WO2023136147A1 - Solar cell module, method for producing same, and solar cell sealing material - Google Patents

Solar cell module, method for producing same, and solar cell sealing material Download PDF

Info

Publication number
WO2023136147A1
WO2023136147A1 PCT/JP2022/048326 JP2022048326W WO2023136147A1 WO 2023136147 A1 WO2023136147 A1 WO 2023136147A1 JP 2022048326 W JP2022048326 W JP 2022048326W WO 2023136147 A1 WO2023136147 A1 WO 2023136147A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
complex
silicone rubber
rubber composition
cell module
Prior art date
Application number
PCT/JP2022/048326
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 大和田
昌克 堀田
正 荒木
隆 明田
武春 豊島
篤 柳沼
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020247022971A priority Critical patent/KR20240136958A/en
Publication of WO2023136147A1 publication Critical patent/WO2023136147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/068Containing also other elements than carbon, oxygen or nitrogen in the polymer main chain
    • C09K2200/0685Containing silicon

Definitions

  • the present invention relates to a solar cell module having a silicone rubber sealing layer, a method for manufacturing the same, and a solar cell sealing material.
  • Perovskite solar cell a solar cell having a perovskite compound in its power generation layer
  • Perovskite solar cell can be manufactured at a lower cost than crystalline silicon solar cells, and have high power generation efficiency.
  • a perovskite solar cell element is obtained by laminating a light-transmitting substrate or a light-transmitting film, a transparent conductive film, an electron transport layer, a power generation layer, a hole transport layer, and a back electrode from the light receiving surface side.
  • a structure in which a sealing material is applied to the rear side of the back electrode and the rearmost side is sealed with a substrate and a film has been studied.
  • perovskite solar cells are vulnerable to water vapor, and it is desirable to block water vapor at a high level.
  • solar cells are exposed to harsh environments for a long period of time outdoors, so encapsulating materials and encapsulating processes are extremely important.
  • perovskite solar cells are vulnerable to heat, and it is necessary to pay attention to the temperature when sealing.
  • the encapsulant is typically heated to gain the ability to seal the device through the process of filling, bonding, and curing. Therefore, although the heating process is important, in the case of perovskite solar cells, applying a temperature exceeding 120° C. leads to a decrease in power generation capacity and is not suitable.
  • Patent Document 1 discloses forming a sealant by applying a material obtained by adding a hygroscopic filler such as calcium oxide to a polyisobutylene-based polymer.
  • the method of removing water vapor with a hygroscopic filler has a finite hygroscopic capacity, and the solar cell, which is exposed to a harsh environment for a long period of time, has a finite output retention.
  • Patent Document 2 proposes a method in which a resin material such as an acrylic resin is adhered to an element, and a film having a water vapor barrier property is attached to the outermost surface of the element. When resin is used, there are many problems in the coating process, such as entrainment of air bubbles and defoaming between the resin and the water vapor barrier film.
  • the present invention has been devised in view of the above circumstances, and is a low-temperature sealing method for perovskite solar cells, organic thin-film solar cells, flexible solar cells, and solar cells in which a transparent resin or film is applied to a light-transmissive substrate. It is an object of the present invention to provide a solar cell encapsulant, a solar cell module, and a method for manufacturing the same, which can be sealed with a conventional vacuum heating laminator without causing deformation due to heat or reduction in solar cell output. and
  • the present invention provides a solar cell module comprising a solar cell and a silicone rubber sealing layer, wherein the silicone rubber sealing layer comprises a silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
  • a solar cell module that is a cured product.
  • Such a solar cell module can be sealed at a low temperature without causing deformation due to heat or reduction in solar cell output, and can be sealed with a conventional vacuum heating laminator. be able to.
  • the silicone rubber composition is (A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) The amount of hydrosilyl groups in the component (C) becomes 0.5 to 5 moles (D) Photoactive hydrosilylation reaction catalyst: 0.5 to 0.5 in terms of platinum group metal mass relative to the component (A) 1,000ppm It is preferable to contain
  • Such a silicone rubber composition can be used in the present invention.
  • the photoactive hydrosilylation reaction catalyst includes (1,5-cyclooctadienyl)diphenylplatinum complex, (1,5-cyclooctadienyl)dipropylplatinum complex, and (2,5-norboradiene)dimethylplatinum complex.
  • (2,5-norboradiene) diphenylplatinum complex (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenylplatinum complex, (methylcycloocta-1 ,5-dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcyclopentadienyl)trimethylplatinum complexes, (methylcyclopentadienyl)trihexylplatinum complex, (trimethylsilylcyclopentadienyl)trimethylplatinum complex, (dimethylphenylsilylcyclopentadienyl)trimethylp
  • Such a photoactivated hydrosilylation reaction catalyst can be used in the present invention.
  • the solar cell is preferably a perovskite solar cell.
  • the shape of the silicone rubber composition prepared in step (i) is preferably in the form of a sheet.
  • a solar cell module can be obtained using a vacuum laminator that is widely used for manufacturing solar cell modules.
  • the step (iii) is preferably a step performed using a vacuum laminator.
  • a solar cell encapsulant (A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) 0.5 to 5 moles of hydrosilyl groups in component (C) and (D) photoactive hydrosilylation reaction catalyst: 0.5 in terms of mass of platinum group metal relative to component (A) ⁇ 1,000ppm Provided is a solar cell encapsulant made of a silicone rubber composition containing
  • the photoactivated hydrosilylation reaction catalyst includes (1,5-cyclooctadienyl)diphenylplatinum complex, (1,5-cyclooctadienyl)dipropylplatinum complex, (2,5-norboradiene ) dimethylplatinum complex, (2,5-norboradiene)diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenylplatinum complex, (methyl Cycloocta-1,5-dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methyl
  • Such a photoactivated hydrosilylation reaction catalyst can be used in the present invention.
  • the solar cell encapsulant of the present invention is preferably in the form of a sheet.
  • the solar cells can be sealed at a low temperature, there is no deformation, and the solar cell module does not reduce the initial output of a solar cell whose output is greatly affected by heat, such as a perovskite solar cell. It is possible to manufacture Moreover, according to the present invention, a solar cell module can be easily manufactured using a vacuum laminator or the like.
  • FIG. 3 is a schematic vertical cross-sectional view showing another example of the perovskite solar cell module according to the present invention
  • FIG. 3 is a schematic vertical cross-sectional view showing a manufacturing process of a perovskite solar cell module according to the present invention
  • the inventors of the present invention conducted studies to achieve the above object and found that the use of a silicone rubber composition that cures with a photoactivated hydrosilylation reaction catalyst as a solar cell encapsulant reduces the power generation capacity of solar cells.
  • the present inventors have found that a solar cell module can be obtained simply without causing a
  • the present invention provides a solar cell module comprising a solar cell and a silicone rubber sealing layer, wherein the silicone rubber sealing layer is a cured product of a silicone rubber composition containing a photoactive hydrosilylation reaction catalyst. It is a solar cell module.
  • a solar cell encapsulant (A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) 0.5 to 5 moles of hydrosilyl groups in component (C) and (D) photoactive hydrosilylation reaction catalyst: 0.5 in terms of mass of platinum group metal relative to component (A) ⁇ 1,000ppm A solar cell encapsulant made of a silicone rubber composition containing
  • FIG. 1 is a cross-sectional view showing the configuration of one embodiment of a perovskite solar cell module according to the present invention.
  • the perovskite solar cell module 10 covers the perovskite solar cell 2 on the back side of the perovskite solar cell 2 laminated on the back surface of the light-receiving surface light-transmitting substrate or the light-receiving surface light-transmitting film 1.
  • a silicone rubber sealing layer 3 is arranged, a rear substrate or a rear film 4 is laminated on the top thereof, and an end sealing material 5 is arranged at the end of the perovskite solar cell module 10. .
  • the silicone rubber sealing layer 3 is a cured silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
  • FIG. 2 is a cross-sectional view showing the configuration of another embodiment of the perovskite solar cell module according to the present invention.
  • a perovskite solar cell module 11 has a silicone rubber sealing layer 3 disposed on a light-receiving surface light-transmitting substrate or a light-receiving surface light-transmitting film 1 , and a perovskite solar cell 2 on the silicone rubber sealing layer 3 . to place.
  • a silicone rubber sealing layer 3 is again placed on the perovskite solar cell 2 in such a manner as to cover the perovskite solar cell 2, and a rear substrate or a rear film 4 is laminated thereon, and the perovskite solar cell 2 is further laminated.
  • the end sealing material 5 is arranged at the end of the solar cell module 11 .
  • the perovskite solar cell 2 may be combined with other base materials or other solar cells.
  • the back substrate or back film 4 may be transparent or opaque, and a film having water vapor barrier properties may be used.
  • the silicone rubber sealing layer 3 is a cured silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
  • the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 is a transparent member on which sunlight is incident.
  • a member with performance is required.
  • transparent glass is mentioned as an example of a light-receiving surface light-transmitting substrate, and blue plate glass and white plate tempered glass are preferable.
  • the light-receiving surface light-transmitting film a light-transmitting film having high water vapor barrier properties is preferable, and the water vapor transmission rate (JIS Z0208: 1976, condition B (40°C, 90% RH)) is 50 g/(m 2 ⁇ 24 h).
  • the following materials are preferably applied, more preferably 10 g/(m 2 ⁇ 24 h) or less, and even more preferably 5 g/(m 2 ⁇ 24 h) or less.
  • the perovskite-type solar cell 2 usually has an electron-transporting layer, a power-generating layer made of a perovskite-type compound, a hole-transporting layer, and a back electrode laminated on a light-transmitting substrate. do not have.
  • the silicone rubber sealing layer 3 is arranged so as to cover the perovskite solar cell 2 with no space between the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 and the perovskite solar cell 2.
  • the rear substrate or the rear film 4 are preferably made of silicone rubber, which can be in close contact with each other.
  • the silicone rubber sealing layer 3 has flame retardancy, it is possible to expand the range of application as a solar cell module.
  • the thickness of the silicone rubber sealing layer 3 is preferably 0.1-3 mm, more preferably 0.1-1 mm.
  • the rear substrate or rear film 4 it is preferable to use a substrate such as glass or a rear film having high water vapor barrier properties. It is preferable to use a material with a water vapor transmission rate (JIS Z0208:1976, condition B (40°C, 90% RH)) of 50 g/(m 2 ⁇ 24 h) or less, and 10 g/(m 2 ⁇ 24 h) or less. is more preferably 5 g/(m 2 ⁇ 24 h) or less.
  • a water vapor transmission rate JIS Z0208:1976, condition B (40°C, 90% RH)
  • back substrate or back film 4 Other properties required for the back substrate or back film 4 include heat resistance, weather resistance, moisture resistance, voltage resistance, ultraviolet resistance, and resistance to silicone rubber sealing layer 3 in order to withstand long-term use environments. of adhesion is required.
  • White plate glass, soda plate glass, etc. can be used as the back substrate.
  • the back film a laminated film in which a fluororesin film and a PET film are combined to adjust the water vapor transmission rate, or a laminated film in which a metal thin film and a PET film are combined, a thin metal layer is vapor-deposited on a PEN film, etc. to reduce water vapor transmission. suppressed film and the like.
  • the back substrate or back film 4 does not necessarily have to be transparent, but if it has light transmittance, the resulting solar cell module can be of a see-through type or a solar cell with an excellent appearance, and the range of application can be expanded.
  • the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 and the back substrate or back film 4 are both made of thin glass or film, it is possible to form a flexible solar cell.
  • the silicone rubber sealing layer 3 and the backing film 4 may be laminated in advance.
  • the silicone rubber sealing layer 3 and the backing film 4 form an integrated laminated sheet, which is then sealed with a vacuum heating laminator. At the same time, they can be handled at the same time, and the manufacturing process can be simplified.
  • the end sealing material 5 may be arranged together.
  • the end sealing material 5 is preferably made of resin having excellent water vapor barrier properties, and examples thereof include butyl rubber and epoxy resin.
  • One example is a structure in which the end sealing material 5 is arranged at the end of the light-receiving surface light-transmitting substrate 1 and is arranged so as not to come into contact with the perovskite solar cell 2 .
  • the width of the end sealing material 5 may be arranged in consideration of the above range, and is not particularly limited. Since the silicone rubber sealing layer 3 is placed inside the edge sealing material 5, it is necessary to match the size of the inside.
  • the thickness of the end sealing material 5 is preferably the same as that of the silicone rubber sealing layer 3 .
  • the end sealing material 5 is thermosetting, it can be formed together with the silicone rubber sealing layer 3 by a vacuum heating laminator.
  • the end sealing material 5 may be arranged on the outer peripheral side surface of the light-receiving surface light-transmitting substrate 1. can.
  • the combination of the silicone rubber sealing layer 3 and the end sealing material 5 may be appropriately changed according to the configuration of the solar cell module, and is not limited to this example.
  • the silicone rubber sealing layer 3 is made of a cured silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
  • silicone rubber composition if it is a silicone rubber composition that contains a photoactive hydrosilylation reaction catalyst and is cured by light irradiation, it is possible to form a silicone rubber sealing layer at a low temperature, and a solar cell can be produced by heat. Although it is not particularly limited because it can prevent deformation and output reduction of the module, silicone compositions containing the following components (A) to (D) are preferred.
  • (A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass
  • (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per mol of alkenyl groups in component (A)
  • (D) Photoactive hydrosilylation reaction catalyst: 0.5 to 1,000 ppm in terms of mass of platinum group metal relative to component (A)
  • the organopolysiloxane of component (A) is preferably a raw rubber-like component (that is, non-liquid with high viscosity and no self-fluidity) at room temperature (25° C.).
  • a silicone rubber composition containing this alkenyl group-containing organopolysiloxane as a main component is usually of a millable type (that is, raw rubber-like) and can be uniformly kneaded under shear stress by a kneader such as a roll mill. i) the composition.
  • alkenyl group-containing organopolysiloxane of component (A) examples include those represented by the following average compositional formula (I).
  • R1aSiO ( 4-a)/2 (I) (In formula (I), R 1 represents the same or different monovalent hydrocarbon group having 1 to 12 carbon atoms, and a is a number of 1.95 to 2.05.)
  • R 1 represents the same or different monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, specifically, methyl group, ethyl group, propyl group, Alkyl groups such as butyl group, hexyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; fluoroalkyl groups such as 3,3,3-trifluoropropyl group; alkenyl group; aryl group such as cycloalkenyl group, phenyl group and tolyl group; aralkyl group such as benzyl group and 2-phenylethyl group; A methyl group and a vinyl group are particularly preferred.
  • alkenyl group-containing organopolysiloxane of component (A) are those in which the main chain of the organopolysiloxane consists of repeating dimethylsiloxane units, or in which the main chain consists of repeating dimethylsiloxane units.
  • Diphenylsiloxane units, methylphenylsiloxane units, methylvinylsiloxane units, methyl-3,3,3-tri Those into which a fluoropropylsiloxane unit or the like is introduced are suitable.
  • the component (A) organopolysiloxane has 2 or more (usually 2 to 50, particularly 2 to 20) alkenyl groups, preferably vinyl groups, in one molecule. It is preferred that 0.01 to 10%, especially 0.02 to 5% of all R 1 groups in (I) are alkenyl groups.
  • the alkenyl group may be bonded to a silicon atom at the terminal of the molecular chain, bonded to a silicon atom in the middle (non-terminal) of the molecular chain, or both. It preferably contains alkenyl groups bonded to silicon atoms at both ends. Specifically, those whose molecular chain ends are blocked with a dimethylvinylsilyl group, a methyldivinylsilyl group, a trivinylsilyl group, or the like are preferred.
  • a is a number from 1.95 to 2.05, preferably from 1.98 to 2.02, more preferably from 1.99 to 2.01.
  • the molecular structure of component (A), alkenyl group-containing organopolysiloxane, is basically such that the main chain consists of repeating diorganosiloxane units (R 1 2 SiO 2/2 ), and both ends of the molecular chain are triorganosiloxy. It is generally a linear structure blocked with a group (R 1 3 SiO 1/2 ), but a small amount of branching units (R 1 SiO 3/2 ) (R 1 is the same as above).
  • the organopolysiloxane of component (A) has a molecular chain end blocked with a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group and a trivinylsiloxy group.
  • a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group and a trivinylsiloxy group.
  • a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group and a
  • the degree of polymerization of the component (A) organopolysiloxane is preferably 100 to 100,000, more preferably 3,000 to 20,000. Within such a range, rubber strength and handleability are more excellent.
  • the degree of polymerization is a value obtained as a weight average degree of polymerization from the average molecular weight converted to polystyrene by gel permeation chromatography (GPC) analysis measured under the following conditions.
  • the (A) component alkenyl group-containing organopolysiloxane may be used singly or in combination of two or more with different molecular structures and degrees of polymerization.
  • Component (A) an alkenyl group-containing organopolysiloxane
  • Component (A) can be prepared by a known method, for example, by (co)hydrolyzing and condensing one or more organohalogenosilanes, or by reacting a cyclic polysiloxane with an alkaline or acidic catalyst. It can be obtained by ring-opening polymerization using
  • the specific surface area of component (B) measured by the BET method is preferably 50 to 500 m 2 /g, more preferably 200 to 500 m 2 /g, from the viewpoint of the mechanical strength and transparency of the silicone rubber composition. It is more preferably 250 to 500 m 2 /g, particularly preferably 250 to 500 m 2 /g. Within such a range, it is possible to obtain a sealing layer having high transparency, excellent workability in the production of a solar cell module, and excellent mechanical strength before and after curing.
  • the reinforcing silica of component (B) includes fumed silica (dry silica or fumed silica), precipitated silica (wet silica), and the like.
  • fumed silica dry silica or fumed silica
  • precipitated silica wet silica
  • those whose surfaces are hydrophobized with chlorosilane, alkoxysilane, hexamethyldisilazane or the like are also preferably used.
  • treatment with hexamethyldisilazane is preferred because of its high transparency.
  • the use of fumed silica as the reinforcing silica is preferred for enhanced transparency.
  • Reinforcing silica may be used singly or in combination of two or more.
  • the reinforcing silica of the component (B) commercially available products can be used, for example, Aerosil series (Japan Aerosil Co., Ltd.), Cabosil MS-5, MS-7 (Cabot Co., Ltd.), Reolosil QS-102, 103, MT-10 (Tokuyama Co., Ltd.), etc.
  • Aerosil series Japanese Aerosil Co., Ltd.
  • Cabosil MS-5 Cabosil MS-5, MS-7 (Cabot Co., Ltd.)
  • Reolosil QS-102, 103, MT-10 Tokuyama Co., Ltd.
  • Surface untreated or surface hydrophobized That is, hydrophilic or hydrophobic fumed silica
  • Tokusil US-F manufactured by Tokuyama Co., Ltd.
  • NIPSIL-SS manufactured by Tokuyama Co., Ltd.
  • NIPSIL-LP manufactured by Nippon Silica Industry Co., Ltd.
  • the amount of reinforcing silica as component (B) is preferably 10 to 150 parts by mass, more preferably 30 to 90 parts by mass, and still more preferably 50 parts by mass per 100 parts by mass of organopolysiloxane as component (A). ⁇ 90 parts by mass.
  • the amount of component (B) is 10 parts by mass or more, the reinforcing effect before and after curing is easily obtained, and the transparency of the silicone rubber composition after curing does not decrease.
  • the amount is 150 parts by mass or less, the silica is well dispersed in the silicone rubber composition, and the silicone rubber composition has excellent processability when processed into a sheet.
  • the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms for R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 carbon atoms and having no aliphatic unsaturated bond.
  • a hydrogen group is preferred, and specific examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl and hexyl, cyclohexyl, phenyl, 3,3,3-trifluoropropyl and cyanomethyl. groups, etc., and a methyl group, a propyl group, and a phenyl group are preferable.
  • b is 0.7 to 2.1, preferably 0.8 to 2.0, c is 0.001 to 1, preferably 0.01 to 1, and b+c is 0.8 to It is a number that satisfies 3.0, preferably 0.9 to 2.7.
  • the component (C) organohydrogenpolysiloxane has at least 2 hydrosilyl groups (eg, 2 to 300), preferably 3 or more (eg, 3 to 200), more preferably 4 or more (eg, 3 to 200) per molecule. For example, 4 to 100), which may be at the end of the molecular chain, midway (non-terminal) in the molecular chain, or both.
  • the organohydrogenpolysiloxane should generally have 2 to 300, preferably 3 to 200, and more preferably 4 to 100 silicon atoms (or the degree of polymerization) in one molecule. Also, the viscosity at 25° C.
  • This viscosity refers to a value measured at 25°C with a rotational viscometer described in JIS K 7117-1:1999.
  • (C) component organohydrogenpolysiloxane examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, methylhydrogencyclopolysiloxane, Methylhydrogensiloxane/dimethylsiloxane cyclic copolymer, tris(dimethylhydrogensiloxy)methylsilane, tris(dimethylhydrogensiloxy)phenylsilane, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends trimethylsiloxy group-blocked dimethyl Siloxane/methylhydrogensiloxane copolymer, dimethylpolysiloxane blocked at both ends with dimethylhydrogensiloxy groups, dimethylsiloxane/methylhydrogensiloxane copolymer blocked at both ends with dimethylhydrogensiloxy groups, methylhydrogen blocked at both ends with trimethylhydrogen
  • the amount of the component (C) organohydrogenpolysiloxane to be blended is preferably 0.1 to 30 parts by mass, more preferably 0.3 to 10 parts by mass, per 100 parts by mass of the alkenyl group-containing organopolysiloxane (A). more preferred.
  • the organohydrogenpolysiloxane preferably has a molar ratio of hydrosilyl groups to the total alkenyl groups of component (A) in the range of 0.5 to 5. , more preferably in the range of 0.8 to 3, and may be blended so as to be in the range of 1 to 2.5. Within such a range, it is possible to obtain an encapsulating layer having a hardness suitable for producing a solar cell module.
  • the photoactivated hydrosilylation reaction catalyst of the component (D) reacts with the alkenyl groups in the component (A) and the hydrosilyl groups in the component (C) by irradiation with light such as ultraviolet rays. It is a catalyst that promotes cross-linking by hydrosilylation reaction.
  • known catalysts can be applied, for example, (1,5-cyclooctadienyl) diphenyl platinum complex, (1,5-cyclooctadienyl) dipropyl platinum complex, ( 2,5-norboradiene)dimethylplatinum complex, (2,5-norboradiene)diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenyl platinum complex, (methylcycloocta-1,5-dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcycl
  • the amount of the photoactivated hydrosilylation reaction catalyst of component (D) can be a catalytic amount, and is usually preferably 0.5 to 1,000 ppm in terms of platinum metal mass relative to component (A). , from 1 to 500 ppm. Within such a range, excellent curability can be obtained, and reduction in the power generation efficiency of the solar cell module due to yellowing of the catalyst-derived silicone rubber composition can be suppressed.
  • the silicone rubber composition may contain an addition reaction control agent for the purpose of adjusting the curing speed or pot life.
  • an addition reaction control agent for the purpose of adjusting the curing speed or pot life.
  • the agent include ethynylcyclohexanol and tetramethyltetravinylcyclotetrasiloxane.
  • the above silicone rubber composition can be obtained by kneading the above-described components with a two-roll, kneader, Banbury mixer or the like.
  • the plasticity of the silicone rubber composition before curing (unvulcanized state) is preferably 150 to 1,000, more preferably 200 to 800, and more preferably 250 to 600.
  • the plasticity is greater than 150, the composition can easily maintain its shape, and the tackiness does not become too strong, resulting in excellent handleability. Also, when it is 1,000 or less, the unity is good, and sheet formation is facilitated.
  • the plasticity can be measured according to JIS K6249:2003.
  • the above silicone rubber composition can be molded into a sheet and used as a solar cell encapsulant, and can be sealed using a vacuum laminator that is widely used in the production of solar cell modules.
  • the method for forming the sheet is not particularly limited, but extrusion molding, calendering, or the like can be used.
  • the thickness of the silicone rubber composition sheet is preferably 0.1 to 3 mm, particularly 0.1 to 1 mm.
  • the solar cell module of the present invention is Step (i): Step of preparing a silicone rubber composition Step (ii): Step of irradiating the silicone rubber composition with UV rays and Step (iii): Laminating the UV-irradiated silicone rubber composition and a solar cell. , and a temperature of 20 to 100° C. to form a silicone rubber sealing layer.
  • Step (i) is a step of making and preparing a silicone composition. It is preferable to use a silicone composition containing the above components (A) to (D) in the above formulation. In this step, from the viewpoint of facilitating vacuum lamination in step (iii), it is preferable to prepare a sheet-like silicone rubber composition.
  • the step (ii) is a step of irradiating the silicone rubber composition with ultraviolet rays.
  • the silicone rubber composition may be cured to such an extent that a silicone rubber sealing layer can be formed by pressing in step (iii).
  • Examples of ultraviolet irradiation methods include a method of irradiating an appropriate amount of ultraviolet rays using a 365 nm UV-LED lamp, metal halide lamp, etc. as an ultraviolet light source.
  • Light having a wavelength of preferably 200 to 500 nm, more preferably 200 to 350 nm is used for ultraviolet irradiation.
  • the irradiation temperature is preferably 20 to 80° C.
  • the irradiation intensity is preferably 30 to 2,000 mW/cm 2
  • the irradiation dose is preferably 150 to 10,000 mJ/cm 2 .
  • Step (iii) is a step of laminating the ultraviolet-irradiated silicone rubber composition and the solar cell and pressing at a temperature of 20 to 100° C. to form a silicone rubber sealing layer.
  • step (iii) it is preferable to perform pressing while heating under vacuum (under reduced pressure) by a vacuum lamination process performed using a vacuum laminator. Forming can take place.
  • step (ii) prepare the silicone rubber composition sheet 6 irradiated with ultraviolet rays in step (ii) ((1) in FIG. 3), and place it on the light-receiving surface light-transmitting substrate or the light-receiving surface light-transmitting film 1 ( (2) in FIG. 3).
  • the perovskite solar cell 2 is placed on the silicone rubber composition sheet 6 so that the light-receiving surface side is oriented toward the lower light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 (( 3)).
  • a silicone rubber composition sheet 6 irradiated with ultraviolet rays in step (ii) is placed thereon ((4) in FIG.
  • this temporary laminate (a state in which the perovskite solar cell 2 and the silicone rubber composition sheet 6 are temporarily laminated between the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 and the back substrate or back film 4 ) is pressed for 20 to 60 minutes at 20 to 100° C., preferably 60 to 100° C., under reduced pressure using a vacuum laminator, the silicone rubber composition sheet 6 is cured and the silicone rubber sealing layer 3 , and are fixed to and integrated with the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 , the rear substrate or rear film 4 , and the perovskite solar cell 2 .
  • a perovskite solar cell module 12 is obtained (step (6) in FIG. 3).
  • the pressing temperature is 20°C or higher, the solar cell can be more reliably sealed with the silicone rubber sealing layer. If the temperature is 100° C. or less, it is possible to more reliably prevent deformation and output reduction due to heat.
  • curing of the silicone rubber composition may be performed in either step (ii) or step (iii), or may be performed in both. That is, the curing of the composition may be completed by irradiating ultraviolet rays in step (ii) and only pressing may be performed at room temperature in step (iii), or when pressing the uncured composition in step (iii). Heat curing of the composition may be performed together. Alternatively, the composition may be in a so-called semi-cured state in step (ii), and heat-curing may be performed simultaneously with pressing in step (iii) to complete curing of the composition.
  • Example 1-1 100 parts by mass of an organopolysiloxane composed of 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units, and 0.125 mol% of dimethylvinylsiloxane units and having an average degree of polymerization of about 6,000, BET ratio 70 parts by mass of silica having a surface area of 300 m 2 /g (trade name Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.), 16 parts by mass of hexamethyldisilazane as a dispersant, and 4 parts by mass of water were added and kneaded in a kneader.
  • an organopolysiloxane composed of 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units, and 0.125 mol% of dimethylvinylsiloxane units and having an average degree of
  • a compound was prepared by heat treatment at 170° C. for 2 hours.
  • a toluene solution of (methylcyclopentadienyl) trimethylplatinum complex platinum concentration: 0.5% by mass
  • platinum concentration 0.5% by mass
  • methylhydrogendimethylpolysiloxane having both ends blocked with trimethylsiloxy groups and having an average of 20 hydrosilyl groups in side chains (average degree of polymerization 40, hydrosilyl group amount 0.0074 mol/ g) 0.3 parts by mass (an amount of 2.1 mol of hydrosilyl groups per 1 mol of alkenyl groups in the organopolysiloxane) were mixed in a two-roll mill to prepare a silicone rubber composition. Thereafter, a silicone rubber composition sheet was formed with a calender roll so as to have a thickness of
  • an organopolysiloxane composed of 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units, and 0.125 mol% of dimethylvinylsiloxane units and having
  • a compound was prepared by heat treatment at 170° C. for 2 hours. Based on 100 parts by mass of the compound, 0.05 parts by mass of a xylene solution of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum complex (platinum concentration 1% by mass) (for organopolysiloxane, 9 ppm in terms of platinum group metal mass), 0.025 parts by mass of ethynylcyclohexanol as a reaction control agent, and methylhydrogendimethylpolysiloxane ( Average degree of polymerization 40, amount of hydrosilyl groups 0.0074 mol/g) 0.3 parts by mass (an amount of 2.1 mol of hydrosilyl groups per 1 mol of alkenyl groups of organopolysiloxane) was mixed in a two-roll mill. , to prepare a silicone rubber composition. Thereafter, a silicone rubber composition sheet was formed with a calender roll so as to have a thickness of
  • Examples 2-1 to 2-3 The silicone rubber composition sheet obtained in Example 1-1 was allowed to stand for 3 days under conditions of 25° C., 50% RH, blocking ultraviolet rays, and then irradiated with UV light having a wavelength of 365 nm using an ultraviolet irradiation device. Irradiated at a dose of 6,000 mJ/cm 2 was prepared.
  • a white plate glass (size: 100 ⁇ 100 mm, thickness: 3.2 mm) was prepared as the light-receiving surface light-transmitting substrate 1, and a silicone rubber composition sheet 6 was formed thereon after UV irradiation.
  • a silicone rubber composition sheet (size 100 x 100 mm, thickness 0.5 mm) is placed on top of the perovskite solar cell 2 (size 50 x 50 mm, thickness 1 mm), and the light receiving surface side is oriented to the lower white plate glass. and placed in the center of the top of the silicone rubber sheet composition 6.
  • the silicone rubber composition sheet 6 (size: 100 ⁇ 100 mm, thickness: 0.5 mm) after UV irradiation was placed, and on top of that, a white plate glass (size: 100 ⁇ 100 mm, thickness: 3.5 mm) was placed as the rear substrate 4 . 2 mm) to obtain a temporary laminate.
  • this temporary laminate was subjected to each temperature condition of 60° C. (Example 2-1), 80° C. (Example 2-2), and 100° C. (Example 2-3) under vacuum using a vacuum laminator device. and pressed for 30 minutes each to manufacture a perovskite solar cell module 12 .
  • Comparative Examples 2-6 to 2-10 Comparative Examples 2-1 to 2-5 were repeated except that an EVA (ethylene-vinyl acetate copolymer) sheet (100 ⁇ 100 mm, thickness 0.45 mm) was used instead of the silicone rubber composition sheet 6.
  • EVA ethylene-vinyl acetate copolymer
  • Example 1-1 As shown in Table 1, in Examples 2-1 to 2-3, the silicone rubber composition sheet obtained in Example 1-1 was used as a solar cell encapsulant. Even at low temperatures, good results were obtained in both cell coverage and output retention.
  • Comparative Example 1-1 which is a thermosetting composition that does not use a photoactive hydrosilylation reaction catalyst, was used as a solar cell encapsulant (Comparative Examples 2-1 to 2-5 ), even at higher temperatures, the solar cell coverage by lamination was insufficient.
  • Comparative Examples 2-6 to 2-9 when an EVA sheet is used as a solar cell encapsulant, the melting of EVA is insufficient under the conditions of 60°C to 120°C, so the lamination process The solar cell coverage was poor. On the other hand, at 140° C. (Comparative Example 2-10), although the solar cell coverage was good, the output of the resulting solar cell module was inferior because it exceeded the perovskite solar cell's allowable heat resistance temperature. .
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

The present invention provides a solar cell module (11) which is provided with a solar cell (2) and a silicone rubber sealing layer (3), and which is characterized in that the silicone rubber sealing layer (3) is a cured product of a silicone rubber composition that contains a photoactive hydrosilylation catalyst. Consequently, the present invention provides: a solar cell sealing material which is capable of sealing, at low temperatures, a perovskite solar cell, an organic thin film solar cell, a flexible solar cell, a solar cell that applies a transparent resin or film to a light-transmitting substrate, and the like, by means of a conventional vacuum heating laminator without causing output reduction of a solar cell or deformation due to heat; a solar cell module; and a method for producing a solar cell module.

