WO2023135911A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2023135911A1
WO2023135911A1 PCT/JP2022/041395 JP2022041395W WO2023135911A1 WO 2023135911 A1 WO2023135911 A1 WO 2023135911A1 JP 2022041395 W JP2022041395 W JP 2022041395W WO 2023135911 A1 WO2023135911 A1 WO 2023135911A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
frequency module
sub
exposed
high frequency
Prior art date
Application number
PCT/JP2022/041395
Other languages
English (en)
French (fr)
Inventor
通春 横山
崇弥 根本
英樹 上田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023135911A1 publication Critical patent/WO2023135911A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof

Definitions

  • the present invention relates to a high frequency module including multiple electronic components.
  • Patent Document 1 A technique of mounting a plurality of integrated circuit devices on an interposer and sealing them with resin is known (Patent Document 1). Along with the need to reduce the size and height of portable mobile communication terminals, it is desired to reduce the size and height of components incorporated in communication terminals.
  • An object of the present invention is to provide a high-frequency module capable of reducing the height and reducing electromagnetic interference.
  • Each of the plurality of submodules includes: a plurality of electronic components each including a plurality of internal terminals; a first support member that covers and supports the plurality of electronic components so as to expose the plurality of internal terminals; moreover, a second support member that covers and supports the plurality of submodules; a plurality of external terminals connected to each of the plurality of internal terminals and exposed from the second support member; At least one sub-module among the plurality of sub-modules is provided with a high-frequency module having a first conductive film provided on at least a partial region of the first support member.
  • the high-frequency module can be mounted on another board via the exposed external terminals. Since no interposer is interposed between the electronic component and another substrate, the height can be reduced.
  • a first conductive film provided in one submodule functions as an electromagnetic shielding film, and electromagnetic interference between submodules is reduced.
  • FIG. 1A is a cross-sectional view of the high-frequency module according to the first embodiment
  • FIG. 1B is a cross-sectional view of the high-frequency module and module substrate shown in FIG. 1A
  • 2A to 2D are cross-sectional views of the sub-module included in the high-frequency module according to the first embodiment during the manufacturing process
  • FIG. 2E is a cross-sectional view of the sub-module
  • 3A, 3B, and 3C are cross-sectional views of the high-frequency module according to the first embodiment at an intermediate stage of manufacture.
  • FIG. 4 is a cross-sectional view of a high frequency module according to a second embodiment.
  • FIG. 5A and 5B are cross-sectional views of high-frequency modules according to a third embodiment and a modification of the third embodiment, respectively.
  • FIG. 6 is a cross-sectional view of a high frequency module according to a fourth embodiment.
  • 7A and 7B are cross-sectional views of a high frequency module according to a modification of the fourth embodiment.
  • FIG. 8 is a sectional view of a high frequency module and a module substrate according to the fifth embodiment.
  • FIG. 9 is a sectional view of a high frequency module and a module substrate according to the sixth embodiment.
  • FIG. 10 is a sectional view of a high frequency module and a module substrate according to a modification of the sixth embodiment.
  • FIG. 11 is a sectional view of a high frequency module and a module substrate according to the seventh embodiment.
  • FIG. 12A is a cross-sectional view of the high frequency module according to the eighth embodiment
  • FIG. 12B is a schematic equivalent circuit diagram of the high frequency module according to the eighth embodiment
  • 13A is a bottom view of a high frequency module according to the ninth embodiment
  • FIG. 13B is a bottom view of a high frequency module according to a modification of the ninth embodiment
  • 14A is a cross-sectional view of a radio frequency module according to a tenth embodiment
  • FIG. 14B is a cross-sectional view of a radio frequency module according to a modification of the tenth embodiment
  • 15A and 15B are sectional views of a high frequency module according to another modification of the tenth embodiment.
  • FIG. 1A is a cross-sectional view of a high frequency module according to the first embodiment.
  • a high-frequency module 50 includes a plurality of sub-modules 20 .
  • Each of the plurality of sub-modules 20 includes a plurality of electronic components 30 and a first support member 22 made of resin that covers and supports the plurality of electronic components 30 .
  • Each of the electronic components 30 has a plurality of internal terminals 31 , and the plurality of internal terminals 31 are exposed on one surface of the submodule 20 .
  • a surface where the plurality of internal terminals 31 are exposed is referred to as a first surface 21A.
  • One surface of the first support member 22 and exposed surfaces of the plurality of first electrodes 31A form a substantially flat first surface 21A.
  • the first support member 22 includes a top surface 21T facing in the opposite direction to the first surface 21A, and a side surface 21S connecting the first surface 21A and the top surface 21T.
  • the electronic components 30 are, for example, individual components such as semiconductor integrated circuits, surface-mounted inductors, and capacitors.
  • Each of the sub-modules 20 has at least one function, for example RF front end, power management.
  • the internal terminal 31 includes, for example, two layers of a first electrode 31A made of Cu and solder 31B.
  • a first electrode 31A is exposed on the first surface 21A of the submodule 20 .
  • the top surface 21T and the side surface 21S of the first support member 22 of at least one submodule 20 are covered with the first conductive film 23 .
  • the first conductive film 23 functions as an electromagnetic shield film.
  • the first conductive film 23 may be a full-surface film (solid film) provided over a specific range, or a patterned film having an electromagnetic shielding function, such as a mesh film or a stripe film.
  • At least one of the plurality of first electrodes 31A exposed on the first surface 21A is exposed on the side surface 21S of the first support member 22 and electrically connected to the first conductive film 23. As shown in FIG.
  • a second support member 40 made of resin contacts at least the first surfaces 21A of the plurality of submodules 20 to support the plurality of submodules 20 .
  • the first surfaces 21A of the plurality of submodules 20 are arranged and supported in the same direction.
  • the high-frequency module 50 has a mounting surface 41A facing in the same direction as the first surfaces 21A of the plurality of sub-modules 20 .
  • the second support member 40 has a top surface 41T facing in a direction opposite to the mounting surface 41A and a side surface 41S connecting the mounting surface 41A and the top surface 41T.
  • the first surface 21A of the first support member 22 and the surface of the first conductive film 23 are in close contact with the second support member 40.
  • the top surface 21T, the side surface 21S, and the first surface 21A of the first support member 22 are in close contact with the second support member 40.
  • a plurality of external terminals 42 are connected to a plurality of internal terminals 31, respectively, and are exposed on the mounting surface 41A.
  • the external terminal 42 includes two layers of a second electrode 42A made of Cu exposed on the mounting surface 41A and a solder 42B connected to the internal terminal 31 .
  • At least one external terminal 42 is connected to the first conductive film 23 via the first electrode 31A.
  • a first wiring 43 is arranged in addition to the second electrode 42A on the mounting surface 41A.
  • the first wiring 43 is connected to one internal terminal 31 of one submodule 20 via solder 42B, and is connected to one internal terminal 31 of another submodule 20 via solder 42B. That is, the first wiring 43 connects one submodule 20 and another submodule 20 .
  • the surface of the plurality of external terminals 42, the surface of the first wiring 43, and the surface of the second support member 40 constitute a substantially flat mounting surface 41A.
  • FIG. 1B is a cross-sectional view of the high frequency module 50 and the module substrate 80 shown in FIG. 1A.
  • a plurality of lands 81 are arranged on the surface of the module substrate 80 .
  • the high frequency module 50 is mounted on the module substrate 80 by connecting the plurality of external terminals 42 of the high frequency module 50 to the plurality of lands 81 via solders 85 .
  • the first conductive film 23 is connected to the ground potential of the module substrate 80 via the first electrodes 31A exposed on the side surface 21S of the submodule 20, the external terminals 42, the solder 85, and the lands 81.
  • FIG. 1B is a cross-sectional view of the high frequency module 50 and the module substrate 80 shown in FIG. 1A.
  • a plurality of lands 81 are arranged on the surface of the module substrate 80 .
  • the high frequency module 50 is mounted on the module substrate 80 by connecting the plurality of external terminals 42 of the high frequency module 50 to the plurality of lands 81 via solders 85
  • FIGS. 2A to 2E are cross-sectional views of the sub-module 20 during the manufacturing process
  • FIG. 2E is a cross-sectional view of the sub-module 20.
  • a plurality of electronic components 30 and temporary substrates 90 are prepared.
  • a printed board can be used as the temporary board 90 .
  • a plurality of first electrodes 31A are arranged on the surface of a temporary substrate 90, and solder S is placed thereon.
  • the submodules 20 are not divided into individual pieces, but FIG. 2A shows only a region corresponding to one submodule 20.
  • An electronic component 30 such as a semiconductor integrated circuit has a plurality of solder balls 31BA for mounting.
  • An electronic component 30 such as a surface-mounted individual component has mounting electrodes 31C.
  • the solder balls 31BA or electrodes 31C of the electronic component 30 are placed on the solder S of the temporary substrate 90 to perform reflow processing. Thereby, the electronic component 30 is fixed to the temporary substrate 90 .
  • the reflow process integrates the solder ball 31BA and the solder S to form the internal terminal 31 composed of the solder 31B and the first electrode 31A.
  • the internal terminals 31 are formed by the solder 31B formed by melting and solidifying the solder S and the first electrodes 31A.
  • the first support member 22 is formed by covering the plurality of electronic components 30 with a sealing resin.
  • a transfer molding method, a compression molding method, or the like can be used to form the first support member 22 .
  • Epoxy resin for example, is used as the first support member 22 .
  • the temporary substrate 90 (FIG. 2C) is ground to expose the plurality of first electrodes 31A.
  • the first support member 22 is exposed in the region where the first electrode 31A is not arranged.
  • the flat first surface 21A including the surface of the first support member 22 and the surfaces of the plurality of first electrodes 31A is exposed.
  • it is divided into individual sub-modules 20 .
  • the submodule 20 (left submodule 20 in FIG. 1A) without the first conductive film 23 is completed.
  • the first conductive film 23 is formed on the top surface 21T and the side surface 21S of the first support member 22.
  • As shown in FIG. Cu Ag, Ni, or the like, for example, is used for the first conductive film 23 .
  • the first conductive film 23 may have a laminated structure of a plurality of metals. Sputtering, for example, can be used to form the first conductive film 23 .
  • FIGS. 3A to 3C are cross-sectional views of the high-frequency module 50 (FIG. 1A) during the manufacturing process.
  • a temporary substrate 91, a submodule 20 provided with the first conductive film 23, and a submodule 20 not provided with the first conductive film 23 are prepared.
  • a plurality of second electrodes 42A and first wirings 43 are arranged on the surface of the temporary substrate 91 .
  • Solder S is placed on the second electrode 42A and part of the first wiring 43 .
  • a printed board can be used as the temporary board 91 .
  • a solder ball 42BA is placed on the exposed surface of the internal terminal 31 of the submodule 20. - ⁇
  • the submodule 20 is fixed to the temporary substrate 91 by placing the submodule 20 on the temporary substrate 91 and performing reflow processing.
  • the external terminal 42 is formed by the solder 42B obtained by integrating the solder ball 42BA and the solder S, and the second electrode 42A.
  • One internal terminal 31 of one sub-module 20 and one internal terminal 31 of another sub-module 20 are connected via solder 42B, first wiring 43, and another solder 42B.
  • the second support member 40 is formed by sealing the plurality of submodules 20 with resin.
  • resin for example, a transfer molding method, a compression molding method, or the like can be used to form the second support member 40 .
  • an epoxy resin is used as the second support member 40 .
  • the temporary substrate 91 is ground to expose the external terminals 42 , the first wirings 43 and the second support member 40 .
  • the surface of the external terminal 42, the surface of the first wiring 43, and the surface of the second support member 40 constitute a substantially flat mounting surface 41A.
