使电池单体充电过程中正极活性物质层脱嵌的锂离子不能全部嵌入对应的负极活性物质层,从而产生析锂现象。
基于上述思路,本申请的发明人提出了一种技术方案,在电极组件的弯折部分的正极极片的表面形成失活区,可以降低正极极片的弯折区的正极活性物质层的有效面积,从而提高电极组件的弯折部分的CB值,使电池单体充电过程中正极活性物质层脱嵌的锂离子能够有效嵌入对应的负极活性物质层,缓解电极组件的弯折部分的析锂现象,从而提高电极组件的安全性能。
可以理解的是,本申请实施例描述的电池单体可以直接对用电装置供电,也可以通过并联或者串联的方式形成电池,以电池的形式对各种用电装置供电。
可以理解的是,本申请实施例中描述的使用电池单体或者电池所适用的用电装置可以为多种形式,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请的实施例描述的电池单体以及电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池单体以及电池的用电装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
图1示出的是本申请一实施例中的一种车辆的简易示意图;图2示出的是图1中车辆的电池的结构示意图。
如图1所示,车辆1000的内部设置有电池100、控制器200和马达300,例如,在车辆1000的底部或车头或车尾可以设置电池100。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
在本申请的一些实施例中,电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。控制器200用来控制电池100为马达300的供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在其他实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
其中,本申请的实施例所提到的电池100是指包括一个或多个电池单体110以提供更高的 电压和容量的单一的物理模块。例如,电池100由多个电池单体110串联或者并联而成。
电池100包括多个电池单体110以及箱体120,多个电池单体110相互并联或串联或混联组合后实现高压输出,多个电池单体110组装后放置于箱体120的内部。
箱体120包括第一箱体121和第二箱体122,第一箱体121和第二箱体122相互盖合后形成电池腔,多个电池模块放置于电池腔内。多个电池单体110相互并联或串联或混联组合后置于第一箱体121和第二箱体122扣合后形成的箱体120内。
图3示出的是图2中的电池中一个电池单体的结构示意图。
如图3所示,每个电池单体110包括外壳111、电极组件112和两个电极端子1113。外壳111可为六面体形,也可为其他形状,且该外壳111内部形成容纳腔,用于容纳电极组件112和电解液。外壳111包括壳体1111和盖体1112,壳体1111的一端具有开口,使得电极组件112可通过该开口放置于壳体1111的内部。壳体1111可由金属材料制成,诸如铝、铝合金或者镀镍钢。盖体1112上设置有两个电极端子1113。两个电极端子1113中,一个为正极电极端子1113,另一个为负极电极端子1113。壳体1111可以呈长方体,也可以为圆柱体或者椭圆柱体。两个电极端子1113可以均设置于盖体1112,也可以均设置于壳体1111,或者一个设置于盖体1112,另一个设置于壳体1111。
电极组件112设置于外壳111的内部,电极组件112包括两个极性相反的极耳1129,正极电极端子1113与电极组件112的正极的极耳1129连接,负极电极端子1113与电极组件112的负极的极耳1129连接。
图4示出的是本申请的一些实施例中一种形式的电极组件的结构图;图5示出的是图4中A处的局部放大图。
如图3、图4和图5所示,电极组件112包括正极极片1121、负极极片1122、第一隔膜1123和第二隔膜1124,第一隔膜1123和第二隔膜1124用于隔开相邻的正极极片1121与负极极片1122,正极极片1121、负极极片1122、第一隔膜1123和第二隔膜1124经过卷绕后形成电极组件112。其中,电极组件112的卷绕轴线为第一轴线P。
正极极片1121包括正极集流体11211和正极活性物质层11212,正极活性物质层11212涂覆于正极集流体11211的表面;负极极片1122包括负极集流体11221和负极活性物质层11222,负极活性物质层11222涂覆于负极集流体11221的表面。以锂离子电池为例,正极集流体11211的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。正极集流体11211的未涂敷正极活性物质层11212的部分凸出于已涂覆正极活性物质层11212的部分,正极集流体11211的未涂敷正极活性物质层11212的部分作为正极的极耳1129(请参照图3)。负极集流体11221的材料可以为铜,负极活性物质可以为碳或硅等。负极集流体11221的未涂敷负极活性物质层11222的部分凸出于已涂覆负极活性物质层11222的部分,负极集流体11221的未涂敷负极活性物质层11222的部分作为负极的极耳1129(请参照图3)。为了保证通过大电流而不发生熔断,正极的极耳1129的数量为多个且层叠在一起,负极的极耳1129的数量为多个且层叠在一起。隔膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
如图4所示,在本申请的一些实施例中,电极组件112呈扁平状,在垂直于其卷绕轴线的平面上,电极组件112的长度方向为方向X,宽度方向为方向Y。具体而言,电极组件112包括平直部分11251和沿着方向X位于平直部分11251的两侧的弯折部分11252,两个弯折部分11252分别具有一个弧形表面。电极组件112可以直接卷绕为扁平状,也可以是卷绕为圆形或者椭圆形后对其中部进行压实处理,使电极组件112的中部形成平直部分11251。