Description

太陽電池モジュール及びその製造方法、並びに太陽電池封止材SOLAR CELL MODULE, MANUFACTURING METHOD THEREOF, AND SOLAR CELL SEALING MATERIAL
 本発明は、シリコーンゴム封止層を有する太陽電池モジュール及びその製造方法並びに太陽電池封止材に関する。 The present invention relates to a solar cell module having a silicone rubber sealing layer, a method for manufacturing the same, and a solar cell sealing material.
 近年、コスト低減ならびに意匠性を重視したフレキシブル型太陽電池や、シースルー性を有した太陽電池、軽量で取り扱いに優れた有機薄膜太陽電池、光透過性基板としてガラス以外の透明樹脂または透明フィルムを使用した太陽電池の開発が盛んに行われている。中でも、低価格化ならびに高効率を両立する太陽電池として、ペロブスカイト型化合物を発電層に有した太陽電池(以下、「ペロブスカイト型太陽電池」と呼ぶ)の研究開発が進められている。ペロブスカイト型太陽電池は、結晶シリコン系太陽電池に比べ安価で製造することができ、高い発電効率を有する。ペロブスカイト型太陽電池素子は、受光面側から、光透過性基板または光透過性フィルム、透明導電膜、電子輸送層、発電層、正孔輸送層、背面電極を積層することで得られる。上記素子を封止する、いわゆるモジュール化工程においては、背面電極のさらに背面側に封止材を適用させ、最背面に基板ならびにフィルムなどで封止した構造が検討されている。受光面側光透過性基板ならびに最背面側基板にガラスなどを使用する構造や、受光面側に光透過性フィルム、最背面側にフィルムを使用するフレキシブル構造など、種々提案がなされている。 In recent years, flexible solar cells that emphasize cost reduction and designability, solar cells with see-through properties, lightweight and easy-to-handle organic thin-film solar cells, and transparent resins or transparent films other than glass have been used as light-transmitting substrates. The development of solar cells that have In particular, as a solar cell that achieves both low cost and high efficiency, research and development of a solar cell having a perovskite compound in its power generation layer (hereinafter referred to as a "perovskite solar cell") is underway. Perovskite solar cells can be manufactured at a lower cost than crystalline silicon solar cells, and have high power generation efficiency. A perovskite solar cell element is obtained by laminating a light-transmitting substrate or a light-transmitting film, a transparent conductive film, an electron transport layer, a power generation layer, a hole transport layer, and a back electrode from the light receiving surface side. In the so-called modularization process for sealing the above elements, a structure in which a sealing material is applied to the rear side of the back electrode and the rearmost side is sealed with a substrate and a film has been studied. Various proposals have been made, such as a structure using glass or the like for the light-receiving side light-transmitting substrate and the backmost side substrate, and a flexible structure using a light-transmitting film on the light-receiving side and a film on the backmost side.
 一方、ペロブスカイト型太陽電池は水蒸気に弱く、水蒸気を高いレベルで遮断することが望まれる。特に太陽電池は、屋外において過酷な環境に長時間晒されるため、封止材ならびに封止工程は極めて重要なものとなる。 On the other hand, perovskite solar cells are vulnerable to water vapor, and it is desirable to block water vapor at a high level. In particular, solar cells are exposed to harsh environments for a long period of time outdoors, so encapsulating materials and encapsulating processes are extremely important.
 加えて、ペロブスカイト型太陽電池は、熱に弱く、封止する際の温度に留意する必要がある。封止材は、一般的に熱することによって、充填、接着、硬化のプロセスを経て、素子を封止する能力を得る。従って、加熱工程は重要であるが、ペロブスカイト型太陽電池の場合、120℃を超える温度を付加することは、発電能力低下につながり適当でない。 In addition, perovskite solar cells are vulnerable to heat, and it is necessary to pay attention to the temperature when sealing. The encapsulant is typically heated to gain the ability to seal the device through the process of filling, bonding, and curing. Therefore, although the heating process is important, in the case of perovskite solar cells, applying a temperature exceeding 120° C. leads to a decrease in power generation capacity and is not suitable.
 特許文献1には、封止材として、ポリイソブチレン系ポリマーに、酸化カルシウム等の吸湿フィラーを添加した材料を塗布し、形成することが示されている。吸湿フィラーによって水蒸気を除去する方法は、吸湿能力として有限であり、過酷な環境に長期間晒される太陽電池としては、出力保持が有限なものとなる。また、特許文献2には、アクリル系などの樹脂材料を素子に粘着させ、最表面に水蒸気バリア性を有するフィルムを貼り合わせる方法が提案されている。樹脂を使用する場合、気泡の巻き込みの問題があることや水蒸気バリアフィルムとの間の脱泡など、塗布工程に多くの課題を有する。 Patent Document 1 discloses forming a sealant by applying a material obtained by adding a hygroscopic filler such as calcium oxide to a polyisobutylene-based polymer. The method of removing water vapor with a hygroscopic filler has a finite hygroscopic capacity, and the solar cell, which is exposed to a harsh environment for a long period of time, has a finite output retention. Further, Patent Document 2 proposes a method in which a resin material such as an acrylic resin is adhered to an element, and a film having a water vapor barrier property is attached to the outermost surface of the element. When resin is used, there are many problems in the coating process, such as entrainment of air bubbles and defoaming between the resin and the water vapor barrier film.
特開2021-15902号公報Japanese Patent Application Laid-Open No. 2021-15902 特開2021-174884号公報JP 2021-174884 A
 本発明は、上記事情に鑑みなされたもので、ペロブスカイト型太陽電池、有機薄膜型太陽電池、フレキシブル型太陽電池、光透過性基板に透明樹脂やフィルムを適用した太陽電池などに対し、低温で封止することが可能であり熱による変形や太陽電池出力低下を引き起こさず、従来の真空加熱ラミネーターで封止することができる太陽電池封止材及び太陽電池モジュールとその製造方法を提供することを目的とする。 The present invention has been devised in view of the above circumstances, and is a low-temperature sealing method for perovskite solar cells, organic thin-film solar cells, flexible solar cells, and solar cells in which a transparent resin or film is applied to a light-transmissive substrate. It is an object of the present invention to provide a solar cell encapsulant, a solar cell module, and a method for manufacturing the same, which can be sealed with a conventional vacuum heating laminator without causing deformation due to heat or reduction in solar cell output. and
 上記課題を解決するために、本発明では、太陽電池セル及びシリコーンゴム封止層を備える太陽電池モジュールであって、前記シリコーンゴム封止層が、光活性型ヒドロシリル化反応触媒を含むシリコーンゴム組成物の硬化物である太陽電池モジュールを提供する。 In order to solve the above problems, the present invention provides a solar cell module comprising a solar cell and a silicone rubber sealing layer, wherein the silicone rubber sealing layer comprises a silicone rubber composition containing a photoactive hydrosilylation reaction catalyst. Provided is a solar cell module that is a cured product.
 このような太陽電池モジュールであれば、低温で封止することが可能であり熱による変形や太陽電池出力低下を引き起こさず、従来の真空加熱ラミネーターで封止することができる太陽電池モジュールを提供することができる。 Such a solar cell module can be sealed at a low temperature without causing deformation due to heat or reduction in solar cell output, and can be sealed with a conventional vacuum heating laminator. be able to.
 また、前記シリコーンゴム組成物は、
(A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部
(B)BET法で測定した比表面積が50~500m/gである補強性シリカ:10~150質量部
(C)1分子中にヒドロシリル基を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1モルに対して前記(C)成分中のヒドロシリル基が0.5~5モルとなる量
(D)光活性型ヒドロシリル化反応触媒:前記(A)成分に対し、白金族金属質量に換算して0.5~1,000ppm
を含有することが好ましい。
Further, the silicone rubber composition is
(A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) The amount of hydrosilyl groups in the component (C) becomes 0.5 to 5 moles (D) Photoactive hydrosilylation reaction catalyst: 0.5 to 0.5 in terms of platinum group metal mass relative to the component (A) 1,000ppm
It is preferable to contain
 本発明では、このようなシリコーンゴム組成物を用いることができる。 Such a silicone rubber composition can be used in the present invention.
 また、前記光活性型ヒドロシリル化反応触媒は、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体、及びビス(β-ジケトナト)白金錯体の群から選ばれる1種以上の光活性型ヒドロシリル化反応触媒であることが好ましい。 Further, the photoactive hydrosilylation reaction catalyst includes (1,5-cyclooctadienyl)diphenylplatinum complex, (1,5-cyclooctadienyl)dipropylplatinum complex, and (2,5-norboradiene)dimethylplatinum complex. , (2,5-norboradiene) diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenylplatinum complex, (methylcycloocta-1 ,5-dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcyclopentadienyl)trimethylplatinum complexes, (methylcyclopentadienyl)trihexylplatinum complex, (trimethylsilylcyclopentadienyl)trimethylplatinum complex, (dimethylphenylsilylcyclopentadienyl)triphenylplatinum complex, (cyclopentadienyl)dimethyltrimethylsilylmethylplatinum complex, and bis(β-diketonato)platinum complexes.
 本発明では、このような光活性型ヒドロシリル化反応触媒を用いることができる。 Such a photoactivated hydrosilylation reaction catalyst can be used in the present invention.
 また、前記太陽電池セルは、ペロブスカイト型太陽電池セルであることが好ましい。 Also, the solar cell is preferably a perovskite solar cell.
 このような太陽電池モジュールであれば、低価格かつ高効率な太陽電池モジュールを提供することができる。 With such a solar cell module, it is possible to provide a low-cost and highly efficient solar cell module.
 また、本発明では、上記の太陽電池モジュールの製造方法であって、
工程(i):前記シリコーンゴム組成物を準備する工程
工程(ii):前記シリコーンゴム組成物に紫外線を照射する工程
及び
工程(iii):前記紫外線を照射したシリコーンゴム組成物と前記太陽電池セルとを積層し、20~100℃の温度で押圧して前記シリコーンゴム封止層を形成する工程
を含む太陽電池モジュールの製造方法を提供する。
Further, according to the present invention, there is provided a method for manufacturing the above solar cell module,
Step (i): Step of preparing the silicone rubber composition Step (ii): Step of irradiating the silicone rubber composition with UV rays and Step (iii): The UV-irradiated silicone rubber composition and the solar cell and pressing at a temperature of 20 to 100° C. to form the silicone rubber sealing layer.
 このような太陽電池モジュールの製造方法であれば、低温で封止することが可能であり熱による変形や太陽電池出力低下を引き起こさず、従来の真空加熱ラミネーターで封止して太陽電池モジュールを得ることができる。 With such a method for manufacturing a solar cell module, it is possible to seal at a low temperature without causing deformation due to heat or reduction in solar cell output, and the solar cell module is obtained by sealing with a conventional vacuum heating laminator. be able to.
 また、前記太陽電池モジュールの製造方法において、前記工程(i)で準備する前記シリコーンゴム組成物の形状はシート状とすることが好ましい。 Further, in the method for manufacturing a solar cell module, the shape of the silicone rubber composition prepared in step (i) is preferably in the form of a sheet.
 このような太陽電池モジュールの製造方法であれば、太陽電池モジュールの製造に広く使用されている真空ラミネーターを用いて太陽電池モジュールを得ることができる。 With such a solar cell module manufacturing method, a solar cell module can be obtained using a vacuum laminator that is widely used for manufacturing solar cell modules.
 また、前記太陽電池モジュールの製造方法において、前記工程(iii)は、真空ラミネーターを用いて行われる工程とすることが好ましい。 Further, in the method for manufacturing a solar cell module, the step (iii) is preferably a step performed using a vacuum laminator.
 このような太陽電池モジュールの製造方法であれば、簡便に太陽電池モジュールを得ることができる。 With such a method for manufacturing a solar cell module, a solar cell module can be obtained easily.
 また、本発明では、
 太陽電池封止材であって、
(A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部
(B)BET法で測定した比表面積が50~500m/gである補強性シリカ:10~150質量部
(C)1分子中にヒドロシリル基を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1モルに対して前記(C)成分中のヒドロシリル基が0.5~5モルとなる量
及び
(D)光活性型ヒドロシリル化反応触媒:前記(A)成分に対し、白金族金属質量に換算して0.5~1,000ppm
を含むシリコーンゴム組成物からなる太陽電池封止材を提供する。
Moreover, in the present invention,
A solar cell encapsulant,
(A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) 0.5 to 5 moles of hydrosilyl groups in component (C) and (D) photoactive hydrosilylation reaction catalyst: 0.5 in terms of mass of platinum group metal relative to component (A) ~1,000ppm
Provided is a solar cell encapsulant made of a silicone rubber composition containing
 このような太陽電池封止材であれば、低温で封止することが可能であり熱による変形や太陽電池出力低下を引き起こさず、従来の真空加熱ラミネーターで封止することができる太陽電池封止材を提供できる。 With such a solar cell encapsulant, it is possible to seal at a low temperature, and it does not cause deformation due to heat or a reduction in solar cell output, and can be sealed with a conventional vacuum heating laminator. material can be provided.
 また、本発明において、前記光活性型ヒドロシリル化反応触媒は、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体、及びビス(β-ジケトナト)白金錯体の群から選ばれる1種以上の光活性型ヒドロシリル化反応触媒であることが好ましい。 In the present invention, the photoactivated hydrosilylation reaction catalyst includes (1,5-cyclooctadienyl)diphenylplatinum complex, (1,5-cyclooctadienyl)dipropylplatinum complex, (2,5-norboradiene ) dimethylplatinum complex, (2,5-norboradiene)diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenylplatinum complex, (methyl Cycloocta-1,5-dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcyclopentadienyl) (enyl)trimethylplatinum complex, (methylcyclopentadienyl)trihexylplatinum complex, (trimethylsilylcyclopentadienyl)trimethylplatinum complex, (dimethylphenylsilylcyclopentadienyl)triphenylplatinum complex, (cyclopentadienyl)dimethyltrimethylsilyl It is preferably one or more photoactivated hydrosilylation reaction catalysts selected from the group consisting of methylplatinum complexes and bis(β-diketonato)platinum complexes.
 本発明では、このような光活性型ヒドロシリル化反応触媒を用いることができる。 Such a photoactivated hydrosilylation reaction catalyst can be used in the present invention.
 また、本発明の太陽電池封止材は、シート状のものであることが好ましい。 Also, the solar cell encapsulant of the present invention is preferably in the form of a sheet.
 このような太陽電池封止材であれば、太陽電池モジュールの製造に広く使用されている真空ラミネーターを用いて封止することができる太陽電池封止材を提供することができる。 With such a solar cell encapsulant, it is possible to provide a solar cell encapsulant that can be sealed using a vacuum laminator that is widely used in the manufacture of solar cell modules.
 本発明によれば、太陽電池セルを低温で封止することができるため、変形がなく、ペロブスカイト型太陽電池などの熱が出力に大きく影響する太陽電池の初期出力を低下させることなく太陽電池モジュールを製造することが可能である。また、本発明によれば、太陽電池モジュールを、真空ラミネーター等を用いて容易に製造することが可能である。 According to the present invention, since the solar cells can be sealed at a low temperature, there is no deformation, and the solar cell module does not reduce the initial output of a solar cell whose output is greatly affected by heat, such as a perovskite solar cell. It is possible to manufacture Moreover, according to the present invention, a solar cell module can be easily manufactured using a vacuum laminator or the like.
