WO2023136014A1 - 垂直離着陸機の制御装置 - Google Patents

垂直離着陸機の制御装置 Download PDF

Info

Publication number
WO2023136014A1
WO2023136014A1 PCT/JP2022/045711 JP2022045711W WO2023136014A1 WO 2023136014 A1 WO2023136014 A1 WO 2023136014A1 JP 2022045711 W JP2022045711 W JP 2022045711W WO 2023136014 A1 WO2023136014 A1 WO 2023136014A1
Authority
WO
WIPO (PCT)
Prior art keywords
evtol
control device
epu
landing
flight
Prior art date
Application number
PCT/JP2022/045711
Other languages
English (en)
French (fr)
Inventor
正人 福士
俊 杉田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023136014A1 publication Critical patent/WO2023136014A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force

Definitions

  • the disclosure in this specification relates to a control device for a vertical take-off and landing aircraft.
  • Patent Document 1 describes a drone that flies with multiple rotor blades.
  • This drone has multiple rotor sets. In one rotor blade set, two rotor blades are arranged one above the other.
  • this drone when an abnormality occurs in one rotor blade in one rotor set, the rotation of one rotor blade is stopped, while the other rotor blade continues to rotate. Further, even in a rotor blade set different from the rotor blade set in which the abnormality has occurred, one of the rotor blades stops rotating and the other rotor blade continues to rotate.
  • a main object of the present disclosure is to provide a control device for a vertical take-off and landing aircraft that can enhance safety in the event of an abnormality in the drive system.
  • a control device for a vertical take-off and landing aircraft that has a plurality of rotor blades and a plurality of drive devices that drive and rotate the rotor blades according to the output of the rotor blades and is capable of vertical takeoff and landing, an abnormal stop unit that, when an abnormality occurs in the drive device, stops the driving of the drive device in which the abnormality has occurred out of the plurality of drive devices as an abnormal device;
  • a driving device that does not have an abnormality among the plurality of driving devices is regarded as a normal device, and the output of at least one normal device is adjusted so as to correct the attitude change of the vertical takeoff and landing aircraft due to the stoppage of the abnormal device by the drive stop unit.
  • the output of at least one normal device is increased.
  • the output of the normal device is increased so as to correct the change in the attitude of the vertical take-off and landing aircraft due to the stoppage of the drive of the abnormal device, it is possible to prevent the attitude of the vertical take-off and landing aircraft from becoming unstable. Therefore, it is possible to enhance the safety in the case where an abnormality occurs in the drive system in the vertical take-off and landing aircraft.
  • FIG. 4 is a flowchart showing the procedure of flight control processing; 4 is a flowchart showing the procedure of abnormality determination processing; 4 is a flowchart showing the procedure of flight determination processing; 4 is a flowchart showing the procedure of processing during takeoff; FIG. 4 is a diagram for explaining an avoidance area; FIG. 4 is a diagram showing an avoidance path during vertical takeoff of an eVTOL; 4 is a flowchart showing a procedure of processing during landing; 4 is a flowchart showing the procedure of processing during a cruise; 4 is a flowchart showing the procedure of processing during hovering.
  • 9 is a flowchart showing the procedure of correction increase processing in the second embodiment;
  • FIG. 4 is a diagram for explaining the posture of eVTOL;
  • FIG. 11 is a flow chart showing the procedure of during-takeoff processing in the third embodiment; FIG.
  • a flight system 30 shown in FIG. 1 is mounted on the eVTOL 10 .
  • the eVTOL 10 is an electric vertical takeoff and landing aircraft.
  • An electric vertical take-off and landing aircraft is an electric vertical take-off and landing aircraft capable of vertical take-off and landing.
  • eVTOL is an abbreviation for electric Vertical Take-Off and Landing aircraft.
  • the eVTOL 10 is a motorized flying object that flies in the atmosphere.
  • the eVTOL 10 is also an electric aircraft and is sometimes referred to as an electric aircraft.
  • the eVTOL 10 is a flying vehicle operated by a pilot as an operator. Operators of the eVTOL 10 include pilots and remote pilots.
  • a pilot is a crew member aboard the eVTOL10.
  • a remote pilot remotely operates the eVTOL 10 without riding the eVTOL 10 .
  • Flight system 30 is the system that drives eVTOL 10 to fly.
  • the eVTOL 10 has a fuselage 11 and a rotor 20.
  • the fuselage 11 has a fuselage body 12 , wings 13 and a fuselage frame 14 .
  • the fuselage body 12 is the body of the fuselage 11, and has a shape extending forward and backward, for example.
  • the fuselage body 12 may have a cockpit when an operator rides.
  • the wing 13 extends from the fuselage body 12, and a plurality of wings 13 are provided on the fuselage body 12, but the wings 13 may be omitted.
  • the multiple wings 13 include main wings, tail wings, and the like.
  • the fuselage body 12 extends along the roll axis AX.
  • the roll axis AX extends in the longitudinal direction of the fuselage 11
  • the pitch axis AY extends in the width direction of the fuselage 11
  • the yaw axis AZ extends in the vertical direction of the fuselage 11 .
  • the roll axis AX, the pitch axis AY, and the yaw axis AZ are orthogonal to each other, and all pass through the center of gravity Gp of the aircraft.
  • the center of gravity Gp of the aircraft is the center of gravity of the eVTOL 10, for example, the center of gravity of the eVTOL 10 at the time of empty weight.
  • the roll axis AX extends in the X direction
  • the pitch axis AY extends in the Y direction
  • the yaw axis AZ extends in the Z direction.
  • the rotor 20 is provided on the fuselage 11 .
  • the rotor 20 rotates about the rotor axis.
  • the rotor axis is the axis of rotation of the rotor 20 and coincides with the centerline of the rotor 20 .
  • the rotor 20 is a rotating blade and is capable of producing thrust and lift on the eVTOL 10 .
  • the rotor axis extends, for example, in the Z direction. Note that the force generated when the eVTOL 10 rises is sometimes referred to as thrust.
  • the eVTOL 10 is sometimes referred to as a multi-thrust distributed electric aircraft.
  • the rotor 20 has blades 21 , a rotor head 22 and a rotor shaft 23 .
  • a plurality of blades 21 are arranged in the circumferential direction of the rotor axis.
  • the rotor head 22 connects multiple blades 21 .
  • the blades 21 extend from the rotor head 22 in the radial direction of the rotor axis.
  • the blades 21 are vanes that rotate together with the rotor shaft 23 .
  • the rotor shaft 23 is the rotating shaft of the rotor 20 and extends from the rotor head 22 along the rotor axis.
  • the rotor 20 is fixed to at least one of the fuselage body 12 and the wings 13 via the fuselage frame 14 .
  • the fuselage frame 14 is fixed to at least one of the fuselage body 12 and the wings 13 .
  • the fuselage frame 14 of this embodiment is fixed to the fuselage body 12 .
  • the body frame 14 has a strut 14a, a radial frame 14b and a peripheral frame 14c.
  • the strut 14 a extends in the Z direction along the yaw axis AZ and is fixed to the airframe body 12 .
  • the support 14a is provided, for example, at a position where the center line of the support 14a and the yaw axis AZ match.
  • the diameter frame 14b extends in the radial direction of the yaw axis AZ and is arranged in a plurality in the circumferential direction of the yaw axis AZ.
  • the peripheral frames 14c extend in the circumferential direction of the yaw axis AZ, and are arranged in plurality in the circumferential direction.
  • the circumferential frame 14c connects two adjacent radial frames 14b in the circumferential direction of the yaw axis AZ.
  • the strut 14a may be fixed to the wing 13.
  • pillar 14a may be provided in multiple numbers.
  • the radial frame 14b and the circumferential frame 14c may be directly fixed to at least one of the airframe body 12 and the wings 13 without the strut 14a.
  • a plurality of rotors 20 are provided on the fuselage 11 .
  • the multiple rotors 20 are arranged in the circumferential direction of the yaw axis AZ.
  • the rotor 20 is fixed to at least one of the radial frame 14b and the circumferential frame 14c.
  • the rotor 20 is provided, for example, at a connecting portion between the radial frame 14b and the circumferential frame 14c.
  • the plurality of rotors 20 includes a plurality of pairs of rotors 20 arranged side by side with the yaw axis AZ interposed therebetween in the radial direction of the yaw axis AZ.
  • the eVTOL 10 is a multicopter with at least three rotors 20 .
  • At least four rotors 20 are provided on the body 11 .
  • six rotors 20 are arranged at equal intervals in the circumferential direction of the yaw axis AZ.
  • Flight modes of eVTOL10 include vertical takeoff, vertical landing, cruise and hovering.
  • the eVTOL 10 can take off from the takeoff point as a vertical takeoff, for example, by climbing vertically without gliding.
  • As a vertical landing the eVTOL 10 can land on the landing point without skidding, for example by descending vertically.
  • the eVTOL 10 can be flown as a cruise, for example moving horizontally.
  • the eVTOL 10 can fly as hovered, for example as if it were stationary in place in the air.
  • the eVTOL 10 can fly by the thrust generated by the driven rotation of the rotor 20.
  • the flight mode of the eVTOL 10 is changed by changing the driving mode of the rotor 20.
  • the rotor 20 serves as both a cruise rotor and a lift rotor.
  • a cruise rotor allows the eVTOL 10 to cruise.
  • Lift rotors allow the eVTOL 10 to take off vertically, land vertically and hover.
  • the rotor 20 for cruising and the rotor 20 for lift may be separately mounted on the eVTOL 10 .
  • the flight system 30 has a drive battery 31, a distributor 32, a flight control device 40, and an EPU 50.
  • the flight system 30 also has a temperature sensor 36a, a vibration sensor 36b, an abnormal noise sensor 36c, and an operation sensor 38a.
  • the EPU 50 has a rotation sensor 55 , a current sensor 56 and a voltage sensor 57 .
  • the flight controller 40 has a storage device 35 . In FIG. 2, the storage device 35 is FSD, the flight control device 40 is FCD, the temperature sensor 36a is TS, the vibration sensor 36b is VBS, the noise sensor 36c is NS, and the operation sensor 38a is OUS.
  • the rotation sensor 55 is indicated by RS, the current sensor 56 by IS, and the voltage sensor 57 by VS.
  • the EPU 50 is a device that drives and rotates the rotor 20, and corresponds to a drive device.
  • EPU is an abbreviation for Electric Propulsion Unit.
  • the EPU 50 is an electric driving device and is sometimes called an electric driving device.
  • the EPU 50 can propel the eVTOL 10 by driving and rotating the rotor 20, and is sometimes called a propulsion device.
  • the EPU 50 is individually provided for each of the multiple rotors 20 .
  • the EPUs 50 are aligned with the rotor 20 along the rotor axis. All of the multiple EPUs 50 are fixed to the airframe 11 .
  • EPU 50 rotatably supports rotor 20 .
  • EPU 50 is mechanically connected to rotor shaft 23 .
  • the plurality of EPUs 50 include at least one of the EPUs 50 fixed to the airframe 11 in a state protruding outside the airframe 11 and the EPUs 50 fixed to the airframe 11 in a state embedded inside the airframe 11. .
  • the EPU 50 has a motor device 80 and an inverter device 60 .
  • the motor device 80 has a motor and a motor housing.
  • the motor is housed in a motor housing.
  • the motor is a multi-phase AC motor, for example, a three-phase AC rotary electric machine.
  • the motor functions as the electric motor that drives the eVTOL 10 in flight.
  • a motor has a rotor and a stator. The motor is driven by power from the drive battery 31 .
  • the rotating shaft of the motor is connected to the rotor 20, and the rotor 20 rotates as the rotating shaft of the motor rotates.
  • the EPU 50 drives and rotates the rotor 20 by driving the motor.
  • a brushless motor for example, is used as the motor.
  • an induction motor or a reactance motor may be used as the motor.
  • the inverter device 60 has an inverter and an inverter housing.
  • the inverter is housed in an inverter housing.
  • the inverter drives the motor by converting power supplied to the motor.
  • the inverter is sometimes called a driver.
  • the inverter converts the power supplied to the motor from direct current to alternating current.
  • An inverter is a power converter that converts power.
  • the inverter is a multi-phase power conversion unit, and performs power conversion for each of the multi-phases.
  • the inverter is, for example, a three-phase inverter.
  • the motor is driven according to the voltage and current supplied from the inverter.
  • the driving of the motor device 80 is controlled according to the detection results of the sensors 55-57.
  • the EPU 50 has a drive control section that controls the drive of the motor device 80 .
  • the drive controller is electrically connected to the inverter and sensors 55-57.
  • the sensors 55-57 output detection results to the drive control section.
  • the drive controller controls the motor via the inverter.
  • the drive control section is electrically connected to the flight control device 40 and performs motor control according to signals from the flight control device 40 . Note that the flight control device 40 may directly control the motors and the like of the EPU 50 .
  • the rotation sensor 55 is provided for the motor.
  • a rotation sensor 55 detects the number of rotations of the motor.
  • the rotation sensor 55 includes, for example, an encoder and a resolver.
  • the number of rotations of the motor is, for example, the number of rotations per unit time.
  • a current sensor 56 detects a current flowing through the motor as a motor current.
  • a current sensor 56 detects, for example, the motor current for each of a plurality of phases.
  • Voltage sensor 57 detects the voltage output from the inverter as an inverter voltage.
  • the rotation sensor 55 , current sensor 56 and voltage sensor 57 are electrically connected to the flight control device 40 and output detection signals to the flight control device 40 .
  • the temperature sensor 36a, vibration sensor 36b, and noise sensor 36c detect the state of the EPU 50.
  • the sensors 36a to 36c may be provided in the EPU 50 or may be provided at a distance from the EPU 50 as long as the driving state of the EPU 50 can be detected.
  • the sensors 36a-36c are individually provided for each of the plurality of EPUs 50.
  • FIG. The sensors 36a to 36c may be provided one by one for several EPUs 50.
  • the sensors 36a to 36c are provided at the front and rear ends of the airframe body 12 and the tip of the main wing, respectively. In this configuration, the sensors 36a to 36c detect the driving state of the EPU 50 located near the sensors 36a to 36c among the plurality of EPUs 50.
  • the temperature sensor 36a detects the temperature of the EPU50.
  • the temperature sensor 36 a of this embodiment detects the temperature of the motor device 80 as the temperature of the EPU 50 .
  • the temperature sensor 36 a is provided at a position closer to the motor device 80 than the inverter device 60 with respect to the EPU 50 .
  • Temperature sensor 36 a may be provided at a position closer to inverter device 60 than motor device 80 , or may be provided between motor device 80 and inverter device 60 . In this case, the temperature sensor 36 a can detect the temperature of the inverter device 60 or the average temperature of the motor device 80 and the inverter device 60 as the temperature of the EPU 50 .
  • the vibration sensor 36b detects vibrations of the EPU 50.
  • the vibration sensor 36b of this embodiment detects the vibration of the motor device 80 as the vibration of the EPU 50.
  • FIG. The vibration sensor 36b detects vibrations generated as the motor device 80 is driven.
  • the vibration sensor 36b can detect the amplitude and frequency of vibration.
  • the vibration sensor 36b includes, for example, at least one of an acceleration sensor, a load sensor, a speed sensor and a displacement sensor.
  • the abnormal noise sensor 36c detects abnormal noise of the EPU 50.
  • the abnormal noise sensor 36c of this embodiment detects the abnormal noise of the motor device 80 as the abnormal noise of the EPU 50.
  • the abnormal noise sensor 36c can detect the abnormal noise as a sound when the abnormal noise is generated as the motor device 80 is driven.
  • the noise sensor 36c includes a sound sensor such as a microphone.
  • the noise sensor 36c can detect the amplitude and frequency of sound.
  • the temperature sensor 36a, the vibration sensor 36b, and the noise sensor 36c are electrically connected to the flight control device 40 and output detection signals to the flight control device 40.
  • the detection results of the sensors 36a to 36c may include information indicating the state of the eVTOL 10 in addition to the information indicating the state of the EPU 50.
  • the detection result of the vibration sensor 36b may include the vibration of the airframe 11 caused by the flight of the eVTOL 10 in addition to the vibration caused by the driving of the EPU 50 .
  • the detection result of the noise sensor 36c may include the sound of the wind generated when the eVTOL 10 flies, in addition to the sound generated when the EPU 50 is driven.
  • the flight system 30 has an operation unit 38.
  • the operation unit 38 is an operation target such as an operation lever, and is operated by a pilot or the like.
  • the operation unit 38 is provided in the passenger compartment of the eVTOL 10 .
  • the operation sensor 38 a is provided in the operation section 38 .
  • the operation sensor 38 a can detect that the operation unit 38 has been operated and how the operation unit 38 is operated.
  • the operation sensor 38 a is electrically connected to the flight control device 40 and outputs detection signals to the flight control device 40 .
  • the driving battery 31 is electrically connected to a plurality of EPUs 50.
  • the drive battery 31 is a power supply unit that supplies power to the EPU 50 and corresponds to a power supply unit.
  • the drive battery 31 is a battery for driving the EPU 50 and is sometimes called a drive battery.
  • the drive battery 31 is a DC voltage source that applies a DC voltage to the EPU 50 .
  • the drive battery 31 has a rechargeable secondary battery. Secondary batteries include lithium-ion batteries, nickel-metal hydride batteries, and the like.
  • the drive battery 31 can store electric power and corresponds to a power storage device.
  • the driving battery 31 has a plurality of cells. A cell is a storage battery that constitutes the drive battery 31 .
  • the driving battery 31 is called an assembled battery, and the cells are sometimes called battery cells and battery cells.
  • the distributor 32 is electrically connected to the drive battery 31 and the multiple EPUs 50 .
  • the distributor 32 distributes power from the drive battery 31 to the multiple EPUs 50 .
  • Drive battery 31 is electrically connected to multiple EPUs 50 via distributor 32 .
  • Drive battery 31 supplies power to EPU 50 via distributor 32 . If the voltage of the drive battery 31 is referred to as a high voltage, the high voltage is applied to an inverter in the EPU 50, which will be described later.
  • the distributor 32 may be omitted as long as the power of the drive battery 31 is supplied to a plurality of EPUs 50 .
  • As a configuration that does not require the distributor 32 for example, there is a configuration in which each of the plurality of EPUs 50 is individually provided with a power supply unit.
  • the flight control device 40 shown in FIG. 2 is, for example, an ECU, and performs flight control for causing the eVTOL 10 to fly.
  • the flight control device 40 is a control device that controls the flight system 30, and controls the EPU 50, for example.
  • ECU is an abbreviation for Electronic Control Unit.
  • the flight control device 40 is mainly composed of a microcomputer having, for example, a processor, memory, I/O, and a bus connecting them.
  • a microcomputer is sometimes called a microcomputer.
  • a memory is a non-transitory physical storage medium that non-temporarily stores computer-readable programs and data.
  • a non-transitory tangible storage medium is a non-transitory tangible storage medium, which is realized by a semiconductor memory, a magnetic disk, or the like.
  • the flight control device 40 is electrically connected to the EPU 50.
  • the flight control device 40 executes various processes related to flight control by executing control programs stored in at least one of the memory and the storage device 35 .
  • the flight control device 40 performs flight control according to the detection results of various sensors.
  • Various sensors include a current sensor 56 and a temperature sensor 36a.
  • This flight control includes EPU control for driving and controlling the EPU 50 and the like.
  • EPU control is also output control that controls the output of EPU 50 .
  • the storage device 35 stores information related to flight control such as control programs.
  • Various sensors include a rotation sensor 55, a current sensor 56, a voltage sensor 57, and the like. Note that the storage device 35 may be provided independently from the flight control device 40 . In this case, it is preferable that the storage device 35 and the flight control device 40 can communicate with each other.
  • the flight control device 40 performs flight control processing for causing the eVTOL 10 to fly.
  • the flight control device 40 controls the drive rotation of the rotor 20 via, for example, the EPU 50 in flight control processing.
  • the eVTOL 10 corresponds to a vertical take-off and landing aircraft
  • the flight control device 40 corresponds to a control device for the vertical take-off and landing aircraft. Flight control device 40 is sometimes referred to as a flight controller.
  • the flight control process will be explained with reference to the flowchart in FIG.
  • the flight control device 40 repeatedly executes flight control processing at a predetermined control cycle.
  • the flight control device 40 has a function of executing each step of flight control processing.
  • the flight control device 40 performs abnormality determination processing in step S101 shown in FIG.
  • the abnormality determination process it is determined whether or not an abnormality has occurred in the eVTOL 10 .
  • Abnormality of the eVTOL 10 includes an abnormality of the EPU 50, an abnormality of the motor device 80, an abnormality of the flight attitude of the eVTOL 10, and the like. The abnormality determination process will be described with reference to the flowchart of FIG.
  • the flight control device 40 performs EPU abnormality determination in steps S201 to S205 shown in FIG.
  • EPU abnormality determination it is determined whether or not an abnormality has occurred in the EPU 50 .
  • Abnormalities of the EPU 50 include, for example, motor abnormalities and inverter abnormalities.
  • the motor malfunction is the motor device 80
  • the inverter malfunction is the inverter device 60 malfunction.
  • the flight control device 40 performs EPU abnormality determination for each of the plurality of EPUs 50 .
  • the inverter abnormality determination is also a determination as to whether or not there is an abnormality in the EPU 50 .
  • the flight control device 40 determines whether or not the temperature of the EPU 50 has changed in step S201.
  • the flight control device 40 determines, for example, whether there is an abnormality in the motor temperature. In this determination, it is determined whether the motor temperature is within the allowable range. In this determination, it is determined that the motor temperature has changed both when the motor temperature is higher than the allowable range and when the motor temperature is lower than the allowable range.
  • the motor temperature is the temperature of the motor device 80 and is obtained using, for example, the detection signal of the temperature sensor 36a.
  • the allowable range of motor temperature is determined in advance and stored in the storage device 35 .
  • the flight control device 40 determines that the temperature of the EPU 50 has changed, for example, when the motor temperature has changed. Note that the allowable range of the motor temperature may be variably set according to the outside air temperature or the like.
  • step S202 the flight control device 40 determines whether or not there is a change in the motor rotation speed of the EPU 50. In this determination, it is determined whether or not the motor rotation speed is within the allowable range. In this determination, it is determined that there is an abnormality in the motor rotation speed both when the motor rotation speed is higher than the allowable range and when the motor rotation speed is lower than the allowable range.
  • the motor rotation speed is the rotation speed of the motor of the motor device 80, and is obtained using the detection signal of the rotation sensor 55, for example.
  • the permissible range of motor rotation speed is determined in advance and stored in the storage device 35 . Note that the allowable range of the motor rotation speed may be variably set according to the flight speed of the eVTOL 10 or the like.
  • step S203 the flight control device 40 determines whether or not there is an abnormality in the vibration of the EPU 50.
  • the flight control device 40 determines, for example, whether or not there is an abnormality in the vibration of the motor device 80 . In this determination, it is determined whether or not the vibration mode of the motor device 80 is within the allowable range. In this determination, when the vibration mode of the motor device 80 is out of the allowable range, it is determined that the vibration mode of the motor device 80 has changed. Regarding the vibration of the motor device 80, if at least one of the amplitude and frequency is out of the allowable range, it is determined that the vibration mode is out of the allowable range.
  • the vibration of the motor device 80 is acquired using the detection signal of the vibration sensor 36b.
  • the permissible range of vibration modes is determined in advance and stored in the storage device 35 .
  • the flight control device 40 determines that the vibration of the EPU 50 has changed, for example, when the vibration of the motor device 80 has changed.
  • the allowable range of the vibration mode may be variably set according to the flight speed of the eVTOL 10 or the like.
  • the flight control device 40 determines whether or not the EPU 50 is making an abnormal noise.
  • the flight control device 40 determines, for example, whether or not the motor device 80 is making an abnormal noise. In this determination, it is determined whether or not the noise of the motor device 80 is within the allowable range of abnormal noise. In this determination, when the sound of the motor device 80 is out of the allowable range, it is determined that the sound is abnormal.
  • the sound of the motor device 80 for example, when at least one of the amplitude and frequency is out of the allowable range, the sound is determined to be out of the allowable range.
  • the sound of the motor device 80 is acquired using the detection signal of the abnormal sound sensor 36c.
  • the allowable range of noise is determined in advance and stored in the storage device 35 .
  • the flight control device 40 determines that the EPU 50 is making the abnormal noise, for example, when the motor device 80 is making the abnormal noise.
  • the allowable range of sound may be variably set according to the flight speed of the eVTOL 10 or the like.
  • step S205 the flight control device 40 determines whether or not the EPU 50 continues to malfunction. In this determination, it is determined whether or not the abnormality time during which the abnormality of the EPU 50 continues has reached the reference time.
  • the reference time is set to several tens of seconds to several minutes, for example.
  • the reference time is determined in advance and stored in the storage device 35 . Note that the reference time may be variably set according to the outside air temperature, the flight speed of the eVTOL 10, and the like.
  • the flight control device 40 determines that an abnormality has occurred in the EPU 50, and proceeds to step S209.
  • the flight control device 40 performs abnormality processing in step S209.
  • abnormality information including information indicating that an abnormality has occurred in the EPU 50 and in which EPU 50 the abnormality has occurred is stored in the storage device 35 or the like.
  • the flight control device 40 sets an EPU abnormality flag indicating that an abnormality has occurred in the EPU 50 in the storage device 35 or the like in association with position information indicating the position of the EPU 50 in which the abnormality has occurred.
  • the flight control device 40 assumes that the EPU 50 is abnormal but not abnormal, and returns to step S201 to perform EPU abnormality determination.
  • the flight control device 40 determines whether the attitude of the eVTOL 10 is unstable in step S206. In this determination, it is determined whether or not the posture of the eVTOL 10 is maintained in the normal posture. If the posture of the eVTOL 10 is maintained in the normal posture, it is determined that the posture of the eVTOL 10 is stable. Further, even if the posture of the eVTOL 10 is maintained in a specific posture, if the specific posture is not a normal posture, it is determined that the posture of the eVTOL 10 is unstable.
  • the flight system 30 has an attitude sensor, and the attitude of the eVTOL 10 is acquired by the attitude sensor or the like in step S206.
  • the flight control device 40 proceeds to step S209 and performs abnormality processing.
  • abnormality information indicating that the attitude of the eVTOL 10 is unstable is stored in the storage device 35 or the like.
  • the flight control device 40 sets an attitude abnormality flag indicating that the attitude of the eVTOL 10 is unstable in the storage device 35 or the like.
  • step S207 The flight control device 40 determines whether the altitude of the eVTOL 10 is unstable in step S207. In this determination, it is determined whether or not the altitude of the eVTOL 10 is normal altitude. In this determination, for example, it is determined whether or not the altitude of the eVTOL 10 is maintained at the normal altitude. If the altitude of the eVTOL 10 is maintained at the normal altitude, it is determined that the altitude of the eVTOL 10 is stable. . For example, if the eVTOL 10 repeatedly ascends and descends, it is determined that the altitude of the eVTOL 10 is unstable.
  • the flight system 30 has an altitude sensor, and the altitude of the eVTOL 10 is acquired by the altitude sensor or the like in step S207.
  • step S209 If the altitude of the eVTOL 10 is unstable, the flight control device 40 proceeds to step S209 and performs abnormality processing.
  • abnormality processing in this case, abnormality information indicating that the altitude of the eVTOL 10 is unstable is stored in the storage device 35 or the like.
  • the flight control device 40 sets an altitude abnormality flag indicating that the altitude of the eVTOL 10 is unstable in the storage device 35 or the like.
  • step S208 the flight control device 40 determines that the eVTOL 10 is not abnormal, and proceeds to step S208.