图6示出的是本申请的一些实施例中另一种形式的电极组件的结构图。
如图6所示,在其他实施例中,电极组件112也可以呈圆柱体状,电极组件112仅包括弯折部分11252。
正极极片1121、负极极片1122以及隔膜分别具有与电极组件112的弯折部分对应的弯折结构,正极极片1121卷绕经过电极组件112的弯折部分的部分为弯折区11217。
例如,如图4所示,对于扁平状的电极组件112,正极极片1121每卷绕一圈形成两个弯折区11217,两个弯折区11217分别对应电极组件112的两个弯折部分11252,两个弯折区11217之间的部分为平直区11218且对应电极组件112的平直部分11251。
可以理解的是,本申请中的一圈是指,从电极组件112的某个点为起始点,沿卷绕方向一周到达另一个点,该另一个点与起始点的连线沿电极组件112的径向延伸。本申请中的半圈是指一圈的一半,本领域技术人员应理解其他圈数的含义,在此不进一步赘述。
图7示出的是本申请的一些实施例的电极组件中正极极片和负极极片的卷绕示意图;图8示出的是本申请的一些实施例的电极组件中正极极片的卷绕示意图。
如图7和图8所示,本申请的一些实施例提出一种电极组件112,包括正极极片1121,正极极片1121经过卷绕后形成弯折区11217。其中,正极极片1121包括正极集流体11211和设置于正极集流体11211表面的正极活性物质层11212,正极活性物质层11212包括失活区1127,至少一部分失活区1127位于弯折区11217。
正极活性物质层11212包括活性区1128和失活区1127。活性区1128为充放电过程中脱嵌锂离子、具有活性物质容量的区域;失活区1127指的是正极活性物质层的部分区域失去活性,即该区域处的正极活性物质层11212在充放电过程中不再脱嵌锂离子。在正极活性物质层11212上形成失活区1127的方式有多种,例如可以将酸性溶液例如稀盐酸等喷涂在正极活性物质层11212的用于形成失活区1127的位置,也可以使用绝缘液体例如液体胶水等浸润正极活性物质层11212的用于形成失活区1127的位置。
失活区1127可以仅存在于正极极片1121的弯折区11217,以改善电极组件112的弯折部分的析锂现象;基于前述的电极组件112为扁平状的实施方式,一圈正极极片1121设有两个弯折区11217,每个弯折区11217设有一个失活区1127。失活区1127也可以在存在于正极极片1121的弯折区11217的同时还存在于正极极片1121的平直区11218,在平直区11218进一步降低正极活性物质层11212的面积,使正极活性物质层11212脱嵌的锂离子能够全部嵌入对应的负极极片1122的负极活性物质层11222,避免电极组件112的平直部分11251出现析锂现象;例如,如图8所示,基于前述的电极组件112为扁平状的实施方式,正极极片1121的最内圈从入卷端围绕卷绕方向延伸并依次形成部分平直区11218和弯折区11217,部分平直区11218和弯折区11217设有连续的失活区1127。
如图8所示,失活区1127也可以同时存在于正极极片1121的朝向第一轴线P的内侧以及背离第一轴线P的外侧,以使正极极片1121的两侧的对应的CB值均提高。失活区1127可以设置于正极极片1121的朝向电极组件112的卷绕轴线(即第一轴线P)的内侧,以提高负极极片1122与外侧的正极极片1121之间的CB值。失活区1127也可以设置于正极极片1121的背离第一轴线P的外侧,以提高负极极片1122与内侧的正极极片1121之间的CB值。
正极极片1121为多圈的卷绕结构,正极极片1121的靠近第一轴线P的一端为入卷端,位于正极极片1121的外周侧的一端为收尾端。失活区1127可以设置于正极极片1121的靠近入卷端的部分,也可以设置于其他部分。
本申请实施例的电极组件112中,由于正极活性物质层11212的至少一部分失活区1127位于正极极片1121的弯折区11217,可以降低正极极片1121的弯折区11217的正极活性物质层11212的有效活性面积,从而提高电极组件112的弯折部分的CB值(即正对面的负极活性物质容量与正极活性物质容量之比),使电池单体110充电过程中正极活性物质层11212脱嵌的锂离子能够有效嵌入对应的负极活性物质层11222,缓解电极组件112的弯折部分的析锂现象,从而提高电极组件112的安全性能。
图9示出的是本申请的一些实施例的电极组件中正极极片的又一种形式的结构示意图。
如图9所示,在本申请的一些实施例中,正极集流体11211包括朝向电极组件112轴线(即第一轴线P)的内侧面和远离电极组件112轴线(即第一轴线P)的外侧面,正极活性物质层11212包括设置于正极集流体11211的内侧面的第一正极活性物质层11215和设置于正极集流体11211的外侧面的第二正极活性物质层11216,第一正极活性物质层11215包括失活区1127。
具体而言,如图9所示,沿着正极集流体11211的厚度方向,正极集流体11211朝向第一轴线P的一侧为第一内侧面11213,背离第一轴线P的一侧为第一外侧面11214。正极集流体11211的第一内侧面11213设有第一正极活性物质层11215,第一外侧面11214设有第二正极活性物质层11216。同样的,沿着负极集流体11221的厚度方向,负极集流体11221朝向第一轴线P的 一侧的内侧面设有第一负极活性物质层(图中没有示出),负极集流体11221背离第一轴线P的一侧的外侧面设有第二负极活性物质层(图中没有示出)。第一正极活性物质层11215与第二负极活性物质层对应设置,失活区1127设置于第一正极活性物质层11215,能够提高第一正极活性物质层11215与第二负极活性物质层之间的CB值,从而避免析锂现象。
