WO2023137759A1 - 具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法 - Google Patents

具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法 Download PDF

Info

Publication number
WO2023137759A1
WO2023137759A1 PCT/CN2022/073555 CN2022073555W WO2023137759A1 WO 2023137759 A1 WO2023137759 A1 WO 2023137759A1 CN 2022073555 W CN2022073555 W CN 2022073555W WO 2023137759 A1 WO2023137759 A1 WO 2023137759A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyperbranched polylysine
polydispersity index
hyperbranched
production method
powder
Prior art date
Application number
PCT/CN2022/073555
Other languages
English (en)
French (fr)
Inventor
高长有
董晓飞
王兆龙
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023137759A1 publication Critical patent/WO2023137759A1/zh
Priority to US18/473,318 priority Critical patent/US12024592B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/04Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids

Definitions

  • the invention belongs to the technical field of polymer materials, and in particular relates to a hyperbranched polylysine powder with a low polydispersity index and a production method thereof.
  • L-lysine is one of the basic substances that constitute protein required for animal nutrition. There are two amino groups in the ⁇ -position and ⁇ -position in the L-lysine molecule. According to the different polymerization methods, two different polymers can be obtained by the polymerization of L-lysine, which are linear polylysine and hyperbranched polylysine. There are two types of linear polymers: ⁇ -polylysine (PLL) and ⁇ -polylysine ( ⁇ -PL). Among them, PLL is a polycation that can generate electrostatic interactions with negatively charged cell membranes to promote cell adhesion and tissue regeneration. ⁇ -PL is mostly obtained by bacterial fermentation.
  • ⁇ -PL with a molecular weight greater than 1300 Da can be adsorbed on the outer membrane of bacteria and fungi, releasing a large amount of lipopolysaccharide and destroying the outer membrane of microorganisms, thereby achieving antibacterial effect;
  • high molecular weight ⁇ -PL is a natural preservative with broad-spectrum antibacterial properties, and has been used in food preservatives in Japan and other countries.
  • Hyperbranched polylysine is a kind of lysine polymer with highly branched three-dimensional structure, and its molecular structure has both PLL and ⁇ -PL structural units. Therefore, hyperbranched polylysine has both the biological and chemical functions of PLL and ⁇ -PL. Compared with linear polylysine, hyperbranched polylysine has a large number of branch points in the molecule, the molecular chain is not easy to entangle, has low viscosity, and has excellent flow properties and film-forming properties; hyperbranched polylysine has abundant terminal functional groups, which are easy to modify and modify, which is conducive to the synthesis of various functional materials.
  • the hyperbranched polylysine obtained by the polymerization of L-lysine can be degraded into L-lysine under the catalysis of enzymes in vivo, which has good biocompatibility and biodegradability, and has broad application prospects in the fields of chemical industry, biology, medicine and health.
  • hyperbranched polylysine with low molecular weight ⁇ 1300Da
  • hyperbranched polylysine with high molecular weight has good killing ability against both Gram-positive and Gram-negative bacteria.
  • the directly prepared product is often a continuous block solid after freeze-drying or drying treatment. The block solid dissolves slowly on the one hand, and on the other hand is not suitable for direct metering, especially the metering of trace components in biological applications.
  • the object of the present invention is to address the deficiencies in the prior art, to provide a method for producing hyperbranched polylysine with controllable molecular weight, low polydispersity index, no additional steps to introduce and remove amino protecting groups, no need to activate carboxyl groups, easy purification of products, and short production cycle.
  • the hyperbranched polylysine powder with a low polydispersity index and its production method described in the present invention are characterized in that the molecular weight is controllable, and polymers with a number average molecular weight between 3000Da and 7000Da can be prepared by controlling the reaction conditions; the polydispersity index is low, and the PDI range is 1.01-1.20.
