JP2021174884A - Perovskite type solar battery - Google Patents

Perovskite type solar battery Download PDF

Info

Publication number
JP2021174884A
JP2021174884A JP2020077789A JP2020077789A JP2021174884A JP 2021174884 A JP2021174884 A JP 2021174884A JP 2020077789 A JP2020077789 A JP 2020077789A JP 2020077789 A JP2020077789 A JP 2020077789A JP 2021174884 A JP2021174884 A JP 2021174884A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
conversion layer
solar cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020077789A
Other languages
Japanese (ja)
Inventor
智宏 池田
Tomohiro Ikeda
陽介 中山
Yosuke Nakayama
淳志 若宮
Atsushi Wakamiya
昇 大橋
Noboru Ohashi
靖久 石倉
Yasuhisa Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI PUREAMU KK
Kyoto University
Original Assignee
FUJI PUREAMU KK
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI PUREAMU KK, Kyoto University filed Critical FUJI PUREAMU KK
Priority to JP2020077789A priority Critical patent/JP2021174884A/en
Publication of JP2021174884A publication Critical patent/JP2021174884A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

To provide a perovskite type solar battery having an excellent durability under a high-temperature, high-humidity environment.SOLUTION: A solar battery 100 is configured by laminating a base material 1, an electrode 21, a photoelectric conversion layer 22, a counter electrode 23, an encapsulation material 3, and a cover material 4 in this order. The photoelectric conversion layer 22 contains a perovskite compound represented by a general formula R-M-X3 (here, R represents an organic molecule; M represents a metal atom; and X represents a halogen atom). The encapsulation material 3 has an adhesive force equal to or more than 1 N/25 mm at 23°C, and has a water vapor permeability less than 50 g/m2/day. An end surface of the photoelectric conversion layer 22 is covered with the encapsulation material 3 with a thickness equal to or more than 3 mm.SELECTED DRAWING: Figure 1

Description

本発明は,高温高湿下での耐久性に優れた太陽電池に関する。 The present invention relates to a solar cell having excellent durability under high temperature and high humidity.

ペロブスカイト太陽電池と称される一般式R−M−X(但し,Rは有機分子,Mは金属原子,Xはハロゲン原子)で表されるペロブスカイト化合物を光電変換層に含む太陽電池は,有機薄膜系の太陽電池の中でも特に高い発電効率を示すことで知られている。 A solar cell containing a perovskite compound represented by the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom), which is called a perovskite solar cell, is organic. It is known to exhibit particularly high power generation efficiency among thin-film solar cells.

また,ペロブスカイト太陽電池は,フィルム上に塗布プロセスで成膜する事が出来るため,材料費,加工費が比較的安価で,軽量かつフレキシブル性に富む太陽電池を形成する事ができる。特に,ウェアラブルデバイスや災害時に携帯可能なフィルム型太陽電池として期待されている。 Further, since the perovskite solar cell can be formed on a film by a coating process, it is possible to form a lightweight and highly flexible solar cell with relatively low material cost and processing cost. In particular, it is expected as a wearable device and a film-type solar cell that can be carried in the event of a disaster.

しかし,ペロブスカイト太陽電池を構成する材料は,一般に水分や酸素などの外気に含まれる成分に対する耐久性が弱い。そのため,長時間使用するためには,構成材料が外気に触れないよう十分な封止が必要となる。 However, the materials that make up perovskite solar cells generally have poor durability against components contained in the outside air such as moisture and oxygen. Therefore, in order to use it for a long time, it is necessary to sufficiently seal the constituent materials so that they do not come into contact with the outside air.

例えば,特許文献1や特許文献2には特定の樹脂材料を塗布,加熱硬化する事により耐久性が向上する事が示されている。 For example, Patent Document 1 and Patent Document 2 show that durability is improved by applying a specific resin material and heat-curing it.

しかしながら,いずれも封止材は塗布後に加熱硬化させるものであるため,構成材料が硬化時にかかる温度への耐性が必要な上,塗布,乾燥を行う設備が必要となる。 However, since the encapsulant is heat-cured after coating, the constituent materials must be resistant to the temperature applied during curing, and equipment for coating and drying is required.

特許5926466号Patent No. 5926466 特開2018−142597JP-A-2018-142597

本発明は,封止材について,塗布後の加熱硬化プロセスが不要で高い耐湿熱性を有するペロブスカイト型太陽電池の構成を与えるものである。 The present invention provides a perovskite solar cell structure having high moisture and heat resistance without the need for a heat curing process after application for the encapsulant.

ペロブスカイト化合物を有する太陽電池を低温プロセスで硬化可能な封止材について種々検討を行った結果,常温で一定以上粘着性を有する粘着シートの中で,一定以上の水蒸気バリア性能を有する物を使用する事で,加熱硬化が不要で高い耐湿熱性を有する太陽電池の構成を見出した。 As a result of various studies on a sealing material that can cure a solar cell containing a perovskite compound in a low temperature process, among the adhesive sheets that have adhesiveness above a certain level at room temperature, those with a water vapor barrier performance above a certain level are used. As a result, we found a configuration of a solar cell that does not require heat curing and has high moisture and heat resistance.

