WO2023138129A1 - 一种连接线结构及其形成方法 - Google Patents

一种连接线结构及其形成方法 Download PDF

Info

Publication number
WO2023138129A1
WO2023138129A1 PCT/CN2022/126566 CN2022126566W WO2023138129A1 WO 2023138129 A1 WO2023138129 A1 WO 2023138129A1 CN 2022126566 W CN2022126566 W CN 2022126566W WO 2023138129 A1 WO2023138129 A1 WO 2023138129A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
metal layer
layers
protection
Prior art date
Application number
PCT/CN2022/126566
Other languages
English (en)
French (fr)
Inventor
黄立
黄晟
马占锋
王雅琴
王春水
高健飞
Original Assignee
武汉衷华脑机融合科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉衷华脑机融合科技发展有限公司 filed Critical 武汉衷华脑机融合科技发展有限公司
Publication of WO2023138129A1 publication Critical patent/WO2023138129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/008Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing extensible conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses

Definitions

  • the invention relates to the field of connecting wires. More specifically, the present invention relates to a connecting wire structure and method of forming the same.
  • Flexible flat cable can choose the number and spacing of wires arbitrarily, which is convenient for wiring and reduces the size of electronic products. It is suitable for data transmission cables between moving parts and main boards, between PCB boards and PCB boards, and in miniaturized electrical equipment.
  • the flexible cable is used in the imaging module to connect PCBA (print circuit board+Assembly electronic components prepared by electronic printing technology) and connectors.
  • PCBA printed circuit board+Assembly electronic components prepared by electronic printing technology
  • the signal of the chip on the PCBA is connected to the flexible flat cable through the pin, and the flexible flat cable transmits the signal to the connector, and the connector can be connected to the driver board, processor, etc., to realize the signal communication between the chip and the outside.
  • MEMS technology is an emerging technology, using silicon as the main material, the micro-electromechanical devices prepared have the characteristics of internal dimensions in microns and sub-microns.
  • MEMS technology can prepare micro-devices with complex three-dimensional structures such as movable and suspended structures. Using MEMS technology to prepare signal transmission cables to replace traditional flexible flat cables will greatly reduce the size of the flat cables and reduce the size of the product.
  • the object of the present invention is to provide a connection wire structure and its forming method, which can select different designed MEMS layouts according to the required transmission rate.
  • connection wire structure comprising a passivation layer, a metal layer and a protection layer, the metal layer is disposed on the passivation layer, and the protection layer is disposed on the metal layer.
  • the metal layer includes at least one metal wire.
  • the shape of the metal wire is straight, wavy, square or zigzag.
  • connection line structure includes at least two pads, and the pads are located at both ends of the metal line.
  • connection wire structure includes multiple layers of the metal layer and multiple layers of protection layers, and the metal layers and the protection layers are stacked alternately.
  • a method for forming a connecting wire structure comprising:
  • Step A forming a passivation layer on the substrate
  • Step B forming a metal layer on the passivation layer
  • Step C forming a protection layer on the metal layer
  • the connecting line structure is formed by semiconductor technology.
  • it also includes:
  • a portion of the substrate is removed.
  • it further includes: using step B and step C to form multi-layer metal layers and multi-layer protection layers, the metal layers and the protection layers are alternately stacked.
  • it also includes:
  • a contact hole is formed on the protection layer.
  • it also includes:
  • a welding pad is also formed.
  • the internal size can be at micron and sub-micron levels. Compared with traditional connecting wires, the overall size of connecting wires can be reduced by 2 to 4 orders of magnitude, thereby reducing product size.
  • Adopt multi-layer three-dimensional design without reducing the number of wires, the overall size of the connecting wire can be further reduced.
  • the metal wire can choose a curved design.
  • the curved metal wire is flexible and can meet the connection between moving parts.
  • the MEMS connection line is prepared by MEMS technology, which can form a large number of batch production and greatly reduce the cost.
  • MEMS connecting wires can be manufactured by silicon-based technology or other semiconductor technology. At present, most chips are manufactured by silicon-based semiconductor technology, so MEMS connecting wires are easier to integrate with chips.
  • Fig. 1 is a cross-sectional view of preparing a metal layer and a pad on a substrate in Example 1;
  • Fig. 2 is the top view of metal layer and pad in embodiment 1;
  • Fig. 3 is the sectional view of covering passivation protection layer among the embodiment 1;
  • Fig. 4 is the top view of Fig. 3;
  • Fig. 5 is the sectional view after removing part of substrate in embodiment 1;
  • Fig. 6 is the bottom view of Fig. 5;
  • Fig. 7 is the sectional view of making the first metal layer and PAD in embodiment 2;
  • Figure 8 is a top view of Figure 7;
  • Fig. 9 is the sectional view of making the second metal layer in embodiment 2;
  • Figure 10 is a top view of Figure 9;
  • Fig. 11 is the sectional view of making the third metal layer in embodiment 2;
  • Figure 12 is a top view of Figure 11;
  • FIG. 14 is a top view of FIG. 13 .
  • Fig. 15 is a cross-sectional view of removing the base material under the first metal layer to form a flexible connection line in embodiment 2;
  • FIG. 16 is a bottom view of FIG. 15 .
  • the directional indications are only used to explain the relative positional relationship and movement conditions among the components in a specific posture (as shown in the drawings). If the specific posture changes, the directional indications will also change accordingly.