  • the flight control device 40 performs normal processing in step S208. In this normal process, normal information indicating that none of the EPU abnormality, attitude abnormality and altitude abnormality has occurred is stored in the storage device 35 or the like.
  • step S102 The flight control device 40 determines in step S102 whether or not the eVTOL 10 is abnormal. In this determination, it is determined whether an abnormality flag such as an EPU abnormality flag, an attitude abnormality flag, an altitude abnormality flag, or the like is set. Then, when the abnormality flag is set, it is determined that the eVTOL 10 is abnormal.
  • an abnormality flag such as an EPU abnormality flag, an attitude abnormality flag, an altitude abnormality flag, or the like is set. Then, when the abnormality flag is set, it is determined that the eVTOL 10 is abnormal.
  • step S103 the flight control device 40 performs flight determination processing in step S103.
  • the flight determination process it is determined whether or not the eVTOL 10 can be flown when an abnormality has occurred in the eVTOL 10 .
  • the flight state determination process will be described with reference to the flowchart of FIG.
  • step S301 shown in FIG. 5 the flight control device 40 determines whether it is possible to stop driving the abnormal EPU.
  • An abnormal EPU is an EPU 50 in which an abnormality such as a motor abnormality has occurred among the plurality of EPUs 50 .
  • An abnormal EPU corresponds to an abnormal device. It is conceivable that the drive of the motor device 80 and the like cannot be stopped depending on the mode of the abnormality that has occurred in the abnormal EPU.
  • the flight control device 40 determines in step S302 whether or not it is possible to increase the output of the normal EPU. In this determination, it is determined whether or not the current normal EPU output is the maximum output. Then, when the output of the normal EPU is not the maximum output, it is determined that the output of the normal EPU can be increased.
  • a normal EPU is an EPU 50 in which an abnormality such as a motor abnormality has not occurred among the plurality of EPUs 50 . Of the plurality of EPUs 50, the EPUs 50 that are different from the abnormal EPUs are normal EPUs.
  • a normal EPU corresponds to a normal device.
  • the flight control device 40 determines whether or not the attitude of the eVTOL 10 can be stabilized in step S303. In this determination, it is determined whether or not the posture of the eVTOL 10 can be stabilized by the posture adjustment device provided in the eVTOL 10 . Ailerons and the like are known as attitude adjustment devices. The flight control device 40 determines whether or not the attitude adjustment device operates normally, and determines that the attitude of the eVTOL 10 can be stabilized when the attitude adjustment device operates normally.
  • the flight control device 40 determines whether or not the altitude of the eVTOL 10 can be stabilized in step S304. In this determination, it is determined whether or not the altitude adjustment device provided in the eVTOL 10 can stabilize the altitude of the eVTOL 10 .
  • the altitude adjustment device includes flaps and the like. The flight controller 40 determines whether the altitude adjustment device operates normally, and determines that the altitude of the eVTOL 10 can be stabilized when the altitude adjustment device operates normally.
  • step S305 the flight control device 40 determines that the eVTOL 10 is capable of flying even if the eVTOL 10 is in an abnormal condition, and performs flight-enable processing.
  • information indicating that the eVTOL 10 is capable of flight is stored in the storage device 35 or the like.
  • the flight control device 40 sets a flight ready flag indicating that the eVTOL 10 is ready to fly in the storage device 35 or the like.
  • step S306 it is determined that the eVTOL 10 can fly when the eVTOL 10 can maintain the flight state for a predetermined time. This predetermined time is, for example, several seconds to several tens of seconds.
  • step S306 the flight control device 40 determines that the eVTOL 10 cannot fly, and performs flight termination processing.
  • information indicating that the flight of the eVTOL 10 is to be terminated is stored in the storage device 35 or the like.
  • step S104 The flight control device 40 determines in step S104 whether the eVTOL 10 is capable of flight. In this determination, for example, it is determined whether or not a flight enable flag is set. Then, when the flyable flag is set, it is determined that the eVTOL 10 is flyable.
  • step S113 The flight control device 40 performs emergency landing processing in step S113.
  • EPU control is automatically performed to vertically land the eVTOL 10 at an emergency landing point vertically downward from its current speed and altitude.
  • the emergency landing process is a process for landing the eVTOL 10 in at least one of the shortest distance and the shortest time.
  • EPU control may be switched from automatic to manual by the pilot during emergency landing of the eVTOL 10 . For example, when the operation sensor 38a detects that a switching operation has been performed on the operation unit 38, the EPU control may be switched to manual.
  • step S105 the flight control device 40 determines whether the eVTOL 10 is taking off vertically. This determination determines whether the flight phase of the eVTOL 10 is the takeoff phase. This determination determines that the eVTOL 10 is taking off vertically if the current flight phase is the takeoff phase.
  • the takeoff phase is a phase for vertical takeoff of the eVTOL 10 in which no abnormality has occurred.
  • the flight control device 40 determines whether or not the current flight phase is the takeoff phase according to the altitude, speed, aircraft configuration, etc. of the eVTOL 10 .
  • vertical takeoff may be started when the flight phase is changed to the takeoff phase.
  • the eVTOL 10 is in a flight state corresponding to the flight phase.
  • the flight phase may be referred to as a flight mode.
  • step S106 the flight controller 40 proceeds to step S106.
  • the timing when at least part of the eVTOL 10 floats above the takeoff surface is the timing when the vertical takeoff of the eVTOL 10 is started.
  • the eVTOL 10 is kept away from the takeoff plane during vertical takeoff.
  • the take-off surface is the ground or the like on which the eVTOL 10 was riding just before it took off.
  • step S106 the flight control device 40 performs takeoff processing.
  • a process for landing the eVTOL 10 in which an abnormality occurred during vertical takeoff is performed. The during-takeoff process will be described with reference to the flowchart of FIG.
  • the flight control device 40 determines whether the eVTOL 10 is at extremely low altitude in step S401 shown in FIG.
  • a very low altitude is an altitude at which the distance between the eVTOL 10 and the take-off surface is, for example, several centimeters to several meters.
  • a case where the eVTOL 10 is at an extremely low altitude includes a case where an abnormality occurs immediately after the eVTOL 10 starts vertical takeoff.
  • step S414 The flight control device 40 performs extremely low altitude landing processing in step S414.
  • EPU control is automatically performed in order to land the eVTOL 10 vertically downward from the extremely low altitude. Note that the EPU control may be switched from automatic to manual during the extremely low altitude landing of the eVTOL 10 .
  • the flight control device 40 When the eVTOL 10 is not at extremely low altitude, the flight control device 40 performs stabilization processing in steps S402 and S403. In this stabilization processing, processing for stabilizing both the attitude and altitude of the eVTOL 10 that has experienced an abnormality during vertical takeoff is performed.
  • the flight control device 40 performs an abnormal stop process in step S402 of the stabilization process.
  • the abnormal stop process the abnormal EPU is stopped.
  • the total output is the output by all EPUs 50 driving in the eVTOL 10.
  • the sum of the outputs of all EPUs 50 driven in the eVTOL 10 is the total output.
  • the output of the EPU 50 is, for example, the output of the motor device 80 that the EPU 50 has.
  • thrust is generated according to the overall output.
  • the function of executing the process of step S402 in the flight control device 40 corresponds to the abnormal stop section.
  • the flight control device 40 performs correction increase processing in step S403.
  • this correction increase process the output of at least one normal EPU is increased so as to compensate for the decrease in the overall output of the eVTOL 10 when the abnormal EPU is stopped.
  • it is set at which position relative to the abnormal EPU the output of the normal EPU is to be increased so as to correct the attitude change of the eVTOL 10 caused by stopping the driving of the abnormal EPU.
  • the function of executing the process of step S403 in the flight control device 40 corresponds to the correction increase unit.
  • the output of adjacent EPUs among a plurality of normal EPUs is increased.
  • a neighboring EPU is a normal EPU next to an abnormal EPU among a plurality of normal EPUs.
  • the output is increased by increasing the motor rotation speed, for example.
  • the rotation speed of the rotor 20 driven to rotate by this normal EPU increases, and the thrust generated by this rotor 20 increases.
  • the EPU 50A is an abnormal EPU and the other EPUs 50B1 to 50B5 are all normal EPUs.
  • flight control device 40 stops driving EPU 50A, which is the abnormal EPU. Further, the flight control device 40 increases the outputs of the adjacent EPUs, EPUs 50B1 and 50B2.
  • the EPUs 50B1 and 50B2 are located on both sides of the EPU 50A in the circumferential direction of the yaw axis AZ among the plurality of normal EPUs.
  • the EPUs 50B1 and 50B2 located closest to the EPU 50A are regarded as adjacent EPUs.
  • the EPU 50 provided for the right main wing in the eVTOL 10 is the EPU 50A. It is also assumed that the EPU 50 in front of the right main wing is the EPU 50B1 and the EPU 50 in the rear of the right main wing is the EPU 50B2.
  • the EPU 50A corresponds to an abnormal device
  • the EPUs 50B1 to 50B5 correspond to normal devices.
  • the EPUs 50B1 and 50B2 correspond to the nearest device and the neighboring device.
  • a configuration is assumed in which the drive of EPU 50A, which is an abnormal EPU, is stopped while the outputs of EPUs 50B1 to 50B5 are not increased.
  • EPU 50A which is an abnormal EPU
  • the output balance in the roll direction is lost.
  • the output on the EPU 50A side decreases, while the output on the EPU 50B3 side does not decrease. Therefore, the eVTOL 10 tends to tilt in the roll direction so that the wing 13 on which the EPU 50A is located is lowered.
  • the output of the EPUs 50B1 and 50B2 which are adjacent EPUs
  • the output of the EPU 50A side in the eVTOL 10 is increased. That is, the decreased output due to stoppage of driving of the EPU 50A is compensated for by the increased outputs of the EPUs 50B1 and 50B2. Therefore, it is difficult for the eVTOL 10 to tilt in the roll direction.
  • the output of at least one normal EPU is increased so that the overall output of the eVTOL 10 is within the allowable range.
  • the output of at least one normal EPU is increased so that the degree to which the overall output of the eVTOL 10 decreases due to the stoppage of the abnormal EPU is kept within the lower limit ratio.
  • the output of the normal EPU is increased so that the ratio of the overall output to the reference output is equal to or higher than the lower limit ratio.
  • the lower limit ratio is a predetermined ratio determined in advance, for example, a value of 90% or more, preferably a value of 95% or more.
  • the reference output includes the total output when a normal eVTOL 10 flies, the rated output for the total output of the eVTOL 10, and the like.
  • an eVTOL 10 equipped with 6 EPUs 50.
  • six rotors 20 are provided in a one-to-one relationship with six EPUs 50 .
  • the motor device 80 has a rated output of 10 kW and a maximum output of the motor device 80 is 12 kW.
  • the flight control device 40 drives the motor device 80 in each of the six EPUs 50 at the rated output of 10 kW. In this case, the total output of the eVTOL 10 would be 60 kW.
  • the flight control device 40 increases the outputs of the remaining five EPUs 50 in the correction increase process. For example, flight control device 40 increases the output of motor device 80 to 12 kW in each of two adjacent EPUs out of five normal EPUs, and increases the output of motor device 80 to 11 kW in each of the remaining three normal EPUs. increase to In this case, the total output of the eVTOL 10 would be 57 kW. Assuming that the total output during normal takeoff is the reference output, the ratio of the total output during abnormal takeoff to the reference output in the eVTOL 10 is 95%, and 90% or more is achieved.
  • the normal EPU output is increased so that the ratio of the overall output to the reference output in the eVTOL 10 does not reach the upper limit ratio.
  • the upper limit percentage is a predetermined percentage, such as 100%. This prevents the EPU 50, such as the motor device 80, from becoming over-specified. For example, regarding the specs of the motor device 80, setting the maximum output to greatly exceed the rated output is suppressed. This makes it easier to reduce the weight of the EPU 50 such as the motor device 80 .
  • step S404 the flight control device 40 determines whether to switch the EPU control from automatic to manual. In this determination, whether or not a switching operation has been performed on the operation unit 38 is determined using the detection signal of the operation sensor 38a. When the switching operation is performed on the operation unit 38, the flight control device 40 determines to switch the EPU control to manual, and proceeds to step S413. Note that it is conceivable that the pilot performs a switching operation on the operation unit 38 when, for example, the pilot determines that the stabilization process is unnecessary. A switching operation corresponds to a canceling operation.
  • the flight control device 40 performs manual switching processing in step S413.
  • a process for switching EPU control to manual operation is performed.
  • stabilization processing is canceled.
  • the correction increase process is canceled and the correction increase process is not performed.
  • the abnormal stop process may be canceled when the stabilization process is canceled.
  • the function of executing the process of step S413 in the flight control device 40 corresponds to the release unit.
  • the flight control device 40 determines in steps S405, S406, and S407 whether or not the eVTOL 10 needs to make an emergency landing.
  • step S405 the flight control device 40 determines whether or not the aircraft configuration of the eVTOL 10 is the takeoff configuration.
  • the body form of the eVTOL 10 can be changed by the EPU 50 and the attitude adjustment device.
  • the takeoff configuration is a flight configuration for the eVTOL 10 to take off vertically.
  • the attitude adjustment device is configured for vertical takeoff.
  • step S406 the flight control device 40 determines whether or not the overall output of the eVTOL 10 is the takeoff output.
  • Takeoff power is the total power required for the eVTOL 10 to take off vertically. Takeoff power is a tolerance set with respect to the reference power for vertical takeoff. Flight controller 40 determines whether the overall output of eVTOL 10 is within the allowable range for vertical takeoff. When the total output of the eVTOL 10 is within the allowable range for vertical takeoff, the flight control device 40 determines that the total output of the eVTOL 10 is the takeoff output.
  • step S407 the flight control device 40 determines whether or not the eVTOL 10 is capable of evacuation landing. This determination determines whether the eVTOL 10 can be flown horizontally.
  • An evacuation landing is a vertical landing of the eVTOL 10 at an evacuation point.
  • the evacuation point may be at the same position as the takeoff point of the eVTOL 10, or at a different position.
  • the retreat point may be set at a position horizontally spaced from the current position of the eVTOL 10 . If eVTOL 10 is horizontally movable, flight controller 40 determines that eVTOL 10 is ready for evacuation landing.
  • the flight control device 40 determines whether or not the tilt angle of the rotor 20 can be changed, and if the tilt angle can be changed, it determines that the eVTOL 10 can make an evacuation landing. to decide. If the eVTOL 10 is equipped with the cruise rotor 20, the flight control device 40 determines whether or not the cruise rotor 20 can be driven to rotate. Judging that evacuation landing is possible.
  • the flight control device 40 causes the eVTOL 10 to make an emergency landing. determine that it is necessary to In this case, the flight control device 40 proceeds to step S412 and performs emergency landing processing.
  • this emergency landing process a process for vertical landing at a vertically downward emergency landing point is performed. This emergency landing process is performed, for example, in the same manner as the emergency landing process of step S113.
  • the function of executing the processing of step S412 in the flight control device 40 corresponds to the abnormal landing section.
  • the flight control device 40 causes the eVTOL 10 to make an emergency landing. Decide it is not necessary. In this case, the flight controller 40 proceeds to step S408.
  • the flight control device 40 determines whether the flight state of the eVTOL 10 is in the avoidance area.
  • the eVTOL 10 has an avoidance area to be avoided during vertical takeoff and landing.
  • the avoidance area is an area where safety is likely to be lowered if a problem such as an abnormality occurs during vertical takeoff and landing.
  • the avoidance area is, for example, an area where autorotation of the eVTOL 10 is difficult.
  • the avoidance area is an area set by the speed and altitude of the eVTOL 10 . This speed is the flight speed of the eVTOL 10 in the direction the eVTOL 10 is heading. In the eVTOL 10, for example, flight conditions change by changing at least one of speed and altitude.
  • the flight state is, among the states related to flight of the eVTOL 10, a state that changes particularly according to EPU control.
  • the flight state of the eVTOL 10 corresponds to the flight mode, and the avoidance area corresponds to the avoidance mode.
  • FIG. 7 in a graph in which one of the two axes is altitude and the other is speed, there are two avoidance areas, a first avoidance area AA1 and a second avoidance area AA2.
  • speed is indicated by Sp and altitude by At.
  • FIG. 7 is an enveloping diagram showing avoidance areas with respect to speed and altitude. Also, FIG. 7 is not a diagram showing the physical location of the eVTOL 10, but a diagram showing the flight conditions of the eVTOL 10. As shown in FIG.
  • the first avoidance area AA1 is an area in which the eVTOL10 has an incomplete altitude among areas where the velocity is relatively small including zero.
  • the safety of the eVTOL 10 tends to be sufficiently high both when the eVTOL 10 performs vertical landing from a sufficiently low altitude and when the eVTOL 10 performs vertical landing from a sufficiently high altitude.
  • the eVTOL 10 starts vertical landing from an extremely low altitude with zero speed, even if the overall output of the eVTOL 10 is insufficient, the impact of the vertical landing of the eVTOL 10 can be kept small.
  • the eVTOL 10 When the eVTOL 10 starts vertical landing from a sufficiently high altitude, it takes a relatively long time for the eVTOL 10 to land. As described above, when the eVTOL 10 is at zero speed and the vertical landing is initiated from either an altitude lower or higher than the first avoidance area AA1, safety during vertical landing is unlikely to be insufficient.
  • the eVTOL 10 makes a vertical landing from an intermediate altitude, it is likely that the impact of the vertical landing of the eVTOL 10 will be large, and the time required for the eVTOL 10 to land will be insufficient.
  • the eVTOL 10 is at zero speed and vertical landing is started from an altitude included in the first avoidance area AA1, safety during vertical landing tends to be insufficient.
  • the VTOL 10 starts vertical landing at zero speed and at an altitude higher than the first avoidance area AA1, it is possible to avoid the first avoidance area AA1 by changing at least one of the speed and altitude of the eVTOL 10. and less likely to cause a decrease in safety.
  • the altitude upper limit value At2 is set to a height between several tens of meters and one hundred and several tens of meters, for example.
  • the altitude upper limit value At2 is the upper limit value of the area where the speed is zero in the first avoidance area AA1.
  • the lower altitude limit value At1 is set to an altitude of, for example, several tens of centimeters to several meters or less.
  • the altitude lower limit value At1 is the lower limit value of the first avoidance area AA1 in which the speed is zero.
  • the lower altitude limit value At1 is set to an altitude higher than the extremely low altitude.
  • the second avoidance area AA2 is an area in which the velocity of the eVTOL 10 is too high, among areas where the altitude is relatively small including zero.
  • the altitude of the eVTOL 10 is relatively low, if the speed of the eVTOL 10 is too high, the safety of the eVTOL 10 during vertical landing tends to be insufficient.
  • the speed of the eVTOL 10 is so high that it is included in the second avoidance area AA2
  • the balance when the eVTOL 10 lands will be lost, and the safety of vertical landing will likely decrease. .
  • the lower limit speed Sp1 of the second avoidance area AA2 is set to a speed of, for example, several km/h to ten and several km/h.
  • the lower limit speed Sp1 is set, for example, to a value greater than the upper limit speed of the first avoidance area AA1.
  • the upper limit altitude At2 of the second avoidance area AA2 is set to an altitude lower than the lower limit altitude At1 of the first avoidance area AA1.
  • first avoidance area AA1 and the second avoidance area AA2 are sometimes referred to as landing abort areas.
  • the boundaries between these avoidance areas AA1 and AA2 and other areas include critical decision points.
  • step S411 For example, when an abnormality occurs in the eVTOL 10 while the eVTOL 10 is taking off vertically on the takeoff path TR shown in FIG. It is determined that neither
  • the flight control device 40 performs evacuation landing processing in step S411.
  • a process for causing the eVTOL 10 to make an evacuation landing is performed.
  • vertical landing of the eVTOL 10 is performed so that the eVTOL 10 does not enter either the first avoidance area AA1 or the second avoidance area AA2.
  • the evacuation landing processing includes preparatory processing for evacuation landing of the eVTOL 10 .
  • the preparatory processing includes processing for driving the attitude adjustment device, the altitude adjustment device, and the like.
  • the function of executing the process of step S411 in the flight control device 40 corresponds to the abnormal landing section.
  • step S409 the flight control device 40 determines whether or not the eVTOL 10 can escape from the avoidance area. In this determination, it is determined whether or not it is possible to change at least one of the speed and altitude of the eVTOL 10 so that the flight condition of the eVTOL 10 exits the avoidance area. If the flight condition of the eVTOL 10 is such that at least one of the speed and altitude can be changed to exit the avoidance area, the flight controller 40 determines that exit from the avoidance area is possible, and proceeds to step S410.
  • the flight control device 40 performs exit flight processing in step S410.
  • the escape flight process is a process for causing the eVTOL 10 to escape from the avoidance area. In this processing, processing is performed to change at least one of the speed and altitude of the eVTOL 10 so that the flight state of the eVTOL 10 exits the avoidance area.
  • a breakout flight is a flight for causing the flight state of the eVTOL 10 to break out of the avoidance area. For example, when the flight condition of the eVTOL 10 is in the first avoidance area AA1, the flight control device 40 changes at least one of the speed and altitude of the eVTOL 10 so that the flight condition exits the first avoidance area AA1.
  • the function of executing the process of step S410 in the flight control device 40 corresponds to the exit executing section.
  • step S411 The function of executing the process of step S411 in the flight control device 40 corresponds to the abnormal landing section and the exit landing section. If the eVTOL 10 cannot escape from the avoidance area, the flight control device 40 proceeds to step S412 to perform emergency landing processing.
  • the eVTOL 10 lands at the evacuation point AP on the exit route AR.
  • the exit route AR includes a route along which the flight state of the eVTOL 10 escaped from the first avoidance area AA1 by the exit flight processing.
  • the exit route AR includes a route on which the eVTOL 10 made evacuation landing at the evacuation point AP by the evacuation landing process after the flight state of the eVTOL 10 escaped from the first avoidance area AA1.
  • the escape route AR is a route for reaching the evacuation point AP so that the flight state of the eVTOL 10 escapes from the first avoidance area AA1 and does not enter the second avoidance area AA2.
  • the predetermined position TR1 may be referred to as a critical decision point.
  • step S107 if the eVTOL 10 is not taking off vertically, the flight control device 40 proceeds to step S107.
  • the flight controller 40 determines whether the eVTOL 10 is in vertical landing in step S107. This determination determines whether the flight phase of the eVTOL 10 is the landing phase. This determination determines that the eVTOL 10 is in vertical landing when the current flight phase is the landing phase.
  • the landing phase is a phase for vertical landing of the eVTOL 10 in which no abnormality has occurred.
  • the flight control device 40 determines whether or not the current flight phase is the landing phase according to the altitude, speed, aircraft configuration, etc. of the eVTOL 10 .
  • step S108 the flight controller 40 proceeds to step S108.
  • the flight control device 40 performs processing during landing in step S108.
  • a process for landing the eVTOL 10 in which an abnormality occurred during vertical landing is performed. The during-landing process will be described with reference to the flowchart of FIG.
  • the flight control device 40 performs stabilization processing in steps S501 and S502 shown in FIG.
  • processing is performed to stabilize both the attitude and altitude of the eVTOL 10 that has experienced an abnormality during vertical landing.
  • the flight control device 40 performs an abnormal stop process in step S501 of the stabilization process.
  • This step S501 is performed in the same manner as step S402.
  • the flight control device 40 performs correction increase processing in step S502.
  • This step S502 is performed similarly to step S403.
  • the function of executing the process of step S501 in the flight control device 40 corresponds to the abnormal stop section, and the function of executing the process of step S502 corresponds to the correction increase section.
  • step S503 the flight control device 40 determines whether to switch the EPU control from automatic to manual. This determination is performed in the same manner as the determination processing in step S404.
  • step S512 the flight control device 40 proceeds to step S512 and performs manual switching processing. This step S512 is performed in the same manner as step S413.
  • the function of executing the process of step S512 in the flight control device 40 corresponds to the canceling section.
  • step S504. The flight control device 40 determines in steps S504, S505 and S506 whether or not the eVTOL 10 needs to make an emergency landing.
  • step S504 the flight control device 40 determines whether the flight configuration of the eVTOL 10 is the landing configuration.
  • the landing configuration is a flight configuration for the eVTOL 10 to land vertically. When the eVTOL 10 is in the landing configuration, for example, the attitude adjustment device is configured for vertical landing.
  • the flight control device 40 determines in step S505 whether or not the overall output of the eVTOL 10 is the landing output.
  • Landing power is the total power required for the eVTOL 10 to land vertically. Landing power is the tolerance set for the reference power for vertical landing. Flight controller 40 determines whether the overall power output of eVTOL 10 is within the allowable range for vertical landing. If the overall eVTOL 10 power is within the allowable range for vertical landing, the flight controller 40 determines that the overall eVTOL 10 power is the landing power.
  • step S506 the flight control device 40 determines whether or not the eVTOL 10 is capable of evacuation landing. This step S506 is performed similarly to step S407.
  • step S511 For the eVTOL 10, if any one of the flight configuration is the landing configuration, the overall output is the landing output, and the evacuation landing is possible, the flight control device 40 causes the eVTOL 10 to make an emergency landing. determine that it is necessary to In this case, the flight control device 40 proceeds to step S511 and performs emergency landing processing. This step S511 is performed in the same manner as step S412.
  • the flight control device 40 causes the eVTOL 10 to make an emergency landing. Decide it is not necessary. In this case, the flight control device 40 proceeds to step S507.
  • step S507 the flight control device 40 determines whether the flight state of the eVTOL 10 is in the avoidance area. This step S507 is performed similarly to step S408. If the flight state of the eVTOL 10 is not in the avoidance area, the flight control device 40 proceeds to step S510 and performs evacuation landing processing in the same manner as in step S411. If the flight state of the eVTOL 10 is in the avoidance area, the flight control device 40 proceeds to step S508 and makes an exit determination in the same manner as in step S409. If the flight state of the eVTOL 10 allows exiting from the avoidance area, the flight control device 40 proceeds to step S509 and performs exit flight processing in the same manner as in step S410. The function of executing the process of step S509 in the flight control device 40 corresponds to the exit executing section.
  • step S510 After the flight state of the eVTOL 10 exits the avoidance area, the flight control device 40 performs evacuation landing processing in step S510.
  • the function of executing the process of step S510 in the flight control device 40 corresponds to the abnormal landing section and the exit landing section. If the flight state of the eVTOL 10 cannot escape from the avoidance area, the flight control device 40 proceeds to step S511 and performs emergency landing processing.
  • step S109 The flight control device 40 determines whether the eVTOL 10 is cruising in step S109. This determination determines whether the flight phase of the eVTOL 10 is the cruise phase. This determination determines that the eVTOL 10 is cruising if the current flight phase is the cruise phase. The cruise phase is a phase for cruising the eVTOL 10 in which no abnormality has occurred. The flight control device 40 determines whether or not the current flight phase is the cruise phase according to the altitude, speed, aircraft configuration, etc. of the eVTOL 10 .