在上述方案中,由于设置于正极集流体11211的内侧面的第一正极活性物质层11215的面积大于与其对应的负极集流体11221的负极活性物质层11222的面积,将失活区1127设置于第一正极活性物质层11215,能够降低第一正极活性物质层11215的有效活性面积,提高电极组件112的弯折部分中负极极片1122的外侧与正极极片1121的内侧之间的CB值,使电池单体110充电过程中第一正极活性物质层11215脱嵌的绝大部分锂离子能够嵌入对应的负极活性物质层11222,缓解了正极集流体11211的内侧面和内侧的负极集流体11221之间的析锂现象,从而提高电极组件112的安全性能。
图10示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图;图11示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图。
如图10所示,在本申请的一些实施例中,失活区1127位于电极组件112的最内圈的正极极片1121。
如图10所示,电极组件112的最内圈的正极极片1121指的是,从正极极片1121的入卷端围绕卷绕方向向收尾端延伸的一圈,即正极极片1121的从V1到V2的部分。
如图10所示,失活区1127可以同时位于最内圈的正极极片1121的内侧和外侧;如图11所示,失活区1127也可以位于最内圈的正极极片1121的内侧,或者,失活区1127也可以位于最内圈的正极极片1121的外侧。
在上述方案中,正极极片1121的最内圈的曲率半径最小,导致正极极片1121的最内圈的内侧面的正极活性物质层11212和与其对应的内圈的负极极片1122的负极活性物质层11222的面积比值最大,在正极极片1121的最内圈上设置失活区1127,能够明显提高正极极片1121的最内圈的内侧与其内侧的负极极片1122之间的CB值,使电池单体110充电过程中正极活性物质层11212脱嵌的锂离子能够有效嵌入对应的负极活性物质层11222,缓解析锂现象,提高电极组件112的安全性能。
图12示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图;图13示出的是本申请的一些实施例的电极组件的再一种正极极片的结构示意图。
如图12所示,在本申请的一些实施例中,失活区1127的数量为至少两个,至少两个失活区1127沿卷绕方向间隔分布。
至少两个失活区1127可以分别设置于不同的弯折区11217。例如,如图12所示,基于前述的电极组件112呈扁平状的实施方式,一圈正极极片1121的两个弯折区11217分别设有一个失活区1127。作为一种优选的实施方式,失活区1127数量为两个,正极极片1121的最内圈的两个弯折区11217分别设有一个失活区1127,能够明显改善最内圈的正极极片1121的析锂现象。
至少两个失活区1127中也可以是一部分失活区1127设置于弯折区,另一部分设置于平直区。例如,基于前述的失活区1127设置于最内圈的正极极片1121的实施方式,最内圈的正极极片1121的平直区和弯折区设有连续的失活区1127。
至少两个失活区1127也可以设置于同一个弯折区,至少两个失活区1127沿着卷绕方向间隔分布。例如,基于前述的电极组件112呈圆柱体状的实施方式,电极组件112的围绕第一轴线P的周向区域全部为弯折部分,多个失活区1127沿着正极极片1121的长度方向间隔设置。
在上述方案中,每圈正极极片1121围绕卷绕方向包括两个弯折区,每个弯折区设有一个失活区1127,从而缓解电极组件112的弯折部分的析锂现象,提高电极组件112的安全性能。
在其他实施例中,失活区1127的数量可以为一个,一个失活区1127设置于正极极片1121的弯折区11217或者连续存在于相邻的弯折区11217和平直区11218。
本申请的一些实施例提出一种电池单体110,包括电极组件112。
由于电极组件112中正极极片1121的弯折区具有失活区1127,能够缓解电极组件112的弯折部分的析锂现象,能够提高电极组件112的安全性能,从而使包括该电极组件112的电池单 体110也具有较好的安全性能。
本申请的一些实施例提出一种电池100,包括电池单体110。
由于电池单体110所使用的电极组件112的正极极片1121的弯折区具有失活区1127,能够缓解电极组件112的弯折部分的析锂现象,具有较好的安全性能,从而使包括该电池单体110的电池100也具有较好的安全性能。
本申请的一些实施例提出一种用电装置,包括电池100,电池100用于提供电能。
由于电池100的电池单体110所使用的电极组件112的正极极片1121的弯折区具有失活区1127,能够缓解电极组件112的弯折部分的析锂现象,具有较好的安全性能,从而使包括该电池100的用电装置也具有较好的安全性能。
图13示出的是本申请的一些实施例的卷绕设备的结构示意图;图14示出的是图13中B处的局部放大图。
本申请的一些实施例提出一种卷绕设备2000,包括卷绕装置2100和失活装置2200,卷绕装置2100用于卷绕正极极片1121;沿正极极片1121的走带方向,失活装置2200设置于卷绕装置2100的上游,失活装置2200被配置为向正极极片1121提供失活剂,以使正极极片1121的一部分正极活性物质层11212的正极活性物质失活。
可以理解的是,卷绕成型本申请的一些实施例中的电极组件112的过程包括且不局限于必须依赖本申请实施例中的卷绕设备2000才能实施;本申请实施例中的卷绕设备2000包括且不局限于用于卷绕成型本申请的一些实施例中的电极组件112。
卷绕设备2000还包括与正极极片1121、负极极片1122、第一隔膜1123和第二隔膜1124对应的供料装置,布置于卷绕装置2100的上游,用于分别提供正极极片1121、负极极片1122、第一隔膜1123和第二隔膜1124,正极极片1121、负极极片1122、第一隔膜1123和第二隔膜1124由卷绕装置2100的上游进入卷绕装置2100,以卷绕成型电极组件112。卷绕装置2100的上游指的是卷绕装置2100的来料侧,即卷绕装置2100的朝向供料装置的一侧。
正极极片1121的走带方向指的是,卷绕装置2100沿第二方向M转动以卷绕成型电极组件112时,正极极片1121从对应的供料装置进入卷绕装置2100的方向,即第一方向Q。失活装置2200沿着第一方向Q延伸,以向沿第一方向Q行进的正极极片1121的表面提供失活剂,在正极极片1121的正极活性物质层11212上形成失活区1127。
