WO2023137676A1 - 信息处理方法及装置、通信设备及存储介质 - Google Patents

信息处理方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023137676A1
WO2023137676A1 PCT/CN2022/073057 CN2022073057W WO2023137676A1 WO 2023137676 A1 WO2023137676 A1 WO 2023137676A1 CN 2022073057 W CN2022073057 W CN 2022073057W WO 2023137676 A1 WO2023137676 A1 WO 2023137676A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink transmission
downlink reception
frequency point
bwp
Prior art date
Application number
PCT/CN2022/073057
Other languages
English (en)
French (fr)
Inventor
牟勤
张娟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/073057 priority Critical patent/WO2023137676A1/zh
Priority to CN202280000219.4A priority patent/CN114616900A/zh
Publication of WO2023137676A1 publication Critical patent/WO2023137676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to an information processing method and device, a communication device, and a storage medium.
  • NB-IoT currently only supports a maximum rate of a few hundred k
  • MTC currently only supports a maximum rate of a few M.
  • MTC and NB-IoT technologies in LTE are difficult to meet the requirements.
  • a new user equipment is provided in the 5G new air interface to cover the requirements of such mid-end IoT devices.
  • This new type of terminal is called Reduced capability User Equipment (RedCap UE) or New Radio (NR-lite) terminal for short.
  • RedCap UE Reduced capability User Equipment
  • NR-lite New Radio
  • RedCap UE or RedCap terminal The bandwidth supported by RedCap UE or RedCap terminal is smaller than that supported by ordinary terminals.
  • Embodiments of the present disclosure provide an information processing method and device, a communication device, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • the second aspect of the embodiments of the present disclosure provides an information processing method, which is executed by a network device, and the method includes:
  • a third aspect of an embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • a first determining module configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission
  • the first mode module is configured to determine a frequency division duplex FDD mode in which the terminal works according to the determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the fourth aspect of the embodiments of the present disclosure provides an information processing apparatus, wherein, executed by a network device, the apparatus includes:
  • the second determination module is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission
  • the second mode module is configured to determine a frequency division duplex (FDD) mode in which the terminal works according to the determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • FDD frequency division duplex
  • the fifth aspect of the embodiment of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein, when the processor runs the executable program, it executes the information processing method as provided in the first aspect or the second aspect.
  • the sixth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by a processor, the information processing method provided by the aforementioned first aspect or the second aspect can be implemented.
  • the FDD mode of the terminal before determining the current FDD mode of the terminal, it will be determined according to whether the terminal supports simultaneous downlink reception and uplink transmission. In this way, factors such as the bandwidth capability of the terminal can be integrated, and the FDD mode of the terminal can be flexibly and precisely controlled, thereby ensuring the communication quality of the terminal.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 5 is a schematic diagram showing a monitored UL BWP and DL BWP satisfying an isolation condition according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 7 is a schematic diagram showing a monitored UL BWP and DL BWP satisfying an isolation condition according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 9 is a schematic diagram showing a monitored UL BWP and DL BWP satisfying an isolation condition according to an exemplary embodiment
  • Fig. 10 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 11 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 12 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 13 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 14 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 15 is a schematic structural diagram of an information processing device according to an exemplary embodiment
  • Fig. 16 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Fig. 17 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 18 is a schematic structural diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several access devices 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • the UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • the UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a computer with an Internet of Things UE.
  • it can be a fixed, portable, pocket, hand-held, computer-built-in or vehicle-mounted device.
  • UE11 may also be a device of an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the access device 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, also known as a new air interface (new radio, NR) system or a 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the access device 12 may be an evolved access device (eNB) adopted in a 4G system.
  • the access device 12 may also be an access device (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • a protocol stack of a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer is set in the centralized unit; a physical (Physical, PHY) layer protocol stack is set in the distributed unit, and the embodiment of the present disclosure does not limit the specific implementation of the access device 12.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a wireless connection may be established between the access device 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME) in an evolved packet core network (Evolved Packet Core, EPC).
  • MME mobility Management Entity
  • EPC evolved Packet Core
  • the network management device may also be other core network devices, such as a Serving GateWay (SGW), a Public Data Network GateWay (PGW), a Policy and Charging Rules Function (PCRF) or a Home Subscriber Server (HSS).
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • S210 Determine whether the terminal supports simultaneous downlink reception and uplink transmission
  • S220 Determine an FDD mode in which the terminal works according to a determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the terminal may be any terminal, further, the terminal may be a terminal other than a common terminal, for example, the terminal may be a RedCap terminal.
  • the bandwidth supported by RedCap terminals is smaller than that supported by ordinary terminals.
  • the bandwidth supported by common terminals may be equal to the system bandwidth of the communication system. That is, in some embodiments, the bandwidth supported by the terminal may be smaller than the system bandwidth.
  • the maximum bandwidth supported by the common terminal under FR1 can reach 100 MHz, and the maximum bandwidth supported under FR2 can reach 400 MHz.
  • the terminal will determine whether the terminal supports simultaneous downlink reception and uplink transmission according to the determination method. If the terminal can perform uplink transmission and downlink reception at the same time, the FDD mode used by the terminal can be flexibly configured according to the determination result.
  • the determination method may be: pre-negotiation between the terminal and the network device, or agreement according to an agreement.
  • S210 may include: determining whether the terminal currently supports simultaneous downlink reception and uplink transmission according to one or more of the maximum bandwidth supported by the terminal, the current operating frequency band of the terminal, and the UL BWP and DL BWP currently monitored by the terminal.
  • Simultaneous downlink reception and uplink transmission here means that the terminal can perform downlink reception on one side and uplink transmission on the other side at the same time point, and this downlink reception and uplink transmission do not interfere with each other, that is, simultaneous uplink transmission and downlink reception need to meet various isolation requirements such as communication standards to ensure the communication quality of uplink transmission and downlink reception.
  • the FDD mode can be at least divided into: a full-duplex FDD mode and a half-duplex FDD mode.
  • the terminal can simultaneously perform uplink transmission and downlink reception at the same time domain position. If the terminal works in the half-duplex FDD mode, the terminal can only perform uplink transmission or downlink reception at a time point.
  • S220 may include: according to whether the terminal supports simultaneous uplink transmission and downlink reception, determine that the terminal works in a full-duplex FDD mode or a half-duplex FDD mode.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • S310 Determine whether the terminal supports simultaneous downlink reception and uplink transmission according to isolation requirements for uplink transmission and downlink reception in the working frequency band of the terminal.
  • S320 Determine an FDD mode in which the terminal works according to a determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the terminal may be any terminal, further, the terminal may be a terminal other than a common terminal, for example, the terminal may be a RedCap terminal.
  • the bandwidth supported by RedCap terminals is smaller than that supported by ordinary terminals.
  • the bandwidth supported by common terminals may be equal to the system bandwidth of the communication system. That is, in some embodiments, the bandwidth supported by the terminal may be smaller than the system bandwidth.
  • Table 1 shows an example of the working frequency band and Tx-Rx isolation requirements of the terminal, and the specific implementation is not limited to the above example.
  • the Tx-Rx isolation requirement is the isolation requirement for uplink transmission and downlink reception.
  • the uplink and downlink BWP includes: UL BWP and DL BWP.
  • the network device for example, base station
  • the network device can still instruct or suggest that the terminal work in the half-duplex FDD mode according to the network capacity and service requirements, so as to realize the flexible scheduling of the terminal's full-duplex and half-duplex FDD modes according to the communication requirements, and realize the flexible switching of the working BWP of the terminal when the terminal capability supports it.
  • the S310 may specifically include:
  • the terminal According to the UL BWP and DL BWP monitored by the terminal on the working frequency band, and the isolation requirements of the uplink transmission and the downlink reception, determine whether the terminal supports simultaneous downlink reception and uplink transmission.
  • a working frequency band can be configured with multiple BWPs, and different BWPs may be configured with different reference signals or different information content carried by the same reference signal.
  • the terminal can determine the BWP it is currently monitoring through network configuration. If the terminal can successfully monitor a certain BWP, the BWP can be used as the working BWP of the terminal or called the active BWP.
  • the terminal can perform uplink transmission and downlink reception on the activated BWP. It can be understood that, in each embodiment of the present disclosure, the UL/DL BWPs monitored by the terminal on the working frequency band may all be active BWPs.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • S410 Determine whether the frequency point difference between the central frequency point of the DL BWP and the central frequency point of the UL BWP monitored by the terminal on the working frequency band meets the isolation requirements of the uplink transmission and the downlink reception;
  • S420 Determine a working duplex mode of the terminal according to a determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the terminal may be any terminal, further, the terminal may be a terminal other than a common terminal, for example, the terminal may be a RedCap terminal.
  • the bandwidth supported by RedCap terminals is smaller than that supported by ordinary terminals.
  • the bandwidth supported by common terminals may be equal to the system bandwidth of the communication system. That is, in some embodiments, the bandwidth supported by the terminal may be smaller than the system bandwidth.
  • the terminal detects that the UL BWP of the system bandwidth on its working frequency band is UL BWP2, and at the same time detects that the DL BWP of the system bandwidth is DL BWP2.
  • it will be determined whether the frequency point difference between the center frequency point of UL BWP2 and the center frequency point of DL BWP2 satisfies the isolation requirement of uplink transmission and downlink reception.
  • the horizontal axis represents frequency (Frequency, F), and the direction of the arrow on the horizontal axis is the direction in which the frequency value increases.
  • Figure 5 shows UL bandwidth and DL system bandwidth with system bandwidth. The UL system bandwidth is used for uplink transmission of terminals, and the DL system bandwidth is used for downlink reception of terminals.