本発明に係るペロブスカイト型太陽電池モジュールの一例を示す縦断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional schematic which shows an example of the perovskite-type solar cell module which concerns on this invention. 本発明に係るペロブスカイト型太陽電池モジュールの別の一例を示す縦断面概略図である。FIG. 3 is a schematic vertical cross-sectional view showing another example of the perovskite solar cell module according to the present invention; 本発明に係るペロブスカイト型太陽電池モジュールの作製工程を示す縦断面概略図である。FIG. 3 is a schematic vertical cross-sectional view showing a manufacturing process of a perovskite solar cell module according to the present invention;
 上述のように、低温で封止することが可能であり熱による変形や太陽電池出力低下を引き起こさず、従来の真空加熱ラミネーターで封止することができる太陽電池モジュールの開発が求められていた。 As described above, there has been a demand for the development of a solar cell module that can be sealed at a low temperature, does not cause deformation due to heat, does not cause a decrease in solar cell output, and can be sealed with a conventional vacuum heating laminator.
 本発明者らは、上記目的を達成するため検討を行った結果、光活性型ヒドロシリル化反応触媒により硬化するシリコーンゴム組成物を太陽電池封止材として用いることにより、太陽電池の発電能力の低下を生じさせず、かつ、簡便に太陽電池モジュールが得られることを見出し、本発明を完成した。 The inventors of the present invention conducted studies to achieve the above object and found that the use of a silicone rubber composition that cures with a photoactivated hydrosilylation reaction catalyst as a solar cell encapsulant reduces the power generation capacity of solar cells. The present inventors have found that a solar cell module can be obtained simply without causing a
 即ち、本発明は、太陽電池セル及びシリコーンゴム封止層を備える太陽電池モジュールであって、前記シリコーンゴム封止層が、光活性型ヒドロシリル化反応触媒を含むシリコーンゴム組成物の硬化物である太陽電池モジュールである。 That is, the present invention provides a solar cell module comprising a solar cell and a silicone rubber sealing layer, wherein the silicone rubber sealing layer is a cured product of a silicone rubber composition containing a photoactive hydrosilylation reaction catalyst. It is a solar cell module.
 また、本発明は、
 太陽電池封止材であって、
(A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部
(B)BET法で測定した比表面積が50~500m/gである補強性シリカ:10~150質量部
(C)1分子中にヒドロシリル基を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1モルに対して前記(C)成分中のヒドロシリル基が0.5~5モルとなる量
及び
(D)光活性型ヒドロシリル化反応触媒:前記(A)成分に対し、白金族金属質量に換算して0.5~1,000ppm
を含むシリコーンゴム組成物からなる太陽電池封止材である。
In addition, the present invention
A solar cell encapsulant,
(A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) 0.5 to 5 moles of hydrosilyl groups in component (C) and (D) photoactive hydrosilylation reaction catalyst: 0.5 in terms of mass of platinum group metal relative to component (A) ~1,000ppm
A solar cell encapsulant made of a silicone rubber composition containing
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Although the present invention will be described in detail below, the present invention is not limited to these.
[太陽電池モジュール]
 以下に、本発明に係る太陽電池モジュールについてペロブスカイト型太陽電池モジュールを例に説明するが、本発明はペロブスカイト型以外の太陽電池モジュールにも同様に適用することができる。
[Solar module]
Although a perovskite solar cell module will be described below as an example of the solar cell module according to the present invention, the present invention can be similarly applied to solar cell modules other than the perovskite type.
 図1は、本発明に係るペロブスカイト型太陽電池モジュールの一実施形態における構成を示す断面図である。ペロブスカイト型太陽電池モジュール10は、受光面光透過性基板または受光面光透過性フィルム1の裏面上に積層されたペロブスカイト型太陽電池セル2の背面側に、上記ペロブスカイト型太陽電池セル2を覆う形態でシリコーンゴム封止層3を配置し、その上部に背面基板または背面フィルム4を積層配置し、さらにペロブスカイト型太陽電池モジュール10の端部に端部シール材5を配置した構造を有するものである。シリコーンゴム封止層3は、光活性型ヒドロシリル化反応触媒を含むシリコーンゴム組成物の硬化物である。 FIG. 1 is a cross-sectional view showing the configuration of one embodiment of a perovskite solar cell module according to the present invention. The perovskite solar cell module 10 covers the perovskite solar cell 2 on the back side of the perovskite solar cell 2 laminated on the back surface of the light-receiving surface light-transmitting substrate or the light-receiving surface light-transmitting film 1. A silicone rubber sealing layer 3 is arranged, a rear substrate or a rear film 4 is laminated on the top thereof, and an end sealing material 5 is arranged at the end of the perovskite solar cell module 10. . The silicone rubber sealing layer 3 is a cured silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
 図2は、本発明に係るペロブスカイト型太陽電池モジュールのもう一つの実施形態における構成を示す断面図である。ペロブスカイト型太陽電池モジュール11は、受光面光透過性基板または受光面光透過性フィルム1上にシリコーンゴム封止層3が配置され、前記シリコーンゴム封止層3の上にペロブスカイト型太陽電池セル2を配置する。上記ペロブスカイト型太陽電池セル2の上に上記ペロブスカイト型太陽電池セル2を覆う形態で、再度シリコーンゴム封止層3を配置し、その上部に背面基板または背面フィルム4を積層配置し、さらにペロブスカイト型太陽電池モジュール11の端部に端部シール材5を配置した構造を有するものである。この場合、ペロブスカイト型太陽電池セル2は、他の基材や他の太陽電池セルと組み合わせても良い。背面基板または背面フィルム4は、透明であっても良いし、不透明であっても良く、また水蒸気バリア性を有するフィルムを用いても良い。シリコーンゴム封止層3は、光活性型ヒドロシリル化反応触媒を含むシリコーンゴム組成物の硬化物である。 FIG. 2 is a cross-sectional view showing the configuration of another embodiment of the perovskite solar cell module according to the present invention. A perovskite solar cell module 11 has a silicone rubber sealing layer 3 disposed on a light-receiving surface light-transmitting substrate or a light-receiving surface light-transmitting film 1 , and a perovskite solar cell 2 on the silicone rubber sealing layer 3 . to place. A silicone rubber sealing layer 3 is again placed on the perovskite solar cell 2 in such a manner as to cover the perovskite solar cell 2, and a rear substrate or a rear film 4 is laminated thereon, and the perovskite solar cell 2 is further laminated. It has a structure in which the end sealing material 5 is arranged at the end of the solar cell module 11 . In this case, the perovskite solar cell 2 may be combined with other base materials or other solar cells. The back substrate or back film 4 may be transparent or opaque, and a film having water vapor barrier properties may be used. The silicone rubber sealing layer 3 is a cured silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
 ここで、受光面光透過性基板または受光面光透過性フィルム1は、太陽光を入射させる側となる透明部材であり、透明性、耐候性、耐衝撃性をはじめとして屋外使用において長期の信頼性能を有する部材が必要である。例えば、受光面光透過性基板の例として透明ガラスが挙げられ、青板ガラスや白板強化ガラスが好ましい。受光面光透過性フィルムとしては、高い水蒸気バリア性を有する光透過性フィルムが好ましく、水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が50g/(m2・24h)以下の材料を適用するのが好ましく、10g/(m2・24h)以下であることがより好ましく、5g/(m2・24h)以下であることが更に好ましい。 Here, the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 is a transparent member on which sunlight is incident. A member with performance is required. For example, transparent glass is mentioned as an example of a light-receiving surface light-transmitting substrate, and blue plate glass and white plate tempered glass are preferable. As the light-receiving surface light-transmitting film, a light-transmitting film having high water vapor barrier properties is preferable, and the water vapor transmission rate (JIS Z0208: 1976, condition B (40°C, 90% RH)) is 50 g/(m 2 · 24 h). ) The following materials are preferably applied, more preferably 10 g/(m 2 ·24 h) or less, and even more preferably 5 g/(m 2 ·24 h) or less.
 ペロブスカイト型太陽電池セル2は、通常、光透過性基板上に電子輸送層、ペロブスカイト型化合物で形成される発電層、正孔輸送層、背面電極を積層させたものであるが、この構造に限らない。 The perovskite-type solar cell 2 usually has an electron-transporting layer, a power-generating layer made of a perovskite-type compound, a hole-transporting layer, and a back electrode laminated on a light-transmitting substrate. do not have.
 シリコーンゴム封止層3は、ペロブスカイト型太陽電池セル2を隙間なく覆うように配置されるものであり、受光面光透過性基板または受光面光透過性フィルム1と、ペロブスカイト型太陽電池セル2と、背面基板または背面フィルム4とがそれぞれよく密着するシリコーンゴムであることが好ましい。 The silicone rubber sealing layer 3 is arranged so as to cover the perovskite solar cell 2 with no space between the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 and the perovskite solar cell 2. , the rear substrate or the rear film 4 are preferably made of silicone rubber, which can be in close contact with each other.
 また、シリコーンゴム封止層3は、難燃性を有するため、太陽電池モジュールとしての適用範囲を拡大することが可能である。 In addition, since the silicone rubber sealing layer 3 has flame retardancy, it is possible to expand the range of application as a solar cell module.
 シリコーンゴム封止層3の厚さは0.1~3mmが好ましく、0.1~1mmがより好ましい。 The thickness of the silicone rubber sealing layer 3 is preferably 0.1-3 mm, more preferably 0.1-1 mm.
 背面基板または背面フィルム4は、ガラスなどの基板または高い水蒸気バリア性を有する背面フィルムを用いることが好ましい。水蒸気透過率(JIS Z0208:1976、条件B(40℃、90%RH))が50g/(m2・24h)以下の材料を適用するのが好ましく、10g/(m2・24h)以下であることがより好ましく、5g/(m2・24h)以下であることが更に好ましい。 As the rear substrate or rear film 4, it is preferable to use a substrate such as glass or a rear film having high water vapor barrier properties. It is preferable to use a material with a water vapor transmission rate (JIS Z0208:1976, condition B (40°C, 90% RH)) of 50 g/(m 2 ·24 h) or less, and 10 g/(m 2 ·24 h) or less. is more preferably 5 g/(m 2 ·24 h) or less.
 また、背面基板または背面フィルム4に求められるその他の特性としては、長期使用環境に耐えるため、耐熱性、耐候性、耐湿性、耐電圧性、耐紫外線性の他、シリコーンゴム封止層3との密着性が要求される。 Other properties required for the back substrate or back film 4 include heat resistance, weather resistance, moisture resistance, voltage resistance, ultraviolet resistance, and resistance to silicone rubber sealing layer 3 in order to withstand long-term use environments. of adhesion is required.
 背面基板としては白板ガラス、青板ガラスなどを使用することができる。背面フィルムとしては、フッ素樹脂フィルムとPETフィルムとを組み合わせて水蒸気透過率を調整した積層フィルム、または金属薄膜とPETフィルムを組み合わせた積層フィルム、PENフィルム等に薄い金属層を蒸着し、水蒸気透過を抑制したフィルムなどが挙げられる。上記背面基板または背面フィルム4は、必ずしも透明である必要は無いが、光透過性を有する場合、得られる太陽電池モジュールはシースルー型、または外観に優れる太陽電池として適用範囲を拡大することができる。 White plate glass, soda plate glass, etc. can be used as the back substrate. As the back film, a laminated film in which a fluororesin film and a PET film are combined to adjust the water vapor transmission rate, or a laminated film in which a metal thin film and a PET film are combined, a thin metal layer is vapor-deposited on a PEN film, etc. to reduce water vapor transmission. suppressed film and the like. The back substrate or back film 4 does not necessarily have to be transparent, but if it has light transmittance, the resulting solar cell module can be of a see-through type or a solar cell with an excellent appearance, and the range of application can be expanded.
 受光面光透過性基板または受光面光透過性フィルム1及び背面基板または背面フィルム4を、ともに薄型ガラスまたはフィルムとした場合、フレキシブル型太陽電池を形成することが可能である。 When the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 and the back substrate or back film 4 are both made of thin glass or film, it is possible to form a flexible solar cell.
 また、予めシリコーンゴム封止層3と背面フィルム4とを積層してもよく、その場合、シリコーンゴム封止層3と背面フィルム4とが一体の積層シートとなり、真空加熱ラミネーターで封止を行う際、同時に取り扱うことができ、製造工程を簡略化することができる。 Alternatively, the silicone rubber sealing layer 3 and the backing film 4 may be laminated in advance. In this case, the silicone rubber sealing layer 3 and the backing film 4 form an integrated laminated sheet, which is then sealed with a vacuum heating laminator. At the same time, they can be handled at the same time, and the manufacturing process can be simplified.
 シリコーンゴム封止層3を配置する際、併設して端部シール材5を配置してもよい。この場合、端部シール材5は、水蒸気バリア性に優れる樹脂などが好適であり、例としてブチルゴムやエポキシ樹脂などが挙げられる。一例として、端部シール材5は、受光面光透過性基板1の端部に配置し、かつペロブスカイト型太陽電池2に接しないように配置する構造が挙げられる。この場合、端部シール材5の幅は、前記範囲を考慮し配置すればよく、特に限定されない。シリコーンゴム封止層3は、端部シール材5の内側に配置するため、内側のサイズに合わせることが必要である。また、端部シール材5の厚みは、シリコーンゴム封止層3と合わせるのが好適である。端部シール材5が熱硬化性である場合、シリコーンゴム封止層3と併設した状態で、真空加熱ラミネーターにて同時に形成することができる。また、シリコーンゴム封止層3を受光面光透過性基板1の全面に配置し、封止を形成した後、受光面光透過性基板1の外周側面に端部シール材5を配置することもできる。シリコーンゴム封止層3と端部シール材5の組み合わせは、太陽電池モジュールの構成に応じて適宜変更すればよく、この例に限らない。 When arranging the silicone rubber sealing layer 3, the end sealing material 5 may be arranged together. In this case, the end sealing material 5 is preferably made of resin having excellent water vapor barrier properties, and examples thereof include butyl rubber and epoxy resin. One example is a structure in which the end sealing material 5 is arranged at the end of the light-receiving surface light-transmitting substrate 1 and is arranged so as not to come into contact with the perovskite solar cell 2 . In this case, the width of the end sealing material 5 may be arranged in consideration of the above range, and is not particularly limited. Since the silicone rubber sealing layer 3 is placed inside the edge sealing material 5, it is necessary to match the size of the inside. Also, the thickness of the end sealing material 5 is preferably the same as that of the silicone rubber sealing layer 3 . When the end sealing material 5 is thermosetting, it can be formed together with the silicone rubber sealing layer 3 by a vacuum heating laminator. Alternatively, after the silicone rubber sealing layer 3 is arranged on the entire surface of the light-receiving surface light-transmitting substrate 1 to form a seal, the end sealing material 5 may be arranged on the outer peripheral side surface of the light-receiving surface light-transmitting substrate 1. can. The combination of the silicone rubber sealing layer 3 and the end sealing material 5 may be appropriately changed according to the configuration of the solar cell module, and is not limited to this example.
[シリコーンゴム組成物(太陽電池封止材)]
 上記シリコーンゴム封止層3は、光活性型ヒドロシリル化反応触媒を含むシリコーンゴム組成物の硬化物からなる。
[Silicone rubber composition (solar cell encapsulant)]