封止材の粘着性については,粘着力がわずかでもあれば素子が形成された基材とバリア性能を有するカバー材を貼り合せる事が可能である。しかしながら,粘着力が低いと,貼り合せた後の工程や搬送で剥離するリスクがある他,粘着シートと素子の界面から水分や空気が侵入する可能性がある。具体的には,被着体(例えば対向電極)に対し,23℃で1N/25mm以上の粘着力があれば,工程や搬送で封止材の剥離が生じるリスクがほとんどなく,粘着シートの界面からの水分の侵入を防ぐことが出来る。粘着力は高いほど上記のリスクを減らすことが出来るため,特にフィルムの折り曲げを繰り返すような使い方をする場合は,さらに高い粘着力を有する事が望ましい。 Regarding the adhesiveness of the sealing material, it is possible to bond the base material on which the element is formed and the cover material having barrier performance as long as the adhesive strength is slight. However, if the adhesive strength is low, there is a risk of peeling during the process after bonding or transportation, and there is a possibility that moisture or air may enter from the interface between the adhesive sheet and the element. Specifically, if the adherend (for example, the counter electrode) has an adhesive force of 1 N / 25 mm or more at 23 ° C., there is almost no risk of peeling of the sealing material in the process or transportation, and the interface of the adhesive sheet. It is possible to prevent the invasion of moisture from. The higher the adhesive strength, the lower the above risk. Therefore, it is desirable to have even higher adhesive strength, especially when the film is used repeatedly.

水蒸気透過率については,封止材にはフィルム基材やカバー材ほどのバリア性は必要ない。しかしながら,側面から粘着シートの内部を伝う水分の侵入経路を防ぐためには,封止材の水蒸気透過率はある程度低い必要がある。具体的には,JIS Z0208に記載の水蒸気透過率(例えば40℃及び相対湿度90%雰囲気下での水蒸気透過率)が50g/m・day以下であれば実用上使用可能で,低ければ低いほど,水分による劣化のリスクを軽減する事が出来る。 Regarding water vapor permeability, the encapsulant does not need as much barrier as the film base material or cover material. However, the water vapor permeability of the sealing material needs to be low to some extent in order to prevent the invasion path of water flowing through the inside of the adhesive sheet from the side surface. Specifically, if the water vapor transmittance described in JIS Z0208 (for example, the water vapor transmittance in an atmosphere of 40 ° C. and 90% relative humidity) is 50 g / m 2 · day or less, it can be practically used, and if it is low, it is low. The more, the risk of deterioration due to moisture can be reduced.

端面からの水分の侵入は,端面に近いほど顕著となるため,太陽電池を形成する材料はなるべく端面から遠い位置に配置する事が望ましい。具体的には,端面から3mm以上内側に素子を配すれば,実用上問題ない。 Since the intrusion of water from the end face becomes more remarkable as it is closer to the end face, it is desirable to arrange the material forming the solar cell as far as possible from the end face. Specifically, if the element is arranged 3 mm or more inward from the end face, there is no practical problem.

粘着シートの厚みについては,被着体の段差を吸収し,所定の粘着力を発現できる厚みであれば良い。ただし,厚みが厚いと水分の侵入経路となる端面の面積が増え,粘着シートの製造が難しくなる。具体的には5μm厚以上,200μm厚以下である事が望ましい。 The thickness of the adhesive sheet may be any thickness that can absorb the step of the adherend and develop a predetermined adhesive force. However, if the thickness is large, the area of the end face that serves as a path for moisture to enter increases, making it difficult to manufacture an adhesive sheet. Specifically, it is desirable that the thickness is 5 μm or more and 200 μm or less.

粘着シートを構成する樹脂材料については,太陽電池を構成する材料が溶解や化学変化を起こさないものである事が必要だが,特に主剤や硬化剤に関する制約はない。 Regarding the resin material that composes the adhesive sheet, it is necessary that the material that composes the solar cell does not dissolve or chemically change, but there are no particular restrictions on the main agent or curing agent.

本発明によれば,常温で接着し,硬化プロセスが不要であり,耐久性に優れた太陽電池を提供する事ができる。 According to the present invention, it is possible to provide a solar cell that adheres at room temperature, does not require a curing process, and has excellent durability.

図1は,本発明にかかる太陽電池モジュールの一例である第1の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a first configuration which is an example of the solar cell module according to the present invention. 図2は,本発明の実施例2を示したものである。FIG. 2 shows Example 2 of the present invention. 図3は,本発明の実施例1と比較例1及び比較例2のセル電圧を経過時間ごとに対比したものである。FIG. 3 compares the cell voltages of Example 1, Comparative Example 1 and Comparative Example 2 of the present invention for each elapsed time.

以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜変更したものも含む。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to the forms described below, and includes those which are appropriately modified by those skilled in the art from the following forms to the extent obvious to those skilled in the art.

図1は本発明にかかる太陽電池モジュールの一例である第1の構成を示す断面図である。
太陽電池モジュール100は基材1と素子部2と封止材3とカバー材4で構成されている。素子部2は電極21,光電変換層22,対向電極23から構成されている。素子部2は,電極21と対抗電極23の一部を除いては,基材1よりも小さいサイズとなっており,周囲を封止材3で覆われている構成となっている。カバー材4は基材と同じサイズとなっており,素子部は基材,封止材,カバー材で覆われた構造となっている。
FIG. 1 is a cross-sectional view showing a first configuration which is an example of the solar cell module according to the present invention.
The solar cell module 100 is composed of a base material 1, an element portion 2, a sealing material 3, and a cover material 4. The element unit 2 is composed of an electrode 21, a photoelectric conversion layer 22, and a counter electrode 23. The element portion 2 has a size smaller than that of the base material 1 except for a part of the electrode 21 and the counter electrode 23, and has a configuration in which the periphery thereof is covered with the sealing material 3. The cover material 4 has the same size as the base material, and the element portion has a structure covered with the base material, the sealing material, and the cover material.