  • One or more DL BWPs are configured on the DL system bandwidth; one or more UL BWPs are configured on the UL system bandwidth. Multiple BWPs on the DL system bandwidth can be numbered and sorted sequentially, and multiple BWPs on the UL system bandwidth can be numbered and sorted sequentially.
  • the terminal in combination with Table 1, assume that the current operating frequency band of the terminal is N3, and the terminal detects UL BWP1 and DL BWP1 at the same time, and the terminal will calculate the difference between the center frequencies of UL BWP1 and DL BWP1. If the difference is less than 95 MHz, it means that the terminal currently does not support simultaneous downlink reception and uplink transmission. If the difference is greater than or equal to 95 MHz, it means that the terminal currently supports simultaneous downlink reception and uplink transmission.
  • the terminal detects both UL BWP2 and DL BWP1, and calculates that the difference between the center frequency of UL BWP2 and the center frequency of DL BWP1 is less than 120MHz, it can be considered that if the terminal performs uplink transmission on UL BWP2 and downlink reception on DL BWP1, mutual interference between uplink transmission and downlink reception will be caused, that is, uplink transmission and downlink reception will not be satisfied. If the isolation requirement for downlink reception is not met, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • S610 Determine whether the frequency point difference between the lowest frequency point of DL BWP and the highest frequency point of UL BWP monitored by the terminal on the working frequency band meets the isolation requirements of the uplink transmission and the downlink reception;
  • S620 Determine an FDD mode in which the terminal works according to a determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the terminal may be any terminal, further, the terminal may be a terminal other than a common terminal, for example, the terminal may be a RedCap terminal.
  • the bandwidth supported by RedCap terminals is smaller than that supported by ordinary terminals.
  • the bandwidth supported by common terminals may be equal to the system bandwidth of the communication system. That is, in some embodiments, the bandwidth supported by the terminal may be smaller than the system bandwidth.
  • the terminal may be configured with a channel bandwidth (Bandwidth, BW), and the channel bandwidth is generally greater than the bandwidth of one BWP.
  • BW Bandwidth
  • the upper boundary value of the channel bandwidth may coincide with a boundary of the monitored BWP, and the upper boundary value of the channel bandwidth may not overlap with the boundary value of any monitored BWP; and/or, similarly, the lower boundary value of the channel bandwidth may coincide with a boundary of the monitored BWP, and the lower boundary value of the channel bandwidth may not overlap with the boundary value of any monitored BWP.
  • the terminal simultaneously monitors the UL BWP2 of the UL system bandwidth and the DL BWP2 of the DL system bandwidth of its working frequency band, and determines the lowest frequency point of DL BWP2 and the highest frequency point of UL BWP2, and then makes a difference between the lowest frequency point of DL BWP2 and the highest frequency point of UL BWP2 to obtain the frequency point difference mentioned in this embodiment. Based on the frequency point difference, it is determined whether the isolation requirements for uplink transmission and downlink reception are met.
  • the determining whether the frequency point difference between the lowest frequency point of the DL BWP monitored by the terminal on the working frequency band and the highest frequency point of the UL BWP meets the isolation requirements of the uplink transmission and the downlink reception includes:
  • the first threshold may be equal to: Fs-BW; wherein, Fs may be the isolation bandwidth value of uplink transmission and downlink reception in the working frequency band of the terminal, and BW may be the uplink channel bandwidth or downlink channel bandwidth supported by the terminal.
  • the first threshold may be equal to: Fs-0.5*uplink channel bandwidth-0.5*downlink channel bandwidth.
  • determining whether the frequency point difference between the lowest frequency point of the DL BWP detected by the terminal and the highest frequency point of the UL BWP meets the isolation requirement of the first threshold may at least include:
  • the frequency point difference between the lowest frequency point of the DL BWP and the highest frequency point of the UL BWP detected by the terminal is greater than the first threshold.
  • the terminal currently supports simultaneous uplink transmission and downlink reception; otherwise, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception; otherwise, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • S810 Determine whether the frequency point difference between the lowest frequency point of UL BWP and the highest frequency point of DL BWP monitored by the terminal on the working frequency band meets the isolation requirements of the uplink transmission and the downlink reception;
  • S820 Determine an FDD mode in which the terminal works according to a determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the terminal may be any terminal, further, the terminal may be a terminal other than a common terminal, for example, the terminal may be a RedCap terminal.
  • the bandwidth supported by RedCap terminals is smaller than that supported by ordinary terminals.
  • the bandwidth supported by common terminals may be equal to the system bandwidth of the communication system. That is, in some embodiments, the bandwidth supported by the terminal may be smaller than the system bandwidth.
  • the terminal monitors that the UL BWP of the system bandwidth on its working frequency band is UL BWP2, and at the same time detects that the DL BWP of the system bandwidth is UL BWP2, the terminal will determine the lowest frequency point of UL BWP2 and the highest frequency point of DL BWP2, and calculate the frequency difference between the determined lowest frequency point of UL BWP2 and the highest frequency point of DL BWP2 to see whether the uplink transmission and downlink reception of the current working frequency band of the terminal are satisfied isolation requirements.
  • S810 may include: determining whether the frequency point difference between the lowest frequency point of the UL BWP monitored by the terminal and the highest frequency point of the DL BWP meets the isolation requirement of the second threshold.
  • the second threshold may be equal to Fs+BW; wherein, Fs may be the isolation bandwidth value of uplink transmission and downlink reception in the working frequency band of the terminal, and BW may be the uplink channel bandwidth or downlink channel bandwidth supported by the terminal.
  • the second threshold may be equal to Fs+0.5*uplink channel bandwidth+0.5*downlink channel bandwidth.
  • the frequency point difference between the lowest frequency point of UL BWP monitored by the terminal and the highest frequency point of DL BWP meets the isolation requirement of the second threshold, which may at least include:
  • the terminal currently supports simultaneous uplink transmission and downlink reception; otherwise, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception; otherwise, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception.
  • determining whether the terminal supports simultaneous uplink transmission and downlink reception may include:
  • the frequency point difference between the center frequency point of DL BWP and the center frequency point of UL BWP monitored by the terminal on the working frequency band meets the isolation requirement of the first threshold, and it is determined that the frequency point difference between the lowest frequency point of UL BWP monitored by the terminal and the highest frequency point of DL BWP meets the isolation requirement of the second threshold value, and it can be determined that the terminal supports simultaneous uplink transmission and downlink reception, otherwise it can be considered that the terminal does not support simultaneous uplink transmission and downlink reception.
  • determining the frequency division duplex FDD mode for the terminal to work includes:
  • the terminal When the terminal does not support simultaneous downlink reception and uplink transmission, it is determined that the terminal works in a half-duplex FDD mode.
  • a terminal working in full-duplex FDD mode will open the radio frequency channel corresponding to UL BWP and the radio frequency channel corresponding to DL BWP at the same time, so as to realize uplink transmission and downlink reception respectively at the same time domain position.
  • a terminal working in half-duplex FDD mode only works on UL BWP or DL BWP at a time.
  • the terminal works on DL BWP, if it needs to perform uplink transmission, the terminal needs to switch to UL BWP through uplink and downlink switching, and then perform uplink transmission. If the terminal works on the UL BWP and needs to perform downlink reception, the terminal needs to switch to the DL BWP through uplink and downlink switching to perform downlink reception.
  • the terminal can still choose to work in half-duplex FDD mode according to its own business requirements.
  • the terminal if the terminal is working in the half-duplex FDD mode, it will be further optimized to work on the UL BWP or the DL BWP with a large business demand in the half-duplex FDD mode according to the service characteristics or business requirements of the terminal, so as to reduce the number of uplink and downlink switching of the terminal in the half-duplex FDD mode.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • S1010 When the terminal works in the half-duplex FDD mode, perform downlink reception or uplink transmission according to preset priorities.
  • the information processing method provided in this embodiment may be executed alone, or may be combined with the information processing method executed by any of the aforementioned terminals.
  • the method for determining that the terminal works in the half-duplex FDD mode may be determined by using the information processing method provided in the foregoing embodiments, or may be determined by other methods.
  • the terminal may determine to work in the half-duplex FDD mode according to user configuration or default configuration of the terminal.
  • the terminal may be an ordinary terminal and/or the aforementioned RedCap terminal.
  • the base station or the protocol agreement pre-configures the priorities for various uplink transmissions and downlink receptions.
  • a terminal detects a conflict, it will give priority to the transmission with a high preset priority and give up the transmission with a low priority, thereby reducing the phenomenon that the terminal is working in half-duplex FDD mode.
  • the phenomenon that the transmission cannot be well allocated to ensure the communication quality of the terminal.
  • performing downlink reception or uplink transmission according to preset priorities includes at least one of the following:
  • the dynamically scheduled downlink reception of the terminal conflicts with the semi-statically configured uplink transmission
  • the dynamically scheduled downlink reception is performed according to the preset priority.
  • the terminal gives priority to the reception of SSB, which can realize the measurement of the current cell and/or neighboring cells, so that it is convenient for the terminal to switch or reselect to a more suitable cell in time before and after moving and/or when the communication quality of the cell fluctuates, so as to ensure the communication quality of the UE, and the uplink transmission of the UE can be performed after the downlink reception of the SSB is completed.
  • the network device can perform semi-static configuration through semi-static instructions.
  • the semi-static instruction includes but not limited to: RRC instruction.
  • the semi-static command is within the semi-static configuration time range, and multiple transmissions are configured according to the semi-static cycle, and the terminal will execute the corresponding transmission when the corresponding semi-static cycle is reached according to the semi-static configuration.
  • the call or information transmission of the other party's device, etc., and the network device may also dynamically schedule the transmission of the terminal.