  • the high frequency module 50 according to the first embodiment does not include an interposer. That is, since the sub-module 20 included in the high-frequency module 50 according to the first embodiment is directly mounted on the module substrate 80 without interposing an interposer, it is possible to reduce the height.
  • a top surface 21T and a side surface 21S of at least one submodule 20 among the plurality of submodules 20 are covered with a first conductive film 23 .
  • This first conductive film 23 functions as an electromagnetic shield film. Therefore, electromagnetic interference between the submodule 20 provided with the first conductive film 23 and other submodules 20 can be reduced.
  • a plurality of sub-modules 20 in the high-frequency module 50 are connected to each other by first wirings 43 . Therefore, it is not necessary to arrange wiring for interconnecting the plurality of sub-modules 20 in the module substrate 80 . As a result, the thickness of the module substrate 80 can be reduced.
  • one sub-module 20 out of the plurality of sub-modules 20 is provided with the first conductive film 23 , but all the sub-modules 20 may be provided with the first conductive film 23 .
  • the first conductive film 23 covers the entire surface of the top surface 21T and the side surface 21S of the first support member 22. It may cover the area.
  • the first conductive film 23 may be provided only on the side surface 21S of at least one of the mutually facing side surfaces 21S of two submodules 20 adjacent to each other.
  • the first surface 21A, the side surface 21S, and the top surface 21T of the submodule 20 are covered with the second support member 40.
  • the second support member 40 can stably support the submodule 20 only on the first surface 21A and the side surface 21S of the submodule 20, the second support member 40 is necessarily placed on the top surface 21T of the submodule 20.
  • the support member 40 may not be arranged. By adopting this configuration, it is possible to further reduce the height of the high-frequency module 50 .
  • the first conductive film 23 functioning as an electromagnetic shielding film is connected to the ground potential of the module substrate 80 via the first electrode 31A exposed on the side surface 21S of the submodule 20 and the like.
  • the first conductive film 23 may be electrically floating without being connected to the first electrode 31A.
  • the first conductive film 23 can function as an electromagnetic shield film even in an electrically floating state.
  • FIG. 4 is a cross-sectional view of the high frequency module 50 according to the second embodiment.
  • a conductor pattern 44 is further arranged on the mounting surface 41A.
  • Conductive pattern 44 is connected to the ground potential of electronic component 30 via solder 42B and internal terminal 31 .
  • the conductor pattern 44 is arranged in a region other than necessary wiring such as signal wiring, control wiring, and power wiring in plan view, and overlaps with a part of the submodule 20 .
  • the conductor pattern 44 functions as an electromagnetic shield film for the submodule 20 .
  • the first conductive film 23 arranged on the top surface 21T and the side surface 21S of the submodule 20 secures electromagnetic shielding properties in the upward and lateral directions.
  • the conductor pattern 44 can ensure the electromagnetic shielding property even in the downward direction of the submodule 20 .
  • FIG. 5A is a cross-sectional view of the high frequency module 50 according to the third embodiment.
  • a plurality of submodules 20 are supported by a second support member 40.
  • an antenna component 60 is supported by the second support member 40 in addition to the plurality of submodules 20 .
  • the antenna component 60 includes an antenna element 61 and an antenna terminal 62.
  • the antenna element 61 for example, a patch antenna, a dipole antenna, or the like is used.
  • the antenna element 61 is represented by a circuit symbol.
  • the antenna terminal 62 is exposed on the mounting surface 41A of the high frequency module 50 .
  • a plurality of sub-modules 20 includes, as one of the electronic components 30, a high frequency integrated circuit component 30RF (RFIC). Each of the sub-modules 20 down-converts, up-converts, and amplifies high-frequency signals.
  • a second wiring 47 is arranged on the mounting surface 41A of the high-frequency module 50 . The second wiring 47 connects one internal terminal 31 of one submodule 20 and the antenna terminal 62 .
  • a submodule 20 connected to an antenna component 60 is provided with a first conductive film 23 functioning as an electromagnetic shield film.
  • a sub-module 20 that is not connected to the antenna component 60 is connected to an antenna provided outside the high-frequency module 50 .
  • one high-frequency module 50 is equipped with an antenna component 60 and a plurality of sub-modules 20 having RF front-end functions. Since one sub-module 20 and the antenna component 60 are connected by the second wiring 47 in the high-frequency module 50, there is no need to arrange an external feeder line. Therefore, the loss of the high frequency signal supplied to the antenna component 60 can be reduced.
  • the sub-module 20 connected to the antenna component 60 is provided with the first conductive film 23 functioning as an electromagnetic shielding film, electromagnetic interference between the antenna component 60 and the sub-module 20 and multiple sub-modules 20 can be reduced.
  • FIG. 5B is a cross-sectional view of a high frequency module 50 according to a modification of the third embodiment.
  • the radio frequency module 50 includes multiple antenna components 60.
  • the multiple antenna components 60 are connected to one of the multiple sub-modules 20 in the high-frequency module 50 via the second wiring 47 .
  • An antenna component 60 connected to each of the plurality of sub-modules 20 may be arranged in the high-frequency module 50 as in this modification.
  • FIG. 6 is a cross-sectional view of a high frequency module 50 according to the fourth embodiment.
  • the second conductive film 45 is arranged over substantially the entire top surface 41T of the second support member 40.
  • the antenna component 60 is included in the second conductive film 45 in plan view.
  • no conductive film is arranged on the side surface 41S of the second support member 40 .
  • the second conductive film 45 can be formed on the top surface 41T of the second support member 40 by sputtering or the like before the high-frequency module 50 is divided into individual pieces.
  • the second conductive film 45 arranged on the top surface 41T of the second support member 40 functions as an electromagnetic shield film.
  • the second conductive film 45 shields radio waves propagating upward from the antenna component 60 (the direction in which the top surface 41T of the second support member 40 faces). Radio waves propagating laterally from the antenna component 60 (in the direction in which the side surface 41S of the second support member 40 faces) are radiated to the outside without being shielded.
  • the high-frequency module 50 according to the fourth embodiment can control the directivity of radio waves.
  • the configuration of the fourth embodiment is effective when the main beam of the antenna component 60 is directed laterally.
  • FIG. 7A is a cross-sectional view of a high frequency module 50 according to a modification of the fourth embodiment.
  • the second conductive film 45 is electrically floating.
  • the second conductive film 45 is connected to the second electrode 42A on the mounting surface 41A by means of conductor columns 49 that pass through the second support member 40 in the height direction.
  • a second electrode 42A connected to the conductor column 49 is connected to the ground potential inside the high frequency module 50 . Thereby, the potential of the second conductive film 45 can be fixed to the ground.
  • FIG. 7B is a cross-sectional view of a high frequency module 50 according to another modification of the fourth embodiment.
  • the second conductive film 45 is arranged over the entire top surface 41T of the second support member 40.
  • the second conductive film 45 is formed in a part of the top surface 41T of the second support member 40 (hereinafter referred to as the opening 46 of the second conductive film 45). Not placed. That is, the opening 46 is provided in the second conductive film 45, and a part of the top surface 41T of the second supporting member 40 is exposed.
  • At least one of the antenna components 60 is arranged at a position overlapping the opening 46 when the top surface 41T of the second support member 40 is viewed from above.
  • a second conductive film 45 is arranged on the side surface 41S of the second support member 40 near the antenna component 60 .
  • Radio waves radiated upward from the antenna component 60 arranged in a region overlapping the opening 46 of the second conductive film 45 in plan view are radiated to the outside through the opening 46 .
  • the configuration of the modified example shown in FIG. 7B is effective when it is desired to direct the main beam of the antenna component 60 arranged in the region overlapping the aperture 46 upward.
  • FIG. 8 is a cross-sectional view of the high frequency module 50 and the module substrate 80 according to the fifth embodiment.
  • a high-frequency module 50 according to the eighth embodiment includes a plurality of antenna components 60, similarly to the high-frequency module 50 according to the modification of the fourth embodiment shown in FIG.
  • a second conductive film 45 is arranged in a part of the region of .
  • a high frequency connector 83 is mounted on the module substrate 80 .
  • the second conductive film 45 is arranged in a region of the side surface 41S of the second support member 40 facing the connector 83 .
  • the connector 83 is connected to a baseband integrated circuit component 96 (BBIC) via a coaxial cable 95, for example. Further, the connector 83 is connected to the external terminals 42 of the submodule 20 via wiring (not shown) inside the module substrate 80 , lands 81 and solder 85 .
  • This sub-module 20 includes a high frequency integrated circuit component 30RF as an electronic component 30. FIG. Intermediate frequency signals, various control signals, etc. are transmitted between the submodule 20 and the baseband integrated circuit component 96 via the connector 83 and the coaxial cable 95 .
  • the second conductive film 45 arranged on the side surface 41S of the second support member 40 facing the connector 83 functions as an electromagnetic shield film. Thereby, the isolation between the high-frequency circuit in the high-frequency module 50 and the connector 83 can be enhanced.
  • FIG. 9 is a cross-sectional view of the high frequency module 50 and the module substrate 80 according to the sixth embodiment.
  • a plurality of submodules 20 are supported by a second support member 40.
  • a surface-mounted chip component 70 is supported by the second support member 40.
  • External terminals 71 of chip component 70 are exposed on mounting surface 41A of high-frequency module 50 .
  • Examples of the chip component 70 include surface-mounted ferrite beads, surface-mounted inductors, and surface-mounted bypass capacitors.
  • FIG. 9 shows a ferrite bead as an example of the chip component 70, but the chip component 70 is not limited to ferrite beads.
  • a connector 83 is mounted on the module substrate 80 as in the fifth embodiment (FIG. 8).
  • the connector 83 is connected to the external terminals 71 of the chip component 70 via wiring (not shown) in the module substrate 80 , lands 81 and solder 85 .
  • Another external terminal 71 of the chip component 70 is connected to one internal terminal 31 of one submodule 20 via wiring 72 arranged on the mounting surface 41A and solder 42B.
  • a high frequency signal is transmitted through the chip component 70 between the submodule 20 and the connector 83 .
  • the chip component 70 is arranged between the submodule 20 to which the chip component 70 is connected and the connector 83 in plan view.
  • chip component 70 is a ferrite bead
  • chip component 70 is placed near connector 83 .
  • “arranged in the vicinity” means that no other component is arranged between the chip component 70 and the connector 83 in a plan view, and the chip component 70 and the connector 83 are adjacent to each other. .
  • chip components are mounted on the module substrate 80 instead of the chip components 70 built into the high frequency module 50, mounting is performed both between the connector 83 and the chip components and between the chip components and the high frequency module 50. A certain distance must be ensured so as to satisfy the minimum part-to-part distance requirement imposed in the process.
  • the chip component 70 is built in the high frequency module 50 as in the sixth embodiment, only the distance between the high frequency module 50 and the connector 83 is required to satisfy the minimum distance between components in the mounting process. should be considered. Therefore, space can be saved.
  • FIG. 10 is a sectional view of a high frequency module 50 and a module substrate 80 according to a modification of the sixth embodiment.
  • no conductive film is arranged on the top surface 41T and the side surface 41S of the second support member 40.
  • the third conductive film 51 is arranged on the top surface 41T and the side surface 41S of the second support member 40. As shown in FIG. The third conductive film 51 is connected to the ground potential of the module substrate 80 via the second electrode 42A exposed on the side surface 41S of the second support member 40, the solder 85, and the land 81.