  • connection wire structure including a passivation layer, a metal layer and a protection layer, the metal layer is disposed on the passivation layer, and the protection layer is disposed on the metal layer.
  • the metal layer includes at least one metal wire, that is, the metal layer includes one metal wire, or the metal layer includes at least two metal wires, and each metal wire is independent of each other.
  • the connection wire structure is formed by a semiconductor process, and the semiconductor process includes a MEMS process, and the connection wire structure is flexible and bendable.
  • the shape of the metal wire is straight, wavy, square or zigzag.
  • connection wire structure includes multiple layers of the metal layer and multiple layers of protection layers, and the metal layers and the protection layers are stacked alternately.
  • the connecting line structure includes at least two pads, and the pads are located at both ends of the metal line.
  • this embodiment provides a method for forming a connection line structure, including:
  • Step A forming a passivation layer on the substrate
  • Step B forming a metal layer on the passivation layer
  • Step C forming a protection layer on the metal layer
  • the connecting line structure is formed by semiconductor technology.
  • part of the substrate is removed, and part of the substrate may remain at both ends.
  • steps B and C are used to form multiple metal layers and multiple protective layers, and the metal layers and the protective layers are alternately stacked.
  • the first metal layer is formed on the passivation layer, a plurality of welding pads are also formed, and electrical contact with corresponding units is formed through the welding pads.
  • a plurality of contact holes are formed on the protective layer.
  • the contact holes correspond to the corresponding pads in position one by one, and the projection of the contact holes on the first metal layer covers the corresponding pads.
  • the corresponding contact holes will also be filled with metal, so that the metal layer is electrically connected to the corresponding pad.
  • Figures 1 to 2 show that the first metal layer 2 and the pad 7 are prepared on the substrate 1.
  • the substrate 1 can be selected from materials such as silicon, SOI, glass, etc.
  • a passivation layer can be coated on the substrate 1 to protect the metal layer.
  • the metal layer can be formed of metal materials such as titanium, aluminum, copper, etc.
  • the metal layer includes at least one metal wire.
  • the metal wire can be a straight metal wire 4 or a curved metal wire.
  • the curved metal wire can be a wavy metal wire 5, a square metal wire 6 or a zigzag metal wire.
  • the metal layer is prepared by MEMS technology, and the width of each metal wire is 0.1un-50um.
  • the pad 7 is used for external connection and communication, and the same metal is used for the pad 7 and the metal layer, and the pad 7 and the metal layer are formed simultaneously in one process.
  • the first protective layer 3 is plated on the first metal layer 2, and the first protective layer 3 may be SiO 2 or Si 3 N 4 .
  • the first protective layer 3 needs to be patterned by a process such as photolithography to expose the pad 7 .
  • the substrate 1 under the first metal layer 2 is removed by photolithography, deep etching or wet etching process, and only part of the substrate 1 is reserved at both ends to form a suspended connection line structure.
  • the suspended connection line structure has the characteristics of flexibility and is suitable for signal connection between movable parts.
  • an insulating layer can be coated on the upper and lower sides of the connecting wire structure to protect the connecting wire structure, ensure that the connecting wire structure is not easy to break, and has better corrosion resistance and toughness.
  • the first metal layer 2 and the pad 7 are prepared on the substrate 1. Similar to the single-layer connecting wire in Example 1, the metal layer includes at least one metal wire.
  • the metal wire can be a straight metal wire 4 or a curved connecting wire.
  • the curved connecting wire can be a wave-shaped metal wire 5, a square metal wire 6 or a zigzag metal wire.
  • the pad 7 is used for external connection and communication, and the same metal is used for the pad 7 and the metal layer, and the pad 7 and the metal layer are formed simultaneously in one process.
  • the first protective layer 3 is plated on the first metal layer 2 , the first protective layer 3 is etched to form a contact hole 8 , and the second metal layer 9 is prepared on the first protective layer 3 , and the second metal layer 9 is connected to the pad 7 through the contact hole 8 .
  • a second protective layer 10 is first coated on the second metal layer 9, and the second protective layer 10 is etched to form a contact hole 8, and then a third metal layer 11 is prepared on the second protective layer 10, and a third protective layer 15 needs to be plated on the third metal layer 11 to form a protection.
  • further metal layers such as the fourth layer and the fifth layer can be designed.
  • the outermost passivation protection layer is etched to expose the pad 7 for conduction and communication with the outside world.
  • the material of the base 1 under the connection line is removed, leaving only the material of the base 1 at both ends.
  • the purpose of removing the material of the substrate 1 is the same as that of the single-layer MEMS connection wire.
  • the method for manufacturing flexible connecting lines using MEMS technology in this application can adopt a simple design of single-layer wiring, or can adopt a multi-layer three-dimensional wiring design to achieve high-speed transmission; the MEMS technology allows the connecting lines to be designed in a straight line or bent layout, and the bent layout of the connecting lines is flexible and has better matching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Micromachines (AREA)