  • DCI is used to dynamically schedule the uplink transmission and/or downlink reception of the terminal.
  • the dynamically scheduled uplink transmission may conflict with the semi-statically configured downlink reception.
  • the dynamic scheduling may be emergency scheduling, and the semi-static configuration can be retransmitted in the next semi-static period, the dynamically scheduled uplink transmission will be prioritized according to the preset priority.
  • the dynamically scheduled downlink reception can also be prioritized and the transmission of the semi-statically configured uplink transmission can be postponed.
  • the uplink transmission and/or downlink reception of the currently suspended semi-static configuration can be completed in one or more subsequent semi-static periods.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal, and the method includes:
  • the terminal may regard the semi-static configuration as an invalid configuration or a wrong configuration.
  • the terminal After the terminal detects the wireless configuration or the wrong configuration, the terminal can ignore the corresponding semi-static configuration; or, report the notification of the invalid configuration or the wrong configuration to the network device (such as the base station).
  • the network device such as the base station
  • the information processing method provided in this embodiment may be executed alone, or may be combined with the information processing method executed by any of the aforementioned terminals.
  • the method for determining that the terminal works in the half-duplex FDD mode may be determined by using the information processing method provided in the foregoing embodiments, or may be determined by other methods.
  • the terminal may determine to work in the half-duplex FDD mode according to user configuration or default configuration of the terminal.
  • the information processing method can also be used to resolve two or more transmissions with the same time domain position by using a predetermined priority, and the information processing method shown in FIG. 10 can be used.
  • the terminal may be an ordinary terminal and/or the aforementioned RedCap terminal.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a network device, and the method includes:
  • S1210 The network device determines whether the terminal supports simultaneous downlink reception and uplink transmission
  • S1220 Determine the FDD mode in which the terminal works according to the determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the network device may be any access network device, for example, the access network device may be a base station.
  • the base station may be a gNB or an eNB.
  • the network device will determine whether the terminal supports simultaneous downlink reception and uplink transmission according to the determination method. If the terminal can perform uplink transmission and downlink reception at the same time, the FDD mode used by the terminal can be flexibly configured according to the determination result.
  • the determination method may be: pre-negotiation between the terminal and the network device, or agreement according to an agreement.
  • the network device will determine the FDD mode for the terminal to work according to whether the terminal supports both downlink reception and uplink transmission.
  • the network device determines the FDD mode in which the terminal works, it will perform resource scheduling and/or transmission scheduling for the terminal according to the FDD mode in which the terminal works, so as to realize orderly scheduling and sending and receiving of uplink and downlink while taking into account the bandwidth supported by the terminal.
  • the S1210 may include: determining whether the terminal supports simultaneous downlink reception and uplink transmission according to isolation requirements of uplink transmission and downlink reception in the working frequency band of the terminal.
  • Wireless communication can be configured with multiple frequency bands, and different frequency bands can have different isolation requirements for uplink transmission and downlink reception.
  • the isolation requirements of different operating frequency bands can be referred to in Table 1, but the specific implementation is not limited to that shown in Table 1.
  • the terminal According to the isolation requirement of the working frequency point of the terminal, it can be determined whether the terminal supports simultaneous downlink reception and uplink transmission in the current working frequency band.
  • the determining whether the terminal supports simultaneous downlink reception and uplink transmission according to the isolation requirements of the terminal's uplink transmission and downlink reception includes:
  • the terminal According to the UL BWP and DL BWP monitored by the terminal on the working frequency band, and the isolation requirements of the uplink transmission and the downlink reception, determine whether the terminal supports simultaneous downlink reception and uplink transmission.
  • a frequency band may be configured with one or more BWPs, and the terminal may only be able to monitor part of the BWPs at present. Determine whether the terminal can support simultaneous uplink transmission and downlink reception. According to the detection of UL BWP and DL BWP by the terminal, it means that the current bandwidth of the terminal can cover the upper and lower BWPs. At this time, according to the isolation requirements for uplink transmission and downlink reception corresponding to the operating frequency of the terminal, determine whether the terminal performs downlink reception and uplink transmission at the same time on the currently monitored BWP.
  • the terminal can determine the BWP currently monitored by itself by monitoring the reference signal. If the terminal can successfully monitor a certain BWP, the BWP can be used as the working BWP of the terminal or called the active BWP. The terminal can perform uplink transmission and downlink reception on the activated BWP.
  • the terminal After the terminal detects the corresponding BWP, it can notify the network device, so that the network device will know which BWP the terminal has monitored. On the one hand, after receiving this notification, the network device can schedule the BWP for the terminal to work on.
  • the terminal may carry the flag bit and the BWP number in the notification.
  • the flag bit may include one or more bits, which are used to indicate whether the monitored BWP is a UL BWP or a DL BWP.
  • the BWP number may indicate the number of the monitored UL BWP and/or the number of the DL BWP.
  • the determining whether the terminal supports simultaneous downlink reception and uplink transmission according to the UL BWP and DL BWP monitored by the terminal on the working frequency band, and the isolation requirements of the uplink transmission and the downlink reception includes at least one of the following:
  • the terminal detects the center frequency point, lowest frequency point, and highest frequency point of DL BWP and UL BWP on the working frequency band, which can be referred to in Figure 5, Figure 7 and Figure 9, and will not be repeated here.
  • the determining whether the frequency point difference between the lowest frequency point of the DL BWP monitored by the terminal on the working frequency band and the highest frequency point of the UL BWP meets the isolation requirements of the uplink transmission and the downlink reception includes:
  • the first threshold may be equal to: Fs-BW; wherein, Fs may be the isolation bandwidth value of uplink transmission and downlink reception in the working frequency band of the terminal, and BW may be the uplink channel bandwidth or downlink channel bandwidth supported by the terminal.
  • the first threshold may be equal to: Fs-0.5*uplink channel bandwidth-0.5*downlink channel bandwidth.
  • the determining whether the frequency point difference between the lowest frequency point of the UL BWP monitored by the terminal on the operating frequency band and the highest frequency point of the DL BWP meets the isolation requirements of the uplink transmission and the downlink reception includes:
  • the second threshold may be equal to Fs+BW; wherein, Fs may be the isolation bandwidth value of uplink transmission and downlink reception in the working frequency band of the terminal, and BW may be the uplink channel bandwidth or downlink channel bandwidth supported by the terminal.
  • the second threshold may be equal to Fs+0.5*uplink channel bandwidth+0.5*downlink channel bandwidth.
  • the terminal currently supports simultaneous uplink transmission and downlink reception; otherwise, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception; otherwise, it can be considered that the terminal currently does not support simultaneous uplink transmission and downlink reception.
  • the S1220 may include:
  • the terminal When the terminal does not support simultaneous downlink reception and uplink transmission, it is determined that the terminal works in a half-duplex FDD mode.
  • the terminal can be configured to work in the half-duplex FDD mode.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a network device.
  • the method includes: S1310: When the terminal works in the half-duplex FDD mode, the semi-statically configured uplink transmission and semi-static downlink reception of the terminal are configured at different time domain positions;
  • This embodiment may be implemented alone, or may be implemented in combination with any of the aforementioned embodiments of the information processing method executed by the network device. For example, it can be implemented in combination with the information processing method shown in FIG. 12 .
  • the terminal when the terminal works in half-duplex FDD mode, or the base station determines that the terminal does not expect semi-statically configured uplink transmission and downlink reception to be located at the same time domain position, or the terminal informs the base station that semi-statically configured uplink transmission and downlink reception are located at the same time domain position, when performing semi-static configuration for such a terminal, the uplink transmission and downlink reception will be configured at different time domain positions.
  • the terminal does not expect the uplink transmission and downlink reception of the semi-static configuration to be located at the same time domain position. There are many situations. Two specific examples are provided below:
  • the terminal determines to work in the half-duplex FDD mode, it is determined that the terminal does not expect the uplink transmission and downlink reception of the semi-static configuration to be located at the same time domain position;
  • the terminal If the terminal supports uplink transmission and downlink reception at the same time, but the terminal determines according to its own service characteristics that it does not expect semi-static configuration of uplink transmission and downlink reception to be located at the same time domain position.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a network device, and the method includes:
  • This embodiment may be implemented alone, or may be implemented in combination with any of the aforementioned embodiments of the information processing method executed by the network device. For example, it can be implemented in combination with the information processing method shown in FIG. 12 and/or FIG. 13 .
  • the determining that the terminal performs downlink reception or uplink transmission according to preset priorities includes at least one of the following:
  • the base station needs to receive the uplink transmission at a corresponding time-frequency resource position according to a dynamic scheduling instruction.
  • the base station if it is determined that the terminal performs dynamically scheduled downlink reception, the base station performs downlink transmission at the corresponding time-frequency resource position according to the semi-static configuration.
  • channel bandwidth (channel BandWidth, BW) on the terminal side can be as large as the system bandwidth
  • DL BWP and UL BWP are switched independently, and the isolation requirements of uplink transmission and downlink reception (Tx-Rx separation) can still be guaranteed.
  • the embodiments of the present disclosure provide the following solutions:
  • the terminal and/or network device judges whether the terminal supports simultaneous downlink reception and uplink transmission according to preset conditions.
  • the terminal works in HD-FDD mode.
  • the terminal In response to the fact that the terminal can simultaneously receive downlink and transmit uplink, the terminal works in the FD-FDD mode.
  • the preset condition is determined based on a preset Tx-Rx separation requirement. For example, different working frequency bands require different intervals between uplink sending and downlink receiving frequency bands.
  • the preset condition is: the target DL BWP center frequency point of the terminal and the target UL BWP center frequency point meet the preset Tx-Rx separation requirement.