The silicone rubber sealing layer 3 is made of a cured silicone rubber composition containing a photoactive hydrosilylation reaction catalyst.
 シリコーンゴム組成物としては、光活性型ヒドロシリル化反応触媒を含み、光照射により硬化するシリコーンゴム組成物であれば、低温でシリコーンゴム封止層を形成することが可能であり、熱による太陽電池モジュールの変形や出力低下を防ぐことができるため特に限定されるものではないが、下記(A)~(D)成分を含有するシリコーン組成物が好ましい。 As the silicone rubber composition, if it is a silicone rubber composition that contains a photoactive hydrosilylation reaction catalyst and is cured by light irradiation, it is possible to form a silicone rubber sealing layer at a low temperature, and a solar cell can be produced by heat. Although it is not particularly limited because it can prevent deformation and output reduction of the module, silicone compositions containing the following components (A) to (D) are preferred.
(A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部
(B)BET法で測定した比表面積が50~500m/gである補強性シリカ:10~150質量部
(C)1分子中にヒドロシリル基を2個以上有するオルガノハイドロジェンポリシロキサン:(A)成分中のアルケニル基1モルに対して(C)成分中のヒドロシリル基が0.5~5モルとなる量
(D)光活性型ヒドロシリル化反応触媒:(A)成分に対し、白金族金属質量に換算して0.5~1,000ppm
(A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per mol of alkenyl groups in component (A) ( (D) Photoactive hydrosilylation reaction catalyst: 0.5 to 1,000 ppm in terms of mass of platinum group metal relative to component (A)
(A)アルケニル基含有オルガノポリシロキサン
 上記シリコーンゴム組成物に使用することが好ましい(A)成分のオルガノポリシロキサンは、重合度(又は分子中のケイ素原子数)が100~10,000であって、1分子中にケイ素原子に結合した2個以上のアルケニル基を有するオルガノポリシロキサンである。(A)成分のオルガノポリシロキサンは、好適には、室温(25℃)で生ゴム状(即ち、高粘度で自己流動性のない非液状)の成分である。このアルケニル基含有オルガノポリシロキサンを主剤として配合するシリコーンゴム組成物は、通常、ミラブル型の(即ち、生ゴム状であって、ロールミル等の混練機により、せん断応力下に均一に混練することが可能な)組成物となるものである。
(A) Alkenyl group-containing organopolysiloxane Component (A), which is preferably used in the silicone rubber composition, has a degree of polymerization (or the number of silicon atoms in the molecule) of 100 to 10,000. , is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule. The organopolysiloxane of component (A) is preferably a raw rubber-like component (that is, non-liquid with high viscosity and no self-fluidity) at room temperature (25° C.). A silicone rubber composition containing this alkenyl group-containing organopolysiloxane as a main component is usually of a millable type (that is, raw rubber-like) and can be uniformly kneaded under shear stress by a kneader such as a roll mill. i) the composition.
 (A)成分のアルケニル基含有オルガノポリシロキサンとしては、例えば、下記平均組成式(I)で表されるものが挙げられる。
 R1 aSiO(4-a)/2     (I)
(式(I)中、Rは同一又は異種の炭素数1~12の1価炭化水素基を示し、aは1.95~2.05の数である。)
Examples of the alkenyl group-containing organopolysiloxane of component (A) include those represented by the following average compositional formula (I).
R1aSiO ( 4-a)/2 (I)
(In formula (I), R 1 represents the same or different monovalent hydrocarbon group having 1 to 12 carbon atoms, and a is a number of 1.95 to 2.05.)
 上記平均組成式(I)中、R1は同一又は異種の炭素数1~12、好ましくは1~8の1価炭化水素基を示し、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;3,3,3-トリフルオロプロピル基等のフルオロアルキル基;ビニル基、アリル基、プロペニル基等のアルケニル基;シクロアルケニル基、フェニル基、トリル基等のアリール基;ベンジル基、2-フェニルエチル基等のアラルキル基等が挙げられ、メチル基、ビニル基、フェニル基、トリフルオロプロピル基が好ましく、特にメチル基、ビニル基が好ましい。 In the above average composition formula (I), R 1 represents the same or different monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, specifically, methyl group, ethyl group, propyl group, Alkyl groups such as butyl group, hexyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; fluoroalkyl groups such as 3,3,3-trifluoropropyl group; alkenyl group; aryl group such as cycloalkenyl group, phenyl group and tolyl group; aralkyl group such as benzyl group and 2-phenylethyl group; A methyl group and a vinyl group are particularly preferred.
 (A)成分のアルケニル基含有オルガノポリシロキサンとしては、具体的には、該オルガノポリシロキサンの主鎖がジメチルシロキサン単位の繰り返しからなるもの、又はこの主鎖を構成するジメチルシロキサン単位の繰り返しからなるジメチルポリシロキサン構造の一部にフェニル基、ビニル基、3,3,3-トリフルオロプロピル基等を有するジフェニルシロキサン単位、メチルフェニルシロキサン単位、メチルビニルシロキサン単位、メチル-3,3,3-トリフルオロプロピルシロキサン単位等を導入したもの等が好適である。 Specific examples of the alkenyl group-containing organopolysiloxane of component (A) are those in which the main chain of the organopolysiloxane consists of repeating dimethylsiloxane units, or in which the main chain consists of repeating dimethylsiloxane units. Diphenylsiloxane units, methylphenylsiloxane units, methylvinylsiloxane units, methyl-3,3,3-tri Those into which a fluoropropylsiloxane unit or the like is introduced are suitable.
 (A)成分のオルガノポリシロキサンは、1分子中に2個以上(通常、2~50個、特には2~20個)のアルケニル基、好ましくはビニル基を有し、例えば、上記平均組成式(I)中の全R1基に対して、0.01~10%、特に0.02~5%がアルケニル基であることが好ましい。 The component (A) organopolysiloxane has 2 or more (usually 2 to 50, particularly 2 to 20) alkenyl groups, preferably vinyl groups, in one molecule. It is preferred that 0.01 to 10%, especially 0.02 to 5% of all R 1 groups in (I) are alkenyl groups.
 なお、上記アルケニル基は、分子鎖末端でケイ素原子に結合していても、分子鎖の途中(非末端)のケイ素原子に結合していても、その両方であってもよいが、少なくとも分子鎖両末端のケイ素原子に結合したアルケニル基を含有していることが好ましい。具体的には分子鎖末端がジメチルビニルシリル基、メチルジビニルシリル基、トリビニルシリル基等で封鎖されたものが好ましい。 The alkenyl group may be bonded to a silicon atom at the terminal of the molecular chain, bonded to a silicon atom in the middle (non-terminal) of the molecular chain, or both. It preferably contains alkenyl groups bonded to silicon atoms at both ends. Specifically, those whose molecular chain ends are blocked with a dimethylvinylsilyl group, a methyldivinylsilyl group, a trivinylsilyl group, or the like are preferred.
 上記平均組成式(I)において、aは1.95~2.05の数であり、好ましくは1.98~2.02、より好ましくは1.99~2.01の数である。(A)成分のアルケニル基含有オルガノポリシロキサンの分子構造は、基本的には、主鎖がジオルガノシロキサン単位(R1 SiO2/2)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R1 SiO1/2)で封鎖された直鎖状構造であることが一般的であるが、ゴム弾性を損なわない範囲において主鎖中に少量の分岐単位(R1SiO3/2)を含有した分岐状構造であってもよい(R1は上記と同一である)。 In the average composition formula (I) above, a is a number from 1.95 to 2.05, preferably from 1.98 to 2.02, more preferably from 1.99 to 2.01. The molecular structure of component (A), alkenyl group-containing organopolysiloxane, is basically such that the main chain consists of repeating diorganosiloxane units (R 1 2 SiO 2/2 ), and both ends of the molecular chain are triorganosiloxy. It is generally a linear structure blocked with a group (R 1 3 SiO 1/2 ), but a small amount of branching units (R 1 SiO 3/2 ) (R 1 is the same as above).
 (A)成分のオルガノポリシロキサンは、分子鎖末端がトリメチルシロキシ基、ジメチルフェニルシロキシ基、ジメチルヒドロキシシロキシ基、ジメチルビニルシロキシ基、メチルジビニルシロキシ基、トリビニルシロキシ基等のトリオルガノシロキシ基で封鎖されたものを好ましく挙げることができる。特に好ましいものとしては、メチルビニルポリシロキサン、メチルフェニルビニルポリシロキサン、メチルトリフルオロプロピルビニルポリシロキサン等を挙げることができる。 The organopolysiloxane of component (A) has a molecular chain end blocked with a triorganosiloxy group such as a trimethylsiloxy group, a dimethylphenylsiloxy group, a dimethylhydroxysiloxy group, a dimethylvinylsiloxy group, a methyldivinylsiloxy group and a trivinylsiloxy group. can preferably be mentioned. Particularly preferred examples include methylvinylpolysiloxane, methylphenylvinylpolysiloxane, and methyltrifluoropropylvinylpolysiloxane.
 (A)成分のオルガノポリシロキサンの重合度は、100~100,000が好ましく、より好ましくは3,000~20,000である。このような範囲であれば、ゴム強度および取り扱い性により優れる。なお、本明細書中で重合度とは下記条件で測定したゲルパーミエーションクロマトグラフィ(GPC)分析によるポリスチレン換算の平均分子量から重量平均重合度として求めた値である。 The degree of polymerization of the component (A) organopolysiloxane is preferably 100 to 100,000, more preferably 3,000 to 20,000. Within such a range, rubber strength and handleability are more excellent. In this specification, the degree of polymerization is a value obtained as a weight average degree of polymerization from the average molecular weight converted to polystyrene by gel permeation chromatography (GPC) analysis measured under the following conditions.
[GPC測定条件]
展開溶媒:トルエン
流量:0.6mL/min
検出器:示差屈折率検出器(RI)
カラム:TSK Guardcolumn SuperH-H
    TSKgel SuperH5000(6.0mmI.D.×15cm×1)
    TSKgel SuperH4000(6.0mmI.D.×15cm×1)
    TSKgel SuperH3000(6.0mmI.D.×15cm×1)
(いずれも東ソー社製)
カラム温度:40℃
試料注入量:50μL(濃度0.5質量%のトルエン溶液)
[GPC measurement conditions]
Developing solvent: toluene Flow rate: 0.6 mL/min
Detector: Differential Refractive Index Detector (RI)
Column: TSK Guard column SuperH-H
TSKgel SuperH5000 (6.0mm ID x 15cm x 1)
TSKgel Super H4000 (6.0 mm I.D. x 15 cm x 1)
TSKgel Super H3000 (6.0mm I.D. x 15cm x 1)
(both manufactured by Tosoh Corporation)
Column temperature: 40°C
Sample injection volume: 50 μL (toluene solution with a concentration of 0.5% by mass)
 (A)成分のアルケニル基含有オルガノポリシロキサンは、1種単独で用いても、分子構造や重合度の異なる2種以上を併用してもよい。 The (A) component alkenyl group-containing organopolysiloxane may be used singly or in combination of two or more with different molecular structures and degrees of polymerization.
 (A)成分のアルケニル基含有オルガノポリシロキサンは、公知の方法、例えばオルガノハロゲノシランの1種又は2種以上を(共)加水分解し、縮合することにより、或いは環状ポリシロキサンをアルカリ性又は酸性触媒を用いて開環重合することによって得ることができる。 Component (A), an alkenyl group-containing organopolysiloxane, can be prepared by a known method, for example, by (co)hydrolyzing and condensing one or more organohalogenosilanes, or by reacting a cyclic polysiloxane with an alkaline or acidic catalyst. It can be obtained by ring-opening polymerization using
(B)補強性シリカ
 上記シリコーンゴム組成物に使用することが好ましい(B)成分の補強性シリカは、硬化前後の機械的強度の優れたシリコーンゴム組成物を得るために添加されるものである。(B)成分のBET法で測定した比表面積は、シリコーンゴム組成物の機械的強度および透明性の観点から50~500m/gであることが好ましく、200~500m2/gであることがより好ましく、特に好ましくは250~500m2/gである。このような範囲であれば、太陽電池モジュールの製造において透明性が高く加工性に優れ、硬化前後の機械的強度に優れる封止層を得ることができる。
(B) Reinforcing Silica Component (B), the reinforcing silica, which is preferably used in the above silicone rubber composition, is added in order to obtain a silicone rubber composition with excellent mechanical strength before and after curing. . The specific surface area of component (B) measured by the BET method is preferably 50 to 500 m 2 /g, more preferably 200 to 500 m 2 /g, from the viewpoint of the mechanical strength and transparency of the silicone rubber composition. It is more preferably 250 to 500 m 2 /g, particularly preferably 250 to 500 m 2 /g. Within such a range, it is possible to obtain a sealing layer having high transparency, excellent workability in the production of a solar cell module, and excellent mechanical strength before and after curing.
 (B)成分の補強性シリカとしては、煙霧質シリカ(乾式シリカ又はヒュームドシリカ)、沈降シリカ(湿式シリカ)等が挙げられる。また、これらの表面をクロロシラン、アルコキシシラン、ヘキサメチルジシラザン等で疎水化処理したものも好適に用いられる。特にヘキサメチルジシラザンによる処理が、透明性が高くなり、好ましい。透明性を高めるには、補強性シリカとして煙霧質シリカの使用が好ましい。補強性シリカは、1種単独で使用しても2種以上を併用してもよい。 The reinforcing silica of component (B) includes fumed silica (dry silica or fumed silica), precipitated silica (wet silica), and the like. In addition, those whose surfaces are hydrophobized with chlorosilane, alkoxysilane, hexamethyldisilazane or the like are also preferably used. In particular, treatment with hexamethyldisilazane is preferred because of its high transparency. The use of fumed silica as the reinforcing silica is preferred for enhanced transparency. Reinforcing silica may be used singly or in combination of two or more.
 (B)成分の補強性シリカとしては、市販品を用いることができ、例えば、アエロジル130、アエロジル200、アエロジル300、アエロジルR-812、アエロジルR-972、アエロジルR-974などのアエロジルシリーズ(日本アエロジル(株)製)、Cabosil MS-5、MS-7(キャボット社製)、レオロシールQS-102、103、MT-10((株)トクヤマ製)等の表面未処理又は表面疎水化処理された(即ち、親水性又は疎水性の)ヒュームドシリカや、トクシールUS-F((株)トクヤマ製)、NIPSIL-SS、NIPSIL-LP(日本シリカ工業(株)製)等の表面未処理又は表面疎水化処理された沈降シリカ等が挙げられる。 As the reinforcing silica of the component (B), commercially available products can be used, for example, Aerosil series (Japan Aerosil Co., Ltd.), Cabosil MS-5, MS-7 (Cabot Co., Ltd.), Reolosil QS-102, 103, MT-10 (Tokuyama Co., Ltd.), etc. Surface untreated or surface hydrophobized (That is, hydrophilic or hydrophobic) fumed silica, Tokusil US-F (manufactured by Tokuyama Co., Ltd.), NIPSIL-SS, NIPSIL-LP (manufactured by Nippon Silica Industry Co., Ltd.) surface untreated or surface Hydrophobized precipitated silica and the like are included.
 (B)成分の補強性シリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して10~150質量部が好ましく、より好ましくは30~90質量部であり、更に好ましくは50~90質量部である。(B)成分の配合量が10質量部以上であると硬化前後の補強効果が得られ易く、また、シリコーンゴム組成物の硬化後の透明性が低下しない。150質量部以下であると、シリコーンゴム組成物中へのシリカの分散が良好であり、シリコーンゴム組成物をシート状に加工する際の加工性に優れるものとなる。 The amount of reinforcing silica as component (B) is preferably 10 to 150 parts by mass, more preferably 30 to 90 parts by mass, and still more preferably 50 parts by mass per 100 parts by mass of organopolysiloxane as component (A). ~90 parts by mass. When the amount of component (B) is 10 parts by mass or more, the reinforcing effect before and after curing is easily obtained, and the transparency of the silicone rubber composition after curing does not decrease. When the amount is 150 parts by mass or less, the silica is well dispersed in the silicone rubber composition, and the silicone rubber composition has excellent processability when processed into a sheet.
(C)オルガノハイドロジェンポリシロキサン
 上記シリコーンゴム組成物に使用することが好ましい(C)成分は、1分子中にケイ素原子に結合する水素原子(ヒドロシリル基)を少なくとも2個、好ましくは3個以上有するオルガノハイドロジェンポリシロキサンであり、下記平均組成式(II)で示される常温で液状のオルガノハイドロジェンポリシロキサンであることが好ましい。
 R2 bcSiO(4-b-c)/2     (II)
(式(II)中、Rは互いに独立に同一又は異種の炭素数1~10の非置換又は置換の1価炭化水素基である。bは0.7~2.1、cは0.001~1で、かつb+cは0.8~3を満足する数である。)
(C) Organohydrogenpolysiloxane Component (C), which is preferably used in the above silicone rubber composition, contains at least two, preferably three or more, silicon-bonded hydrogen atoms (hydrosilyl groups) per molecule. It is preferably an organohydrogenpolysiloxane having the following average composition formula (II) and is liquid at room temperature.