  • step S110 the flight control device 40 proceeds to step S110.
  • the flight control device 40 performs an in-cruise process in step S110.
  • a process for landing the eVTOL 10 in which an abnormality has occurred during the cruise is performed.
  • the in-cruise process will be described with reference to the flowchart of FIG.
  • the flight control device 40 performs stabilization processing in steps S601 and S602 shown in FIG.
  • This stabilization process a process for stabilizing both the attitude and the altitude of the eVTOL 10 in which an abnormality has occurred during the cruise is performed.
  • the flight control device 40 performs an abnormal stop process in step S601 of the stabilization process.
  • This abnormal stop processing is performed in the same manner as the abnormal stop processing in step S402.
  • the flight control device 40 performs correction increase processing in step S602.
  • This step S602 is performed similarly to step S403.
  • the function of executing the process of step S601 in the flight control device 40 corresponds to the abnormal stop section, and the function of executing the process of step S602 corresponds to the correction increase section.
  • step S603 the flight control device 40 determines whether to switch the EPU control from automatic to manual. This step S603 is performed in the same manner as step S404. When switching the EPU control to manual, the flight control device 40 proceeds to step S612 and performs manual switching processing. This step S612 is performed in the same manner as step S413. The function of executing the process of step S612 in the flight control device 40 corresponds to the canceling section.
  • the flight control device 40 proceeds to step S604.
  • the flight control device 40 determines in steps S604, S605 and S606 whether or not the eVTOL 10 needs to make an emergency landing.
  • the flight control device 40 determines in step S604 whether the flight configuration of the eVTOL 10 is the cruise configuration.
  • a cruise configuration is a flight configuration for the eVTOL 10 to cruise. If the eVTOL 10 is in cruise configuration, for example, the attitude adjustment device is in cruise configuration.
  • the flight control device 40 determines in step S605 whether or not the overall output of the eVTOL 10 is the cruise output.
  • Cruise power is the total power required for the eVTOL 10 to cruise.
  • the cruise power is a tolerance set with respect to the cruise reference power.
  • Flight controller 40 determines whether the overall power output of eVTOL 10 is within the allowable range for cruise. If the overall power is within the allowable range for cruise, flight controller 40 determines that the overall power of eVTOL 10 is cruise power.
  • the flight control device 40 determines in step S606 whether or not the eVTOL 10 is capable of evacuation landing. This step S606 is performed similarly to step S407.
  • step S611 is performed in the same manner as step S412.
  • the flight control device 40 causes the eVTOL 10 to make an emergency landing. Decide it is not necessary. In this case, the flight control device 40 proceeds to step S607.
  • step S607 the flight control device 40 determines whether the flight state of the eVTOL 10 is in the avoidance area. This step S607 is performed in the same manner as step S408. If the flight state of the eVTOL 10 is not in the avoidance area, the flight control device 40 proceeds to step S610 and performs evacuation landing processing in the same manner as in step S411. When the flight state of the eVTOL 10 is in the avoidance area, the flight control device 40 proceeds to step S608 and performs exit determination in the same manner as in step S409. If the flight state of the eVTOL 10 allows exiting from the avoidance area, the flight control device 40 proceeds to step S609 and performs exit flight processing in the same manner as in step S410. The function of executing the process of step S609 in the flight control device 40 corresponds to the exit executing section.
  • step S610 After the flight state of the eVTOL 10 exits the avoidance area, the flight control device 40 performs evacuation landing processing in step S610.
  • the function of executing the processing of step S610 in the flight control device 40 corresponds to the abnormal landing section and the exit landing section. If the flight state of the eVTOL 10 cannot escape from the avoidance area, the flight control device 40 proceeds to step S611 and performs emergency landing processing.
  • step S111 if the eVTOL 10 is not cruising, the flight control device 40 proceeds to step S111.
  • the flight control device 40 determines whether the eVTOL 10 is hovering in step S111. This determination determines whether the flight phase of the eVTOL 10 is the hovering phase. This determination determines that the eVTOL 10 is hovering if the current flight phase is the hovering phase.
  • the hovering phase is a phase for causing the eVTOL 10 in which no abnormality has occurred to hover.
  • the flight control device 40 determines whether or not the current flight phase is the hovering phase according to the altitude, speed, aircraft configuration, etc. of the eVTOL 10 .
  • step S112. The flight control device 40 performs an in-hovering process in step S112. In the during-hovering process, a process for landing the eVTOL 10 in which an abnormality has occurred during hovering is performed. The processing during hovering will be described with reference to the flowchart of FIG. 11 .
  • the flight control device 40 performs stabilization processing in steps S701 and S702 shown in FIG.
  • processing is performed to stabilize both the attitude and altitude of the eVTOL 10 in which an abnormality has occurred during hovering.
  • the flight control device 40 performs an abnormal stop process in step S701 of the stabilization process.
  • This step S701 is performed in the same manner as step S402.
  • the flight control device 40 performs correction increase processing in step S702.
  • This step S702 is performed similarly to step S403.
  • the function of executing the process of step S701 in the flight control device 40 corresponds to the abnormal stop section, and the function of executing the process of step S702 corresponds to the correction increase section.
  • step S703 the flight control device 40 determines whether to switch the EPU control from automatic to manual. This step S703 is performed in the same manner as step S404. When switching the EPU control to manual, the flight control device 40 proceeds to step S712 and performs manual switching processing. This step S712 is performed in the same manner as step S413. The function of executing the process of step S712 in the flight control device 40 corresponds to the release unit.
  • the flight control device 40 proceeds to step S704.
  • the flight control device 40 determines in steps S704, S705, and S706 whether or not the eVTOL 10 needs to make an emergency landing.
  • the flight controller 40 determines in step S704 whether the flight configuration of the eVTOL 10 is the hovering configuration.
  • a hovering mode is a flight mode for the eVTOL 10 to hover. When the eVTOL 10 is in the hovering configuration, for example, the attitude adjustment device is in the hovering configuration.
  • step S705 the flight control device 40 determines whether or not the overall output of the eVTOL 10 is hovering output.
  • Hover output is the total output required for the eVTOL 10 to hover output.
  • a hovering output is a tolerance set with respect to a reference output for hovering.
  • Flight controller 40 determines whether the overall output of eVTOL 10 is within the allowable range for hovering. If the overall output of the picture is within the allowable range for hovering, flight controller 40 determines that the overall output of eVTOL 10 is hovering output.
  • step S706 the flight control device 40 determines whether or not the eVTOL 10 is capable of evacuation landing. This step S706 is performed in the same manner as step S407.
  • step S711 is performed in the same manner as step S412.
  • the flight control device 40 causes the eVTOL 10 to make an emergency landing. Decide it is not necessary. In this case, the flight control device 40 proceeds to step S707.
  • step S707 the flight control device 40 determines whether the flight state of the eVTOL 10 is in the avoidance area. This step S707 is performed in the same manner as step S408. If the flight state of the eVTOL 10 is not in the avoidance area, the flight control device 40 proceeds to step S710 and performs evacuation landing processing in the same manner as in step S411. If the flight state of the eVTOL 10 is in the avoidance area, the flight control device 40 proceeds to step S708 and makes an exit determination in the same manner as in step S409. If the flight state of the eVTOL 10 is such that it is possible to escape from the avoidance area, the flight control device 40 proceeds to step S709 and performs escape flight processing in the same manner as in step S410. The function of executing the process of step S709 in the flight control device 40 corresponds to the exit executing section.
  • step S710 After the flight state of the eVTOL 10 exits the avoidance area, the flight control device 40 performs evacuation landing processing in step S710.
  • the function of executing the processing of step S710 in the flight control device 40 corresponds to the abnormal landing section and the exit landing section. If the flight state of the eVTOL 10 cannot escape from the avoidance area, the flight control device 40 proceeds to step S711 and performs emergency landing processing.
  • the abnormal stop processing and the correction increase processing are performed when an EPU abnormality occurs, so the output of the EPU 50 can be automatically controlled without increasing the pilot's workload. Therefore, the eVTOL 10 can provide the option of highly safe aircraft attitude stabilization and suppression of altitude loss, thereby minimizing the risk of accidents during takeoff and landing.
  • the eVTOL10 multiple rotor blades generate lift and thrust and control the aircraft attitude.
  • the EPUs 50 if one of the EPUs 50 malfunctions, it is conceivable that the normal EPU located diagonally without malfunction is stopped to stabilize the attitude of the aircraft and make an emergency landing.
  • the EPU 50B3 is the normal EPU located diagonally.
  • the eVTOL 10 is also an aircraft that takes off and lands vertically while stabilizing the attitude of the aircraft by balancing the lift of multiple rotor blades.
  • the pilot's workload required to control the output of the EPU50 to stabilize the aircraft attitude and maintain a safe altitude is higher than in an airplane that obtains lift from fixed wings.
  • the complexity of this maneuvering increases and can be directly linked to flight safety. Therefore, it is preferable to automate the output control of a plurality of rotor blades.
  • trouble during takeoff and landing tends to reduce safety, partly because it is the time period when the pilot's workload is the highest.
  • abnormal stop processing and correction increase processing are performed when an EPU abnormality occurs during vertical takeoff of the eVTOL 10 and when an EPU abnormality occurs during vertical landing of the eVTOL 10.
  • the takeoff phase and the landing phase are included in flight phases with a high workload for the pilot. There is concern that the risk of aircraft accidents increases during flight phases when the workload is high.
  • the eVTOL 10 when a malfunction occurs in the EPU 50, by automatically controlling the output of the abnormal EPU and the normal EPU to stabilize the aircraft attitude, it is possible to reduce the risk of accidents including human error.
  • the abnormal EPU is stopped from being driven and the output of the normal EPU is automatically controlled by the abnormal stop processing and the correction increase processing.
  • the posture of the eVTOL 10 can be stabilized.
  • the normal EPUs diagonal to the abnormal EPUs are not stopped, so a safer control option is provided from the viewpoint of maintaining the altitude, speed, and redundancy of the eVTOL 10. be able to.
  • the abnormal stop processing and correction increase processing are automatically started without the involvement of the pilot.
  • stopping the abnormal EPU and increasing the output of the normal EPU by the abnormal stop processing and the correction increase processing may not always be the best safety measure. Therefore, the pilot can cancel the abnormal stop processing and the correction increase processing by performing a switching operation on the operation unit 38 . Therefore, it is possible to implement the best safety measures for the pilot.
  • the abnormal stop processing and the correction increase processing are not necessarily the best safety measures, for example, there is a case where the takeoff is canceled from a low altitude and the power increase is unnecessary.
  • takeoff and landing are the flight phases with the highest workload, requiring special attention and strict work procedures. Therefore, in the present embodiment, it is determined whether or not it is in the takeoff/landing phase according to the altitude information, the speed information, and the aircraft configuration. . As a result, it is possible to automate the handling of problems that increase the complexity of pilot procedures and reduce the pilot's workload, which causes human error.
  • the EPUs 50B1 and 50B2 closest to the EPU 50A are set as the latest EPUs, and their outputs are increased by the correction increase process.
  • the drop in the output around the EPU 50A can be compensated for by increasing the outputs of the EPUs 50B1 and 50B2. Therefore, in the eVTOL 10, it is possible to prevent the output from being partially lowered and the balance of the overall output to be lost.
  • the EPUs 50B1 and 50B2 that are adjacent to the EPU 50A in the circumferential direction of the yaw axis AZ are treated as adjacent EPUs, and their outputs are increased by the correction increase process.
  • the output reduction of the EPU 50A can be compensated for by increasing the outputs of the EPUs 50B1 and 50B2. Therefore, in the eVTOL 10, it is possible to prevent the output from the EPU 50A side from being lowered and the output balance to be lost in at least one of the roll direction and the pitch direction. Therefore, the posture of the eVTOL 10 can be stabilized in, for example, the roll direction and the pitch direction.
  • the EPU 50A in which an abnormality has occurred is stopped by the abnormality stop processing.
  • the outputs of the normal EPUs 50B1 and 50B2 are increased by the correction increase process in accordance with the drive stop by the abnormal stop process. Therefore, even if an abnormality occurs in the EPU 50A in the eVTOL 10 during vertical takeoff, it is possible to suppress both the shortage of the overall output of the eVTOL 10 and the unstable attitude of the eVTOL 10 due to the stoppage of the driving of the EPU 50A. .
  • the EPU 50A which is an abnormal EPU
  • the pilot does not need to manually perform the abnormal stop processing and the correction increase processing, so it is possible to suppress the pilot's workload from increasing due to an EPU abnormality that occurs during vertical takeoff. Therefore, in the eVTOL 10, it is possible to reduce the risk that the pilot's workload becomes excessively high during vertical takeoff, resulting in a decrease in safety.
  • the vertical takeoff of the eVTOL 10 is canceled and vertical landing is performed while the abnormal stop processing and the correction increase processing are being performed.
  • the eVTOL 10 can land vertically while the safety is enhanced by the abnormal stop processing and the correction increase processing. Therefore, it is possible to enhance the safety of the vertical landing of the eVTOL 10 in which an EPU abnormality has occurred.
  • the operation to cancel the vertical takeoff of the eVTOL10 and make the eVTOL10 vertical landing tends to increase the workload for the pilot.
  • the vertical takeoff of the eVTOL 10 is stopped and the vertical landing is automatically performed.
  • This configuration eliminates the need for the pilot to manually abort vertical takeoff and perform vertical landing. Therefore, it is possible to prevent the pilot from having an excessively high work load when the eVTOL 10 makes a vertical landing due to the occurrence of an EPU abnormality.
  • At least one of the speed and altitude of the eVTOL 10 is changed so that the flight state of the eVTOL 10 does not enter the avoidance area when vertical landing of the eVTOL 10 is performed.
  • the vertical landing of the eVTOL 10 is performed while the flight state avoids the avoidance area, so it is possible to avoid a reduction in safety during vertical landing due to the flight state being in the avoidance area.
  • the flight state of the eVTOL 10 when the flight state of the eVTOL 10 is in the avoidance area, at least one of the speed and altitude of the eVTOL 10 is changed so that the flight state of the eVTOL 10 exits the avoidance area.
  • the eVTOL 10 can escape from the avoidance area.
  • the EPU 50A in which an abnormality has occurred is stopped by the abnormality stop processing.
  • the outputs of the normal EPUs 50B1 and 50B2 are increased by the correction increase process in accordance with the drive stop by the abnormal stop process. Therefore, even if an abnormality occurs in the EPU 50A in the eVTOL 10 during vertical landing, it is possible to suppress both the decrease in the overall output of the eVTOL 10 and the unstable attitude of the eVTOL 10 due to the stoppage of driving of the EPU 50A. .
  • the eVTOL10 Maneuvering the eVTOL10 for vertical landing tends to impose a heavy workload on the pilot.
  • the EPU 50A which is an abnormal EPU
  • the pilot does not need to manually perform the abnormal stop processing and the correction increase processing, so it is possible to suppress the pilot's workload from increasing due to an EPU abnormality that has occurred during vertical landing. Therefore, the eVTOL 10 can reduce the risk of safety degradation due to an excessively high pilot workload during vertical landing.
  • both the abnormal stop processing and the correction increase processing are canceled when the switching operation is performed on the operation unit 38 .
  • the pilot can appropriately perform each of the operation corresponding to the abnormal stop processing and the operation corresponding to the correction increase processing according to the flight state of the eVTOL 10 and the like. Therefore, it becomes possible to enhance the safety of the eVTOL 10 by the pilot's operation.
  • the eVTOL 10 is an electric aircraft having a rotor 20 and an EPU 50. Therefore, it is easy to realize a configuration that enhances the safety of the eVTOL 10 by the abnormal stop processing and the correction increase processing.
  • the eVTOL 10 shown in FIG. 13 has a gyro sensor 39.
  • the gyro sensor 39 is included in the flight system 30 and provided on the airframe 11, for example.
  • the gyro sensor 39 has an angular velocity sensor, for example, and detects angular velocity generated in the eVTOL 10 .
  • the gyro sensor 39 detects angular velocities of the eVTOL 10 in, for example, the pitch direction, roll direction, and yaw direction.
  • the gyro sensor 39 is electrically connected to the flight control device 40 and outputs detection signals to the flight control device 40 .
  • the flight control device 40 acquires the detection result of the gyro sensor 39 as angular velocity information.
  • the flight control device 40 uses the detection result of the gyro sensor 39 to perform correction increase processing.
  • This correction increase processing is performed in each of the during-takeoff processing, the during-landing processing, the during-cruising processing, and the during-hovering processing.
  • correction increase processing that is performed during takeoff processing, for example, will be described.
  • the correction increase processing will be described with reference to the flowchart of FIG. 12 .
  • the flight control device 40 acquires the pitch change rate using the detection signal of the gyro sensor 39 in step S801 shown in FIG.
  • rotational motion is generated in the circumferential direction of the pitch axis AY due to the difference in lift between the front and rear of the fuselage via the pitch axis AY, thereby changing the angular velocity in the pitch direction.
  • the pitch change rate is the degree of change in angular velocity when the eVTOL 10 rotates in the pitch direction.
  • the pitch change rate is the amount of change in angular velocity in the pitch direction per unit time. For example, the greater the pitch change rate, the greater the attitude change of the eVTOL 10 in the pitch direction.
  • the flight control device 40 acquires the roll change rate using the detection signal of the gyro sensor 39 in step S802.
  • rotational motion is generated in the circumferential direction of the roll axis AX due to a difference in rotational force in the circumferential direction of the roll axis AX, thereby changing the angular velocity in the roll direction.
  • the roll change rate is the degree of change in angular velocity when the eVTOL 10 rotates in the roll direction.
  • the roll change rate is the amount of change in angular velocity in the roll direction per unit time. For example, the greater the roll change rate, the greater the attitude change of the eVTOL 10 in the roll direction.
  • the flight control device 40 acquires the yaw rate of change using the detection signal of the gyro sensor 39 in step S803.
  • rotational motion is generated in the circumferential direction of the yaw axis AZ due to the lift force difference between the left and right sides of the fuselage through the yaw axis AZ, thereby changing the angular velocity in the yaw direction.
  • the yaw change rate is the degree of change in angular velocity when the eVTOL 10 rotates in the yaw direction.
  • the yaw rate of change is the amount of change in angular velocity in the yaw direction per unit time. For example, the greater the yaw change rate, the greater the attitude change of the eVTOL 10 in the yaw direction.
  • step S804 the flight control device 40 determines whether the rate of change is abnormal. In this determination, it is determined whether or not each of the roll change rate, pitch change rate, and yaw change rate is within an allowable range. In this determination, if any one of the roll change rate, pitch change rate, and yaw change rate is out of the allowable range, it is determined that the change rate is abnormal.
  • This allowable range is individually set for each of the roll change rate, pitch change rate, and yaw change rate.
  • the allowable range of change rate is determined in advance and stored in the storage device 35 . Note that the allowable range of the rate of change may be variably set according to the weight of the eVTOL 10, weather information, and the like.
  • step S809 the flight control device 40 proceeds to step S809 and performs output maintenance processing.
  • a case where the rate of change is not abnormal includes a case where the attitude of the eVTOL 10 is stable without shaking while the abnormal EPU is stopped by abnormal stop processing during takeoff processing.
  • step S805 the flight control device 40 proceeds to step S805 and performs static stabilization processing.
  • this static stabilization processing the output of each of the plurality of normal EPUs is adjusted with a combination in which the attitude of the eVTOL 10 is statically most stable.
  • the flight control device 40 increases and adjusts the output of each of the plurality of normal EPUs so as to achieve this combination.
  • Information about this combination is predetermined and stored in the storage device 35 . For example, in FIG. 13, the storage device 35 stores information on combinations that statically stabilize the posture of the eVTOL 10 for each of the cases where the abnormal EPU is any one of the EPUs 50A and 50B1 to 50B5.
  • step S806 determines whether the change rate is abnormal. This determination is performed in the same manner as the determination in step S804. If it is determined in step S806 that the rate of change is abnormal, the flight control device 40 advances to step S807 on the assumption that the abnormal rate of change in angular velocity will not be improved even if static stabilization processing is performed. The flight control device 40 performs additional stabilization processing in steps S807 and S808. This additional stabilization process additionally adjusts the output of the normal EPUs.
  • the flight control device 40 performs output reduction processing in step S807 of the additional stabilization processing.
  • this output reduction process an abnormal direction in which the rate of change is abnormal among the pitch direction, roll direction, and yaw direction is specified, and the output of one normal EPU out of the two normal EPUs arranged in the abnormal direction is decreased.
  • the flight control device 40 reduces the output of the normal EPU whose rate of change in upward angular velocity is larger than the allowable range, out of the two normal EPUs arranged in the pitch direction.
  • the flight control device 40 performs output increase processing in step S808.
  • this output increase process of the two normal EPUs arranged in the abnormal direction, the output of the normal EPU that is not the normal EPU whose output has been decreased is decreased.
  • the flight control device 40 increases the output of the normal EPU whose downward angular velocity change rate is larger than the allowable range.
  • a normal EPU whose output has been reduced by the output reduction process and a normal EPU whose output has been increased by the output increase process are, for example, diagonally opposite each other.
  • the flight control device 40 is capable of performing correction reduction processing.
  • the correction reduction process when the abnormal EPU is stopped, the output of at least one normal EPU is reduced so as to correct the attitude change of the eVTOL 10 caused by the stop of the abnormal EPU.
  • This correction reduction process is performed in each of the during-takeoff process, the during-landing process, the during-cruising process, and the during-hovering process.
  • correction reduction processing performed during takeoff processing will be described. This during-takeoff process will be described with reference to the flowchart of FIG.
  • the flight control device 40 After performing the abnormal stop processing and the correction increase processing in steps S402 and S403 of the during-takeoff processing, the flight control device 40 proceeds to step S901.
  • the flight control device 40 performs correction reduction processing in step S901.
  • the correction reduction process for example, the output of the normal EPU located farthest from the abnormal EPU is reduced.
  • the EPU 50B3 diagonally opposite to the EPU 50A via the yaw axis AZ is the farthest from the EPU 50A. Therefore, in the eVTOL 10, the output of the EPU 50B3 is decreased and the outputs of the EPUs 50B1 and 50B2 are increased so as to correct the attitude change of the eVTOL 10 due to the stopping of the driving of the EPU 50A.
  • the output increase amounts of the EPUs 50B1 and 50B2 are set such that the overall output of the eVTOL 10 is within the allowable range. Therefore, even if the correction reduction process is performed, it is possible to prevent the total output of the eVTOL 10 from becoming insufficient.
  • the drive voltage of the normal EPU may be increased when increasing the output of the normal EPU.
  • the drive voltage of normal EPUs is increased by a predetermined voltage.
  • the predetermined voltage may be, for example, a voltage that is higher than the drive voltage of the normal EPU by the same rate as the output increase rate of the normal EPU.
  • the predetermined voltage may be a predetermined value, or may be variably set according to the flight speed of the eVTOL 10, for example.
  • the EPU 50 may be connected to the drive battery 31 via a converter.
  • the converter is a voltage adjustment section and can adjust the drive voltage applied from the drive battery 31 to the EPU 50 .
  • a flight controller 40 is electrically connected to the converter and is capable of controlling the converter. In the correction increase process, the flight control device 40 controls the converter so that the drive voltage of the normal EPU is increased.
  • the abnormal stop process should stop driving at least one abnormal EPU.
  • the output of at least one normal EPU should be increased.
  • the normal EPUs whose output is increased need not be adjacent EPUs or recent EPUs.
  • the outputs of EPUs 50B4 and 50B5 among the normal EPUs may be increased when the drive of EPU 50A is stopped as an abnormal EPU.
  • the conditions for performing the abnormal stop processing and the correction increase processing should include at least the occurrence of an abnormality in the EPU 50, and may or may not include other conditions.
  • the conditions for performing the abnormal stop processing and the correction increase processing may include, for example, that the eVTOL 10 is capable of evacuation landing, and that the flight state of the eVTOL 10 is out of the avoidance area.
  • the rotors 20 and EPUs 50 may not be arranged in a plurality in the circumferential direction of the yaw axis AZ. In this configuration, among the multiple normal EPUs, the EPU 50 closest to the abnormal EPU is the latest EPU.
  • the vertical take-off and landing aircraft on which the flight control device 40 is mounted may be an electric vertical take-off and landing aircraft in which at least one EPU 50 drives at least one rotor 20 .
  • one rotor 20 may be driven by a plurality of EPUs 50 , or a plurality of rotors 20 may be driven by one EPU 50 .
  • the flying object on which the flight control device 40 is mounted does not have to be a vertical take-off and landing aircraft as long as it is electrically powered.
  • the flying object may be an electric aircraft capable of taking off and landing with gliding.
  • the air vehicle may be a rotary wing or fixed wing aircraft.
  • the flying object may be an unmanned flying object without a person on board, or a manned flying object on which a person rides.
  • the flight controller 40 is provided by a control system including at least one computer.
  • the control system includes at least one processor, which is hardware.
  • this processor is referred to as a hardware processor
  • the hardware processor can be provided by (i), (ii), or (iii) below.
  • a hardware processor may be a hardware logic circuit.
  • the computer is provided by digital circuits containing a large number of programmed logic units (gate circuits).
  • a digital circuit may include a memory that stores programs and/or data.
  • Computers may be provided by analog circuits. Computers may be provided by a combination of digital and analog circuits.
  • the hardware processor may be at least one processor core executing a program stored in at least one memory;
  • the computer is provided by at least one memory and at least one processor core.
  • a processor core is called a CPU, for example.
  • Memory is also referred to as storage medium.
  • a memory is a non-transitional and substantial storage medium that non-temporarily stores "at least one of a program and data" readable by a processor.
  • the hardware processor may be a combination of (i) above and (ii) above. (i) and (ii) are located on different chips or on a common chip.
  • At least one of the means and functions provided by the flight control device 40 can be provided by hardware only, software only, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