  • the terminal works in a certain frequency band (band), and the preset Tx-Rx isolation (separation) requirement is Fs MHz, then the preset condition at this time is to judge that the center frequency point interval between the active (active) DL BWP and the active (active) UL BWP of the terminal is Fs MHz.
  • the difference between the lowest frequency point of DL BWP and the highest frequency point of UL BWP of the terminal is greater than a certain threshold
  • the difference between the lowest frequency point of UL BWP and the highest frequency point of DL BWP of the terminal is smaller than a certain threshold.
  • the preset Tx-Rx isolation (separation) requirement for a certain frequency band (band) is Fs MHz
  • whether the channel bandwidth (channel bandwidth) of the terminal meets the preset condition is: judging that the lowest frequency point of the terminal's active (active) DL BWP and the highest frequency point of the active (active) UL BWP are greater than Fs-BW.
  • the highest frequency point of the active (active) DL BWP of the terminal and the lowest frequency point of the active (active) UL BWP are less than Fs+BW
  • Network devices and/or terminals perform uplink transmission or downlink reception of terminals according to HD-FDD transmission and reception priorities, and the processing criteria for resolving transmission and reception conflicts according to priorities are as follows:
  • the terminal When the uplink transmission of the terminal conflicts with the downlink reception of the SSB, the terminal abandons the uplink transmission and prioritizes the downlink reception of the SSB;
  • dynamically scheduled uplink/downlink transmissions conflict with semi-statically configured downlink/uplink transmissions
  • dynamically scheduled uplink/downlink transmissions take precedence over semi-statically configured downlink/uplink transmissions
  • the terminal does not expect the uplink and downlink of the semi-static configuration to occur at the same time domain position, so it can be determined by the base station's scheduling configuration for the terminal.
  • the terminal judges whether the configuration of the BWP pair meets the condition of Tx-Rx separation, and determines the duplex mode of the terminal according to the judgment result.
  • an embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • the first determination module 1510 is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission
  • the first mode module 1520 is configured to determine the FDD mode in which the terminal works according to the determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the information processing device may be included in a terminal.
  • the terminal may be the aforementioned RedCap terminal or the like.
  • the first determination module 1510 and the first mode module 1520 may be program modules; after the program modules are executed by the processor, the above operations can be realized.
  • the first determination module 1510 and the first mode module 1520 may be a combination of hardware and software modules; the combination of hardware and software modules may be various programmable arrays; the programmable arrays include but are not limited to: field programmable arrays and/or complex programmable arrays.
  • the first determining module 1510 and the first mode module 1520 may be pure hardware modules; the pure hardware modules include but are not limited to application specific integrated circuits.
  • the first determination module 1510 is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission according to the isolation requirements of uplink transmission and downlink reception in the working frequency band of the terminal.
  • the first mode module 1520 is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission according to the UL BWP and DL BWP monitored by the terminal on the working frequency band, and the isolation requirements of the uplink transmission and the downlink reception.
  • the first mode module 1520 is configured to perform at least one of the following:
  • the first determination module 1510 is configured to determine whether the frequency point difference between the lowest frequency point of the DL BWP and the highest frequency point of the UL BWP detected by the terminal meets the isolation requirement of the first threshold.
  • the first determination module 1510 is configured to determine whether the frequency point difference between the lowest frequency point of the UL BWP monitored by the terminal and the highest frequency point of the DL BWP meets the isolation requirement of the second threshold.
  • the first mode module 1520 is configured to determine that the terminal operates in a full-duplex FDD mode when the terminal supports simultaneous downlink reception and uplink transmission; when the terminal does not support simultaneous downlink reception and uplink transmission, determine that the terminal operates in a half-duplex FDD mode.
  • the device also includes:
  • the execution module is configured to perform downlink reception or uplink transmission according to preset priorities when the terminal works in the half-duplex FDD mode.
  • the execution module is configured to execute at least one of the following:
  • the dynamically scheduled downlink reception of the terminal conflicts with the semi-statically configured uplink transmission
  • the dynamically scheduled downlink reception is performed according to the preset priority.
  • an embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • the second determination module 1610 is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission
  • the second mode module 1620 is configured to determine the FDD mode in which the terminal works according to the determination result of whether the terminal supports simultaneous downlink reception and uplink transmission.
  • the second determination module 1610 and the second mode module 1620 may be program modules; after the program modules are executed by the processor, the above operations can be realized.
  • the second determination module 1610 and the second mode module 1620 may be a combination of hardware and software modules; the combination of hardware and software modules may be various programmable arrays; the programmable arrays include but are not limited to: field programmable arrays and/or complex programmable arrays.
  • the second determination module 1610 and the second mode module 1620 may be pure hardware modules; the pure hardware modules include but are not limited to application specific integrated circuits.
  • the second determination module 1610 is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission according to the isolation requirements of uplink transmission and downlink reception in the working frequency band of the terminal.
  • the second determination module 1610 is configured to determine whether the terminal supports simultaneous downlink reception and uplink transmission according to the UL BWP and DL BWP monitored by the terminal on the working frequency band, and the isolation requirements of the uplink transmission and the downlink reception.
  • the second determining module 1610 is configured to perform at least one of the following:
  • the second determining module 1610 is configured to perform at least one of the following:
  • the second determination module 1610 is configured to determine whether the frequency point difference between the lowest frequency point of the UL BWP monitored by the terminal and the highest frequency point of the DL BWP meets the isolation requirement of the second threshold.
  • the second mode module 1620 is configured to determine that the terminal operates in a full-duplex FDD mode when the terminal supports simultaneous downlink reception and uplink transmission; when the terminal does not support simultaneous downlink reception and uplink transmission, determine that the terminal operates in a half-duplex FDD mode.
  • the device further includes: a configuration module,
  • the configuration module is configured such that when the terminal works in the half-duplex FDD mode, the semi-statically configured uplink transmission and semi-static downlink reception of the terminal are configured at different time domain positions; when the terminal does not expect the semi-statically configured uplink transmission and downlink reception to be located at the same time domain position, the semi-statically configured uplink transmission and semi-static downlink reception of the terminal are configured at different time domain positions.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the information processing method provided by any of the aforementioned technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes: a terminal or a network device, and the network device includes but not limited to a base station.
  • the processor can be connected to the memory through a bus, etc., for reading the executable program stored on the memory, for example, at least one of the methods shown in FIGS. 2 , 3 , 4 , 6 , 8 and 10 to 14 .
  • Fig. 17 is a block diagram of a terminal 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • terminal 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components. For example, processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the terminal 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile memory device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 806 provides power to various components of the terminal 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for terminal 800 .
  • the multimedia component 808 includes a screen providing an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the terminal 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the terminal 800 is in an operation mode, such as a call mode, a recording mode and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing terminal 800 with various aspects of status assessment.
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the terminal 800, the sensor component 814 can also detect the terminal 800 or a component of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be implemented by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components for performing the above methods.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • controllers microcontrollers, microprocessors or other electronic components for performing the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of an access device.
  • the communication device 900 may be provided as a network side device.
  • the communication device may be a network device.
  • the communication device 900 includes a processing component 922 , which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922 , such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the access device, for example, at least one of the methods shown in FIGS. 2 , 3 , 4 , 6 , 8 and 10 to 14 .
  • the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input output (I/O) interface 958.