  • Hyperbranched polylysine powder with low polydispersity index and production method thereof of the present invention the preparation method of this hyperbranched polylysine is:
  • the amino acid is at least one of L-lysine, L-lysine monohydrate, L-lysine dihydrate, L-lysine acetate, L-lysine monohydrochloride, L-lysine dihydrochloride, and L-lysine sulfate.
  • the alkali is at least one of ammonium hydroxide, lithium hydroxide, sodium hydroxide and potassium hydroxide.
  • the catalyst is at least one of zirconium n-butoxide, titanium n-butoxide, dibutyltin dilaurate, tripyridine boric acid, and antimony ethanol.
  • the stirring is mechanical stirring, and the stirring speed needs to be controlled at 300-500rpm.
  • the purification and drying process includes the following steps: dissolving 50-100 parts of the crude product in 50-200 parts of alcohol by weight, centrifuging the suspension to separate the supernatant, and drying the supernatant to obtain a hyperbranched polylysine powder.
  • the alcohol is at least one of methanol and ethanol.
  • the production method of hyperbranched polylysine disclosed by the present invention does not involve additional steps to introduce and remove amino protecting groups, does not need to activate carboxyl groups, the product is easy to purify, and the production cycle is short. More importantly, the polydispersity index produced by the method of the present invention is low (PDI can be as low as below 1.2), and the molecular weight of the product is controllable (number average molecular weight 3000-7000Da), especially suitable for industrial production of hyperbranched polylysine materials.
  • Fig. 1 is the display diagram of the hyperbranched polylysine powder prepared by the present invention
  • Fig. 2 is the FTIR spectrogram of the hyperbranched polylysine prepared by the present invention
  • Fig. 3 is that the number average weight prepared by the present invention is 3438Da, and the degree of dispersion is the hyperbranched polylysine GPC figure of 1.19;
  • Fig. 4 is that the number average weight prepared by the present invention is 4899Da, and the degree of dispersion is the hyperbranched polylysine GPC figure of 1.07;
  • Fig. 5 is that the number average weight that the present invention prepares is 5299Da, and dispersity is the hyperbranched polylysine GPC figure of 1.11;
  • Figure 6 is a diagram showing the hyperbranched polylysine prepared in Comparative Example 4.
  • the hyperbranched polylysine that this example makes is yellow powder, as shown in Figure 1.
  • the number average molecular weight of the hyperbranched polylysine prepared in this example is: 3438Da, and the PDI is: 1.19, and its GPC spectrum is shown in Figure 3.
  • the number average molecular weight of the hyperbranched polylysine prepared in this example is: 4899Da, the PDI is: 1.07, and its GPC spectrum is shown in Figure 4.
  • the suspension is centrifuged at 3000 rpm to obtain an ethanol solution of hyperbranched polylysine, and the solution is injected into an aerosol drying tower for drying to obtain pure hyperbranched polylysine powder.
  • the number average molecular weight of the hyperbranched polylysine prepared in this example is: 5299Da, the PDI is: 1.11, and its GPC spectrum is shown in Figure 5.
  • hyperbranched polylysine according to the method in the prior art (such as CN111035803B, a kind of titanium implant material that has anti-infection and promotes osseointegration function and preparation method thereof, description, page 2, entry [0014])
  • the total preparation time is 3-4 days, the reaction rate is low, and the post-processing time is 3-5 days, and the cycle is long; the reaction process needs to add water in an appropriate amount at different reaction times according to the experience of the operator, which cannot be used in an automated industrial production process; the product must be dialyzed to remove low-molecular-weight polymers that do not have antibacterial functions; before dialysis, the number-average molecular weight of the polymer measured by GPC is 3860, and the PDI is 2.14; .34;
  • the product obtained (as shown in Figure 6) is a hard block, which can be measured and used after grinding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法,采用热引发聚合法,具体步骤包括:将10-90份氨基酸单体,1-10份碱,0.01-5份催化剂加入反应器中,升温至120-180℃,搅拌和氮气保护条件下反应12-24小时后降温停止反应获得粗产物,将粗产物纯化及干燥后获得纯超支化聚赖氨酸粉末。该超支化聚赖氨酸生产方法相较于传统方法,其过程不涉及额外步骤引入和除去氨基保护基团、不需要活化羧基、产物易提纯、生产周期短,且产物分子量可控、多分散性指数低,适用于超支化聚赖氨酸材料尤其是医用级超支化聚氨酸材料的工业化生产。