飛行制御装置は、eVTOLを飛行させるための飛行制御処理を行う。垂直離陸中にEPU異常が発生した場合、飛行制御装置(40)は、飛行制御処理において離陸中処理を行う。飛行制御装置(40)は、離陸中処理のステップS402において異常停止処理を行う。異常停止処理では、異常EPUの駆動を停止させるための処理が行われる。飛行制御装置(40)は、ステップS403において補正増加処理を行う。補正増加処理では、少なくとも1つの正常EPUの出力が増加される。補正増加処理では、例えば複数の正常EPUのうち隣接EPUの出力が増加される。隣接EPUは、ヨー軸の周方向において異常EPUに隣り合う正常EPUである。

Description

垂直離着陸機の制御装置 関連出願の相互参照
 この出願は、2022年1月17日に日本に出願された特許出願第2022-5243号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この明細書における開示は、垂直離着陸機の制御装置に関する。
 特許文献1には、複数の回転翼により飛行するドローンについて記載されている。このドローンは、回転翼セットを複数有している。1つの回転翼セットにおいては、2つの回転翼が上下に並べられている。このドローンにおいては、1つの回転翼セットにおいて一方の回転翼に異常が発生した場合、一方の回転翼の回転が停止される一方で、他方の回転翼の回転が継続される。また、異常が発生した回転翼セットとは異なる回転翼セットにおいても、一方の回転翼の回転が停止され、他方の回転翼の回転が継続される。
特開2020-117223号公報
 しかしながら、垂直離着陸機においては、異常が発生した回転翼に加えて、異常が発生していない回転翼も停止されると、出力が不足することが懸念される。この場合、垂直離着陸機の安全性が低下しやすくなってしまう。
 本開示の主な目的は、駆動装置の異常が発生した場合の安全性を高めることができる垂直離着陸機の制御装置を提供することである。
 この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、請求の範囲及びこの項に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
 上記目的を達成するため、開示された態様は、
 複数の回転翼と自身の出力に応じて回転翼を駆動回転させる駆動装置とを複数ずつ有し、垂直離着陸することが可能な垂直離着陸機、の制御装置であって、
 駆動装置に異常が発生した場合に、複数の駆動装置のうち異常が発生した駆動装置を異常装置として駆動停止させる異常停止部と、
 複数の駆動装置のうち異常が発生していない駆動装置を正常装置として、駆動停止部による異常装置の駆動停止に伴う垂直離着陸機の姿勢変化を補正するように、少なくとも1つの正常装置の出力を増加させる補正増加部と、
 を備えている垂直離着陸機の制御装置である。
 上記態様によれば、複数の駆動装置のうち、異常が発生した異常装置が駆動停止される一方で、少なくとも1つの正常装置の出力が増加される。この構成では、異常装置の駆動停止によって垂直離着陸機の全体出力が減少しても、その減少分を正常装置の出力増加により補うことが可能である。しかも、正常装置の出力増加は、異常装置の駆動停止に伴う垂直離着陸機の姿勢変化を補正するように行われるため、垂直離着陸機の姿勢が不安定になるということを抑制できる。したがって、垂直離着陸機において駆動装置の異常が発生した場合の安全性を高めることができる。
第1実施形態におけるeVTOLの構成を示す図。 飛行システムの電気的な構成を示すブロック図。 飛行制御処理の手順を示すフローチャート。 異常判定処理の手順を示すフローチャート。 飛行判定処理の手順を示すフローチャート。 離陸中処理の手順を示すフローチャート。 回避領域について説明するための図。 eVTOLの垂直離陸中における回避経路を示す図。 着陸中処理の手順を示すフローチャート。 クルーズ中処理の手順を示すフローチャート。 ホバリング中処理の手順を示すフローチャート。 第2実施形態における補正増加処理の手順を示すフローチャート。 eVTOLの姿勢について説明するための図。 第3実施形態における離陸中処理の手順を示すフローチャート。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
 <第1実施形態>
 図1に示す飛行システム30は、eVTOL10に搭載されている。eVTOL10は、電動垂直離着陸機である。電動垂直離着陸機は、電動式の垂直離着陸機であり、垂直離着陸することが可能である。eVTOLは、electric Vertical Take-Off and Landing aircraftの略称である。eVTOL10は、大気中を飛行する電動式の飛行体である。eVTOL10は、電動式の航空機でもあり、電動航空機と称されることがある。eVTOL10は、操縦者としてのパイロットが操縦する飛行体である。eVTOL10の操縦者には、パイロット及びリモートパイロットが含まれる。パイロットは、eVTOL10に乗っている乗員である。リモートパイロットは、eVTOL10に乗らずにeVTOL10を遠隔操作する。飛行システム30は、eVTOL10を飛行させるために駆動するシステムである。
 eVTOL10は、機体11及びロータ20を有している。機体11は、機体本体12、翼13及び機体フレーム14を有している。機体本体12は、機体11の胴体であり、例えば前後に延びた形状になっている。機体本体12は、操縦者が乗る場合には操縦室を有していてもよい。翼13は、機体本体12から延びており、機体本体12に複数設けられているが、なくてもよい。複数の翼13には、主翼、尾翼などが含まれている。
 eVTOL10においては、機体本体12がロール軸AXに沿って延びている。eVTOL10においては、ロール軸AXが機体11の前後方向に延び、ピッチ軸AYが機体11の幅方向に延び、ヨー軸AZが機体11の上下方向に延びている。ロール軸AXとピッチ軸AYとヨー軸AZとは互いに直交しており、いずれも機体重心Gpを通っている。機体重心Gpは、eVTOL10の重心であり、例えば空虚重量時でのeVTOL10の重心である。eVTOL10においては、ロール軸AXがX方向に延び、ピッチ軸AYがY方向に延び、ヨー軸AZがZ方向に延びている。
 ロータ20は、機体11に設けられている。ロータ20は、ロータ軸線を中心に回転する。ロータ軸線は、ロータ20の回転軸線であり、ロータ20の中心線に一致している。ロータ20は、回転翼であり、eVTOL10に推力及び揚力を生じさせることが可能である。ロータ軸線は、例えばZ方向に延びている。なお、eVTOL10が上昇する際に生じる力は推力と称されることがある。eVTOL10は、推力多発分散型の電動航空機と称されることがある。
 ロータ20は、ブレード21、ロータヘッド22及びロータシャフト23を有している。ブレード21は、ロータ軸線の周方向に複数並べられている。ロータヘッド22は、複数のブレード21を連結している。ブレード21は、ロータヘッド22からロータ軸線の径方向に延びている。ブレード21は、ロータシャフト23と共に回転する羽根である。ロータシャフト23は、ロータ20の回転軸であり、ロータヘッド22からロータ軸線に沿って延びている。
 ロータ20は、機体フレーム14を介して機体本体12及び翼13の少なくとも一方に固定されている。機体フレーム14は、機体本体12及び翼13の少なくとも一方に固定されている。本実施形態の機体フレーム14は、機体本体12に固定されている。機体フレーム14は、支柱14a、径フレーム14b及び周フレーム14cを有している。支柱14aは、ヨー軸AZに沿ってZ方向に延びており、機体本体12に固定されている。支柱14aは、例えば支柱14aの中心線とヨー軸AZとが一致する位置に設けられている。径フレーム14bは、ヨー軸AZの径方向に延びており、ヨー軸AZの周方向に複数並べられている。周フレーム14cは、ヨー軸AZの周方向に延びており、その周方向に複数並べられている。周フレーム14cは、ヨー軸AZの周方向において隣り合う2つの径フレーム14bを接続している。
 なお、支柱14aは翼13に固定されていてもよい。また、支柱14aは、複数設けられていてもよい。さらに、径フレーム14b及び周フレーム14cは、支柱14aを介さずに直接的に機体本体12及び翼13の少なくとも一方に固定されていてもよい。
 ロータ20は、機体11に複数設けられている。複数のロータ20は、ヨー軸AZの周方向に並べられている。ロータ20は、径フレーム14b及び周フレーム14cの少なくとも一方に固定されている。ロータ20は、例えば径フレーム14bと周フレーム14cとの接続部分に設けられている。複数のロータ20には、ヨー軸AZの径方向においてヨー軸AZを介して並んだ一対のロータ20が複数対含まれている。eVTOL10は、ロータ20を少なくとも3つ有するマルチコプタである。例えばロータ20は、機体11に少なくとも4つ設けられている。本実施形態のeVTOL10では、例えば6つのロータ20がヨー軸AZの周方向に等間隔で並べられている。
 eVTOL10の飛行態様には、垂直離陸、垂直着陸、クルーズ及びホバリング等が含まれている。eVTOL10は、垂直離陸として、例えば滑走を行わずに垂直方向に上昇することで離陸地点から離陸することが可能である。eVTOL10は、垂直着陸として、例えば垂直方向に下降することで滑走せずに着陸地点に着地することが可能である。eVTOL10は、クルーズとして、例えば水平方向に移動するように飛行することが可能である。eVTOL10は、ホバリングとして、例えば空中の所定位置に停止したかのように飛行することが可能である。
 eVTOL10は、ロータ20の駆動回転により生じた推力により飛行することが可能である。eVTOL10においては、ロータ20の駆動態様が変更されることでeVTOL10の飛行態様が変更される。eVTOL10がチルトロータ機であれば、ロータ20のチルト角が変更されることでeVTOL10の飛行態様を変更可能である。チルトロータ機においては、ロータ20によりクルーズ用ロータ及びリフト用ロータが兼用される。クルーズ用ロータは、eVTOL10のクルーズを可能にする。リフト用ロータは、eVTOL10の垂直離陸、垂直着陸及びホバリングを可能にする。一方、eVTOL10には、クルーズ用のロータ20とリフト用のロータ20とが個別に搭載されていてもよい。
 図1、図2に示すように、飛行システム30は、駆動バッテリ31、分配器32、飛行制御装置40、EPU50を有している。また、飛行システム30は、温度センサ36a、振動センサ36b、異音センサ36c、操作センサ38aを有している。EPU50は、回転センサ55、電流センサ56、電圧センサ57を有している。飛行制御装置40は、記憶装置35を有している。図2では、記憶装置35をFSD、飛行制御装置40をFCD、温度センサ36aをTS、振動センサ36bをVBS、異音センサ36cをNS、操作センサ38aをOUS、と図示している。EPU50においては、回転センサ55をRS、電流センサ56をIS、電圧センサ57をVSと図示している。
 EPU50は、ロータ20を駆動回転させるために駆動する装置であり、駆動装置に相当する。EPUは、Electric Propulsion Unitの略称である。EPU50は、電動式の駆動装置であり、電駆動装置と称されることがある。EPU50は、ロータ20を駆動回転させることでeVTOL10を推進させることが可能であり、推進装置と称されることがある。
 EPU50は、複数のロータ20のそれぞれに対して個別に設けられている。EPU50は、ロータ軸線に沿ってロータ20に並べられている。複数のEPU50はいずれも、機体11に固定されている。EPU50は、ロータ20を回転可能に支持している。EPU50は、ロータシャフト23に機械的に接続されている。複数のEPU50には、機体11の外側にはみ出した状態で機体11に固定されたEPU50、及び機体11の内側に埋め込まれた状態で機体11に固定されたEPU50、の少なくとも一方が含まれている。
 EPU50は、モータ装置80及びインバータ装置60を有している。モータ装置80は、モータ及びモータハウジングを有している。モータはモータハウジングに収容されている。モータは、複数相の交流モータであり、例えば3相交流方式の回転電機である。モータは、eVTOL10の飛行駆動源である電動機として機能する。モータは、回転子及び固定子を有している。モータは、駆動バッテリ31の電力により駆動される。EPU50においては、モータの回転軸がロータ20に接続されており、モータの回転軸が回転することでロータ20が回転する。EPU50は、モータの駆動によりロータ20を駆動回転させる。モータとしては、例えばブラシレスモータが用いられている。なお、モータとしては、誘導モータやリアクタンスモータが用いられてもよい。
 インバータ装置60は、インバータ及びインバータハウジングを有している。インバータはインバータハウジングに収容されている。インバータは、モータに供給する電力を変換することでモータを駆動する。インバータは、駆動部と称されることがある。インバータは、モータに供給される電力を直流から交流に変換する。インバータは、電力を変換する電力変換部である。インバータは、複数相の電力変換部であり、複数相のそれぞれについて電力変換を行う。インバータは、例えば3相インバータである。モータは、インバータから供給される電圧及び電流に応じて駆動する。
 EPU50においては、センサ55~57の検出結果などに応じてモータ装置80の駆動が制御される。例えば、EPU50は、モータ装置80の駆動を制御する駆動制御部を有している。駆動制御部は、インバータ、センサ55~57に電気的に接続されている。センサ55~57は、検出結果を駆動制御部に対して出力する。駆動制御部は、インバータを介してモータ制御を行う。駆動制御部は、飛行制御装置40に電気的に接続されており、飛行制御装置40からの信号に応じてモータ制御を行う。なお、飛行制御装置40がEPU50についてモータ等の制御を直接的に行ってもよい。
 回転センサ55は、モータに対して設けられている。回転センサ55は、モータの回転数を検出する。回転センサ55は、例えばエンコーダやレゾルバなどを含んで構成されている。モータの回転数は、例えば単位時間当たりの回転数である。電流センサ56は、モータに流れる電流をモータ電流として検出する。電流センサ56は、例えば複数相のそれぞれについてモータ電流を検出する。電圧センサ57は、インバータから出力される電圧をインバータ電圧として検出する。回転センサ55、電流センサ56及び電圧センサ57は、飛行制御装置40に電気的に接続されており、飛行制御装置40に対して検出信号を出力する。
 温度センサ36a、振動センサ36b及び異音センサ36cは、EPU50の状態を検出する。センサ36a~36cは、EPU50の駆動状態を検出可能であれば、EPU50に設けられていてもよく、EPU50から離間した位置に設けられていてもよい。センサ36a~36cは、複数のEPU50のそれぞれに個別に設けられている。なお、センサ36a~36cは、いくつかのEPU50に対して1つずつ設けられていてもよい。例えば、機体本体12の前側端部及び後側端部と主翼の先端部とのそれぞれにセンサ36a~36cが設けられた構成とする。この構成では、複数のEPU50のうち、センサ36a~36cに近い位置にあるEPU50の駆動状態がセンサ36a~36cにより検出される。
 温度センサ36aは、EPU50の温度を検出する。本実施形態の温度センサ36aは、EPU50の温度としてモータ装置80の温度を検出する。例えば温度センサ36aは、EPU50に対してインバータ装置60よりもモータ装置80に近い位置に設けられている。なお、温度センサ36aは、モータ装置80よりもインバータ装置60に近い位置に設けられていてもよく、モータ装置80とインバータ装置60との間に設けられていてもよい。この場合、温度センサ36aは、EPU50の温度として、インバータ装置60の温度、又はモータ装置80とインバータ装置60との平均温度を検出することが可能である。
 振動センサ36bは、EPU50の振動を検出する。本実施形態の振動センサ36bは、EPU50の振動としてモータ装置80の振動を検出する。振動センサ36bは、モータ装置80の駆動に伴って発生する振動を検出する。振動センサ36bは、振動の振幅及び周波数などを検出可能である。振動センサ36bは、例えば加速度センサ、荷重センサ、速度センサ及び変位センサの少なくとも1つを含んで構成されている。
 異音センサ36cは、EPU50の異音を検出する。本実施形態の異音センサ36cは、EPU50の異音としてモータ装置80の異音を検出する。異音センサ36cは、モータ装置80の駆動に伴って異音が発生した場合に、その異音を音として検出可能である。異音センサ36cは、マイクロフォン等の音センサを含んで構成されている。異音センサ36cは、音の振幅及び周波数などを検出可能である。
 温度センサ36a、振動センサ36b及び異音センサ36cは、飛行制御装置40に電気的に接続されており、飛行制御装置40に対して検出信号を出力する。なお、センサ36a~36cの検出結果には、EPU50の状態を示す情報に加えて、eVTOL10の状態を示す情報が含まれていてもよい。例えば、振動センサ36bの検出結果には、EPU50の駆動に伴って発生する振動に加えて、eVTOL10の飛行に伴って発生する機体11の振動が含まれていてもよい。異音センサ36cの検出結果には、EPU50の駆動に伴って発生する音に加えて、eVTOL10の飛行に伴って発生する風の音などが含まれていてもよい。
 飛行システム30は、操作部38を有している。操作部38は、操作レバー等の操作対象であり、パイロット等により操作される。操作部38は、eVTOL10の乗員室に設けられている。操作センサ38aは、操作部38に設けられている。操作センサ38aは、操作部38が操作されたこと、及び操作部38に対する操作態様を検出可能である。操作センサ38aは、飛行制御装置40に電気的に接続されており、飛行制御装置40に対して検出信号を出力する。
 駆動バッテリ31は、複数のEPU50に電気的に接続されている。駆動バッテリ31は、EPU50に電力を供給する電力供給部であり、電源部に相当する。駆動バッテリ31は、EPU50を駆動させるためのバッテリであり、駆動用バッテリと称されることがある。駆動バッテリ31は、EPU50に直流電圧を印加する直流電圧源である。駆動バッテリ31は、充放電可能な2次電池を有している。この2次電池としては、リチウムイオン電池、ニッケル水素電池などがある。駆動バッテリ31は、電力を蓄えることが可能であり、蓄電装置に相当する。駆動バッテリ31は、複数のセルを有している。セルは、駆動バッテリ31を構成する蓄電池である。駆動バッテリ31は組電池と称され、セルは電池セル及びバッテリセルと称されることがある。
 分配器32は、駆動バッテリ31及び複数のEPU50に電気的に接続されている。分配器32は、駆動バッテリ31からの電力を複数のEPU50に分配する。駆動バッテリ31は、分配器32を介して複数のEPU50に電気的に接続されている。駆動バッテリ31は、分配器32を介してEPU50に電力を供給する。駆動バッテリ31の電圧を高電圧と称すると、EPU50において後述するインバータには高電圧が印加される。なお、駆動バッテリ31の電力が複数のEPU50に供給される構成であれば、分配器32がなくてもよい。分配器32がなくてもよい構成としては、例えば、複数のEPU50のそれぞれに個別に電源部が設けられた構成がある。
 図2に示す飛行制御装置40は、例えばECUであり、eVTOL10を飛行させるための飛行制御を行う。飛行制御装置40は、飛行システム30を制御する制御装置であり、例えばEPU50を制御する。ECUは、Electronic Control Unitの略称である。飛行制御装置40は、例えばプロセッサ、メモリ、I/O、これらを接続するバスを備えるマイクロコンピュータを主体として構成されている。マイクロコンピュータはマイコンと称されることがある。メモリは、コンピュータによって読み取り可能なプログラム及びデータを非一時的に格納する非遷移的実体的記憶媒体である。また、非遷移的実体的記憶媒体は、non-transitory tangible storage mediumであり、半導体メモリ又は磁気ディスクなどによって実現される。
 飛行制御装置40は、EPU50に電気的に接続されている。飛行制御装置40は、メモリ及び記憶装置35の少なくとも一方に記憶された制御プログラムを実行することで、飛行制御に関する各種の処理を実行する。飛行制御装置40は、各種センサの検出結果などに応じて飛行制御を行う。各種センサとしては、電流センサ56及び温度センサ36aなどがある。この飛行制御には、EPU50を駆動制御するEPU制御などが含まれている。EPU制御は、EPU50の出力を制御する出力制御でもある。記憶装置35は、制御プログラムなど飛行制御に関する情報を記憶している。各種センサとしては、回転センサ55、電流センサ56及び電圧センサ57などがある。なお、記憶装置35は、飛行制御装置40から独立して設けられていてもよい。この場合、記憶装置35と飛行制御装置40とが互いに通信可能であることが好ましい。
 飛行制御装置40は、eVTOL10を飛行させるための飛行制御処理を行う。飛行制御装置40は、飛行制御処理において例えばEPU50を介してロータ20の駆動回転を制御する。eVTOL10は垂直離着陸機に相当し、飛行制御装置40は垂直離着陸機の制御装置に相当する。飛行制御装置40は、フライトコントローラと称されることがある。
 飛行制御処理について、図3のフローチャートを参照しつつ説明する。飛行制御装置40は、飛行制御処理を所定の制御周期で繰り返し実行する。飛行制御装置40は、飛行制御処理の各ステップの処理を実行する機能を有している。
 飛行制御装置40は、図3に示すステップS101にて、異常判定処理を行う。異常判定処理では、eVTOL10に異常が発生したか否かの判定が行われる。eVTOL10の異常としては、EPU50の異常、モータ装置80の異常、及びeVTOL10の飛行姿勢が異常であること、などがある。異常判定処理については、図4のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図4に示すステップS201~S205において、EPU異常判定を行う。EPU異常判定では、EPU50の異常が発生したか否かが判定される。EPU50の異常としては、例えばモータ異常及びインバータ異常などがある。モータ異常はモータ装置80であり、インバータ異常はインバータ装置60の異常である。飛行制御装置40は、複数のEPU50のそれぞれについてEPU異常判定を行う。インバータ異常判定は、EPU50に異変が生じているか否かの判定でもある。
 飛行制御装置40は、ステップS201において、EPU50の温度に異変が生じているか否かの判定を行う。飛行制御装置40は、例えばモータ温度に異変が生じているか否かの判定を行う。この判定では、モータ温度が許容範囲に含まれているか否かが判定される。この判定では、モータ温度が許容範囲よりも高い場合、及びモータ温度が許容範囲よりも低い場合、のいずれについてもモータ温度に異変が生じていると判断される。モータ温度は、モータ装置80の温度であり、例えば温度センサ36aの検出信号を用いて取得される。モータ温度の許容範囲は、あらかじめ定められており、記憶装置35に記憶されている。飛行制御装置40は、例えばモータ温度に異変が生じている場合に、EPU50の温度に異変が生じていると判断する。なお、モータ温度の許容範囲は、外気温度などに応じて可変設定されてもよい。
 飛行制御装置40は、ステップS202において、EPU50のモータ回転数に異変が生じているか否かの判定を行う。この判定では、モータ回転数が許容範囲に含まれているか否かが判定される。この判定では、モータ回転数が許容範囲よりも多い場合、及びモータ回転数が許容範囲よりも少ない場合、のいずれについてもモータ回転数に異変が生じていると判断される。モータ回転数は、モータ装置80が有するモータの回転数であり、例えば回転センサ55の検出信号を用いて取得される。モータ回転数の許容範囲は、あらかじめ定められており、記憶装置35に記憶されている。なお、モータ回転数の許容範囲は、eVTOL10の飛行速度などに応じて可変設定されてもよい。