Abstract

发明公开了一种连接线结构及其形成方法,该连接线结构包括钝化层、金属层和保护层,所述金属层设置在所述钝化层上,所述保护层设置在所述金属层上。在本发明中,可以采用单层布线简单设计,也可采用多层立体布线设计实现高速率传输;MEMS工艺允许连接线呈直线或弯折布局设计,弯折布局的连接线具有柔性,具有更优的匹配性。

Description

一种连接线结构及其形成方法 技术领域
本发明涉及连接线领域。更具体地说,本发明涉及一种连接线结构及其形成方法。
背景技术
软排线(FFC)可以任意选择导线数目及间距,联线方便,缩减电子产品的体积。适合于移动部件与主板之间、PCB板与PCB板之间、小型化电器设备中作数据传输线缆之用。
软排线在成像模组中用于连接PCBA(print circuit board+Assembly用电子印刷技术制备的电子部件)和连接器。PCBA上芯片的信号通过pin脚连接软排线,软排线将信号传输至连接器,连接器可以连接驱动板、处理器等,实现芯片与外部的信号通信。
MEMS技术是一种新兴技术,以硅为主要材料,制备的微机电器件具有内部尺寸在微米及亚微米的特点。MEMS技术能制备可移动、带悬空结构等复杂三维结构的微型器件。采用MEMS技术制备信号传输线缆,替代传统的软排线,将大大缩减排线尺寸,减小产品尺寸。
发明内容
本发明的目的是提供一种连接线结构及其形成方法,可根据所需传输速率选择不同设计的MEMS布局。
为了实现本发明的这些目的和其它优点,提供一种连接线结构,包括钝化层、金属层和保护层,所述金属层设置在所述钝化层上,所述保护层设置在所述金属层上。
在其中的一个实施例中,所述金属层包括至少一根金属线。
在其中的一个实施例中,所述金属线的形状为直线形、波浪形、方波形或锯齿形。
在其中的一个实施例中,所述连接线结构包括至少两个焊盘,所述焊盘位于所述金属线的两端。
在其中的一个实施例中,所述连接线结构包括多层所述金属层和多层保护层,所述金属层和所述保护层交替堆叠而成。
为了实现本发明的这些目的和其它优点,提供一种连接线结构的形成方法,包括:
步骤A:在基底上形成钝化层;
步骤B:在所述钝化层上形成金属层;
步骤C:在所述金属层上形成保护层;
其中,所述连接线结构是通过半导体工艺形成的。
在其中的一个实施例中,还包括:
去除部分所述基底。
在其中的一个实施例中,还包括:采用步骤B和步骤C,形成多层金属层和多层保护层,所述金属层和所述保护层交替堆叠。
在其中的一个实施例中,还包括:
在所述保护层上形成接触孔。
在其中的一个实施例中,还包括:
在所述钝化层上形成第一层金属层的同时,还形成焊盘。
本发明至少包括以下有益效果:
1、采用MEMS技术制备连接线,内部尺寸可以在微米和亚微米级别,与传统连接线相比,连接线整体尺寸可以降低2~4个数量级,从而减小产品尺寸。
2、采用多层立体设计,无需减小导线数目,可进一步的减小连接线整体尺寸。
3、金属线可以选择弯曲型设计,弯曲型金属线具有柔性,可满足移动部件间的连接。
4、MEMS连接线采用MEMS技术制备而成,能形成大量批产,大大缩减成本。
5、MEMS连接线可采用硅基工艺或其他半导体工艺制备,目前芯片大多数是硅基半导体工艺制备,故MEMS连接线更易于与芯片集成兼容。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是实施例1中在基底上制备金属层和焊盘剖面图;
图2是实施例1中金属层和焊盘的俯视图;
图3是实施例1中覆盖钝化保护层的剖面图;
图4是图3的俯视图;
图5是实施例1中去除部分基底后的剖面图;
图6是图5的仰视图;
图7是实施例2中制作第一层金属层和PAD的剖面图;
图8是图7的俯视图;
图9是实施例2中制作第二层金属层的剖面图;
图10是图9的俯视图;
图11是实施例2中制作第三层金属层的剖面图;
图12是图11的俯视图;
图13是实施例2中露出焊盘的剖面图;
图14是图13的俯视图。
图15是实施例2中去掉第一层金属层下基底材料形成柔性连接线的剖面图;
图16是图15的仰视图。
附图标记说明:1基底,2第一层金属层,3第一层保护层,4直线形金属线,5波浪形金属线,6方形金属线,7焊盘,8接触孔,9第二层金属层,10第二层保护层,11第三层金属层,12第三层保护层。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该 特定姿态发生改变时,则该方向性指示也相应地随之改变。
实施例1