R2bHcSiO ( 4 - bc)/2 (II)
(In formula (II), R 2 is independently the same or different, unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, b is 0.7 to 2.1, c is 0.7 to 2.1). 001 to 1, and b+c is a number that satisfies 0.8 to 3.)
 式(II)中、Rの炭素数1~10の非置換又は置換の1価炭化水素基としては、炭素数1~6の非置換又は置換の脂肪族不飽和結合を有しない1価炭化水素基が好ましく、具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基、シクロヘキシル基、フェニル基、3,3,3-トリフルオロプロピル基、シアノメチル基等が挙げられ、メチル基、プロピル基、フェニル基が好ましい。 In formula (II), the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms for R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 carbon atoms and having no aliphatic unsaturated bond. A hydrogen group is preferred, and specific examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl and hexyl, cyclohexyl, phenyl, 3,3,3-trifluoropropyl and cyanomethyl. groups, etc., and a methyl group, a propyl group, and a phenyl group are preferable.
 式(II)中、bは0.7~2.1、好ましくは0.8~2.0、cは0.001~1、好ましくは0.01~1で、かつb+cは0.8~3.0、好ましくは0.9~2.7を満足する数である。 In formula (II), b is 0.7 to 2.1, preferably 0.8 to 2.0, c is 0.001 to 1, preferably 0.01 to 1, and b+c is 0.8 to It is a number that satisfies 3.0, preferably 0.9 to 2.7.
 (C)成分のオルガノハイドロジェンポリシロキサンは、ヒドロシリル基を1分子中に少なくとも2個(例えば2~300個)、好ましくは3個以上(例えば3~200個)、より好ましくは4個以上(例えば4~100個)有するが、これらは分子鎖末端にあっても、分子鎖の途中(非末端)にあっても、その両方にあってもよい。また、このオルガノハイドロジェンポリシロキサンとしては、1分子中のケイ素原子数(又は重合度)が通常2~300個、好ましくは3~200個、より好ましくは4~100個のものであればよく、また25℃における粘度が0.5~1,000mPa・sであることが好ましく、より好ましくは1~500mPa・s、特に5~300mPa・sであることが好ましい。なお、この粘度はJIS K 7117-1:1999記載の回転粘度計により25℃で測定した値を指す。 The component (C) organohydrogenpolysiloxane has at least 2 hydrosilyl groups (eg, 2 to 300), preferably 3 or more (eg, 3 to 200), more preferably 4 or more (eg, 3 to 200) per molecule. For example, 4 to 100), which may be at the end of the molecular chain, midway (non-terminal) in the molecular chain, or both. In addition, the organohydrogenpolysiloxane should generally have 2 to 300, preferably 3 to 200, and more preferably 4 to 100 silicon atoms (or the degree of polymerization) in one molecule. Also, the viscosity at 25° C. is preferably 0.5 to 1,000 mPa·s, more preferably 1 to 500 mPa·s, particularly preferably 5 to 300 mPa·s. This viscosity refers to a value measured at 25°C with a rotational viscometer described in JIS K 7117-1:1999.
 (C)成分のオルガノハイドロジェンポリシロキサンの具体例としては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンポリシロキサン、環状メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C65)SiO3/2単位とからなる共重合体等や、上記各例示化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基やフェニル基等のアリール基で置換されたものなどが挙げられる。 Specific examples of the (C) component organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, methylhydrogencyclopolysiloxane, Methylhydrogensiloxane/dimethylsiloxane cyclic copolymer, tris(dimethylhydrogensiloxy)methylsilane, tris(dimethylhydrogensiloxy)phenylsilane, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends trimethylsiloxy group-blocked dimethyl Siloxane/methylhydrogensiloxane copolymer, dimethylpolysiloxane blocked at both ends with dimethylhydrogensiloxy groups, dimethylsiloxane/methylhydrogensiloxane copolymer blocked at both ends with dimethylhydrogensiloxy groups, methylhydrogen blocked at both ends with trimethylsiloxy groups Siloxane-diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane-diphenylsiloxane-dimethylsiloxane copolymer at both ends, cyclic methylhydrogenpolysiloxane, cyclic methylhydrogensiloxane-dimethylsiloxane copolymer, cyclic methylhydroxyl Gensiloxane-diphenylsiloxane-dimethylsiloxane copolymer, copolymer consisting of (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 units, (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 In copolymers composed of units and (C 6 H 5 )SiO 3/2 units, and in the compounds exemplified above, part or all of the methyl group is an ethyl group, another alkyl group such as a propyl group, or a phenyl group. and the like substituted with an aryl group such as.
 (C)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)成分のアルケニル基含有オルガノポリシロキサン100質量部に対して0.1~30質量部が好ましく、0.3~10質量部がより好ましい。 The amount of the component (C) organohydrogenpolysiloxane to be blended is preferably 0.1 to 30 parts by mass, more preferably 0.3 to 10 parts by mass, per 100 parts by mass of the alkenyl group-containing organopolysiloxane (A). more preferred.
 また、上記オルガノハイドロジェンポリシロキサンは、シリコーンゴム組成物のゴム物性の点から、(A)成分のアルケニル基の合計に対するヒドロシリル基のモル比が、0.5~5の範囲であることが好ましく、0.8~3の範囲がより好ましく、1~2.5の範囲となるように配合することもできる。このような範囲であれば、太陽電池モジュールの作製に適切な硬さの封止層を得ることができる。 From the standpoint of the rubber physical properties of the silicone rubber composition, the organohydrogenpolysiloxane preferably has a molar ratio of hydrosilyl groups to the total alkenyl groups of component (A) in the range of 0.5 to 5. , more preferably in the range of 0.8 to 3, and may be blended so as to be in the range of 1 to 2.5. Within such a range, it is possible to obtain an encapsulating layer having a hardness suitable for producing a solar cell module.
(D)光活性型ヒドロシリル化反応触媒
 (D)成分の光活性型ヒドロシリル化反応触媒は、紫外線等の光照射により上記(A)成分中のアルケニル基と(C)成分中のヒドロシリル基とのヒドロシリル化反応による架橋を促進する触媒である。
(D) Photoactivated hydrosilylation reaction catalyst The photoactivated hydrosilylation reaction catalyst of the component (D) reacts with the alkenyl groups in the component (A) and the hydrosilyl groups in the component (C) by irradiation with light such as ultraviolet rays. It is a catalyst that promotes cross-linking by hydrosilylation reaction.
 光活性型ヒドロシリル化反応触媒としては、公知のものが適用可能であり、例えば、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体、及びビス(β-ジケトナト)白金錯体の群から選ばれる1種以上が使用できる。 As the photoactivated hydrosilylation reaction catalyst, known catalysts can be applied, for example, (1,5-cyclooctadienyl) diphenyl platinum complex, (1,5-cyclooctadienyl) dipropyl platinum complex, ( 2,5-norboradiene)dimethylplatinum complex, (2,5-norboradiene)diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenyl platinum complex, (methylcycloocta-1,5-dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcyclopentadienyl)trimethylplatinum complex, (methylcyclopentadienyl)trihexylplatinum complex, (trimethylsilylcyclopentadienyl)trimethylplatinum complex, (dimethylphenylsilylcyclopentadienyl)triphenylplatinum complex, (cyclopentadienyl) One or more selected from the group of dienyl)dimethyltrimethylsilylmethylplatinum complexes and bis(β-diketonato)platinum complexes can be used.
 (D)成分の光活性型ヒドロシリル化反応触媒の配合量は、触媒量とすることができ、通常、(A)成分に対し、白金金属質量に換算して0.5~1,000ppmが好ましく、1~500ppmの範囲がより好ましい。このような範囲であれば、硬化性に優れ、触媒由来のシリコーンゴム組成物の黄変による太陽電池モジュールの発電効率低下を抑制することができる。 The amount of the photoactivated hydrosilylation reaction catalyst of component (D) can be a catalytic amount, and is usually preferably 0.5 to 1,000 ppm in terms of platinum metal mass relative to component (A). , from 1 to 500 ppm. Within such a range, excellent curability can be obtained, and reduction in the power generation efficiency of the solar cell module due to yellowing of the catalyst-derived silicone rubber composition can be suppressed.
その他の成分
 また、上記シリコーンゴム組成物には、上記(A)~(D)成分の他に、硬化速度またはポットライフを調整する目的で付加反応制御剤を使用してもよく、付加反応制御剤の具体例としては、エチニルシクロヘキサノールやテトラメチルテトラビニルシクロテトラシロキサン等が挙げられる。
Other Components In addition to the above components (A) to (D), the silicone rubber composition may contain an addition reaction control agent for the purpose of adjusting the curing speed or pot life. Specific examples of the agent include ethynylcyclohexanol and tetramethyltetravinylcyclotetrasiloxane.
[シリコーンゴム組成物の製造方法]
 上記シリコーンゴム組成物は、上述した成分を2本ロール、ニーダー、バンバリーミキサー等で混練りすることによって得ることができる。
[Method for producing silicone rubber composition]
The above silicone rubber composition can be obtained by kneading the above-described components with a two-roll, kneader, Banbury mixer or the like.
 上記シリコーンゴム組成物の硬化前(未加硫状態)の可塑度は、好ましくは150~1,000、より好ましくは200~800、より好ましくは250~600である。可塑度が150より大きいと組成物の形状維持が容易であり、タックが強くなりすぎず取り扱い性に優れる。また、1,000以下であるとまとまりがよく、シート化が容易となる。なお、可塑度はJIS K6249:2003に準じて測定できる。 The plasticity of the silicone rubber composition before curing (unvulcanized state) is preferably 150 to 1,000, more preferably 200 to 800, and more preferably 250 to 600. When the plasticity is greater than 150, the composition can easily maintain its shape, and the tackiness does not become too strong, resulting in excellent handleability. Also, when it is 1,000 or less, the unity is good, and sheet formation is facilitated. The plasticity can be measured according to JIS K6249:2003.
 上記シリコーンゴム組成物は、シート状に成形したものを太陽電池封止材とすることにより、太陽電池モジュールの製造に広く使用されている真空ラミネーターを用いて封止することができる。シートの成形方法としては、特に限定されないが、押し出し成形、カレンダー成形等を用いることができる。この際、シリコーンゴム組成物シートの厚さは0.1~3mm、特に0.1~1mmであることが好ましい。 The above silicone rubber composition can be molded into a sheet and used as a solar cell encapsulant, and can be sealed using a vacuum laminator that is widely used in the production of solar cell modules. The method for forming the sheet is not particularly limited, but extrusion molding, calendering, or the like can be used. At this time, the thickness of the silicone rubber composition sheet is preferably 0.1 to 3 mm, particularly 0.1 to 1 mm.
[太陽電池モジュールの製造方法]
 本発明の太陽電池モジュールは、
工程(i):シリコーンゴム組成物を準備する工程
工程(ii):シリコーンゴム組成物に紫外線を照射する工程
及び
工程(iii):紫外線を照射したシリコーンゴム組成物と太陽電池セルとを積層し、20~100℃の温度で押圧してシリコーンゴム封止層を形成する工程
を含む製造方法により製造することができる。
[Method for manufacturing solar cell module]
The solar cell module of the present invention is
Step (i): Step of preparing a silicone rubber composition Step (ii): Step of irradiating the silicone rubber composition with UV rays and Step (iii): Laminating the UV-irradiated silicone rubber composition and a solar cell. , and a temperature of 20 to 100° C. to form a silicone rubber sealing layer.
 工程(i)は、シリコーン組成物を作製して準備する工程である。シリコーン組成物は、上記(A)~(D)成分を上記配合で含有するものを用いることが好ましい。本工程では、工程(iii)で真空ラミネート加工しやすくする観点から、シート状のシリコーンゴム組成物を準備することが好ましい。 Step (i) is a step of making and preparing a silicone composition. It is preferable to use a silicone composition containing the above components (A) to (D) in the above formulation. In this step, from the viewpoint of facilitating vacuum lamination in step (iii), it is preferable to prepare a sheet-like silicone rubber composition.
 工程(ii)は、上記シリコーンゴム組成物に紫外線を照射する工程である。本工程において紫外線を照射することにより、シリコーンゴム組成物は、工程(iii)の押圧によりシリコーンゴム封止層を形成できる程度に硬化させてもよい。 The step (ii) is a step of irradiating the silicone rubber composition with ultraviolet rays. By irradiating ultraviolet rays in this step, the silicone rubber composition may be cured to such an extent that a silicone rubber sealing layer can be formed by pressing in step (iii).
 紫外線照射方法としては、紫外光源として365nm UV-LEDランプ、メタルハライドランプ等を使用して、適量の紫外線を照射する方法等が挙げられる。 Examples of ultraviolet irradiation methods include a method of irradiating an appropriate amount of ultraviolet rays using a 365 nm UV-LED lamp, metal halide lamp, etc. as an ultraviolet light source.
 紫外線照射には、好ましくは波長200~500nm、より好ましくは200~350nmの光が使用される。硬化速度、変色防止の観点から、照射温度は20~80℃が好ましく、照射強度は30~2,000mW/cm2が好ましく、照射線量は150~10,000mJ/cm2が好ましい。 Light having a wavelength of preferably 200 to 500 nm, more preferably 200 to 350 nm is used for ultraviolet irradiation. From the viewpoint of curing speed and prevention of discoloration, the irradiation temperature is preferably 20 to 80° C., the irradiation intensity is preferably 30 to 2,000 mW/cm 2 , and the irradiation dose is preferably 150 to 10,000 mJ/cm 2 .
 工程(iii)は、紫外線照射したシリコーンゴム組成物と太陽電池セルとを積層し、20~100℃の温度で押圧してシリコーンゴム封止層を形成する工程である。 Step (iii) is a step of laminating the ultraviolet-irradiated silicone rubber composition and the solar cell and pressing at a temperature of 20 to 100° C. to form a silicone rubber sealing layer.
 工程(iii)では、真空ラミネーターを用いて行われる真空ラミネート処理により真空下(減圧下)で加熱しながら押圧を行うことが好ましく、例えば、図3に示すような方法でシリコーンゴム封止層の形成を行うことができる。 In step (iii), it is preferable to perform pressing while heating under vacuum (under reduced pressure) by a vacuum lamination process performed using a vacuum laminator. Forming can take place.
 まず、工程(ii)で紫外線照射したシリコーンゴム組成物シート6を用意し(図3の(1))、これを受光面光透過性基板または受光面光透過性フィルム1の上に配置する(図3の(2))。次に、シリコーンゴム組成物シート6上にペロブスカイト型太陽電池セル2を、受光面側が下部の受光面光透過性基板または受光面光透過性フィルム1に配向するように配置する(図3の(3))。その上に工程(ii)で紫外線照射したシリコーンゴム組成物シート6を配置し(図3の(4))、さらにその上に背面基板または背面フィルム4を配置し、仮積層体とする(図3の(5))。次いで、この仮積層体(受光面光透過性基板または受光面光透過性フィルム1と背面基板または背面フィルム4との間にペロブスカイト型太陽電池セル2及びシリコーンゴム組成物シート6を仮積層した状態のもの)について、真空ラミネート装置を用いて、例えば、減圧下20~100℃、好ましくは60~100℃で20~60分間押圧すると、シリコーンゴム組成物シート6が硬化してシリコーンゴム封止層3となり、受光面光透過性基板または受光面光透過性フィルム1、背面基板または背面フィルム4及びペロブスカイト型太陽電池セル2に固着し一体化される。これにより、ペロブスカイト型太陽電池モジュール12が得られる(図3の工程(6))。 First, prepare the silicone rubber composition sheet 6 irradiated with ultraviolet rays in step (ii) ((1) in FIG. 3), and place it on the light-receiving surface light-transmitting substrate or the light-receiving surface light-transmitting film 1 ( (2) in FIG. 3). Next, the perovskite solar cell 2 is placed on the silicone rubber composition sheet 6 so that the light-receiving surface side is oriented toward the lower light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 (( 3)). A silicone rubber composition sheet 6 irradiated with ultraviolet rays in step (ii) is placed thereon ((4) in FIG. 3), and a back substrate or back film 4 is further placed thereon to form a temporary laminate (FIG. 3 (5)). Next, this temporary laminate (a state in which the perovskite solar cell 2 and the silicone rubber composition sheet 6 are temporarily laminated between the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 and the back substrate or back film 4 ) is pressed for 20 to 60 minutes at 20 to 100° C., preferably 60 to 100° C., under reduced pressure using a vacuum laminator, the silicone rubber composition sheet 6 is cured and the silicone rubber sealing layer 3 , and are fixed to and integrated with the light-receiving surface light-transmitting substrate or light-receiving surface light-transmitting film 1 , the rear substrate or rear film 4 , and the perovskite solar cell 2 . Thus, a perovskite solar cell module 12 is obtained (step (6) in FIG. 3).