 飛行制御装置40は、ステップS203において、EPU50の振動に異変が生じているか否かの判定を行う。飛行制御装置40は、例えばモータ装置80の振動に異変が生じているか否かの判定を行う。この判定では、モータ装置80の振動態様が許容範囲に含まれているか否かが判定される。この判定では、モータ装置80の振動態様が許容範囲から外れている場合に、モータ装置80の振動態様に異変が生じていると判断される。モータ装置80の振動については、例えば振幅及び周波数の少なくとも一方が許容範囲から外れている場合に、振動態様が許容範囲から外れていると判断される。モータ装置80の振動は、振動センサ36bの検出信号を用いて取得される。振動態様の許容範囲は、あらかじめ定められており、記憶装置35に記憶されている。飛行制御装置40は、例えばモータ装置80の振動に異変が生じている場合に、EPU50の振動に異変が生じていると判断する。なお、振動態様の許容範囲は、eVTOL10の飛行速度などに応じて可変設定されてもよい。
 飛行制御装置40は、ステップS204において、EPU50に異音が生じているか否かの判定を行う。飛行制御装置40は、例えばモータ装置80に異音が生じているか否かの判定を行う。この判定では、モータ装置80の音が異音の許容範囲に含まれているか否かが判定される。この判定では、モータ装置80の音が許容範囲から外れている場合に、その音が異音であると判断される。モータ装置80の音については、例えば振幅及び周波数の少なくとも一方が許容範囲から外れている場合に、その音が許容範囲から外れていると判断される。モータ装置80の音は異音センサ36cの検出信号を用いて取得される。異音の許容範囲は、あらかじめ定められており、記憶装置35に記憶されている。飛行制御装置40は、例えばモータ装置80に異音が生じている場合に、EPU50に異音が生じていると判断する。なお、音の許容範囲は、eVTOL10の飛行速度などに応じて可変設定されてもよい。
 EPU異常判定において、温度異変、回転数異変、振動異変、異音、のうち1つでも発生した場合、モータ装置80などEPU50に異変が生じているとして、飛行制御装置40はステップS205に進む。飛行制御装置40は、ステップS205において、EPU50の異変が継続しているか否かの判定を行う。この判定では、EPU50の異変が継続している異変時間が基準時間に達したか否かが判定される。基準時間は、例えば数十秒~数分に設定されている。基準時間は、あらかじめ定められており、記憶装置35に記憶されている。なお、基準時間は、外気温度及びeVTOL10の飛行速度などに応じて可変設定されてもよい。
 EPU50の異変時間が基準時間に達した場合、飛行制御装置40は、EPU50に異常が発生したと判断して、ステップS209に進む。飛行制御装置40は、ステップS209において、異常処理を行う。この異常処理では、EPU50の異常が発生したこと、及び異常が発生したのがどのEPU50であるかを示す情報、などを含む異常情報が記憶装置35等に記憶される。例えば、飛行制御装置40は、EPU50の異常が発生したことを示すEPU異常フラグを、異常が発生したEPU50の位置を示す位置情報に対応させて、記憶装置35等にセットする。
 EPU50の異変時間が基準時間に達していない場合、飛行制御装置40は、EPU50に異変が生じている一方で異常は生じていないとして、ステップS201に戻ってEPU異常判定を行う。
 EPU異常判定において、温度異変、回転数異変、振動異変、異音、のいずれも発生していない場合、飛行制御装置40は、ステップS206に進む。飛行制御装置40は、ステップS206において、eVTOL10の姿勢が不安定であるか否かを判定する。この判定では、eVTOL10の姿勢が正常姿勢に保たれているか否かの判定が行われ、eVTOL10の姿勢が正常姿勢に保たれている場合に、eVTOL10の姿勢が安定していると判断される。また、eVTOL10の姿勢が特定の姿勢に保たれていても、特定の姿勢が正常姿勢でない場合には、eVTOL10の姿勢が不安定であると判断される。なお、飛行システム30は姿勢センサを有しており、ステップS206では、姿勢センサ等によりeVTOL10の姿勢が取得される。
 eVTOL10の姿勢が不安定である場合、飛行制御装置40は、ステップS209に進み、異常処理を行う。この場合の異常処理では、eVTOL10の姿勢が不安定であることを示す異常情報が記憶装置35等に記憶される。例えば、飛行制御装置40は、eVTOL10の姿勢が不安定であることを示す姿勢異常フラグを記憶装置35等にセットする。
 eVTOL10の姿勢が不安定でない場合、飛行制御装置40は、ステップS207に進む。飛行制御装置40は、ステップS207において、eVTOL10の高度が不安定であるか否かを判定する。この判定では、eVTOL10の高度が正常高度になっているか否かを判定する。この判定では、例えばeVTOL10の高度が正常高度に保たれているか否かの判定が行われ、eVTOL10の高度が正常高度に保たれている場合に、eVTOL10の高度が安定していると判断される。例えば、eVTOL10が上昇及び下降を繰り返している場合には、eVTOL10の高度が不安定であると判断される。なお、飛行システム30は高度センサを有しており、ステップS207では、高度センサ等によりeVTOL10の高度が取得される。
 eVTOL10の高度が不安定である場合、飛行制御装置40は、ステップS209に進み、異常処理を行う。この場合の異常処理では、eVTOL10の高度が不安定であることを示す異常情報が記憶装置35等に記憶される。例えば、飛行制御装置40は、eVTOL10の高度が不安定であることを示す高度異常フラグを記憶装置35等にセットする。
 eVTOL10の姿勢及び高度のいずれも不安定でない場合、飛行制御装置40は、eVTOL10の異常が発生していないと判断し、ステップS208に進む。飛行制御装置40は、ステップS208において、正常処理を行う。この正常処理では、EPU異常、姿勢異常及び高度異常がいずれも発生していないことを示す正常情報が記憶装置35等に記憶される。
 図3に戻り、異常判定処理の後、飛行制御装置40は、ステップS102に進む。飛行制御装置40は、ステップS102において、eVTOL10の異常が発生しているか否かを判定する。この判定では、例えばEPU異常フラグ、姿勢異常フラグ及び高度異常フラグ等の異常フラグがセットされているか否かが判定される。そして、異常フラグがセットされている場合に、eVTOL10の異常が発生していると判断される。
 eVTOL10に異常が発生している場合、飛行制御装置40は、ステップS103に進む。飛行制御装置40は、ステップS103において、飛行判定処理を行う。飛行判定処理では、eVTOL10に異常が発生している場合に、eVTOL10を飛行させることが可能であるか否かの判定が行われる。飛行状態判定処理については、図5のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図5に示すステップS301において、異常EPUの駆動を停止させることが可能であるか否かを判定する。異常EPUは、複数のEPU50のうちモータ異常等の異常が発生したEPU50である。異常EPUが異常装置に相当する。異常EPUに生じた異常の態様によっては、モータ装置80等の駆動を停止させることができないことが考えられる。
 飛行制御装置40は、ステップS302において、正常EPUの出力を増加させることが可能であるか否かを判定する。この判定では、現在の正常EPUの出力が最大出力であるか否かが判定される。そして、正常EPUの出力が最大出力でない場合に、正常EPUの出力を増加させることが可能であると判断される。正常EPUは、複数のEPU50のうちモータ異常等の異常が発生していないEPU50である。複数のEPU50のうち、異常EPUとは異なるEPU50が正常EPUである。正常EPUが正常装置に相当する。
 飛行制御装置40は、ステップS303において、eVTOL10の姿勢を安定させることが可能であるか否かを判定する。この判定では、eVTOL10に設けられた姿勢調整装置によりeVTOL10の姿勢を安定化可能か否かが判定される。姿勢調整装置としては、補助翼等がある。飛行制御装置40は、姿勢調整装置が正常に動作するか否かを判定し、姿勢調整装置が正常に動作する場合に、eVTOL10の姿勢を安定させることが可能であると判断する。
 飛行制御装置40は、ステップS304において、eVTOL10の高度を安定させることが可能であるか否かを判定する。この判定では、eVTOL10に設けられた高度調整装置によりeVTOL10の高度を安定化可能か否かが判定される。高度調整装置としては、フラップ等がある。飛行制御装置40は、高度調整装置が正常に動作するか否かを判定し、高度調整装置が正常に動作する場合に、eVTOL10の高度を安定させることが可能であると判断する。
 飛行判定処理において、異常EPUの駆動停止、正常EPUの出力増加、eVTOL10の姿勢安定、eVTOL10の高度安定、の全てが可能である場合、飛行制御装置40は、ステップS305に進む。飛行制御装置40は、ステップS305において、eVTOL10の異常が発生していてもeVTOL10が飛行可能であると判断して、飛行可能処理を行う。この飛行可能処理では、eVTOL10が飛行可能であることを示す情報が記憶装置35等に記憶される。例えば、飛行制御装置40は、eVTOL10が飛行可能であることを示す飛行可能フラグを記憶装置35等にセットする。なお、ステップS306では、eVTOL10が所定時間だけ飛行状態を保持できる場合に、eVTOL10が飛行可能であると判断される。この所定時間は、例えば数秒から数十秒である。
 飛行判定処理において、異常EPUの駆動停止、正常EPUの出力増加、eVTOL10の姿勢安定、eVTOL10の高度安定、のいずれか1つでも可能でない場合、飛行制御装置40は、ステップS306に進む。飛行制御装置40は、ステップS306において、eVTOL10が飛行可能ではないと判断して、飛行終了処理を行う。この飛行終了処理では、eVTOL10の飛行を終了させることを示す情報が記憶装置35等に記憶される。
 図3に戻り、飛行判定処理の後、飛行制御装置40は、ステップS104に進む。飛行制御装置40は、ステップS104において、eVTOL10が飛行可能であるか否かを判定する。この判定では、例えば飛行可能フラグがセットされているか否かが判定される。そして、飛行可能フラグがセットされている場合に、eVTOL10が飛行可能であると判断される。
 eVTOL10の飛行が可能でない場合、飛行制御装置40は、ステップS113に進む。飛行制御装置40は、ステップS113において、緊急着陸処理を行う。緊急着陸処理では、eVTOL10を現在の速度及び高度から鉛直下方の緊急着陸地点に垂直着陸させるために、EPU制御が自動で行われる。緊急着陸処理は、eVTOL10を最短距離及び最小時間の少なくとも一方で着陸させるための処理である。なお、eVTOL10の緊急着陸中にEPU制御が自動からパイロットによる手動に切り替えられてもよい。例えば、操作部38に対して切り替え操作が行われたことが操作センサ38aにより検出された場合に、EPU制御が手動に切り替えられてもよい。
 eVTOL10の飛行が可能である場合、飛行制御装置40は、ステップS105に進む。飛行制御装置40は、ステップS105において、eVTOL10が垂直離陸中であるか否かを判定する。この判定では、eVTOL10の飛行フェーズが離陸フェーズであるか否かが判定される。この判定では、現在の飛行フェーズが離陸フェーズである場合に、eVTOL10が垂直離陸中であると判断される。離陸フェーズは、異常が発生していないeVTOL10を垂直離陸させるためのフェーズである。飛行制御装置40は、eVTOL10の高度、速度及び機体形態等に応じて、現在の飛行フェーズが離陸フェーズであるか否かを判定する。
 なお、eVTOL10においては、飛行フェーズが離陸フェーズに変更された場合に垂直離陸が開始されてもよい。この場合、eVTOL10は、飛行フェーズに応じた飛行状態になる。また、この場合、飛行フェーズは飛行モードと称されることがある。
 eVTOL10が垂直離陸中である場合、飛行制御装置40は、ステップS106に進む。飛行フェーズが離陸フェーズに変更された場合、例えばeVTOL10の少なくとも一部が離陸面から浮いたタイミングが、eVTOL10の垂直離陸が開始されたタイミングとされる。eVTOL10は、垂直離陸中である場合に、離陸面から離間した状態になっている。離陸面は、eVTOL10が離陸する直前まで乗っていた地面等である。
 飛行制御装置40は、ステップS106において、離陸中処理を行う。離陸中処理では、垂直離陸中に異常が発生したeVTOL10を着陸させるための処理が行われる。離陸中処理については、図6のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図6に示すステップS401において、eVTOL10が極低空にあるか否かを判定する。極低空は、eVTOL10と離陸面との離間距離が例えば数cmから数mである高度である。eVTOL10が極低空にある場合としては、eVTOL10が垂直離陸を開始した直後に異常が発生した場合などがある。
 eVTOL10が極低空にある場合、飛行制御装置40は、ステップS414に進む。飛行制御装置40は、ステップS414において、極低空着陸処理を行う。極低空着陸処理では、eVTOL10を極低空から鉛直下方に垂直着陸させるために、EPU制御が自動で行われる。なお、eVTOL10の極低空着陸中にEPU制御が自動から手動に切り替えられてもよい。
 eVTOL10が極低空にない場合、飛行制御装置40は、ステップS402,S403において、安定化処理を行う。この安定化処理では、垂直離陸中に異常が発生したeVTOL10について姿勢及び高度の両方を安定させるための処理が行われる。
 飛行制御装置40は、安定化処理のステップS402において、異常停止処理が行う。異常停止処理では、異常EPUの駆動が停止される。eVTOL10においては、異常EPUにより駆動回転していたロータ20の駆動回転が停止する。このため、異常EPUが駆動停止した分だけeVTOL10の全体出力が低下する。全体出力は、eVTOL10において駆動している全てのEPU50による出力である。例えば、eVTOL10において駆動している全てのEPU50の出力を合計した値が全体出力である。EPU50の出力は、例えばこのEPU50が有するモータ装置80の出力である。eVTOL10においては、全体出力に応じた推力が生じる。飛行制御装置40におけるステップS402の処理を実行する機能が異常停止部に相当する。
 飛行制御装置40は、ステップS403において、補正増加処理を行う。この補正増加処理では、異常EPUが駆動停止された場合に、eVTOL10の全体出力が低下する分を補うように正常EPUの少なくとも1つの出力を増加させる。また、補正増加処理では、異常EPUの駆動停止に伴って生じるeVTOL10の姿勢変化を補正するように、異常EPUに対してどの位置にある正常EPUの出力を増加させるのかが設定される。飛行制御装置40におけるステップS403の処理を実行する機能が補正増加部に相当する。
 本実施形態の補正増加処理では、複数の正常EPUのうち隣接EPUの出力が増加される。隣接EPUは、複数の正常EPUのうち異常EPUの隣にある正常EPUである。正常EPUについては、例えばモータ回転数を増加させることで出力を増加させる。正常EPUの出力が増加すると、この正常EPUが駆動回転させるロータ20の回転数が増加し、このロータ20により生じる推力が増加する。
 例えば図1において、複数のEPU50のうち、EPU50Aが異常EPUであり、他のEPU50B1~50B5が全て正常EPUである場合を想定する。この場合、飛行制御装置40は、異常EPUであるEPU50Aの駆動を停止させる。また、飛行制御装置40は、隣接EPUであるEPU50B1,50B2の出力を増加させる。EPU50B1,50B2は、複数の正常EPUのうちヨー軸AZの周方向においてEPU50Aの両隣にある。eVTOL10では、EPU50B1~50B5のうちEPU50Aに最も近い位置にあるEPU50B1,50B2が、隣接EPUとされる。
 例えば、eVTOL10において右主翼に対して設けられたEPU50がEPU50Aであるとする。また、右主翼前方のEPU50がEPU50B1であり、右主翼後方のEPU50がEPU50B2であるとする。なお、EPU50Aが異常装置に相当し、EPU50B1~50B5が正常装置に相当する。また、EPU50B1,50B2が最近装置及び隣接装置に相当する。
 例えば本実施形態とは異なり、異常EPUであるEPU50Aの駆動を停止させる一方で、EPU50B1~50B5の出力を増加させない構成を想定する。この構成では、eVTOL10においてピッチ軸AYに沿って並んだ一対のEPU50A,50B3のうち、EPU50Aが駆動停止することでロール方向の出力バランスが崩れる。この場合、eVTOL10においては、EPU50A側の出力が低下する一方で、EPU50B3側の出力が低下しない。このため、eVTOL10は、EPU50Aがある方の翼13が下がるようにロール方向に傾きやすくなる。
 これに対して、本実施形態では、隣接EPUであるEPU50B1,50B2の出力が増加されることで、eVTOL10において、EPU50A側の出力が増加する。すなわち、EPU50Aの駆動停止によって低下した出力が、EPU50B1,50B2の出力増加により補われる。このため、eVTOL10がロール方向に傾くということが生じにくい。なお、本実施形態では、EPU50B3~50B5の出力が増減は必ずしも必要ないが、出力バランスのために増減させてもよい。
 補正増加処理では、eVTOL10の全体出力が許容範囲に含まれるように、少なくとも1つの正常EPUの出力が増加される。許容範囲の下限について、補正増加処理では、異常EPUの駆動停止に伴ってeVTOL10の全体出力が低下する度合いを下限割合にとどめるように、少なくとも1つの正常EPUの出力が増加される。例えば補正増加処理では、eVTOL10の全体出力が低下した場合に、基準出力に対する全体出力の割合が下限割合以上になるように、正常EPUの出力増加が行われる。下限割合は、あらかじめ定められた所定割合であり、例えば90%以上の値であり、好ましくは95%以上の値である。基準出力としては、正常なeVTOL10が飛行する場合の全体出力、及びeVTOL10の全体出力に対する定格出力などがある。
 例えば6個のEPU50が搭載されたeVTOL10を想定する。このeVTOL10では、6個のEPU50に対して1対1で6個のロータ20が設けられている。1つのEPU50においては、モータ装置80の定格出力が10kWであり、モータ装置80の最大出力が12kWであるとする。このeVTOL10が異常発生していない状態で正常離陸を行う場合、飛行制御装置40は、6個のEPU50のそれぞれにおいてモータ装置80を定格出力である10kWで駆動させる。この場合、eVTOL10の全体出力は60kWになる。
 一方、eVTOL10が1つの異常EPUを駆動停止させた状態で異常離陸を行う場合、飛行制御装置40は、補正増加処理において残り5個のEPU50の出力を増加させる。例えば飛行制御装置40は、5個の正常EPUのうち、2個の隣接EPUのそれぞれにおいてモータ装置80の出力を12kWに増加させ、残り3個の正常EPUのそれぞれにおいてモータ装置80の出力を11kWに増加させる。この場合、eVTOL10の全体出力は57kWになる。正常離陸時の全体出力を基準出力とすると、eVTOL10において基準出力に対する異常離陸時の全体出力の割合は、95%になり、90%以上が実現される。
 許容範囲の上限について、補正増加処理では、eVTOL10において基準出力に対する全体出力の割合が上限割合に達しないように、正常EPUの出力増加が行われる。上限割合は、あらかじめ定められた所定割合であり、例えば100%である。これにより、モータ装置80などEPU50が過剰スペックになることが抑制される。例えばモータ装置80のスペックについて、定格出力を大きく上回るように最大出力が設定されることが抑制される。これにより、モータ装置80などEPU50の軽量化を実現しやすくなる。
 図6に戻り、飛行制御装置40は、ステップS404において、EPU制御を自動から手動に切り替えるか否かを判定する。この判定では、操作センサ38aの検出信号を用いて、操作部38に対して切り替え操作が行われたか否かの判定が行われる。操作部38に対して切り替え操作が行われた場合、飛行制御装置40は、EPU制御を手動に切り替えると判断し、ステップS413に進む。なお、例えばパイロットが安定化処理を不要であると判断した場合などに操作部38に対して切り替え操作を行うと考えられる。切り替え操作が解除操作に相当する。
 飛行制御装置40は、ステップS413において、手動切替処理を行う。この手動切替処理では、EPU制御を手動操作に切り替えるための処理が行われる。例えば手動切替処理では、安定化処理が解除される。安定化処理の解除では、補正増加処理が解除され、補正増加処理が行われない。なお、安定化処理の解除では、異常停止処理が解除されてもよい。飛行制御装置40におけるステップS413の処理を実行する機能が解除部に相当する。
 EPU制御を手動操作に切り替えない場合、飛行制御装置40は、ステップS405,S406,S407において、eVTOL10を緊急着陸させる必要があるか否かを判定する。飛行制御装置40は、ステップS405において、eVTOL10の機体形態が離陸形態になっているか否かを判定する。eVTOL10の機体形態は、EPU50及び姿勢調整装置などより変更可能である。離陸形態は、eVTOL10が垂直離陸するための飛行形態である。eVTOL10が離陸形態である場合、例えば姿勢調整装置が垂直離陸用の形態になっている。
 飛行制御装置40は、ステップS406において、eVTOL10の全体出力が離陸出力になっているか否かを判定する。離陸出力は、eVTOL10が垂直離陸するために必要な全体出力である。離陸出力は、垂直離陸用の基準出力に対して設定された許容範囲である。飛行制御装置40は、eVTOL10の全体出力が垂直離陸用の許容範囲に含まれているか否かを判定する。eVTOL10の全体出力が垂直離陸用の許容範囲に含まれている場合、飛行制御装置40は、eVTOL10の全体出力が離陸出力になっていると判断する。
 飛行制御装置40は、ステップS407において、eVTOL10の退避着陸が可能であるか否かを判定する。この判定では、eVTOL10が水平方向に移動するように飛行することが可能であるか否かの判定が行われる。退避着陸は、eVTOL10が退避地点に垂直着陸することである。退避地点は、eVTOL10の離陸地点と同じ位置でもよく、異なる位置でもよい。退避地点は、eVTOL10の現在位置から水平方向に離間した位置に設定されてもよい。eVTOL10が水平方向に移動可能である場合、飛行制御装置40は、eVTOL10の退避着陸が可能であると判断する。
 例えばeVTOL10がチルトロータ機であれば、飛行制御装置40は、ロータ20のチルト角を変更可能であるか否かを判定し、チルト角を変更可能である場合にeVTOL10の退避着陸が可能であると判断する。クルーズ用のロータ20が搭載されたeVTOL10であれば、飛行制御装置40は、クルーズ用のロータ20が駆動回転可能か否かを判定し、クルーズ用のロータ20が駆動回転可能である場合にeVTOL10の退避着陸が可能であると判断する。
 eVTOL10について、飛行形態が離陸形態であること、全体出力が離陸出力であること、及び退避着陸が可能であること、の1つでも成立していない場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要があると判断する。この場合、飛行制御装置40は、ステップS412に進み、緊急着陸処理を行う。この緊急着陸処理では、鉛直下方の緊急着陸地点に垂直着陸させるための処理が行われる。この緊急着陸処理は、例えばステップS113の緊急着陸処理と同様に行われる。飛行制御装置40におけるステップS412の処理を実行する機能が異常着陸部に相当する。
 eVTOL10について、飛行形態が離陸形態であること、全体出力が離陸出力であること、及び退避着陸が可能であること、の全てが成立している場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要がないと判断する。この場合、飛行制御装置40は、ステップS408に進む。