  • the third conductive film 51 functions as an electromagnetic shielding film, and the isolation between the connector 83 and the high frequency circuit inside the high frequency module 50 can be enhanced. This makes the high frequency circuit in the high frequency module 50 less susceptible to noise generated from the connector 83 . Furthermore, noise generated in the high-frequency module 50 is less likely to leak to the outside.
  • FIG. 11 is a cross-sectional view of the high frequency module 50 and the module substrate 80 according to the seventh embodiment.
  • a plurality of antenna components 60 connected to two sub-modules 20 containing high frequency integrated circuit components 30RF are supported by the second support member 40.
  • a radiation element 65 is arranged on the module substrate 80 in addition to the antenna component 60 supported by the second support member 40 .
  • a plurality of radiating elements 65 are arranged on the surface of the module substrate 80 opposite to the surface on which the high-frequency module 50 is mounted. Radiating element 65 forms a patch antenna with ground plane 66 located within module substrate 80 . A plurality of radiating elements 65 are connected to a plurality of external terminals 42 of one sub-module 20 via wires 67 and vias 68 in the module substrate 80, respectively.
  • the high-frequency integrated circuit component 30RF included in the sub-module 20 connected to the antenna component 60 performs signal processing conforming to WiGig
  • the high-frequency integrated circuit component 30RF included in the sub-module 20 connected to the radiating element 65 performs signal processing conforming to the communication standards of the fifth generation mobile communication system (5G).
  • a first conductive film 23 is provided in the submodule 20 that performs signal processing conforming to WiGig.
  • the high frequency module 50 according to the seventh embodiment is capable of performing communication conforming to a plurality of different communication standards such as WiGig and 5G. At least one of the two submodules 20 has the first conductive film 23 functioning as an electromagnetic shielding film, thereby ensuring isolation between the two submodules 20 conforming to different communication standards.
  • one of the two communication standard antennas is composed of the antenna component 60 built in the high frequency module 50 and the other is composed of the radiation element 65 arranged on the module substrate 80 . In this way, an antenna with an optimum configuration can be used according to each frequency band of a plurality of different communication standards.
  • FIGS. 12A and 12B a high frequency module according to an eighth embodiment will be described with reference to FIGS. 12A and 12B.
  • the description of the configuration common to the high-frequency module 50 according to the first embodiment described with reference to FIGS. 1A to 3C will be omitted.
  • FIG. 12A is a cross-sectional view of the high frequency module 50 according to the eighth embodiment
  • FIG. 12B is a schematic equivalent circuit diagram of the high frequency module 50 according to the eighth embodiment.
  • a high frequency module 50 includes two submodules 20 .
  • One sub-module 20 includes, as electronic components 30, a DCDC converter 30DC and an output inductor 30L.
  • the output inductor 30L is connected to the DCDC converter 30DC through a wiring 32 inside the submodule 20.
  • a sub-module 20 including a DCDC converter 30DC is provided with a first conductive film 23 functioning as an electromagnetic shield film.
  • the other sub-module 20 includes a high-frequency integrated circuit component 30RF as the electronic component 30.
  • the output inductor 30L is connected to the internal terminal 31 of the high frequency integrated circuit component 30RF via the third wiring 48 arranged on the mounting surface 41A of the high frequency module 50.
  • the output inductor 30L and the capacitor C constitute a low-pass filter.
  • Capacitor C is incorporated in sub-module 20 including output inductor 30L, for example. Power is supplied from the DCDC converter 30DC to the high frequency integrated circuit component 30RF through a low-pass filter.
  • the output inductor 30L is arranged at a position closer to the submodule 20 connected via the third wiring 48 than any other electronic component of the submodule 20 including the output inductor 30L.
  • the eighth embodiment Since the sub-module 20 including the DCDC converter 30DC is provided with the first conductive film 23, the high frequency integrated circuit component 30RF is less susceptible to switching noise generated from the DCDC converter 30DC. Furthermore, since the output inductor 30L is arranged near the sub-module 20 including the high frequency integrated circuit component 30RF, it is possible to improve the quality of the power supplied to the high frequency integrated circuit component 30RF and reduce the voltage drop.
  • the low-pass filter is composed of the output inductor 30L and the capacitor C, but other elements or circuit configurations capable of reducing noise may be used.
  • a capacitor or ferrite beads may be used instead of the output inductor 30L.
  • an inductor is connected between the wiring connecting the high frequency integrated circuit component 30RF and the DCDC converter 30DC and the ground.
  • FIG. 13A is a bottom view of the high frequency module 50 according to the ninth embodiment.
  • a plurality of external terminals 42 are exposed on the mounting surface 41A of the second support member 40 .
  • One external terminal 42 connected to the electronic component 30 of one submodule 20 is connected to the external terminal 42 connected to the electronic component 30 of another submodule 20 by a first wiring 43 .
  • a stub 43S branches off from the first wiring 43 .
  • the stub 43S is arranged on the mounting surface 41A of the second support member 40 .
  • the stub 43S is an open stub.
  • FIG. 13B is a bottom view of the high frequency module 50 according to the modification of the ninth embodiment.
  • the stub 43S branched from the first wiring 43 is an open stub, but in the modification of the ninth embodiment shown in FIG. 13B, the stub 43S is a short stub.
  • a ground plane 43G is formed on the mounting surface 41A of the second support member 40, and the tip of the stub 43S is connected to the ground plane 43G.
  • Ground plane 43G is connected to external terminal 42G which is connected to the ground terminal of at least one electronic component 30 .
  • the ninth embodiment as in the first embodiment, it is possible to reduce the height of the high-frequency module and reduce the electromagnetic interference between the sub-modules 20 .
  • the impedance can be matched between the two sub-modules 20 by the stub 43S.
  • the stub 43S can be formed on the mounting surface 41A of the second support member 40 at the same time as the first wiring 43 is formed. Therefore, an impedance matching circuit can be configured without mounting a circuit component for impedance matching.
  • FIG. 14A is a cross-sectional view of the high frequency module 50 according to the tenth embodiment.
  • a radio frequency module 50 according to the tenth embodiment includes a plurality of second sub-modules 120 in addition to the plurality of sub-modules 20 .
  • the sub-module 20 will be referred to as the first sub-module 20 in order to distinguish it from the second sub-module 120 .
  • Each of the second sub-modules 120 includes a plurality of second electronic components 130 and a third support member 122 that covers and supports the plurality of second electronic components 130 .
  • a plurality of second internal terminals 131 connected to the second electronic component 130 are exposed on one surface of the third support member 122 .
  • the surface of the third support member 122 where the second internal terminals 131 are exposed faces the opposite direction to the surface of the first support member 22 where the internal terminals 31 are exposed.
  • the plurality of first sub-modules 20 are covered and supported by the first portion 40A of the second support member 40, and the plurality of second sub-modules 120 are covered and supported by the second portion 40B of the second support member 40. supported by A plurality of second external terminals 142 are exposed on a surface 41B of the second support member 40 opposite to the mounting surface 41A where the plurality of external terminals 42 are exposed. The plurality of second external terminals 142 are connected to the plurality of second internal terminals 131 respectively.
  • the structure consisting of the first portion 40A of the second support member 40, the plurality of first sub-modules 20, and the plurality of external terminals 42 is the same as the structure of the high frequency module 50 (FIG. 1A) according to the first embodiment.
  • the structure of the second portion 40B of the second support member 40, the plurality of second sub-modules 120, and the plurality of second external terminals 142 is also the same as the structure of the high-frequency module 50 (FIG. 1A) according to the first embodiment. is.
  • the first portion 40A of the second support member 40, the plurality of first sub-modules 20 supported by the first portion 40A, and the plurality of external terminals 42 are manufactured by the same method as the manufacturing method of the high-frequency module 50 according to the first embodiment.
  • Create a structure containing A structure including the second portion 40B of the second support member 40, the plurality of second sub-modules 120 supported by the second portion 40B, and the plurality of second external terminals 142 is fabricated in a similar manner.
  • the excellent effects of the tenth embodiment will be described.
  • the tenth embodiment as in the first embodiment, it is possible to reduce the height of the high-frequency module and reduce the electromagnetic interference between the first sub-module 20 and the second sub-module 120. be able to. Furthermore, in the tenth embodiment, since the first sub-module 20 and the second sub-module 120 are stacked in the direction perpendicular to the mounting surface 41A, the mounting density of the electronic components 30 and the second electronic components 130 is reduced. can be enhanced.
  • a plurality of second sub-modules 120 are supported by the second portion 40B of the second support member 40, but one second sub-module 120 is supported by the second portion 40B of the second support member 40. may be supported.
  • At least one of the plurality of first sub-modules 20 includes a first conductive film 23 (FIG. 1A) that functions as a shield film, but any of the plurality of second sub-modules 120 functions as a shield film.
  • a configuration that does not include a conductive film may be employed.
  • FIG. 14B is a cross-sectional view of a high frequency module according to a modification of the tenth embodiment.
  • a second support member 40 is interposed between the first submodule 20 and the second submodule 120. As shown in FIG. 14A, a second support member 40 is interposed between the first submodule 20 and the second submodule 120. As shown in FIG. 14A, a second support member 40 is interposed between the first submodule 20 and the second submodule 120.
  • the surface of the first submodule 20 opposite to the surface on which the plurality of internal terminals 31 are arranged (hereinafter referred to as the top surface) and the second submodule
  • the surface of 120 opposite to the surface on which the plurality of second internal terminals 131 are arranged (hereinafter referred to as the top surface) faces each other without the second support member 40 interposed therebetween.
  • a layer of adhesive is arranged between the two.
  • Transfer molding should be performed so that the top surface is exposed.
  • the second supporting member 40 may be ground or polished until the top surface of the first sub-module 20 is exposed. good.
  • a structure covered by the second portion 40B of the second support member 40 can also be fabricated in a similar manner.
  • the height of the high-frequency module can be further reduced compared to the tenth embodiment.
  • FIGS. 15A and 15B are cross-sectional views of a high frequency module 50 according to another modification of the tenth embodiment.
  • the second support member 40 is a boundary between a first portion 40A supporting the plurality of first sub-modules 20 and a second portion 40B supporting the plurality of second sub-modules 120. is clearly visible.
  • the second support member 40 is made of a single resin member.
  • 3B of the high-frequency module 50 according to the first embodiment a temporary substrate 91 on which a plurality of first sub-modules 20 are mounted and another temporary substrate on which a plurality of second sub-modules 120 are mounted.
  • the second support member 40 is filled between the two temporary substrates 91 by using the transfer molding method with the mounting surfaces of the substrates 91 facing each other. After that, the two temporary substrates 91 are ground and removed to complete the high-frequency module according to the modification shown in FIG. 15A.
  • a second support member is provided between the top surface of the first sub-module 20 and the top surface of the second sub-module 120, similarly to the modification shown in FIG. 14B. 40 is not intervening.
  • the top surface of the first submodule 20 is in contact with the top surface of the second submodule 120 .
  • the second support member 40 is filled between the two temporary substrates 91 using the transfer molding method, the top surface of the first sub-module 20 and the first sub-module 20 are formed. The top surfaces of the two submodules 120 may be brought into contact with each other.