基材1は電極が積層された面とは反対の面からの光を受光するため,光透過性を有する絶縁性の材料が用いられる。材料の例としては,ガラス,アクリル,ポリカーボネート,ポリエチレンテレフタラート(PET),ポリエチレンナフタレート(PEN)等が挙げられる。水蒸気バリア性を高めるため,表面にアルミナ等の光透過性の防湿層を設けても良い。 Since the base material 1 receives light from the surface opposite to the surface on which the electrodes are laminated, an insulating material having light transmission is used. Examples of the material include glass, acrylic, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and the like. In order to enhance the water vapor barrier property, a light-transmitting moisture-proof layer such as alumina may be provided on the surface.

電極層21は導電性と光透過性を有した材料を選択する。例として,酸化インジウムスズ(ITO),フッ素ドープ酸化スズ(FTO),酸化亜鉛(ZnO),酸化チタン(TiO)等が挙げられる。 For the electrode layer 21, a material having conductivity and light transmission is selected. Examples include indium tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), titanium oxide (TiO 2 ) and the like.

光電変換層22は一般式R−M−X(但し,Rは有機分子,Mは金属原子,Xはハロゲン原子)で表されるペロブスカイト化合物を含む。
光電変換層22は,電子輸送層,ペロブスカイト層(光吸収層),及び正孔輸送層をこの順に備える。ペロブスカイト型太陽電池は,透明電極上にn型半導体層が設けられた順型であってもよいし,透明電極上にp型半導体層が設けられた逆型であってもよい。
The photoelectric conversion layer 22 contains a perovskite compound represented by the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom).
The photoelectric conversion layer 22 includes an electron transport layer, a perovskite layer (light absorption layer), and a hole transport layer in this order. The perovskite solar cell may be a normal type in which an n-type semiconductor layer is provided on a transparent electrode, or an inverted type in which a p-type semiconductor layer is provided on a transparent electrode.

電子輸送層
電子輸送層は,ペロブスカイト層(光吸収層)の活性表面積を増加させ,光電変換効率を向上させるとともに,電子収集しやすくするために形成される。電子輸送層は,基材上に形成してもよいが,(正孔)ブロッキング層の上に形成することが好ましい。また,上記の(正孔)ブロッキング層が,電子輸送層として機能してもよいし,電子輸送層が(正孔)ブロッキング層を兼ねてもよい。電子輸送層はフラーレン誘導体等有機半導体材料を用いた平坦な層でもよい。また,電子輸送層は,酸化チタン(TiO)(メソポーラスTiOを含む),SnO層,又はZnO層であってもよい。電子輸送層は,メソポーラスTiO等多孔質構造を有していることが好ましい。多孔質構造は,例えば,粒状体,針状体,チューブ状体,柱状体等が集合して,全体として多孔質な性質を有していることが好ましい。また,細孔サイズはナノスケールが好ましい。多孔質構造を有することにより,ナノスケールであるため,光吸収層の活性表面積を著しく増加させ,太陽電池特性(特に光電変換効率)を向上させるとともに,電子収集に優れる多孔質電子輸送層とすることができる。
Electron transport layer The electron transport layer is formed to increase the active surface area of the perovskite layer (light absorption layer), improve the photoelectric conversion efficiency, and facilitate electron collection. The electron transport layer may be formed on the substrate, but is preferably formed on the (hole) blocking layer. Further, the above-mentioned (hole) blocking layer may function as an electron transporting layer, or the electron transporting layer may also serve as a (hole) blocking layer. The electron transport layer may be a flat layer using an organic semiconductor material such as a fullerene derivative. Further, the electron transport layer may be titanium oxide (TiO 2 ) ( including mesoporous TiO 2 ), SnO 2 layer, or ZnO layer. The electron transport layer preferably has a porous structure such as mesoporous nitro 2. It is preferable that the porous structure has, for example, an aggregate of granular bodies, needle-like bodies, tubular bodies, columnar bodies, and the like, and has a porous property as a whole. The pore size is preferably nanoscale. Since it has a porous structure and is nanoscale, it significantly increases the active surface area of the light absorption layer, improves the solar cell characteristics (particularly photoelectric conversion efficiency), and makes it a porous electron transport layer with excellent electron collection. be able to.

電子輸送層は,酸化チタン,酸化スズ等の金属酸化物からなる層であってもよい。なお,金属化合物が半導体である場合,半導体を使用する場合には,ドナーをドープすることもできる。これにより,電子輸送層がペロブスカイト層(光吸収層)に導入するための窓層となり,且つ,ペロブスカイト層(光吸収層)から得られた電力をより効率よく取り出すことができる。 The electron transport layer may be a layer made of a metal oxide such as titanium oxide or tin oxide. If the metal compound is a semiconductor, or if a semiconductor is used, the donor can be doped. As a result, the electron transport layer becomes a window layer for introducing into the perovskite layer (light absorption layer), and the electric power obtained from the perovskite layer (light absorption layer) can be taken out more efficiently.

電子輸送層の厚みは,特に制限されず,ペロブスカイト層(光吸収層)からの電子をより収集できる観点から,10〜300nm程度が好ましく,10〜250nm程度がより好ましい。電子輸送層は,成形する材料に応じて公知の成膜方法を用いて得ることができる。例えば,(正孔)ブロッキング層の上に,5〜50質量%(特に10〜30質量%)の酸化チタンペーストのアルコール溶液(例えばエタノール溶液等)を塗布して作製することができる。酸化チタンペーストは公知又は市販品を用いることができる。塗布の方法は,スピンコート法が好ましい。なお,塗布は例えば15〜30℃程度で行うことができる。 The thickness of the electron transport layer is not particularly limited, and is preferably about 10 to 300 nm, more preferably about 10 to 250 nm, from the viewpoint of being able to collect more electrons from the perovskite layer (light absorption layer). The electron transport layer can be obtained by using a known film forming method depending on the material to be molded. For example, it can be prepared by applying an alcohol solution (for example, ethanol solution) of titanium oxide paste of 5 to 50% by mass (particularly 10 to 30% by mass) on the (hole) blocking layer. As the titanium oxide paste, a known or commercially available product can be used. The coating method is preferably a spin coating method. The coating can be performed at, for example, about 15 to 30 ° C.