 押圧する際の温度が20℃以上であれば、より確実にシリコーンゴム封止層によって太陽電池セルを封止することができる。温度が100℃以下であれば、熱による変形や出力低下が起こるのをより確実に防ぐことができる。 If the pressing temperature is 20°C or higher, the solar cell can be more reliably sealed with the silicone rubber sealing layer. If the temperature is 100° C. or less, it is possible to more reliably prevent deformation and output reduction due to heat.
 なお、本発明の太陽電池モジュールの製造方法において、シリコーンゴム組成物の硬化は工程(ii)、工程(iii)のどちらで行ってもよく、また両方で行ってもよい。すなわち、工程(ii)の紫外線照射で組成物の硬化を完了させて工程(iii)では常温で押圧のみを行ってもよいし、工程(iii)において未硬化状態の組成物を押圧する際に組成物の加熱硬化をあわせて行ってもよい。また、工程(ii)で組成物をいわば半硬化の状態としておき、工程(iii)で押圧と同時に加熱硬化を行い、組成物の硬化を完了させることもできる。 In addition, in the method for producing a solar cell module of the present invention, curing of the silicone rubber composition may be performed in either step (ii) or step (iii), or may be performed in both. That is, the curing of the composition may be completed by irradiating ultraviolet rays in step (ii) and only pressing may be performed at room temperature in step (iii), or when pressing the uncured composition in step (iii). Heat curing of the composition may be performed together. Alternatively, the composition may be in a so-called semi-cured state in step (ii), and heat-curing may be performed simultaneously with pressing in step (iii) to complete curing of the composition.
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Examples and comparative examples are shown below to specifically describe the present invention, but the present invention is not limited to the following examples.
<太陽電池封止材用シリコーンゴム組成物の調製及びシリコーンゴム組成物シートの作製>
[実施例1-1]
 ジメチルシロキサン単位99.85モル%、メチルビニルシロキサン単位0.025モル%、ジメチルビニルシロキサン単位0.125モル%からなり、平均重合度が約6,000であるオルガノポリシロキサン100質量部、BET比表面積300m2/gのシリカ(商品名アエロジル300、日本アエロジル(株)製)70質量部、分散剤としてヘキサメチルジシラザン16質量部、水4質量部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してコンパウンドを調製した。
 上記コンパウンド100質量部に対し、光活性型ヒドロシリル化反応触媒として、(メチルシクロペンタジエニル)トリメチル白金錯体のトルエン溶液(白金濃度0.5質量%)2.5質量部(オルガノポリシロキサンに対し、白金族金属質量に換算して238ppm)、両末端がトリメチルシロキシ基で封鎖され側鎖にヒドロシリル基を平均20個有するメチルハイドロジェンジメチルポリシロキサン(平均重合度40、ヒドロシリル基量0.0074mol/g)0.3質量部(オルガノポリシロキサン中のアルケニル基1モルに対してヒドロシリル基が2.1モルとなる量)を、2本ロールミルにて混合し、シリコーンゴム組成物を作製した。その後、カレンダーロールにより厚さが0.5mmとなるようにシリコーンゴム組成物シートを形成した。
<Preparation of silicone rubber composition for solar cell encapsulant and production of silicone rubber composition sheet>
[Example 1-1]
100 parts by mass of an organopolysiloxane composed of 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units, and 0.125 mol% of dimethylvinylsiloxane units and having an average degree of polymerization of about 6,000, BET ratio 70 parts by mass of silica having a surface area of 300 m 2 /g (trade name Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.), 16 parts by mass of hexamethyldisilazane as a dispersant, and 4 parts by mass of water were added and kneaded in a kneader. A compound was prepared by heat treatment at 170° C. for 2 hours.
For 100 parts by mass of the compound, 2.5 parts by mass of a toluene solution of (methylcyclopentadienyl) trimethylplatinum complex (platinum concentration: 0.5% by mass) as a photoactive hydrosilylation reaction catalyst (with respect to organopolysiloxane , 238 ppm in terms of platinum group metal mass), methylhydrogendimethylpolysiloxane having both ends blocked with trimethylsiloxy groups and having an average of 20 hydrosilyl groups in side chains (average degree of polymerization 40, hydrosilyl group amount 0.0074 mol/ g) 0.3 parts by mass (an amount of 2.1 mol of hydrosilyl groups per 1 mol of alkenyl groups in the organopolysiloxane) were mixed in a two-roll mill to prepare a silicone rubber composition. Thereafter, a silicone rubber composition sheet was formed with a calender roll so as to have a thickness of 0.5 mm.
[比較例1-1]
 ジメチルシロキサン単位99.85モル%、メチルビニルシロキサン単位0.025モル%、ジメチルビニルシロキサン単位0.125モル%からなり、平均重合度が約6,000であるオルガノポリシロキサン100質量部、BET比表面積300m2/gのシリカ(商品名アエロジル300、日本アエロジル(株)製)70質量部、分散剤としてヘキサメチルジシラザン16質量部、水4質量部を添加し、ニーダーにて混練りし、170℃にて2時間加熱処理してコンパウンドを調製した。
 上記コンパウンド100質量部に対し、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン白金錯体のキシレン溶液(白金濃度1質量%)0.05質量部(オルガノポリシロキサンに対し、白金族金属質量に換算して9ppm)、反応制御剤としてエチニルシクロヘキサノール0.025質量部、両末端がトリメチルシロキシ基で封鎖され側鎖にヒドロシリル基を平均20個有するメチルハイドロジェンジメチルポリシロキサン(平均重合度40、ヒドロシリル基量0.0074mol/g)0.3質量部(オルガノポリシロキサンのアルケニル基1モルに対してヒドロシリル基が2.1モルとなる量)を2本ロールミルにて混合し、シリコーンゴム組成物を作製した。その後、カレンダーロールにより厚さが0.5mmとなるようにシリコーンゴム組成物シートを形成した。
[Comparative Example 1-1]
100 parts by mass of an organopolysiloxane composed of 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units, and 0.125 mol% of dimethylvinylsiloxane units and having an average degree of polymerization of about 6,000, BET ratio 70 parts by mass of silica having a surface area of 300 m 2 /g (trade name Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.), 16 parts by mass of hexamethyldisilazane as a dispersant, and 4 parts by mass of water were added and kneaded in a kneader. A compound was prepared by heat treatment at 170° C. for 2 hours.
Based on 100 parts by mass of the compound, 0.05 parts by mass of a xylene solution of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum complex (platinum concentration 1% by mass) (for organopolysiloxane, 9 ppm in terms of platinum group metal mass), 0.025 parts by mass of ethynylcyclohexanol as a reaction control agent, and methylhydrogendimethylpolysiloxane ( Average degree of polymerization 40, amount of hydrosilyl groups 0.0074 mol/g) 0.3 parts by mass (an amount of 2.1 mol of hydrosilyl groups per 1 mol of alkenyl groups of organopolysiloxane) was mixed in a two-roll mill. , to prepare a silicone rubber composition. Thereafter, a silicone rubber composition sheet was formed with a calender roll so as to have a thickness of 0.5 mm.
<太陽電池モジュールの製造および評価>
[実施例2-1~2-3]
 実施例1-1で得られたシリコーンゴム組成物シートを、25℃、50%RH、紫外線を遮断した条件下に3日間静置後、紫外線照射装置を用いて、波長365nmのUV光を照射線量6,000mJ/cmで照射したものを用意した。
<Manufacturing and Evaluation of Solar Cell Module>
[Examples 2-1 to 2-3]
The silicone rubber composition sheet obtained in Example 1-1 was allowed to stand for 3 days under conditions of 25° C., 50% RH, blocking ultraviolet rays, and then irradiated with UV light having a wavelength of 365 nm using an ultraviolet irradiation device. Irradiated at a dose of 6,000 mJ/cm 2 was prepared.
 図3に示されるように、受光面光透過性基板1として白板ガラス(サイズ100×100mm、厚み3.2mm)を準備し、その上に、シリコーンゴム組成物シート6として、上記の紫外線照射後のシリコーンゴム組成物シート(サイズ100×100mm、厚み0.5mm)を配置し、その上部にペロブスカイト型太陽電池セル2(サイズ50×50mm、厚み1mm)を、受光面側が下部白板ガラスに配向する形で、シリコーンゴムシート組成物6上部の中央に配置した。その上部に上記の紫外線照射後のシリコーンゴム組成物シート6(サイズ100×100mm、厚み0.5mm)を配置し、さらにその上部に背面基板4として、白板ガラス(サイズ100×100mm、厚み3.2mm)を配置し、仮積層体を得た。 As shown in FIG. 3, a white plate glass (size: 100×100 mm, thickness: 3.2 mm) was prepared as the light-receiving surface light-transmitting substrate 1, and a silicone rubber composition sheet 6 was formed thereon after UV irradiation. A silicone rubber composition sheet (size 100 x 100 mm, thickness 0.5 mm) is placed on top of the perovskite solar cell 2 (size 50 x 50 mm, thickness 1 mm), and the light receiving surface side is oriented to the lower white plate glass. and placed in the center of the top of the silicone rubber sheet composition 6. On top of this, the silicone rubber composition sheet 6 (size: 100×100 mm, thickness: 0.5 mm) after UV irradiation was placed, and on top of that, a white plate glass (size: 100×100 mm, thickness: 3.5 mm) was placed as the rear substrate 4 . 2 mm) to obtain a temporary laminate.
 次いで、この仮積層体について真空ラミネータ装置を用いて真空下、60℃(実施例2-1)、80℃(実施例2-2)、100℃(実施例2-3)の各温度条件にて、各30分間押圧し、ペロブスカイト型太陽電池モジュール12を製造した。 Then, this temporary laminate was subjected to each temperature condition of 60° C. (Example 2-1), 80° C. (Example 2-2), and 100° C. (Example 2-3) under vacuum using a vacuum laminator device. and pressed for 30 minutes each to manufacture a perovskite solar cell module 12 .
[比較例2-1~2-5]
 シリコーンゴム組成物シート6として、比較例1-1で得られたシリコーンゴム組成物シートを用いた以外は、上記実施例2-1~2-3と同様にして仮積層体を得た。
[Comparative Examples 2-1 to 2-5]
Temporary laminates were obtained in the same manner as in Examples 2-1 to 2-3, except that the silicone rubber composition sheet obtained in Comparative Example 1-1 was used as the silicone rubber composition sheet 6.
 次いで、この仮積層体について真空ラミネータ装置を用いて真空下、60℃(比較例2-1)、80℃(比較例2-2)、100℃(比較例2-3)、120℃(比較例2-4)、140℃(比較例2-5)の各温度条件にて、各30分間押圧し、ペロブスカイト型太陽電池モジュールを製造した。 Then, using a vacuum laminator for this temporary laminate under vacuum, 60 ° C. (Comparative Example 2-1), 80 ° C. (Comparative Example 2-2), 100 ° C. (Comparative Example 2-3), 120 ° C. (Comparative Examples 2-4) and 140° C. (Comparative Examples 2-5) were pressed for 30 minutes each to produce perovskite solar cell modules.
[比較例2-6~2-10]
 シリコーンゴム組成物シート6に代えて、EVA(エチレン-酢酸ビニル共重合体)シート(100×100mm、厚み0.45mm)を用いた以外は、上記比較例2-1~2-5と同様にして太陽電池モジュールを製造した。
[Comparative Examples 2-6 to 2-10]
Comparative Examples 2-1 to 2-5 were repeated except that an EVA (ethylene-vinyl acetate copolymer) sheet (100×100 mm, thickness 0.45 mm) was used instead of the silicone rubber composition sheet 6. We manufactured a solar cell module.
[被覆性]
 上記実施例2-1~2-3および比較例2-1~2-10で得られた太陽電池モジュールについて、ペロブスカイト型太陽電池セル2に対する被覆性を目視にて確認し、ペロブスカイト型太陽電池セルの段差部および電極部において空隙が残存していない状態を〇(良好)とし、ペロブスカイト型太陽電池セルの段差部および電極部において空隙が残存する状態を×(不良)として評価した。結果を表1に示す。
[Coverability]
Regarding the solar cell modules obtained in Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-10, the coverage of the perovskite solar cells 2 was visually confirmed, and the perovskite solar cells A state in which no voids remained in the stepped portions and electrode portions of the perovskite solar cell was evaluated as ◯ (good), and a state in which voids remained in the stepped portions and electrode portions of the perovskite solar cell was evaluated as x (poor). Table 1 shows the results.
[出力維持率]
 上記実施例2-1~2-3および比較例2-1~2-10で得られた太陽電池モジュールのうち、上記被覆性が〇(良好)であったものについて、太陽電池モジュールの出力(W)を疑似太陽光照射装置にて測定し、モジュール化前のペロブスカイト型太陽電池セル単独の状態での出力(W)に対する出力維持率(%)を下記式により算出した。出力維持率が90%以上を〇、80%以上を△、80%未満を×とした。結果を表1に示す。
  出力維持率(%)= W/W×100
[Output maintenance rate]
Among the solar cell modules obtained in Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-10, the solar cell module output ( W 1 ) was measured with a simulated sunlight irradiation device, and the output maintenance ratio (%) with respect to the output (W 0 ) of the perovskite solar cell alone before modularization was calculated by the following formula. An output retention rate of 90% or more was evaluated as ◯, 80% or more as Δ, and less than 80% as x. Table 1 shows the results.
Output maintenance rate (%) = W1 / W0 x 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例2-1~2-3では、実施例1-1で得られたシリコーンゴム組成物シートを太陽電池封止材として使用したので、ラミネート温度100℃以下の低温においても、セル被覆性、出力維持率ともに良好な結果を得た。 As shown in Table 1, in Examples 2-1 to 2-3, the silicone rubber composition sheet obtained in Example 1-1 was used as a solar cell encapsulant. Even at low temperatures, good results were obtained in both cell coverage and output retention.
 また、光活性型ヒドロシリル化反応触媒を用いない熱硬化性組成物である比較例1-1のシリコーンゴム組成物シートを太陽電池封止材として使用した場合(比較例2-1~2-5)、より高温であっても、ラミネート処理による太陽電池セル被覆性が不十分であった。 Further, when the silicone rubber composition sheet of Comparative Example 1-1, which is a thermosetting composition that does not use a photoactive hydrosilylation reaction catalyst, was used as a solar cell encapsulant (Comparative Examples 2-1 to 2-5 ), even at higher temperatures, the solar cell coverage by lamination was insufficient.
 さらに、比較例2-6~2-9に示されるように、太陽電池封止材としてEVAシートを使用した場合、60℃~120℃の条件では、EVAの溶融が不十分であるためラミネート処理による太陽電池セル被覆性が劣っていた。一方、140℃(比較例2-10)では、太陽電池セル被覆性は良好であったが、ペロブスカイト太陽電池セルの耐熱許容温度を超えたため、得られる太陽電池モジュールの出力が劣る結果となった。 Furthermore, as shown in Comparative Examples 2-6 to 2-9, when an EVA sheet is used as a solar cell encapsulant, the melting of EVA is insufficient under the conditions of 60°C to 120°C, so the lamination process The solar cell coverage was poor. On the other hand, at 140° C. (Comparative Example 2-10), although the solar cell coverage was good, the output of the resulting solar cell module was inferior because it exceeded the perovskite solar cell's allowable heat resistance temperature. .
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiments. The above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Claims (10)