  • the communication device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信息处理方法及装置、通信设备及存储介质。本公开实施例提供的信息处理方法可包括:确定所述终端是否支持同时下行接收和上行发送;根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。

Description

信息处理方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种信息处理方法及装置、通信设备及存储介质。
背景技术
随着技术的发展,出现了支持不同带宽的多种终端。示例性地,在长期演进(Long Term Evolution,LTE)第四代移动通信(4th Generation,4G)系统中,为了支持物联网业务提出机器类型通信(Machine Type Communication,MTC),窄带物联网(Narrow Band Internet of Things,NB-IoT)两大技术。这两大技术主要针对的是低速率、高时延等场景。比如抄表和/或环境监测等场景。
NB-IoT目前最大只能支持几百k的速率,MTC目前最大只能支持几M的速率。但同时另外一方面,随着物联网业务的不断发展,比如视频监控,智能家居,可穿戴设备和工业传感监测等业务的普及。这些业务通常要求几十到100M的速率,同时对时延也有相对较高的要求,因此LTE中的MTC和NB-IoT技术很难满足要求。基于这种情况,在5G新空口中再提供了一种新的用户设备用以来覆盖这种中端物联网设备的要求。这种新的终端类型叫做能力缩减型用户设备(Reduced capability User Equipment,RedCap UE)或者简称为新无线轻型(New Radio,NR-lite)终端。
RedCap UE或成为RedCap终端支持的带宽小于普通终端支持的带宽。
发明内容
本公开实施例提供一种信息处理方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种信息处理方法,其中,由终端执行,所述方法包括:
确定所述终端是否支持同时下行接收和上行发送;
根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
本公开实施例第二方面提供一种信息处理方法,其中,由网络设备执行,所述方法包括:
确定所述终端是否支持同时下行接收和上行发送;
根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
本公开实施例第三方面提供一种信息处理装置,其中,所述装置包括:
第一确定模块,被配置为确定所述终端是否支持同时下行接收和上行发送;
第一模式模块,被配置为根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
本公开实施例第四方面提供一种信息处理装置,其中,由网络设备执行,所述装置包括:
第二确定模块,被配置为确定所述终端是否支持同时下行接收和上行发送;
第二模式模块,被配置为根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的信息处理方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供的信息处理方法。
本公开实施例提供的技术方案,在确定终端当前工作的FDD模式之前,会根据终端是否支持同时下行接收和上行发送来确定,如此可以综合终端的带宽能力等因素,灵活且精准控制终端工作的FDD模式,从而确保终端的通信质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图3是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图4是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图5是根据一示例性实施例示出的一种监测的UL BWP和DL BWP满足隔离条件的示意图;
图6是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图7是根据一示例性实施例示出的一种监测的UL BWP和DL BWP满足隔离条件的示意图;
图8是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图9是根据一示例性实施例示出的一种监测的UL BWP和DL BWP满足隔离条件的示意图;
图10是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图11是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图12是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图13是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图14是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图15是根据一示例性实施例示出的一种信息处理装置的结构示意图;
图16是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图17是根据一示例性实施例示出的一种终端的结构示意图;
图18是根据一示例性实施例示出的一种通信设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个接入设备12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution, LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个接入设备12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S210:确定所述终端是否支持同时下行接收和上行发送;
S220:根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
该终端可为任意终端,进一步地,该终端可为普通终端以外的终端,示例性地,该终端可为RedCap终端。RedCap终端支持的带宽小于普通终端支持的带宽。普通终端支持的带宽可等于通信系统的系统带宽。即在一些实施例中,该终端支持的带宽可为小于系统带宽。
所述普通终端在FR1下支持的最大带宽可达100MHz,在FR2下支持的最大带宽可达400MHz。
该终端会自行根据确定方式,确定该终端是否支持同时执行下行接收和上行发送,如果该终端能够同时执行上行发送和下行接收的结果确定了,就可以根据该确定结果灵活配置终端所使用的 FDD模式。该确定方式可为:终端和网络设备预先协商的,或者是根据协议约定的。
示例性地,S210可包括:根据终端支持最大带宽、终端当前的工作频段以及终端当前监测的UL BWP和DL BWP的其中的一个或多个,确定终端当前是否支持同时下行接收和上行发送。
此处的同时下行接收和上行发送是指:终端在同一个时间点可以一边执行下行接收,另一边同时执行上行发送,且这种下行接收和上行发送互不干扰,即同时执行的上行发送和下行接收需要满足通信标准等各种隔离要求,以确保上行发送和下行接收的通信质量。
FDD模式至少可分为:全双工FDD模式和半双工FDD模式。
若终端工作在全双工FDD模式下,则终端在相同时域位置可以同时进行上行发送和下行接收。若终端工作在半双工FDD模式下,则终端在一个时间点只能进行上行发送或者下行接收。
即在S220可包括:根据终端是否支持同时上行发送和下行接收,确定终端工作在全双工FDD模式或者半双工FDD模式。
如图3所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S310:根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
S320:根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
该终端可为任意终端,进一步地,该终端可为普通终端以外的终端,示例性地,该终端可为RedCap终端。RedCap终端支持的带宽小于普通终端支持的带宽。普通终端支持的带宽可等于通信系统的系统带宽。即在一些实施例中,该终端支持的带宽可为小于系统带宽。
终端的工作频段有多个,不同工作频段的上行发送和下行接收的隔离要求是不同的。
参考表1所示,不同工作频段对应的上行发送和下行接收的隔离要求的举例示意。
Figure PCTCN2022073057-appb-000001
Figure PCTCN2022073057-appb-000002
表1
值得注意的是:表1中的一个或多个元素都可以单独使用,也可以组合使用,且表1所示的为终端的工作频带与Tx-Rx隔离要求的示例,具体实现不局限于上述举例。
Tx-Rx隔离要求即为上行发送和下行接收的隔离要求。
在S310中根据终端所监测的上下行BWP是否满足工作频带对上行发送和下行接收的隔离要求如果满足隔离要求,则终端上行发送和下行接收的同时进行,可以使得终端工作在全双工FDD模式,否则终端可以工作在半双工FDD模式。所述上下行BWP包括:UL BWP和DL BWP。
当然即便终端在工作频段上所监测的上下行BWP满足隔离要求,网络侧的网络设备(例如,基站)依然可以根据网络容量和业务需求等,指示或者建议终端工作在半双工FDD模式,从而实现根据通讯需求终端全双工和半双工FDD模式的灵活调度,并在终端能力支持的情况下,实现终端的工作BWP的灵活切换。
在一些实施例中,所述S310可具体包括:
根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
一个工作频段可配置有多个BWP,不同的BWP可能配置有不同的参考信号或者配置有相同参考信号携带的不同信息内容,终端可以通过网络的配置,确定自身当前所监测的BWP。若终端能够成功监测到某一个BWP,则该BWP可以作为终端的工作BWP或者称为激活BWP。终端可以在激活BWP上进行上行发送和下行接收。可以理解的是,本公开各个实施例中终端在工作频带上监测的UL/DL BWP可均为激活BWP。
如图4所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S410:确定所述终端在工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
S420:根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的双工模式。
该终端可为任意终端,进一步地,该终端可为普通终端以外的终端,示例性地,该终端可为RedCap终端。RedCap终端支持的带宽小于普通终端支持的带宽。普通终端支持的带宽可等于通信系统的系统带宽。即在一些实施例中,该终端支持的带宽可为小于系统带宽。
参考图5所示,若终端监测到其工作频带上系统带宽的UL BWP为UL BWP2,同时检测到系统带宽的DL BWP为DL BWP2。在本公开实施例中,会确定UL BWP2的中心频点和DL BWP2的中心频点之间的频点差是否满足上行发送和下行接收的隔离要求。
在图5中横轴代表频率(Frequency,F),横轴的箭头指向方向是频率值增长的方向。图5展示有系统带宽的UL带宽和DL系统带宽。UL系统带宽,用于终端的上行发送,DL系统带宽用于终端的下行接收。
在DL系统带宽上配置有一个或多个DL BWP;在UL系统带宽上配置有一个或多个UL BWP。DL系统带宽上的多个BWP可以依次编号排序,UL系统带宽上的多个BWP可以依次编号排序。
例如,结合表1假设终端当前的工作频带为N3,终端同时检测到了UL BWP1和DL BWP1,终端会计算UL BWP1和DL BWP1之间的中心频点的差值,若该差值小于95MHz,则说明终端当前不支持同时下行接收和上行发送,若该差值大于或等于95MHz,则说明终端当前支持同时下行接收和上行发送。
又例如,结合表1假设终端当前的工作频带为N7,且终端同时检测到了UL BWP2和DL BWP1,计算出UL BWP2的中心频点与DL BWP1的中心频点之间的差值小于120MHz,则可认为若终端在UL BWP2上执行上行发送,且在DL BWP1上执行下行接收,则会导致上行发送和下行接收相互干扰,即不满足上行发送和下行接收的隔离要求,则可认为终端当前不支持同时上行发送和下行接收。
如图6所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S610:确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
S620:根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
该终端可为任意终端,进一步地,该终端可为普通终端以外的终端,示例性地,该终端可为RedCap终端。RedCap终端支持的带宽小于普通终端支持的带宽。普通终端支持的带宽可等于通信系统的系统带宽。即在一些实施例中,该终端支持的带宽可为小于系统带宽。
该终端可配置有信道带宽(Bandwidth,BW),该信道带宽一般会大于一个BWP的带宽。该信道带宽的上边界值可能恰好与监测到BWP的一个边界重合,该信道带宽的上边界值也可能与任意监 测的BWP的边界值不重叠;和/或,同样地,该信道带宽的下边界值可能恰好与监测到BWP的一个边界重合,该信道带宽的下边界值也可能与任意监测的BWP的边界值不重叠。
参考图7所示,终端同时监测到其工作频带的UL系统带宽的UL BWP2和DL系统带宽的DL BWP2,会确定出DL BWP2的最低频点和UL BWP2的最高频点,然后将DL BWP2的最低频点与UL BWP2的最高频点做差值,就可以得到本实施例提到的频点差。基于该频点差确定是否满足上行发送和下行接收的隔离要求。
示例性地,所述确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
示例性地,针对终端的上行信道带宽等于下行信道带宽的情况,该第一阈值可等于:Fs-BW;其中,Fs可为终端的工作频段的上行发送和下行接收的隔离带宽值,BW可为终端支持的上行信道带宽或下行信道带宽。
又示例性地,针对终端的上行信道带宽不等于下行信道带宽的情况,该第一阈值可等于:Fs-0.5*上行信道带宽-0.5*下行信道带宽。
此处仅仅是对第一阈值的举例,具体实现时不局限于该举例。
此处,确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求,可至少包括:
所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差大于第一阈值。