失活装置2200可以向正极极片1121的两侧表面提供失活剂;失活装置2200也可以向正极极片1121的一侧表面提供失活剂。失活装置2200可以以静止的方式提供失活剂,正极极片1121沿第一方向Q行进时经过失活装置2200且形成失活区1127;失活装置2200也可以跟随正极极片1121同步移动以向正极极片1121的表面持续提供失活剂。失活装置2200可以以单侧喷涂、按压等方式向正极极片1121提供失活剂;失活装置2200也可以从正极极片1121的厚度方向的两侧夹持并向正极极片1121的表面提供失活剂。
失活剂可以为酸性溶液,例如稀盐酸等;失活剂也可以为绝缘溶液,例如液体胶水等。
本申请实施例的卷绕设备2000中,失活装置2200能够向正极极片1121提供失活剂,以使正极极片1121的一部分正极活性物质层11212的正极活性物质失活以形成失活区1127,使得卷绕设备2000卷绕成型电极组件112时所卷入的正极极片1121具有失活区1127,从而能够成型本申请的一些实施例中的电极组件112,能够实现该种电极组件112的工业化生产,提高该种电极组件112的成型效率。
如图13和图14所示,在本申请的一些实施例中,失活装置2200被配置为向正极极片1121面向卷绕装置2100的一侧提供失活剂。
具体而言,在第一隔膜1123、负极极片1122和第二隔膜1124已经层叠卷绕于卷绕装置2100之后,正极极片1121从第二隔膜1124的面向卷绕装置2100的一侧进入卷绕装置2100。正极极片1121的面向卷绕装置2100的一侧指的是,正极极片1121的远离第二隔膜1124的一侧,当正极极片1121卷绕于卷绕装置2100后,正极极片1121的面向卷绕装置2100的一侧为正极极片1121的内侧面,对应的正极活性物质层11212为第一活正极活性物质层11212。
在上述方案中,失活装置2200向正极极片1121的面向卷绕装置2100的一侧提供失活剂,能够实现在正极极片1121进入卷绕装置2100后其面向卷绕装置2100的内侧位于面向卷绕轴线的一侧,能够使失活区1127位于正极集流体11211的内侧面的第一正极活性物质层11215(请参照图8),提高负极极片1122的外侧与正极极片1121的内侧之间的CB值,缓解了正极集流体11211的内侧面和其内侧的负极极片1122的负极集流体11221之间的析锂现象,从而提高电极组件112的安全性能。
图15示出的是本申请的一些实施例的卷绕设备的失活装置的轴侧图;图16示出的是本申请的一些实施例的卷绕设备的失活装置的正视图;图17示出的是本申请的一些实施例的卷绕设备的失活装置的俯视图。
如图15、图16和图17所示,在本申请的一些实施例中,失活装置2200包括夹持机构2210和驱动机构2220,夹持机构2210用于夹持正极极片1121并向正极极片1121提供失活剂,驱动机构2220,用于驱动夹持机构2210随正极极片1121同步移动。
驱动机构2220可以为多种形式的直线驱动件,例如直线气缸、电推杆、电机丝杆螺母机构等,以沿第一方向Q驱动夹持机构2210移动。
夹持机构2210从正极极片1121的厚度方向的两侧夹持正极极片1121的同时具有失活剂的端部按压于正极极片1121的正极活性物质层11212,以向正极极片1121的表面提供失活剂。
夹持机构2210的数量可以为一个,驱动机构2220驱动一个夹持机构2210沿第一方向Q移动;夹持机构2210的数量也可以为多个,多个夹持机构2210沿第一方向Q间隔设置,驱动机构2220驱动多个夹持机构2210同步移动。
在上述方案中,驱动机构2220驱动夹持机构2210跟随正极极片1121同步移动,能够在夹持机构2210跟随正极极片1121移动的时间范围内持续向正极极片1121提供失活剂,以向保证对正极极片1121的正极活性物质层11212的失活效果,形成有效的失活区1127(请参照图8)。
如图15和图16所示,在本申请的一些实施例中,夹持机构2210包括支架2211、第一夹持部2212、第二夹持部2213和第一驱动件2214,第一夹持部2212、第二夹持部2213和第一驱动件2214均设置于支架2211,第一驱动件2214用于驱动第一夹持部2212和第二夹持部2213相互靠近或远离,以夹持或松开正极极片1121;其中,第一夹持部2212和第二夹持部2213中的至少一者被配置为向正极极片1121提供失活剂。
具体而言,失活装置2200还包括机架2240,驱动机构2220和支架2211均安装于支架2211,第一夹持部2212和第二夹持部2213之间具有供正极极片1121穿过的间隙。正极极片1121的厚度方向为第三方向N,第一驱动件2214设置有两个,每个第一驱动件2214驱动对应的夹持部沿第三方向N移动,以实现第一夹持部2212和第二夹持部2213靠近或者远离;第一夹持部2212和第二夹持部2213中也可以是第二夹持部2213固定安装于支架2211,第一夹持部2212安装于第一驱动件2214的执行端,第一驱动件2214驱动第一夹持部2212沿第三方向N靠近或远离第二夹持部2213。
第一夹持部2212和第二夹持部2213中可以是其中的一者能够提供失活剂,另一者用于支撑正极极片1121。例如,如图15和图16所示,基于前述的失活装置2200向正极极片1121的一侧表面提供失活剂的实施方式,第二夹持部2213固定安装于支架2211,第一驱动件2214安装于支架2211,第一驱动件2214驱动第一夹持部2212靠近第二夹持部2213以夹持正极极片1121,以将正极极片1121压紧于第二夹持部2213,第一夹持部2212向正极极片1121的表面提供失活剂,以在正极极片1121的一侧表面形成失活区1127。
第一夹持部2212和第二夹持部2213可以均能够提供失活剂,例如,基于前述的失活装置2200向正极极片1121的两侧表面提供失活剂的实施方式,第一夹持部2212和第二夹持部2213的共同夹持正极极片1121时向正极极片1121的表面提供失活剂,以在正极极片1121的两侧表面均形成失活区1127。