Abstract

複数のサブモジュールの各々に含まれる複数の電子部品の各々が複数の内部端子を含む。第1支持部材が、複数の内部端子を露出させるように複数の電子部品を覆い、支持する。第2支持部材が、複数のサブモジュールを支持する。複数のサブモジュールの複数の外部端子が、複数の内部端子のそれぞれに接続され、第2支持部材から露出する。複数のサブモジュールのうち少なくとも一つのサブモジュールは、第1支持部材の少なくとも一部の領域に設けられた第1導電膜を有している。

Description

高周波モジュール
 本発明は、複数の電子部品を含む高周波モジュールに関する。
 インターポーザに複数の集積回路デバイスを実装して樹脂で封止する技術が公知である(特許文献1)。携帯型移動通信端末の小型低背化のニーズに伴い、通信端末に内蔵される部品の小型低背化が望まれている。 
特開2021-48386号公報
 インターポーザに複数のデバイスを実装し、樹脂で封止して得られる高周波モジュールにおいては、インターポーザの厚さがボトルネックとなり、低背化を進めることが困難である。また、共通のインターポーザに複数の高周波デバイスやスイッチングノイズを発生するデバイスを実装すると、デバイス間で電磁気的な干渉が生じやすくなる。本発明の目的は、低背化を図り、かつ電磁気的な干渉を低減させることが可能な高周波モジュールを提供することである。
 本発明の一観点によると、
 複数のサブモジュールを備え、
 前記複数のサブモジュールの各々は、
 各々が複数の内部端子を含む複数の電子部品と、
 前記複数の内部端子を露出させるように前記複数の電子部品を覆い、支持する第1支持部材と
を含み、
 さらに、
 前記複数のサブモジュールを覆い、支持する第2支持部材と、
 前記複数の内部端子のそれぞれに接続され、前記第2支持部材から露出する複数の外部端子と
を備え、
 前記複数のサブモジュールのうち少なくとも一つのサブモジュールは、前記第1支持部材の少なくとも一部の領域に設けられた第1導電膜を有している高周波モジュールが提供される。
 電子部品の内部端子が外部端子に接続され、外部端子が第2支持部材から露出しているため、高周波モジュールを、露出した外部端子を介して他の基板に実装することができる。電子部品と他の基板との間にインターポーザが介在しないため、低背化を図ることができる。一つのサブモジュールに設けられた第1導電膜が電磁シールド膜として機能し、サブモジュール間の電磁気的な干渉が低減される。
図1Aは、第1実施例による高周波モジュールの断面図であり、図1Bは、図1Aに示した高周波モジュール及びモジュール基板の断面図である。 図2Aから図2Dまでの図面は、第1実施例による高周波モジュールに含まれるサブモジュールの製造途中段階における断面図であり、図2Eは、サブモジュールの断面図である。 図3A、図3B、及び図3Cは第1実施例による高周波モジュールの製造途中段階における断面図である。 図4は、第2実施例による高周波モジュールの断面図である。 図5A及び図5Bは、それぞれ第3実施例及び第3実施例の変形例による高周波モジュールの断面図である。 図6は、第4実施例による高周波モジュールの断面図である。 図7A及び図7Bは、第4実施例の変形例による高周波モジュールの断面図である。 図8は、第5実施例による高周波モジュール及びモジュール基板の断面図である。 図9は、第6実施例による高周波モジュール及びモジュール基板の断面図である。 図10は、第6実施例の変形例による高周波モジュール及びモジュール基板の断面図である。 図11は、第7実施例による高周波モジュール及びモジュール基板の断面図である。 図12Aは、第8実施例による高周波モジュールの断面図であり、図12Bは、第8実施例による高周波モジュールの概略等価回路図である。 図13Aは、第9実施例による高周波モジュールの底面図であり、図13Bは、第9実施例の変形例による高周波モジュールの底面図である。 図14Aは、第10実施例による高周波モジュールの断面図であり、図14Bは、第10実施例の変形例による高周波モジュールの断面図である。 図15A及び図15Bは、第10実施例の他の変形例による高周波モジュールの断面図である。
 [第1実施例]
 図1Aから図3Cまでの図面を参照して、第1実施例による高周波モジュールについて説明する。図1Aは、第1実施例による高周波モジュールの断面図である。
 第1実施例による高周波モジュール50は、複数のサブモジュール20を備えている。複数のサブモジュール20の各々は、複数の電子部品30と、複数の電子部品30を覆って支持する樹脂からなる第1支持部材22とを含む。
 電子部品30の各々は、複数の内部端子31を有しており、複数の内部端子31は、サブモジュール20の一つの面に露出している。複数の内部端子31が露出した面を第1面21Aということとする。第1支持部材22の一つの面と、複数の第1電極31Aの露出した面とで、ほぼ平坦な第1面21Aが構成される。第1支持部材22は、第1面21Aとは反対方向を向く天面21T、及び第1面21Aと天面21Tとを接続する側面21Sを含む。
 電子部品30は、例えば、半導体集積回路、表面実装型のインダクタ、キャパシタ等の個別部品である。サブモジュール20の各々は、例えば、RFフロントエンド、パワーマネジメント等の少なくとも一つの機能を有する。
 内部端子31は、例えばCuからなる第1電極31Aとハンダ31Bとの2層を含む。第1電極31Aがサブモジュール20の第1面21Aに露出している。少なくとも一つのサブモジュール20(例えば図1Aにおいて右側のサブモジュール20)の第1支持部材22の天面21T及び側面21Sが第1導電膜23で覆われている。第1導電膜23は、電磁シールド膜として機能する。第1導電膜23は、特定の範囲の全域に設けられた全面膜(ベタ膜)でもよいし、電磁シールド機能を有するパターン化された膜、例えば網目状の膜、ストライプ状の膜でもよい。第1面21Aに露出している複数の第1電極31Aの少なくとも一つは、第1支持部材22の側面21Sに露出しており、第1導電膜23に電気的に接続されている。
 樹脂からなる第2支持部材40が、複数のサブモジュール20の少なくとも第1面21Aに接触して複数のサブモジュール20を支持している。複数のサブモジュール20の第1面21Aは、同一方向を向く配置、位置で支持されている。高周波モジュール50は、複数のサブモジュール20の第1面21Aと同じ方向を向く実装面41Aを有する。第2支持部材40は、実装面41Aとは反対方向を向く天面41T、及び実装面41Aと天面41Tとを接続する側面41Sを有する。
 第1導電膜23が設けられたサブモジュール20においては、第1支持部材22の第1面21A及び第1導電膜23の表面が、第2支持部材40に密着する。第1導電膜23が設けられていないサブモジュール20においては、第1支持部材22の天面21T、側面21S、及び第1面21Aが、第2支持部材40に密着する。
 複数の外部端子42が、それぞれ複数の内部端子31に接続されており、実装面41Aに露出している。外部端子42は、実装面41Aに露出したCuからなる第2電極42Aと内部端子31に接続されたハンダ42Bとの2層を含む。少なくとも一つの外部端子42は、第1電極31Aを介して第1導電膜23に接続されている。
 実装面41Aに、第2電極42Aの他に第1配線43が配置されている。第1配線43は、ハンダ42Bを介して一つのサブモジュール20の一つの内部端子31に接続されるとともに、ハンダ42Bを介して他のサブモジュール20の一つの内部端子31に接続されている。すなわち、第1配線43は、一つのサブモジュール20と他のサブモジュール20とを接続する。複数の外部端子42の表面、第1配線43の表面、及び第2支持部材40の表面によって、ほぼ平坦な実装面41Aが構成される。
 図1Bは、図1Aに示した高周波モジュール50、及びモジュール基板80の断面図である。モジュール基板80の表面に複数のランド81が配置されている。高周波モジュール50の複数の外部端子42が、それぞれハンダ85を介して複数のランド81に接続されることにより、高周波モジュール50がモジュール基板80に実装されている。第1導電膜23は、サブモジュール20の側面21Sに露出している第1電極31A、外部端子42、ハンダ85、ランド81を介してモジュール基板80のグランド電位に接続される。
 次に、図2Aから図2Eまでの図面を参照して、サブモジュール20の製造方法について説明する。図2Aから図2Dまでの図面は、サブモジュール20の製造途中段階における断面図であり、図2Eは、サブモジュール20の断面図である。
 図2Aに示すように、複数の電子部品30及び仮の基板90を準備する。仮の基板90として、プリント基板を用いることができる。仮の基板90の表面に複数の第1電極31Aが配置されており、その上にハンダSが載せられている。図2Aに示した段階では、サブモジュール20は個片に分割されていないが、図2Aでは、1つのサブモジュール20に対応する領域のみを示している。半導体集積回路等の電子部品30は、実装用の複数のハンダボール31BAを有している。表面実装型の個別部品等の電子部品30は、実装用の電極31Cを有している。
 図2Bに示すように、電子部品30のハンダボール31BAまたは電極31Cを仮の基板90のハンダSの上に載せてリフロー処理を行う。これにより、電子部品30が仮の基板90に固着される。リフロー処理により、ハンダボール31BAとハンダSとが一体化し、ハンダ31B及び第1電極31Aからなる内部端子31が形成される。電極31Cが設けられている電子部品30においては、ハンダSが溶融し、固化することにより形成されたハンダ31Bと第1電極31Aとにより、内部端子31が形成される。
 図2Cに示すように、複数の電子部品30を封止樹脂で覆うことにより、第1支持部材22を形成する。第1支持部材22の形成には、例えばトランスファーモールド法、コンプレッションモールド法等を用いることができる。第1支持部材22として、例えばエポキシ樹脂が用いられる。
 図2Dに示すように、仮の基板90(図2C)を研削し、複数の第1電極31Aを露出させる。第1電極31Aが配置されていない領域には、第1支持部材22が露出する。これにより、第1支持部材22の表面及び複数の第1電極31Aの表面を含む平坦な第1面21Aが露出する。研削後、個々のサブモジュール20に分割する。ここまでの工程で、第1導電膜23が設けられていないサブモジュール20(図1Aの左側のサブモジュール20)が完成する。
 図2Eに示すように、第1支持部材22の天面21T及び側面21Sに第1導電膜23を形成する。第1導電膜23には、例えばCu、Ag、Ni等が用いられる。第1導電膜23を、複数の金属の積層構造としてもよい。第1導電膜23の形成には、例えばスパッタリングを用いることができる。ここまでの工程で、第1導電膜23を有するサブモジュール20(図1Aの右側のサブモジュール20)が完成する。