在本公开实施例中,若所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差大于第一阈值,则可认为:终端当前支持同时上行发送和下行接收,否则可认为终端当前不支持同时上行发送和下行接收;否则可认为终端当前不支持同时上行发送和下行接收。
如图8所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S810:确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
S820:根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
该终端可为任意终端,进一步地,该终端可为普通终端以外的终端,示例性地,该终端可为RedCap终端。RedCap终端支持的带宽小于普通终端支持的带宽。普通终端支持的带宽可等于通信系统的系统带宽。即在一些实施例中,该终端支持的带宽可为小于系统带宽。
如图9所示,假设若终端监测到其工作频带上系统带宽的UL BWP为UL BWP2,同时检测到系统带宽的DL BWP为UL BWP2,终端会确定出UL BWP2的最低频点和DL BWP2的最高频点,并计算出确定的UL BWP2的最低频点和DL BWP2的最高频点的频点差,来看是否满足终端当前工作频段的上行发送和下行接收的隔离要求。
示例性地,S810可包括:确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
在终端支持的上行信道带宽等于下行信道带宽时,则第二阈值可等于Fs+BW;其中,Fs可为终端的工作频段的上行发送和下行接收的隔离带宽值,BW可为终端支持的上行信道带宽或下行信道带宽。
在终端支持的上行信道带宽不等于下行信道带宽时,则第二阈值可等于Fs+0.5*上行信道带宽+0.5*下行信道带宽。
当然以上仅仅是对第二阈值的举例,具体实现时不局限于上述举例。
此处确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求,可至少包括:
确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否小于第二阈值。
在本公开实施例中,若所述终端检测到的DL BWP的最高频点和UL BWP的最低频点之间的频点差小于第二阈值,则可认为:终端当前支持同时上行发送和下行接收,否则可认为终端当前不支持同时上行发送和下行接收;否则可认为终端当前不支持同时上行发送和下行接收。
在一些实施例中,在确定终端是否支持同时上行发送和下行接收可包括:
确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,且确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。示例性地,所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差满足第一阈值的隔离要求,且确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差满足第二阈值的隔离要求,可确定终端支持同时上行发送和下行接收,否则可认为终端不支持同时上行发送和下行接收。
在一些实施例中,所述根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式,包括:
当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;
当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
工作在全双工的FDD模式的终端,将同时打开UL BWP对应的射频通路和DL BWP对应的射频通路,从而以便实现在相同时域位置的分别进行上行发送和下行接收。
工作在半双工的FDD模式的终端,一次仅仅工作在UL BWP或者DL BWP,如此,终端工作在DL BWP上时,若需要执行上行发送,则终端需要通过上下行切换切换到UL BWP上,再进行上行发送。若终端工作在UL BWP上时,若需要执行下行接收,则终端需要通过上下行切换切换到DL BWP上再进行下行接收。
当然在一些实施例中,即便终端支持同时下行接收和上行发送,但是考虑到终端的功耗,以及 终端的业务特点,例如,有的终端实际更多的是上行发送的需求远远大于下行接收的需求,或者是下行接收的需求远远大于上行发送的需求,此时即便终端支持同时下行接收和上行发送,终端依然可以根据自身的业务需求选择工作在半双工FDD模式。进一步地,若终端工作在半双工FDD模式,还将进一步根据终端的业务特点或者业务需求,在半双工FDD模式优选工作在业务需求量大的UL BWP上或者DL BWP上,以减少半双工FDD模式下的终端的上下行切换次数。
如图10所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S1010:当终端工作在半双工FDD模式时,根据预设优先级执行下行接收或者上行发送。
该实施例提供的信息处理方法可单独执行,或者与前述任意终端执行的信息处理方法的组合实施例。
示例性,该终端工作在所述半双工FDD模式的确定方式,可以采用前述实施例提供的信息处理方法确定,也可以采用其他方式确定。例如,所述终端可以根据终端的用户配置或者默认配置,确定工作在所述半双工FDD模式。
该终端可为普通终端和/或前述的RedCap终端。
当终端工作在半双工FDD模式时,必不可少的可能涉及到某个时间点或者某些时间点上的下行接收和上行发送相互冲突,为了解决这种冲突,引入了预先优先级。
示例性地,基站或者协议约定等给各种上行发送和下行接收预先配置优先级,终端在监测到冲突时,则自行优先执行预设优先级高的传输,放弃优先级低的传输,从而减少终端工作在半双工FDD模式,在同一个时域位置即有UL传输又有DL传输时不能很好的调配传输的现象,确保终端的通信质量。
在一些实施例中,所述当所述终端工作在所述半双工FDD模式时,根据预设优先级执行下行接收或者上行发送,包括以下至少之一:
当所述终端的上行发送与同步信号块SSB的下行接收冲突时,根据所述预设优先级执行所述SSB的接收;
当所述终端的动态调度的上行发送与半静态配置下行接收冲突时,根据所述预设优先级执行动态调度的所述上行发送;
当所述终端的动态调度的下行接收与所述半静态配置上行发送冲突时,根据所述预设优先级执行动态调度的下行接收。
示例性地,终端优先SSB的接收,可以实现对本小区和/或邻小区的测量,从而方便终端在移动前后和/或小区通信质量出现波动时,及时切换或重选到更加合适的小区,确保UE的通信质量,而UE的上行发送可以在完成SSB的下行接收之后执行。
示例性地,网络设备会可以通过半静态指令进行半静态配置。该半静态指令包括但不限于:RRC指令。半静态指令是半静态的配置时间范围内,按照半静态周期配置了一个多个传输,终端根据半静态配置在达到对应的半静态周期时就会执行对应的传输。
例如对方设备的呼叫或者信息发送等,可能网络设备还会动态调度终端的传输。例如,使用DCI 动态调度终端的上行发送和/或下行接收,如此,动态调度的上行发送可能会与半静态配置的下行接收冲突,有鉴于此,考虑到动态调度可能是紧急调度,而半静态配置则可以在下一个半静态周期再传输,按照预设优先级将优先动态调度的上行发送。
当然若半静态配置的上行发送与动态调度的下行接收冲突时,同样地考虑到动态调度通常紧急业务,同样可优先动态调度的下行接收,暂缓半静态配置的上行发送的传输。
当前暂缓的半静态配置的上行发送和/或下行接收,都可以在后续的一个或多个半静态周期内完成。
如图11所示,本公开实施例提供一种信息处理方法,由终端执行,所述方法包括:
S1110:若终端工作在半双工FDD模式时,根据半静态配置确定出半静态配置的上行发送和下行接收在时域冲突,则终端可认为这种半静态配置为无效配置或者错误配置。
若终端检测到无线配置或者错误配置之后,终端可忽略对应的半静态配置;或者,向网络设备(例如基站)上报无效配置或者错误配置的通知。
该实施例提供的信息处理方法可单独执行,或者与前述任意终端执行的信息处理方法的组合实施例。
示例性,该终端工作在所述半双工FDD模式的确定方式,可以采用前述实施例提供的信息处理方法确定,也可以采用其他方式确定。例如,所述终端可以根据终端的用户配置或者默认配置,确定工作在所述半双工FDD模式。
又示例性地,该信息处理方法还可以与前述使用预定优先级解决时域位置相同的两个或两个以上的传输,可以采用如图10所示的信息处理方法。
该终端可为普通终端和/或前述的RedCap终端。
如图12所示,本公开实施例提供一种信息处理方法,其中,由网络设备执行,所述方法包括:
S1210:网络设备确定所述终端是否支持同时下行接收和上行发送;
S1220:根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
该网络设备可为任意接入网设备,示例性,该接入网设备可为基站。该基站可为gNB或者eNB。
网络设备会自行根据确定方式,确定该终端是否支持同时执行下行接收和上行发送,如果该终端能够同时执行上行发送和下行接收的结果确定了,就可以根据该确定结果灵活配置终端所使用的FDD模式。该确定方式可为:终端和网络设备预先协商的,或者是根据协议约定的。
最终网络设备会根据终端是否同时支持下行接收和上行发送,会确定终端工作的FDD模式。
进一步地,网络设备确定出终端工作的FDD模式之后,会根据终端工作的FDD模式为终端的进行资源调度和/或传输调度,实现兼顾终端支持的带宽的情况上下行的有序调度和收发。
在一些实施例中,所述S1210可包括:根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
无线通信可配置有多个频段,不同的频段可具有不同的上行发送和下行接收的隔离要求。示例性地,不同工作频段的隔离要求可参见表1所示,但是具体实现时不局限于表1所示。
如此,根据终端的工作频点的隔离要求,可以确定出终端在当前工作频带上是否支持同时下行接收和上行发送。
在一些实施例中,所述根据终端的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送,包括:
根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
一个频带可能配置有一个或多个BWP,终端可能当前仅能够监测到部分BWP,确定终端当前是否可以支持同时上行发送和下行接收,根据终端检测到UL BWP和DL BWP,则说明终端当前带宽能够覆盖到上下BWP,此时就可以根据终端的工作频点对应的上行发送和下行接收的隔离要求,确定终端是否在当前监测的BWP上同时执行下行接收和上行发送。
终端可以通过参考信号的监听,确定自身当前所监测的BWP。若终端能够成功监测到某一个BWP,则该BWP可以作为终端的工作BWP或者称为激活BWP。终端可以在激活BWP上进行上行发送和下行接收。
在终端监测到对应的BWP之后,可以通知网络设备,如此网络设备就会知道终端监测到哪些BWP,一方面网络设备收到这种通知之后,可以调度终端工作的BWP,另一方面网络设备接收到这种通知之后还可以根据终端监测的BWP、以及上行发送和下行接收的隔离要求,确定出当前终端是否同时支持上行发送和下行接收,并进一步确定终端工作的FDD模式。
示例性地,终端可以在该通知内携带标志位和BWP编号。标志位可包括一个或多个比特,用于指示监测的BWP是UL BWP还是DL BWP。进一步地,该BWP编号可以指示监测的UL BWP的编号和/或DL BWP的编号。
在一些实施例中,所述根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送,包括以下至少之一:
确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。
终端在工作频带上检测到DL BWP和UL BWP的中心频点、最低频点和最高频点等位置,可以参考图5、图7以及图9所示,此处就不再一一重复了。
在一些实施例中,所述确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
示例性地,针对终端的上行信道带宽等于下行信道带宽的情况,该第一阈值可等于:Fs-BW;其中,Fs可为终端的工作频段的上行发送和下行接收的隔离带宽值,BW可为终端支持的上行信道带宽或下行信道带宽。
又示例性地,针对终端的上行信道带宽不等于下行信道带宽的情况,该第一阈值可等于:Fs-0.5*上行信道带宽-0.5*下行信道带宽。
此处仅仅是对第一阈值的举例,具体实现时不局限于该举例。
在一些实施例中,所述确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
在终端支持的上行信道带宽等于下行信道带宽时,则第二阈值可等于Fs+BW;其中,Fs可为终端的工作频段的上行发送和下行接收的隔离带宽值,BW可为终端支持的上行信道带宽或下行信道带宽。
在终端支持的上行信道带宽不等于下行信道带宽时,则第二阈值可等于Fs+0.5*上行信道带宽+0.5*下行信道带宽。
当然以上仅仅是对第二阈值的举例,具体实现时不局限于上述举例。
在本公开实施例中,若所述终端检测到的DL BWP的最高频点和UL BWP的最低频点之间的频点差小于第二阈值,则可认为:终端当前支持同时上行发送和下行接收,否则可认为终端当前不支持同时上行发送和下行接收;否则可认为终端当前不支持同时上行发送和下行接收。
在一些实施例中,所述S1220可包括:
当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;
当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
当然在具体的实现过程中,终端即便当前支持同时上行发送和下行接收,可以将配置终端工作在半双工FDD模式,例如,根据终端的业务需求和/或网络负载率等方面的因素,将终端配置在半双工FDD模式。
如图13所示,本公开实施例提供一种信息处理方法,其中,由网络设备执行,所述方法包括:S1310:当终端工作在半双工FDD模式时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置;
S1320:当所述终端不期望半静态配置的上行发送和下行接收位于相同的时域位置时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置。
该实施例可以单独实施,也可以与前述任意由网络设备执行的信息处理方法的实施例组合实施。例如,与图12所示的信息处理方法组合实施。
例如,终端工作半双工FDD模式,或者基站确定终端不期望半静态配置的上行发送和下行接收位于相同的时域位置,或者终端告知基站半静态配置的上行发送和下行接收位于相同的时域位置时,为这种终端进行半静态配置时,都会将上行发送和下行接收配置在不同的时域位置。
述终端不期望半静态配置的上行发送和下行接收位于相同的时域位置,具有多种情况,以下提供两种具体示例:
若终端确定工作在半双工FDD模式,则确定终端不期待半静态配置的上行发送和下行接收位于相同的时域位置;