 飛行制御装置40は、ステップS408において、eVTOL10の飛行状態が回避領域にあるか否かを判定する。eVTOL10については、垂直離着陸時に回避すべき回避領域がある。回避領域は、垂直離着陸時に異常等の不具合が発生すると安全性が低下しやすい領域である。回避領域は、例えばeVTOL10のオートローテーションが困難な領域である。また、回避領域は、eVTOL10の速度及び高度により設定される領域である。この速度は、eVTOL10が進む方向についてのeVTOL10の飛行速度である。eVTOL10においては、例えば速度及び高度の少なくとも一方が変更されることで飛行状態が変化する。また、eVTOL10においては、EPU制御により速度及び高度を変更可能である。このように、飛行状態は、eVTOL10の飛行に関する状態のうち、特にEPU制御に応じて変化する状態のことである。なお、eVTOL10の飛行状態が飛行態様に相当し、回避領域が回避態様に相当する。
 例えば図7に示すように、2軸のうち一方が高度とされ、他方が速度とされたグラフでは、第1回避領域AA1及び第2回避領域AA2という2つの回避領域が存在する。図7においては、速度をSp、高度をAtと図示している。eVTOL10の飛行状態が第1回避領域AA1又は第2回避領域AA2に含まれている場合、eVTOL10の飛行状態が回避領域にあることになる。なお、図7は、速度及び高度について回避領域を包囲線にて図示した包囲線図である。また、図7は、eVTOL10の物理的位置を示す図ではなく、eVTOL10の飛行状態を示す図である。
 第1回避領域AA1は、速度がゼロを含んである程度小さい領域のうち、eVTOL10が中途半端な高度になる領域である。eVTOL10の速度がある程度小さい状態では、eVTOL10が十分に低い高度から垂直着陸を行う場合、及びeVTOL10が十分に高い高度から垂直着陸を行う場合、のいずれについてもeVTOL10の安全性が十分に高くなりやすい。例えばeVTOL10が速度ゼロの状態で極低空から垂直着陸を開始する場合、仮にeVTOL10の全体出力が不足していても、eVTOL10が垂直着陸した時の衝撃が小さく抑えられる。eVTOL10が十分に高い高度から垂直着陸を開始する場合は、eVTOL10が着地するまでに要する時間が比較的長いことで、安全な着陸に必要な措置を行うための措置時間を確保しやすい。これらのように、例えばeVTOL10が速度ゼロの状態で第1回避領域AA1よりも低い高度及び高い高度のいずれから垂直着陸を開始しても、垂直着陸に際しての安全性が不足しにくい。
 一方、eVTOL10が中途半端な高度から垂直着陸を行う場合、eVTOL10が垂直着陸した時の衝撃が大きいこと、及びeVTOL10が着地するまでの措置時間が不足すること、などが生じやすい。例えばeVTOL10が速度ゼロの状態で第1回避領域AA1に含まれた高度から垂直着陸を開始すると、垂直着陸に際しての安全性が不足しやすい。なお、例えばVTOL10が速度ゼロで第1回避領域AA1よりも高い高度から垂直着陸を開始したのであれば、eVTOL10の速度及び高度の少なくとも一方が変更されることで第1回避領域AA1を避けることができ、安全性の低下が生じにくい。
 第1回避領域AA1において高度上限値At2は、例えば数十m~百数十mの間の高さに設定される。高度上限値At2は、第1回避領域AA1のうち速度がゼロである領域の上限値である。第1回避領域AA1において高度下限値At1は、例えば数十cm~数m以下の高度に設定される。高度下限値At1は、第1回避領域AA1のうち速度がゼロである領域の下限値である。高度下限値At1は、極低空よりも高い高度に設定される。
 第2回避領域AA2は、高度がゼロを含んである程度小さい領域のうち、eVTOL10の速度が大きすぎる領域である。eVTOL10の高度がある程度小さい場合、eVTOL10の速度が大きすぎると、eVTOL10が垂直着陸を行う際の安全性が不足しやすい。例えばeVTOL10が極低空である場合でも、eVTOL10の速度が第2回避領域AA2に含まれるほどに大きいと、eVTOL10が着地した際のバランスが崩れることなどにより垂直着陸に際しての安全性が低下しやすい。なお、eVTOL10が第2回避領域AA2よりも高い高度から垂直着陸を開始しても、eVTOL10の着陸が完了するよりも前にeVTOL10の飛行状態が第2回避領域AA2に入るのであれば、垂直着陸に際しての安全性が低下しやすい。
 第2回避領域AA2の速度下限値Sp1は、例えば数km/h~十数km/h以下の速度に設定される。速度下限値Sp1は、例えば第1回避領域AA1の速度上限値よりも大きい値に設定される。また、第2回避領域AA2の高度上限値At2は、第1回避領域AA1の高度下限値At1よりも低い高度に設定される。
 なお、後述するように、eVTOL10が第1回避領域AA1又は第2回避領域AA2にある場合、飛行制御装置40の垂直着陸が中止されることがある。第1回避領域AA1及び第2回避領域AA2は、着陸中止領域と称されることがある。また、これら回避領域AA1,AA2とそれ以外の領域との境界部には、臨界決定点が含まれている。
 図6に戻り、eVTOL10の飛行状態が回避領域にない場合、飛行制御装置40は、ステップS411に進む。例えば、eVTOL10が図7に示す離陸経路TRで垂直離陸している最中にeVTOL10に異常が発生した場合、飛行制御装置40は、eVTOL10の飛行状態が第1回避領域AA1及び第2回避領域AA2のいずれにもないと判断する。
 飛行制御装置40は、ステップS411において、退避着陸処理を行う。退避着陸処理では、eVTOL10を退避着陸させるための処理が行われる。退避着陸処理では、eVTOL10が第1回避領域AA1及び第2回避領域AA2のいずれにも入らないように、eVTOL10の垂直着陸が行われる。退避着陸処理には、eVTOL10を退避着陸させるための準備処理が含まれている。準備処理としては、姿勢調整装置及び高度調整装置などを駆動させる処理などがある。飛行制御装置40におけるステップS411の処理を実行する機能が異常着陸部に相当する。
 eVTOL10の飛行状態が回避領域にある場合、飛行制御装置40は、ステップS409に進む。飛行制御装置40は、ステップS409において、eVTOL10が回避領域から抜け出すことが可能か否かの抜け出し判定を行う。この判定では、eVTOL10の飛行状態が回避領域から抜け出すようにeVTOL10の速度及び高度の少なくとも一方を変更することが可能であるか否かが判定される。eVTOL10の飛行状態が回避領域から抜け出すように速度及び高度の少なくとも一方を変更可能である場合、飛行制御装置40は、回避領域からの抜け出しが可能であると判断し、ステップS410に進む。
 飛行制御装置40は、ステップS410において、抜け出し飛行処理を行う。抜け出し飛行処理は、eVTOL10を回避領域から抜け出させるための処理である。この処理では、eVTOL10の飛行状態が回避領域から抜け出すようにeVTOL10の速度及び高度の少なくとも一方を変更する処理が行われる。抜け出し飛行は、eVTOL10の飛行状態を回避領域から抜け出させるための飛行である。例えばeVTOL10の飛行状態が第1回避領域AA1にある場合、飛行制御装置40は、飛行状態が第1回避領域AA1から抜け出するように、eVTOL10の速度及び高度の少なくとも一方を変化させる。飛行制御装置40におけるステップS410の処理を実行する機能が抜け出し実行部に相当する。
 eVTOL10の飛行状態が回避領域から抜け出した後、飛行制御装置40は、ステップS411において退避着陸処理を行う。飛行制御装置40におけるステップS411の処理を実行する機能が異常着陸部及び抜け出し着陸部に相当する。eVTOL10について回避領域からの抜け出しが可能でない場合、飛行制御装置40は、ステップS412に進み、緊急着陸処理を行う。
 図8に示すように、垂直離陸中のeVTOL10が離陸経路TRの所定位置TR1に達したタイミングで、EPU異常が発生し、EPU異常の発生に伴って飛行状態が第1回避領域AA1に入ってしまった場合を想定する。この場合、eVTOL10は、抜け出し経路ARで退避地点APに着陸する。抜け出し経路ARには、抜け出し飛行処理によりeVTOL10の飛行状態が第1回避領域AA1から抜け出した経路、が含まれている。また、抜け出し経路ARには、eVTOL10の飛行状態が第1回避領域AA1から抜け出した後に、そのeVTOL10が退避着陸処理により退避地点APに退避着陸した経路、が含まれている。抜け出し経路ARは、eVTOL10の飛行状態が第1回避領域AA1から抜け出し且つ第2回避領域AA2に入らないように退避地点APに到達するための経路である。なお、所定位置TR1は、臨界決定点と称されることがある。
 図3に戻り、ステップS105について、eVTOL10が垂直離陸中でない場合、飛行制御装置40は、ステップS107に進む。飛行制御装置40は、ステップS107において、eVTOL10が垂直着陸中であるか否かを判定する。この判定では、eVTOL10の飛行フェーズが着陸フェーズであるか否かが判定される。この判定では、現在の飛行フェーズが着陸フェーズである場合に、eVTOL10が垂直着陸中であると判断される。着陸フェーズは、異常が発生していないeVTOL10を垂直着陸させるためのフェーズである。飛行制御装置40は、eVTOL10の高度、速度及び機体形態等に応じて、現在の飛行フェーズが着陸フェーズであるか否かを判定する。
 eVTOL10が垂直着陸中である場合、飛行制御装置40は、ステップS108に進む。飛行制御装置40は、ステップS108において、着陸中処理を行う。着陸中処理では、垂直着陸中に異常が発生したeVTOL10を着陸させるための処理が行われる。着陸中処理については、図9のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図9に示すステップS501,S502において、安定化処理を行う。この安定化処理では、垂直着陸中に異常が発生したeVTOL10について姿勢及び高度の両方を安定させるための処理が行われる。飛行制御装置40は、安定化処理のステップS501において異常停止処理を行う。このステップS501は、ステップS402と同様に行われる。飛行制御装置40は、ステップS502において補正増加処理を行う。このステップS502は、ステップS403と同様に行われる。飛行制御装置40におけるステップS501の処理を実行する機能が異常停止部に相当し、ステップS502の処理を実行する機能が補正増加部に相当する。
 飛行制御装置40は、ステップS503において、EPU制御を自動から手動に切り替えるか否かを判定する。この判定は、ステップS404の判定処理と同様に行われる。EPU制御を手動に切り替える場合、飛行制御装置40は、ステップS512に進み、手動切替処理を行う。このステップS512は、ステップS413と同様に行われる。飛行制御装置40におけるステップS512の処理を実行する機能が解除部に相当する。
 EPU制御を手動に切り替えない場合、飛行制御装置40は、ステップS504に進む。飛行制御装置40は、ステップS504,S505,S506において、eVTOL10を緊急着陸させる必要があるか否かを判定する。飛行制御装置40は、ステップS504において、eVTOL10の飛行形態が着陸形態になっているか否かを判定する。着陸形態は、eVTOL10が垂直着陸するための飛行形態である。eVTOL10が着陸形態である場合、例えば姿勢調整装置が垂直着陸用の形態になっている。
 飛行制御装置40は、ステップS505において、eVTOL10の全体出力が着陸出力になっているか否かを判定する。着陸出力は、eVTOL10が垂直着陸するために必要な全体出力である。着陸出力は、垂直着陸用の基準出力に対して設定された許容範囲である。飛行制御装置40は、eVTOL10の全体出力が垂直着陸用の許容範囲に含まれているか否かを判定する。eVTOL10の全体出力が垂直着陸用の許容範囲に含まれている場合、飛行制御装置40は、eVTOL10の全体出力が着陸出力になっていると判断する。
 飛行制御装置40は、ステップS506において、eVTOL10の退避着陸が可能であるか否かを判定する。このステップS506は、ステップS407と同様に行われる。
 eVTOL10について、飛行形態が着陸形態であること、全体出力が着陸出力であること、及び退避着陸が可能であること、の1つでも成立していない場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要があると判断する。この場合、飛行制御装置40は、ステップS511に進み、緊急着陸処理を行う。このステップS511は、ステップS412と同様に行われる。
 eVTOL10について、飛行形態が着陸形態であること、全体出力が着陸出力であること、及び退避着陸が可能であること、の全てが成立している場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要がないと判断する。この場合、飛行制御装置40は、ステップS507に進む。
 飛行制御装置40は、ステップS507において、eVTOL10の飛行状態が回避領域にあるか否かを判定する。このステップS507は、ステップS408と同様に行われる。eVTOL10の飛行状態が回避領域にない場合、飛行制御装置40は、ステップS510に進み、ステップS411と同様に、退避着陸処理を行う。eVTOL10の飛行状態が回避領域にある場合、飛行制御装置40は、ステップS508に進み、ステップS409と同様に、抜け出し判定を行う。eVTOL10の飛行状態が回避領域から抜け出し可能である場合、飛行制御装置40は、ステップS509に進み、ステップS410と同様に、抜け出し飛行処理を行う。飛行制御装置40におけるステップS509の処理を実行する機能が抜け出し実行部に相当する。
 eVTOL10の飛行状態が回避領域から抜け出した後、飛行制御装置40は、ステップS510において退避着陸処理を行う。飛行制御装置40におけるステップS510の処理を実行する機能が異常着陸部及び抜け出し着陸部に相当する。eVTOL10の飛行状態が回避領域から抜け出し可能でない場合、飛行制御装置40は、ステップS511に進み、緊急着陸処理を行う。
 図3に戻り、ステップS107について、eVTOL10が垂直着陸中でない場合、飛行制御装置40は、ステップS109に進む。飛行制御装置40は、ステップS109において、eVTOL10がクルーズ中であるか否かを判定する。この判定では、eVTOL10の飛行フェーズがクルーズフェーズであるか否かが判定される。この判定では、現在の飛行フェーズがクルーズフェーズである場合に、eVTOL10がクルーズ中であると判断される。クルーズフェーズは、異常が発生していないeVTOL10をクルーズさせるためのフェーズである。飛行制御装置40は、eVTOL10の高度、速度及び機体形態等に応じて、現在の飛行フェーズがクルーズフェーズであるか否かを判定する。
 eVTOL10がクルーズ中である場合、飛行制御装置40は、ステップS110に進む。飛行制御装置40は、ステップS110において、クルーズ中処理を行う。クルーズ中処理では、クルーズ中に異常が発生したeVTOL10を着陸させるための処理が行われる。クルーズ中処理については、図10のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図10に示すステップS601,S602において、安定化処理を行う。この安定化処理では、クルーズ中に異常が発生したeVTOL10について姿勢及び高度の両方を安定させるための処理が行われる。飛行制御装置40は、安定化処理のステップS601において異常停止処理を行う。この異常停止処理は、ステップS402の異常停止処理と同様に行われる。飛行制御装置40は、ステップS602において補正増加処理を行う。このステップS602は、ステップS403と同様に行われる。飛行制御装置40におけるステップS601の処理を実行する機能が異常停止部に相当し、ステップS602の処理を実行する機能が補正増加部に相当する。
 飛行制御装置40は、ステップS603において、EPU制御を自動から手動に切り替えるか否かを判定する。このステップS603は、ステップS404と同様に行われる。EPU制御を手動に切り替える場合、飛行制御装置40は、ステップS612に進み、手動切替処理を行う。このステップS612は、ステップS413と同様に行われる。飛行制御装置40におけるステップS612の処理を実行する機能が解除部に相当する。
 EPU制御を手動に切り替えない場合、飛行制御装置40は、ステップS604に進む。飛行制御装置40は、ステップS604,S605,S606において、eVTOL10を緊急着陸させる必要があるか否かを判定する。飛行制御装置40は、ステップS604において、eVTOL10の飛行形態がクルーズ形態になっているか否かを判定する。クルーズ形態は、eVTOL10がクルーズするための飛行形態である。eVTOL10がクルーズ形態である場合、例えば姿勢調整装置がクルーズ用の形態になっている。
 飛行制御装置40は、ステップS605において、eVTOL10の全体出力がクルーズ出力になっているか否かを判定する。クルーズ出力は、eVTOL10がクルーズするために必要な全体出力である。クルーズ出力は、クルーズ用の基準出力に対して設定された許容範囲である。飛行制御装置40は、eVTOL10の全体出力がクルーズ用の許容範囲に含まれているか否かを判定する。全体出力がクルーズ用の許容範囲に含まれている場合、飛行制御装置40は、eVTOL10の全体出力がクルーズ出力になっていると判断する。
 飛行制御装置40は、ステップS606において、eVTOL10の退避着陸が可能であるか否かを判定する。このステップS606は、ステップS407と同様に行われる。
 eVTOL10について、飛行形態がクルーズ形態であること、全体出力がクルーズ出力であること、及び退避着陸が可能であること、の1つでも成立していない場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要があると判断する。この場合、飛行制御装置40は、ステップS611に進み、緊急着陸処理を行う。このステップS611は、ステップS412と同様に行われる。
 eVTOL10について、飛行形態がクルーズ形態であること、全体出力がクルーズ出力であること、及び退避着陸が可能であること、の全てが成立している場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要がないと判断する。この場合、飛行制御装置40は、ステップS607に進む。
 飛行制御装置40は、ステップS607において、eVTOL10の飛行状態が回避領域にあるか否かを判定する。このステップS607は、ステップS408と同様に行われる。eVTOL10の飛行状態が回避領域にない場合、飛行制御装置40は、ステップS610に進み、ステップS411と同様に、退避着陸処理を行う。eVTOL10の飛行状態が回避領域にある場合、飛行制御装置40は、ステップS608に進み、ステップS409と同様に、抜け出し判定を行う。eVTOL10の飛行状態が回避領域から抜け出し可能である場合、飛行制御装置40は、ステップS609に進み、ステップS410と同様に、抜け出し飛行処理を行う。飛行制御装置40におけるステップS609の処理を実行する機能が抜け出し実行部に相当する。
 eVTOL10の飛行状態が回避領域から抜け出した後、飛行制御装置40は、ステップS610において退避着陸処理を行う。飛行制御装置40におけるステップS610の処理を実行する機能が異常着陸部及び抜け出し着陸部に相当する。eVTOL10の飛行状態が回避領域から抜け出し可能でない場合、飛行制御装置40は、ステップS611に進み、緊急着陸処理を行う。
 図3に戻り、ステップS109について、eVTOL10がクルーズ中でない場合、飛行制御装置40は、ステップS111に進む。飛行制御装置40は、ステップS111において、eVTOL10がホバリング中であるか否かを判定する。この判定では、eVTOL10の飛行フェーズがホバリングフェーズであるか否かが判定される。この判定では、現在の飛行フェーズがホバリングフェーズである場合に、eVTOL10がホバリング中であると判断される。ホバリングフェーズは、異常が発生していないeVTOL10をホバリングさせるためのフェーズである。飛行制御装置40は、eVTOL10の高度、速度及び機体形態等に応じて、現在の飛行フェーズがホバリングフェーズであるか否かを判定する。
 eVTOL10がホバリング中である場合、飛行制御装置40は、ステップS112に進む。飛行制御装置40は、ステップS112において、ホバリング中処理を行う。ホバリング中処理では、ホバリング中に異常が発生したeVTOL10を着陸させるための処理が行われる。ホバリング中処理については、図11のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図11に示すステップS701,S702において、安定化処理を行う。この安定化処理では、ホバリング中に異常が発生したeVTOL10について姿勢及び高度の両方を安定させるための処理が行われる。飛行制御装置40は、安定化処理のステップS701において異常停止処理を行う。このステップS701は、ステップS402と同様に行われる。飛行制御装置40は、ステップS702において補正増加処理を行う。このステップS702は、ステップS403と同様に行われる。飛行制御装置40におけるステップS701の処理を実行する機能が異常停止部に相当し、ステップS702の処理を実行する機能が補正増加部に相当する。
 飛行制御装置40は、ステップS703において、EPU制御を自動から手動に切り替えるか否かを判定する。このステップS703は、ステップS404と同様に行われる。EPU制御を手動に切り替える場合、飛行制御装置40は、ステップS712に進み、手動切替処理を行う。このステップS712は、ステップS413と同様に行われる。飛行制御装置40におけるステップS712の処理を実行する機能が解除部に相当する。
 EPU制御を手動に切り替えない場合、飛行制御装置40は、ステップS704に進む。飛行制御装置40は、ステップS704,S705,S706において、eVTOL10を緊急着陸させる必要があるか否かを判定する。飛行制御装置40は、ステップS704において、eVTOL10の飛行形態がホバリング形態になっているか否かを判定する。ホバリング形態は、eVTOL10がホバリングするための飛行形態である。eVTOL10がホバリング形態である場合、例えば姿勢調整装置がホバリング用の形態になっている。
 飛行制御装置40は、ステップS705において、eVTOL10の全体出力がホバリング出力になっているか否かを判定する。ホバリング出力は、eVTOL10がホバリング出力するために必要な全体出力である。ホバリング出力は、ホバリング用の基準出力に対して設定された許容範囲である。飛行制御装置40は、eVTOL10の全体出力がホバリング用の許容範囲に含まれているか否かを判定する。絵の全体出力がホバリング用の許容範囲に含まれている場合、飛行制御装置40は、eVTOL10の全体出力がホバリング出力になっていると判断する。
 飛行制御装置40は、ステップS706において、eVTOL10の退避着陸が可能であるか否かを判定する。このステップS706は、ステップS407と同様に行われる。
 eVTOL10について、飛行形態がホバリング形態であること、全体出力がホバリング出力であること、及び退避着陸が可能であること、の1つでも成立していない場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要があると判断する。この場合、飛行制御装置40は、ステップS711に進み、緊急着陸処理を行う。このステップS711は、ステップS412と同様に行われる。
 eVTOL10について、飛行形態がホバリング形態であること、全体出力がホバリング出力であること、及び退避着陸が可能であること、の全てが成立している場合、飛行制御装置40は、eVTOL10を緊急着陸させる必要がないと判断する。この場合、飛行制御装置40は、ステップS707に進む。