本实施例提供一种连接线结构,包括钝化层、金属层和保护层,所述金属层设置在所述钝化层上,所述保护层设置在所述金属层上。其中,所述金属层包括至少一根金属线,即所述金属层包括一根金属线,或者所述金属层包括至少两根金属线,各个金属线之间相互独立。其中,所述连接线结构是通过半导体工艺形成的,所述半导体工艺包括MEMS工艺,该连接线结构呈柔性,可弯折。
在可选的实施例中,所述金属线的形状为直线形、波浪形、方波形或锯齿形。
在其他优选的实施例中,所述连接线结构包括多层所述金属层和多层保护层,所述金属层和所述保护层交替堆叠而成。
在本实施例中,所述连接线结构包括至少两个焊盘,所述焊盘位于所述金属线的两端。
实施例2
结合实施1,本实施例提供一种连接线结构的形成方法,包括:
步骤A:在基底上形成钝化层;
步骤B:在所述钝化层上形成金属层;
步骤C:在所述金属层上形成保护层;
其中,所述连接线结构是通过半导体工艺形成的。
在形成金属层和保护层后,去除部分所述基底,可在两端保留部分基底。
在优选的实施例中,采用步骤B和步骤C,形成多层金属层和多 层保护层,所述金属层和所述保护层交替堆叠。
进一步地,在所述钝化层上形成第一层金属层的同时还形成多个焊盘,通过焊盘与相应的单元形成电接触。
在每形成一层所述保护层后,在保护层上形成多个接触孔,接触孔与相应的焊盘在位置上一一对应,且接触孔在第一层金属层上的投影覆盖部分相应的焊盘,在该保护层上形成下一层金属层时,对应的接触孔中也会填充金属,从而将金属层与相应的焊盘形成电连接,当金属层包括多个金属线时,每根金属线的两端分别通过相应的接触孔与焊盘连接。
实施例3
结合前述实施例1和实施例2,具体说明采用MEMS技术制造单层连接线结构的方法。
图1~2示,在基底1制备第一层金属层2和焊盘7,基底1可以选择为硅、SOI、玻璃等材料,在优选的实施例中,可以在基底1上先镀一层钝化层,用于保护金属层。金属层可以由钛、铝、铜等金属材料形成,金属层包括至少一根金属线,金属线可以为直线形金属线4、也可以选择弯曲型金属线,其中,弯曲型金属线可以为波浪形金属线5、方形金属线6或锯齿形金属线,金属层采用MEMS工艺制备,每根金属线的宽度为0.1un~50um。焊盘7用于与外部连接通信,焊盘7与金属层采用相同金属,一次工艺同时形成焊盘7和金属层。
如图3~4,在第一层金属层2上镀第一层保护层3,第一层保护层3可以为SiO 2或Si 3N 4。第一层保护层3需采用光刻刻蚀等工艺图形化,露出焊盘7。
如图4~6,采用光刻、深刻蚀或湿法腐蚀工艺去除第一层金属层 2下方的基底1,只在两端保留部分基底1,形成悬空的连接线结构,悬空的连接线结构具有柔性特点,适用于可动部件间的信号连接。
采用MEMS工艺形成悬空的连接线结构后,可在连接线结构上侧和下侧涂绝缘层,用于保护连接线结构,保证连接线结构不易断裂,具有更好的防腐性和韧性。
实施例4
结合前述实施例1和实施例2,具体说明采用MEMS技术制造多层连接线结构的方法。
如图7~8所示,在基底1上制备第一层金属层2和焊盘7,与实施例1中的单层连接线类似,金属层包括至少一根金属线,金属线可以为直线形金属线4、也可以选择弯曲型连接线,其中,弯曲型连接线可以为波浪形金属线5、方形金属线6或锯齿形金属线等,金属层采用MEMS工艺制备,每根金属线的宽度为0.1un~50um。焊盘7用于与外部连接通信,焊盘7与金属层采用相同金属,一次工艺同时形成焊盘7和金属层。
如图9~10所示,先在第一层金属层2上镀第一层保护层3,刻蚀第一层保护层3形成接触孔8,再在第一层保护层3上制备第二层金属层9,第二层金属层9通过接触孔8与焊盘7形成连接。
其中,接触孔8的位置以及在接触孔中填充金属的方式可以参照前述实施例3,在此不再赘述。
如图11~12所示,先在第二层金属层9上镀第二层保护层10,刻蚀第二层保护层10形成接触孔8,再在第二层保护层10上制备第三层金属层11,第三层金属层11上需镀第三层保护层15,形成保护。依照保护层、接触孔8、金属层的制备步骤,可以继续设计第四层、 第五层等更多层的金属层。
如图13~14所示,完成多层金属层制备后,刻蚀最表面的钝化保护层,露出焊盘7,用于与外界的导通通信。
图15~16所示,去除连接线下方基底1材料,只留下两端基底1材料。与单层MEMS连接线去除基底1材料目的相同。
本申请的用MEMS技术制造软连接线的方法,可以采用单层布线简单设计,也可采用多层立体布线设计实现高速率传输;MEMS工艺允许连接线呈直线或弯折布局设计,弯折布局的连接线具有柔性,具有更优的匹配性。
以上内容是结合具体的优选实施方式对本发明创造所作的进一步详细说明,不能认定本发明创造的具体实施只局限于这些说明。对于本发明创造所属技术领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明创造的保护范围。