ペロブスカイト層(光吸収層)
ペロブスカイト型太陽電池におけるペロブスカイト層(光吸収層)は,光を吸収し,励起された電子を移動させることにより,光電変換を行う層である。ペロブスカイト層(光吸収層)は,ペロブスカイト材料や,ペロブスカイト錯体を含む。ペロブスカイト層は,先に説明した方法に基づいて製造すればよい。ペロブスカイト層は,ロール・トゥ・ロールによる大量生産を実現することが好ましい。混合液をスピンコート,ディップコート,スクリーン印刷法,ロールコート,ダイコート法,転写印刷法,スプレー法,スリットコート法等,好ましくはスピンコートにより基材上に塗布することが好ましい。
Perovskite layer (light absorption layer)
The perovskite layer (light absorption layer) in a perovskite type solar cell is a layer that performs photoelectric conversion by absorbing light and moving excited electrons. The perovskite layer (light absorption layer) contains a perovskite material and a perovskite complex. The perovskite layer may be produced according to the method described above. The perovskite layer preferably realizes mass production by roll-to-roll. It is preferable to apply the mixed solution on the substrate by spin coating, dip coating, screen printing method, roll coating, die coating method, transfer printing method, spray method, slit coating method, etc., preferably by spin coating.

ペロブスカイト層(光吸収層)の膜厚は,光吸収効率と励起子拡散長とのバランス及び透明電極で反射した光の吸収効率の観点から,例えば,50〜1000nmが好ましく,200〜800nmがより好ましい。なお,ペロブスカイト層(光吸収層)の膜厚は,100〜1000nmの範囲内であることが好ましく,250〜500nmの範囲内であることがより好ましい。具体的には,ペロブスカイト層(光吸収層)の膜厚の下限値が100nm以上(特に250nm)以上であり,上限値が1000nm以下(特に500nm以下)であることが好ましい。ペロブスカイト層(光吸収層)の膜厚は,錯体からなる膜の断面走査型電子顕微鏡(断面SEM)により測定する。 The film thickness of the perovskite layer (light absorption layer) is preferably, for example, 50 to 1000 nm, more preferably 200 to 800 nm, from the viewpoint of the balance between the light absorption efficiency and the exciton diffusion length and the absorption efficiency of the light reflected by the transparent electrode. preferable. The film thickness of the perovskite layer (light absorption layer) is preferably in the range of 100 to 1000 nm, and more preferably in the range of 250 to 500 nm. Specifically, it is preferable that the lower limit of the film thickness of the perovskite layer (light absorption layer) is 100 nm or more (particularly 250 nm) or more, and the upper limit is 1000 nm or less (particularly 500 nm or less). The film thickness of the perovskite layer (light absorption layer) is measured by a cross-section scanning electron microscope (cross-section SEM) of a film made of a complex.

また,ペロブスカイト層(光吸収層)の平坦性は,走査型電子顕微鏡により測定した表面の水平方向500nm×500nmの範囲において高低差が50nm以下(−25nm〜+25nm)であるものが好ましく,高低差が40nm以下(−20nm〜+20nm)であるのがより好ましい。これにより,光吸収効率と励起子拡散長とのバランスをより取りやすくし,透明電極で反射した光の吸収効率をより向上させることができる。なお,ペロブスカイト層(光吸収層)の平坦性とは,任意に決定した測定点を基準点とし,測定範囲内において最も膜厚が大きいところとの差を上限値,最も小さいところとの差を下限値としており,ペロブスカイト層(光吸収層)の断面走査型電子顕微鏡(断面SEM)により測定する。 The flatness of the perovskite layer (light absorption layer) is preferably such that the height difference is 50 nm or less (-25 nm to +25 nm) in the horizontal direction of 500 nm × 500 nm of the surface measured by a scanning electron microscope. Is more preferably 40 nm or less (-20 nm to + 20 nm). This makes it easier to balance the light absorption efficiency and the exciton diffusion length, and further improves the absorption efficiency of the light reflected by the transparent electrode. The flatness of the perovskite layer (light absorption layer) is defined by using an arbitrarily determined measurement point as a reference point, the upper limit of the difference from the thickest film thickness in the measurement range, and the difference from the smallest measurement point. It is the lower limit and is measured by a cross-section scanning electron microscope (cross-section SEM) of the perovskite layer (light absorption layer).