Description

具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法 技术领域
本发明属于高分子材料技术领域,具体涉及一种具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法。
背景技术
作为生物功能大分子蛋白质的基本组成单位,L-赖氨酸是构成动物营养所需蛋白质的基本物质之一。L-赖氨酸分子中有α位和ε位两个氨基,根据聚合方式的不同,L-赖氨酸聚合可以得到两种不同的聚合物,分别为线型聚赖氨酸和超支化聚赖氨酸。线型聚合物有α-聚赖氨酸(PLL)和ε-聚赖氨酸(ε-PL)两种。其中PLL是一种聚阳离子,能与带负电的细胞膜产生静电相互作用,促进细胞粘附和组织再生。ε-PL多为细菌发酵得到,研究证实分子量大于1300Da的ε-PL能够吸附在细菌和真菌的外膜上,释放出大量的脂多糖,破坏微生物外膜,从而达到抗菌的作用;高分子量的ε-PL是一种天然防腐剂,具有广谱抗菌性,在日本等国家已被应用于食品防腐剂。
超支化聚赖氨酸是一类具有高度支化三维结构的赖氨酸聚合物,其分子结构中同时具有PLL和ε-PL的结构单元。因此,超支化聚赖氨酸同时拥有PLL和ε-PL的生物和化学功能。同线型聚赖氨酸相比,超支化聚赖氨酸分子内有大量的支化点,分子链不易缠结,黏度小,具有优异的流动性能和成膜性能;超支化聚赖氨酸具有丰富的末端官能团,易对其进行修饰改性,有利于合成多样的功能性材料。此外,由L-赖氨酸聚合得到的超支化聚赖氨酸,在体内酶催化下可以降解为L-赖氨酸,具有良好的生物相容性和生物可降解性,在化工、生物、医药和健康领域具有广泛的应用前景。
目前文献报道的超支化聚赖氨酸的制备方法主要有三种。(1)基于在羧基上活化的L-赖氨酸*2HCl衍生物的逐步聚合,缺点在于羧基官能团必须由特定的反应剂活化,反应路径为多步骤反应,反应路线复杂。(2)基于ε-保护的L-赖氨酸-N-羧酸酐开环加聚,该类反应路径的缺点为要求保护基团,反应步骤复杂且产物难提纯。(3)游离L-赖氨酸的热聚合,反应步骤简单,但反应时间较长,通常需要数天,生产效率低。此外,现有生产方法制得的产物往往还存在以下共同问题。(1)所得聚合物往往具有宽的分子量分布,多分散性指数PDI很难低于2,且PDI随分子量的增大而增大。这类高PDI的超支化聚赖氨酸中混有大量的低分子量聚合物,极大的影响了产物的性能,特别是生物学性能。例如,低分子量(<1300Da)的超支化聚赖氨酸不具有抗菌性能,而高分子量的超支化聚赖氨酸对革兰氏阳性菌和革兰氏阴性菌都有很好的杀灭能力。(2)所直接制得的产物往往为经冻干或烘干处理后的连续块状固体,块状固体一方面溶解速度慢,另一方面不适用于直接计量使用,尤其是生物学应用中作为微量组分的计量。
发明内容
本发明的目的在于针对现有技术的不足,提供一种分子量可控、多分散性指数低,且不涉及额外步骤引入和除去氨基保护基团、不需要活化羧基、产物易提纯、生产周期短的超支化聚赖氨酸的生产方法。
本发明所述的具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法,该超支化聚赖氨酸的特征是:分子量可控,通过控制反应条件可制备数均分子量在3000Da到7000Da之间的聚合物;多分散性指数低,PDI范围为1.01-1.20。
本发明所述的具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法,该超支化聚赖氨酸的制备方法为:
按重量计,将10-90份氨基酸单体,1-10份碱,0.01-5份催化剂加入釜式反应器中,升温至120-180℃,搅拌和氮气保护条件下反应12-24小时后降温停止反应获得粗产物,粗产物经纯化及干燥处理后得到超支化聚赖氨酸粉末。
所述的氨基酸为左旋赖氨酸、左旋赖氨酸一水合物、左旋赖氨酸二水合物、左旋赖氨酸乙酸盐、左旋赖氨酸单盐酸盐、左旋赖氨酸二盐酸盐、左旋赖氨酸硫酸盐中的至少一种。
所述的碱为氢氧化氨、氢氧化锂、氢氧化钠、氢氧化钾中的至少一种。
所述的催化剂为正丁醇锆、正丁醇钛、二月桂酸二丁锡、三吡啶硼酸、乙醇锑中的至少一种。
所述的搅拌为机械搅拌,搅拌速度需控制为300-500rpm。