 次に、図3Aから図3Cまでの図面を参照して、高周波モジュール50の製造方法について説明する。図3A、図3B、及び図3Cは、高周波モジュール50(図1A)の製造途中段階における断面図である。
 図3Aに示すように、仮の基板91、第1導電膜23が設けられたサブモジュール20、及び第1導電膜23が設けられていないサブモジュール20を準備する。仮の基板91の表面に、複数の第2電極42A及び第1配線43が配置されている。第2電極42A、及び第1配線43の一部にハンダSを載せる。仮の基板91として、プリント基板を用いることができる。サブモジュール20の内部端子31の露出した表面にハンダボール42BAを載せる。
 図3Bに示すように、サブモジュール20を仮の基板91の上に載せてリフロー処理を行うことにより、サブモジュール20を仮の基板91に固着させる。ハンダボール42BAとハンダSとが一体化したハンダ42B、及び第2電極42Aにより、外部端子42が形成される。一つのサブモジュール20の一つの内部端子31と他の一つのサブモジュール20の一つの内部端子31とが、ハンダ42B、第1配線43、及び他のハンダ42Bを介して接続される。
 図3Cに示すように、複数のサブモジュール20を樹脂で封止することにより、第2支持部材40を形成する。第2支持部材40の形成には、例えばトランスファーモールド法、コンプレッションモールド法等を用いることができる。第2支持部材40として、例えばエポキシ樹脂が用いられる。
 第2支持部材40を形成した後、仮の基板91を研削して外部端子42、第1配線43、及び第2支持部材40を露出させる。外部端子42の表面、第1配線43の表面、及び第2支持部材40の表面によって、ほぼ平坦な実装面41Aが構成される。最後に高周波モジュール50ごとに分割することにより、図1Aに示した高周波モジュール50が完成する。
 次に、第1実施例の優れた効果について説明する。
 第1実施例による高周波モジュール50は、インターポーザを含まない。つまり、第1実施例による高周波モジュール50に含まれるサブモジュール20は、インターポーザを介することなくモジュール基板80に直接搭載されるため、低背化を図ることが可能である。複数のサブモジュール20のうち少なくとも一つのサブモジュール20の天面21T及び側面21Sが第1導電膜23で覆われている。この第1導電膜23は、電磁シールド膜として機能する。このため、第1導電膜23が設けられているサブモジュール20と、他のサブモジュール20との間の電磁気的な干渉を低減させることができる。特に、動作周波数が低く、出力が大きいサブモジュール20に、優先して電磁シールド膜として機能する第1導電膜23を設けることが好ましい。
 高周波モジュール50内の複数のサブモジュール20が、第1配線43によって相互に接続される。このため、モジュール基板80内に、複数のサブモジュール20を相互に接続するための配線を配置する必要がない。これにより、モジュール基板80の薄型化が可能なる。
 次に、第1実施例の種々の変形例による高周波モジュールについて説明する。
 第1実施例では、複数のサブモジュール20のうち一つのサブモジュール20に第1導電膜23を設けているが、すべてのサブモジュール20に第1導電膜23を設けてもよい。また、第1実施例では、第1導電膜23が第1支持部材22の天面21T及び側面21Sの全面を覆っているが、第1支持部材22の天面21T及び側面21Sの一部の領域を覆うようにしてもよい。例えば、相互に隣り合う2つのサブモジュール20の相互に対向する側面21Sのうち、少なくとも一方のサブモジュール20の側面21Sにのみ第1導電膜23を設けてもよい。
 第1実施例では、サブモジュール20の第1面21A、側面21S、及び天面21Tが、第2支持部材40で覆われている。第2支持部材40が、サブモジュール20の第1面21A及び側面21Sのみでサブモジュール20を安定して支持することができる場合には、必ずしも、サブモジュール20の天面21Tの上に第2支持部材40を配置しなくてもよい。この構成を採用すると、さらに高周波モジュール50の低背化を図ることが可能である。
 第1実施例では、電磁シールド膜として機能する第1導電膜23が、サブモジュール20の側面21Sに露出した第1電極31A等を介してモジュール基板80のグランド電位に接続されている。その他の構成として、第1導電膜23を第1電極31Aに接続せず、電気的にフローティング状態にしてもよい。第1導電膜23は、電気的にフローティング状態であっても電磁シールド膜として機能し得る。
 [第2実施例]
 次に、図4を参照して第2実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図4は、第2実施例による高周波モジュール50の断面図である。第1実施例(図1)では、高周波モジュール50の実装面41Aに複数の第2電極42A及び第1配線43が配置されている。これに対して第2実施例では、実装面41Aにさらに導体パターン44が配置されている。導体パターン44は、ハンダ42B及び内部端子31を介して電子部品30のグランド電位に接続されている。導体パターン44は、平面視において信号配線、制御配線、電源配線等の必要な配線以外の領域に配置されており、サブモジュール20一部と重なっている。導体パターン44は、サブモジュール20に対して電磁シールド膜として機能する。
 次に、第2実施例の優れた効果について説明する。第1実施例では、サブモジュール20の天面21T及び側面21Sに配置された第1導電膜23によって、上方向及び横方向について電磁シールド性を確保している。第2実施例では、導体パターン44によって、サブモジュール20の下方向についても電磁シールド性を確保することができる。
 [第3実施例]
 次に、図5Aを参照して第3実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図5Aは、第3実施例による高周波モジュール50の断面図である。第1実施例(図1A)では、第2支持部材40によって複数のサブモジュール20が支持されている。第3実施例では、複数のサブモジュール20の他に、アンテナ部品60が第2支持部材40によって支持されている。
 アンテナ部品60は、アンテナ素子61及びアンテナ端子62を含む。アンテナ素子61として、例えばパッチアンテナ、ダイポールアンテナ等が用いられる。図5Aにおいて、アンテナ素子61を回路記号で表している。アンテナ端子62は、高周波モジュール50の実装面41Aに露出している。
 複数のサブモジュール20は、電子部品30の一つとして、高周波集積回路部品30RF(RFIC)を含む。サブモジュール20の各々は、高周波信号のダウンコンバート、アップコンバート、増幅等を行う。高周波モジュール50の実装面41Aに第2配線47が配置されている。第2配線47は、一つのサブモジュール20の一つの内部端子31とアンテナ端子62とを接続する。アンテナ部品60に接続されたサブモジュール20に、電磁シールド膜として機能する第1導電膜23が設けられている。
 アンテナ部品60に接続されていないサブモジュール20は、高周波モジュール50の外部に設けられたアンテナに接続される。
 次に、第3実施例の優れた効果について説明する。
 第3実施例では、一つの高周波モジュール50に、アンテナ部品60と、RFフロントエンドの機能を持つ複数のサブモジュール20が搭載される。一つのサブモジュール20とアンテナ部品60とが、高周波モジュール50内の第2配線47によって接続されるため、外部に給電線路を配置する必要がない。このため、アンテナ部品60に供給する高周波信号の損失を低減させることができる。
 アンテナ部品60に接続されたサブモジュール20に電磁シールド膜として機能する第1導電膜23が設けられているため、アンテナ部品60とサブモジュール20との間の電磁的な干渉、及び複数のサブモジュール20の間の電磁的な干渉を低減させることができる。
 次に、図5Bを参照して第3実施例の変形例による高周波モジュールについて説明する。図5Bは、第3実施例の変形例による高周波モジュール50の断面図である。図5Bに示した変形例では、高周波モジュール50が複数のアンテナ部品60を含む。複数のアンテナ部品60は、高周波モジュール50内の複数のサブモジュール20のいずれかに、第2配線47を介して接続されている。本変形例のように、複数のサブモジュール20のそれぞれに接続されるアンテナ部品60を高周波モジュール50内に配置してもよい。
 [第4実施例]
 次に、図6を参照して第4実施例による高周波モジュールについて説明する。以下、図5Bを参照して説明した第3実施例の変形例による高周波モジュール50と共通の構成については説明を省略する。
 図6は、第4実施例による高周波モジュール50の断面図である。第3実施例の変形例(図5B)では、第2支持部材40の天面41T及び側面41Sに導電膜が配置されていない。これに対して第4実施例では、第2支持部材40の天面41Tのほぼ全域に第2導電膜45が配置されている。すなわち、平面視においてアンテナ部品60は第2導電膜45に包含されている。なお、第2支持部材40の側面41Sには、導電膜が配置されていない。第2導電膜45は、高周波モジュール50を個片に分割する前の状態で、第2支持部材40の天面41Tにスパッタリング等によって形成することができる。
 次に、第4実施例の優れた効果について説明する。
 第4実施例においては、第2支持部材40の天面41Tに配置された第2導電膜45が電磁シールド膜として機能する。第2導電膜45は、アンテナ部品60から上方(第2支持部材40の天面41Tが向く方向)に伝搬する電波が遮蔽される。アンテナ部品60から側方(第2支持部材40の側面41Sが向く方向)に伝搬する電波は、遮蔽されず外部に放射される。このように、第4実施例による高周波モジュール50は、電波の指向性を制御することができる。アンテナ部品60のメインビームを側方に向ける場合に、第4実施例の構成が有効である。
 次に、図7Aを参照して第4実施例の変形例による高周波モジュールについて説明する。図7Aは、第4実施例の変形例による高周波モジュール50の断面図である。第4実施例(図6)においては、第2導電膜45が電気的にフローティング状態である。これに対して図7Aに示した変形例では、第2導電膜45が、第2支持部材40を高さ方向に貫通する導体柱49によって実装面41Aの第2電極42Aに接続されている。導体柱49に接続された第2電極42Aは、高周波モジュール50内のグランド電位に接続される。これにより、第2導電膜45の電位をグランドに固定することができる。