正孔輸送層
正孔輸送層は,電荷を輸送する機能を有する層である。正孔輸送層には,例えば,導電体,半導体,有機正孔輸送材料等を用いることができる。当該材料は,ペロブスカイト層(光吸収層)から正孔を受け取り,正孔を輸送する正孔輸送材料として機能し得る。正孔輸送層はペロブスカイト層(光吸収層)上に形成される。当該導電体及び半導体としては,例えば,CuI,CuInSe,CuS等の1価銅を含む化合物半導体;GaP,NiO,CoO,FeO,Bi,MoO,Cr等の銅以外の金属を含む化合物が挙げられる。なかでも,より効率的に正孔のみを受け取り,より高い正孔移動度を得る観点から,1価銅を含む半導体が好ましく,CuIがより好ましい。有機正孔輸送材料としては,例えば,ポリ−3−ヘキシルチオフェン(P3HT),ポリエチレンジオキシチオフェン(PEDOT)等のポリチオフェン誘導体;2,2’,7,7’−テトラキス−(N,N−ジ−p−メトキシフェニルアミン)−9,9’−スピロビフルオレン(spiro−OMeTAD)等のフルオレン誘導体;ポリビニルカルバゾール等のカルバゾール誘導体;ポリ[ビス(4−フェニル)(2,4,6−トリメチルフェニル)アミン](PTAA)等のトリフェニルアミン誘導体;ジフェニルアミン誘導体;ポリシラン誘導体;ポリアニリン誘導体等が挙げられる。なかでも,より効率的に正孔のみを受け取り,より高い正孔移動度を得る観点から,トリフェニルアミン誘導体,フルオレン誘導体等が好ましく,PTAA,spiro−OMeTADなどがより好ましい。
Hole transport layer The hole transport layer is a layer that has the function of transporting electric charges. For the hole transport layer, for example, a conductor, a semiconductor, an organic hole transport material, or the like can be used. The material can function as a hole transport material that receives holes from the perovskite layer (light absorption layer) and transports holes. The hole transport layer is formed on the perovskite layer (light absorption layer). Examples of the conductor and semiconductor include compound semiconductors containing monovalent copper such as CuI, CuInSe 2 , and CuS; other than copper such as GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , and Cr 2 O 3. Examples include compounds containing the above metals. Among them, a semiconductor containing monovalent copper is preferable, and CuI is more preferable, from the viewpoint of receiving only holes more efficiently and obtaining higher hole mobility. Examples of the organic hole transport material include polythiophene derivatives such as poly-3-hexylthiophene (P3HT) and polyethylenedioxythiophene (PEDOT); 2,2', 7,7'-tetrax- (N, N-di). Fluolene derivatives such as -p-methoxyphenylamine) -9,9'-spiro-OMeTAD; carbazole derivatives such as polyvinylcarbazole; poly [bis (4-phenyl) (2,4,6-trimethylphenyl) ) Amine] (PTAA) and other triphenylamine derivatives; diphenylamine derivatives; polysilane derivatives; polyaniline derivatives and the like. Among them, triphenylamine derivatives, fluorene derivatives and the like are preferable, and PTAA, spiro-OMeTAD and the like are more preferable, from the viewpoint of receiving only holes more efficiently and obtaining higher hole mobility.

正孔輸送層中には,正孔輸送特性をさらに向上させることを目的として,リチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI),銀ビス(トリフルオロメチルスルホニル)イミド,トリフルオロメチルスルホニルオキシ銀,NOSbF,SbCl,SbF等の酸化剤を含むこともできる。また,正孔輸送層中には,t−ブチルピリジン(TBP),2−ピコリン,2,6−ルチジン等の塩基性化合物を含むこともできる。酸化剤及び塩基性化合物の含有量は,従来から通常使用される量とすることができる。正孔輸送層の膜厚は,より効率的に正孔のみを受け取り,より高い正孔移動度を得る観点から,例えば,30〜200nmが好ましく,50〜100nmがより好ましい。正孔輸送層を成膜する方法は,例えば,乾燥雰囲気下で行うことが好ましい。例えば,有機正孔輸送材料を含む溶液を,乾燥雰囲気下,ペロブスカイト層(光吸収層)上に塗布(スピンコート等)し,30〜150℃(特に50〜100℃)で加熱することが好ましい。 In the hole transport layer, lithium bis (trifluoromethylsulfonyl) imide (LiTFSI), silver bis (trifluoromethylsulfonyl) imide, and trifluoromethylsulfonyloxysilver are used for the purpose of further improving the hole transport characteristics. , NOSbF 6 , SbCl 5 , SbF 5 and the like can also be included. In addition, the hole transport layer may contain basic compounds such as t-butylpyridine (TBP), 2-picoline, and 2,6-lutidine. The contents of the oxidizing agent and the basic compound can be the amounts normally used conventionally. The film thickness of the hole transport layer is preferably, for example, 30 to 200 nm, more preferably 50 to 100 nm, from the viewpoint of receiving only holes more efficiently and obtaining higher hole mobility. The method of forming the hole transport layer is preferably performed in a dry atmosphere, for example. For example, it is preferable to apply a solution containing an organic hole transport material on a perovskite layer (light absorption layer) (spin coating or the like) in a dry atmosphere and heat it at 30 to 150 ° C. (particularly 50 to 100 ° C.). ..

対抗電極層23は導電性の高い材料を選択する。金,銀,銅,アルミニウム,ニッケル等の金属材料の他,電極層21と同じく金属酸化物を用いても良い。 For the counter electrode layer 23, a material having high conductivity is selected. In addition to metal materials such as gold, silver, copper, aluminum, and nickel, metal oxides may be used as in the electrode layer 21.

封止材3には,水蒸気バリア特性のある粘着剤を用いる。樹脂材料や硬化剤,添加剤などに特に制約はなく,アクリル系,シリコーン系,ウレタン系,ポリオレフィン系,ゴム系等,種々の材料を用いる事が出来る。ただし,封止材3が接触する素子部2を構成する材料の化学変化やイオンマイグレーション等を引き起こさないものを選択する必要がある。 An adhesive having a water vapor barrier property is used as the sealing material 3. There are no particular restrictions on the resin material, curing agent, additive, etc., and various materials such as acrylic, silicone, urethane, polyolefin, and rubber can be used. However, it is necessary to select a material that does not cause a chemical change or ion migration of the material constituting the element portion 2 with which the sealing material 3 comes into contact.

カバー材4は絶縁性の材料であればよく,基材1と同じく光透過性材料の他,不透明なフィルム材,板材を用いる事が出来る。水蒸気バリア性を高めるため,アルミナ等の光透過性の防湿膜やアルミニウム等の不透明な防湿膜を設けても良い。 The cover material 4 may be an insulating material, and like the base material 1, an opaque film material or a plate material can be used in addition to the light transmissive material. In order to enhance the water vapor barrier property, a light-transmitting moisture-proof film such as alumina or an opaque moisture-proof film such as aluminum may be provided.