所述的纯化及干燥处理,包含如下步骤:按重量计,将50-100份粗产物溶于50-200份醇中,悬浊液经离心分离出上清液,上清液经气雾干燥获得超支化聚赖氨酸粉末。
所述的醇为甲醇、乙醇中的至少一种。
本发明的有益效果是:
本发明公开的超支化聚赖氨酸生产方法相较于传统方法,其过程不涉及额外步骤引入和除去氨基保护基团、不需要活化羧基、产物易提纯、生产周期短,更为重要的是采用本发明方法制得的多分散性指数低(PDI可低至1.2以下),产物分子量可控(数均分子量3000-7000Da),尤其适用于超支化聚赖氨酸材料的工业化生产。
附图说明
图1是本发明制备的超支化聚赖氨酸粉末的展示图;
图2是本发明制备的超支化聚赖氨酸的FTIR谱图;
图3是本发明制备的数均分量为3438Da,分散度为1.19的超支化聚赖氨酸GPC图;
图4是本发明制备的数均分量为4899Da,分散度为1.07的超支化聚赖氨酸GPC图;
图5是本发明制备的数均分量为5299Da,分散度为1.11的超支化聚赖氨酸GPC图;
图6是对比例4制备的超支化聚赖氨酸展示图。
具体实施方式
以下结合附图和具体实施例进一步说明本发明。
实施例1
在装有搅拌器、内部温度计、进气管、冷凝器和收集器的5L反应釜中,加入2000g L-赖氨酸硫酸盐、655.7g固体氢氧化钠和2g二月桂酸二丁基锡。将混合物逐渐加热至140℃的内部温度,搅拌速度为400rpm,氮气流量为50cm 3/min。12小时后停止加热,趁热从底部收集器排出超支化聚赖氨酸粗产物。将粗产物加入3000mL乙醇中,充分混合后获得含有超支化聚赖氨酸的悬浊液。将悬浊液经3000rpm离心分离后获得超支化聚赖氨酸的乙醇溶液,将溶液注入气雾干燥塔中干燥,获得纯净的超支化聚赖氨酸粉末。
本例制得的超支化聚赖氨酸呈黄色粉末状,如图1所示。
本例制得的超支化聚赖氨酸的FTIR谱图,如图2所示。
本例制得的超支化聚赖氨酸的数均分子量为:3438Da,PDI为:1.19,其GPC谱图如图3所示。
GPC结果
Figure PCTCN2022073555-appb-000001
实施例2
在装有搅拌器、内部温度计、进气管、冷凝器和收集器的5L反应釜中,加入2000g L-赖氨酸硫酸盐、600g固体氢氧化锂和2g正丁醇锆,将混合物逐渐加热至140℃的内部温度,搅拌速度为400rpm,氮气流量为50cm 3/min,16小时后停止加热,趁热从底部收集器排出超支化聚赖氨酸粗产物。将粗产物加入2000mL乙醇中,充分混合后获得含有超支化聚赖氨酸的悬浊液。将悬浊液经3000rpm离心分离后获得超支化聚赖氨酸的乙醇溶液,将溶液注入气雾干燥塔中干燥,获得纯净的超支化聚赖氨酸粉末。
本例制得的超支化聚赖氨酸的数均分子量为:4899Da,PDI为:1.07,其GPC谱图如图4所示。
GPC结果
Figure PCTCN2022073555-appb-000002
实施例3
在装有搅拌器、内部温度计、进气管、冷凝器和收集器的5L反应釜中,加入2000g L-赖氨酸硫酸盐、700g固体氢氧化钾和2g三吡啶硼酸,在搅拌和氮气保护下将混合物逐渐加热至140℃的内部温度,20小时后停止加热,趁热从底部收集器排出超支化聚赖氨酸粗产物。将粗产物加入1500mL乙醇中,充分混合后获得含有超支化聚赖氨酸的悬浊液。将悬浊液经3000rpm离心分离后获得超支化聚赖氨酸的乙醇溶液,将溶液注入气雾干燥塔中干燥,获得纯净的超支化聚赖氨酸粉末。本例制得的超支化聚赖氨酸的数均分子量为:5299Da,PDI为:1.11,其GPC谱图如图5所示。
GPC结果
Figure PCTCN2022073555-appb-000003
对比例4
根据现有技术中的方法制备超支化聚赖氨酸(如CN111035803B,一种兼具抗感染及促进骨结合功能的钛植入体材料及其制备方法,说明书,第2页,条目[0014])
向赖氨酸盐酸盐溶液(27.45g溶于50mL水中)中缓慢滴加KOH溶液(8.4g溶于30mL水中),赖氨酸盐酸盐与KOH的摩尔比为1:1,40℃下反应4-5h,然后升温至150℃,期间适时维持反应体系中的水分,持续搅拌2-3d,停止后加入甲醇溶解熔体,后将溶剂转化为水,透析3-5d,冷冻,干燥。