 次に、図7B参照して、第4実施例の他の変形例による高周波モジュールについて説明する。図7Bは、第4実施例の他の変形例による高周波モジュール50の断面図である。第4実施例(図6)では、第2支持部材40の天面41Tの全域に第2導電膜45が配置されている。これに対して図7Bに示した変形例では、第2支持部材40の天面41Tのうち一部の領域(以下、第2導電膜45の開口46という。)には第2導電膜45が配置されていない。すなわち、第2導電膜45に開口46が設けられており、第2支持部材40の天面41Tのうち一部の領域が露出している。第2支持部材40の天面41Tを平面視したとき、アンテナ部品60の少なくとも一つは、開口46と重なる位置に配置されている。このアンテナ部品60の近傍の第2支持部材40の側面41Sに、第2導電膜45が配置されている。
 次に、図7Bに示した変形例の優れた効果について説明する。第2導電膜45の開口46と平面視において重なる領域に配置されたアンテナ部品60から上方に放射された電波が、開口46を通って外部に放射される。開口46と重なる領域に配置されたアンテナ部品60のメインビームを上方に向けたい場合に、図7Bに示した変形例の構成が有効である。
 [第5実施例]
 次に、図8を参照して第5実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図8は、第5実施例による高周波モジュール50及びモジュール基板80の断面図である。第8実施例による高周波モジュール50は、図7Bに示した第4実施例の変形例による高周波モジュール50と同様に、複数のアンテナ部品60を含み、第2支持部材40の天面41T及び側面41Sの一部の領域に第2導電膜45が配置されている。さらに、モジュール基板80に高周波用のコネクタ83が実装されている。特に、第2支持部材40の側面41Sのうちコネクタ83の方を向く領域に、第2導電膜45が配置されている。
 コネクタ83は、例えば同軸ケーブル95を介してベースバンド集積回路部品96(BBIC)に接続される。さらに、コネクタ83は、モジュール基板80内の配線(図示せず)、ランド81、ハンダ85を介して、サブモジュール20の外部端子42に接続されている。このサブモジュール20は、電子部品30として高周波集積回路部品30RFを含む。サブモジュール20とベースバンド集積回路部品96との間で、コネクタ83及び同軸ケーブル95を介してと中間周波信号、種々の制御信号等が伝送される。
 次に、第5実施例の優れた効果について説明する。
 コネクタ83を向く第2支持部材40の側面41Sに配置された第2導電膜45が電磁シールド膜として機能する。これにより、高周波モジュール50内の高周波回路とコネクタ83とのアイソレーションを高めることができる。
 [第6実施例]
 次に、図9を参照して第6実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図9は、第6実施例による高周波モジュール50及びモジュール基板80の断面図である。第1実施例(図1A)では、第2支持部材40によって複数のサブモジュール20が支持されている。これに対して第6実施例では、複数のサブモジュール20の他に、表面実装型のチップ部品70が第2支持部材40によって支持されている。チップ部品70の外部端子71が高周波モジュール50の実装面41Aに露出している。チップ部品70の例として、表面実装型のフェライトビーズ、表面実装型のインダクタ、表面実装型のバイパスコンデンサ等が挙げられる。図9では、チップ部品70の一例としてフェライトビーズを示しているが、チップ部品70はフェライトビーズに限定されない。
 第5実施例(図8)と同様に、モジュール基板80にコネクタ83が実装されている。コネクタ83は、モジュール基板80内の配線(図示せず)、ランド81、及びハンダ85を介してチップ部品70の外部端子71に接続されている。チップ部品70の他の外部端子71は、実装面41Aに配置された配線72、及びハンダ42Bを介して一つのサブモジュール20の一つの内部端子31に接続されている。サブモジュール20とコネクタ83との間で、チップ部品70を通して高周波信号が伝送される。チップ部品70は、平面視において、チップ部品70が接続されたサブモジュール20とコネクタ83との間に配置されている
 次に、第6実施例の優れた効果について説明する。
 一般的に、チップ部品70がフェライトビーズである場合、チップ部品70はコネクタ83の近傍に配置される。ここで、「近傍に配置」とは、平面視においてチップ部品70とコネクタ83との間に他の部品が配置されておらず、チップ部品70とコネクタ83とが隣り合っていることを意味する。フェライトビーズであるチップ部品70を高周波モジュール50に内蔵することにより、フェライトビーズを高周波モジュール50の外側のモジュール基板80上に配置する構成と比べて省スペース化を図ることが可能である。
 高周波モジュール50に内蔵されたチップ部品70の代わりに、モジュール基板80上にチップ部品を搭載する場合、コネクタ83とチップ部品との間、及びチップ部品と高周波モジュール50との間の両方に、実装工程において課される最小部品間距離の条件を満たすように、一定の距離を確保する必要がある。第6実施例のように、チップ部品70が高周波モジュール50に内蔵されている場合には、実装工程における最小部品間距離の条件を満たすために高周波モジュール50とコネクタ83との間の距離のみを考慮すればよい。このため、省スペース化が可能になる。
 次に、図10を参照して第6実施例の変形例による高周波モジュールについて説明する。図10は、第6実施例の変形例による高周波モジュール50及びモジュール基板80の断面図である。
 第6実施例(図9)では、第2支持部材40の天面41T及び側面41Sに導電膜が配置されていない。これに対して図10に示した変形例では、第2支持部材40の天面41T及び側面41Sに第3導電膜51が配置されている。第3導電膜51は、第2支持部材40の側面41Sに露出した第2電極42A、ハンダ85、およびランド81を介してモジュール基板80のグランド電位に接続される。
 図10に示した変形例では、第3導電膜51が電磁シールド膜として機能し、コネクタ83と高周波モジュール50内の高周波回路とのアイソレーションを高めることができる。これにより、高周波モジュール50内の高周波回路がコネクタ83から発生するノイズの影響を受けにくくなる。さらに、高周波モジュール50内で発生したノイズが外部に漏れにくくなる。
 [第7実施例]
 次に、図11を参照して第7実施例による高周波モジュールについて説明する。以下、第3実施例の変形例による高周波モジュール50(図5B)と共通の構成については説明を省略する。
 図11は、第7実施例による高周波モジュール50及びモジュール基板80の断面図である。第3実施例(図5B)では、高周波集積回路部品30RFを含む2つのサブモジュール20に接続される複数のアンテナ部品60が、第2支持部材40に支持されている。これに対して第7実施例では、第2支持部材40に支持されたアンテナ部品60の他に、モジュール基板80に放射素子65が配置されている。
 複数の放射素子65は、モジュール基板80の、高周波モジュール50が実装された面とは反対側の面に配置されている。放射素子65は、モジュール基板80内に配置されたグランドプレーン66とともにパッチアンテナを構成する。複数の放射素子65は、それぞれモジュール基板80内の配線67及びビア68を介して、一つのサブモジュール20の複数の外部端子42に接続されている。
 一例として、アンテナ部品60に接続されたサブモジュール20に含まれる高周波集積回路部品30RFは、WiGigに準拠した信号処理を行い、放射素子65に接続されたサブモジュール20に含まれる高周波集積回路部品30RFは、第5世代移動通信システム(5G)の通信規格に準拠した信号処理を行う。WiGigに準拠した信号処理を行うサブモジュール20に、第1導電膜23が設けられている。
 次に、第7実施例の優れた効果について説明する。
 第7実施例による高周波モジュール50は、WiGig、5G等の異なる複数の通信規格に準拠した通信を行うことが可能である。2つのサブモジュール20の少なくとも一方が、電磁シールド膜として機能する第1導電膜23を有することにより、準拠する通信規格の異なる2つのサブモジュール20の間のアイソレーションを確保することができる。
 また、2つの通信規格用のアンテナのうち一方が、高周波モジュール50に内蔵されたアンテナ部品60で構成され、他方がモジュール基板80に配置された放射素子65で構成される。このように、異なる複数の通信規格のそれぞれの周波数帯に応じて、最適な構成のアンテナを用いることができる。
 [第8実施例]
 次に、図12A及び図12Bを参照して第8実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図12Aは、第8実施例による高周波モジュール50の断面図であり、図12Bは、第8実施例による高周波モジュール50の概略等価回路図である。高周波モジュール50に2つのサブモジュール20が含まれている。一方のサブモジュール20は、電子部品30としてDCDCコンバータ30DC及び出力インダクタ30Lを含んでいる。出力インダクタ30Lは、サブモジュール20内の配線32を介してDCDCコンバータ30DCに接続されている。DCDCコンバータ30DCを含むサブモジュール20に、電磁シールド膜として機能する第1導電膜23が設けられている。
 他方のサブモジュール20は、電子部品30として高周波集積回路部品30RFを含んでいる。出力インダクタ30Lは、高周波モジュール50の実装面41Aに配置された第3配線48を介して高周波集積回路部品30RFの内部端子31に接続されている。
 図12Bに示すように、出力インダクタ30LとキャパシタCによってローパスフィルタが構成される。キャパシタCは、例えば出力インダクタ30Lを含むサブモジュール20に内蔵される。DCDCコンバータ30DCからローパスフィルタを介して高周波集積回路部品30RFに電源が供給される。
 出力インダクタ30Lは、出力インダクタ30Lを含むサブモジュール20の他の電子部品のいずれよりも、第3配線48を介して接続されたサブモジュール20に近い位置に配置されている。
 次に、第8実施例の優れた効果について説明する。
 DCDCコンバータ30DCを含むサブモジュール20に第1導電膜23が設けられているため、高周波集積回路部品30RFが、DCDCコンバータ30DCから発生するスイッチングノイズの影響を受けにくくなる。さらに、出力インダクタ30Lが高周波集積回路部品30RFを含むサブモジュール20の近くに配置されているため、高周波集積回路部品30RFに供給される電源品質の向上、電圧降下の低減を図ることができる。