Claims (10)

  1. 一种连接线结构,其特征在于,包括钝化层、金属层和保护层,所述金属层设置在所述钝化层上,所述保护层设置在所述金属层上。
  2. 如权利要求1所述的连接线结构,其特征在于,所述金属层包括至少一根金属线。
  3. 如权利要求2所述的连接线结构,其特征在于,所述金属线的形状为直线形、波浪形、方波形或锯齿形。
  4. 如权利要求2所述连接线结构,其特征在于,所述连接线结构包括至少两个焊盘,所述焊盘位于所述金属线的两端。
  5. 如权利要求1所述的连接线结构,其特征在于,所述连接线结构包括多层所述金属层和多层保护层,所述金属层和所述保护层交替堆叠而成。
  6. 一种连接线结构的形成方法,其特征在于,包括:
    步骤A:在基底上形成钝化层;
    步骤B:在所述钝化层上形成金属层;
    步骤C:在所述金属层上形成保护层;
    其中,所述连接线结构是通过半导体工艺形成的。
  7. 如权利要求6所述的形成方法,其特征在于,还包括:
    去除部分所述基底。
  8. 如权利要求6所述的形成方法,其特征在于,还包括:采用步骤B和步骤C,形成多层金属层和多层保护层,所述金属层和所述保护层交替堆叠。
  9. 如权利要求8所述的形成方法,其特征在于,还包括:
    在所述保护层上形成接触孔。
  10. 如权利要求8所述的形成方法,其特征在于,还包括:
    在所述钝化层上形成第一层金属层的同时,还形成焊盘。
PCT/CN2022/126566 2022-01-21 2022-10-21 一种连接线结构及其形成方法 WO2023138129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210072846.0 2022-01-21
CN202210072846.0A CN114496358A (zh) 2022-01-21 2022-01-21 一种连接线结构及其形成方法