図2は本発明にかかる太陽電池モジュールの一例である第2の構成を示す断面図である。 FIG. 2 is a cross-sectional view showing a second configuration which is an example of the solar cell module according to the present invention.

太陽電池モジュール200は基材1と素子部2と封止材3とカバー材4で構成されている。素子部2は電極層21,光電変換層22,対向電極層23から構成されている。基材1と素子部2は同じ大きさであり,周囲を封止材3で囲われた構成となっている。カバー材4は基材より大きなサイズとなっており,素子部は基材,封止材,カバー材で覆われた構造となっている。 The solar cell module 200 is composed of a base material 1, an element portion 2, a sealing material 3, and a cover material 4. The element unit 2 is composed of an electrode layer 21, a photoelectric conversion layer 22, and a counter electrode layer 23. The base material 1 and the element portion 2 have the same size, and are surrounded by a sealing material 3. The cover material 4 has a size larger than that of the base material, and the element portion has a structure covered with the base material, the sealing material, and the cover material.

各層の材料は基本的に構成1と同じだが,光電変換層で受光するために,下部カバー材と封止材は共に光透過性のものを用いる事が必要である。 The material of each layer is basically the same as that of the configuration 1, but it is necessary to use a light-transmitting material for both the lower cover material and the sealing material in order to receive light in the photoelectric conversion layer.

構成2は構成1のように光電変換層と対向電極を基材サイズより小さくする必要がない。また,基材と電極も封止材で覆われる構造であるため,外部から基材,電極,およびその界面への水分の侵入を防ぐことができるため,構成1よりも高い信頼性が期待できる。 In the configuration 2, it is not necessary to make the photoelectric conversion layer and the counter electrode smaller than the substrate size as in the configuration 1. Further, since the base material and the electrode are also covered with a sealing material, it is possible to prevent moisture from entering the base material, the electrode, and the interface thereof from the outside, so that higher reliability than that of the configuration 1 can be expected. ..

実施例1は,バリア粘着封止材及び端部封止のある構成となっている。
すなわち,25mm角ガラス基板上に電極/光電変換層/金電極形成を形成し,光電変換層の端部がガラス端面からの距離が3mmとなるよう除去し,ガラス端部から3mmの範囲の表面には電極層のみを残した。
Example 1 has a structure having a barrier adhesive sealing material and end sealing.
That is, an electrode / photoelectric conversion layer / gold electrode is formed on a 25 mm square glass substrate, the end portion of the photoelectric conversion layer is removed so that the distance from the glass end face is 3 mm, and the surface in the range of 3 mm from the glass end portion is removed. Only the electrode layer was left in.

次に,上記金電極形成の上にPET/アルミニウム箔/PETの層構成を持つカバー材とガラス基板を水蒸気バリア性(水蒸気透過率:40g/m/day)のポリオレフィン系粘着剤シートを用いて貼り合せを行った。 Next, on the formation of the gold electrode, a covering material having a layer structure of PET / aluminum foil / PET and a glass substrate were used with a polyolefin-based pressure-sensitive adhesive sheet having a water vapor barrier property (water vapor transmittance: 40 g / m 2 / day). And pasted together.

これに対し,比較例1は,バリア粘着封止材及び端部封止の無い構成とした。
すなわち,25mm角ガラス基板上に電極/光電変換層/金電極形成を形成した。
On the other hand, Comparative Example 1 had a configuration without a barrier adhesive sealing material and end sealing.
That is, an electrode / photoelectric conversion layer / gold electrode was formed on a 25 mm square glass substrate.

次に,上記金電極形成の上にPET/アルミニウム箔/PETの層構成を持つカバー材とガラス基板を水蒸気バリア性(水蒸気透過率:40g/m/day)のポリオレフィン系粘着剤シートを用いて貼り合せを行った。 Next, on the formation of the gold electrode, a covering material having a layer structure of PET / aluminum foil / PET and a glass substrate were used with a polyolefin-based pressure-sensitive adhesive sheet having a water vapor barrier property (water vapor transmittance: 40 g / m 2 / day). And pasted together.

また,比較例2は,水分に対してバリア性を有しない非バリア粘着封止材を用いて封止した構成とした。
すなわち,25mm角ガラス基板上に電極/光電変換層/金電極形成を形成した。
Further, in Comparative Example 2, a non-barrier adhesive sealing material having no barrier property against moisture was used for sealing.
That is, an electrode / photoelectric conversion layer / gold electrode was formed on a 25 mm square glass substrate.

次に,上記金電極形成の上にPET/アルミニウム箔/PETの層構成を持つカバー材とガラス基板を非水蒸気バリア性(水蒸気透過率:500g/m/day)のアクリル系粘着剤シートを用いて貼り合せを行った。 Next, on the gold electrode formation, a cover material having a layer structure of PET / aluminum foil / PET and a glass substrate are covered with a non-water vapor barrier (water vapor transmittance: 500 g / m 2 / day) acrylic pressure-sensitive adhesive sheet. It was used for bonding.

比較例1及び2との比較により,実施例1における本発明にかかるペロブスカイト型太陽電池の信頼性評価を行った。
恒温恒湿槽に実施例1および比較例1,2のサンプルを投入し,一般的に太陽電池の信頼性を評価するために用いられる温度85℃湿度85%RH条件下で放置した。
The reliability of the perovskite solar cell according to the present invention in Example 1 was evaluated by comparison with Comparative Examples 1 and 2.
The samples of Example 1 and Comparative Examples 1 and 2 were placed in a constant temperature and humidity chamber, and left under the conditions of temperature 85 ° C. and humidity 85% RH, which are generally used for evaluating the reliability of solar cells.