 次に、第8実施例の変形例について説明する。
 第8実施例では、ローパスフィルタを出力インダクタ30LとキャパシタCとで構成しているが、ノイズを低減させることが可能な他の素子や回路構成を用いてもよい。例えば、出力インダクタ30Lの代わりに、コンデンサやフェライトビーズを用いてもよい。例えば、出力インダクタ30Lを高周波集積回路部品30RFとDCDCコンバータ30DCとの間に直列に接続する代わりに、高周波集積回路部品30RFとDCDCコンバータ30DCとを接続する配線とグランドとの間にインダクタを接続してもよい。
 [第9実施例]
 次に、図13Aを参照して第9実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図13Aは、第9実施例による高周波モジュール50の底面図である。第2支持部材40の実装面41Aに、複数の外部端子42が露出している。1つのサブモジュール20の電子部品30に接続された1つの外部端子42が、他の1つのサブモジュール20の電子部品30に接続された外部端子42に、第1配線43によって接続されている。第1配線43から、スタブ43Sが分岐している。スタブ43Sは、第2支持部材40の実装面41Aに配置されている。スタブ43Sは、オープンスタブである。
 図13Bは、第9実施例の変形例による高周波モジュール50の底面図である。第9実施例(図13A)では、第1配線43から分岐するスタブ43Sがオープンスタブであるが、図13Bに示した第9実施例の変形例では、スタブ43Sがショートスタブである。第2支持部材40の実装面41Aにグランドプレーン43Gが形成されており、スタブ43Sの先端がグランドプレーン43Gに接続されている。グランドプレーン43Gは、少なくとも1つの電子部品30のグランド端子に接続された外部端子42Gに接続されている。
 次に、第9実施例及びその変形例の優れた効果について説明する。
 第9実施例においても第1実施例と同様に、高周波モジュールの低背化を図ることが可能であるとともに、サブモジュール20の間の電磁気的な干渉を低減させることができる。
 さらに第9実施例及びその変形例では、スタブ43Sにより、2つのサブモジュール20の間でインピーダンスを整合させることができる。スタブ43Sは、第2支持部材40の実装面41Aに第1配線43の形成と同時に形成することができる。このため、インピーダンス整合用の回路部品を実装することなく、インピーダンス整合回路を構成することができる。
 [第10実施例]
 次に、図14Aを参照して第10実施例による高周波モジュールについて説明する。以下、図1Aから図3Cまでの図面を参照して説明した第1実施例による高周波モジュール50と共通の構成については説明を省略する。
 図14Aは、第10実施例による高周波モジュール50の断面図である。第10実施例による高周波モジュール50は、複数のサブモジュール20の他に複数の第2サブモジュール120を含む。以下、サブモジュール20を第2サブモジュール120と区別するために、第1サブモジュール20ということとする。
 第2サブモジュール120の各々は、複数の第2電子部品130、及び複数の第2電子部品130を覆って支持する第3支持部材122を含む。第2電子部品130に接続された複数の第2内部端子131が、第3支持部材122の1つの面に露出している。第3支持部材122の、第2内部端子131が露出した面は、第1支持部材22の、内部端子31が露出した面とは反対方向を向く。
 複数の第1サブモジュール20は、第2支持部材40の第1部分40Aに覆われて支持されており、複数の第2サブモジュール120は、第2支持部材40の第2部分40Bに覆われて支持されている。第2支持部材40の、複数の外部端子42が露出する実装面41Aとは反対側の面41Bに、複数の第2外部端子142が露出している。複数の第2外部端子142は、それぞれ複数の第2内部端子131に接続されている。
 第2支持部材40の第1部分40A、複数の第1サブモジュール20、及び複数の外部端子42からなる構造は、第1実施例による高周波モジュール50(図1A)の構造と同一である。また、第2支持部材40の第2部分40B、複数の第2サブモジュール120、及び複数の第2外部端子142からなる構造も、第1実施例による高周波モジュール50(図1A)の構造と同一である。
 次に、第10実施例による高周波モジュールの製造方法について説明する。
 第1実施例による高周波モジュール50の製造方法と同様の方法で、第2支持部材40の第1部分40A、第1部分40Aに支持された複数の第1サブモジュール20、及び複数の外部端子42を含む構造物を作製する。同様の方法で、第2支持部材40の第2部分40B、第2部分40Bに支持された複数の第2サブモジュール120、及び複数の第2外部端子142を含む構造物を作製する。第2支持部材40の第1部分40Aと第2部分40Bとを貼り合わせることにより、第10実施例による高周波モジュールを作製することができる。
 次に、第10実施例の優れた効果について説明する。第10実施例においても第1実施例と同様に、高周波モジュールの低背化を図ることが可能であるとともに、第1サブモジュール20及び第2サブモジュール120の間の電磁気的な干渉を低減させることができる。さらに第10実施例では、第1サブモジュール20と第2サブモジュール120とが、実装面41Aに対して直交する方向に積み重ねられているため、電子部品30及び第2電子部品130の実装密度を高めることができる。
 次に、第10実施例の変形例について説明する。
 第10実施例では、第2支持部材40の第2部分40Bに複数の第2サブモジュール120が支持されているが、第2支持部材40の第2部分40Bに、1つの第2サブモジュール120が支持された構成としてもよい。また、複数の第1サブモジュール20のうち少なくとも1つは、シールド膜として機能する第1導電膜23(図1A)を含むが、複数の第2サブモジュール120のいずれも、シールド膜として機能する導電膜を含まない構成としてもよい。
 次に、図14Bを参照して第10実施例の変形例による高周波モジュールについて説明する。図14Bは、第10実施例の変形例による高周波モジュールの断面図である。第10実施例(図14A)では、第1サブモジュール20と第2サブモジュール120との間に、第2支持部材40が介在している。
 これに対して図14Bに示した変形例では、第1サブモジュール20の、複数の内部端子31が配置された面とは反対側の面(以下、天面という。)と、第2サブモジュール120の、複数の第2内部端子131が配置された面とは反対側の面(以下、天面という。)とが、第2支持部材40を介することなく相互に対向している。例えば、両者の間には、接着剤からなる層が配置されている。
 この構造は、例えば第1実施例による高周波モジュール50の製造工程の図3Bに示した製造途中段階までの構造を作製した後、樹脂で封止する際に、少なくとも1つの第1サブモジュール20の天面が露出するように、トランスファー成形すればよい。または、図3Cに示すように、第1サブモジュール20を第2支持部材40で封止した後、第1サブモジュール20の天面が露出するまで第2支持部材40を研削または研磨してもよい。第2支持部材40の第2部分40Bで覆われた構造も、同様の方法で作製することができる。
 図14Bに示した変形例においては、第10実施例と比べて、高周波モジュールの低背化をさらに進めることができる。
 次に、図15A及び図15Bを参照して、第10実施例の他の変形例による高周波モジュールについて説明する。図15A及び図15Bは、第10実施例の他の変形例による高周波モジュール50の断面図である。
 第10実施例(図14A)では、第2支持部材40が、複数の第1サブモジュール20を支持する第1部分40Aと、複数の第2サブモジュール120を支持する第2部分40Bとの境界が明確に現れている。これに対して図15A及び図15Bに示した変形例では、第2支持部材40が単一の樹脂部材で構成されている。
 次に、図15Aに示した変形例による高周波モジュール50の製造方法について説明する。第1実施例による高周波モジュール50の図3Bに示した製造途中段階において、複数の第1サブモジュール20が実装された仮の基板91と、複数の第2サブモジュール120が実装された他の仮の基板91とを、実装面同士を対向させた状態で、トランスファーモールド工法を用いて、2枚の仮の基板91の間に第2支持部材40を充填する。その後、2枚の仮の基板91を研削して除去することにより、図15Aに示した変形例による高周波モジュールが完成する。
 図15Bに示した変形例による高周波モジュール50においては、図14Bに示した変形例と同様に、第1サブモジュール20の天面と第2サブモジュール120の天面との間に第2支持部材40が介在していない。例えば、第1サブモジュール20の天面が第2サブモジュール120の天面に接触している。図15Bに示した変形例による高周波モジュールは、2枚の仮の基板91の間に第2支持部材40を、トランスファーモールド工法を用いて充填する際に、第1サブモジュール20の天面と第2サブモジュール120の天面とを相互に接触させておけばよい。
 図15A及び図15Bに示した変形例では、第10実施例(図14A)と比べて、製造工程数を削減することができる。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
20 サブモジュール
21A 第1面 
21S 側面
21T 天面
22 第1支持部材
23 第1導電膜
30 電子部品
30DC DCDCコンバータ
30L 出力インダクタ
30RF 高周波集積回路部品
31 内部端子
31A 第1電極
31B ハンダ
31BA ハンダボール
31C 実装用の電極
32 配線
40 第2支持部材
40A 第2支持部材の第1部分
40B 第2支持部材の第2部分
41A 実装面
41S 側面
41T 天面
42 外部端子
42A 第2電極
42B ハンダ
42BA ハンダボール
42G グランド端子に接続された外部端子
43 第1配線
43G グランドプレーン
43S スタブ
44 導体パターン
45 第2導電膜
46 開口
47 第2配線
48 第3配線
49 導体柱
50 高周波モジュール
51 第3導電膜
60 アンテナ部品
61 アンテナ素子
62 アンテナ端子
65 放射素子
66 グランドプレーン
67 配線
68 ビア
70 フェライトビーズ
71 フェライトビーズの外部端子
72 配線
80 モジュール基板
81 ランド
83 コネクタ
85 ハンダ
90、91 仮の基板
95 同軸ケーブル
96 ベースバンド集積回路部品
120 第2サブモジュール
122 第3支持部材
130 第2電子部品
131 第2内部端子
142 第2外部端子
 