 飛行制御装置40は、ステップS707において、eVTOL10の飛行状態が回避領域にあるか否かを判定する。このステップS707は、ステップS408と同様に行われる。eVTOL10の飛行状態が回避領域にない場合、飛行制御装置40は、ステップS710に進み、ステップS411と同様に、退避着陸処理を行う。eVTOL10の飛行状態が回避領域にある場合、飛行制御装置40は、ステップS708に進み、ステップS409と同様に、抜け出し判定を行う。eVTOL10の飛行状態が回避領域から抜け出し可能である場合、飛行制御装置40は、ステップS709に進み、ステップS410と同様に、抜け出し飛行処理を行う。飛行制御装置40におけるステップS709の処理を実行する機能が抜け出し実行部に相当する。
 eVTOL10の飛行状態が回避領域から抜け出した後、飛行制御装置40は、ステップS710において退避着陸処理を行う。飛行制御装置40におけるステップS710の処理を実行する機能が異常着陸部及び抜け出し着陸部に相当する。eVTOL10の飛行状態が回避領域から抜け出し可能でない場合、飛行制御装置40は、ステップS711に進み、緊急着陸処理を行う。
 異常停止処理及び補正増加処理についてまとめて説明する。本実施形態では、EPU異常が発生した場合に異常停止処理及び補正増加処理が行われるため、操縦士の作業負荷を増大させることなく自動的にEPU50の出力を制御することができる。このため、eVTOL10について、安全性の高い機体姿勢安定と高度低下抑制の選択肢を提供し、離着陸時の事故のリスクの最小化を図ることができる。
 eVTOL10においては、複数の回転翼により揚力及び推力の発生と機体姿勢の制御が行われる。eVTOL10においては、EPU50の1つに不具合が発生すると、対角に位置する不具合のない正常EPUを停止させて機体姿勢を安定化させつつ、緊急着陸することが考えられる。なお、図1においては、EPU50B3が対角に位置する正常EPUである。eVTOL10は、複数の回転翼による揚力のバランスで機体姿勢を安定させながら垂直に離着陸を行う航空機でもある。
 また、eVTOL10では、固定翼から揚力を得る飛行機と比べて、機体姿勢の安定と安全高度の維持のためにEPU50の出力制御に要する操縦士の作業負荷は高くなる。特に不具合発生時はこの操縦の複雑さは増大し、飛行安全に直結し得るものであることから、複数の回転翼の出力制御は自動化されることが好ましい。特に、離着陸時のトラブルは、操縦士の作業負荷が最も高い時間帯であることもあり安全性が低下しやすい。
 本実施形態では、eVTOL10の垂直離陸中にEPU異常が発生した場合、及びeVTOL10の垂直着陸中にEPU異常が発生した場合について、異常停止処理及び補正増加処理が行われる。eVTOL10においては、離陸フェーズ及び着陸フェーズが、操縦士にとって作業負荷が高い飛行フェーズに含まれる。作業負荷が高い飛行フェーズにおいては、航空事故のリスクが高くなることが懸念される。これに対して、eVTOL10においてEPU50の不具合発生時に、自動的に異常EPU及び正常EPUの出力を制御し機体姿勢を安定させることで、ヒューマンエラーを含む事故のリスクを低減することが可能となる。
 本実施形態では、異常停止処理及び補正増加処理により、異常EPUの駆動が停止され、且つ正常EPUの出力が自動で制御される。これにより、eVTOL10について機体姿勢の安定化を図ることができる。例えば本実施形態とは異なり、異常EPUと共に、異常EPUの対角位置にある正常EPUが停止される構成では、eVTOL10の全体出力が不足することが懸念される。これに対して、本実施形態では、異常EPUの対角位置にある正常EPUが停止されないため、eVTOL10の高度維持、速度維持及び冗長性維持の観点からより安全性の高い制御の選択肢を提供することができる。
 本実施形態では、操縦士の関与なく自動で異常停止処理及び補正増加処理が開始される。ところが、異常停止処理及び補正増加処理による異常EPUの停止及び正常EPUの出力上昇が必ずしも最善の安全策とは限らない可能性がある。そこで、操縦士は、操作部38に対して切り替え操作を行うことにより異常停止処理及び補正増加処理を解除させることが可能である。このため、操縦士にとっての最善の安全策を実行することが可能になる。なお、異常停止処理及び補正増加処理が必ずしも最善の安全策とは限らない場合としては、低高度からの離陸中止で出力上昇が不要な場合などがある。
 操縦士にとって離着陸時は特別な注意と厳格な作業手順を要する最も作業負荷が高い飛行フェーズである。そこで、本実施形態では、高度情報、速度情報及び機体形態に応じて離着陸フェーズであるか否かが判定され、離着陸フェーズである場合に、異常停止処理及び補正増加処理が自動的に開始される。これにより、操縦士にとって操縦手順の複雑さを増大させる不具合対応を自動化し、ヒューマンエラーの原因になる操縦士の作業負荷を軽減することができる。
 ここまで説明した本実施形態によれば、図1において、EPU50Aに異常が発生した場合、異常停止処理によりEPU50Aが異常EPUとして駆動停止される一方で、補正増加処理によりEPU50B1,50B2が正常EPUとして出力増加される。この構成では、EPU50Aの駆動停止によってeVTOL10の全体出力が減少しても、その減少分をEPU50B1,50B2の出力増加により補うことが可能である。しかも、補正増加処理では、EPU50Aの駆動停止に伴うeVTOL10の姿勢変化を補正するように、EPU50B1,50B2の出力増加が行われる。このため、EPU50Aの駆動停止に伴ってeVTOL10の姿勢が不安定になるということを抑制できる。したがって、eVTOL10においてEPU異常が発生した場合の安全性を高めることができる。
 本実施形態によれば、複数の正常EPUのうち、EPU50Aに最も近いEPU50B1,50B2が最近EPUとして、補正増加処理により出力増加される。この構成では、eVTOL10において、EPU50Aの駆動停止に伴ってEPU50A周辺の出力が低下したとしても、EPU50A周辺の出力低下をEPU50B1,50B2の出力増加により補うことができる。このため、eVTOL10において、一部の出力が低下して全体出力のバランスが崩れる、ということを抑制できる。
 本実施形態によれば、複数の正常EPUのうち、ヨー軸AZの周方向においてEPU50Aに隣にあるEPU50B1,50B2が隣接EPUとして、補正増加処理により出力増加される。この構成では、eVTOL10において、EPU50Aの駆動停止に伴ってEPU50A側の出力が低下したとしても、EPU50A側の出力低下をEPU50B1,50B2の出力増加により補うことができる。このため、eVTOL10において、EPU50A側の出力が低下してロール方向及びピッチ方向の少なくとも一方について出力バランスが崩れる、ということを抑制できる。したがって、例えばロール方向及びピッチ方向について、eVTOL10の姿勢を安定させることができる。
 本実施形態によれば、eVTOL10の飛行フェーズが離陸フェーズである場合に、異常発生したEPU50Aが異常停止処理により駆動停止される。離陸フェーズにおいては、異常停止処理による駆動停止に合わせて、正常なEPU50B1,50B2の出力増加が補正増加処理により行われる。このため、垂直離陸中のeVTOL10においてEPU50Aの異常が発生しても、EPU50Aの駆動停止に伴ってeVTOL10の全体出力が不足すること、及びeVTOL10の姿勢が不安定になること、の両方を抑制できる。
 eVTOL10を垂直離陸させるための操縦は、パイロットにとっての作業負荷が高くなりやすい。これに対して、本実施形態では、eVTOL10の飛行フェーズが離陸フェーズである場合に、異常EPUであるEPU50Aが異常停止処理により自動で駆動停止される。この構成では、異常停止処理及び補正増加処理をパイロットが手動で行うという必要がないため、垂直離陸中に発生したEPU異常によりパイロットの作業負荷が更に高くなる、ということを抑制できる。このため、eVTOL10において、垂直離陸中にパイロットの作業負荷が過剰に高くなることに起因して安全性が低下する、というリスクを低減できる。
 本実施形態によれば、eVTOL10の飛行フェーズが離陸フェーズである場合、異常停止処理及び補正増加処理が行われている状態で、eVTOL10の垂直離陸が中止されて垂直着陸が行われる。この構成では、異常停止処理及び補正増加処理により安全性を高めた状態でeVTOL10を垂直着陸させることができる。このため、EPU異常が発生したeVTOL10を垂直着陸させる際の安全性を高めることができる。
 eVTOL10の垂直離陸を中止してeVTOL10を垂直着陸させるための操作は、パイロットにとっての作業負荷が高くなりやすい。これに対して、本実施形態では、EPU異常の発生に伴ってeVTOL10の垂直離陸を中止して垂直着陸を行う処理が自動で行われる。この構成では、垂直離陸の中止及び垂直着陸の実行をパイロットが手動で行うという必要がない。このため、EPU異常の発生に伴ってeVTOL10を垂直着陸させる際に、パイロットの作業負担が過剰に高くなる、ということを抑制できる。
 本実施形態によれば、eVTOL10の垂直着陸が行われる場合に、eVTOL10の飛行状態が回避領域に入らないように、eVTOL10の速度及び高度の少なくとも一方が変更される。この構成では、飛行状態が回避領域を避けながらeVTOL10の垂直着陸が行われるため、飛行状態が回避領域にあることに起因して垂直着陸に際しての安全性が低下するということを回避できる。
 また、eVTOL10の飛行状態が回避領域にある場合は、eVTOL10の飛行状態が回避領域から抜け出すように、eVTOL10の速度及び高度の少なくとも一方が変更される。この構成では、仮に、EPU異常が発生したことなどによりeVTOL10が意図せずに回避領域に入ってしまったとしても、eVTOL10を回避領域から抜け出させることができる。そして、eVTOL10の飛行状態が回避領域から抜け出した後に退避着陸処理が行われることで、eVTOL10が退避着陸を行う際の安全性を高めることができる。
 本実施形態によれば、eVTOL10の飛行フェーズが着陸フェーズである場合に、異常発生したEPU50Aが異常停止処理により駆動停止される。着陸フェーズにおいては、異常停止処理による駆動停止に合わせて、正常なEPU50B1,50B2の出力増加が補正増加処理により行われる。このため、垂直着陸中のeVTOL10においてEPU50Aの異常が発生しても、EPU50Aの駆動停止に伴ってeVTOL10の全体出力が低下すること、及びeVTOL10の姿勢が不安定になること、の両方を抑制できる。
 eVTOL10を垂直着陸させるための操縦は、パイロットにとっての作業負荷が高くなりやすい。これに対して、本実施形態では、eVTOL10の飛行フェーズが着陸フェーズである場合に、異常EPUであるEPU50Aが異常停止処理により自動で駆動停止される。この構成では、異常停止処理及び補正増加処理をパイロットが手動で行う必要がないため、垂直着陸中に発生したEPU異常によりパイロットの作業負荷が更に高くなる、ということを抑制できる。このため、eVTOL10において、垂直着陸中にパイロットの作業負荷が過剰に高くなることに起因して安全性が低下する、というリスクを低減できる。
 本実施形態によれば、操作部38に対して切り替え操作が行われた場合に、異常停止処理及び補正増加処理の両方が解除される。この場合、パイロットは、異常停止処理に相当する操作及び補正増加処理に相当する操作のそれぞれを、eVTOL10の飛行状態等に応じて適宜行うことができる。このため、パイロットの操作によりeVTOL10の安全性を高めることが可能になる。
 本実施形態によれば、eVTOL10は、ロータ20及びEPU50を有している電動航空機である。このため、異常停止処理及び補正増加処理によりeVTOL10の安全性を高める構成を実現しやすい。
 <第2実施形態>
 第2実施形態では、補正増加処理がeVTOL10の姿勢に応じた内容で行われる。第2実施形態で特に説明しない構成、作用、効果については上記第1実施形態と同様である。第2本実施形態では、上記第1実施形態と異なる点を中心に説明する。
 図13に示すeVTOL10は、ジャイロセンサ39を有している。ジャイロセンサ39は、飛行システム30に含まれており、例えば機体11に設けられている。ジャイロセンサ39は、例えば角速度センサを有しており、eVTOL10に生じる角速度を検出する。ジャイロセンサ39は、例えばピッチ方向、ロール方向、ヨー方向のそれぞれについてeVTOL10の角速度を検出する。ジャイロセンサ39は、飛行制御装置40に電気的に接続されており、飛行制御装置40に対して検出信号を出力する。飛行制御装置40は、ジャイロセンサ39の検出結果を角速度情報として取得する。
 飛行制御装置40は、ジャイロセンサ39の検出結果を用いて補正増加処理を行う。この補正増加処理は、離陸中処理、着陸中処理、クルーズ中処理及びホバリング中処理のそれぞれにおいて行われる。本実施形態では、例えば離陸中処理にて行われる補正増加処理について説明する。補正増加処理について、図12のフローチャートを参照しつつ説明する。
 飛行制御装置40は、図12に示すステップS801において、ジャイロセンサ39の検出信号を用いてピッチ変化率を取得する。eVTOL10においては、ピッチ軸AYを介して機体前後の揚力差によりピッチ軸AYの周方向に回転運動が発生することで、角速度がピッチ方向に変化する。ピッチ変化率は、eVTOL10がピッチ方向に回転する場合の角速度の変化度合いである。ピッチ変化率は、単位時間当たりのピッチ方向における角速度の変化量である。例えばピッチ変化率が大きいほど、ピッチ方向におけるeVTOL10の姿勢変化が大きい。
 飛行制御装置40は、ステップS802において、ジャイロセンサ39の検出信号を用いてロール変化率を取得する。eVTOL10においては、ロール軸AXの周方向における回転力の差によりロール軸AXの周方向に回転運動が発生することで、角速度がロール方向に変化する。ロール変化率は、eVTOL10がロール方向に回転する場合の角速度の変化度合いである。ロール変化率は、単位時間当たりのロール方向における角速度の変化量である。例えばロール変化率が大きいほど、ロール方向におけるeVTOL10の姿勢変化が大きい。
 飛行制御装置40は、ステップS803において、ジャイロセンサ39の検出信号を用いてヨー変化率を取得する。eVTOL10においては、ヨー軸AZを介して機体左右の揚力差によりヨー軸AZの周方向に回転運動が発生することで、角速度がヨー方向に変化する。ヨー変化率は、eVTOL10がヨー方向に回転する場合の角速度の変化度合いである。ヨー変化率は、単位時間当たりのヨー方向における角速度の変化量である。例えばヨー変化率が大きいほど、ヨー方向におけるeVTOL10の姿勢変化が大きい。
 飛行制御装置40は、ステップS804において、変化率が異常であるか否かの判定を行う。この判定では、ロール変化率、ピッチ変化率及びヨー変化率のそれぞれについて、変化率が許容範囲に含まれているか否かを判定する。この判定では、ロール変化率、ピッチ変化率及びヨー変化率のうち1つでも許容範囲から外れた場合に、変化率が異常であると判断される。この許容範囲は、ロール変化率、ピッチ変化率及びヨー変化率のそれぞれに対して個別に設定されている。変化率の許容範囲は、あらかじめ定められており、記憶装置35に記憶されている。なお、変化率の許容範囲は、eVTOL10の重量及び気象情報などに応じて可変設定されてもよい。
 変化率が異常でない場合、飛行制御装置40は、ステップS809に進み、出力維持処理を行う。変化率が異常でない場合としては、離陸中処理の異常停止処理により異常EPUが駆動停止された状態で、eVTOL10の姿勢が揺れずに安定している場合、などがある。
 変化率が異常である場合、飛行制御装置40は、ステップS805に進み、静安定処理を行う。この静安定処理では、eVTOL10の姿勢が静的に最も安定する組み合わせで、複数の正常EPUのそれぞれについて出力が調整される。飛行制御装置40は、この組み合わせになるように、複数の正常EPUのそれぞれについて出力を増加させて調整する。この組み合わせに関する情報は、あらかじめ定められており、記憶装置35に記憶されている。例えば図13において、異常EPUがEPU50A,50B1~50B5のいずれか1つである場合のそれぞれについて、eVTOL10の姿勢が静的に最も安定する組み合わせに関する情報が記憶装置35に記憶されている。
 飛行制御装置40は、静安定処理の後、ステップS806に進み、再び変化率が異常であるか否かの判定を行う。この判定は、ステップS804の判定と同様に行われる。ステップS806において変化率が異常であると判断された場合、静安定処理が行われても角速度の変化率異常が改善しないとして、飛行制御装置40は、ステップS807に進む。飛行制御装置40は、ステップS807,S808において、追加安定処理を行う。この追加安定処理では、正常EPUの出力が追加で調整される。
 飛行制御装置40は、追加安定処理のステップS807において、出力減処理を行う。この出力減処理では、ピッチ方向、ロール方向及びヨー方向のうち変化率が異常である異常方向が特定され、異常方向に並ぶ2つの正常EPUのうち一方の正常EPUの出力が減少される。例えば飛行制御装置40は、ピッチ方向に並ぶ2つの正常EPUのうち、上方に向けた角速度の変化率が許容範囲から外れて大きい側の正常EPUについて、出力を減少させる。
 飛行制御装置40は、ステップS808において、出力増処理を行う。この出力増処理では、異常方向に並ぶ2つの正常EPUのうち、出力を減少させた正常EPUではない方の正常EPUの出力が減少される。例えば飛行制御装置40は、ピッチ方向に並ぶ2つの正常EPUのうち、下方に向けた角速度の変化率が許容範囲から外れて大きい側の正常EPUについて、出力を増加させる。出力減処理により出力が減少された正常EPUと、出力増処理により出力が増加された正常EPUとは、例えば互いに対角位置にある。
 <第3実施形態>
 第3実施形態では、EPU異常が発生した場合に、異常停止処理及び補正増加処理に加えて、補正減少処理が行われる。第3実施形態で特に説明しない構成、作用、効果については上記第1実施形態と同様である。第3本実施形態では、上記第1実施形態と異なる点を中心に説明する。
 飛行制御装置40は、補正減少処理を行うことが可能である。補正減少処理は、異常EPUが駆動停止された場合に、異常EPUの駆動停止に伴って生じるeVTOL10の姿勢変化を補正するように、少なくとも1つの正常EPUの出力が減少される。この補正減少処理は、離陸中処理、着陸中処理、クルーズ中処理及びホバリング中処理のそれぞれにおいて行われる。本実施形態では、離陸中処理にて行われる補正減少処理について説明する。この離陸中処理について、図14のフローチャートを参照しつつ説明する。
 飛行制御装置40は、離陸中処理のステップS402,S403において異常停止処理及び補正増加処理を行った後、ステップS901に進む。飛行制御装置40は、ステップS901において、補正減少処理を行う。補正減少処理では、例えば異常EPUから最も遠い位置にある正常EPUの出力が減少される。
 例えば図1において、異常EPUがEPU50Aである場合、ヨー軸AZを介いてEPU50Aの対角位置にあるEPU50B3が、EPU50Aから最も遠い位置にある。このため、eVTOL10においては、EPU50Aの駆動停止に伴うeVTOL10の姿勢変化を補正するように、EPU50B3の出力が減少され且つEPU50B1,50B2の出力が増加される。この場合、補正増加処理では、eVTOL10の全体出力が許容範囲に含まれるように、EPU50B1,50B2の出力増加量が設定される。このため、補正減少処理が行われても、eVTOL10の全体出力が不足するということを抑制できる。
 <他の実施形態>
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、又は組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 上記各実施形態において、補正増加処理では、正常EPUの出力を増加させる場合に、正常EPUの駆動電圧が高くされてもよい。例えば、補正増加処理では、正常EPUの駆動電圧が所定電圧だけ高い電圧にされる。所定電圧は、例えば正常EPUの出力増加割合と同じ割合だけ正常EPUの駆動電圧に対して高くされた電圧とされていてもよい。所定電圧は、あらかじめ定められた値とされていてもよく、例えばeVTOL10の飛行速度などに応じて可変設定されてもよい。このように、正常EPUの駆動電圧を高くすることで正常EPUの出力上昇が容易になる。また、正常EPUの出力を増加しつつ損失の抑制を図ることができる。したがって、eVTOL10の飛行可能距離を伸ばすことができる。
 EPU50は、コンバータを介して駆動バッテリ31に接続されていてもよい。コンバータは、電圧調整部であり、駆動バッテリ31からEPU50に印加される駆動電圧を調整可能である。飛行制御装置40は、コンバータに電気的に接続されており、コンバータの制御が可能になっている。飛行制御装置40は、補正増加処理において、正常EPUの駆動電圧が高くなるようにコンバータを制御する。
 上記各実施形態において、異常停止処理では、少なくとも1つの異常EPUの駆動が停止されればよい。また、補正増加処理では、少なくとも1つの正常EPUの出力が増加されればよい。補正増加処理においては、出力が増加される正常EPUは、隣接EPU及び最近EPUでなくてもよい。例えば図1においては、異常EPUとしてEPU50Aの駆動が停止された場合に、正常EPUのうちEPU50B4,50B5の出力が増加されてもよい。
 上記各実施形態において、異常停止処理及び補正増加処理が行われる条件には、少なくともEPU50の異常発生が含まれていればよく、他の条件が含まれていても含まれていなくてもよい。異常停止処理及び補正増加処理が行われる条件には、例えば、eVTOL10の退避着陸が可能な可能であること、及びeVTOL10の飛行状態が回避領域から抜け出したこと、などが含まれていてもよい。
 上記各実施形態において、ロータ20及びEPU50は、ヨー軸AZの周方向に複数並べられていてなくてもよい。この構成では、複数の正常EPUのうち、異常EPUに最も近い位置にあるEPU50が最近EPUである。
 上記各実施形態において、飛行制御装置40が搭載される垂直離着陸機は、少なくとも1つのロータ20を少なくとも1つのEPU50が駆動するという電動式の垂直離着陸機であればよい。例えば、1つのロータ20を複数のEPU50が駆動する構成でもよく、複数のロータ20を1つのEPU50が駆動する構成でもよい。
 上記各実施形態において、飛行制御装置40が搭載される飛行体は、電動式であれば、垂直離着陸機でなくてもよい。例えば、飛行体は、電動航空機として、滑走を伴う離着陸が可能な飛行体でもよい。さらに、飛行体は、回転翼機又は固定翼機でもよい。飛行体は、人が乗らない無人飛行体でもよく、人が乗る有人飛行体でもよい。
 上記各実施形態において、飛行制御装置40は、少なくとも1つのコンピュータを含む制御システムによって提供される。制御システムは、ハードウェアである少なくとも1つのプロセッサを含む。このプロセッサをハードウェアプロセッサと称すると、ハードウェアプロセッサは、下記(i)、(ii)、又は(iii)により提供することができる。
 (i)ハードウェアプロセッサは、ハードウェア論理回路である場合がある。この場合、コンピュータは、プログラムされた多数の論理ユニット(ゲート回路)を含むデジタル回路によって提供される。デジタル回路は、プログラム及びデータの少なくとも一方を格納したメモリを備える場合がある。コンピュータは、アナログ回路によって提供される場合がある。コンピュータは、デジタル回路とアナログ回路との組み合わせによって提供される場合がある。
 (ii)ハードウェアプロセッサは、少なくとも1つのメモリに格納されたプログラムを実行する少なくとも1つのプロセッサコアである場合がある。この場合、コンピュータは、少なくとも1つのメモリと、少なくとも1つのプロセッサコアとによって提供される。プロセッサコアは、例えばCPUと称される。メモリは、記憶媒体とも称される。メモリは、プロセッサによって読み取り可能な「プログラム及びデータの少なくとも一方」を非一時的に格納する非遷移的かつ実体的な記憶媒体である。
 (iii)ハードウェアプロセッサは、上記(i)と上記(ii)との組み合わせである場合がある。(i)と(ii)とは、異なるチップの上、又は共通のチップの上に配置される。
 すなわち、飛行制御装置40が提供する手段及び機能の少なくとも一方は、ハードウェアのみ、ソフトウェアのみ、又はそれらの組み合わせにより提供することができる。