总制备时间为3-4天,反应速率低,且后处理时间为3-5天,周期长;反应过程需根据操作人员的经验在不同的反应时间适量的加入水,无法用于自动化的工业生产过程;产物须经透析除去不具有抗菌功能的低分子量聚合物;透析前,经GPC测得聚合物的数均分子量为:3860,PDI为2.14;透析后,经GPC测得聚合物的数均分子量为:6100,PDI为1.34;得到的产物(如图6所示)为硬质块状物,经研磨处理后才能计量使用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,采用热引发聚合法,包括如下步骤:按重量计,将10-90份氨基酸单体,1-10份碱,0.01-5份催化剂加入釜式反应器中,升温至120-180℃,搅拌和氮气保护条件下反应12-24小时后降温停止反应获得粗产物,粗产物经纯化及干燥处理后得到超支化聚赖氨酸粉末。
  2. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的超支化聚赖氨酸粉末的多分散性指数PDI为1.01-1.2。
  3. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的超支化聚赖氨酸粉末的数均分子量为3000-7000Da。
  4. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的氨基酸单体为左旋赖氨酸、左旋赖氨酸一水合物、左旋赖氨酸二水合物、左旋赖氨酸乙酸盐、左旋赖氨酸单盐酸盐、左旋赖氨酸二盐酸盐、左旋赖氨酸硫酸盐中的至少一种。
  5. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的碱为氢氧化氨、氢氧化锂、氢氧化钠、氢氧化钾中的至少一种。
  6. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的催化剂为正丁醇锆、正丁醇钛、二月桂酸二丁锡、三吡啶硼酸、乙醇锑中的至少一种。
  7. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的搅拌为机械搅拌,搅拌速度为300-500rpm。
  8. 根据权利要求1所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的纯化及干燥处理,包含如下步骤:按重量计,将50-100份粗产物溶于50-200份醇中,悬浊液经离心分离出上清液,上清液经气雾干燥获得超支化聚赖氨酸粉末。
  9. 根据权利要求8所述的具有低多分散性指数的超支化聚赖氨酸粉末的生产方法,其特征在于,所述的醇为甲醇、乙醇中的至少一种。
PCT/CN2022/073555 2022-01-20 2022-01-24 具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法 WO2023137759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/473,318 US12024592B2 (en) 2022-01-20 2023-09-25 Hyperbranched polylysine powder with low polydispersity index and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210065573.7 2022-01-20
CN202210065573.7A CN114621431B (zh) 2022-01-20 2022-01-20 具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/473,318 Continuation US12024592B2 (en) 2022-01-20 2023-09-25 Hyperbranched polylysine powder with low polydispersity index and production method thereof