Claims (17)

  1.  複数のサブモジュールを備え、
     前記複数のサブモジュールの各々は、
     各々が複数の内部端子を含む複数の電子部品と、
     前記複数の内部端子を露出させるように前記複数の電子部品を覆い、支持する第1支持部材と
    を含み、
     さらに、
     前記複数のサブモジュールを覆い、支持する第2支持部材と、
     前記複数の内部端子のそれぞれに接続され、前記第2支持部材から露出する複数の外部端子と
    を備え、
     前記複数のサブモジュールのうち少なくとも一つのサブモジュールは、前記第1支持部材の少なくとも一部の領域に設けられた第1導電膜を有している高周波モジュール。
  2.  前記複数のサブモジュールの前記複数の内部端子が露出する前記第1支持部材の面と、前記複数の外部端子が露出する前記第2支持部材の面とが、同一方向を向いている請求項1に記載の高周波モジュール。
  3.  前記複数のサブモジュールのすべてが、前記第1導電膜を有する請求項1または2に記載の高周波モジュール。
  4.  前記第2支持部材の、前記複数の外部端子が露出した面に配置され、前記複数のサブモジュールのうち一つのサブモジュールの前記複数の内部端子の一つと、他の一つのサブモジュールの前記複数の内部端子の一つとを接続する第1配線をさらに備えた請求項1乃至3のいずれか1項に記載の高周波モジュール。
  5.  前記第2支持部材の、前記複数の外部端子が露出した面に配置され、前記第1配線から分岐するスタブをさらに備えた請求項4に記載の高周波モジュール。
  6.  前記第2支持部材に覆われて支持され、アンテナ素子及び前記第2支持部材から露出したアンテナ端子を有する少なくとも一つのアンテナ部品をさらに備えている請求項1乃至5のいずれか1項に記載の高周波モジュール。
  7.  前記第2支持部材は、前記複数の外部端子が露出した面とは反対側を向く天面を有し、前記第2支持部材の天面に設けられた第2導電膜をさらに備えた請求項6に記載の高周波モジュール。
  8.  前記第2支持部材の天面のうち一部の領域は前記第2導電膜から露出しており、前記第2支持部材の天面を平面視したとき、前記アンテナ部品の少なくとも一つは、前記第2支持部材の天面が露出している領域と重なる位置に配置されている請求項7に記載の高周波モジュール。
  9.  前記第2支持部材の、前記複数の外部端子が露出した面に配置され、前記複数のサブモジュールのうち一つのサブモジュールの前記複数の内部端子の一つと前記アンテナ端子とを接続する第2配線をさらに備えており、
     前記複数のサブモジュールのうち前記第2配線に接続されたサブモジュールは、前記複数の電子部品の一つとして高周波集積回路部品を含む請求項6乃至8のいずれか1項に記載の高周波モジュール。
  10.  前記複数のサブモジュールのうち少なくとも2つのサブモジュールは、それぞれ前記複数の電子部品の一つとして、相互に異なる通信規格の信号処理を行う高周波集積回路部品を含む請求項6乃至9のいずれか1項に記載の高周波モジュール。
  11.  前記複数のサブモジュールのうち一つのサブモジュールは前記複数の電子部品の一つとしてDCDCコンバータ及び前記DCDCコンバータに接続された出力インダクタを含み、
     前記第2支持部材の、前記複数の外部端子が露出した面に配置され、前記複数のサブモジュールのうち前記出力インダクタを含むサブモジュールとは別の一つのサブモジュールの前記複数の内部端子の一つと、前記出力インダクタとを接続する第3配線をさらに備え、
     前記出力インダクタは、前記出力インダクタを含むサブモジュールの他の電子部品のいずれよりも、前記第3配線で接続されたサブモジュールに近い位置に配置されている請求項1乃至10のいずれか1項に記載の高周波モジュール。
  12.  さらに、
     前記複数の外部端子が接続された複数のランドを有するモジュール基板と、
     前記モジュール基板に実装されたコネクタと
    を備えた請求項1乃至11のいずれか1項に記載の高周波モジュール。
  13.  前記第2支持部材に支持され、前記複数の外部端子が露出した前記第2支持部材の面に露出した端子を有する少なくとも一つの表面実装型のチップ部品をさらに備え、
     前記チップ部品は、前記複数のサブモジュールのうち一つのサブモジュールに接続されており、平面視において、前記チップ部品が接続されたサブモジュールと前記コネクタとの間に配置されている請求項12に記載の高周波モジュール。
  14.  前記第2支持部材の、前記複数の外部端子が露出した面以外の面に配置された第3導電膜をさらに備えた請求項1乃至5のいずれか1項に記載の高周波モジュール。
  15.  さらに、
     少なくとも1つの第2サブモジュールを備え、
     前記第2サブモジュールの各々は、
     複数の第2内部端子を含む複数の第2電子部品と、
     前記複数の第2内部端子を露出させるように前記複数の第2電子部品を覆い、支持する第3支持部材と、
    前記複数の第2内部端子に接続された複数の第2外部端子と
    を含み、
     前記第2支持部材の、前記複数の外部端子が露出する面とは反対側の面に、前記複数の第2外部端子が露出するように、前記第2サブモジュールが前記第2支持部材に支持されている請求項1乃至14のいずれか1項に記載の高周波モジュール。
  16.  前記第2支持部材は、前記複数のサブモジュールを覆う第1部分と、前記第2サブモジュールを覆う第2部分とを含み、前記第1部分が前記第2部分に接着されている請求項15に記載の高周波モジュール。
  17.  前記複数のサブモジュールのうち少なくとも1つのサブモジュールの、前記複数の内部端子が配置された面とは反対側の面と、前記第2サブモジュールの、前記複数の第2内部端子が配置された面とは反対側の面とが、前記第2支持部材を介することなく相互に対向している請求項15または16に記載の高周波モジュール。
     
PCT/JP2022/041395 2022-01-17 2022-11-07 高周波モジュール WO2023135911A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005059 2022-01-17
JP2022-005059 2022-01-17

Publications (1)

Publication Number Publication Date
WO2023135911A1 true WO2023135911A1 (ja) 2023-07-20

Family

ID=87278854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041395 WO2023135911A1 (ja) 2022-01-17 2022-11-07 高周波モジュール

Country Status (1)

Country Link
WO (1) WO2023135911A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136251A1 (ja) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. 部品内蔵モジュール及びその製造方法
JP2013179449A (ja) * 2012-02-28 2013-09-09 Toshiba Corp 無線装置、それを備えた情報処理装置および記憶装置
JP2013179152A (ja) * 2012-02-28 2013-09-09 Toshiba Corp 無線装置、それを備えた情報処理装置および記憶装置
US20150084206A1 (en) * 2013-09-24 2015-03-26 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Dual Fan-Out Semiconductor Package
US20170148744A1 (en) * 2015-11-20 2017-05-25 Apple Inc. Substrate-less integrated components
US20180138148A1 (en) * 2016-11-15 2018-05-17 Advanced Semiconductor Engineering, Inc. Compartment shielding for warpage improvement
WO2018105307A1 (ja) * 2016-12-05 2018-06-14 株式会社村田製作所 電子部品
US20190244907A1 (en) * 2018-02-05 2019-08-08 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method for manufacturing the same
US20200020643A1 (en) * 2018-07-16 2020-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Semicondcutor packages with electromagnetic interference shielding layer and methods of forming the same
JP2021106341A (ja) * 2019-12-26 2021-07-26 株式会社村田製作所 高周波モジュールおよび通信装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136251A1 (ja) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. 部品内蔵モジュール及びその製造方法
JP2013179449A (ja) * 2012-02-28 2013-09-09 Toshiba Corp 無線装置、それを備えた情報処理装置および記憶装置
JP2013179152A (ja) * 2012-02-28 2013-09-09 Toshiba Corp 無線装置、それを備えた情報処理装置および記憶装置
US20150084206A1 (en) * 2013-09-24 2015-03-26 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Dual Fan-Out Semiconductor Package
US20170148744A1 (en) * 2015-11-20 2017-05-25 Apple Inc. Substrate-less integrated components
US20180138148A1 (en) * 2016-11-15 2018-05-17 Advanced Semiconductor Engineering, Inc. Compartment shielding for warpage improvement
WO2018105307A1 (ja) * 2016-12-05 2018-06-14 株式会社村田製作所 電子部品
US20190244907A1 (en) * 2018-02-05 2019-08-08 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method for manufacturing the same
US20200020643A1 (en) * 2018-07-16 2020-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Semicondcutor packages with electromagnetic interference shielding layer and methods of forming the same
JP2021106341A (ja) * 2019-12-26 2021-07-26 株式会社村田製作所 高周波モジュールおよび通信装置

Similar Documents

Publication Publication Date Title
JP6489182B2 (ja) アンテナ一体型無線モジュール
US7217993B2 (en) Stacked-type semiconductor device
US7649499B2 (en) High-frequency module
US20080067656A1 (en) Stacked multi-chip package with EMI shielding
US20060214278A1 (en) Shield and semiconductor die assembly
WO2020071021A1 (ja) 高周波モジュールおよび通信装置
WO2020179504A1 (ja) 高周波モジュール及び通信装置
US9713259B2 (en) Communication module
US9484608B2 (en) Switch module
US20130083495A1 (en) Tuner module
US8791369B2 (en) Electronic component
JP2011014659A (ja) 複合電子部品モジュール
JP2002353842A (ja) 携帯端末用無線モジュール
US20090008134A1 (en) Module
US20230230951A1 (en) Circuit module
US11178765B2 (en) Electronic device
WO2023135911A1 (ja) 高周波モジュール
CN213483749U (zh) 通信模块
WO2023135912A1 (ja) アンテナモジュール
JPWO2013179875A1 (ja) 複合モジュール
US10172230B1 (en) Surface mount technology device
KR101338682B1 (ko) 통신회로 집적모듈
JP2006211144A (ja) 高周波モジュール及び無線通信機器
CN219998479U (zh) 电子器件
US20240014121A1 (en) Electronic circuit module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920432

Country of ref document: EP

Kind code of ref document: A1