サンプル投入前と投入後所定時間経過後に光照射時の電圧の測定を行った。 The voltage at the time of light irradiation was measured before the sample was charged and after a predetermined time had passed after the sample was charged.

結果を表1および図3に示す。 The results are shown in Table 1 and FIG.

Figure 2021174884
Figure 2021174884

比較例2は実施例1に比べ,顕著な電圧低下の傾向を示していた。これは,封止材の水蒸気バリア性が低いため,封止材の端面から水分が侵入し,太陽電池としての特性が失われていると考えられる。 Comparative Example 2 showed a remarkable tendency of voltage decrease as compared with Example 1. This is because the water vapor barrier property of the encapsulant is low, so it is considered that moisture invades from the end face of the encapsulant and the characteristics of the solar cell are lost.

実施例1と比較例1は,構成材料は共通だが,150時間後の電圧低下に大きな違いが見られた。これは,実施例1の場合,光電変換層の端面が封止材で覆われているため,光電変換層およびその界面からの水分侵入が抑制されていると考えられる。 Although the constituent materials are the same in Example 1 and Comparative Example 1, a large difference was observed in the voltage drop after 150 hours. This is because, in the case of Example 1, since the end face of the photoelectric conversion layer is covered with a sealing material, it is considered that moisture intrusion from the photoelectric conversion layer and its interface is suppressed.

実施例2は,積層された基材と電極と光電変換層と対向電極がバリア粘着封止材により覆われた構成となっている。
すなわち,80mm角PET基板上に電極/光電変換層/金電極形成を形成して基板上に素子部を形成し,次に上記基板の両面を100mm角の光透過性かつ水蒸気バリア性のアルミニウム蒸着PETカバー材で水蒸気バリア性(水蒸気透過率:40g/m/day)のポリオレフィン系粘着剤シートを用いて貼り合せを行った。
In the second embodiment, the laminated base material, the electrode, the photoelectric conversion layer, and the counter electrode are covered with a barrier adhesive sealing material.
That is, an electrode / photoelectric conversion layer / gold electrode is formed on an 80 mm square PET substrate to form an element portion on the substrate, and then both sides of the substrate are 100 mm square light-transmitting and water vapor barrier aluminum vapor deposition. The PET cover material was bonded using a polyolefin-based pressure-sensitive adhesive sheet having a water vapor barrier property (water vapor transmittance: 40 g / m 2 / day).

実施例2においては,光電変換層を構成する部材のすべてである積層された基材と電極と光電変換層と対向電極が,水蒸気バリア性の基材と封止材で覆われているため,実施例1と同等かそれ以上の信頼性が期待できる。 In Example 2, since the laminated base material, the electrode, the photoelectric conversion layer, and the counter electrode, which are all the members constituting the photoelectric conversion layer, are covered with the water vapor barrier base material and the sealing material. Reliability equal to or higher than that of Example 1 can be expected.

本発明は,新規なペロブスカイト型太陽電池を提供するものであり,ウェアラブルデバイスにおける電力源として,あるいは災害時に携帯可能なフィルム型太陽電池として利用されうる。 The present invention provides a novel perovskite solar cell, which can be used as a power source in a wearable device or as a portable film solar cell in the event of a disaster.

1 …基材
2 …素子部
21 …電極
22 …光電変換層
23 …対向電極
3 …封止材
4 …カバー材
41 …上部カバー材
42 …下部カバー材
100…太陽電池モジュール
200…太陽電池モジュール
1 ... Base material 2 ... Element part 21 ... Electrode 22 ... Photoelectric conversion layer 23 ... Counter electrode 3 ... Encapsulant 4 ... Cover material 41 ... Upper cover material 42 ... Lower cover material 100 ... Solar cell module 200 ... Solar cell module

Claims (3)

基材,電極,光電変換層,対向電極,封止材,カバー材の順に積層された太陽電池であって,前記光電変換層は,一般式R−M−X(但し,Rは有機分子,Mは金属原子,Xはハロゲン原子)で表されるペロブスカイト化合物を含み,前記封止材は,23℃で1N/25mm以上の粘着力を有し,かつ水蒸気透過率が50g/m/day未満であり,光電変換層の端面が封止材により3mm以上覆われている事を特徴とする太陽電池。 A solar cell in which a base material, an electrode, a photoelectric conversion layer, a counter electrode, a sealing material, and a cover material are laminated in this order, and the photoelectric conversion layer is a general formula RMX 3 (where R is an organic molecule). , M is a metal atom, X is a halogen atom), and the encapsulant has an adhesive force of 1 N / 25 mm or more at 23 ° C. and a water vapor permeability of 50 g / m 2 /. A solar cell having less than a day and having an end face of a photoelectric conversion layer covered with a sealing material by 3 mm or more. 下部カバー材,封止材,基材,電極,光電変換層,対向電極,封止材,上部カバー材の順に積層された太陽電池であって,前記光電変換層は,一般式R−M−X(但し,Rは有機分子,Mは金属原子,Xはハロゲン原子)で表されるペロブスカイト化合物を含み,前記封止材は,23℃で1N/25mm以上の粘着力を有し,かつ水蒸気透過率が50g/m/day未満であり,光電変換層の端面が封止材により3mm以上覆われている事を特徴とする太陽電池。 A solar cell in which a lower cover material, a sealing material, a base material, an electrode, a photoelectric conversion layer, a counter electrode, a sealing material, and an upper cover material are laminated in this order, and the photoelectric conversion layer is a general formula RM-. It contains a perovskite compound represented by X 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom), and the encapsulant has an adhesive force of 1 N / 25 mm or more at 23 ° C. A solar cell having a water vapor transmission rate of less than 50 g / m 2 / day and having an end face of a photoelectric conversion layer covered with a sealing material of 3 mm or more. 封止材の厚みが5μm以上500μm以下である事を特徴とする請求項1もしくは2の太陽電池。 The solar cell according to claim 1 or 2, wherein the thickness of the sealing material is 5 μm or more and 500 μm or less.
JP2020077789A 2020-04-24 2020-04-24 Perovskite type solar battery Pending JP2021174884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077789A JP2021174884A (en) 2020-04-24 2020-04-24 Perovskite type solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077789A JP2021174884A (en) 2020-04-24 2020-04-24 Perovskite type solar battery