Publications (1)

Publication Number Publication Date
WO2023137759A1 true WO2023137759A1 (zh) 2023-07-27

Family

ID=81898918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073555 WO2023137759A1 (zh) 2022-01-20 2022-01-24 具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法

Country Status (3)

Country Link
US (1) US12024592B2 (zh)
CN (1) CN114621431B (zh)
WO (1) WO2023137759A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206183A1 (en) * 2005-04-28 2008-08-28 Central National De La Recherche Scientifique Method of Preparing Grafted Polylysine Dendrimers
CN101316860A (zh) * 2005-11-25 2008-12-03 巴斯夫欧洲公司 高官能、高支化或超支化聚赖氨酸的生产和用途
WO2016062578A1 (en) * 2014-10-21 2016-04-28 Basf Se A process for preparing polylysines
CN111035803A (zh) * 2019-11-07 2020-04-21 浙江大学 一种兼具抗感染及促进骨结合功能的钛植入体材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349434A (zh) * 2016-05-09 2017-11-17 中国科学院苏州纳米技术与纳米仿生研究所 一种超支化聚合物及其制备方法和应用
CN108129656A (zh) * 2018-01-31 2018-06-08 中国科学院长春应用化学研究所 一种支化聚氨基酸抑菌剂及应用
WO2019149121A1 (zh) * 2018-01-31 2019-08-08 中国科学院长春应用化学研究所 一种支化聚氨基酸抑菌剂及应用
US20210000734A1 (en) * 2018-03-15 2021-01-07 Basf Se A composition suitable for hair care
CN108484901B (zh) * 2018-04-10 2020-03-06 中国科学院长春应用化学研究所 一种热缩聚制备高含量线性ε-聚赖氨酸的聚赖氨酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206183A1 (en) * 2005-04-28 2008-08-28 Central National De La Recherche Scientifique Method of Preparing Grafted Polylysine Dendrimers
CN101316860A (zh) * 2005-11-25 2008-12-03 巴斯夫欧洲公司 高官能、高支化或超支化聚赖氨酸的生产和用途
WO2016062578A1 (en) * 2014-10-21 2016-04-28 Basf Se A process for preparing polylysines
CN111035803A (zh) * 2019-11-07 2020-04-21 浙江大学 一种兼具抗感染及促进骨结合功能的钛植入体材料及其制备方法

Also Published As

Publication number Publication date
CN114621431B (zh) 2023-05-09
US20240018303A1 (en) 2024-01-18
CN114621431A (zh) 2022-06-14
US12024592B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
WO2019011061A1 (zh) 一种新型水溶性天然多糖抗菌材料及其制备方法
CN108220364B (zh) 一种固液双相酶解与超滤联用制备超低分子量透明质酸寡糖及其盐的方法
CN107333755B (zh) 具有g-四链体结构的水凝胶制备方法及其在杀灭金黄色葡萄球菌和大肠杆菌中的应用
CN106995502B (zh) 双功能基团改性壳聚糖衍生物及其制备方法
WO2018121581A1 (zh) 多糖的臭氧降解方法
CN114767924B (zh) 一种适用于受损皮肤细胞修复的类贻贝粘蛋白水凝胶的制备方法
CN105585695A (zh) 一种超临界二氧化碳中无规共聚制备聚己丙交酯的方法
CN105694030A (zh) 一种寡聚氨基酸与海藻酸钠复合的杂化抗菌水凝胶
WO2023137759A1 (zh) 具有低多分散性指数的超支化聚赖氨酸粉末及其生产方法
CN115073769A (zh) 一种促组织再生的活性氧响应超分子水凝胶及其制备方法
CN107602726B (zh) 低分子量c6-羧基甲壳素及其制备方法
CN114149596A (zh) 相转变可调控的聚合物/锂藻土纳米粒子复合物热致水凝胶及其制备方法与应用
CN106336501A (zh) 含糖两亲性嵌段共聚物及其制备方法
CN101445607B (zh) 一种蚕丝蛋白和聚d,l-乳酸的共聚物及其制备方法和应用
CN102775530A (zh) 一种聚赖氨酸衍生物的raft制备方法
CN102558569B (zh) 一种脂多糖胺阳离子聚合物及其制备方法和应用
CN108129647A (zh) 一种星型聚酯化合物及其制备方法
CN108102079A (zh) 一种聚l-乳酸葡萄糖共聚物材料及其制备方法
Goswami et al. Pullulan films and natural compounds: applications and perspectives
CN101225399A (zh) 氨基酸材料的非病毒基因载体的制备方法
Jun et al. Tunicate cellulose nanocrystals as stabilizers for PLGA-based polymeric nanoparticles
CN110590975A (zh) 一种药用聚乙烯醇及其制备方法
CN101717496B (zh) 一种蚕丝蛋白和聚l-乳酸的共聚物及其开环聚合制备方法和应用
CN112359009A (zh) 一种基于壳多糖的凝胶状材料细胞载体
CN108424512B (zh) 一种酶催化法制备聚己内酯多元醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921195

Country of ref document: EP

Kind code of ref document: A1