若终端支持同时上行发送和下行接收,但是终端根据自身的业务特点等确定不期望半静态配置上行发送和下行接收位于相同的时域位置。
如图14所示,本公开实施例提供一种信息处理方法,其中,由网络设备执行,所述方法包括::
S1410:当终端工作在所述半双工FDD模式时,根据预设优先级确定所述终端执行下行接收或者上行发送。
该实施例可以单独实施,也可以与前述任意由网络设备执行的信息处理方法的实施例组合实施。例如,与图12和/或图13所示的信息处理方法组合实施。
示例性地,所述根据预设优先级确定所述终端执行下行接收或者上行发送,包括以下至少之一:
当所述终端的上行发送与同步信号块SSB的下行接收冲突时,确定所述终端执行所述SSB的接收;
当所述终端的动态调度的上行发送与半静态配置下行接收冲突时,确定所述终端执行动态调度的所述上行发送;
当所述终端的动态调度的下行接收与所述半静态配置上行发送冲突时,确定所述终端执行动态调度的下行接收。
在一些实施例中,若确定终端执行动态调度的上行发送,则基站需要根据动态调度指令在对应的时频资源位置处接收所述上行发送。
在另一些实施例中,若确定终端执行动态调度的下行接收,则基站根据半静态配置在对应的时频资源位置处执行下行发送。
针对普通终端,由于终端侧的信道带宽(channel BandWidth,BW)可以和系统带宽一样大,因此在FDD系统中,DL BWP和UL BWP独立切换,并且仍然能保证上行发送和下行接收(Tx-Rx separation)的隔离要求。
但对于RedCap终端来说,终端带宽减少,BWP带宽的切换会带来收发中心频点的切换,在某些情况下,收发频点的间隔已不能满足上述上行发送和下行接收的隔离要求。
当收发频点的间隔不能满足上行发送和下行接收的隔离要求时,此时就会出现终端无法同时收发的问题。
为了保证FDD系统中BWP切换的灵活性,同时也保证了当终端在放松的Tx-Rx隔离要求的 情况下发工作秩序,本公开实施例提供如下方案:
终端和/或网络设备,根据预设条件判断终端是否支持同时下行接收和上行发送。
响应于终端不能同时下行接收和上行发送(简称收发),终端工作在HD-FDD模式。
响应于终端可以同时下行接收和上行发送,终端工作在FD-FDD模式。
所述预设条件基于预设的Tx-Rx隔离(separation)要求来确定。例如,不同的工作频段,对上行发送和下行接收的频带要求间隔是不同的。
所述预设条件为:终端的目标DL BWP中心频点与目标UL BWP中心频点满足预设的Tx-Rx separation要求。
例如,终端工作在某个频带(band)下,预设的Tx-Rx隔离(separation)要求为Fs MHz,那么此时的预设条件为判断终端的激活(active)DL BWP与激活(active)UL BWP的中心频点间隔为Fs MHz。
终端的DL BWP的最低频率点与UL BWP的最高频率点的差值大于某一阈值;
和/或,
终端的UL BWP的最低频率点与DL BWP的最高频率点的差值小于某一阈值。
例如,针对某个频带(band)预设的Tx-Rx隔离(separation)要求为Fs MHz,终端的信道带宽(channel bandwidth)是否满足该预设条件为:判断终端的激活(active)DL BWP的最低频点与激活(active)UL BWP的最高频点大于Fs-BW。
终端的激活(active)DL BWP的最高频点与激活(active)UL BWP的最低频点小于Fs+BW
响应于根据预设条件确定终端工作在HD-FDD模式。
网络设备和/终端根据HD-FDD的收发优先级进行终端的上行发送或者下行接收,按照优先级解决收发冲突的处理准则如:
当终端的上行发送与SSB的下行接收冲突时,终端放弃上行发送,优先进行SSB的下行接收;
当动态调度的上/下行传输与半静态配置的下/上行发送冲突时,动态调度的上/下传输优先半静态配置的下/上行发送;
终端不期待半静态配置的上下行发生在相同的时域位置,因此通过可以通过基站为终端的调度配置来确定。
终端判断BWP对的配置是否满足Tx-Rx separation的条件,根据判断结果确定终端的双工模式。
如图15所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
第一确定模块1510,被配置为确定所述终端是否支持同时下行接收和上行发送;
第一模式模块1520,被配置为根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
在一些实施例中,该信息处理装置可包含在终端中。该终端可为前述的RedCap终端等。
在一些实施例中,所述第一确定模块1510以及所述第一模式模块1520可为程序模块;所述程序模块被处理器执行之后,能够实现上述操作。
在另一些实施例中,所述第一确定模块1510以及所述第一模式模块1520可为软硬结合模块;所述软硬结合模块可为各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第一确定模块1510以及第一模式模块1520可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述第一确定模块1510,被配置为根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
在一些实施例中,所述第一模式模块1520,被配置为根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
在一些实施例中,所述第一模式模块1520,被配置为执行以下至少之一:
确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。
在一些实施例中,所述第一确定模块1510,被配置为确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
在一些实施例中,所述第一确定模块1510,被配置为确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
在一些实施例中,所述第一模式模块1520,被配置为当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
在一些实施例中,所述装置还包括:
执行模块,被配置为当所述终端工作在所述半双工FDD模式时,根据预设优先级执行下行接收或者上行发送。
在一些实施例中,所述执行模块,被配置为执行以下至少之一:
当所述终端的上行发送与同步信号块SSB的下行接收冲突时,根据所述预设优先级执行所述SSB的接收;
当所述终端的动态调度的上行发送与半静态配置下行接收冲突时,根据所述预设优先级执行动态调度的所述上行发送;
当所述终端的动态调度的下行接收与所述半静态配置上行发送冲突时,根据所述预设优先级执行动态调度的下行接收。
如图16所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
第二确定模块1610,被配置为确定所述终端是否支持同时下行接收和上行发送;
第二模式模块1620,被配置为根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的FDD模式。
在一些实施例中,所述第二确定模块1610以及所述第二模式模块1620可为程序模块;所述程序模块被处理器执行之后,能够实现上述操作。
在另一些实施例中,所述第二确定模块1610以及所述第二模式模块1620可为软硬结合模块;所述软硬结合模块可为各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第二确定模块1610以及第二模式模块1620可为纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一些实施例中,所述第二确定模块1610,被配置为根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
在一些实施例中,所述第二确定模块1610,被配置为根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
在一些实施例中,所述第二确定模块1610,被配置为执行以下至少之一:
确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。
在一些实施例中,所述第二确定模块1610,被配置为执行以下至少之一:
确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
在一些实施例中,所述第二确定模块1610,被配置为确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
在一些实施例中,所述第二模式模块1620,被配置为当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
在一些实施例中,所述装置还包括:配置模块,
所述配置模块,被配置为当所述终端工作在半双工FDD模式时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置;当所述终端不期望半静态配置的上行发送和下行接 收位于相同的时域位置时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的信息处理方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:终端或者网络设备,该网络设备包括但不限于基站。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2、图3、图4、图6、图8以及图10至图14所示的方法的至少其中之一。
图17是根据一示例性实施例示出的一种终端800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图17,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在终端800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当终端800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收 外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图18所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络侧设备。该通信设备可为网络设备。
参照图18,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,如图2、图3、图 4、图6、图8以及图10至图14所示的方法的至少其中之一。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (36)

  1. 一种信息处理方法,其中,由终端执行,所述方法包括:
    确定所述终端是否支持同时下行接收和上行发送;
    根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
  2. 根据权利要求1所述的方法,其中,所述确定所述终端是否支持同时下行接收和上行发送,包括:
    根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  3. 根据权利要求2所述的方法,其中,所述根据终端的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送,包括:
    根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  4. 根据权利要求3所述的方法,其中,所述根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送,包括以下至少之一:
    确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。
  5. 根据权利要求4所述的方法,其中,所述确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
    确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
  6. 根据权利要求4所述的方法,其中,所述确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
    确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
  7. 根据权利要求1至6任一项所述的方法,其中,所述根据所述终端是否支持同时下行接收和 上行发送的确定结果,确定所述终端工作的频分双工FDD模式,包括:
    当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;
    当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
  8. 根据权利要求1至7任一项所述的方法,其中,所述方法还包括:
    当所述终端工作在所述半双工FDD模式时,根据预设优先级执行下行接收或者上行发送。
  9. 根据权利要求8所述的方法,其中,所述当所述终端工作在所述半双工FDD模式时,根据预设优先级执行下行接收或者上行发送,包括以下至少之一:
    当所述终端的上行发送与同步信号块SSB的下行接收冲突时,根据所述预设优先级执行所述SSB的接收;
    当所述终端的动态调度的上行发送与半静态配置下行接收冲突时,根据所述预设优先级执行动态调度的所述上行发送;
    当所述终端的动态调度的下行接收与所述半静态配置上行发送冲突时,根据所述预设优先级执行动态调度的下行接收。
  10. 一种信息处理方法,其中,由网络设备执行,所述方法包括:
    确定所述终端是否支持同时下行接收和上行发送;
    根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
  11. 根据权利要求10所述的方法,其中,所述确定所述终端是否支持同时下行接收和上行发送,包括:
    根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  12. 根据权利要求10所述的方法,其中,所述根据终端的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送,包括:
    根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  13. 根据权利要求12所述的方法,其中,所述根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送,包括以下至少之一:
    确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。
  14. 根据权利要求13所述的方法,其中,所述确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
    确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
  15. 根据权利要求13所述的方法,其中,所述确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求,包括:
    确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
  16. 根据权利要求10至15任一项所述的方法,其中,所述根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式,包括:
    当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;
    当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
  17. 根据权利要求10至16任一项所述的方法,其中,所述方法还包括:
    当所述终端工作在半双工FDD模式时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置;
    当所述终端不期望半静态配置的上行发送和下行接收位于相同的时域位置时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置。
  18. 一种信息处理装置,其中,所述装置包括:
    第一确定模块,被配置为确定所述终端是否支持同时下行接收和上行发送;
    第一模式模块,被配置为根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
  19. 根据权利要求18所述的装置,其中,所述第一确定模块,被配置为根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  20. 根据权利要求19所述的装置,其中,所述第一模式模块,被配置为根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  21. 根据权利要求20所述的装置,其中,所述第一模式模块,被配置为执行以下至少之一:
    确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点 差,是否满足所述上行发送和所述下行接收的隔离要求。
  22. 根据权利要求21所述的装置,其中,所述第一确定模块,被配置为确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
  23. 根据权利要求21所述的装置,其中,所述第一确定模块,被配置为确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
  24. 根据权利要求18至23任一项所述的装置,其中,所述第一模式模块,被配置为当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
  25. 根据权利要求18至24任一项所述的装置,其中,所述装置还包括:
    执行模块,被配置为当所述终端工作在所述半双工FDD模式时,根据预设优先级执行下行接收或者上行发送。
  26. 根据权利要求25所述的装置,其中,所述执行模块,被配置为执行以下至少之一:
    当所述终端的上行发送与同步信号块SSB的下行接收冲突时,根据所述预设优先级执行所述SSB的接收;
    当所述终端的动态调度的上行发送与半静态配置下行接收冲突时,根据所述预设优先级执行动态调度的所述上行发送;
    当所述终端的动态调度的下行接收与所述半静态配置上行发送冲突时,根据所述预设优先级执行动态调度的下行接收。
  27. 一种信息处理装置,其中,所述装置包括:
    第二确定模块,被配置为确定所述终端是否支持同时下行接收和上行发送;
    第二模式模块,被配置为根据所述终端是否支持同时下行接收和上行发送的确定结果,确定所述终端工作的频分双工FDD模式。
  28. 根据权利要求27所述的装置,其中,所述第二确定模块,被配置为根据终端工作频段的上行发送和下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  29. 根据权利要求27所述的装置,其中,所述第二确定模块,被配置为根据终端在工作频带上监测的UL BWP和DL BWP,以及所述上行发送和所述下行接收的隔离要求,确定所述终端是否支持同时下行接收和上行发送。
  30. 根据权利要求29所述的装置,其中,所述第二确定模块,被配置为执行以下至少之一:
    确定所述终端在所述工作频带上监测的DL BWP的中心频点和UL BWP的中心频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在工作频带上监测的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求;
    确定所述终端在所述工作频带上监测的UL BWP的最低频点和DL BWP的最高频点之间的频点差,是否满足所述上行发送和所述下行接收的隔离要求。
  31. 根据权利要求30所述的装置,其中,所述第二确定模块,被配置为执行以下至少之一:
    确定所述终端检测到的DL BWP的最低频点和UL BWP的最高频点之间的频点差,是否满足第一阈值的隔离要求。
  32. 根据权利要求30所述的装置,其中,所述第二确定模块,被配置为确定所述终端监测的UL BWP最低频点和DL BWP的最高频点之间的频点差,是否满足第二阈值的隔离要求。
  33. 根据权利要求27至32任一项所述的装置,其中,所述第二模式模块,被配置为当所述终端支持同时下行接收和上行发送时,确定所述终端工作在全双工FDD模式;当所述终端不支持同时下行接收和上行发送时,确定所述终端工作在半双工FDD模式。
  34. 根据权利要求27至33任一项所述的装置,其中,所述装置还包括:配置模块,
    所述配置模块,被配置为当所述终端工作在半双工FDD模式时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置;当所述终端不期望半静态配置的上行发送和下行接收位于相同的时域位置时,所述终端半静态配置的上行发送和半静态的下行接收配置在不同的时域位置。
  35. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至9或10至17任一项提供的方法。
  36. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至9或10至17任一项提供的方法。
PCT/CN2022/073057 2022-01-20 2022-01-20 信息处理方法及装置、通信设备及存储介质 WO2023137676A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/073057 WO2023137676A1 (zh) 2022-01-20 2022-01-20 信息处理方法及装置、通信设备及存储介质
CN202280000219.4A CN114616900A (zh) 2022-01-20 2022-01-20 信息处理方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073057 WO2023137676A1 (zh) 2022-01-20 2022-01-20 信息处理方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023137676A1 true WO2023137676A1 (zh) 2023-07-27

Family

ID=81870448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073057 WO2023137676A1 (zh) 2022-01-20 2022-01-20 信息处理方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN114616900A (zh)
WO (1) WO2023137676A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026777A1 (en) * 2016-07-22 2018-01-25 Apple Inc. User Equipment That Autonomously Selects Between Full and Half Duplex Operations
CN111867107A (zh) * 2019-04-29 2020-10-30 北京三星通信技术研究有限公司 双工模式切换的方法、终端及基站
CN112889334A (zh) * 2021-01-18 2021-06-01 北京小米移动软件有限公司 一种带宽部分确定方法、带宽部分确定装置及存储介质
US20210176626A1 (en) * 2019-12-06 2021-06-10 Qualcomm Incorporated Dual-mode half duplex time division duplex and full duplex frequency division duplex capable user equipment
CN113518443A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 控制信息传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026777A1 (en) * 2016-07-22 2018-01-25 Apple Inc. User Equipment That Autonomously Selects Between Full and Half Duplex Operations
CN111867107A (zh) * 2019-04-29 2020-10-30 北京三星通信技术研究有限公司 双工模式切换的方法、终端及基站
US20210176626A1 (en) * 2019-12-06 2021-06-10 Qualcomm Incorporated Dual-mode half duplex time division duplex and full duplex frequency division duplex capable user equipment
CN113518443A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 控制信息传输方法
CN112889334A (zh) * 2021-01-18 2021-06-01 北京小米移动软件有限公司 一种带宽部分确定方法、带宽部分确定装置及存储介质

Also Published As

Publication number Publication date
CN114616900A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN113316133B (zh) 一种实现双卡双待双通的通信方法及终端
US20230292364A1 (en) Bandwidth resource multiplexing method and apparatus, communication device and storage medium
US20220322347A1 (en) Capability parameter processing method and device, communication device and storage medium
WO2021253240A1 (zh) 无线通信方法及装置、终端及存储介质
EP3979718A1 (en) Monitoring method and apparatus, signaling issuing method and apparatus, communication device, and storage medium
WO2023184187A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
CN111344993B (zh) 监听方法、指示下发方法及装置、通信设备及存储
EP4075864A1 (en) Communication processing method and device, and computer storage medium
CN111107563B (zh) 一种数据处理方法及设备
WO2023050362A1 (zh) 下行传输配置、接收方法及装置、通信设备及存储介质
WO2023184186A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
CN110945921A (zh) 被调度载波的激活时刻确定方法及装置、设备及介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2023137676A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2021163969A1 (zh) 数据传输方法、装置和通信设备
CN113228794A (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
EP4057551A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2021109002A1 (zh) 信息处理方法、装置、基站、用户设备及存储介质
WO2023137677A1 (zh) 切换bwp的方法、装置、通信设备及存储介质
WO2024031382A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2024016233A1 (zh) 初始bwp处理方法、装置、通信设备及存储介质
WO2023056644A1 (zh) Ue的多载波配置方法、装置、通信设备及存储介质
CN113383589B (zh) 数据传输方法、装置及计算机存储介质
WO2023122916A1 (zh) 信息处理方法及装置、通信设备及存储介质