Claims (9)

  1.  複数の回転翼(20)と自身の出力に応じて前記回転翼を駆動回転させる駆動装置(50)とを複数ずつ有し、垂直離着陸することが可能な垂直離着陸機(10)、の制御装置(40)であって、
     前記駆動装置に異常が発生した場合に、複数の前記駆動装置のうち異常が発生した前記駆動装置を異常装置(50A)として駆動停止させる異常停止部(S402,S501,S601,S701)と、
     複数の前記駆動装置のうち異常が発生していない前記駆動装置を正常装置(50B1~50B5)として、駆動停止部による前記異常装置の駆動停止に伴う前記垂直離着陸機の姿勢変化を補正するように、少なくとも1つの前記正常装置の出力を増加させる補正増加部(S403,S502,S602,S702)と、
     を備えている垂直離着陸機の制御装置。
  2.  前記補正増加部により出力が増加される前記正常装置には、複数の前記正常装置のうち前記異常装置に最も近い位置にある最近装置(50B1,50B2)が含まれている、請求項1に記載の垂直離着陸機の制御装置。
  3.  前記補正増加部により出力が増加される前記正常装置には、複数の前記正常装置のうち前記垂直離着陸機のヨー軸(AZ)の周方向において前記異常装置の隣にある隣接装置(50B1,50B2)が含まれている、請求項1又は2に記載の垂直離着陸機の制御装置。
  4.  前記異常停止部は、前記垂直離着陸機の飛行フェーズが垂直離陸を行う離陸フェーズである状態で前記駆動装置に異常が発生した場合に、前記異常装置を駆動停止させる、請求項1~3のいずれか1つに記載の垂直離着陸機の制御装置。
  5.  前記離陸フェーズで前記駆動装置に異常が発生した場合、前記異常停止部により前記異常装置が駆動停止され、且つ前記補正増加部により前記正常装置が出力増加された状態で、前記垂直離着陸機の垂直離陸を中止して前記垂直離着陸機を垂直着陸させる異常着陸部(S411,S412)、を備えている請求項4に記載の垂直離着陸機の制御装置。
  6.  前記異常停止部は、前記垂直離着陸機の飛行フェーズが垂直着陸を行う着陸フェーズである状態で前記駆動装置に異常が発生した場合に、前記異常装置を駆動停止させる、請求項1~5のいずれか1つに記載の垂直離着陸機の制御装置。
  7.  前記垂直離着陸機の飛行態様が、速度及び高度で規定される回避態様に該当する場合に、前記垂直離着陸機の速度及び高度の少なくとも一方を変更することで前記飛行態様を前記回避態様から抜け出させる抜け出し実行部(S410,S509,S609,S709)と、
     前記飛行態様が前記回避態様から抜け出した後、前記垂直離着陸機を垂直着陸させる抜け出し着陸部(S411,S510,S610,S710)と、
     を備えている請求項1~6のいずれか1つに記載の垂直離着陸機の制御装置。
  8.  操作部(38)に対して解除操作が行われた場合に、前記異常停止部による前記異常装置の駆動停止と前記補正増加部による前記正常装置の出力増加とのそれぞれを解除する解除部(S413,S512,S612、S712)、を備えている請求項1~7のいずれか1つに記載の垂直離着陸機の制御装置。
  9.  前記駆動装置は、モータを含み、前記モータの駆動により前記回転翼を駆動回転させ、
     前記垂直離着陸機は、前記駆動装置の駆動により飛行する電動航空機である、請求項1~8のいずれか1つに記載の垂直離着陸機の制御装置。
PCT/JP2022/045711 2022-01-17 2022-12-12 垂直離着陸機の制御装置 WO2023136014A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-005243 2022-01-17
JP2022005243A JP2023104324A (ja) 2022-01-17 2022-01-17 垂直離着陸機の制御装置

Publications (1)

Publication Number Publication Date
WO2023136014A1 true WO2023136014A1 (ja) 2023-07-20

Family

ID=87278875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045711 WO2023136014A1 (ja) 2022-01-17 2022-12-12 垂直離着陸機の制御装置

Country Status (2)

Country Link
JP (1) JP2023104324A (ja)
WO (1) WO2023136014A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347698A (ja) * 2001-05-23 2002-12-04 Ishigaki Foods Co Ltd 垂直離着陸航空機
JP2014227155A (ja) * 2013-05-27 2014-12-08 富士重工業株式会社 垂直離着陸飛行体の制御方法
JP2016524567A (ja) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ エフェクタに影響を与える故障を受けるマルチコプタの制御された飛行
JP2017100651A (ja) * 2015-12-04 2017-06-08 株式会社Soken 飛行装置
WO2018110598A1 (ja) * 2016-12-13 2018-06-21 株式会社自律制御システム研究所 無人航空機、無人航空機の制御装置、無人航空機の制御方法、及び無人航空機の障害検出装置
JP2020117223A (ja) 2018-02-28 2020-08-06 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347698A (ja) * 2001-05-23 2002-12-04 Ishigaki Foods Co Ltd 垂直離着陸航空機
JP2014227155A (ja) * 2013-05-27 2014-12-08 富士重工業株式会社 垂直離着陸飛行体の制御方法
JP2016524567A (ja) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ エフェクタに影響を与える故障を受けるマルチコプタの制御された飛行
JP2017100651A (ja) * 2015-12-04 2017-06-08 株式会社Soken 飛行装置
WO2018110598A1 (ja) * 2016-12-13 2018-06-21 株式会社自律制御システム研究所 無人航空機、無人航空機の制御装置、無人航空機の制御方法、及び無人航空機の障害検出装置
JP2020117223A (ja) 2018-02-28 2020-08-06 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム

Also Published As

Publication number Publication date
JP2023104324A (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
CN109606672B (zh) 具有可向下倾转的后旋翼的倾转旋翼式飞行器
US10046853B2 (en) Hybrid gyrodyne aircraft employing a managed autorotation flight control system
WO2016067489A1 (ja) ヘリコプター
EP3623288B1 (en) Vertical take-off and landing (vtol) aircraft with cruise rotor positioning control for minimum drag
AU2023226684A1 (en) Multicopter with angled rotors
US20170305548A1 (en) Helicopter
CN110466752B (zh) 一种倾转旋翼无人机的控制方法及倾转旋翼无人机
US11661180B2 (en) Systems and methods for power distribution in electric aircraft
US11860622B2 (en) Hybrid gyrodyne aircraft
US20190023385A1 (en) Electric motor-driven compound aircraft
CN111051196A (zh) 采用被动机翼倾斜的垂直起降飞行器
JP2023513699A (ja) プッシャープロペラを備えた航空機
WO2021155208A1 (en) Aircraft with tilting fan assemblies
WO2023136014A1 (ja) 垂直離着陸機の制御装置
JP2017190091A (ja) トレイ型マルチコプター
US11634235B1 (en) Electrically powered rotorcraft capable of autorotative landing
US20220315236A1 (en) Aircraft for self-neutralizing flight
WO2023234043A1 (ja) 飛行制御装置、飛行制御プログラム及び飛行制御方法
CN113784891A (zh) 飞行设备
WO2023218909A1 (ja) 電動航空機及び異常検出システム
WO2023079965A1 (ja) 飛行制御装置
EP4345001A1 (en) Aerial vehicle and control method and apparatus therefor, and storage medium
WO2022180968A1 (ja) 航空機
JP2023069461A (ja) 飛行制御装置及び垂直離着陸機の制御装置
JP2023088068A (ja) 回転翼航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920533

Country of ref document: EP

Kind code of ref document: A1