Publications (1)

Publication Number Publication Date
JP2021174884A true JP2021174884A (en) 2021-11-01

Family

ID=78278337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077789A Pending JP2021174884A (en) 2020-04-24 2020-04-24 Perovskite type solar battery

Country Status (1)

Country Link
JP (1) JP2021174884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136147A1 (en) * 2022-01-14 2023-07-20 信越化学工業株式会社 Solar cell module, method for producing same, and solar cell sealing material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208754A1 (en) * 2001-09-28 2009-08-20 Vitex Systems, Inc. Method for edge sealing barrier films
WO2011070951A1 (en) * 2009-12-11 2011-06-16 コニカミノルタホールディングス株式会社 Organic electronics panel and method of manufacturing same
WO2014069398A1 (en) * 2012-10-29 2014-05-08 リンテック株式会社 Adhesive agent composition and adhesive sheet
JP2016187010A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Thin-film solar battery module
JP2016225628A (en) * 2015-05-29 2016-12-28 三菱化学株式会社 Organic Thin Film Solar Cell Module
JP2017515935A (en) * 2014-04-11 2017-06-15 テーザ・ソシエタス・ヨーロピア Adhesive tape for encapsulating organic electronics devices
JP2017135377A (en) * 2016-01-22 2017-08-03 三菱ケミカル株式会社 Organic thin-film solar cell module
WO2018052032A1 (en) * 2016-09-14 2018-03-22 積水化学工業株式会社 Flexible solar cell
JP2018137409A (en) * 2017-02-23 2018-08-30 三菱ケミカル株式会社 Thin film solar battery module
JP2020053616A (en) * 2018-09-28 2020-04-02 株式会社リコー Solar cell module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208754A1 (en) * 2001-09-28 2009-08-20 Vitex Systems, Inc. Method for edge sealing barrier films
WO2011070951A1 (en) * 2009-12-11 2011-06-16 コニカミノルタホールディングス株式会社 Organic electronics panel and method of manufacturing same
WO2014069398A1 (en) * 2012-10-29 2014-05-08 リンテック株式会社 Adhesive agent composition and adhesive sheet
JP2017515935A (en) * 2014-04-11 2017-06-15 テーザ・ソシエタス・ヨーロピア Adhesive tape for encapsulating organic electronics devices
JP2016187010A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Thin-film solar battery module
JP2016225628A (en) * 2015-05-29 2016-12-28 三菱化学株式会社 Organic Thin Film Solar Cell Module
JP2017135377A (en) * 2016-01-22 2017-08-03 三菱ケミカル株式会社 Organic thin-film solar cell module
WO2018052032A1 (en) * 2016-09-14 2018-03-22 積水化学工業株式会社 Flexible solar cell
JP2018137409A (en) * 2017-02-23 2018-08-30 三菱ケミカル株式会社 Thin film solar battery module
JP2020053616A (en) * 2018-09-28 2020-04-02 株式会社リコー Solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136147A1 (en) * 2022-01-14 2023-07-20 信越化学工業株式会社 Solar cell module, method for producing same, and solar cell sealing material

Similar Documents

Publication Publication Date Title
JP6697406B2 (en) Transparent electrode, electronic device, and method for manufacturing electronic device
Foo et al. Recent review on electron transport layers in perovskite solar cells
WO2016002201A1 (en) Planar structure solar cell with inorganic hole transporting material
US20090126784A1 (en) Dye-sensitized solar cell using conductive fiber electrode
Mohammadi et al. Encapsulation strategies for highly stable perovskite solar cells under severe stress testing: Damp heat, freezing, and outdoor illumination conditions
US10573766B2 (en) Solar cell
EP1667275A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Zhang et al. Toward high-performance electron/hole-transporting-layer-free, self-powered CsPbIBr2 photodetectors via interfacial engineering
JP2019021913A (en) Solar battery module
JP6902269B2 (en) Complex, perovskite layer and solar cell
JP7022200B2 (en) Anion permeability evaluation method for graphene-containing film and photoelectric conversion element
JP2021174884A (en) Perovskite type solar battery
US20200350125A1 (en) Organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
EP3955328B1 (en) Solar cell module
JP2004171827A (en) Wet type solar cell
Xu et al. Recent progresses in carbon counter electrode materials for perovskite solar cells and modules
US20230019802A1 (en) Solar cell
JP4651346B2 (en) Photoelectric conversion device and photovoltaic device using the same
EP4167306A1 (en) Solar cell module
KR20190143743A (en) Solar cell and method of manufacturing the same
WO2021075130A1 (en) Element
EP3220399B1 (en) Electrolyte for dye-sensitized photoelectric conversion elements for low luminance, and dye-sensitized photoelectric conversion element for low luminance using same
US20200365334A1 (en) Light-absorbing layer precursor, organic-inorganic hybrid solar cell manufacturing method using same, and organic-inorganic hybrid solar cell
CN103620865A (en) Photoelectric-conversion device, electronic instrument and building
KR102141264B1 (en) Method for manufacturing organic-inorganic complex solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031