第一驱动件2214可以为常见的直线气缸、电推杆等直线驱动机构2220。第二夹持部2213可以与支架2211滑动配合,也可以与支架2211独立设置。
在上述方案中,第一夹持部2212和第二夹持部2213共同夹持正极极片1121且向正极 极片1121提供失活剂,能够提高失活区1127的位置精度,在正极极片1121的预设位置上形成有效的失活区1127。
在本申请的一些实施例中,第一夹持部2212和所述第二夹持部2213中的至少一者为多孔材料。
多孔材料能够蓄吸失活剂,且在挤压状态下释放失活剂。多孔材料可以为海绵,也可以为其他具有弹性的多孔材料。
第一夹持部2212和第二夹持部2213中用于向正极极片1121的表面提供失活剂的一为多孔材料。例如,基于第一夹持部2212向正极极片1121的一侧表面提供失活剂的实施方式,第一夹持部2212为蓄吸件,蓄吸件为多孔材料,第二夹持部2213为垫板;基于第一夹持部2212和第二夹持部2213分别向正极极片1121的两侧表面提供失活剂的实施方式,第一夹持部2212和第二夹持部2213均为多孔材料。
图18示出的是本申请的一些实施例的卷绕设备的设有供液机构的失活装置的轴侧图。
如图18所示,进一步地,失活装置2200还可以包括供液机构2250,供液机构2250包括储液容器2251和泵2252,储液容器2251通过泵2252与失活装置2200连通,通过泵2252送的方式向失活装置2200的多孔材料补充失活剂。
在上述方案中,多孔材料能够蓄存失活剂,第一夹持部2212和第二夹持部2213共同夹持正极极片1121时能够挤压多孔材料以将失活剂从多孔材料中挤出至正极极片1121的表面,以及在松开正极极片1121时吸回正极极片1121表面残余的失活剂,不仅维持正极极片1121表面的干净整洁,且能够对失活剂进行回收利用。
在其他实施例中,第一夹持部2212或者第二夹持部2213中的一者的表面也可以具有出液孔,出液孔与供液机构2250连通,失活剂通过泵2252送的方式从出液孔出流。
如图15、图16和图17所示,在本申请的一些实施例,驱动机构2220包括丝杆2221和第二驱动件2222,丝杆2221沿着正极极片1121的走带方向(即第一方向Q)设置,丝杆2221穿过支架2211且与支架2211螺纹配合,第二驱动件2222用于驱动丝杆2221旋转,以使支架2211沿丝杆2221的轴向(即第一方向Q)移动。
具体而言,丝杆2221的长度方向沿第一方向Q延伸,丝杆2221的两端转动安装于机架,第二驱动件2222固定于机架且用于驱动丝杆2221绕自身轴线转动。夹持机构2210的支架2211设有螺纹孔,丝杆2221与螺纹孔螺纹配合,丝杆2221转动时能够驱动夹持机构2210沿第一方向Q移动。
第二驱动件2222可以为电机,电机与丝杆2221的端部传动配合。
在上述方案中,通过丝杆2221旋转能够带动支架2211沿丝杆2221的轴向转动,进而带动夹持机构2210跟随正极极片1121同步移动,构造简单,组装方便。
在本申请的一些实施例中,失活装置2200包括沿正极极片1121的走带方向(即第一方向Q)间隔设置的至少两个夹持机构2210,驱动机构2220用于驱动至少两个夹持机构2210同步移动。
基于前述的驱动机构2220包括丝杆2221和第二驱动件2222的实施方式,多个夹持机构2210的支架2211可以均与丝杆2221螺纹配合,丝杆2221转动时带动多个夹持机构2210同步同向移动,一个夹持机构2210对应形成一个失活区1127。
如图17所示,例如,电极组件112设有两个失活区1127,两个失活区1127分别位于电极组件112的最内圈的正极极片1121的两个弯折区时,两个夹持机构2210设置有两个,一个夹持机构2210对应一个失活区1127,两个夹持机构2210之间的间距和最内圈的正极极片1121的两个弯折区的间距相同,蓄吸件沿着第一方向Q的延伸长度为一个失活区1127的延伸长度,即一个弯折区的延伸长度。
在上述方案中,每个夹持机构2210对应一个失活区1127,驱动机构2220驱动至少两个夹持机构2210同步移动,能够实现至少两个夹持机构2210共同夹持正极极片1121且跟随正极极片1121移动,以同时形成至少两个失活区1127,提高失活区1127的形成效率。
如图17所示,在本申请的一些实施例中,失活装置2200还包括检测机构2230和控制 器(图中没有示出),检测机构2230用于检测正极极片1121的位置信息,控制器用于根据检测机构2230检测的位置信息控制夹持机构2210和驱动机构2220动作。
沿着第一方向Q,检测机构2230位于失活装置2200的上游,即靠近供料装置的一侧,正极极片1121在行进过程中先经过检测机构2230再进入失活装置2200,当正极极片1121的经过检测机构2230时,检测机构2230能够检测到正极极片1121的标记部并发送正极极片1121位置信息,控制器根据所收到的正极极片1121位置信息结合正极极片1121的走带速度等参数可以计算出夹持机构2210执行夹持正极极片1121的时间、夹持机构2210开始跟随正极极片1121移动的时间、夹持机构2210跟随正极极片1121同步移动的速度以及夹持机构2210松开正极极片1121的时间,以实现自动化形成失活区1127。
在上述方案中,通过设置检测机构2230,能够检测到正极极片1121的位置信息,控制器能够判断正极极片1121的失活区1127的预设位置,并控制夹持机构2210准确执行夹持动作以及控制驱动机构2220带动夹持机构2210跟随正极极片1121同步运动,能够提高失活区1127的位置精度,在正极极片1121的预设位置上形成有效的失活区1127。
图19示出的是本申请的一些实施例的一种电极组件的制造方法的示意图。
如图19所示,本申请的一些实施例提出一种电极组件的制造方法,包括:
S100:提供正极极片1121;
S200:将正极极片1121的一部分正极活性物质层11212失活;
S300:卷绕正极极片1121。
可以理解的是,本申请实施例中的电极组件112的制造方法包括但不局限于使用本申请实施例中的卷绕设备2000实施,本申请实施例中的电极组件112的制造方法包括但不局限于卷绕成型本申请实施例的电极组件112。为了便于描述,本实施例结合卷绕设备2000进一步阐述电极组件112的制造方法。
在S300卷绕正极极片1121之前,电极组件112的制造方法包括:
S400:提供第一隔膜1123和第二隔膜1124;
S500:使用卷绕装置2100卷绕第一隔膜1123和第二隔膜1124;
S600:提供负极极片1122;
S700:负极极片1122进入第一隔膜1123和第二隔膜1124之间,卷绕层叠设置的第一隔膜1123、负极极片1122和第二隔膜1124,第二隔膜1124位于负极极片1122的面向卷绕装置2100的一侧。
在S300卷绕正极极片1121之前,第一隔膜1123、负极极片1122和第二隔膜1124已层叠卷绕于卷绕装置2100,形成有失活区1127的正极极片1121最后进入卷绕装置2100,以继续卷绕形成电极组件112。
在其他实施例中,S200将正极极片1121的一部分正极活性物质层11212失活也可以在正极极片1121的正极活性物质层11212的其他部位形成失活区1127,形成对应的电极组件112,本文不进一步赘述。
S300卷绕正极极片1121包括:
S310:在负极极片1122卷绕至少一圈之后,正极极片1121进入第二隔膜1124的面向卷绕装置2100的一侧。
在负极极片1122卷绕至少一圈之后,正极极片1121进入卷绕装置2100,正极极片1121的最内圈的内侧均具有负极极片1122,在正极极片1121的内侧形成失活区1127,能够有效缓解正极极片1121的最内圈的内侧的析锂现象,提高电极组件112的安全性能。
使用本申请实施例的电极组件112的制造方法能够制造出一种电极组件112,使电极组件112的正极极片1121的至少一部分失活区1127位于弯折区,缓解电极组件112的弯折部分的析锂现象,具有较好的安全性能。
图20示出的是本申请的一些实施例的一种电极组件的制造方法的将正极活性物质层失活的方法示意图。
如图20所示,在本申请一些实施例中,S200:将正极极片1121的一部分正极活性物质层11212失活,包括:
S210:向正极极片1121提供酸性溶液,以使正极极片1121的一部分正极活性物质层失活。
在上述方案中,向正极极片1121提供酸性溶液,采用酸碱中和的方式将一部分正极活性物质层11212失活,不仅能够简单、高效地形成失活区1127,而且维持了正极活性物质层11212原有的形状,使正极活性物质层11212的表面平整,进一步在缓解电极组件112的弯折部分的析锂现象的同时保证了电池100组件的工作性能。
在本申请的一些实施例中,S200将正极极片1121的一部分正极活性物质层11212失活,包括:
S220:在正极极片1121的弯折区形成失活区1127。
在正极极片1121的弯折区形成失活区1127,能够改善弯折区的析锂现象,从而提高电极组件112的安全性能。
在其他实施例中,失活剂也可以为绝缘溶液,使用绝缘溶液浸润活性物质层的需要形成失活区1127的部分,以使其失去活性。
在本申请的一些实施例中,S220在正极极片1121的弯折区形成失活区1127,包括:
S221:将最内圈的正极极片1121的内侧面的两个弯折区失活。
通过将最内圈的正极极片1121的内侧面的两个弯折区失活,能够提高最内圈的正极极片1121与其内侧的负极极片1122的CB值,缓解最内圈的正极极片1121与其内侧的负极极片1122之间的析锂现象。
如图4至图13所示,本申请的一些实施例提出一种电极组件112,电极组件112扁平形,沿着方向X,电极组件112包括平直部分11251和平直部分11251两侧的弯折部分11252。电极组件112包括层叠卷绕设置的第一隔膜1123、负极极片1122、第二隔膜1124和正极极片1121,其中,正极极片1121的与弯折部分11252对应的部分为弯折区11217。正极极片1121的内表面具有第一正极活性物质层11215,第一正极活性物质层11215采用酸碱中和的方式形成有失活区1127,至少一部分失活区1127位于弯折区11217。
优选地,正极极片1121的最内圈(即V1-V2部分)的内表面正对负极极片1122的外表面,正极极片1121的最内圈的两个弯折区11217的部分的内表面分别形成有失活区1127,能够降低正极极片1121的最内圈的两个弯折区11217与其内侧的负极极片1122之间的CB值,缓解该处的析锂现象,提高电极组件112的安全性能。
如图15至图20所示,本申请的一些实施例提出一种卷绕设备2000,包括卷绕装置2100和失活装置2200,卷绕装置2100用于卷绕正极极片1121,沿正极极片1121的走带方向(即第一方向Q),失活装置2200设置于卷绕装置2100的上游,且对应正极极片1121的面向卷绕装置2100的一侧。失活装置2200包括夹持机构2210、驱动机构2220、检测机构2230、机架2240和供液机构2250。夹持机构2210为两个,驱动机构2220为电机丝杆螺母机构,驱动机构2220同时驱动两个夹持机构2210沿第一方向Q行进,以跟随正极极片1121同步移动。夹持机构2210包括支架2211、第一夹持部2212、第二夹持部2213和第一驱动件2214,支架2211安装于机架2240,第二夹持部2213固定安装于支架2211,第一驱动件2214的执行端安装有第一夹持部2212,第一夹持部2212为海绵等多孔材料,第一夹持部2212浸润有失活剂。当正极极片1121沿第一方向Q行进时,检测机构2230检测到正极极片1121的位置信息,控制器计算所需要失活处理的位置,正极极片1121经过夹持机构2210时,夹持机构2210夹住正极极片1121并同步移动,由于第一夹持部2212挤压于正极极片1121的表面且持续一定时间,能够使失活剂与正极极片1121的正极活性物质层11212充分接触,形成有效失活区,然后第一夹持部2212松开,正极极片1121继续行进,夹持机构2210复位。
其中,两个夹持机构2210的间距与电极组件112的正极极片1121的最内圈的两个弯折区之间的料带长度对应,正极极片1121经过失活装置2200能够同时形成两个失活区1127。第二夹持部2213以及整个失活装置2200均具有耐腐蚀性,以具有较高的使用寿命。
本申请实施例的卷绕设备2000的使用方法如下:
卷绕装置沿第二方向M转动,第一隔膜1123和第二隔膜1124层叠设置且进入卷绕装置2100;
第一隔膜1123和第二隔膜1124卷绕至少一圈后,负极极片1122插入第一隔膜1123和第二隔膜1124之间,以进入卷绕装置2100;
负极极片1122卷绕至少一圈后,正极极片1121沿第一方向Q行进且经过失活装置2200,失活装置2200检测到正极极片1121的位置信息后,夹持机构2210在预设的失活区的位置经过夹持机构2210时准确夹持正极极片1121,第一夹持部2212向正极极片1121表面提供酸性物质,夹持机构2210跟随正极极片1121同步移动一段时间,以在正极极片1121的内侧形成两个失活区1127;
夹持机构2210松开正极极片1121,正极极片1121沿第一方向Q继续行进并插入第二隔膜1124的面向卷绕装置2100的一侧,卷绕装置2100继续卷绕成型电极组件112。
通过该卷绕设备2000以及电极组件的制造方法制造得到的电极组件112中,其正极极片1121的最内圈的两个弯折区11217的内侧分别具有一个失活区1127,能够降低正极极片1121的最内圈的两个弯折区11217与其内侧的负极极片1122之间的CB值,缓解该处的析锂现象,提高电极组件112的安全性能。且该卷绕设备2000以及制造方法能够实现该电极组件112的工业化生产,提高了该电极组件112的制造效率。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电极组件,包括正极极片,所述正极极片经过卷绕后形成弯折区;
    其中,所述正极极片包括正极集流体和设置于所述正极集流体表面的正极活性物质层,所述正极活性物质层包括失活区,至少一部分所述失活区位于所述弯折区。
  2. 根据权利要求1所述的电极组件,其中,所述正极集流体包括朝向所述电极组件轴线的内侧面和远离所述电极组件轴线的外侧面,所述正极活性物质层包括设置于所述正极集流体的所述内侧面的第一正极活性物质层和设置于所述正极集流体的所述外侧面的第二正极活性物质层,所述第一正极活性物质层包括所述失活区。
  3. 根据权利要求1或2所述的电极组件,其中,所述失活区位于所述电极组件的最内圈的所述正极极片。
  4. 根据权利要求1-3中任一项所述的电极组件,其中,所述失活区的数量为至少两个,至少两个所述失活区沿卷绕方向间隔分布。
  5. 一种电池单体,包括如权利要求1-4中任一项所述的电极组件。
  6. 一种电池,包括如权利要求5所述的电池单体。
  7. 一种用电装置,包括如权利要求6所述的电池,所述电池用于提供电能。
  8. 一种卷绕设备,包括:
    卷绕装置,用于卷绕正极极片;
    失活装置,沿所述正极极片的走带方向,所述失活装置设置于所述卷绕装置的上游,所述失活装置被配置为向所述正极极片提供失活剂,以使所述正极极片的一部分正极活性物质层的正极活性物质失活。
  9. 根据权利要求8所述的卷绕设备,其中,所述失活装置被配置为向所述正极极片面向所述卷绕装置的一侧提供失活剂。
  10. 根据权利要求8或9所述的卷绕设备,其中,所述失活装置包括:
    夹持机构,用于夹持所述正极极片并向所述正极极片提供所述失活剂;
    驱动机构,用于驱动所述夹持机构随所述正极极片同步移动。
  11. 根据权利要求10所述的卷绕设备,其中,所述夹持机构包括:
    支架;
    第一夹持部和第二夹持部,设置于所述支架;以及
    第一驱动件,设置于所述支架,用于驱动所述第一夹持部和所述第二夹持部相互靠近或远离,以夹持或松开所述正极极片;
    其中,所述第一夹持部和所述第二夹持部中的至少一者被配置为向所述正极极片提供所述失活剂。
  12. 根据权利要求11所述的卷绕设备,其中,所述第一夹持部和所述第二夹持部中的至少一者为多孔材料。
  13. 根据权利要求11或12所述的卷绕设备,其中,所述驱动机构包括:
    丝杆,沿着所述正极极片的走带方向设置,所述丝杆穿过所述支架且与所述支架螺纹配合;
    第二驱动件,用于驱动所述丝杆旋转,以使所述支架沿所述丝杆的轴向移动。
  14. 根据权利要求10-13中任一项所述的卷绕设备,其中,所述失活装置包括沿所述正极极片的走带方向间隔设置的至少两个所述夹持机构,所述驱动机构用于驱动至少两个所述夹持机构同步移动。
  15. 根据权利要求10-14中任一项所述的卷绕设备,其中,所述失活装置还包括:
    检测机构,用于检测所述正极极片的位置信息;
    控制器,用于根据所述检测机构检测的位置信息控制所述夹持机构和所述驱动机构动作。
  16. 一种电极组件的制造方法,包括:
    提供正极极片;
    将所述正极极片的一部分正极活性物质层失活;
    卷绕所述正极极片。
  17. 根据权利要求16所述的电极组件的制造方法,其中,所述将所述正极极片的一部分正极活性物质层失活,包括:
    向所述正极极片提供酸性溶液,以使所述正极极片的一部分正极活性物质层失活。
PCT/CN2023/071588 2022-01-21 2023-01-10 电极组件、卷绕设备和方法、电池单体、电池及用电装置 WO2023138440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210073353.9A CN116505091A (zh) 2022-01-21 2022-01-21 电极组件、卷绕设备和方法、电池单体、电池及用电装置
CN202210073353.9 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023138440A1 true WO2023138440A1 (zh) 2023-07-27

Family

ID=87327170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071588 WO2023138440A1 (zh) 2022-01-21 2023-01-10 电极组件、卷绕设备和方法、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN116505091A (zh)
WO (1) WO2023138440A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187958A (ja) * 2014-03-27 2015-10-29 三洋電機株式会社 非水電解質二次電池
CN205992575U (zh) * 2016-07-21 2017-03-01 中航锂电(洛阳)有限公司 正极片和卷绕式锂离子动力电池电芯及锂离子动力电池
CN209418689U (zh) * 2019-01-22 2019-09-20 重庆市紫建电子有限公司 一种提高锂电池安全性能的锂电池结构
WO2022165728A1 (zh) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及电极组件的制造设备和方法
CN115066782A (zh) * 2020-08-21 2022-09-16 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及制造电极组件的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187958A (ja) * 2014-03-27 2015-10-29 三洋電機株式会社 非水電解質二次電池
CN205992575U (zh) * 2016-07-21 2017-03-01 中航锂电(洛阳)有限公司 正极片和卷绕式锂离子动力电池电芯及锂离子动力电池
CN209418689U (zh) * 2019-01-22 2019-09-20 重庆市紫建电子有限公司 一种提高锂电池安全性能的锂电池结构
CN115066782A (zh) * 2020-08-21 2022-09-16 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及制造电极组件的方法和装置
WO2022165728A1 (zh) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及电极组件的制造设备和方法

Also Published As

Publication number Publication date
CN116505091A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2023240803A1 (zh) 正极极片、电极组件、电池单体、电池及用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
JP2023516411A (ja) 電極組立体、電池セル、電池並びに電極組立体の製造方法及び装置
JP2023523170A (ja) 電池単体、電池及び電気機器
WO2023020119A1 (zh) 电极组件、电池单体、电池及用电设备
WO2022127403A1 (zh) 电极组件、电池单体、电池以及用电装置
CN213546383U (zh) 一种锂离子电池卷芯
WO2023138440A1 (zh) 电极组件、卷绕设备和方法、电池单体、电池及用电装置
CN218472037U (zh) 圆柱电池和用电装置
CN217134505U (zh) 一种电池单体、电池和用电装置
JP5235317B2 (ja) 加圧ホルダー付き電池
EP4195388A1 (en) Battery cell, battery, electrical apparatus, and method and device for fabricating battery cell
JP2023541131A (ja) 電極アセンブリ、電池セル、電池、並びに電極アセンブリを製造するための方法及びデバイス
WO2023226944A1 (zh) 极耳整形装置
US20230318044A1 (en) Battery assembly and processing method and apparatus therefor, battery cell, battery, and power consuming device
CN217768461U (zh) 电极组件、制造设备、电池单体、电池及用电装置
WO2024000177A1 (zh) 烘干装置、极片制造设备和极片烘干方法
CN220796798U (zh) 一种安全性高的高倍率聚合物电池极片结构
CN219238387U (zh) 清洁装置和电池单体的输送系统
CN219615982U (zh) 张紧辊及涂布装置
CN218414630U (zh) 极片、电极组件、电池单体、电池及用电装置
WO2023241156A1 (zh) 极片延展装置和极片制造设备
WO2022213306A1 (zh) 电池单体、电池、用电设备及制备电池单体的方法和装置
CN220692145U (zh) 电池及用电装置
WO2023137724A1 (zh) 极片输送机构及极片成型系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742755

Country of ref document: EP

Kind code of ref document: A1