  1.  太陽電池セル及びシリコーンゴム封止層を備える太陽電池モジュールであって、前記シリコーンゴム封止層が、光活性型ヒドロシリル化反応触媒を含むシリコーンゴム組成物の硬化物であることを特徴とする太陽電池モジュール。 A solar cell module comprising a solar cell and a silicone rubber sealing layer, wherein the silicone rubber sealing layer is a cured product of a silicone rubber composition containing a photoactive hydrosilylation reaction catalyst. battery module.
  2.  前記シリコーンゴム組成物は、
    (A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部
    (B)BET法で測定した比表面積が50~500m/gである補強性シリカ:10~150質量部
    (C)1分子中にヒドロシリル基を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1モルに対して前記(C)成分中のヒドロシリル基が0.5~5モルとなる量
    (D)光活性型ヒドロシリル化反応触媒:前記(A)成分に対し、白金族金属質量に換算して0.5~1,000ppm
    を含有するものであることを特徴とする請求項1に記載の太陽電池モジュール。
    The silicone rubber composition is
    (A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) The amount of hydrosilyl groups in the component (C) becomes 0.5 to 5 moles (D) Photoactive hydrosilylation reaction catalyst: 0.5 to 0.5 in terms of platinum group metal mass relative to the component (A) 1,000ppm
    The solar cell module according to claim 1, characterized in that it contains:
  3.  前記光活性型ヒドロシリル化反応触媒は、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体、及びビス(β-ジケトナト)白金錯体の群から選ばれる1種以上の光活性型ヒドロシリル化反応触媒であることを特徴とする請求項1または請求項2に記載の太陽電池モジュール。 The photoactivated hydrosilylation reaction catalyst includes (1,5-cyclooctadienyl) diphenyl platinum complex, (1,5-cyclooctadienyl) dipropyl platinum complex, (2,5-norboradiene) dimethyl platinum complex, ( 2,5-norboradiene)diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenylplatinum complex, (methylcycloocta-1,5 -dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcyclopentadienyl)trimethylplatinum complex, (methylcyclopentadienyl)trihexylplatinum complex, (trimethylsilylcyclopentadienyl)trimethylplatinum complex, (dimethylphenylsilylcyclopentadienyl)triphenylplatinum complex, (cyclopentadienyl)dimethyltrimethylsilylmethylplatinum complex, and bis 3. The solar cell module according to claim 1, wherein the photoactive hydrosilylation reaction catalyst is one or more selected from the group of (β-diketonato)platinum complexes.
  4.  前記太陽電池セルは、ペロブスカイト型太陽電池セルであることを特徴とする請求項1から請求項3のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the solar cells are perovskite solar cells.
  5.  請求項1から請求項4のいずれか一項に記載の太陽電池モジュールの製造方法であって、
    工程(i):前記シリコーンゴム組成物を準備する工程
    工程(ii):前記シリコーンゴム組成物に紫外線を照射する工程
    及び
    工程(iii):前記紫外線を照射したシリコーンゴム組成物と前記太陽電池セルとを積層し、20~100℃の温度で押圧して前記シリコーンゴム封止層を形成する工程
    を含むことを特徴とする太陽電池モジュールの製造方法。
    A method for manufacturing the solar cell module according to any one of claims 1 to 4,
    Step (i): Step of preparing the silicone rubber composition Step (ii): Step of irradiating the silicone rubber composition with UV rays and Step (iii): The UV-irradiated silicone rubber composition and the solar cell and pressing at a temperature of 20 to 100° C. to form the silicone rubber sealing layer.
  6.  前記工程(i)で準備する前記シリコーンゴム組成物の形状はシート状とすることを特徴とする請求項5に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 5, wherein the silicone rubber composition prepared in step (i) is in the form of a sheet.
  7.  前記工程(iii)は、真空ラミネーターを用いて行われる工程とすることを特徴とする請求項5または請求項6に記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 5 or 6, wherein the step (iii) is a step performed using a vacuum laminator.
  8.  太陽電池封止材であって、
    (A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン:100質量部
    (B)BET法で測定した比表面積が50~500m/gである補強性シリカ:10~150質量部
    (C)1分子中にヒドロシリル基を2個以上有するオルガノハイドロジェンポリシロキサン:前記(A)成分中のアルケニル基1モルに対して前記(C)成分中のヒドロシリル基が0.5~5モルとなる量
    及び
    (D)光活性型ヒドロシリル化反応触媒:前記(A)成分に対し、白金族金属質量に換算して0.5~1,000ppm
    を含むシリコーンゴム組成物からなることを特徴とする太陽電池封止材。
    A solar cell encapsulant,
    (A) Organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass (B) Specific surface area measured by BET method is 50 Reinforcing silica of up to 500 m 2 /g: 10 to 150 parts by mass (C) Organohydrogenpolysiloxane having two or more hydrosilyl groups in one molecule: per 1 mol of alkenyl groups in component (A) 0.5 to 5 moles of hydrosilyl groups in component (C) and (D) photoactive hydrosilylation reaction catalyst: 0.5 in terms of mass of platinum group metal relative to component (A) ~1,000ppm
    A solar cell encapsulant comprising a silicone rubber composition containing
  9.  前記光活性型ヒドロシリル化反応触媒は、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体、及びビス(β-ジケトナト)白金錯体の群から選ばれる1種以上の光活性型ヒドロシリル化反応触媒であることを特徴とする請求項8に記載の太陽電池封止材。 The photoactivated hydrosilylation reaction catalyst includes (1,5-cyclooctadienyl) diphenyl platinum complex, (1,5-cyclooctadienyl) dipropyl platinum complex, (2,5-norboradiene) dimethyl platinum complex, ( 2,5-norboradiene)diphenylplatinum complex, (cyclopentadienyl)dimethylplatinum complex, (methylcyclopentadienyl)diethylplatinum complex, (trimethylsilylcyclopentadienyl)diphenylplatinum complex, (methylcycloocta-1,5 -dienyl)diethylplatinum complex, (cyclopentadienyl)trimethylplatinum complex, (cyclopentadienyl)ethyldimethylplatinum complex, (cyclopentadienyl)acetyldimethylplatinum complex, (methylcyclopentadienyl)trimethylplatinum complex, (methylcyclopentadienyl)trihexylplatinum complex, (trimethylsilylcyclopentadienyl)trimethylplatinum complex, (dimethylphenylsilylcyclopentadienyl)triphenylplatinum complex, (cyclopentadienyl)dimethyltrimethylsilylmethylplatinum complex, and bis 9. The encapsulant for solar cells according to claim 8, which is one or more photoactive hydrosilylation reaction catalysts selected from the group of (β-diketonato)platinum complexes.
  10.  前記太陽電池封止材はシート状のものであることを特徴とする請求項8または請求項9に記載の太陽電池封止材。 The solar cell encapsulant according to claim 8 or claim 9, wherein the solar cell encapsulant is in the form of a sheet.
PCT/JP2022/048326 2022-01-14 2022-12-27 Solar cell module, method for producing same, and solar cell sealing material WO2023136147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247022971A KR20240136958A (en) 2022-01-14 2022-12-27 Solar cell module and its manufacturing method, and solar cell encapsulation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004675A JP2023103887A (en) 2022-01-14 2022-01-14 Solar cell module, manufacturing method thereof, and solar cell sealing material
JP2022-004675 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023136147A1 true WO2023136147A1 (en) 2023-07-20