Publications (1)

Publication Number Publication Date
WO2023138129A1 true WO2023138129A1 (zh) 2023-07-27

Family

ID=81473423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126566 WO2023138129A1 (zh) 2022-01-21 2022-10-21 一种连接线结构及其形成方法

Country Status (2)

Country Link
CN (1) CN114496358A (zh)
WO (1) WO2023138129A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496358A (zh) * 2022-01-21 2022-05-13 武汉衷华脑机融合科技发展有限公司 一种连接线结构及其形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219463A (ja) * 2004-02-09 2005-08-18 Kaneka Corp ポリイミド/金属積層体およびその製造方法、並びにその利用
CN102420200A (zh) * 2011-11-15 2012-04-18 中国科学院微电子研究所 具有金属垂直互连结构的转接板及其制作方法
CN111954396A (zh) * 2019-08-23 2020-11-17 李龙凯 一种多层柔性线路板的制作方法及其制品
CN114496358A (zh) * 2022-01-21 2022-05-13 武汉衷华脑机融合科技发展有限公司 一种连接线结构及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219463A (ja) * 2004-02-09 2005-08-18 Kaneka Corp ポリイミド/金属積層体およびその製造方法、並びにその利用
CN102420200A (zh) * 2011-11-15 2012-04-18 中国科学院微电子研究所 具有金属垂直互连结构的转接板及其制作方法
CN111954396A (zh) * 2019-08-23 2020-11-17 李龙凯 一种多层柔性线路板的制作方法及其制品
CN114496358A (zh) * 2022-01-21 2022-05-13 武汉衷华脑机融合科技发展有限公司 一种连接线结构及其形成方法

Also Published As

Publication number Publication date
CN114496358A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
JP2017038075A (ja) エリアアレイユニットコネクタを備えるスタック可能モールド超小型電子パッケージ
CN104409439B (zh) 线路基板
CN104520987A (zh) 具有引线键合互连且基板少的堆叠封装
JP2008283195A (ja) アラインマーク、該アラインマークを具備する半導体チップ、該半導体チップを具備する半導体パッケージ並びに該半導体チップ及び該半導体パッケージの製造方法
WO2023138129A1 (zh) 一种连接线结构及其形成方法
JPS61193494A (ja) ポリイミド回路板の製造方法
CN104425417B (zh) 半导体装置及其制法
CN105867034A (zh) 硅基液晶面板及相关方法
KR20190050171A (ko) 연성 회로기판 및 이를 포함하는 칩 패키지, 및 이를 포함하는 전자 디바이스
JP2019106537A (ja) 半導体パッケージ及びこれを含む半導体モジュール
CN103299419B (zh) 由嵌入式迹线限定的导电垫
CN103338590B (zh) 软性电路板及其制造方法
TW200810066A (en) Wiring substrate and manufacturing method thereof, and semiconductor device
WO2021129159A1 (zh) 柔性显示面板和曲面显示屏
CN103545286A (zh) 线路基板、半导体封装结构及线路基板制作工艺
CN111627921A (zh) 显示面板、终端设备及制造方法
US10347573B2 (en) Semiconductor device and wiring board design method
CN112825310A (zh) 超薄芯片的封装结构和柔性集成封装方法
CN108156754B (zh) 垂直连接接口结构、具所述结构的电路板及其制造方法
TWI802135B (zh) 電路板結構及其製造方法
CN111463187B (zh) 基于系统级封装的柔性装置及其制造方法
CN111697021B (zh) 阵列基板及其制作方法和显示装置
CN112214130B (zh) 触控显示屏及显示设备
CN109819585A (zh) 电路板及其制作方法
JP3287455B2 (ja) 電気的接続装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921553

Country of ref document: EP

Kind code of ref document: A1