Family

ID=87279124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048326 WO2023136147A1 (en) 2022-01-14 2022-12-27 Solar cell module, method for producing same, and solar cell sealing material

Country Status (4)

Country Link
JP (1) JP2023103887A (en)
KR (1) KR20240136958A (en)
TW (1) TW202335110A (en)
WO (1) WO2023136147A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048275A (en) * 2008-10-31 2013-03-07 Dow Corning Corp Photovoltaic cell module and formation method
US20150000735A1 (en) * 2011-12-19 2015-01-01 Dow Coming Corporation Method Of Forming A Photovoltaic Cell Module Having Improved Impact Resistance
JP2015050371A (en) * 2013-09-03 2015-03-16 信越化学工業株式会社 Silicone adhesive sheet for sealing solar battery, and method for manufacturing solar battery module using the same
WO2016060183A1 (en) * 2014-10-14 2016-04-21 積水化学工業株式会社 Solar cell
JP2021174884A (en) * 2020-04-24 2021-11-01 フジプレアム株式会社 Perovskite type solar battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015902A (en) 2019-07-12 2021-02-12 積水化学工業株式会社 Perovskite Solar Cell Encapsulant and Perovskite Solar Cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048275A (en) * 2008-10-31 2013-03-07 Dow Corning Corp Photovoltaic cell module and formation method
US20150000735A1 (en) * 2011-12-19 2015-01-01 Dow Coming Corporation Method Of Forming A Photovoltaic Cell Module Having Improved Impact Resistance
JP2015050371A (en) * 2013-09-03 2015-03-16 信越化学工業株式会社 Silicone adhesive sheet for sealing solar battery, and method for manufacturing solar battery module using the same
WO2016060183A1 (en) * 2014-10-14 2016-04-21 積水化学工業株式会社 Solar cell
JP2021174884A (en) * 2020-04-24 2021-11-01 フジプレアム株式会社 Perovskite type solar battery

Also Published As

Publication number Publication date
TW202335110A (en) 2023-09-01
KR20240136958A (en) 2024-09-19
JP2023103887A (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP6217328B2 (en) UV shielding silicone adhesive sheet for solar cell sealing and solar cell module using the same
KR101644809B1 (en) Solar cell encapsulant silicone composition and solar cell module
US9299875B2 (en) Manufacture of solar cell module
KR20120139615A (en) Sheet for photovoltaic cell
JP6784186B2 (en) Manufacturing method of solar cell module
JP6269527B2 (en) Manufacturing method of solar cell module
KR102165215B1 (en) Silicone adhesive sheet for sealing a solar cell and method for producing a solar cell module using the same
EP2530732B1 (en) Sheet for photovoltaic cells
WO2023136147A1 (en) Solar cell module, method for producing same, and solar cell sealing material
JP5983549B2 (en) Manufacturing method of solar cell module
JP2015115442A (en) Method for manufacturing solar battery module
KR20150026778A (en) Manufacturing method of solar cell module
CN118901293A (en) Solar cell module, method for manufacturing same, and solar cell sealing material
WO2016121188A1 (en) Solar cell module and method for producing solar cell module
JP6512113B2 (en) Method of manufacturing solar cell module
JP6070527B2 (en) Manufacturing method of solar cell module
WO2019082927A1 (en) Solar battery module
JP2018082073A (en) Manufacturing method for solar cell module
JP2017191813A (en) Solar battery module and manufacturing method for the same
TW201810700A (en) Thin film solar cell module and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE